WO2010121437A1 - 一种通信***中无线数据传输的方法和装置 - Google Patents

一种通信***中无线数据传输的方法和装置 Download PDF

Info

Publication number
WO2010121437A1
WO2010121437A1 PCT/CN2009/071461 CN2009071461W WO2010121437A1 WO 2010121437 A1 WO2010121437 A1 WO 2010121437A1 CN 2009071461 W CN2009071461 W CN 2009071461W WO 2010121437 A1 WO2010121437 A1 WO 2010121437A1
Authority
WO
WIPO (PCT)
Prior art keywords
henb
enb
common channel
channel
offset
Prior art date
Application number
PCT/CN2009/071461
Other languages
English (en)
French (fr)
Inventor
黄英
邱勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN200980123750.5A priority Critical patent/CN102077667B/zh
Priority to PCT/CN2009/071461 priority patent/WO2010121437A1/zh
Publication of WO2010121437A1 publication Critical patent/WO2010121437A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method and apparatus for wireless data transmission. Background technique
  • a small base station or a home base station in addition to the macro base station eNB deployed by the operator, there is another base station configuration: a small base station or a home base station, generally referred to as an AP (Access point), which is collectively referred to herein as an HeNB.
  • This small base station is characterized by small coverage, flexible installation, and support plug-and-play to some extent.
  • Orthogonal Frequency Division Multiplexing Orthogonal Frequency Division Multiplexing 1 J Wo is to improve communications with the parallel transfer of a mobile data communications technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • PRB physical resource block
  • the OF system requires very accurate time-frequency synchronization, so the synchronization technique is one of the key technologies of the OFDM system.
  • the downlink synchronization process is mainly performed through a synchronization channel (Synchronization Channel, SCH).
  • SCH Synchronization Channel
  • the SCH of the read-only cell is the first step for the UE to access the cell. If the SCH is to be resident after the SCH has been read, the physical broadcast channel (PBCH) must be read correctly.
  • PBCH physical broadcast channel
  • the user equipment receives the synchronization channel (SCH) and the broadcast channel (PBCH) signal of the eNB, and also receives the SCH and PBCH signals of the HeNB, and the transmission power of the HeNB and the eNB are similar.
  • the UE uses its own storage.
  • the synchronization sequence is connected to the peak of the correlation calculation of the received radio signal, and the synchronization signal of each cell cannot be distinguished, that is, the different cells cannot be distinguished (ie, the HeNB and the eNB cannot be distinguished), and the eNB is for the HeNB. It is an interference, so the UE cannot correctly decode the PBCH.
  • Embodiments of the present invention provide a method and apparatus for wireless data transmission in a communication system to solve the problem of wireless data transmission interference.
  • an embodiment of the present invention provides a method for wireless data transmission in a communication system, where the communication system includes at least one home base station HeNB and at least one macro base station e NB, the method includes: in a time domain and/or The common channel of the HeNB and the eNB is shifted in the frequency domain, and wireless data transmission is performed on the staggered common channel.
  • Embodiments of the present invention can prevent data transmitted on the common channel of the two from interfering with each other by staggering the common channel of the HeNB and the eNB in the time domain and/or the frequency domain.
  • the embodiment of the present invention further provides a wireless data receiving method, the method comprising: searching a common channel of an eNB; searching for a channel of a HeNB that is offset from a common channel of the eNB in a frequency domain and/or a time domain; And receiving wireless data transmitted on a common channel of the eNB and the HeNB.
  • the embodiment of the present invention can correctly receive the data transmitted on the common channel of the HeNB and the eNB by searching the common channel of the eNB and searching for the common channel of the HeNB that is staggered with the common channel of the eNB in the time domain and/or the frequency domain, so that the data transmitted on the common channel of the HeNB and the eNB can be correctly received, thereby Correctly distinguish each cell to avoid receiving errors.
  • the embodiment of the present invention further provides a communication system, where the communication system includes at least one home base station HeNB and at least one macro base station eNB, where the common channel of the HeNB and the eNB is shifted in a frequency domain and/or a time domain, The HeNB and the eNB are configured to perform data transmission on the staggered common channel.
  • the communication system provided by the embodiment of the present invention can prevent the data transmitted on the common channel of the two from interfering with each other by staggering the common channel of the HeNB and the eNB in the time domain and/or the frequency domain.
  • An embodiment of the present invention further provides a user equipment UE, where the UE includes: a search unit, configured to search a common channel of a macro base station eNB, and used to share a common channel with an eNB in a frequency domain and/or a time domain. a common channel of the staggered HeNB performs a search; and a receiving unit is configured to receive the wireless data transmitted on the common channel.
  • a search unit configured to search a common channel of a macro base station eNB, and used to share a common channel with an eNB in a frequency domain and/or a time domain.
  • a common channel of the staggered HeNB performs a search; and a receiving unit is configured to receive the wireless data transmitted on the common channel.
  • the UE provided by the embodiment of the present invention can correctly receive the HeNB by searching the common channel of the eNB and searching for the common channel of the HeNB that is staggered with the common channel of the eNB in the time domain and/or the frequency domain.
  • the data transmitted on the common channel of the eNB can correctly distinguish each cell and avoid receiving errors.
  • FIG. 1 is a flow chart of a method for wireless data transmission in a communication system according to the present invention
  • FIG. 2 is a flow chart showing an embodiment of a wireless data receiving method according to the present invention
  • FIG. 3 is a flowchart of still another embodiment of a wireless data transmission method in a communication system according to the present invention
  • FIG. 4 is a flowchart of another embodiment of a wireless data transmission method in a communication system according to the present invention.
  • 6a is a time domain diagram of a SCH channel of an eNB according to an embodiment of the present invention.
  • 6b is a time domain diagram of a SCH channel of a HeNB according to an embodiment of the present invention.
  • FIG. 7a is a time domain diagram of a PBCH channel of an eNB according to an embodiment of the present invention.
  • FIG. 7b is a time domain diagram of a PBCH channel of a HeNB according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a UE according to another embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method and apparatus for wireless data transmission in a communication system. The invention will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a flow chart showing an embodiment of a method for wireless data transmission in a communication system according to the present invention.
  • the communication system includes at least one home base station HeNB and at least one macro base station eNB.
  • Step 101 The common channel of the HeNB and the eNB is staggered in the frequency domain and/or the time domain.
  • Step 102 Perform data transmission on the staggered common channel.
  • shifting the frequency band of the common channel of the eNB and the HeNB in the frequency domain further includes: setting a cell center frequency point of the HeNB, such that the center frequency point of the HeNB cell has a frequency band offset from a center frequency point of the eNB cell
  • the shift amount is set according to the frequency band offset, so that the common channel of the HeNB and the eNB are phase-shifted in the frequency domain, and the frequency band offset may be fixed by the system or dynamically allocated by the system to the HeNB.
  • the phase shift of the common channel in the frequency domain refers to the offset from the center frequency of the cell band.
  • the cell frequency band is 2020-2040M.
  • all common channels occupy 1.25M of the center frequency, that is, 2029. 375-2030. 625M.
  • the offset is 3 (or -3) M
  • the common channel occupancy range is 2026. 375-3027. 625M.
  • the eNB, the HeNB, the UE, the network management, and the like in the system can know the offset of the system according to the system specification.
  • the HeNB performs data transmission of the common channel according to the offset amount, and the UE searches according to the offset.
  • the foregoing system dynamically allocates an offset to the HeNB, which means that the offset can be changed.
  • the eNB and the HeNB obtain an offset through X2/S1 interface information interaction, or send an offset to the HeNB by the network management or the self-organizing server.
  • the amount, or the operator, when purchasing the HeNB sets the offset by manual input, and the HeNB informs the eNB of the offset.
  • the terminal can transmit the offset to the UE by the eNB by interacting with the information of the eNB.
  • the eNB may pass a Radio Resource Control Protocol (RRC) message (eg, an RRC reconfiguration message or a paging message, or may be a newly added RRC message), a system broadcast message, a transit non-access stratum message, a paging message, or The frame or symbol or time slot of the physical layer transmits the associated frequency band offset to the user terminal UE.
  • RRC Radio Resource Control Protocol
  • the HeNB offsets its own common channel according to the offset, and the UE searches according to the offset.
  • the HeNB e NB and the common channel is shifted in the time domain symbols, comprising: a frame structure of the HeNB common channel frame structure of the eNB is not the same common channel.
  • the method may be: reading, by the HeNB, the eNB's SCH channel, synchronizing with the eNB, or ensuring the time synchronization relationship between the HeNB and the eNB through a synchronization network, such as the 1588 protocol, or by using GPS.
  • the common channel includes at least one of a following channel synchronization channel (SCH), a broadcast channel (PBCH), a control format indication physical channel (PCFICH), and the like.
  • SCH channel synchronization channel
  • PBCH broadcast channel
  • PCFICH control format indication physical channel
  • the interference of the common channel between the HeN B and the eNB can be reduced by staggering the common channel of the HeNB and the eNB.
  • FIG. 2 is a flow chart of an embodiment of a method for wireless data reception according to an embodiment of the present invention.
  • step 201 searching for a common channel of the eNB
  • Step 202 Receive data transmitted on a common channel of an eNB.
  • Step 203 Search for a channel of the HeNB that is offset from the common channel of the eNB in the frequency domain and/or the time domain;
  • Step 204 Receive wireless data transmitted on a common channel of the HeNB.
  • the order of the steps 201, 202, 203, and 204 is not strictly limited.
  • the data may be received while searching, and the order of searching for the common channel of the eNB and the HeNB is not limited.
  • the UE before searching for the common channel of the HeNB, includes: searching by the UE according to the offset specified by the system.
  • the offset is determined by the system implementation, that is, a fixed offset; or the UE obtains the dynamically specified offset of the eNB according to the air interface message.
  • the UE may set a switch to decide whether to perform a SCH/PBCH search of the HeNB.
  • the location information may be used to determine that the UE determines its location. If the UE arrives near the HeNB, the HeNB is performed according to the offset.
  • the location determination may be performed in the following manner:
  • the location information of the UE may have many methods, for example, using GPS, or a neighboring macro cell list of the HeNB saved by the UE to determine whether the UE is near the HeNB.
  • the former method for determining the position by using the GPS is: confirming that the UE is in the vicinity of the HeNB according to the GPS location information of the UE.
  • the specific method of the latter is as follows: After the UE enters the macro cell, the system broadcast of the cell is read, and the cell identifier of the eNB cell is obtained, which is compared with the neighboring macro cell list stored by itself, and if it is included, it is considered to be near the HeNB. Judging the location information of the UE is not limited to this method.
  • searching for the common channel of the HeNB in which the symbol is offset from the eNB in the time domain includes: the UE performs a search according to a frame structure designed by the system. That is, the HeNB and the eNB are searched using the corresponding frame structure of the HeNB and the eNB, respectively.
  • the UE it is also possible for the UE to decide for itself when to start searching with the frame structure of the HeNB. For example, the above UE location information.
  • the UE can distinguish the common channel between the HeNB and the eNB by searching the common channel of the staggered HeNB and the eNB, thereby reducing interference between the two.
  • FIG. 3 is a flowchart of a first embodiment of a wireless data transmission and reception method according to the present invention.
  • Step 301 Taking the LTE system as an example, the system presets a fixed frequency band offset, and all HeNBs place the SCH and PBCH according to the offset.
  • the frequency range of an eNB cell is: 21 10 - 2130Mhz (megahertz)
  • the center frequency is 2120Mhz
  • the range of SCH and PBCH is 2119. 375Mhz - 2120. 625Mhz D
  • the HeNB's SCH, PBCH is placed in the range of 2116. 375Mhz -2117. 625Mhz.
  • Step 302 When the UE performs a cell search, for example, normally searching for 2120 Mhz of the cell center frequency, performing correlation calculation to find a peak and a subsequent corresponding cell search process. In this step, the UE searches for a cell according to an existing method.
  • a cell search for example, normally searching for 2120 Mhz of the cell center frequency, performing correlation calculation to find a peak and a subsequent corresponding cell search process.
  • the UE searches for a cell according to an existing method.
  • Step 303 the UE determines, according to the current location of the UE, whether the UE is in the vicinity of the HeNB, and if the UE is in the vicinity of the HeNB, the UE adjusts the frequency band to search for the corresponding HeNB, if the UE is not in the vicinity of the HeNB, the UE HeNB search with offset may not be performed.
  • the UE may obtain location information collected by a Global Positioning System (GPS). For example, the UE can calculate detailed location information, such as north latitude and east longitude. Or storing a neighboring macro cell list in the UE. After the UE enters the macro cell, the UE broadcasts the system broadcast of the cell, obtains the cell identifier of the eNB cell, and compares the obtained cell identifier of the eNB with the neighboring macro cell list stored by itself. The cell identifier is in the neighboring macro cell list, and step 304 is performed.
  • GPS Global Positioning System
  • Step 304 The UE performs a search according to the offset of the frequency band.
  • the above example is left to 3Mhz, that is, the common channel information of the HeNB cell is searched to the range of 2116.375Mhz-2117.625Mhz, and the effect cell search process is performed.
  • the scheme of the present invention does not limit the order between the foregoing steps 302, 303, and 304, and may search the HeNB and then search for the eNB.
  • FIG. 4 is a flowchart of a second embodiment of a wireless data transmission and reception method according to the present invention.
  • the system dynamically allocates a band offset for the HeNB, and the HeNB places the SCH, the PBCH, and the PCFCH channel according to the offset allocated to the HeNB.
  • the HeNB and the eNB obtain an offset by using the X2/S1 interface interaction information, or an operation administration manager (0AM) / SON self-organization network (SON) server sends an offset to the HeNB, or
  • an operation administration manager (0AM) / SON self-organization network (SON) server sends an offset to the HeNB, or
  • the HeNB informs the eNB that the offset is in the present example.
  • the HeNB and the eNB are adjacent to each other, that is, the data transmitted on the common channel of the HeNB and the eNB interfere with each other.
  • Step 402 When performing cell search, the UE searches for the eNB cell center frequency, performs correlation calculation to find the peak value, and the subsequent corresponding cell search process. In this step, the search process specifically for the eNB cell can be searched according to the existing search method.
  • Step 403 The eNB sends the offset allocated to the HeNB to the UE by using a system broadcast message.
  • the eNB may also send the UE to the UE through a Network Attached Storage (NAS) message.
  • NAS Network Attached Storage
  • the eNB sends the message to the RRC through a reconfiguration message or a paging message or other RRC message.
  • the radio resource control protocol (RRC) layer of the eNB tells its own physical layer that the physical layer of the eNB informs the physical layer of the UE through one frame or some time slots or some symbols.
  • RRC radio resource control protocol
  • Step 404 The UE searches for a cell of the HeNB according to the offset of the frequency band, and performs a corresponding cell search process.
  • the step of determining, by the UE itself, whether to perform an HeNB cell search with an offset may be included. For example, the method in step 303.
  • FIG. 5 is a schematic diagram of a frequency band division in a multimode eNB base station according to the present invention, where 501 is a common channel of Long Term Evolution Network (LTE), and 502 and 503 are Universal Mobile Telecommunications System (UMTS).
  • the common channel of High Speed Downlink Packet Access (HSPA), 504 to 507 are the guard bands of HSPA, 508 is a conventional Orthogonal Frequency Division Multiplexing (OFDM) subcarrier, and 509 is a supplemental 0FMD subcarrier.
  • HSPA High Speed Downlink Packet Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • UMTS uses about 5 Mhz bandwidth on both sides, and LTE uses a part of bandwidth around 10 Mhz in the middle.
  • the range of UMTS in the figure is 2000 Mhz-2004 Mhz
  • LTE is 2005 Mhz-2014Mhz
  • UMTS is 2015 Mhz-2020 Mhz
  • the guard bands are respectively from 2004Mhz-2005Mhz, 2014 Mhz-2015 Mhz.
  • the eNB can inform the UE through the air interface message that the offset is shifted from the intermediate frequency point by 6Mhz, that is, the SCH of the HeNB, and the range of the PBCH is 2004 Mhz - 2005. 25 Mhz.
  • the offset described in step 401 may be such that the frequency band of the HeNB common channel is placed in the guard band, and since the common channel of the eNB and the HeNB is distinguished in the frequency band, no interference is generated.
  • FIG. 6 is a time domain diagram of an SCH channel of an eNB according to an embodiment of the present invention
  • FIG. 6b is a time domain diagram of a SCH channel of a HeNB according to an embodiment of the present invention
  • FIG. 7a is a PBCH of an eNB according to an embodiment of the present invention
  • Channel time domain diagram is a PBCH channel time domain diagram of the HeNB according to an embodiment of the present invention.
  • the P-SCH and the S-SCH are the primary and secondary channels of the primary homogeneous channel (PSCH), which together become the PSCH.
  • the diagonal line indicates the P-SCH
  • the dot shadow indicates the S-SCH.
  • the PBCH channel occupies the position of the first 4 symbols of the first time slot, where the PBCH is indicated in gray.
  • the PBCH channel occupies the position of the first 4 symbols of the 2nd time slot, where the PBCH is indicated in gray.
  • the HeNB does not necessarily occupy the second and thirteenth slots, for example, it may occupy the 3rd and 14th slots, etc., as long as the SCH frame of the HeNB.
  • the structure is different from the SCH frame structure of the eNB, and interference can be eliminated without overlapping in the time domain.
  • the PBCH channel of the HeNB is not necessarily limited to the first four symbol positions of the second time slot, for example, the first four symbol positions of the third time slot, as long as the PBCH frame structure of the HeNB and the eNB are
  • the PBCH frame structure is different, for example, such that the common channel of the eNB and the HeNB does not overlap in the time domain, so that interference can be eliminated.
  • the frame structure of the HeNB common channel is adjusted to separate the common channel of the eNB and the HeNB from the time domain, thereby avoiding mutual interference.
  • synchronization between the HeNB and the eNB may be implemented through a synchronization network, such as the 1588 protocol, or through GPS.
  • a GPS device is installed on each of the HeNB and the eNB to communicate with each other.
  • the HeNB may also synchronize with the eNB by reading the SCH channel of the eNB.
  • the UE can obtain the common channel information of the HeNB according to the analysis of different frame structures while searching for the eNB cell, so that the UE can search for the HeNB cell.
  • Whether the UE performs the search of the HeNB frame structure may be performed according to the method in step 303 of the foregoing example, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the common channel of the HeNB and the eNB is in the frequency domain And/or staggered in the time domain, the HeNB and the eNB are configured to perform data transmission on the staggered common channel.
  • the eNB is further configured to send a frequency band offset of the common channel of the HeNB and the eNB in the frequency domain to the HeNB and/or the user terminal UE.
  • the eNB and the HeNB are configured to transmit data in a different frame structure to the common channel in the time domain.
  • the interference of the common channel between the HeN B and the eNB can be reduced by staggering the common channel of the HeNB and the eNB.
  • FIG. 9 is a schematic structural diagram of a user terminal UE according to an embodiment of the present invention.
  • a search unit 901 configured to search for a common channel of the macro base station eNB, and search for a common channel of the HeNB that is offset from the common channel of the eNB in the frequency domain and/or the time domain; The receiving wireless data transmitted on a common channel.
  • the UE can distinguish the common channel between the HeNB and the eNB by searching the common channel of the staggered HeNB and the eNB, thereby reducing interference between the two.
  • the terminal provided in this embodiment may perform the steps performed by the UE in the foregoing method embodiment, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of still another embodiment of a user terminal UE according to the present invention.
  • the search unit 1001 and the receiving unit 1002 included in the UE are substantially the same as the foregoing embodiment, and further include a location information acquiring unit 1003, configured to acquire location information of the UE, and when confirming that the UE is in the vicinity of the HeNB, A search is initiated on the common channel that triggers the search unit 1001 to the HeNB.
  • the location information acquiring unit 1003 acquires the cell identifier of the current eNB, and matches whether the cell identifier exists in the neighboring macro cell list stored by the UE, and if it exists, passes the search unit 1001 to the offset.
  • the frequency band searches for the common channel of the HeNB.
  • the location information acquiring unit 1003 may be further configured to obtain The global satellite positioning (GSP) location information of the current UE, if the UE acquires the GPS location information of the UE by using the location information acquiring unit 1003, according to the location information, if the UE arrives near the HeNB, the search unit is used. 1001 searches for the common channel of the HeNB to the shifted frequency band.
  • GSP global satellite positioning
  • the UE receives a frame structure of the HeNB common channel that is different from a frame structure of the eNB common channel.
  • the UE can distinguish the common channel between the HeNB and the eNB by searching the common channel of the staggered HeNB and the eNB, thereby reducing interference between the two.
  • the beneficial effects of the embodiments of the present invention are that the interference problem of the HeNB and the eNB on the common channel is solved by staggering the common channels of the HeNB and the e NB in the frequency domain and/or the time domain.
  • the foregoing method includes the steps of the foregoing method embodiments, and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种通信***中无线数据传输的方法和装置 技术领域
本发明涉及无线通信领域, 具体的讲是一种无线数据传输的方法和装置。 背景技术
在移动通信***中, 除了运营商部署的宏基站 eNB之外, 还存在另外一 种基站形态: 小基站或者家用基站, 一般称之为 AP (Access point ) , 本文 统一称之为 HeNB。 这种小基站的特点是覆盖范围小, 安装灵活, 在某种程度 上支持即插即用。
长期演进 (LTE) 无线移动通信***中, 主要的物理层技术正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM) 是禾1 J用并行传输 来提高通信数据率的一种移动通信技术。 在 OFDM中, 用一个物理资源块 (phy sical resource block, PRB) 来传递数据。 这个 PRB具有时域和频域两个维 度。
为了保证子载波之间的正交性, OF丽***需要非常精确的时频同步, 因 此同步技术是 OFDM***的关键技术之一。 在无线通信***中, 用户初始接入 网络时主要通过同步信道 (Synchronization Channel , SCH) 完成下行同步 过程。 即读小区的 SCH, 是 UE接入小区的第一步。 如果 SCH读到后, 要驻留小 区, 必须正确读取广播信道 (physical broadcast channel , PBCH) 。
在 HeNB和 eNB共同覆盖的区域,会出现无线数据传输干扰。用户设备(UE) 收到 eNB的同步信道 (SCH) 和广播信道 (PBCH) 信号, 同时还接收到 HeNB的 SCH和 PBCH信号, HeNB和 eNB的发射功率相差不多, 此时, UE用自己存储的同 步序列与收到的无线信号进行相关计算后的峰值相连在一起, 不能区分出各 个小区的同步信号, 也就是说无法区分出不同的小区 (即不能区分 HeNB和 eNB) , eNB对 HeNB来说是一种干扰,因此 UE无法对 PBCH进行正确解码。 发明内容
本发明实施例提供一种通信***中无线数据传输的方法和装置, 以解决 无线数据传输干扰的问题。
为了解决以上问题, 本发明实施例提供了一种通信***中无线数据传 输的方法, 所述通信***包括至少一个家用基站 HeNB和至少一个宏基站 e NB, 该方法包括: 在时域和 /或频域上将所述 HeNB和 eNB的公共信道错开, 在错开的公共信道上进行无线数据传输。
本发明的实施例通过在时域和 /或频域上将所述 HeNB和 eNB的公共信道 错开, 可避免两者公共信道上传输的数据相互干扰。
本发明实施例还提供了一种无线数据接收方法, 该方法包括: 对 eNB 的 公共信道进行搜索; 对与 eNB 的公共信道在频域和 /或时域上相错开的 HeNB 的信道进行搜索; 以及接收所述 eNB和 HeNB的公共信道上传输的无线数据。
本发明的实施例通过搜索 eNB的公共信道, 以及搜索在时域和 /或频域上 与 eNB的公共信道错开的 HeNB的公共信道, 可以正确接收 HeNB和 eNB公共 信道上传输的数据, 从而可以正确区分各小区, 避免接收错误。
本发明实施例还提供了一种通信***, 所述通信***包括至少一个家用 基站 HeNB和至少一个宏基站 eNB, 所述 HeNB与 eNB的公共信道在频域和 /或 时域上错开, 所述 HeNB和 eNB用于在所述错开的公共信道上进行数据传输。
本发明的实施例提供的通信***通过在时域和 /或频域上将所述 HeNB和 eNB的公共信道错开, 可避免两者公共信道上传输的数据相互干扰。
本发明实施例还提供了一种用户设备 UE, 该 UE包括: 搜索单元, 用于对 宏基站 eNB的公共信道进行搜索, 以及用于对在频域和 /或时域上与 eNB的公 共信道错开的 HeNB的公共信道进行搜索; 和接收单元, 用于所述接收公共信 道上传输的无线数据。
本发明的实施例提供的 UE通过搜索 eNB的公共信道, 以及搜索在时域和 /或频域上与 eNB的公共信道错开的 HeNB的公共信道, 可以正确接收 HeNB和 eNB公共信道上传输的数据, 从而可以正确区分各小区, 避免接收错误。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的限定。 在附图中:
图 1所示为本发明一种通信***中无线数据传输的方法实施例流程图; 图 2所示为本发明无线数据接收方法的实施例流程图;
图 3所示为本发明通信***中无线数据传输方法又一实施例流程图; 图 4所示为本发明通信***中无线数据传输方法另一实施例流程图; 图 5所示为本发明多模 eNB基站中频带分部示意图;
图 6a所示为本发明实施例 eNB的 SCH信道的时域图;
图 6b所示为本发明实施例 HeNB的 SCH信道的时域图;
图 7a所示为本发明实施例 eNB的 PBCH信道时域图;
图 7b所示为本发明实施例 HeNB的 PBCH信道时域图;
图 8所示为本发明实施例提供的一种通信***的结构示意图;
图 9所示为本发明实施例提供的一种 UE结构示意图;
图 10所示为本发明又一实施例提供的一种 UE的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下面结合实施方式 和附图, 对本发明做进一歩详细说明。 在此, 本发明的示意性实施方式及其 说明用于解释本发明, 但并不作为对本发明的限定。
本发明实施例提供一种通信***中无线数据传输的方法和装置。 以下结 合附图对本发明进行详细说明。
如图 1所示为本发明一种通信***中无线数据传输的方法实施例流程图。 所述通信***包括至少一个家用基站 HeNB和至少一个宏基站 eNB。 步骤 101, 在频域和 /或时域上将 HeNB和 eNB的公共信道错开。
步骤 102, 在所述错开的公共信道上进行数据传输。
作为本发明的一个实施例, 将 eNB和 HeNB的公共信道在频域上频带错开还 包括: 设定 HeNB的小区中心频点, 使得 HeNB小区中心频点相对于 eNB小区的中 心频点有一频带偏移量, 根据频带偏移量设置 HeNB的公共信道, 使得 HeNB和 eNB的公共信道在频域上相偏移, 所述频带偏移量可以由***固定设定或者由 ***动态为 HeNB分配。
所述公共信道在频域上相偏移指的是相对于小区频段中心频点的偏移。 例如: 以 LTE***为例, 小区频段 2020-2040M, 根据 LTE***中规定, 所有 的公共信道占用的是中心频点的 1. 25M, 即 2029. 375-2030. 625M。 假设偏移 量是左偏 3 (或 -3 ) M, 那么公共信道占用的范围是 2026. 375-3027. 625M。
以 LTE***为例, 对于可以对***固定配置偏移量可以是***中的 eNB, HeNB , UE , 网管等设备按照***规定知晓该偏移量为多少。 HeNB按照这个偏 移量进行公共信道的数据发送, UE按照这个偏移量进行搜索。 上述***动态 为 HeNB分配偏移量, 是指偏移量是可以改变的, 例如, 由 eNB和 HeNB通过 X2/S1 接口信息交互获得偏移量、 或者由网管或自组织服务器向 HeNB发送偏移量, 或者运营商在购买 HeNB的时候, 通过手动输入设置偏移量, 由 HeNB告知 eNB偏 移量。 终端可以通过与 eNB的信息交互, 由 eNB向所述 UE发送该偏移量。 例如 eNB可以通过无线资源控制协议 (RRC ) 消息 (例如 RRC的重配置消息或者寻呼 消息, 也可以是新加的 RRC消息) 、 ***广播消息、 中转非接入层消息、 寻呼 消息、 或者物理层的帧或符号或时隙向用户终端 UE发送所属频带偏移量。
其中 HeNB根据所述偏移量将自己的公共信道进行偏移, UE按照这个偏移 量进行搜索。
作为本发明的一个实施例,将 eNB和 HeNB的公共信道在时域上符号错开, 包括: 所述 HeNB公共信道的帧结构与所述 eNB公共信道的帧结构不相同。
作为本发明的一个实施例需要保证 HeNB与 eNB之间在时间上有个同步关 系, 方法可以是: 由 HeNB读取 eNB的 SCH信道, 与 eNB同步, 或者通过同 步网, 如 1588协议, 或者通过 GPS来保证 HeNB与 eNB在时间上的同步关系。
作为本发明的一个实施例, 所述公共信道至少包括以下信道之一同步信 道 (SCH) 、 广播信道 (PBCH) 、 控制格式指示物理信道 (PCFICH) 等。
通过上述实施例, 通过错开 HeNB和 eNB的公共信道, 可以减小所述 HeN B和 eNB之间公共信道的干扰。
如图 2所示为本发明实施例提供的一种无线数据接收的方法的实施例流 程图。
包括步骤 201, 对 eNB的公共信道进行搜索;
步骤 202, 接收 eNB的公共信道上传输的数据;
步骤 203,对与 eNB的公共信道在频域和 /或时域上相错开的 HeNB的信道 进行搜索;
步骤 204, 接收所述 HeNB的公共信道上传输的无线数据。
需要说明的是, 步骤 201、 202 , 203 , 204的顺序并做严格不限定, 例如 可以是搜索的同时进行数据接收, 对于 eNB和 HeNB公共信道的搜索的顺序也 不做限定。
作为本发明的一个实施例, 对 HeNB的公共信道进行搜索前包括: UE按照 ***规定的偏移量进行搜索。 其中, 所述偏移量由***实现确定, 即固定的 偏移量; 或者 UE根据空口消息得到所述 eNB动态指定的偏移量。
作为本发明的一个实施例, 为了节电, UE可以设定一个开关来决定是否 进行 HeNB的 SCH/PBCH的搜索。 例如可以利用位置信息来决定, 所述 UE判断自 己的位置, 如果所述 UE到达了所述 HeNB附近, 则按照偏移量对 HeNB进行
SCH/PBCH的搜索。
例如可以采用如下方式进行位置判断: UE的位置信息可以有很多方法, 例如利用 GPS , 或者 UE保存的 HeNB的邻接宏小区列表判断 UE是否到了 HeNB附 近。 前者利用 GPS进行位置判断的方法是: 根据该 UE的 GPS位置信息确认所述 UE在所述 HeNB的附近。
后者的具体方法是: UE进入宏小区后读该小区的***广播, 得到 eNB小区 的小区标识, 和自己存储的邻接宏小区列表比较, 如果被包含其中, 则就认 为到了 HeNB附近。 判断 UE的位置信息不限于此方法。
作为本发明的一个实施例, 在所述时域上符号与 eNB错开的 HeNB的公共 信道进行搜索包括: UE按照***设计的帧结构进行搜索。 即分别使用 HeNB和 eNB相应的帧结构进行搜索所述 HeNB和 eNB。
对于什么时候开始用 HeNB的帧结构进行搜索, 也可以 UE 自己决定。 例 如上述的 UE位置信息。
通过上述实施例, UE通过搜索错开的 HeNB和 eNB的公共信道, 可以区别 所述 HeNB和 eNB之间公共信道, 从而减小两者之间的干扰。
如图 3所示为本发明一种无线数据传输和接收方法第一实施例流程图。 步骤 301, 以 LTE***为例, ***预设一个固定的频带偏移量, 所有的 HeNB 根据这个偏移量来放置 SCH, PBCH。 例如, 一个 eNB小区的频段范围是: 21 10 - 2130Mhz (兆赫兹) , 中心频点就是 2120Mhz, SCH和 PBCH的范围是 2119. 375Mhz - 2120. 625Mhz D 如果***规定偏移量是左偏 3Mhz, 那么 HeNB的 SCH, PBCH被放置的范围是 2116. 375Mhz -2117. 625Mhz。
步骤 302, UE进行小区搜索的时候, 例如, 正常搜索小区中心频点的 2120Mhz ,进行相关计算找到峰值以及后续的相应小区搜索过程。在本步骤中, UE按照现有的方法对小区进行搜索。
步骤 303, 作为可选的歩骤, UE根据 UE当前的位置, 判断该 UE是否在 HeNB附近, 如果在 HeNB附近, 则 UE调整频带搜索相应的 HeNB , 如果所述 UE 不在所述 HeNB附近, UE可以不进行具有偏移量的 HeNB搜索。
在本步骤 303中, UE可以通过全球卫星定位***(GPS )所采集的位置信 息, 例如, UE能计算出详细的位置信息, 例如北纬, 东经。 或者还可以在 UE中存储一个邻接宏小区列表, UE进入宏小区后读该小区 的***广播, 得到 eNB小区的小区标识, 将得到的 eNB的小区标识和自己存 储的邻接宏小区列表比较, 如果该小区标识在所述邻接宏小区列表中, 则进 行步骤 304。
步骤 304, UE根据所述频带的偏移量进行搜索,例如上述例子左偏 3Mhz, 即到 2116.375Mhz— 2117.625Mhz范围搜索 HeNB小区的公共信道信息, 进行 效应得小区搜索过程。
本发明方案对上述步骤 302、 303和 304之间的顺序并不限制, 可以先搜 索 HeNB再搜索 eNB。
如图 4所示为本发明一种无线数据传输和接收方法第二实施例流程图。 步骤 401 中, ***动态的为 HeNB分配频带偏移量, HeNB根据分配给该 HeNB的偏移量来放置 SCH, PBCH, 还可以是 PCFCH信道。
例如: HeNB 和 eNB 通过 X2/S1 接***互信息得到偏移量, 或者网管 ( operation administration manager , 0AM ) / 自 组织 网 络 ( SON self-organization network, SON) 服务器向所述 HeNB发送偏移量, 或者通 过运营商在 HeNB购买的时候, 通过手动输入, 最后 HeNB告诉 eNB这个偏移 在本例中所述 HeNB和 eNB相邻, 也就是说 HeNB和 eNB的公共信道上传 输的数据相互干扰。
步骤 402, UE进行小区搜索的时候, 正常搜索 eNB小区中心频点, 进行 相关计算找到峰值以及后续的相应小区搜索过程。 本步骤中, 具体对 eNB小 区的搜索过程可以按照现有搜索方法进行搜索。
步骤 403, eNB通过***广播消息将所述分配给 HeNB的偏移量发送给 UE。 作为可选的实施例, eNB还可以通过网络附加存储(NAS )消息发送给 UE。 或者, eNB通过 RRC的重配置消息或者寻呼消息或其他 RRC消息发送给
UE。 或者 eNB的无线资源控制协议 (RRC) 层告诉自己的物理层, eNB的物理 层通过一个帧或某些时隙或某些符号来告诉 UE的物理层。
步骤 404, UE根据所述频带的偏移量, 搜索 HeNB的小区, 进行相应的小 区搜索过程。
作为本发明的另一个实施例, 所述歩骤 404之前, 还可以包括由 UE自己 判断是否要进行具有偏移量的 HeNB小区搜索的步骤。 例如步骤 303中的方 法。
在多模基站的情况下, 如图 5所示为本发明多模 eNB基站中频带分部示 意图, 其中 501为长期演进网 (LTE) 的公共信道, 502和 503为通用移动通 信***(UMTS) 的高速下行链路分组接入(HSPA ) 的公共信道, 504至 507为 HSPA的保护频带, 508为常规正交频分复用(OFDM)子载波, 509为补充 0FMD 子载波。
在图中 UMTS用了两边的各 5 Mhz左右带宽, LTE用了中间 10 Mhz左右一 部分带宽。 例如图中 UMTS的范围是 2000 Mhz— 2004 Mhz , LTE是 2005 Mhz -2014Mhz , UMTS是 2015 Mhz-2020 Mhz , 保护频带例如分别从 2004Mhz - 2005Mhz , 2014 Mhz -2015 Mhz。 这样, eNB可以通过空口消息告诉 UE, 这 个偏移量是从中频点左移 6Mhz, 即 HeNB的 SCH, PBCH的范围是 2004 Mhz - 2005. 25 Mhz。
在歩骤 401所述的偏移量, 可以为将所述 HeNB公共信道的频带置于所述 保护频带内, 由于在频带上区别了 eNB和 HeNB的公共信道, 所以不会产生干 扰。
如图 6a所示为本发明实施例 eNB的 SCH信道的时域图, 图 6b所示为本发明 实施例 HeNB的 SCH信道的时域图; 如图 7a所示为本发明实施例 eNB的 PBCH信道 时域图, 图 7b所示为本发明实施例 HeNB的 PBCH信道时域图。
在图 6a中, 占用第 1个和第 11个时隙中最后两个符号位置, P-SCH和 S-SCH 是主要同歩信道 (PSCH) 的主、 辅两个信道, 合在一起成为 PSCH, 图中斜线 表示的是 P-SCH, 点阴影表示的是 S-SCH。
在图 6b中, 占用第 2个和第 13个时隙中最后两个符号位置, P-SCH和 S-SCH 是主要同歩信道 (PSCH ) 的主、 辅两个信道, 合在一起成为 PSCH , 图中斜线 表示的是 P-SCH, 点阴影表示的是 S-SCH。
在图 7a中, PBCH信道占用第 1个时隙的前 4个符号的位置, 其中用灰色表 示 PBCH。
在图 7b中, PBCH信道占用第 2个时隙的前 4个符号的位置, 其中用灰色表 示 PBCH。
对于本发明实施例来说, 对于 HeNB来讲这里并不一定限定占用在第 2和第 13个时隙,例如, 也可以是占用第 3和第 14个时隙等等, 只要 HeNB的 SCH帧结构 与 eNB的 SCH帧结构不同, 在时域上没有重叠就可以消除干扰。 同样的, HeNB 的 PBCH信道, 也不一定限定在第 2个时隙的前 4个符号位置, 例如也可以在第 3 个时隙的前 4个符号位置, 只要 HeNB的 PBCH帧结构与 eNB的 PBCH帧结构不同, 例如,这样使得 eNB与 HeNB的公共信道在时域上没有重叠,从而可以消除干扰。
在本发明中, 调整 HeNB公共信道的帧结构, 将 eNB和 HeNB的公共信道从时 域上分开, 从而避免相互干扰。
在本例中, 对于 HeNB与 eNB之间在时间上的同歩关系, 可以通过同步网, 譬如 1588协议, 或者通过 GPS实现所述 HeNB与 eNB之间的同步。 例如, 在 HeNB 和 eNB上各安装一个 GPS装置, 互相通讯。 可选的, HeNB也可以通过读取 eNB的 SCH信道, 与 eNB同步。
UE在搜索 eNB小区的同时, 根据分析不同的帧结构,就可以获取 HeNB的 公共信道信息, 从而该 UE可以搜索所述 HeNB小区。
UE是否进行 HeNB帧结构的搜索, 可以依据前面实例步骤 303的方法,在 此不再赘述。
如图 8所示为本发明实施例提供的一种通信***的结构示意图。
包括至少一个 HeNB和至少一个 eNB ,所述 HeNB与 eNB的公共信道在频域 和 /或时域上错开, 所述 HeNB和 eNB用于在所述错开的公共信道上进行数据 传输。
所述 eNB和 HeNB的公共信道间有一频带偏移量。
所述 eNB还用于将 HeNB与 eNB的公共信道在频域上的频带偏移量发送给 HeNB和 /或用户终端 UE。
所述 eNB和 HeNB用于在时域上,对公共信道采用不同的帧结构发送数据。 通过上述实施例, 通过错开 HeNB和 eNB的公共信道, 可以减小所述 HeN B和 eNB之间公共信道的干扰。
本发明实施例提供的***可以执行上述方法实施例中所述的歩骤, 在此 不再赘述。 如图 9所示为本发明实施例提供的用户终端 UE的结构示意图。
包括搜索单元 901,用于对宏基站 eNB的公共信道进行搜索, 以及用于对 在频域和 /或时域上与 eNB的公共信道错开的 HeNB的公共信道进行搜索; 接收单元 902, 用于所述接收公共信道上传输的无线数据。
通过上述实施例, UE通过搜索错开的 HeNB和 eNB的公共信道,可以区别 所述 HeNB和 eNB之间公共信道, 从而减小两者之间的干扰。
本实施例提供的终端可以执行上述方法实施例中 UE所执行的步骤, 在此 不再赘述。
如图 10所示为本发明提供的用户终端 UE又一实施例结构示意图。
本实施例中 UE中包括的搜索元 1001和接收单元 1002与上述实施例大致 相同, 其还包括位置信息获取单元 1003, 用于获取 UE的位置信息, 并在确认 所述 UE在 HeNB附近时, 触发所述搜索单元 1001到 HeNB的公共信道上进行 搜索。
作为本发明的一个实施例, 所述位置信息获取单元 1003获取当前 eNB的 小区标识, 匹配该小区标识是否存在于该 UE存储的邻接宏小区列表中, 如果 存在则通过搜索单元 1001到经过偏移的频带搜索所述 HeNB的公共信道。
作为本发明的一个实施例, 所述位置信息获取单元 1003还可以用于获取 当前 UE所在的全球卫星定位 (GSP ) 位置信息, 如果该 UE通过位置信息获取 单元 1003获取了该 UE的 GPS位置信息, 根据该位置信息, 如果 UE到达了所 述 HeNB的附近, 则通过搜索单元 1001到经过偏移的频带搜索所述 HeNB的公 共信道。
作为本发明的一个实施例, 所述 UE接收与所述 eNB公共信道的帧结构不 相同的所述 HeNB公共信道的帧结构。
通过上述实施例, UE通过搜索错开的 HeNB和 eNB的公共信道, 可以区别 所述 HeNB和 eNB之间公共信道, 从而减小两者之间的干扰。
本发明的实施例的有益效果在于,通过在频域和 /或时域上错开 HeNB和 e NB的公共信道, 解决了 HeNB和 eNB在公共信道上的干扰问题。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤, 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种通信***中无线数据传输的方法, 所述通信***包括至少一个家 用基站 HeNB和至少一个宏基站 eNB, 其特征在于,该方法包括:
在频域和 /或时域上将 HeNB和 eNB的公共信道错开,
在所述错开的公共信道上进行数据传输。
2.根据权利要求 1所述的方法, 其特征在于, 所述在频域上将 HeNB和 e NB的公共信道错开包括: 设定 HeNB的小区中心频点, 使得 HeNB小区中心频 点相对于 eNB小区的中心频点有一频带偏移量, 根据频带偏移量设置 HeNB的 公共信道, 使得 HeNB和 eNB的公共信道在频域上相偏移。
3. 根据权利要求 2所述的方法, 其特征在于, 所述频带偏移量由***固 定设定或者由***动态为 HeNB分配。
4. 根据权利要求 3 所述的方法, 其特征在于, 所述由***动态为 HeNB 分配包括: 由 eNB和 HeNB通过接口信息交互获得频带偏移量、 或者由网管或 自组织服务器向 HeNB发送频带偏移量。
5.根据权利要求 2至 4任一项所述的方法, 其特征在于, 还包括 eNB通 过无线资源控制协议 RRC消息***广播消息、 中转非接入层消息、 寻呼消息、 或者物理层的帧或符号或时隙向用户终端 UE发送所述频带偏移量。
6.根据权利要求 1所述的方法, 其特征在于, 在时域上将 eNB和 HeNB的 公共信道错开包括: 所述 HeNB公共信道与所述 eNB公共信道的采用不同的帧 结构。
7. 根据权利要求 6所述的方法, 其特征在于: 在时域上将 eNB和 HeNB 的公共信道错开前, 先进行 eNB和 HeNB的时间同歩。
8.根据权利要求 7所述的方法, 其特征在于, 所述时间同歩通过同步网, 或者通过 GPS实现。
9. 根据权利要求 1至 8任一项所述的方法, 其特征在于, 所述公共信道 至少包括以下信道之一: 同歩信道、 物理层***广播信道或者控制格式指示 物理信道。
10.—种无线数据接收的方法, 用于接收如权利要求 1一 9任一项所述的 方法中传输的无线数据, 其特征在于该方法包括:
对 eNB的公共信道进行搜索;
接收 eNB公共信道上传输的无线数据;
对与 eNB的公共信道在频域和 /或时域上相错开的 HeNB的信道进行搜索; 以及
接收所述 HeNB的公共信道上传输的无线数据。
11.根据权利要求 10所述的方法, 其特征在于, 对 HeNB的公共信道进 行搜索前包括: 获取用户终端 UE当前所在的位置信息, 根据位置信息确认 U E在 HeNB附近时, 启动对所述 HeNB的公共信道搜索。
12.根据权利要求 11所述的方法, 其特征在于, 所述位置信息为当前 eN B的小区标识, 如果该小区标识存在于该 UE存储的邻接宏小区列表中, 确认 所述 UE在 HeNB附近;
或者所述位置信息为该 UE的全球卫星定位 GPS位置信息, 根据 GPS位置 信息确认所述 UE在所述 HeNB的附近。
13. 一种通信***, 所述通信***包括至少一个家用基站 HeNB和至少一 个宏基站 eNB , 其特征在于,所述 HeNB与 eNB的公共信道在频域和 /或时域上 错开, 所述 HeNB和 eNB用于在所述错开的公共信道上进行数据传输。
14. 根据权利要求 13所述的***, 其特征在于, 在频域上, 所述 eNB 和 HeNB的公共信道间有一频带偏移量。
15. 根据权利要求 14所述的***, 其特征在于, 所述 eNB还用于将 HeN B与 eNB的公共信道在频域上的频带偏移量发送给 HeNB和 /或用户终端 UE。
16.根据权利要求 13所述的***, 其特征在于, 所述 eNB和 HeNB用于在 时域上, 对公共信道采用不同的帧结构发送数据。
17.—种用户设备 UE, 其特征在于该 UE包括:
搜索单元, 用于对宏基站 eNB的公共信道进行搜索, 以及用于对在频域 和 /或时域上与 eNB的公共信道错开的 HeNB的公共信道进行搜索; 和
接收单元, 用于所述接收公共信道上传输的无线数据。
18.根据权利要求 17所述的 UE, 其特征在于, 还包括位置信息获取单元, 用于获取 UE的位置信息, 并在确认所述 UE在 HeNB附近时, 触发所述搜索单 元到 HeNB的公共信道上进行搜索。
PCT/CN2009/071461 2009-04-24 2009-04-24 一种通信***中无线数据传输的方法和装置 WO2010121437A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980123750.5A CN102077667B (zh) 2009-04-24 2009-04-24 一种通信***中无线数据传输的方法和装置
PCT/CN2009/071461 WO2010121437A1 (zh) 2009-04-24 2009-04-24 一种通信***中无线数据传输的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071461 WO2010121437A1 (zh) 2009-04-24 2009-04-24 一种通信***中无线数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2010121437A1 true WO2010121437A1 (zh) 2010-10-28

Family

ID=43010684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071461 WO2010121437A1 (zh) 2009-04-24 2009-04-24 一种通信***中无线数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN102077667B (zh)
WO (1) WO2010121437A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081570A1 (en) * 2013-12-06 2015-06-11 Orange Method for scheduling user equipment in a heterogeneous network
CN109673054A (zh) * 2018-02-11 2019-04-23 中兴通讯股份有限公司 频率分配方法和***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103763295B (zh) * 2014-01-23 2017-02-22 东南大学 全域覆盖多波束卫星lte的辅助同步信道传输方法
CN107071922B (zh) * 2016-12-29 2019-10-11 河北远东通信***工程有限公司 一种窄带通信条件下高效的数据传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728871A (zh) * 2004-07-29 2006-02-01 北京三星通信技术研究有限公司 控制数据发送的方法
CN101330722A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 一种小区接入控制方法以及用户设备
CN101379772A (zh) * 2006-03-07 2009-03-04 英特尔公司 多跳无线网状网中的ofdma资源分配

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197608A (zh) * 2006-12-04 2008-06-11 华为技术有限公司 时分双工模式中的通信方法及其装置
US20090047931A1 (en) * 2007-08-17 2009-02-19 Qualcomm Incorporated Method and apparatus for wireless access control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1728871A (zh) * 2004-07-29 2006-02-01 北京三星通信技术研究有限公司 控制数据发送的方法
CN101379772A (zh) * 2006-03-07 2009-03-04 英特尔公司 多跳无线网状网中的ofdma资源分配
CN101330722A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 一种小区接入控制方法以及用户设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081570A1 (en) * 2013-12-06 2015-06-11 Orange Method for scheduling user equipment in a heterogeneous network
CN109673054A (zh) * 2018-02-11 2019-04-23 中兴通讯股份有限公司 频率分配方法和***
CN109673054B (zh) * 2018-02-11 2020-06-05 中兴通讯股份有限公司 频率分配方法和***

Also Published As

Publication number Publication date
CN102077667B (zh) 2013-06-05
CN102077667A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
KR102282754B1 (ko) 데이터 전송 방법, 무선 네트워크 장치, 및 통신 시스템
EP2727424B1 (en) A method and a user equipment for peer-to-peer communication
WO2019184563A1 (zh) 信号传输方法、相关设备及***
EP3815284A1 (en) Synchronization signal block (ssb)-based positioning measurement signals
WO2015042858A1 (zh) 通信的方法、用户设备和基站
EP2685756B1 (en) Base station device and communication method
WO2016146177A1 (en) Synchronization in wireless communications networks
JP6842586B2 (ja) Ue装置のための方法、ue装置、基地局、及びプロセッサ
CA2981190A1 (en) Terminal side and base station side device, terminal device, base station, and wireless communication method
WO2014127532A1 (zh) 子帧生成方法及设备、子帧确定方法及用户设备
WO2009109070A1 (zh) 与兼容第一协议和第二协议的bs交互工作的ms及其方法
JP5445880B2 (ja) クローズドサブスクライバグループ(csg)基地局用のid管理
US9668202B2 (en) Communication control method, user terminal, and processor
US20170223760A1 (en) User terminal and base station
EP3915304A1 (en) Iab initial access
WO2014117322A1 (zh) 同步方法和基站
EP3927083B1 (en) Initial signal transmission method and device
KR20220127187A (ko) 제어정보 수신 장치 및 방법, 신호 측정 장치 그리고 위치 측정 서버 및 방법
WO2010121437A1 (zh) 一种通信***中无线数据传输的方法和装置
US11632711B2 (en) Communication device and method for cell search
JPWO2016063599A1 (ja) 端末装置、集積回路、および、通信方法
KR20200018118A (ko) Nr v2x 시스템을 위한 동기화 절차 수행 방법 및 그 장치
JP5803566B2 (ja) 無線通信システム、移動局、基地局及び通信制御方法
CN117321949A (zh) 涉及较高频率中的初始接入的方法、架构、装置和***
CN117796090A (zh) 收发信号的方法、装置和通信***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123750.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843541

Country of ref document: EP

Kind code of ref document: A1