WO2010119947A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2010119947A1
WO2010119947A1 PCT/JP2010/056838 JP2010056838W WO2010119947A1 WO 2010119947 A1 WO2010119947 A1 WO 2010119947A1 JP 2010056838 W JP2010056838 W JP 2010056838W WO 2010119947 A1 WO2010119947 A1 WO 2010119947A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
target
magnet
plasma
magnetic field
Prior art date
Application number
PCT/JP2010/056838
Other languages
English (en)
French (fr)
Inventor
真義 池田
洋 田中
勉 廣石
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2010119947A1 publication Critical patent/WO2010119947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3461Means for shaping the magnetic field, e.g. magnetic shunts

Definitions

  • the present invention relates to a magnet mechanism for creating a plasma generating magnetic field.
  • the magnet mechanism is used in a plasma processing apparatus for manufacturing a semiconductor device on a silicon substrate or another substrate.
  • Plasma assisted wafer processing is a well established process in the manufacture of semiconductor devices, usually called integrated circuits.
  • plasma assisted processes such as etching, sputter deposition, chemical vapor deposition, and the like. All of these processes must be performed to achieve an etch rate or a uniform processing rate on the wafer surface. If non-uniform processing rates occur on the wafer surface, many defective semiconductor devices are produced.
  • the chamber 201 that accommodates the target electrode 2 is composed of an upper wall (ceiling wall) 202, a cylindrical side wall 203, and a bottom wall 204.
  • the upper electrode high frequency power supply 102 supplies high frequency power to the upper electrode 1 via the upper electrode matching machine 101.
  • the lower electrode 301 (second electrode) includes a stage holder 302 and a lower electrode insulator 303.
  • the lower electrode high-frequency power source 305 supplies high-frequency power to the stage 302 via the lower electrode matching unit 304.
  • the gas in the chamber 201 is exhausted via the gas exhaust port 205.
  • the plasma density on the surface of the target electrode 2 (first electrode) is changed by the divergent magnetic field on the outer periphery of the target electrode 2 (first electrode) created by the magnet mechanism that forms the point cusp magnetic field.
  • the film forming rate of the wafer 306 is non-uniform, differing between the central part and the outer peripheral part.
  • a magnet mechanism 5 (consisting of a magnet 6 and a plate-like support 7) in which a magnet 6 is disposed outside the outer peripheral edge of the target electrode 2 (first electrode).
  • the plasma density on the surface of the target electrode 2 (first electrode) is set so that the divergent magnetic field G is not generated on the surface of the target electrode 2 (first electrode).
  • Patent Document 1 discloses an invention in which the film forming rate of the wafer 306 is uniform in the plane.
  • a mask shield 3 is provided on the insulating member 4 and the target electrode 2 (first electrode) for supporting the target electrode in order to prevent adhesion of the film.
  • the mask shield 3, the target electrode 2 (first electrode), and the insulating member 4 are damaged or cause an unstable process. There is not yet known what can eliminate this point as far as the person can know.
  • the problem with the conventional plasma processing apparatus described above is that, in the configuration shown in FIG. 5, the gap between the target electrode 2 (first electrode) and the mask shield 3 is equivalent to the surface of the target electrode 2 (first electrode).
  • the magnetic field is formed. Due to this magnetic field, high-density plasma is formed between the target electrode 2 (first electrode) and the shield 3, and arcing (concentration of electric charges) is performed between the target electrode 2 (first electrode) and the mask shield 3. ) Occurs. It has been found that plasma having such high density is formed, causing damage to the target electrode 2 (first electrode), the insulating member 4 and the mask shield 3 due to abnormal discharge due to charge concentration and an unstable process. did.
  • the present invention aims to solve the above-described problems, and has a magnet mechanism that does not form a strong magnetic field that causes abnormal discharge in a gap portion between the target electrode (first electrode) and the mask shield.
  • An object of the present invention is to provide a plasma processing apparatus.
  • the plasma processing apparatus includes a first electrode serving as a target electrode, a second electrode serving as an anode that supports the substrate, and is disposed between the first and second electrodes.
  • a mask shield disposed adjacent to the first electrode with a predetermined gap and disposed in the vicinity of the outer periphery of the first electrode, and the first electrode on the opposite side of the second electrode with respect to the first electrode
  • a magnet arranged on the electrode surface, the magnet comprising a plurality of magnet pieces distributed on the first electrode surface for generating a magnetic field on the second electrode side with respect to the first electrode.
  • a plasma processing apparatus for generating plasma in a space between the first and second electrodes and applying a target material of the first electrode when a voltage is applied to the first and second electrodes, Part of the magnet piece for magnetic field generation exceeds the outer periphery of the first electrode Extends on the outside, characterized in that it comprises a magnetic shielding member disposed so as to cover at least a portion of the pole faces of the magnet pieces arranged on the outside.
  • the magnetic shielding member is disposed at a position between the magnet and the first electrode.
  • the magnetic field is not formed in the gap between the target electrode and the mask shield” or “the magnetic field formed by the magnet mechanism is not formed on the outer periphery between the first electrode and the second electrode. "Means that the magnetic field is not formed to such an extent that abnormal discharge is not formed. Therefore, the material of the magnetic shielding member may be any material that can suppress the magnetic field strength, and it is preferable to use a material (SUS430 or the like) having a higher magnetic permeability than the material provided in the chamber.
  • the plasma processing apparatus equipped with the magnet mechanism according to the present invention forms a magnetic field necessary for sputtering film formation up to the outermost periphery of the target electrode, and does not form a magnetic field in the gap between the target electrode and the shield.
  • a necessary plasma density is generated up to the outermost periphery of the target electrode to obtain a uniform film thickness within the wafer surface
  • “High density plasma is not formed in the gap between the target electrode and the shield by the magnetic field.
  • FIG. 1 It is sectional drawing of the plasma processing apparatus according to the Example of this invention. It is a figure which shows the plasma when a magnet piece is provided in the target outer periphery. It is a figure which shows the plasma erosion (ED) when a magnet piece is provided in the target outer periphery. It is a figure which shows the mode of a magnetic field and plasma when a magnet piece is provided in the target outer periphery. It is a figure which shows the plasma when a magnet piece is provided outside the target outer periphery. It is a figure which shows the plasma erosion (ED) when a magnet piece is provided outside the target outer periphery. It is a figure which shows the mode of a magnetic field and plasma when a magnet piece is provided out of the target outer periphery.
  • ED plasma erosion
  • FIG. 1 is a cross-sectional view of a plasma processing apparatus 100 equipped with a magnet mechanism 5 according to the embodiment.
  • the plasma processing apparatus 100 includes a target electrode 2 (first electrode) that is a first electrode as a cathode, a chamber 201, and a lower electrode that is a second electrode as an anode provided facing the first electrode. 301.
  • a mask shield 3 is disposed below the target electrode 2 (first electrode) with a gap provided between the chamber electrode 201 and the upper electrode to hold the target electrode 2 (first electrode).
  • An insulator 4 is attached.
  • Above the target electrode 2 (first electrode), a magnet mechanism 5 for forming a point-caps magnetic field for plasma generation is disposed away from the target electrode 2.
  • the magnet mechanism 5 includes a plurality of magnet pieces 6, a magnet support plate 7, and a magnetic shielding member 8. Process gas is supplied into the chamber 201 through a plurality of gas inlets 9.
  • the chamber 201 including the target electrode 2 (first electrode) supported by the insulating member 4 includes an upper wall (ceiling wall) 202, a cylindrical side wall 203, and a bottom wall 204.
  • the lower electrode 301 (second electrode) includes a stage holder 302 and a lower electrode insulator 303.
  • the basic hardware structure of the plasma processing apparatus 100 of the first embodiment is the same as that described as the prior art except for the magnetic shielding member 8 made of a magnetic material.
  • the target electrode 2 (first electrode) is disposed above the chamber 201 and is electrically insulated from the chamber 201 via the upper electrode insulator 4.
  • the main part of the target electrode 2 (first electrode) is made of a nonmagnetic metal such as Al, SUS, or Cu, but the reduced pressure side of the target electrode 2 (first electrode) corresponding to the lower surface of the upper electrode 1
  • a material target material necessary for forming a film on the wafer 306 is installed.
  • the target material is not shown.
  • the upper electrode 1 can be cooled by flowing cooling water through a passage formed in the upper electrode 1 or the target electrode 2 (first electrode). The passage through which the cooling water flows is not shown in FIG.
  • the upper electrode high frequency power supply 102 supplies high frequency power to the upper electrode 1 via the upper electrode matching machine 101.
  • the upper electrode high-frequency power source 102 is used in the range of 10 to 300 MHz. It is also possible to apply a DC voltage to the upper electrode 1 by a DC power source (not shown).
  • Process gas is supplied into the chamber 201 through the gas inlet 9.
  • the chamber 201 is exhausted by the vacuum exhaust pump 10 via the gas exhaust port 205.
  • the lower electrode 301 includes a stage holder 302 and a lower electrode insulator 303.
  • the stage holder 302 is fixed to the bottom wall 204 via a lower electrode insulator 303, and the stage holder 302 and the chamber 201 are electrically insulated by the lower electrode insulator 303.
  • the wafer 306 is placed on the upper surface of the stage holder 302.
  • the lower electrode 301 can control the wafer 306 to a temperature necessary for film formation by installing the cooling mechanism 12 and the heating mechanism 12 in the lower electrode 301 and the stage holder 302.
  • an electrostatic adsorption stage can be mounted on the stage holder 302, and a DC power source can be connected to the stage holder 302 to adsorb the wafer 306 and control the temperature.
  • the lower electrode high frequency power source 305 supplies high frequency power to the lower electrode 301 via the lower electrode matching machine 304.
  • the frequency of the high frequency power used is 20 MHz or less.
  • the magnetic shielding member 8 is disposed between the magnet piece 6A located outside the outer peripheral edge of the target electrode 2 (first electrode) and the target electrode 2 (first electrode).
  • the magnet piece 6 is installed so as to cover the lower end surface, that is, a part of the magnetic pole surface, and controls the magnetic field strength of the gap between the target electrode 2 (first electrode) and the mask shield 3.
  • the magnetic field adjusting magnetic shielding member 8 may be a material that can control the magnetic field strength of the gap between the target electrode 2 (first electrode) and the mask shield 3.
  • a material having a high magnetic permeability such as SUS430 is preferable. .
  • This magnet mechanism 5 sputters the target electrode 2 (first electrode) material to the outermost periphery of the target electrode 2 (first electrode) by adjusting the area covered by the magnetic shielding member 8 on the magnet piece 6A.
  • the magnetic field is adjusted so as not to supply a magnetic field strong enough to cause abnormal discharge in the gap between the target electrode 2 (first electrode) and the mask shield 3. Therefore, the function of the magnetic shielding member 8 according to the present invention is not such that the magnetic field is completely extinguished in the gap between the target electrode 2 and the mask shield 3, but abnormal discharge is maintained while maintaining the capsular magnetic field around the target electrode.
  • the magnetic field adjustment is performed to weaken the magnetic field in the gap to the extent that does not occur. This magnetic field adjustment is determined on the balance of avoiding abnormal discharge and erosion of the outer periphery of the target electrode 2.
  • FIG. 2A is a plan view in the case where the magnet piece 6 is provided only inside the target surface, and a portion P having a high plasma density is generated between the magnet pieces 6.
  • the outer peripheral edge of the target 2 and the inner peripheral edge R of the mask shield 3 are shown as R in the drawing on the assumption that they substantially coincide.
  • FIG. 2B shows the degree of plasma erosion (erosion) ED on the surface of the target 2 on the line AB in FIG. 2A.
  • FIG. 2C is a cross-sectional view taken along the line AB of FIG.
  • the plasma P is not generated between the mask shield 3 and the target 2, and it is difficult for the discharge to occur.
  • the erosion particularly outside the target is not sufficiently obtained. As a result, the margin of process conditions that can uniformly control the film thickness on the wafer is narrow, and the utilization efficiency of the target is low.
  • FIG. 3A is a plan view in the case where the magnet piece G is provided outside the target surface, and high-density plasma P is generated between the magnet piece 6A on the outside and the surrounding magnet pieces. This high-density plasma P is also generated on the outer peripheral edge of the target 2 and the inner peripheral edge R of the mask shield 3, and abnormal discharge is likely to occur in the black circle portion D in FIG. 4A.
  • FIG. 3B shows the degree of ED on the surface of the target 2 on the line AB in FIG. 4A.
  • the solid line is the data when the magnet piece of FIG. 3A is also outside the target 2, and the dotted line is the data for FIG. 2A. It will be understood from this ED data comparison that a sufficient ED is obtained at the outer periphery of the target.
  • FIG. 3C is a cross-sectional view taken along the line AB of FIG. 3A and shows the state of the magnetic field and plasma.
  • the outermost magnet piece 6A forms a divergent magnetic field on the outer side, and high-density plasma is generated between the magnet piece 6 and the high-density plasma exists in the gap between the target 2 and the mask shield 3, and abnormal discharge occurs. Is likely to occur.
  • FIG. 4A is a plan view in the case where a part of the magnetic pole surface of the magnet piece 6A outside the target 2 is covered with a magnetic shielding member, corresponding to the embodiment of FIG. 1 of the present invention.
  • a high-density plasma P is generated between the magnet pieces 6 inside the target 2, and a plasma P ′ in which the plasma density is suppressed to such an extent that abnormal discharge does not occur between the magnet pieces 6 ⁇ / b> A outside.
  • FIG. 4B shows the degree of ED on the surface of the target 2 on the line AB in FIG. 4A.
  • the solid line is the data of the present invention in which the magnet piece of FIG.
  • FIG. 4A is provided outside the target and the magnetic shielding member 3 covers a part of the magnetic pole surface of the magnet piece arranged on the outside, and the dotted line is the case of FIG. 2A It is data.
  • the degree of ED is sufficient for the outer peripheral edge of the target.
  • FIG. 4C is a cross-sectional view taken along the line AB of FIG. 4A and shows the state of the magnetic field and plasma. At least a part of the magnetic pole surface of the outermost magnet piece 6A is covered with the magnetic shielding member 8 so that a divergent magnetic field is not formed, and the plasma P ′ near the outer peripheral edge of the target 2 is in contact with the mask shield 3. The density is suppressed to such an extent that abnormal discharge does not occur.
  • Target electrode (first electrode) 301 Anode (second electrode) 5 Magnet mechanism 6, 6 A Magnet piece 3 Mask shield 8 Magnetic shielding member

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

プラズマ処理装置のマスク用シールドとターゲット電極の隙間で生ずる異常放電を防止する手段を提供する。ポイントカプス磁場を形成する複数のマグネットピース(6)が、ターゲット電極(2)の外周縁の外側にも配置されている。この外周縁の外側に配置されているマグネットピースの磁性面の少なくとも一部を被う磁気遮蔽部材(8)が設けられている。これにより、ターゲット電極外周辺のカプス磁場を維持するが、その強さはターゲット電極とマスク用シールドの隙間で異常放電が生じないよう磁場を調整している。

Description

プラズマ処理装置
本発明はプラズマ生成用磁場を作る磁石機構に関する。当該磁石機構はシリコン基板あるいは他の基板の上に半導体デバイスを製造するプラズマ処理装置において用いられる。
プラズマ支援ウェハー処理は、通常、集積回路と呼ばれる半導体デバイスの製造において、十分に確立したプロセスである。従来から、例えば、エッチング、スパッタ堆積、化学的気相堆積など多くの異なるプラズマ支援プロセスがある。これらのプロセスのすべては、エッチング速度あるいはウェハー表面上の均一な処理速度を実現するように実行されなければならない。もしウェハー表面上で不均一な処理速度が生じたとすると、多くの欠陥のある半導体デバイスが作られる。
以下具体的に、図5に示す従来のプラズマ処理装置を参照しつつ、従来技術を説明する。プラズマ処理装置において、ターゲット電極2(第1の電極)を収容しているチャンバー201は、上部壁(天井壁)202、円筒形側壁203、および底壁204の部分から構成される。上部電極用高周波電源102は、上部電極用整合機101を経由して上部電極1に高周波電力を供給する。下部電極301(第2の電極)は、ステージホルダー302、下部電極絶縁体303から構成される。下部電極用高周波電源305は、下部電極用整合機304を経由してステージ302に高周波電力を供給する。チャンバー201内のガスは、ガス排気口205を経由して排気される。ポイントカスプ磁場を形成する磁石機構が作るターゲット電極2(第1の電極)外周部の発散磁場によって、ターゲット電極2(第1の電極)表面のプラズマ密度は、ターゲット電極2(第1の電極)中央部と外周部で異なり、ウェハー306の成膜レートが不均一となる。
そこで図5に示すように、ターゲット電極2(第1の電極)外周縁の外側にもマグネット6を配置するような磁石機構5(マグネット6と板状支持体7とから構成されるもの)を搭載し、ターゲット電極2(第1の電極)表面に発散磁場Gができないようにして、ターゲット電極2(第1の電極)表面のプラズマ密度をターゲット電極2(第1の電極)中央部と外周部でそろえて、ウェハー306の成膜レートが面内で均一となるようにする発明が特許文献1で公開されている。
このような従来のプラズマ処理装置をスパッタプロセスに使用する場合、膜の付着を防止するため、ターゲット電極を支持する絶縁部材4及びターゲット電極2(第1の電極)上にマスク用シールド3を設ける必要がある。しかし、従来のプラズマ処理装置においては、マスク用シールド3やターゲット電極2(第1の電極)、絶縁部材4が損傷を受けたり、不安定なプロセスを引き起こすことが問題となっており、本発明者の知りうる範囲でこの点を解消するものは未だ知られていない。
前述した従来のプラズマ処理装置の問題は、図5に示す構成においては、ターゲット電極2(第1の電極)とマスク用シールド3の隙間にターゲット電極2(第1の電極)の面上と同等の磁場が形成される。この磁場によりターゲット電極2(第1の電極)とシールド3の間に、密度の高いプラズマが形成され、ターゲット電極2(第1の電極)とマスク用シールド3との間でアーキング(電荷の集中)が発生することである。このように密度の高いプラズマが形成され、電荷の集中に起因した異常放電によるターゲット電極2(第1の電極)、絶縁部材4やマスク用シールド3の破損や不安定なプロセスを引き起こすことが判明した。したがって、ターゲット電極2(第1の電極)とマスク用シールド3との隙間部分に磁場が形成されないような磁石機構5を形成する必要がある。更に、ターゲット電極2(第1の電極)外周縁の外側に配置されたマグネット6から発生した磁力線Gがマスク用シールド3を越えて発生すると、マスク用シールド3と円筒形側壁203との間で、異常放電が発生し、マスク用シールド3や円筒形側壁203の破損や不安定なプロセスを引き起こすことが判明した。
特開2003-318165
そこで、本発明は上記問題点を解決する事を目的とし、ターゲット電極(第1の電極)とマスク用シールドとの隙間部分等に異常放電を生じさせる強い磁場が形成されないような磁石機構を有するプラズマ処理装置を提供することを目的とする。
本発明に従うプラズマ処理装置は、ターゲット電極としての第1の電極、第1の電極に対向して設けられ、基板を支持する陽極である第2の電極、第1と2の電極の間で、第1の電極と所定の隙間を有して隣接して配置され、第1の電極の外周近傍に配置されたマスク用シールド、及び第1の電極に関し第2の電極と反対側の第1の電極面上に配置された磁石であって、第1の電極に関し第2の電極の側に磁場を発生するための第1の電極面上に分布された複数のマグネットピースからなる磁石とからなり、第1と第2の電極への電圧印加時に、第1と第2の電極の間の空間にプラズマを生成し、第1の電極のターゲット材料をスパッタするプラズマ処理装置であって、複数の磁場発生用マグネットピースの一部は第1の電極の外周縁を越えて外側にも延在しており、外側に配置されたマグネットピースの磁極面の少なくとも一部を被うよう配置された磁気遮蔽部材を含むことを特徴とする。
本実施例にあって、磁気遮蔽部材は磁石と第1の電極との間の位置に配置されている。
なお、本明細書中において、「ターゲット電極とマスク用シールドの隙間に磁場が形成されない」又は「磁石機構で形成される磁場が第1の電極と第2の電極との間における外周に形成されない」とは、異常放電を形成しない程度に磁場が形成されていないことを意味する。そのため、磁気遮蔽部材の材料としては、磁場強度を抑制できる材料であればよく、チャンバー内に設けられた材料より透磁率が高い材料(SUS430等)を使用することが好ましい。
本発明による磁石機構を搭載するプラズマ処理装置は、ターゲット電極最外周までスパッタ成膜に必要な磁場を形成し、かつターゲット電極とシールドの隙間に磁場を形成しない。その結果、「ターゲット電極最外周まで必要なプラズマ密度を生成して、ウェハーの面内で均一な膜厚を得ること」と「磁場によってターゲット電極とシールドの隙間に密度の高いプラズマが形成されないことで、電荷集中によるターゲット電極とシールドの破損や、プラズマ不安定によって引き起こされるプロセス不安定性が解消されること」の両立が可能となる。
本発明の実施例に従ったプラズマ処理装置の断面図である。 マグネットピースがターゲット外周内にもうけられた場合のプラズマを示す図である。 マグネットピースがターゲット外周内にもうけられた場合のプラズマ侵食(ED)を示す図である。 マグネットピースがターゲット外周内にもうけられた場合の磁場とプラズマの様子を示す図である。 マグネットピースがターゲット外周の外に設けられた場合のプラズマを示す図である。 マグネットピースがターゲット外周の外に設けられた場合のプラズマ侵食(ED)を示す図である。 マグネットピースがターゲット外周の外に設けられた場合の磁場とプラズマの様子を示す図である。 マグネットピースがターゲット外周の外に設けられ且つ本発明の磁気遮蔽部材を配置した場合のプラズマを示す図である。 マグネットピースがターゲット外周の外に設けられ且つ本発明の磁気遮蔽部材を配置した場合のプラズマ侵食(ED)を示す図である。 マグネットピースがターゲット外周の外に設けられ且つ本発明の磁気遮蔽部材を配置した場合の磁場とプラズマの様子を示す図である。 従来のプラズマ処理装置の断面図である。
[実施例の説明]
実施例について、図1に従って説明する。図1は、実施例に関わる磁石機構5を搭載したプラズマ処理装置100の断面図である。プラズマ処理装置100は、陰極としての第1の電極であるターゲット電極2(第1の電極)、チャンバー201、第1の電極に対向して設けられた陽極としての第2の電極である下部電極301から構成される。ターゲット電極2(第1の電極)の下部には、隙間を設けてマスク用シールド3が配置されており、ターゲット電極2(第1の電極)を保持するため、チャンバー201側壁には、上部電極絶縁体4が取り付けられている。ターゲット電極2(第1の電極)の上方には、プラズマ生成のためのポイントカプス磁場を形成するための磁石機構5が、ターゲット電極2から離れて配置されている。磁石機構5は、複数のマグネットピース6とマグネット支持板7と磁気遮蔽部材8で構成される。プロセスガスは、複数のガス導入口9を通して、チャンバー201の中に供給される。
絶縁部材4により支持されているターゲット電極2(第1の電極)を含むチャンバー201は、上部壁(天井壁)202、円筒形側壁203、および底壁204の部分から構成される。下部電極301(第2の電極)は、ステージホルダー302、下部電極絶縁体303から構成される。実施例1のプラズマ処理装置100の基本的なハードウエアの構造は、磁性体の磁気遮蔽部材8を除いて、従来技術として説明したものと同様である。ターゲット電極2(第1の電極)は、チャンバー201の上方に設置されており、上部電極絶縁体4を介してチャンバー201と電気的に絶縁されている。ターゲット電極2(第1の電極)の主要部品は、Al、SUS、Cuなどの非磁性金属で製作されるが、上部電極1の下面に相当するターゲット電極2(第1の電極)の減圧側には、ウェハー306上に成膜するのに必要な材料ターゲット材を設置する。図においてターゲット材の図示は省略している。加えて、上部電極1は、上部電極1やターゲット電極2(第1の電極)の中に形成された通路を通して冷却水を流すことによって、冷却することが可能である。この冷却水を流す通路は、図1に示していない。
上部電極用高周波電源102は、上部電極用整合機101を経由して上部電極1に高周波電力を供給する。上部電極用高周波電源102は10~300MHzの範囲で使用する。また、図示していないDC電源によって上部電極1に直流電圧を印加することも可能である。プロセスガスは、ガス導入口9を通して、チャンバー201の中に供給される。チャンバー201は、ガス排気口205を経由して真空用排気ポンプ10によって排気される。下部電極301はステージホルダー302と下部電極用絶縁体303から構成される。ステージホルダー302は下部電極用絶縁体303を介して底壁204に固定されており、ステージホルダー302とチャンバー201は下部電極用絶縁体303によって電気的に絶縁されている。ウェハー306はステージホルダー302の上面に載置される。加えて、下部電極301は、下部電極301やステージホルダー302に冷却機構12や加熱機構12を設置して、ウェハー306を成膜に必要な温度に制御することが可能である。また、ステージホルダー302に静電吸着ステージを搭載し、ステージホルダー302に直流電源を接続してウェハー306を吸着して温度制御することが可能である。下部電極用高周波電源305は、下部電極用整合機304を経由して下部電極301に高周波電力を供給する。使用する高周波電力の周波数は、20MHz以下である。
磁石機構5における重要な特徴は、ターゲット電極2(第1の電極)の外周縁よりも外側に位置するマグネットピース6Aとターゲット電極2(第1の電極)との間に、磁気遮蔽部材8がマグネットピース6の下端面即ち磁極面の一部を被うように設置されており、ターゲット電極2(第1の電極)とマスク用シールド3の隙間の磁場強度を制御している点にある。この磁場調整用磁気遮蔽部材8は、ターゲット電極2(第1の電極)とマスク用シールド3の隙間の磁場強度を制御できる材料であればよく、例えば、SUS430等の透磁率が高い材料が好ましい。この磁石機構5は、マグネットピース6Aを磁気遮蔽部材8が被う面積を調整することで、ターゲット電極2(第1の電極)最外周までターゲット電極2(第1の電極)材をスパッタするのに必要な磁場を供給するが、ターゲット電極2(第1の電極)とマスク用シールド3の隙間には異常放電を生じさせる原因となる程強い磁場を供給しないように磁場調整している。従って、本発明に従う磁気遮蔽部材8の機能は、ターゲット電極2とマスク用シールド3との隙間で完全に磁場を消すようなものでないが、ターゲット電極外周辺でのカプス磁場を維持しながら異常放電を生じない程度にその隙間の磁場を弱める磁場調整を行うことにある。この磁場調整は異常放電の回避とターゲット電極2の外周辺の侵食(エロージョン)のバランスの上に決められるものである。
本発明の作用について図2-図4を参照して更に説明をする。図2Aは、マグネットピース6がターゲット面の内側のみに設けられている場合の平面図であり、マグネットピース6間でプラズマ密度の高い部分Pが生じている。ターゲット2外周縁とマスク用シールド3の内周縁Rはほぼ一致しているとして、図面上Rで示されている。図2Bは、図2AのA-B線上におけるターゲット2面のプラズマ侵食(エロージョン)EDの程度を示す。rはターゲット中心からの距離である。中央部(r=0)にてEDがやや少なく又ターゲット外周縁近辺でもEDが少ない。図2Cは、図2AのA-B線における断面図で、磁場とプラズマの様子を示す。この場合は、マスク用シールド3とターゲット2との間にプラズマPが生じず、放電も起こりにくいが、図3Bに示すように特にターゲット外周辺でのエロージョンが十分得られていない。その結果、ウェハー上の膜厚を均一に制御できるプロセス条件のマージンが狭く、ターゲットの利用効率も低い。
図3Aは、マグネットピースGがターゲット面の外側に設けられている場合の平面図であり、外側にあるマグネットピース6Aとその周囲のマグネットピース間に高い密度のプラズマPが生じている。この高い密度のプラズマPは、ターゲット2の外周縁とマスク用シールド3の内周縁R上でも生じており、図4Aの黒丸部分Dで異常放電が発生し易い。図3Bは、図4AのA-B線上におけるターゲット2面のEDの程度を示す。実線が図3Aのマグネットピースがターゲット2の外側にもある場合のデータで、点線は図2Aの場合のデータである。このEDデータ比較から、ターゲット外周縁で十分なEDが得られていることが理解されよう。図3Cは、図3AのA-B線における断面図で、磁場とプラズマの様子を示す。最外側マグネットピース6Aはその外側に発散磁場を形成し、マグネットピース6との間に高密度のプラズマが生じており、ターゲット2とマスク用シールド3の隙間に高密度プラズマが存在し、異常放電が起こり易い。
図4Aは、本発明の図1の実施例に対応する、ターゲット2の外側にあるマグネットピース6Aの磁極面の一部を磁気遮蔽部材で被った場合での平面図である。ターゲット2の内側にあるマグネットピース6間には高密度プラズマPが生じ、外側にあるマグネットピース6Aとの間では異常放電が生じない程度のプラズマ密度が抑制されたプラズマP’が生じている。図4Bは、図4AのA-B線上におけるターゲット2面のEDの程度を示す。実線は図4Aのマグネットピースがターゲットの外側に設けられ且つ磁気遮蔽部材3が外側配置のマグネットピースの磁極面の一部を被っている、本発明のデータであり、点線は図2Aの場合のデータである。EDの程度は図3Bの場合と同じように、ターゲットの外周縁も十分なEDが生じている。図4Cは、図4AのA-B線における断面図で、磁場とプラズマの様子を示す。最外側マグネットピース6A磁極面の少なくとも一部が磁気遮蔽部材8で被われており、発散磁場が形成されないようにすると共に、ターゲット2の外周縁付近のプラズマP’はマスク用シールド3との間で異常放電が起きない程度にその密度が抑制されている。こうすることによって、ターゲット2の外周辺迄プラズマ侵食(ED)が行われる。その結果、ウェハー上の膜厚を均一に制御できるプロセス条件のマージンは広がり、ターゲットの利用効率も向上する。また、発散磁場も抑制されるため、発散磁場によるチャンバ側壁203との間の異常放電も防止することができる。
2   ターゲット電極 (第1の電極)
301 陽極 (第2の電極)
5   磁石機構
6、 6A   マグネットピース
3   マスク用シールド
8   磁気遮蔽部材

Claims (2)

  1.  陰極であるターゲット電極としての第1の電極(2)、
     該第1の電極に対向して設けられ、基板を支持する陽極である第2の電極(302)、
     該第1と2の電極の間で、該第1の電極と所定の隙間を有して隣接して配置され、該第1の電極の外周近傍に配置されたマスク用シールド(3)、及び
     該第1の電極に関し該第2の電極と反対側の該第1の電極面上に配置された磁石機構(5)であって、該第1の電極に関し該第2の電極の側に磁場を発生するための該第1の電極面上に分布された複数のマグネットピース(6)からなる磁石機構とからなり、
     該第1と第2の電極への電圧印加時に、該第1と第2の電極の間の空間にプラズマを生成し、該第1の電極のターゲット材料をスパッタするプラズマ処理装置において、
     該複数の磁場発生用マグネットピースの一部は該第1の電極の外周縁を越えて外側にも延在しており、
     外側に配置されたマグネットピース(6A)の磁極面の少なくとも一部を被うよう配置された磁気遮蔽部材(8)を含むことを特徴とするプラズマ処理装置。
  2.  請求項1に記載のプラズマ処理装置において、該磁気遮蔽部材は該磁石と該第1の電極との間の位置に配置されていることを特徴とするプラズマ処理装置。
PCT/JP2010/056838 2009-04-16 2010-04-16 プラズマ処理装置 WO2010119947A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-100042 2009-04-16
JP2009100042 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119947A1 true WO2010119947A1 (ja) 2010-10-21

Family

ID=42982604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056838 WO2010119947A1 (ja) 2009-04-16 2010-04-16 プラズマ処理装置

Country Status (1)

Country Link
WO (1) WO2010119947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061778A (ja) * 2017-09-25 2019-04-18 株式会社Ihi プラズマアクチュエータ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078094A1 (ja) * 2007-12-18 2009-06-25 Canon Anelva Corporation プラズマ処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078094A1 (ja) * 2007-12-18 2009-06-25 Canon Anelva Corporation プラズマ処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061778A (ja) * 2017-09-25 2019-04-18 株式会社Ihi プラズマアクチュエータ

Similar Documents

Publication Publication Date Title
US9055661B2 (en) Plasma processing apparatus
US8778151B2 (en) Plasma processing apparatus
JP5102706B2 (ja) バッフル板及び基板処理装置
US6074518A (en) Plasma processing apparatus
JP5421388B2 (ja) 真空物理的蒸着のための成形アノードとアノード−シールド接続
JP5759718B2 (ja) プラズマ処理装置
JP6423706B2 (ja) プラズマ処理装置
US20090236043A1 (en) Plasma processing apparatus
US20090206058A1 (en) Plasma processing apparatus and method, and storage medium
JP2022141681A (ja) ユニバーサルプロセスキット
US8157953B2 (en) Plasma processing apparatus
JPH08264515A (ja) プラズマ処理装置、処理装置及びエッチング処理装置
KR20100128238A (ko) 플라즈마 처리용 원환 형상 부품 및 플라즈마 처리 장치
US10580622B2 (en) Plasma processing apparatus
JP7364758B2 (ja) プラズマ処理方法
JP2019135749A (ja) プラズマ処理装置
KR20110131157A (ko) 기판 처리 장치
JP2011018684A (ja) プラズマ処理用基板載置台、プラズマ処理方法、及びプラズマ処理装置
JP5367000B2 (ja) プラズマ処理装置
WO2010119947A1 (ja) プラズマ処理装置
CN117581327A (zh) 用于改良的高压等离子体处理的设备
KR20070095830A (ko) 플라즈마 처리 장치
KR20200115228A (ko) 플라즈마 처리 장치
JP2003068718A (ja) プラズマ処理装置
JP2015128110A (ja) 基板処理装置、シャッタ機構およびプラズマ処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP