WO2010119838A1 - Transparent resin foil, method for producing same, and electromagnetic shielding material using the transparent resin foil - Google Patents

Transparent resin foil, method for producing same, and electromagnetic shielding material using the transparent resin foil Download PDF

Info

Publication number
WO2010119838A1
WO2010119838A1 PCT/JP2010/056524 JP2010056524W WO2010119838A1 WO 2010119838 A1 WO2010119838 A1 WO 2010119838A1 JP 2010056524 W JP2010056524 W JP 2010056524W WO 2010119838 A1 WO2010119838 A1 WO 2010119838A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent resin
metal fine
fine particles
foil
resin layer
Prior art date
Application number
PCT/JP2010/056524
Other languages
French (fr)
Japanese (ja)
Inventor
柿原康男
鈴木教一
Original Assignee
戸田工業株式会社
フジコピアン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009098297A external-priority patent/JP5606687B2/en
Priority claimed from JP2009098296A external-priority patent/JP2010251475A/en
Application filed by 戸田工業株式会社, フジコピアン株式会社 filed Critical 戸田工業株式会社
Publication of WO2010119838A1 publication Critical patent/WO2010119838A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel

Definitions

  • the present invention relates to a transparent resin foil that can be suitably used in a place where visibility is required while shielding electromagnetic waves, and an electromagnetic wave shielding material using the transparent resin foil.
  • Electromagnetic shielding materials are used to shield a wide variety of electromagnetic waves generated from electronic devices such as household appliances, mobile phones, personal computers, televisions (plasma displays, liquid crystal displays) and the like. Although electromagnetic waves depend on their energy, there are concerns that they may affect the human body and cause malfunctions of other electronic devices.
  • the means to remove the influence from the electromagnetic wave generation source can be broadly divided into the following two.
  • (1) There is a method of improving the electronic circuit so that the generation of electromagnetic waves is suppressed, and (2) a method of covering the electromagnetic wave generation source with an electromagnetic wave shielding material. If the electromagnetic wave is suppressed by the method (1), it is more preferable that the number of extra members is not increased, but it is more preferable than the troublesome work of specifying the source of the electromagnetic wave and further designing the circuit ( It is often more efficient and preferable to use the method 2).
  • plasma displays which are thin-film displays with a remarkable market growth, suppress electromagnetic waves by inserting an electromagnetic shielding material (electromagnetic shielding film) (2).
  • an electromagnetic shielding material electromagnetic shielding film
  • a copper foil is deposited on a polyethylene terephthalate resin substrate (hereinafter referred to as a PET film) or copper is deposited, and then a conductive film having a copper mesh structure is formed by a photoetching method. Used as an electromagnetic shielding material.
  • the reason why copper is used is that the higher the conductivity, the higher the shielding effect.
  • a conductive film having a network structure is disclosed by applying a metal fine particle dispersion solution of silver or the like on the film instead of the copper mesh structure described above.
  • this method does not require a special apparatus, and it can be said to be an environmentally preferable method with little waste such as an etching solution and copper produced by etching (Patent Document 1, Patent Document 2, Patent). Reference 3).
  • the products such as the plasma display described above need to maintain the function as a display as well as the shielding property of the electromagnetic wave, the optical transparency of the electromagnetic wave shielding material is naturally required.
  • electromagnetic wave shielding material that shields electromagnetic waves inevitably generated from signal cables and electric cables, shields electromagnetic waves generated from personal computers and microcomputers, or malfunctions of personal computers and microcomputers due to external electromagnetic waves.
  • electromagnetic shielding materials for prevention are already on the market.
  • such an electromagnetic shielding material used is a combination of an aluminum foil, a metal mesh, and a conductive cloth having a metal surface plated with a metal, and a sufficient electromagnetic shielding effect is obtained.
  • Patent Documents 1 to 5 are known as methods for forming a transparent conductive film.
  • electromagnetic shielding materials used for signal cables and power cables use metal films, metal wire meshes, conductive cloths, etc., but they have good electromagnetic shielding properties. However, no consideration is given to optical transparency or visibility.
  • Non-patent document 1 a conductive portion is formed on the surface of a substrate such as a PET film, and a transparent resin layer considered to have a role of protecting the conductive portion is applied.
  • the problem with the electromagnetic shielding material described above is how to reduce the thickness of the substrate on which the conductive portion is formed and the thickness of the protective layer. .
  • the conventional electromagnetic shielding material has an electromagnetic shielding property, optical transparency or visibility, and sufficient durability of the conductive part. There wasn't.
  • An object of the present invention is to provide an electromagnetic wave shielding material that has electromagnetic wave shielding properties, optical transparency or visibility, and durability of a conductive part, and that can be thinned, and a method for producing the same.
  • the present invention is a transparent resin foil characterized in that a conductive layer composed of a network structure composed of metal fine particles is included in a transparent resin layer (Invention 1).
  • the metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru.
  • the transparent resin foil according to the first aspect of the present invention which is a fine particle or an alloy fine particle containing two or more of the above metals (Invention 2).
  • the present invention is the transparent resin foil according to the present invention 1 or 2, wherein the film thickness of the transparent resin foil is 5 to 50 ⁇ m. (Invention 3).
  • the present invention is a method for producing the transparent resin foil according to any one of the first to third aspects of the present invention, which is produced by the following steps 1 to 3.
  • a conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
  • a transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and 3.
  • the process of peeling the transparent resin layer containing the network structure comprised with the said metal fine particle from a base material this invention 4).
  • the present invention is a transparent resin foil characterized by laminating a transparent resin layer containing a conductive layer made of a network structure composed of metal fine particles (Invention 5).
  • the metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru.
  • the present invention is the transparent resin foil according to the present invention 5 or 6, wherein the transparent resin foil has a thickness of 5 to 50 ⁇ m (the present invention 7).
  • the present invention is a method for producing the transparent resin foil according to any one of the present inventions 5 to 7, which is produced by the following steps 1 to 3.
  • a conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
  • a transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and 3.
  • a base material on which a transparent resin layer including a network structure composed of metal fine particles is formed, and a transparent resin layer including a network structure composed of metal fine particles separately prepared by the method 1 or 2 are provided.
  • the formed base material is overlapped so that the surfaces coated with the transparent resin layer face each other, and the transparent resin layers are adhered to each other, and then the two base materials are formed of metal fine particles.
  • the present invention is an electromagnetic shielding material characterized by being formed using the transparent resin foil according to any one of the present inventions 1 to 3 and 5 to 7 (invention 9).
  • the transparent resin foil including a network structure composed of metal fine particles according to the present invention has an electromagnetic wave shielding property due to the conductive part of the metal fine particles, and is excellent in optical transparency due to the network structure. Visibility can be ensured, and furthermore, since the conductive part is protected by the transparent resin and there is no base material having a conventional structure, thinning can be easily achieved.
  • FIG. 3 is a flowchart illustrating a method for producing a transparent resin foil and an electromagnetic shielding material according to the first aspect of the present invention. It is the flowchart which showed the manufacturing method of the transparent resin foil which concerns on this invention 5, and an electromagnetic wave shielding material. It is the figure which showed the form of the electromagnetic wave shielding material which concerns on this invention 9.
  • the meaning of “containing” a conductive layer composed of a network structure composed of metal fine particles in a transparent resin layer means that at least a part of the network structure forms a surface. And a mode in which the network structure is completely buried.
  • a metal fine particle dispersion is applied onto a substrate and then dried.
  • the metal fine particle dispersed ink is printed on the substrate and then dried.
  • the metal fine particle dispersion used is a low resistance, high transmittance by applying and drying on the base material, the metal fine particles form a network structure due to the self-organization phenomenon, followed by heat treatment and / or chemical treatment. Any metal fine particle dispersion may be used as long as the conductive layer is formed on the substrate.
  • a low-resistance, high-transmittance conductive material can be obtained by printing a network structure on a substrate by a printing method such as screen printing or gravure printing, and then performing heat treatment and / or chemical treatment.
  • Any metal fine particle-dispersed ink may be used as long as it forms a conductive layer on a substrate.
  • metal fine particle dispersion solution for example, it can be prepared and used with reference to Patent Document 1, Patent Document 4, Patent Document 5, and the like.
  • metal fine particle dispersed ink for example, a commercial product such as XA-9053 manufactured by Fujikura Kasei Co., Ltd. can be used.
  • the metal fine particles contained in the metal fine particle dispersion are metal fine particles such as Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru. Or metal alloy fine particles.
  • metal fine particle dispersion solution or metal fine particle precursor solution containing one or more kinds of Au, Ag, and Cu is used.
  • the metal fine particle dispersion solution is applied and dried on the base material, or the metal fine particle dispersion ink is printed and dried on the base material, and then heat treatment and / or chemical treatment is performed. Since an electromagnetic shielding material having resistance and high transmittance is formed, the base material must be able to withstand these operations and treatments. When the substrate is inappropriately selected and sufficient heat treatment and / or chemical treatment cannot be performed, an electromagnetic wave shielding material having sufficient low resistance and high transmittance cannot be obtained. For example, when the metal fine particle dispersion or the metal dispersion ink contains an organic solvent, it is necessary to use a substrate having solvent resistance.
  • a base material used in the present invention it is preferable to use a resin base material that is industrially cheaper in addition to a glass base material. Specifically, glass, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polyphenylene sulfide, or the like can be used. Moreover, it is preferable that a base material has a softness
  • the surface of the substrate on which the metal fine particle dispersion solution is applied or the metal fine particle dispersion ink is printed is preliminarily treated with a primer treatment or a metal fine particle to form a network structure with good reproducibility, or to perform good printing. It is preferable to perform cleaning by corona treatment or acid / alkali treatment. Although the said method is not specifically limited, It is preferable to perform the process suitable for each metal fine particle dispersion solution.
  • a general application method used when performing a coating process on the base material such as a spin coater, a bar coater, a die coater, or a spray coat can be used.
  • a so-called general printing method on the base material such as screen printing, gravure printing, ink jet printing, and printing with a dispenser can be used.
  • the range of 100 to 300 ° C. is preferable. More preferably, it is 100 to 200 ° C.
  • the dispersant contained in the metal fine particles It is immersed in an organic solvent and an inorganic acid or an organic acid having an action of removing a resin and the like and an action of promoting the sintering of metal fine particles. Thereby, a base material on which a conductive layer having low resistance, high transmittance, and moire resistance is laminated can be obtained.
  • organic solvent alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone and methyl ethyl ketone are preferable.
  • inorganic acid hydrochloric acid, nitric acid and the like are preferable, and as the organic acid, formic acid, acetic acid and the like are preferable.
  • Either one or a combination of the heat treatment and the chemical treatment may be used.
  • the surface of the conductive layer can be plated.
  • the surface resistance is as follows. 100 ⁇ / ⁇ or less.
  • the optical transparency is preferably in the range of 60% or more. More preferably, the surface resistance is 30 ⁇ / ⁇ or less and the transmittance is 70% or more. If the surface resistance is greater than 100 ⁇ / ⁇ , it cannot be said that the electromagnetic wave shielding characteristics are sufficient, and if the transmittance is less than 60%, the advantage of optical transparency, which was the subject of the present invention, is reduced.
  • a transparent resin layer 3 is formed on the conductive layer of the base material 7 on which the conductive layer is laminated so as to cover the conductive layer.
  • the resin used for the transparent resin layer 3 includes polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, and poly (N-vinylcarbazole).
  • Polyvinylpyrrolidone hydrocarbon resin, ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone Examples include at least one of the group consisting of a resin and a copolymer thereof, and / or a mixture of any of these.
  • curing agents such as an isocyanate type, a melamine type, and an epoxy type, in order to acquire high tolerance as an electromagnetic wave shielding material finally obtained.
  • an ultraviolet absorber a color pigment, an antistatic agent, an antioxidant, a silane coupling agent, and the like can be appropriately used as necessary for the transparent resin layer 3 as additives.
  • the transparent resin layer 3 is formed by preparing a coating agent in which the above transparent resin material is dissolved in an organic solvent or water or dispersed in water to adjust the viscosity, and is applied by a conventionally known coating method such as gravure coating or spin coating. A drying method can be used.
  • the thickness of the transparent resin layer 3 is preferably 5 to 50 ⁇ m. If the thickness of the transparent resin layer 3 is less than 5 ⁇ m, the durability as the finally obtained electromagnetic wave shielding material is inferior. On the other hand, when the thickness of the transparent resin layer 3 is thicker than 50 ⁇ m, the transparency is inferior, which is not preferable.
  • the thickness of the transparent resin layer 3 is preferably thicker than the height of the network structure composed of metal fine particles, but is not particularly limited thereto.
  • the transparent resin layer 4 including a network structure composed of metal fine particles is peeled off from the substrate 2 to produce a transparent resin foil 4 including the network structure composed of metal fine particles. (C in FIG. 1). By sticking this transparent resin foil on various adherends, performance as an electromagnetic wave shielding material can be obtained on the adherends.
  • the electromagnetic wave shielding characteristic of the transparent resin foil according to the present invention is that the electromagnetic wave attenuation rate at 1 MHz to 1 GHz is 20 dB or more. More preferably, it is 25 dB or more. More preferably, it is 30 dB or more. When it is smaller than 20 dB, it is difficult to say that the shielding characteristic is sufficiently effective.
  • the optical transmittance of the transparent resin foil according to the present invention is 60% or more. If the optical transmittance is less than 60%, sufficient transparency is difficult and visibility is poor.
  • the durability of the conductive layer was evaluated by a scratch resistance test. Although it is possible to evaluate the strength of the conductive layer even if a general tape test is performed, it is difficult to say that the test method is suitable for a place where it is actually used as an electromagnetic shielding material. When actually used as an electromagnetic shielding material, there is a high frequency of abrasion between electromagnetic shielding materials and scratches on the cable tip, etc., and if the structure of the conductive layer is destroyed by rubbing or scratching, the conductivity deteriorates, This is because the electromagnetic wave shielding characteristics are deteriorated.
  • the conductive layer is not damaged even when the cotton cloth is reciprocated 100 times at a load of 19.6 Pa.
  • the scratch resistance is lower than the above, it is not preferable because the conductive layer is easily destroyed by rubbing between the electromagnetic shielding materials or scratching the cable tip.
  • a metal fine particle dispersion is applied onto a substrate and then dried.
  • the metal fine particle dispersed ink is printed on the substrate and then dried.
  • the base material on which the conductive layer shown in FIG. 2A is laminated is substantially the same as the conductive layer shown in FIG. 1A used in the description of the present inventions 1 to 4, and the material used As the method, properties, etc., those used in the above description of the present invention 1 to 4 can be adopted.
  • a transparent resin layer 3 is formed on the conductive layer of the base material 7 on which the conductive layer is laminated so as to cover the conductive layer.
  • the base material on which the transparent resin layer including the network structure composed of metal fine particles is formed is the conductive material shown in FIG. 1B used in the description of the present inventions 1 to 4. It is substantially the same as that in which the transparent resin layer 3 is formed so as to cover the conductive layer on the conductive layer of the base material 7 on which the conductive layer is laminated. Those used in the description of the present invention 1 to 4 can be employed.
  • a substrate on which a transparent resin layer including a network structure composed of the metal fine particles is formed, and a transparent resin layer including a network structure composed of metal fine particles separately prepared by the same method are provided.
  • the two base materials are By peeling off from the transparent resin layer containing the network structure composed of metal fine particles, a transparent resin foil 4 ′ containing two layers of the network structure composed of metal fine particles can be produced (FIG. 2). (D)).
  • a method for adhering the transparent resin layers As a method for adhering the transparent resin layers, a method of applying and adhering a conventionally known adhesive or pressure-sensitive adhesive can be used.
  • a thermoplastic resin having thermal adhesiveness is used as the transparent resin
  • the transparent resin layers can be bonded to each other only by hot pressing, and in that case, no adhesive or pressure-sensitive adhesive is required. Since the transparent resin foil produced by the above method has a structure in which two network structures composed of metal fine particles are laminated, it is particularly excellent in electromagnetic wave shielding performance. By sticking this transparent resin foil to various adherends, it is possible to obtain performance as an electromagnetic shielding material on the adherends.
  • a transparent resin foil 4 ′ containing two layers of a network structure composed of metal fine particles and a transparent substrate layer on which a transparent resin layer containing a network structure composed of metal particles separately prepared is formed.
  • a transparent resin foil 5 in which three layers of a network structure composed of metal fine particles are included by peeling the base material after the transparent resin foil 4 ′ and the transparent resin layer are bonded to each other on the surface of the resin layer. Can be produced (FIG. 3).
  • this transparent resin foil 5 is used as an electromagnetic shielding material, extremely excellent electromagnetic shielding performance can be obtained.
  • a transparent resin foil 4 ′ containing two layers of a network structure composed of metal fine particles of the present invention and a transparent resin foil 5 containing three layers of a network structure composed of metal fine particles are laminated on various adherends.
  • Adhesive materials include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), polyvinyl pyrrolidone, hydrocarbon Resin, ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin and their co-polymers Examples include at least one of the group consisting of a combination and / or a mixture thereof.
  • the main monomer is a low Tg monomer such as butyl acrylate, ethyl acrylate, or 2-ethylhexyl acrylate, and acrylic acid, methacrylic acid, or hydroxyethyl. Obtained by crosslinking an acrylic copolymer obtained by copolymerization with a functional group monomer such as methacrylate, hydroxyethyl acrylate, acrylamide, acrylonitrile, etc. with a known crosslinking agent such as isocyanate, melamine, or epoxy. Can do.
  • Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-2 are examples relating to the transparent resin foils of the present invention 1 to 4 and methods for producing the same
  • Examples 2-1 to 2-4 Comparative Examples 2-1 and 2-2 are examples relating to the transparent resin foils of the present invention 5 to 8 and methods for producing the same.
  • the evaluation methods used in the following examples and comparative examples will be described.
  • the electrical resistance of a transparent resin foil containing a network structure composed of a conductive layer and metal fine particles prepared on a base material was measured in accordance with JIS-K-7194 in the form of Loresta GP (Inc. This was performed by a four-terminal four-probe method using a serial four-probe probe (ASP) manufactured by Dia Instruments, model number: MCP-T610).
  • ASP serial four-probe probe
  • the optical transmittance was evaluated as the total light transmittance. Using a haze meter (model number: NDH-2000, manufactured by Nippon Denka Kogyo Co., Ltd.), a transparent resin foil containing a network structure composed of the conductive layer and metal fine particles is used in accordance with JIS K-7105. It was measured.
  • the thickness of the base material and the thickness of the transparent resin foil including the network structure composed of metal fine particles were measured with a micrometer.
  • the attenuation rate of the electric field component at a frequency of 1 MHz to 1 GHz was measured by the KEC method.
  • a rub resistance test (tester: AATC CC Clock Meter Model CM-1, manufactured by Atlas Electric Devices Co., Ltd.) is performed by reciprocating cotton cloth 100 times at a load of 19.6 Pa. The degree of damage to the conductive layer was evaluated.
  • the silver fine particle dispersion 2 was coated on a polyethylene terephthalate substrate having a thickness of 100 ⁇ m using a bar coater. Subsequently, by spontaneous drying in the air, the silver fine particles formed a network structure by the self-organization phenomenon. Next, after heating at 150 ° C. for 2 minutes, each was immersed in acetone and 1N hydrochloric acid, and then heated and dried at 150 ° C. for 5 minutes to form a network structure containing silver fine particles. The total light transmittance was 85% and the surface resistance value was 4.5 ⁇ / ⁇ after the conductive layer comprising a network structure containing silver fine particles was formed on the substrate.
  • Example 1-1 The following transparent resin layer coating solution 1-1 was applied to a polyethylene terephthalate base material on which a network structure containing silver fine particles produced by the above-described method was laminated so that the thickness after drying was 15 ⁇ m, and 100 ° C. A transparent resin layer was formed by drying at a temperature of 5 minutes. Next, the transparent resin layer enclosing the network structure containing silver fine particles was peeled off from the polyethylene terephthalate substrate 2 to prepare a transparent resin foil containing the network structure containing silver fine particles.
  • a transparent resin layer coating solution 1-1 was prepared by dissolving 15 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BX-1) in 85 g of normal butanol.
  • Example 1-2 A network-like structure containing silver fine particles as in Example 1-1, except that the transparent resin layer coating liquid 1-2 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to 20 ⁇ m. A transparent resin foil encapsulating was prepared.
  • a transparent resin layer coating solution 1-2 was prepared by dissolving 15 g of cellulose acetate butyrate resin (manufactured by Eastman Kodak Company, CAB381-1) in 85 g of methyl ethyl ketone.
  • Example 1-3 A network structure containing silver fine particles as in Example 1-1, except that the transparent resin layer coating liquid 1-3 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to be 20 ⁇ m. A transparent resin foil encapsulating was prepared.
  • ⁇ Transparent resin layer coating solution 1-3 20 g of vinyl chloride-vinyl acetate copolymer resin (manufactured by Nissin Chemical Co., Solvain CN) was dissolved in 80 g of methyl ethyl ketone to prepare a transparent resin layer coating solution 1-3.
  • the attenuation rate at 1 MHz to 1 GHz was sufficient at 40 dB or more, but the total light transmittance was 0% and there was no visibility.
  • Comparative Example 1-2 When a network structure containing silver fine particles was formed on a PET film (thickness: 100 ⁇ m) as an electromagnetic wave shielding material according to Example 1-1 and the electromagnetic wave shielding characteristics were measured, the attenuation rate at a shielding characteristic of 1 MHz to 1 GHz was 30 dB or more was sufficient. The total light transmittance was 85%, and the visibility was excellent. When the abrasion resistance test was performed, the conductive layer was broken, and the durability was low.
  • Table 1 shows the evaluation results of the samples produced in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-2.
  • Example 2-1 The following transparent resin layer coating solution 2-1 was applied to a polyethylene terephthalate base material on which a network structure containing silver fine particles prepared by the above-described method was laminated so that the thickness after drying was 15 ⁇ m, and 100 ° C.
  • the substrate A was dried at a temperature of 5 minutes to prepare a substrate A on which a transparent resin layer containing a network structure composed of silver fine particles was formed.
  • the base material B with which the transparent resin layer containing the network-like structure comprised with the silver fine particle separately prepared by the method similar to the above was produced was produced. After superimposing the surfaces of the base material A and base material B on which the transparent resin layer is formed facing each other and pressing them at 170 ° C.
  • the two polyethylene terephthalate base materials were peeled off to produce a transparent resin foil containing two layers of a network structure composed of silver fine particles.
  • the obtained transparent resin foil had a total light transmittance of 71% and a surface resistance value of 4.5 ⁇ / ⁇ .
  • a transparent resin layer coating solution 2-1 was prepared by dissolving 15 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BX-1) in 85 g of normal butanol.
  • Example 2-2 A network structure containing silver fine particles in the same manner as in Example 2-1, except that the transparent resin layer coating liquid 2-2 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to 20 ⁇ m. A transparent resin foil containing 2 layers was prepared.
  • a transparent resin layer coating solution 2-2 was prepared by dissolving 20 g of vinyl chloride-vinyl acetate copolymer resin (manufactured by Nisshin Chemical Co., Ltd., sorbine CN) in 80 g of methyl ethyl ketone.
  • Example 2-3 As in Example 2-1, the base material A on which the transparent resin layer containing the network structure composed of silver fine particles was formed and the network structure composed of silver fine particles separately prepared by the same method were included. A base material B on which a transparent resin layer was formed was produced. Next, the following adhesive layer coating solution 1 was applied to the surface of the transparent resin layer of the substrate A so that the dry film thickness was 15 ⁇ m, and dried at a temperature of 100 ° C. for 5 minutes.
  • An adhesive layer coating solution 1 was prepared by dissolving in 30 g of a copolymer of butyl acrylate and hydroxybutyl acrylate, 1 g of an isocyanurate of tolylene diisocyanate and 69 g of ethyl acetate.
  • Example 2-4 A transparent resin foil enclosing two layers of a network structure containing silver fine particles was produced by the same method as in Example 2-1. Next, a substrate C on which a transparent resin layer containing a network structure composed of silver fine particles separately prepared was prepared in the same manner as in Example 2-1. A transparent resin foil containing two layers of a network structure containing silver fine particles and a surface of the base material C on which the transparent resin layer is formed are superposed to form a hot laminator (manufactured by Taisei Laminator, Taisei First Laminator VAII-700). Then, the polyethylene terephthalate base material of the base material C was peeled off to prepare a transparent resin foil containing three layers of network structures composed of silver fine particles.
  • a hot laminator manufactured by Taisei Laminator, Taisei First Laminator VAII-700.
  • Electromagnetic wave shielding characteristics were measured using a PET film (thickness 12 ⁇ m) on which copper having a thickness of 0.15 ⁇ m was deposited as an electromagnetic wave shielding material.
  • the attenuation rate from 1 MHz to 1 GHz was sufficient to be 50 dB or more, but the total light transmittance was 0% and there was no visibility.
  • Comparative Example 2-2 When a network structure containing silver fine particles was formed on a PET film (thickness: 100 ⁇ m) as an electromagnetic wave shielding material according to Example 2-1, and the electromagnetic wave shielding characteristics were measured, the attenuation rate at a shielding characteristic of 1 MHz to 1 GHz was 30 dB or more was sufficient. The total light transmittance was 85%, and the visibility was excellent. When the abrasion resistance test was performed, the conductive layer was broken, and the durability was low.
  • Table 1 shows the evaluation results of the samples produced in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2.
  • the transparent resin foil according to the present invention is excellent in electromagnetic wave shielding and optical transparency, and does not require a base material having a conventional structure. It is suitable as a transparent resin foil.

Abstract

Disclosed is a transparent resin foil which is characterized in that a transparent resin layer internally contains a conductive layer that is composed of a network structure configured of fine particles of a metal selected from among Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt and Ru, or fine particles of an alloy containing two or more of the above-mentioned metals. Also disclosed are: a transparent resin foil which is characterized by being obtained by laminating the transparent resin layers; methods for producing the transparent resin foils; and an electromagnetic shielding material using one of the transparent resin foils. The electromagnetic shielding material has electromagnetic wave shielding properties, optical transparency or visibility, and durability in the conductive portion, and can be formed as a thin layer.

Description

透明樹脂箔及びその製造方法、並びに該透明樹脂箔を用いた電磁波シールド材Transparent resin foil, method for producing the same, and electromagnetic shielding material using the transparent resin foil
 本発明は、電磁波を遮蔽するとともに、視認性が要求される場所に好適に用いることが出来る透明樹脂箔及び該透明樹脂箔を用いた電磁波シールド材に関するものである。 The present invention relates to a transparent resin foil that can be suitably used in a place where visibility is required while shielding electromagnetic waves, and an electromagnetic wave shielding material using the transparent resin foil.
 電磁波シールド材は家電用品、携帯電話、パソコン、テレビ(プラズマディスプレイ、液晶ディスプレイ)などをはじめとした電子機器から発生する多種多様な電磁波を遮蔽する目的に用いられている。電磁波はそのエネルギーにもよるが人体への影響や他の電子機器の誤作動を招くことが懸念されている。 Electromagnetic shielding materials are used to shield a wide variety of electromagnetic waves generated from electronic devices such as household appliances, mobile phones, personal computers, televisions (plasma displays, liquid crystal displays) and the like. Although electromagnetic waves depend on their energy, there are concerns that they may affect the human body and cause malfunctions of other electronic devices.
 電磁波発生源からの影響を取り除く手段を大別すると次の2つに分けられる。(1)電磁波の発生が抑制されるように電子回路を改良設計する、(2)電磁波発生源を電磁波シールド材で覆う方法がある。(1)の方法で電磁波が抑制されるのであれば、余計な部材が増えることがなくより好ましいが、電磁波の発生源を特定し、さらに回路の改良設計を行う煩雑な作業を行うよりは(2)の方法を用いる方がより効率的で好ましい場合も多い。 手段 The means to remove the influence from the electromagnetic wave generation source can be broadly divided into the following two. (1) There is a method of improving the electronic circuit so that the generation of electromagnetic waves is suppressed, and (2) a method of covering the electromagnetic wave generation source with an electromagnetic wave shielding material. If the electromagnetic wave is suppressed by the method (1), it is more preferable that the number of extra members is not increased, but it is more preferable than the troublesome work of specifying the source of the electromagnetic wave and further designing the circuit ( It is often more efficient and preferable to use the method 2).
 昨今、市場の伸びが著しい薄膜型ディスプレイであるプラズマディスプレイでは、(2)の電磁波シールド材(電磁遮蔽フィルム)の挿入により電磁波の抑制を行なっている。プラズマディスプレイでは、主にポリエチレンテレフタレート樹脂基板(以後、PETフィルムと記載)上に、銅箔を貼り付けるか、銅を蒸着した後、フォトエッチング法により銅メッシュ構造を有する導電性フィルムを形成し、電磁波シールド材として用いられている。銅を用いているのは、導電性が高いほど一般的にシールド効果が高いためである。 In recent years, plasma displays, which are thin-film displays with a remarkable market growth, suppress electromagnetic waves by inserting an electromagnetic shielding material (electromagnetic shielding film) (2). In the plasma display, a copper foil is deposited on a polyethylene terephthalate resin substrate (hereinafter referred to as a PET film) or copper is deposited, and then a conductive film having a copper mesh structure is formed by a photoetching method. Used as an electromagnetic shielding material. The reason why copper is used is that the higher the conductivity, the higher the shielding effect.
 あるいは、上述した銅メッシュ構造の代わりに、銀などの金属微粒子分散溶液をフィルム上に塗布することで網目状構造を有した導電性フィルムが開示されている。本法はフォトエッチング法と比べ特別な装置が不要であり、またエッチング液やエッチングで出てくる銅などの廃棄物も少なく環境的にも好ましい手法と言える(特許文献1、特許文献2、特許文献3)。 Alternatively, a conductive film having a network structure is disclosed by applying a metal fine particle dispersion solution of silver or the like on the film instead of the copper mesh structure described above. Compared with the photo-etching method, this method does not require a special apparatus, and it can be said to be an environmentally preferable method with little waste such as an etching solution and copper produced by etching (Patent Document 1, Patent Document 2, Patent). Reference 3).
 前述したプラズマディスプレイなどの製品では、電磁波のシールド性とともに、ディスプレイとしての機能を維持する必要があるため、当然ながら電磁波シールド材の光学的透明性が要求される。 Since the products such as the plasma display described above need to maintain the function as a display as well as the shielding property of the electromagnetic wave, the optical transparency of the electromagnetic wave shielding material is naturally required.
 一方、ディスプレイ用途以外では、信号ケーブルや電線ケーブルなどから不可避的に発生する電磁波を遮蔽する電磁波シールド材や、パソコンやマイコンなどから発生する電磁波を遮蔽あるいは外部からの電磁波によるパソコンやマイコンの誤動作を防ぐための電磁波シールド材などが、すでに各種類市販されている。 On the other hand, for non-display applications, electromagnetic wave shielding material that shields electromagnetic waves inevitably generated from signal cables and electric cables, shields electromagnetic waves generated from personal computers and microcomputers, or malfunctions of personal computers and microcomputers due to external electromagnetic waves. Various types of electromagnetic shielding materials for prevention are already on the market.
 従来、こういった電磁波シールド材はアルミ箔や金属メッシュ、繊維の表面を金属めっきした導電布を組み合わせたものが用いられており、十分な電磁波シールド効果が得られている。 Conventionally, such an electromagnetic shielding material used is a combination of an aluminum foil, a metal mesh, and a conductive cloth having a metal surface plated with a metal, and a sufficient electromagnetic shielding effect is obtained.
 近年では、前述した用途においても電磁波シールド材を施した内容物が外から確認できるよう視認性が求められてきている。 In recent years, visibility has been demanded so that the contents subjected to the electromagnetic shielding material can be confirmed from the outside even in the above-described applications.
 従来、透明導電性膜を形成する方法として、特許文献1~5の方法が知られている。 Conventionally, methods of Patent Documents 1 to 5 are known as methods for forming a transparent conductive film.
特表2005-530005号公報JP 2005-530005 Gazette 特開2008-078441号公報JP 2008-078441 A 特開2006-313891号公報JP 2006-313891 A 特開2007-294355号公報JP 2007-294355 A 特開2007-234299号公報JP 2007-234299 A
 家電用品、携帯電話、パソコン、テレビなどをはじめとした電子機器、あるいはこれら電子機器間をつなぐ信号ケーブルや電子機器と電源とを結ぶ電源ケーブルからの電磁波、あるいは電子機器の誤動作を招く危険性のある外部からの電磁波は、今後ますます増え続けることが予想され、それに伴う電磁波シールド材は益々必要になってくる。 There is a risk of electromagnetic waves from electronic devices such as home appliances, mobile phones, personal computers, televisions, etc., signal cables connecting these electronic devices, power cables connecting electronic devices and power supplies, or malfunctions of electronic devices. Certain external electromagnetic waves are expected to continue to increase in the future, and electromagnetic shielding materials associated therewith are increasingly required.
 さらに、電磁波遮蔽特性とともに、ディスプレイやタッチパネル以外の用途においても光学的透明性すなわち遮蔽物の視認性に対する要求も重要になっており、また装置の小型・軽量化の流れから電磁波シールド材の薄膜化も要求されている。 In addition to electromagnetic shielding properties, requirements for optical transparency, i.e., visibility of shields, are also important in applications other than displays and touch panels. In addition, the trend toward smaller and lighter devices has made electromagnetic shielding materials thinner. Is also required.
 しかしながら、従来の電磁波シールド材では、例えば信号ケーブルや電源ケーブルに用いられる電磁波シールド材は、金属膜や金属線のメッシュ、導電布などが用いられているが、電磁波遮蔽特性では良好なものであるが、光学的透明性あるいは視認性においてはまったく考慮されていない。 However, in conventional electromagnetic shielding materials, for example, electromagnetic shielding materials used for signal cables and power cables use metal films, metal wire meshes, conductive cloths, etc., but they have good electromagnetic shielding properties. However, no consideration is given to optical transparency or visibility.
 上述したプラズマディスプレイ用途の電磁波シールド材では、PETフィルムなどの基板表面に導電性部が形成され、その導電性部を保護する役目も備えていると考えられる透明化樹脂層が施されている(非特許文献1)。 In the electromagnetic wave shielding material for plasma display described above, a conductive portion is formed on the surface of a substrate such as a PET film, and a transparent resin layer considered to have a role of protecting the conductive portion is applied ( Non-patent document 1).
 前述の電磁波シールド材をディスプレイ用途以外の例えば電源ケーブルのシールド材などに用いるためには、前述した透明化膜などのような保護膜がないと、作業時のシールド材同士あるいはケーブルとシールド材との擦れ、あるいはシールド材の屈曲時に導電性部が破壊されることが懸念される。そのため、何かしらの保護層は必須と考えられる。 In order to use the above-mentioned electromagnetic shielding material for a shielding material of a power cable other than a display application, for example, if there is no protective film such as the above-mentioned transparent film, There is a concern that the conductive portion may be destroyed during rubbing or bending of the shield material. Therefore, some kind of protective layer is considered essential.
 今後ますます要求される電磁波シールド材の薄膜化には、前述した電磁波シールド材では、導電性部が形成される基板の厚みおよび保護層の厚みの2つの厚みをいかに削減するかが課題となる。 In the electromagnetic shielding material that will be required more and more in the future, the problem with the electromagnetic shielding material described above is how to reduce the thickness of the substrate on which the conductive portion is formed and the thickness of the protective layer. .
 さらに、電磁波遮蔽特性を向上させる目的で通常は電磁波シールド材を複数重ねて使用されるが、前述の2つの厚みは、このような積層構造でなおいっそう薄膜化において課題となってくる。 Furthermore, a plurality of electromagnetic shielding materials are usually used for the purpose of improving electromagnetic shielding properties, but the above-mentioned two thicknesses become a problem in further thinning with such a laminated structure.
 上述したように、従来の電磁波シールド材には、電磁波遮蔽性とともに、光学的透明性あるいは視認性、さらに導電性部の十分な耐久性を備え、薄層化が可能な構造の電磁波シールド材はなかった。 As described above, the conventional electromagnetic shielding material has an electromagnetic shielding property, optical transparency or visibility, and sufficient durability of the conductive part. There wasn't.
 本発明では、電磁波遮蔽性、光学的透明性あるいは視認性、導電性部の耐久性を有し、薄層化が可能な電磁波シールド材とその製造方法を提供することを課題とした。 An object of the present invention is to provide an electromagnetic wave shielding material that has electromagnetic wave shielding properties, optical transparency or visibility, and durability of a conductive part, and that can be thinned, and a method for producing the same.
 即ち、本発明は、金属微粒子で構成される網目状構造物からなる導電性層を透明樹脂層に内包したことを特徴とする透明樹脂箔である(本発明1)。 That is, the present invention is a transparent resin foil characterized in that a conductive layer composed of a network structure composed of metal fine particles is included in a transparent resin layer (Invention 1).
 即ち、本発明は、金属微粒子が、Au、Ag、Cu、Ni、Co、Fe、Cr、Zn、Al、Sn、Pd、Ti、Ta、W、Mo、In、Pt、Ruから選ばれた金属微粒子又は前記金属の二種類以上を含む合金微粒子である本発明1記載の透明樹脂箔である(本発明2)。 That is, according to the present invention, the metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru. The transparent resin foil according to the first aspect of the present invention, which is a fine particle or an alloy fine particle containing two or more of the above metals (Invention 2).
 即ち、本発明は、透明樹脂箔の膜厚が5~50μmである本発明1又は2記載の透明樹脂箔である。(本発明3)。 That is, the present invention is the transparent resin foil according to the present invention 1 or 2, wherein the film thickness of the transparent resin foil is 5 to 50 μm. (Invention 3).
 即ち、本発明は、本発明1~3の何れかに記載の透明樹脂箔の製造方法において、下記の1~3の工程にて製造する製造方法である。
 1.金属微粒子分散溶液を基材上に塗布し乾燥させ、網目状構造の導電性層を基材上に形成させる導電性層形成工程、
 2.前記導電性層表面に透明性の樹脂からなる塗液を塗布し乾燥させ、透明樹脂層を積層する透明樹脂層積層工程、および、
 3.前記、金属微粒子で構成される網目状構造物を含む透明樹脂層を基材より剥離する工程(本発明4)。
That is, the present invention is a method for producing the transparent resin foil according to any one of the first to third aspects of the present invention, which is produced by the following steps 1 to 3.
1. A conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
2. A transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and
3. The process of peeling the transparent resin layer containing the network structure comprised with the said metal fine particle from a base material (this invention 4).
 即ち、本発明は、金属微粒子で構成される網目状構造物からなる導電性層を内包した透明樹脂層を積層したことを特徴とする透明樹脂箔である(本発明5)。 That is, the present invention is a transparent resin foil characterized by laminating a transparent resin layer containing a conductive layer made of a network structure composed of metal fine particles (Invention 5).
 即ち、本発明は、金属微粒子が、Au、Ag、Cu、Ni、Co、Fe、Cr、Zn、Al、Sn、Pd、Ti、Ta、W、Mo、In、Pt、Ruから選ばれた金属微粒子又は前記金属の二種類以上を含む合金微粒子である本発明5記載の透明樹脂箔である(本発明6)。 That is, according to the present invention, the metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru. The transparent resin foil according to the fifth aspect of the present invention, wherein the transparent resin foil is a fine particle or an alloy fine particle containing two or more kinds of the metals (Invention 6).
 即ち、本発明は、透明樹脂箔の膜厚が5~50μmである本発明5又は6記載の透明樹脂箔である(本発明7)。 That is, the present invention is the transparent resin foil according to the present invention 5 or 6, wherein the transparent resin foil has a thickness of 5 to 50 μm (the present invention 7).
 即ち、本発明は、本発明5~7の何れかに記載の透明樹脂箔の製造方法において、下記の1~3の工程にて製造する製造方法である。
 1.金属微粒子分散溶液を基材上に塗布し乾燥させ、網目状構造の導電性層を基材上に形成させる導電性層形成工程、
 2.前記導電性層表面に透明性の樹脂からなる塗液を塗布し乾燥させ、透明樹脂層を積層する透明樹脂層積層工程、および、
 3.前記、金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材と、1から2の方法により別に用意した金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材とを、該透明樹脂層が塗布された表面同士が対面するように重ね合わせ、該透明樹脂層同士を接着させた後、2つの基材を金属微粒子で構成される網目状構造物を含む透明樹脂層より剥離させる工程(本発明8)。
That is, the present invention is a method for producing the transparent resin foil according to any one of the present inventions 5 to 7, which is produced by the following steps 1 to 3.
1. A conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
2. A transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and
3. A base material on which a transparent resin layer including a network structure composed of metal fine particles is formed, and a transparent resin layer including a network structure composed of metal fine particles separately prepared by the method 1 or 2 are provided. The formed base material is overlapped so that the surfaces coated with the transparent resin layer face each other, and the transparent resin layers are adhered to each other, and then the two base materials are formed of metal fine particles. The process of making it peel from the transparent resin layer containing a structure (this invention 8).
 即ち、本発明は、本発明1~3及び5~7の何れかに記載の透明樹脂箔を用いて形成することを特徴とする電磁波シールド材である(本発明9)。 That is, the present invention is an electromagnetic shielding material characterized by being formed using the transparent resin foil according to any one of the present inventions 1 to 3 and 5 to 7 (invention 9).
 本発明に係る金属微粒子で構成される網目状構造物を内包した透明樹脂箔は、その金属微粒子による導電性部により電磁波遮蔽性を有し、さらに、網目状構造により光学的透過性に優れあるいは視認性を確保でき、さらには、透明樹脂により該導電性部が保護されてかつ従来の構造の基材がないため、薄膜化が容易に達成できる。 The transparent resin foil including a network structure composed of metal fine particles according to the present invention has an electromagnetic wave shielding property due to the conductive part of the metal fine particles, and is excellent in optical transparency due to the network structure. Visibility can be ensured, and furthermore, since the conductive part is protected by the transparent resin and there is no base material having a conventional structure, thinning can be easily achieved.
本発明1に係る透明樹脂箔および電磁波シールド材の製造方法を示したフローチャートである。3 is a flowchart illustrating a method for producing a transparent resin foil and an electromagnetic shielding material according to the first aspect of the present invention. 本発明5に係る透明樹脂箔および電磁波シールド材の製造方法を示したフローチャートである。It is the flowchart which showed the manufacturing method of the transparent resin foil which concerns on this invention 5, and an electromagnetic wave shielding material. 本発明9に係る電磁波シールド材の形態を示した図である。It is the figure which showed the form of the electromagnetic wave shielding material which concerns on this invention 9.
 1:金属微粒子で構成される網目状構造物(導電性層)
 2:基材
 3:透明樹脂層
 4:金属微粒子で構成される網目状構造物を内包した透明樹脂箔
 4’:金属微粒子で構成される網目状構造物を2層内包した透明樹脂箔
 5:金属微粒子で構成される網目状構造物を3層内包した透明樹脂箔
 6:金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材
 7:導電性層が積層された基材
 8:別に用意した金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材
1: Network structure composed of fine metal particles (conductive layer)
2: Base material 3: Transparent resin layer 4: Transparent resin foil including a network structure composed of metal fine particles 4 ′: Transparent resin foil including two layers of a network structure composed of metal fine particles 5: Transparent resin foil including three layers of network structure composed of metal fine particles 6: Base material on which transparent resin layer containing network structure composed of metal fine particles is formed 7: Conductive layer laminated Base material 8: Base material on which a transparent resin layer including a network structure composed of separately prepared metal fine particles is formed
 本発明において、金属微粒子で構成される網目状構造物からなる導電性層を透明樹脂層に「内包」する(Contain)という意味は、網目状構造物の少なくとも一部が表面を形成する態様と網目状構造物が完全に埋没した態様とを含む。先ず、本発明1~4に係わる透明樹脂箔およびその製造方法について説明する。 In the present invention, the meaning of “containing” a conductive layer composed of a network structure composed of metal fine particles in a transparent resin layer (Contain) means that at least a part of the network structure forms a surface. And a mode in which the network structure is completely buried. First, the transparent resin foil and the manufacturing method thereof according to the first to fourth aspects of the present invention will be described.
 まず図1のAに示すとおり、金属微粒子分散溶液を基材上へ塗布した後、乾燥させる。あるいは、金属微粒子分散インキを基材上に印刷した後、乾燥させる。 First, as shown in FIG. 1A, a metal fine particle dispersion is applied onto a substrate and then dried. Alternatively, the metal fine particle dispersed ink is printed on the substrate and then dried.
 用いる金属微粒子分散溶液は、基材上へ塗布・乾燥後に、金属微粒子が自己組織化現象により網目状構造を形成し、その後の加熱処理及び/又は化学処理することで、低抵抗、高透過率の導電性層を基材上へ形成するものであればいずれの金属微粒子分散溶液を用いても良い。 The metal fine particle dispersion used is a low resistance, high transmittance by applying and drying on the base material, the metal fine particles form a network structure due to the self-organization phenomenon, followed by heat treatment and / or chemical treatment. Any metal fine particle dispersion may be used as long as the conductive layer is formed on the substrate.
 あるいは、金属微粒子分散インキとしては、スクリーン印刷やグラビア印刷などの印刷法により基材上に網目状構造を印刷した後、加熱処理及び/又は化学処理することで、低抵抗、高透過率の導電性層を基材上に形成するものであればいずれの金属微粒子分散インキを用いても良い。 Alternatively, as the metal fine particle dispersed ink, a low-resistance, high-transmittance conductive material can be obtained by printing a network structure on a substrate by a printing method such as screen printing or gravure printing, and then performing heat treatment and / or chemical treatment. Any metal fine particle-dispersed ink may be used as long as it forms a conductive layer on a substrate.
 金属微粒子分散溶液としては、例えば特許文献1あるいは特許文献4、特許文献5などを参考に調製して使用することが出来る。金属微粒子分散インキとしては、例えば藤倉化成株式会社製XA‐9053などの市販品を用いることが出来る。 As the metal fine particle dispersion solution, for example, it can be prepared and used with reference to Patent Document 1, Patent Document 4, Patent Document 5, and the like. As the metal fine particle dispersed ink, for example, a commercial product such as XA-9053 manufactured by Fujikura Kasei Co., Ltd. can be used.
 金属微粒子分散液に含まれる金属微粒子は、Au、Ag、Cu、Ni、Co、Fe、Cr、Zn、Al、Sn、Pd、Ti、Ta、W、Mo、In、Pt、Ruなどの金属微粒子又は金属合金微粒子である。好ましくはAu、Ag、Cuを1種類以上含む金属微粒子分散溶液又は金属微粒子前駆体溶液を用いるのが良い。 The metal fine particles contained in the metal fine particle dispersion are metal fine particles such as Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, and Ru. Or metal alloy fine particles. Preferably, a metal fine particle dispersion solution or metal fine particle precursor solution containing one or more kinds of Au, Ag, and Cu is used.
 基材には、耐熱性、耐薬品性に優れる材料を用いることが好ましい。 It is preferable to use a material having excellent heat resistance and chemical resistance for the substrate.
 本発明においては、金属微粒子分散溶液を基材上に塗布、乾燥あるいは、金属微粒子分散インキを基材上に印刷・乾燥させ、その後に加熱処理及び/又は化学処理を行うことで、十分な低抵抗性、高透過率性を有する電磁波シールド材を形成させるので、基材はこれら操作、処理に耐え得るものでなければならない。基材の選択が不適切で、十分な加熱処理及び/又は化学処理ができないときには、十分な低抵抗性、高透過率性を有する電磁波シールド材を得ることはできない。例えば、金属微粒子分散液あるいは金属分散インキが有機溶剤を含む場合には、耐溶剤性を有する基材とする必要がある。 In the present invention, the metal fine particle dispersion solution is applied and dried on the base material, or the metal fine particle dispersion ink is printed and dried on the base material, and then heat treatment and / or chemical treatment is performed. Since an electromagnetic shielding material having resistance and high transmittance is formed, the base material must be able to withstand these operations and treatments. When the substrate is inappropriately selected and sufficient heat treatment and / or chemical treatment cannot be performed, an electromagnetic wave shielding material having sufficient low resistance and high transmittance cannot be obtained. For example, when the metal fine particle dispersion or the metal dispersion ink contains an organic solvent, it is necessary to use a substrate having solvent resistance.
 金属微粒子分散液を基材に塗布し乾燥させた後、あるいは金属微粒子分散インキを基材に塗布、乾燥させた後、塩酸水溶液に浸漬させるような場合は耐酸性を有する基材を選択する必要があり、さらにその後加熱処理する場合には、基材は耐酸性と共に耐熱性を有する基材を選択する必要がある。 After applying the metal fine particle dispersion to the substrate and drying, or after applying the metal fine particle dispersion ink to the substrate and drying it, it is necessary to select a substrate having acid resistance. In the case of further heat treatment, it is necessary to select a base material having heat resistance as well as acid resistance.
 本発明に用いる基材としては、ガラス基材の他、工業的にはより安価な樹脂基材を用いることが好ましい。具体的にはガラス、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド、ポリフェニレンサルファイド等を用いることが出来る。また基材は柔軟性を有することが好ましい。基材は繰り返し使用することもできる。 As a base material used in the present invention, it is preferable to use a resin base material that is industrially cheaper in addition to a glass base material. Specifically, glass, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polyphenylene sulfide, or the like can be used. Moreover, it is preferable that a base material has a softness | flexibility. The substrate can be used repeatedly.
 また、金属微粒子分散溶液を塗布あるいは金属微粒子分散インキを印刷する基材の表面は、予め金属微粒子が網目状構造を再現性良く形成するため、あるいは、良好な印刷が出来るために、プライマー処理又はコロナ処理、酸・アルカリ処理による洗浄などを行う方が好ましい。上記手法は特に限定されないが、各金属微粒子分散溶液に適した処理を行うことが好ましい。 In addition, the surface of the substrate on which the metal fine particle dispersion solution is applied or the metal fine particle dispersion ink is printed is preliminarily treated with a primer treatment or a metal fine particle to form a network structure with good reproducibility, or to perform good printing. It is preferable to perform cleaning by corona treatment or acid / alkali treatment. Although the said method is not specifically limited, It is preferable to perform the process suitable for each metal fine particle dispersion solution.
 金属微粒子分散溶液の基材上への塗布方法は、スピンコーターやバーコーター、ダイコーター、スプレーコートなどいわゆる基材上へのコーティング処理を行う時に用いる一般的な塗布手法を用いることが出来る。 As a method for applying the metal fine particle dispersion solution on the base material, a general application method used when performing a coating process on the base material such as a spin coater, a bar coater, a die coater, or a spray coat can be used.
 金属微粒子分散インキを基材上に印刷する方法は、スクリーン印刷、グラビア印刷、インクジエット印刷、ディスペンサーでの印刷などいわゆる一般的に基材上への印刷する手法を用いることができる。 As a method of printing the metal fine particle dispersed ink on the base material, a so-called general printing method on the base material such as screen printing, gravure printing, ink jet printing, and printing with a dispenser can be used.
 金属微粒子分散溶液を基材に塗布・乾燥あるいは金属微粒子分散インキを基材上へ印刷・乾燥し、金属微粒子で構成される網目状構造物を形成した後、加熱処理を行なう場合の温度は、基材の種類によって異なるが十分に低抵抗な導電性層を形成するためには、100~300℃の範囲が好ましい。より好ましくは100~200℃である。 The temperature when the metal fine particle dispersion solution is applied to the substrate and dried, or the metal fine particle dispersion ink is printed and dried on the substrate to form a network structure composed of the metal fine particles, and then the heat treatment is performed. In order to form a conductive layer having a sufficiently low resistance, depending on the type of the substrate, the range of 100 to 300 ° C. is preferable. More preferably, it is 100 to 200 ° C.
 金属微粒子分散溶液を基材に塗布・乾燥あるいは金属微粒子分散インキを基材上へ印刷・乾燥し、金属微粒子で構成される網目状構造物を形成した後、金属微粒子中に含まれる分散剤や樹脂などを取り除く作用及び金属微粒子同士の焼結を促進する作用のある有機溶剤及び無機酸又は有機酸中に浸漬させる。これにより低抵抗性、高透過率性、耐モアレ性を有する導電性層が積層された基材を得ることができる。 After coating and drying the metal fine particle dispersion solution on the substrate or printing and drying the metal fine particle dispersion ink on the substrate to form a network structure composed of the metal fine particles, the dispersant contained in the metal fine particles It is immersed in an organic solvent and an inorganic acid or an organic acid having an action of removing a resin and the like and an action of promoting the sintering of metal fine particles. Thereby, a base material on which a conductive layer having low resistance, high transmittance, and moire resistance is laminated can be obtained.
 有機溶剤としてはメタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などが好ましい。無機酸としては塩酸、硝酸などが好ましく、有機酸としてはギ酸、酢酸などが好ましい。 As the organic solvent, alcohols such as methanol, ethanol and isopropanol, and ketones such as acetone and methyl ethyl ketone are preferable. As the inorganic acid, hydrochloric acid, nitric acid and the like are preferable, and as the organic acid, formic acid, acetic acid and the like are preferable.
 加熱処理および化学処理は、いずれか一方または組み合わせても良い。耐候性又は耐薬品性、酸化還元電位から来る劣化を防ぐために、導電性層の表面をめっきすることも出来る。 Either one or a combination of the heat treatment and the chemical treatment may be used. In order to prevent deterioration due to weather resistance or chemical resistance and redox potential, the surface of the conductive layer can be plated.
 上記方法により作成される金属微粒子で構成される網目状構造物が基材上に積層された導電性層が積層された基材7(図1(A))の電気特性としては、表面抵抗が100Ω/□以下である。光学的透過性としては、透過率60%以上の範囲になることが好ましい。より好ましくは、表面抵抗は30Ω/□以下、透過率70%以上である。表面抵抗が100Ω/□より大きいと電磁波シールド特性として十分とは言えず、透過率が60%未満であると、本発明の課題であった光学的透明性という優位性が小さくなり好ましくない。 As an electrical characteristic of the base material 7 (FIG. 1A) in which a conductive layer in which a network structure composed of metal fine particles formed by the above method is laminated on a base material, the surface resistance is as follows. 100Ω / □ or less. The optical transparency is preferably in the range of 60% or more. More preferably, the surface resistance is 30Ω / □ or less and the transmittance is 70% or more. If the surface resistance is greater than 100 Ω / □, it cannot be said that the electromagnetic wave shielding characteristics are sufficient, and if the transmittance is less than 60%, the advantage of optical transparency, which was the subject of the present invention, is reduced.
 次に、図1(B)に示すように前記導電性層が積層された基材7の導電性層に、導電性層を被覆するように透明樹脂層3を形成する。 Next, as shown in FIG. 1B, a transparent resin layer 3 is formed on the conductive layer of the base material 7 on which the conductive layer is laminated so as to cover the conductive layer.
 透明樹脂層3に使用される樹脂としては、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリビニルブチラール、ポリビニルアセタール、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、ポリビニルピロリドン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、塩素化ポリプロピレン、ウレア、セルロース、酢酸ビニル、ABS樹脂、ポリウレタン、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂およびこれらの共重合体からなる群の少なくとも1つ、及び又はこれらいずれか混合物などが例示される。また、最終的に得られる電磁波シールド材として高い耐性を得ることを目的としてイソシアネート系、メラミン系、エポキシ系等従来公知の硬化剤を添加することも可能である。 The resin used for the transparent resin layer 3 includes polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, and poly (N-vinylcarbazole). , Polyvinylpyrrolidone, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone Examples include at least one of the group consisting of a resin and a copolymer thereof, and / or a mixture of any of these. Moreover, it is also possible to add conventionally well-known hardening | curing agents, such as an isocyanate type, a melamine type, and an epoxy type, in order to acquire high tolerance as an electromagnetic wave shielding material finally obtained.
 また、透明樹脂層3には添加剤として紫外線吸収剤、着色顔料、帯電防止剤、酸化防止剤、シランカップリング剤等も適宜、必要に応じて使用することができる。 In addition, an ultraviolet absorber, a color pigment, an antistatic agent, an antioxidant, a silane coupling agent, and the like can be appropriately used as necessary for the transparent resin layer 3 as additives.
 透明樹脂層3の形成方法としては、上記の透明樹脂材料を有機溶剤又は水に溶解あるいは水に分散し粘度を調整したコーティング剤を作製し、グラビヤコーティング、スピンコーティングなど従来公知のコーティング法により塗布乾燥する方法を用いることができる。透明樹脂層3の厚みは好ましくは5~50μmである。透明樹脂層3の厚みが5μm未満では最終的に得られる電磁波シールド材としての耐久性が劣るため好ましくない。一方、透明樹脂層3の厚みが50μmよりも厚い場合は透明性が劣るため好ましくない。 The transparent resin layer 3 is formed by preparing a coating agent in which the above transparent resin material is dissolved in an organic solvent or water or dispersed in water to adjust the viscosity, and is applied by a conventionally known coating method such as gravure coating or spin coating. A drying method can be used. The thickness of the transparent resin layer 3 is preferably 5 to 50 μm. If the thickness of the transparent resin layer 3 is less than 5 μm, the durability as the finally obtained electromagnetic wave shielding material is inferior. On the other hand, when the thickness of the transparent resin layer 3 is thicker than 50 μm, the transparency is inferior, which is not preferable.
 また、電磁波シールド材として使用した場合の耐久性を確保するため、透明樹脂層3の厚みは金属微粒子で構成される網目状構造物の高さよりも厚いほうが好ましいが、特にこの限りではない。 Moreover, in order to ensure durability when used as an electromagnetic wave shielding material, the thickness of the transparent resin layer 3 is preferably thicker than the height of the network structure composed of metal fine particles, but is not particularly limited thereto.
 次に、金属微粒子で構成される網目状構造物を含む透明樹脂層3を基材2より剥離することで金属微粒子で構成される網目状構造物を内包した透明樹脂箔4を作製することができる(図1の(C))。この透明樹脂箔を種々の被着体に貼着することにより、被着体に電磁波シールド材としての性能が得られる。 Next, the transparent resin layer 4 including a network structure composed of metal fine particles is peeled off from the substrate 2 to produce a transparent resin foil 4 including the network structure composed of metal fine particles. (C in FIG. 1). By sticking this transparent resin foil on various adherends, performance as an electromagnetic wave shielding material can be obtained on the adherends.
 本発明に係る透明樹脂箔の電磁波遮蔽特性は、1MHz~1GHzでの電磁波減衰率は20dB以上である。より好ましくは25dB以上である。さらに好ましくは30dB以上である。20dBより小さい場合は遮蔽特性としては十分に効果があるとは言いがたい。 The electromagnetic wave shielding characteristic of the transparent resin foil according to the present invention is that the electromagnetic wave attenuation rate at 1 MHz to 1 GHz is 20 dB or more. More preferably, it is 25 dB or more. More preferably, it is 30 dB or more. When it is smaller than 20 dB, it is difficult to say that the shielding characteristic is sufficiently effective.
 本発明に係る透明樹脂箔の光学的透過率は60%以上である。光学的透過率が60%未満では、十分な透明性とはいい難く視認性も劣ってしまう。 The optical transmittance of the transparent resin foil according to the present invention is 60% or more. If the optical transmittance is less than 60%, sufficient transparency is difficult and visibility is poor.
 導電性層の耐久性の評価は耐擦過性試験により評価を行った。一般的なテープテストを行っても導電性層の強度評価が可能であるが、電磁波シールド材として実際に用いる場所に適した試験法とは十分とは言いがたい。実際に電磁波シールド材として用いる場合には電磁波シールド材同士の擦れや、ケーブル先端などの引っかきが起きる頻度が高く、擦れや引っ掻きによって導電性層の構造が破壊されると、導電性が悪化し、電磁波遮蔽特性が悪化してしまうためである。 The durability of the conductive layer was evaluated by a scratch resistance test. Although it is possible to evaluate the strength of the conductive layer even if a general tape test is performed, it is difficult to say that the test method is suitable for a place where it is actually used as an electromagnetic shielding material. When actually used as an electromagnetic shielding material, there is a high frequency of abrasion between electromagnetic shielding materials and scratches on the cable tip, etc., and if the structure of the conductive layer is destroyed by rubbing or scratching, the conductivity deteriorates, This is because the electromagnetic wave shielding characteristics are deteriorated.
 前記、耐擦過性試験において、加重19.6Paにて綿布を100往復させた場合でも導電性層に損傷がない程度の耐久性が好ましい。耐擦過性が上記より低い場合は容易に電磁波シールド材同士の擦れやケーブル先端の引っ掻きにより導電性層が破壊されてしまうため好ましくない。 In the above-mentioned scratch resistance test, it is preferable to have such durability that the conductive layer is not damaged even when the cotton cloth is reciprocated 100 times at a load of 19.6 Pa. When the scratch resistance is lower than the above, it is not preferable because the conductive layer is easily destroyed by rubbing between the electromagnetic shielding materials or scratching the cable tip.
 次に、本発明5~8に係わる透明樹脂箔およびその製造方法について説明する。 Next, the transparent resin foil and the manufacturing method thereof according to the present invention 5 to 8 will be described.
 まず図2の(A)に示すとおり、金属微粒子分散溶液を基材上へ塗布した後、乾燥させる。あるいは、金属微粒子分散インキを基材上に印刷した後、乾燥させる。図2の(A)に示す導電性層が積層された基材は、本発明1~4の説明で使用した図1の(A)に示す導電性層と実質的に同じであり、用いる材料、方法、性状などは、全て上記本発明1~4の説明で使用したものが採用できる。 First, as shown in FIG. 2A, a metal fine particle dispersion is applied onto a substrate and then dried. Alternatively, the metal fine particle dispersed ink is printed on the substrate and then dried. The base material on which the conductive layer shown in FIG. 2A is laminated is substantially the same as the conductive layer shown in FIG. 1A used in the description of the present inventions 1 to 4, and the material used As the method, properties, etc., those used in the above description of the present invention 1 to 4 can be adopted.
 次に、図2(B)に示すように前記導電性層が積層された基材7の導電性層に、導電性層を被覆するように透明樹脂層3を形成する。図2(B)の6:金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材は、本発明1~4の説明で使用した図1の(B)に示す導電性層が積層された基材7の導電性層に、導電性層を被覆するように透明樹脂層3を形成されたものと実質的に同じであり、用いる材料、方法、性状などは、全て上記本発明1~4の説明で使用したものが採用できる。 Next, as shown in FIG. 2B, a transparent resin layer 3 is formed on the conductive layer of the base material 7 on which the conductive layer is laminated so as to cover the conductive layer. 6B in FIG. 2B: The base material on which the transparent resin layer including the network structure composed of metal fine particles is formed is the conductive material shown in FIG. 1B used in the description of the present inventions 1 to 4. It is substantially the same as that in which the transparent resin layer 3 is formed so as to cover the conductive layer on the conductive layer of the base material 7 on which the conductive layer is laminated. Those used in the description of the present invention 1 to 4 can be employed.
 次に、前記金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材と、同様の方法により別に用意した金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材とを、該透明樹脂層が塗布された表面同士が対面するように重ね合わせ、該透明樹脂層同士を接着させた後(図2の(C))、2つの基材を金属微粒子で構成される網目状構造物を含む透明樹脂層より剥離させることで、金属微粒子で構成される網目状構造物を2層内包した透明樹脂箔4’を作製することができる(図2の(D))。 Next, a substrate on which a transparent resin layer including a network structure composed of the metal fine particles is formed, and a transparent resin layer including a network structure composed of metal fine particles separately prepared by the same method are provided. After superposing the formed base material so that the surfaces coated with the transparent resin layer face each other and bonding the transparent resin layers to each other ((C) in FIG. 2), the two base materials are By peeling off from the transparent resin layer containing the network structure composed of metal fine particles, a transparent resin foil 4 ′ containing two layers of the network structure composed of metal fine particles can be produced (FIG. 2). (D)).
 透明樹脂層同士の接着方法としては、従来公知の接着剤や粘着剤を塗布して接着する方法が使用可能である。また、透明樹脂として熱接着性を有する熱可塑性樹脂を使用した場合は熱圧接のみで透明樹脂層同士を接着させる事も可能であり、その場合は接着剤や粘着剤は不要である。前記方法により作製された透明樹脂箔は金属微粒子で構成される網目状構造物が2枚積層された構成となるため、特に電磁波シールド性能に優れたものとなる。この透明樹脂箔を種々の被着体に貼着することにより、被着体に電磁波シールド材としての性能を得ることも可能である。 As a method for adhering the transparent resin layers, a method of applying and adhering a conventionally known adhesive or pressure-sensitive adhesive can be used. In addition, when a thermoplastic resin having thermal adhesiveness is used as the transparent resin, the transparent resin layers can be bonded to each other only by hot pressing, and in that case, no adhesive or pressure-sensitive adhesive is required. Since the transparent resin foil produced by the above method has a structure in which two network structures composed of metal fine particles are laminated, it is particularly excellent in electromagnetic wave shielding performance. By sticking this transparent resin foil to various adherends, it is possible to obtain performance as an electromagnetic shielding material on the adherends.
 さらに、金属微粒子で構成される網目状構造物を2層内包した透明樹脂箔4’を、別に用意した金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材の透明樹脂層表面に重ね合わせ、透明樹脂箔4’と透明樹脂層とを接着させた後、基材を剥離させることで、金属微粒子で構成される網目状構造物を3層内包した透明樹脂箔5を作製することができる(図3)。この透明樹脂箔5を電磁波シールド材として使用した場合は極めて優れた電磁波シールド性能を得ることが出来る。 Further, a transparent resin foil 4 ′ containing two layers of a network structure composed of metal fine particles and a transparent substrate layer on which a transparent resin layer containing a network structure composed of metal particles separately prepared is formed. A transparent resin foil 5 in which three layers of a network structure composed of metal fine particles are included by peeling the base material after the transparent resin foil 4 ′ and the transparent resin layer are bonded to each other on the surface of the resin layer. Can be produced (FIG. 3). When this transparent resin foil 5 is used as an electromagnetic shielding material, extremely excellent electromagnetic shielding performance can be obtained.
 本発明の金属微粒子で構成される網目状構造物を2層内包した透明樹脂箔4’や金属微粒子で構成される網目状構造物を3層内包した透明樹脂箔5を各種被着体に積層して使用する場合は、該透明樹脂箔の少なくとも一方の面に接着剤又は粘着剤を塗布して使用することが可能である。 A transparent resin foil 4 ′ containing two layers of a network structure composed of metal fine particles of the present invention and a transparent resin foil 5 containing three layers of a network structure composed of metal fine particles are laminated on various adherends. Can be used by applying an adhesive or a pressure-sensitive adhesive to at least one surface of the transparent resin foil.
 接着剤材料としては、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリビニルブチラール、ポリビニルアセタール、ポリフェニレンオキシド、ポリブタジエン、ポリ(N-ビニルカルバゾール)、ポリビニルピロリドン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、塩素化ポリプロピレン、ウレア、セルロース、酢酸ビニル、ABS樹脂、ポリウレタン、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂及びこれらの共重合体からなる群の少なくとも1つ、及び又はこれらいずれか混合物などが例示される。 Adhesive materials include polyvinyl chloride, polycarbonate, polystyrene, polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyvinyl butyral, polyvinyl acetal, polyphenylene oxide, polybutadiene, poly (N-vinylcarbazole), polyvinyl pyrrolidone, hydrocarbon Resin, ketone resin, phenoxy resin, polyamide, chlorinated polypropylene, urea, cellulose, vinyl acetate, ABS resin, polyurethane, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin and their co-polymers Examples include at least one of the group consisting of a combination and / or a mixture thereof.
 粘着剤としてはアクリル系粘着剤をはじめ種々の粘着剤が使用可能であり、アクリル酸ブチル、アクリル酸エチル、2-エチルヘキシルアクリレート等の低Tgモノマーを主モノマーとし、アクリル酸、メタクリル酸、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、アクリルアミド、アクリロニトリル等の官能基モノマーと共重合することで得られたアクリル共重合体をイソシアネート系、メラミン系、エポキシ系等公知の架橋剤にて、架橋することにより得ることができる。 Various pressure-sensitive adhesives such as acrylic pressure-sensitive adhesives can be used as the pressure-sensitive adhesive. The main monomer is a low Tg monomer such as butyl acrylate, ethyl acrylate, or 2-ethylhexyl acrylate, and acrylic acid, methacrylic acid, or hydroxyethyl. Obtained by crosslinking an acrylic copolymer obtained by copolymerization with a functional group monomer such as methacrylate, hydroxyethyl acrylate, acrylamide, acrylonitrile, etc. with a known crosslinking agent such as isocyanate, melamine, or epoxy. Can do.
 以下に実施例を用いて本発明を更に詳しく説明するが、以下の実施例は単なる例示であって、本発明は以下の実施例に限定されない。以下の実施例1-1~1-3及び比較例1-1~1-2は本発明1~4の透明樹脂箔およびその製造方法に関する実施例であり、実施例2-1~2-4及び比較例2-1~2-2は本発明5~8の透明樹脂箔およびその製造方法に関する実施例である。以下の実施例および比較例で使用した評価方法について説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are merely illustrative, and the present invention is not limited to the following examples. The following Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-2 are examples relating to the transparent resin foils of the present invention 1 to 4 and methods for producing the same, and Examples 2-1 to 2-4 Comparative Examples 2-1 and 2-2 are examples relating to the transparent resin foils of the present invention 5 to 8 and methods for producing the same. The evaluation methods used in the following examples and comparative examples will be described.
 基材上に作成した導電性層および金属微粒子で構成される網目状構造物を内包した透明樹脂箔の電気抵抗の測定は、JIS-K-7194に準拠した形で、ロレスタ-GP(株式会社ダイアインスツルメンツ製、型番:MCP-T610)において直列4探針プローブ(ASP)を用いて4端子4探針法で実施した。 The electrical resistance of a transparent resin foil containing a network structure composed of a conductive layer and metal fine particles prepared on a base material was measured in accordance with JIS-K-7194 in the form of Loresta GP (Inc. This was performed by a four-terminal four-probe method using a serial four-probe probe (ASP) manufactured by Dia Instruments, model number: MCP-T610).
 光学的透過率は全光線透過率として評価した。前記導電性層および金属微粒子で構成される網目状構造物を内包した透明樹脂箔をヘイズメーター(型番:NDH-2000、日本電飾工業株式会社製)を用いてJIS K-7105に準拠して測定した。 The optical transmittance was evaluated as the total light transmittance. Using a haze meter (model number: NDH-2000, manufactured by Nippon Denka Kogyo Co., Ltd.), a transparent resin foil containing a network structure composed of the conductive layer and metal fine particles is used in accordance with JIS K-7105. It was measured.
 基材の厚み、金属微粒子で構成される網目状構造物を内包した透明樹脂箔の厚みはマイクロメーターで測定した。 The thickness of the base material and the thickness of the transparent resin foil including the network structure composed of metal fine particles were measured with a micrometer.
 電磁波シールド特性の測定法としてはKEC法により、1MH~1GHzの周波数における電界成分の減衰率を測定した。 As a method for measuring the electromagnetic shielding characteristics, the attenuation rate of the electric field component at a frequency of 1 MHz to 1 GHz was measured by the KEC method.
 耐久性試験としては、加重19.6Paにて綿布を100往復させる耐擦過性試験(試験機:A.A.T.C.C.クロックメータモデルCM-1、アトラス エレクトリック デバイス社製)を行い、導電性層の損傷度合いを評価した。 As the durability test, a rub resistance test (tester: AATC CC Clock Meter Model CM-1, manufactured by Atlas Electric Devices Co., Ltd.) is performed by reciprocating cotton cloth 100 times at a load of 19.6 Pa. The degree of damage to the conductive layer was evaluated.
<銀微粒子1の調製法>
 金属微粒子の例として銀微粒子の液相還元調製法を説明するが、金属微粒子の種類や製造法を限定するものではない。
<Preparation Method of Silver Fine Particle 1>
The liquid phase reduction preparation method of silver fine particles will be described as an example of the metal fine particles, but the type and production method of the metal fine particles are not limited.
 硝酸銀40g、ブチルアミン37.9g、メタノール200mLを加え、1時間攪拌しA液を調製した。別にイソアスコルビン酸62.2gを取り、水400mLを加え攪拌して溶解し、続いてメタノール200mLを加えB液を調製した。B液をよく攪拌しA液をB液に1時間20分かけて滴下した。滴下終了後、3時間30分攪拌を継続した。攪拌終了後、30分間静置し固形物を沈降させた。上澄みをデカンテーションにより取り除いた後、新たに水500mLを加え、攪拌、静置、デカンテーションにより上澄み液を取り除いた。この精製操作を3回繰り返した。沈降した固形物を40℃の乾燥機中で乾燥し、水分を除去した。さらに、得られた銀微粒子20gとDISPERBYK-106(ビックケミージャパン社製)0.2gをメタノール100mLと純水5mLとの混合溶液中に混合し、1時間混合した後に、純水100mLを加えて、スラリーをろ過した後、40℃の乾燥機中で乾燥させて、銀微粒子1を得た。銀微粒子は電子顕微鏡による観察から一次粒子の平均粒子径が60nmであった。 Silver nitrate 40g, butylamine 37.9g, and methanol 200mL were added and stirred for 1 hour to prepare solution A. Separately, 62.2 g of isoascorbic acid was taken, 400 mL of water was added and dissolved by stirring, and then 200 mL of methanol was added to prepare solution B. B liquid was stirred well and A liquid was dripped at B liquid over 1 hour and 20 minutes. After completion of the dropwise addition, stirring was continued for 3 hours and 30 minutes. After completion of stirring, the mixture was allowed to stand for 30 minutes to precipitate the solid. After removing the supernatant by decantation, 500 mL of water was newly added, and the supernatant was removed by stirring, standing, and decantation. This purification operation was repeated three times. The settled solid was dried in a dryer at 40 ° C. to remove moisture. Further, 20 g of the obtained silver fine particles and 0.2 g of DISPERBYK-106 (manufactured by Big Chemie Japan) were mixed in a mixed solution of 100 mL of methanol and 5 mL of pure water, mixed for 1 hour, and then 100 mL of pure water was added. After filtering the slurry, the slurry was dried in a dryer at 40 ° C. to obtain silver fine particles 1. Silver fine particles had an average primary particle diameter of 60 nm as observed with an electron microscope.
<銀微粒子分散溶液2の調製>
 銀微粒子の分散溶液の調製は、特許文献1を参考に行った(特表2005-530005号公報を参考に調製)。
<Preparation of silver fine particle dispersion 2>
The dispersion of silver fine particles was prepared with reference to Patent Document 1 (prepared with reference to JP-T-2005-530005).
 すなわち、前記銀微粒子1を4g、トルエン30g、BYK-410(ビックケミージャパン社製)0.2gを混合し、出力180Wの超音波分散機で1.5分間分散化処理を行い、純水15gを添加し、得られた乳濁液を出力180Wの超音波分散機で30秒間分散処理を行い、銀微粒子分散溶液2を調製した。 That is, 4 g of the silver fine particles 1, 30 g of toluene and 0.2 g of BYK-410 (manufactured by Big Chemie Japan) were mixed and subjected to a dispersion treatment for 1.5 minutes with an ultrasonic disperser with an output of 180 W. Was added, and the obtained emulsion was subjected to a dispersion treatment for 30 seconds with an ultrasonic disperser with an output of 180 W to prepare a silver fine particle dispersion solution 2.
<導電性層の形成法>
 厚み100μmのポリエチレンテレフタレート基材上に前記銀微粒子分散溶液2を、バーコーターを用いてコーティングした。続いて、大気中で自然乾燥させることで、銀微粒子が自己組織化現象により網目状構造を形成した。次に、150℃で2分間加熱した後、アセトン及び1N塩酸にそれぞれ浸漬した後、150℃で5分間加熱乾燥させ、銀微粒子を含む網目状構造物を形成した。銀微粒子を含む網目状構造物からなる導電性層を基材上に形成した後の全光線透過率は85%、表面抵抗値は4.5Ω/□であった。
<Method for forming conductive layer>
The silver fine particle dispersion 2 was coated on a polyethylene terephthalate substrate having a thickness of 100 μm using a bar coater. Subsequently, by spontaneous drying in the air, the silver fine particles formed a network structure by the self-organization phenomenon. Next, after heating at 150 ° C. for 2 minutes, each was immersed in acetone and 1N hydrochloric acid, and then heated and dried at 150 ° C. for 5 minutes to form a network structure containing silver fine particles. The total light transmittance was 85% and the surface resistance value was 4.5Ω / □ after the conductive layer comprising a network structure containing silver fine particles was formed on the substrate.
 実施例1-1:
 上述した方法により作製した銀微粒子を含む網目状構造物が積層されたポリエチレンテレフタレート基材上に、下記の透明樹脂層コーティング液1-1を乾燥後の厚みが15μmとなるよう塗布し、100℃の温度で5分乾燥させて透明樹脂層を形成させた。次いで、銀微粒子を含む網目状構造を内包した透明樹脂層をポリエチレンテレフタレート基材2より剥離して、銀微粒子を含む網目状構造物を内包した透明樹脂箔を作製した。
Example 1-1
The following transparent resin layer coating solution 1-1 was applied to a polyethylene terephthalate base material on which a network structure containing silver fine particles produced by the above-described method was laminated so that the thickness after drying was 15 μm, and 100 ° C. A transparent resin layer was formed by drying at a temperature of 5 minutes. Next, the transparent resin layer enclosing the network structure containing silver fine particles was peeled off from the polyethylene terephthalate substrate 2 to prepare a transparent resin foil containing the network structure containing silver fine particles.
<透明樹脂層コーティング液1-1>
 ポリビニルブチラール樹脂(積水化学製、エスレックBX-1)15gをノルマルブタノール85gに溶解させ透明樹脂層コーティング液1-1を作製した。
<Transparent resin layer coating solution 1-1>
A transparent resin layer coating solution 1-1 was prepared by dissolving 15 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BX-1) in 85 g of normal butanol.
 実施例1-2:
 透明樹脂層コーティング液として透明樹脂層コーティング液1-2を使用し、乾燥後の透明樹脂層厚みが20μmとなるよう塗布した以外は実施例1-1と同様に銀微粒子を含む網目状構造物を内包した透明樹脂箔を作製した。
Example 1-2:
A network-like structure containing silver fine particles as in Example 1-1, except that the transparent resin layer coating liquid 1-2 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to 20 μm. A transparent resin foil encapsulating was prepared.
<透明樹脂層コーティング液1-2>
 セルロースアセテートブチレート樹脂(イーストマン・コダック社製、CAB381-1)15gをメチルエチルケトン85gに溶解させ透明樹脂層コーティング液1-2を作製した。
<Transparent resin layer coating solution 1-2>
A transparent resin layer coating solution 1-2 was prepared by dissolving 15 g of cellulose acetate butyrate resin (manufactured by Eastman Kodak Company, CAB381-1) in 85 g of methyl ethyl ketone.
 実施例1-3:
 透明樹脂層コーティング液として透明樹脂層コーティング液1-3を使用し、乾燥後の透明樹脂層厚みが20μmとなるよう塗布した以外は実施例1-1と同様に銀微粒子を含む網目状構造物を内包した透明樹脂箔を作製した。
Example 1-3:
A network structure containing silver fine particles as in Example 1-1, except that the transparent resin layer coating liquid 1-3 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to be 20 μm. A transparent resin foil encapsulating was prepared.
<透明樹脂層コーティング液1-3>
 塩化ビニル-酢酸ビニル共重合樹脂(日信化学製、ソルバインCN)20gをメチルエチルケトン80gに溶解させ透明樹脂層コーティング液1-3を作製した。
<Transparent resin layer coating solution 1-3>
20 g of vinyl chloride-vinyl acetate copolymer resin (manufactured by Nissin Chemical Co., Solvain CN) was dissolved in 80 g of methyl ethyl ketone to prepare a transparent resin layer coating solution 1-3.
 比較例1-1:
 電磁波シールド材としてアルミ箔を用いて、電磁波シールド特性の測定を行なった。
Comparative Example 1-1
Using aluminum foil as the electromagnetic shielding material, the electromagnetic shielding characteristics were measured.
 シールド特性としては1MHz~1GHzでの減衰率は40dB以上で十分であったが、全光線透過率は0%であり視認性はまったくなかった。 As the shielding characteristics, the attenuation rate at 1 MHz to 1 GHz was sufficient at 40 dB or more, but the total light transmittance was 0% and there was no visibility.
 比較例1-2:
 電磁波シールド材として実施例1-1に従ってPETフィルム(厚み100μm)上に銀微粒子を含む網目状構造物を形成し、電磁波シールド特性の測定を行なったところ、シールド特性1MHz~1GHzでの減衰率は30dB以上で十分であった。全光線透過率は85%であり、視認性にも優れていた。
耐擦過性試験を行ったところ導電性層の破壊が見られ、耐久性の低いものであった。
Comparative Example 1-2:
When a network structure containing silver fine particles was formed on a PET film (thickness: 100 μm) as an electromagnetic wave shielding material according to Example 1-1 and the electromagnetic wave shielding characteristics were measured, the attenuation rate at a shielding characteristic of 1 MHz to 1 GHz was 30 dB or more was sufficient. The total light transmittance was 85%, and the visibility was excellent.
When the abrasion resistance test was performed, the conductive layer was broken, and the durability was low.
 実施例1-1~1-3および比較例1-1~1-2で作製したサンプルの評価結果を表1に示した。 Table 1 shows the evaluation results of the samples produced in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例2-1:
 上述した方法により作製した銀微粒子を含む網目状構造物が積層されたポリエチレンテレフタレート基材上に、下記の透明樹脂層コーティング液2-1を乾燥後の厚みが15μmとなるよう塗布し、100℃の温度で5分乾燥させて、銀微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材Aを作製した。次いで、上記と同様の方法により別に用意した銀微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材Bを作製した。前記基材Aおよび基材Bの該透明樹脂層が形成された表面同士が対面するように重ね合わせ、ホットラミネーター(大成ラミネーター製、大成ファーストラミネーターVAII-700)を用いて170℃で圧接した後、2つのポリエチレンテレフタレート基材を剥離して、銀微粒子で構成される網目状構造物を2層内包した透明樹脂箔を作製した。得られた透明樹脂箔の全光線透過率は71%であり、表面抵抗値は4.5Ω/□であった。
Example 2-1
The following transparent resin layer coating solution 2-1 was applied to a polyethylene terephthalate base material on which a network structure containing silver fine particles prepared by the above-described method was laminated so that the thickness after drying was 15 μm, and 100 ° C. The substrate A was dried at a temperature of 5 minutes to prepare a substrate A on which a transparent resin layer containing a network structure composed of silver fine particles was formed. Subsequently, the base material B with which the transparent resin layer containing the network-like structure comprised with the silver fine particle separately prepared by the method similar to the above was produced was produced. After superimposing the surfaces of the base material A and base material B on which the transparent resin layer is formed facing each other and pressing them at 170 ° C. using a hot laminator (manufactured by Taisei Laminator, Taisei First Laminator VAII-700) The two polyethylene terephthalate base materials were peeled off to produce a transparent resin foil containing two layers of a network structure composed of silver fine particles. The obtained transparent resin foil had a total light transmittance of 71% and a surface resistance value of 4.5Ω / □.
<透明樹脂層コーティング液2-1>
 ポリビニルブチラール樹脂(積水化学製、エスレックBX-1)15gをノルマルブタノール85gに溶解させ透明樹脂層コーティング液2-1を作製した。
<Transparent resin layer coating solution 2-1>
A transparent resin layer coating solution 2-1 was prepared by dissolving 15 g of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., ESREC BX-1) in 85 g of normal butanol.
 実施例2-2:
 透明樹脂層コーティング液として透明樹脂層コーティング液2-2を使用し、乾燥後の透明樹脂層厚みが20μmとなるよう塗布した以外は実施例2-1と同様に銀微粒子を含む網目状構造物を2層内包した透明樹脂箔を作製した。
Example 2-2:
A network structure containing silver fine particles in the same manner as in Example 2-1, except that the transparent resin layer coating liquid 2-2 was used as the transparent resin layer coating liquid and the transparent resin layer thickness after drying was applied to 20 μm. A transparent resin foil containing 2 layers was prepared.
<透明樹脂層コーティング液2-2>
 塩化ビニル-酢酸ビニル共重合樹脂(日信化学製、ソルバインCN)20gをメチルエチルケトン80gに溶解させ透明樹脂層コーティング液2-2を作製した。
<Transparent resin layer coating solution 2-2>
A transparent resin layer coating solution 2-2 was prepared by dissolving 20 g of vinyl chloride-vinyl acetate copolymer resin (manufactured by Nisshin Chemical Co., Ltd., sorbine CN) in 80 g of methyl ethyl ketone.
 実施例2-3:
 実施例2-1と同様に銀微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材Aおよび同様の方法により別に用意した銀微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材Bを作製した。次いで、下記の粘着層コーティング液1を基材Aの透明樹脂層表面に乾燥膜厚が15μmとなるよう塗布し、100℃の温度で5分間乾燥させて、基材Aの透明樹脂層表面に粘着層を積層した後、該粘着層面に基材Bの透明樹脂層面が対面するように重ね合わせて、ラミネーター(大成ラミネーター製、大成ファーストラミネーターVAII-700)を用いて常温で圧接し、2つのポリエチレンテレフタレート基材を剥離して、銀微粒子で構成される網目状構造物を2層内包した透明樹脂箔を作製した。
Example 2-3:
As in Example 2-1, the base material A on which the transparent resin layer containing the network structure composed of silver fine particles was formed and the network structure composed of silver fine particles separately prepared by the same method were included. A base material B on which a transparent resin layer was formed was produced. Next, the following adhesive layer coating solution 1 was applied to the surface of the transparent resin layer of the substrate A so that the dry film thickness was 15 μm, and dried at a temperature of 100 ° C. for 5 minutes. After laminating the pressure-sensitive adhesive layer, it was superposed on the surface of the pressure-sensitive adhesive layer so that the transparent resin layer surface of the base material B faced, and was pressed with a laminator (manufactured by Taisei Laminator, Taisei First Laminator VAII-700) at room temperature. The polyethylene terephthalate substrate was peeled off to produce a transparent resin foil containing two layers of a network structure composed of silver fine particles.
<粘着層コーティング液1>
 ブチルアクリレートとヒドロキシブチルアクリレートの共重合体30gとトリレンジイソシアネートのイソシアヌレート体の1gと酢酸エチル69gに溶解させて、粘着層コーティング液1を作製した。
<Adhesive layer coating solution 1>
An adhesive layer coating solution 1 was prepared by dissolving in 30 g of a copolymer of butyl acrylate and hydroxybutyl acrylate, 1 g of an isocyanurate of tolylene diisocyanate and 69 g of ethyl acetate.
 実施例2-4:
 実施例2-1と同様の方法により銀微粒子を含む網目状構造物を2層内包した透明樹脂箔を作製した。次いで、実施例2-1と同様の方法により別に用意した銀微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材Cを作製した。前記銀微粒子を含む網目状構造物を2層内包した透明樹脂箔と基材Cの該透明樹脂層が形成された表面とを重ね合わせ、ホットラミネーター(大成ラミネーター製、大成ファーストラミネーターVAII-700)を用いて170℃で圧接した後、基材Cのポリエチレンテレフタレート基材を剥離して、銀微粒子で構成される網目状構造物を3層内包した透明樹脂箔を作製した。
Example 2-4:
A transparent resin foil enclosing two layers of a network structure containing silver fine particles was produced by the same method as in Example 2-1. Next, a substrate C on which a transparent resin layer containing a network structure composed of silver fine particles separately prepared was prepared in the same manner as in Example 2-1. A transparent resin foil containing two layers of a network structure containing silver fine particles and a surface of the base material C on which the transparent resin layer is formed are superposed to form a hot laminator (manufactured by Taisei Laminator, Taisei First Laminator VAII-700). Then, the polyethylene terephthalate base material of the base material C was peeled off to prepare a transparent resin foil containing three layers of network structures composed of silver fine particles.
 比較例2-1:
 電磁波シールド材として厚み0.15μmの銅を蒸着したPETフィルム(厚み12μm)を用いて、電磁波シールド特性の測定を行なった。
Comparative Example 2-1
Electromagnetic wave shielding characteristics were measured using a PET film (thickness 12 μm) on which copper having a thickness of 0.15 μm was deposited as an electromagnetic wave shielding material.
 シールド特性としては1MHz~1GHzでの減衰率は50dB以上で十分であったが、全光線透過率は0%であり視認性はまったくなかった。 As the shielding characteristics, the attenuation rate from 1 MHz to 1 GHz was sufficient to be 50 dB or more, but the total light transmittance was 0% and there was no visibility.
 比較例2-2:
 電磁波シールド材として実施例2-1に従ってPETフィルム(厚み100μm)上に銀微粒子を含む網目状構造物を形成し、電磁波シールド特性の測定を行なったところ、シールド特性1MHz~1GHzでの減衰率は30dB以上で十分であった。全光線透過率は85%であり、視認性にも優れていた。
耐擦過性試験を行ったところ導電性層の破壊が見られ、耐久性の低いものであった。
Comparative Example 2-2:
When a network structure containing silver fine particles was formed on a PET film (thickness: 100 μm) as an electromagnetic wave shielding material according to Example 2-1, and the electromagnetic wave shielding characteristics were measured, the attenuation rate at a shielding characteristic of 1 MHz to 1 GHz was 30 dB or more was sufficient. The total light transmittance was 85%, and the visibility was excellent.
When the abrasion resistance test was performed, the conductive layer was broken, and the durability was low.
 実施例2-1~2-4および比較例2-1~2-2で作製したサンプルの評価結果を表1に示した。 Table 1 shows the evaluation results of the samples produced in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る透明樹脂箔は、電磁波遮蔽性及び光学的透過性に優れており、且つ従来の構造の基材を必要としないことから装置の小型化・軽量化において使用される電磁波シールド材用透明樹脂箔として好適である。 The transparent resin foil according to the present invention is excellent in electromagnetic wave shielding and optical transparency, and does not require a base material having a conventional structure. It is suitable as a transparent resin foil.

Claims (9)

  1.  金属微粒子で構成される網目状構造物からなる導電性層を透明樹脂層に内包したことを特徴とする透明樹脂箔。 A transparent resin foil characterized by encapsulating a conductive layer made of a network structure composed of metal fine particles in a transparent resin layer.
  2.  金属微粒子が、Au、Ag、Cu、Ni、Co、Fe、Cr、Zn、Al、Sn、Pd、Ti、Ta、W、Mo、In、Pt、Ruから選ばれた金属微粒子又は前記金属の二種類以上を含む合金微粒子である請求項1記載の透明樹脂箔。 Metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, Ru, or two of the above metals. The transparent resin foil according to claim 1, wherein the transparent resin foil is an alloy fine particle containing at least one kind.
  3.  透明樹脂箔の膜厚が5~50μmである請求項1又は2記載の透明樹脂箔。 The transparent resin foil according to claim 1 or 2, wherein the thickness of the transparent resin foil is 5 to 50 µm.
  4.  請求項1~3の何れかに記載の透明樹脂箔の製造方法において、下記の1~3の工程にて製造する製造方法。
     1.金属微粒子分散溶液を基材上に塗布し乾燥させ、網目状構造の導電性層を基材上に形成させる導電性層形成工程、
     2.前記導電性層表面に透明性の樹脂からなる塗液を塗布し乾燥させ、透明樹脂層を積層する透明樹脂層積層工程、および、
     3.前記、金属微粒子で構成される網目状構造物を含む透明樹脂層を基材より剥離する工程。
    The method for producing a transparent resin foil according to any one of claims 1 to 3, wherein the transparent resin foil is produced by the following steps 1 to 3.
    1. A conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
    2. A transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and
    3. The process of peeling the transparent resin layer containing the network-like structure comprised with the said metal fine particle from a base material.
  5.  金属微粒子で構成される網目状構造物からなる導電性層を内包した透明樹脂層を積層したことを特徴とする透明樹脂箔。 A transparent resin foil in which a transparent resin layer including a conductive layer made of a network structure composed of metal fine particles is laminated.
  6.  金属微粒子が、Au、Ag、Cu、Ni、Co、Fe、Cr、Zn、Al、Sn、Pd、Ti、Ta、W、Mo、In、Pt、Ruから選ばれた金属微粒子又は前記金属の二種類以上を含む合金微粒子である請求項5記載の透明樹脂箔。 Metal fine particles are selected from Au, Ag, Cu, Ni, Co, Fe, Cr, Zn, Al, Sn, Pd, Ti, Ta, W, Mo, In, Pt, Ru, or two of the above metals. 6. The transparent resin foil according to claim 5, wherein the transparent resin foil is an alloy fine particle containing at least one kind.
  7.  透明樹脂箔の膜厚が5~50μmである請求項5又は6記載の透明樹脂箔。 The transparent resin foil according to claim 5 or 6, wherein the film thickness of the transparent resin foil is 5 to 50 µm.
  8.  請求項5~7の何れかに記載の透明樹脂箔の製造方法において、下記の1~3の工程にて製造する製造方法。
     1.金属微粒子分散溶液を基材上に塗布し乾燥させ、網目状構造の導電性層を基材上に形成させる導電性層形成工程、
     2.前記導電性層表面に透明性の樹脂からなる塗液を塗布し乾燥させ、透明樹脂層を積層する透明樹脂層積層工程、および、
     3.前記、金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材と、1から2の方法により別に用意した金属微粒子で構成される網目状構造物を含む透明樹脂層が形成された基材とを、該透明樹脂層が塗布された表面同士が対面するように重ね合わせ、該透明樹脂層同士を接着させた後、2つの基材を金属微粒子で構成される網目状構造物を含む透明樹脂層より剥離させる工程。
    The method for producing a transparent resin foil according to any one of claims 5 to 7, wherein the transparent resin foil is produced by the following steps 1 to 3.
    1. A conductive layer forming step in which a metal fine particle dispersion solution is applied on a substrate and dried to form a network-like conductive layer on the substrate;
    2. A transparent resin layer laminating step of applying a coating liquid made of a transparent resin on the surface of the conductive layer and drying, and laminating the transparent resin layer; and
    3. A base material on which a transparent resin layer including a network structure composed of metal fine particles is formed, and a transparent resin layer including a network structure composed of metal fine particles separately prepared by the method 1 or 2 are provided. The formed base material is overlapped so that the surfaces coated with the transparent resin layer face each other, and the transparent resin layers are adhered to each other, and then the two base materials are formed of metal fine particles. The process of making it peel from the transparent resin layer containing a structure.
  9.  請求項1~3及び5~7の何れかに記載の透明樹脂箔を用いて形成することを特徴とする電磁波シールド材。 An electromagnetic wave shielding material formed by using the transparent resin foil according to any one of claims 1 to 3 and 5 to 7.
PCT/JP2010/056524 2009-04-14 2010-04-12 Transparent resin foil, method for producing same, and electromagnetic shielding material using the transparent resin foil WO2010119838A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-098297 2009-04-14
JP2009098297A JP5606687B2 (en) 2009-04-14 2009-04-14 Method for producing transparent resin foil, and method for producing electromagnetic wave shielding material using the transparent resin foil
JP2009098296A JP2010251475A (en) 2009-04-14 2009-04-14 Transparent resin foil and method of manufacturing same, and electromagnetic shielding material using the transparent resin foil
JP2009-098296 2009-04-14

Publications (1)

Publication Number Publication Date
WO2010119838A1 true WO2010119838A1 (en) 2010-10-21

Family

ID=42982500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056524 WO2010119838A1 (en) 2009-04-14 2010-04-12 Transparent resin foil, method for producing same, and electromagnetic shielding material using the transparent resin foil

Country Status (2)

Country Link
TW (1) TW201108254A (en)
WO (1) WO2010119838A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903423B (en) * 2012-10-25 2015-05-13 南昌欧菲光科技有限公司 Conduction structure in transparent conduction film, transparent conduction film and manufacture method thereof
CN103336632B (en) * 2013-07-05 2016-07-06 南昌欧菲光显示技术有限公司 Optical filter box and use the touch display screen of this optical filter box
CN103365475B (en) * 2013-07-05 2016-07-13 南昌欧菲光显示技术有限公司 Optical filter box and use the touch display screen of this optical filter box
CN103345325B (en) * 2013-07-05 2016-05-25 南昌欧菲光显示技术有限公司 Optical filter box and use the touch display screen of this optical filter box
CN103336625B (en) * 2013-07-05 2016-11-16 南昌欧菲光显示技术有限公司 Optical filter box and touch display screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103696A (en) * 2001-09-27 2003-04-09 Hitachi Chem Co Ltd Plate for forming irregularity, its manufacturing method, electromagnetic wave shielding material using the same, its manufacturing method, and electromagnetic wave shielding component and electromagnetic wave shield display which use the electromagnetic wave shielding component
JP2005530005A (en) * 2002-06-13 2005-10-06 ナノパウダーズ インダストリーズ リミテッド Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
JP2008010714A (en) * 2006-06-30 2008-01-17 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding material manufacturing method
JP2008078441A (en) * 2006-09-22 2008-04-03 Toray Ind Inc Method for manufacturing mesh metal particulate laminating substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103696A (en) * 2001-09-27 2003-04-09 Hitachi Chem Co Ltd Plate for forming irregularity, its manufacturing method, electromagnetic wave shielding material using the same, its manufacturing method, and electromagnetic wave shielding component and electromagnetic wave shield display which use the electromagnetic wave shielding component
JP2005530005A (en) * 2002-06-13 2005-10-06 ナノパウダーズ インダストリーズ リミテッド Method for producing nano-coating and nano-ink having conductivity and transparency, and nano-powder coating and ink produced by this production method
JP2008010714A (en) * 2006-06-30 2008-01-17 Toyo Ink Mfg Co Ltd Electromagnetic wave shielding material manufacturing method
JP2008078441A (en) * 2006-09-22 2008-04-03 Toray Ind Inc Method for manufacturing mesh metal particulate laminating substrate

Also Published As

Publication number Publication date
TW201108254A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
JP5510320B2 (en) Transparent conductive substrate for molding, method for producing the same, and molded body using the same
JP5712095B2 (en) Electromagnetic wave shielding material for FPC
WO2010119838A1 (en) Transparent resin foil, method for producing same, and electromagnetic shielding material using the transparent resin foil
KR20140064842A (en) Optically clear conductive adhesive and articles therefrom
TW200534198A (en) Transparent laminate
US20210212243A1 (en) Electromagnetic shielding film and method for making same
TWI699279B (en) Electromagnetic-wave shielding film, preparation method, and use thereof
JP2007096111A (en) Composite filter for display and its manufacturing method
JP2010182648A (en) Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP5606687B2 (en) Method for producing transparent resin foil, and method for producing electromagnetic wave shielding material using the transparent resin foil
JPH11233992A (en) Electromagnetic shielding adhesive film and electromagnetic shielding structural body using the same, and display
JP2001053488A (en) Electromagnetic wave shielding material and electromagnetic wave shielding structure and display using it
JP2002246788A (en) Transparent electromagnetic radiation shielding material
JP2010182640A (en) Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
KR101411978B1 (en) The fabrication method of adhesive tape for thin electromagnetic shield with color layer in polymer film and adhesive tape thereby
JP2000059083A (en) Electromagnetic wave shielding transparent substance
JP4459016B2 (en) Electromagnetic wave shielding material and manufacturing method thereof
JP2010239259A (en) Transparent panel antenna and transparent planar antenna with adhesive layer
JP2000059074A (en) Electromagnetic shielding transparent body
JP5565764B2 (en) Electromagnetic wave interference prevention transfer film
JP2008042021A (en) Light-transmitting electromagnetic wave shielding window material, and method and apparatus for producing the same
JP2010251475A (en) Transparent resin foil and method of manufacturing same, and electromagnetic shielding material using the transparent resin foil
KR20070017132A (en) Transparent laminate
CN113412041B (en) Radiation-proof side transparent plate and manufacturing method thereof
KR102400027B1 (en) Electromagnetic wave shielding material comprising metal ferrite and method for preparing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764422

Country of ref document: EP

Kind code of ref document: A1