WO2010118999A1 - Gebläsemodul - Google Patents

Gebläsemodul Download PDF

Info

Publication number
WO2010118999A1
WO2010118999A1 PCT/EP2010/054737 EP2010054737W WO2010118999A1 WO 2010118999 A1 WO2010118999 A1 WO 2010118999A1 EP 2010054737 W EP2010054737 W EP 2010054737W WO 2010118999 A1 WO2010118999 A1 WO 2010118999A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
module
electric motor
motor
cooling air
Prior art date
Application number
PCT/EP2010/054737
Other languages
English (en)
French (fr)
Inventor
Andreas Schiel
Matthias Ludwig
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2012505136A priority Critical patent/JP2012524200A/ja
Priority to CN2010800167298A priority patent/CN102395795A/zh
Priority to EP10714615A priority patent/EP2419643A1/de
Publication of WO2010118999A1 publication Critical patent/WO2010118999A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the invention relates to a fan module, in particular for air conditioning units in vehicles, comprising a pressure-increasing spiral, which comprises a first fan on a fan rotor at least partially radially, and an electric motor which drives the fan rotor.
  • the passenger compartment in vehicles is ventilated for air conditioning, to increase comfort and driving safety through a ventilation system to which a heating and / or air conditioning unit is connected.
  • the ventilation system is connected to a fan module, which sucks fresh air from the environment of the vehicle and passes through the heating or air conditioning unit, so as to bring the intake air to the desired temperature.
  • the air flowing through the vehicle interior is usually through ventilation slots, z. B. on the parcel shelf on the wheel arches, out of the vehicle interior.
  • the fan module connected to the ventilation system is usually constructed as a radial compressor, which is driven by an electric motor.
  • the electric motor is integrated in its design in the fan module.
  • air is diverted from the already compressed air flow for the vehicle interior for cooling purposes.
  • This has the disadvantage that the operating point but also the efficiency of the fan module is adversely affected.
  • the electric motor and its temperature-critical components does not receive sufficient cooling air. Under the overblowing of the Bläsemoduls is understood when the producible by the fan module pressure is less than the pressure difference between the inlet and outlet of the fan module.
  • This operating state occurs when the vehicle is being moved at high speed and / or the vehicle windows are widely opened. If the vehicle is moved at a high speed, the pressure at the inlet of the fan module is increased by the high driving speed. Opening the vehicle windows results in a reduction in pressure in the vehicle interior. This has the consequence that the pressure difference applied to the inlet and outlet of the fan module is increased and the fan module is in an overblown state, provided that the pressure difference is greater than the pressure generated by the fan module.
  • the overblown state has the consequence for the fan module that the electric motor contains only a reduced proportion of cooling air flow despite increased stress. This leads to overheating of the temperature-critical components of the electric motor.
  • Components of the electric motor of a fan module can be avoided by the fan module has a suction unit, which is designed to promote cooling air into the electric motor.
  • the suction unit of the fan motor has a second fan wheel, which is designed to form a cooling circuit, which conveys cooling air from the pressure-increasing coil through the electric motor through the pressure-increasing spiral.
  • the suction unit is designed by means of the second fan to suck the cooling air through a gap between the fan motor and the pressure-increasing spiral via the fan interior located below the fan motor on the coils and the magnets of the electric motor to the second fan wheel.
  • a guide geometry above the second fan wheel is arranged to redirect the flow of cooling air above the second ventilation wheel in such a way that the flow of cooling air through the first fan wheel is guided radially outward back into the pressure increase spiral. In this way, no compressed air is discharged from the pressure-increasing spiral, so that the fan module can be interpreted at its maximum capacity and therefore requires less space than a fan module, in which the cooling air is diverted from the conveyed air.
  • the first fan, the second fan and the fan rotor is made in one piece. This has the advantage that the first fan, the second fan and the fan rotor in a manufacturing step z. B. can be produced by injection molding.
  • FIG. 1 is a schematic sectional view through an inventive blower module along the rotor axis.
  • FIG. 2 shows a schematic 3D sectional view of a fan motor of a fan module according to the invention
  • FIG. 3 is a plan view of the underside of the fan rotor of a blower module according to the invention.
  • Fig. 4 is a plan view of the top of the fan rotor of a blower module according to the invention.
  • the fan module 13 has a housing 10 which radially surround the components of the fan module 13.
  • the housing 10 of the fan module 13 can be fastened in the vehicle by means of fastening openings 11.
  • the housing 10 has on its inner peripheral surfaces a chamber-shaped booster spiral 1, which receives the accelerated air flow from a first fan 14.
  • the central axis of the housing 10 is arranged on a rotor axis 20.
  • a fan motor 9 and an electric motor 24 for driving the fan motor 9 are arranged on the rotor axis 20.
  • the electric motor 24 is constructed as an external rotor, wherein the coils 7 are arranged on a stator 8.
  • the stator 8 has on the inside a two bearings 25 for a rotor shaft 21 of the fan rotor 9.
  • the fan rotor 9 is bell-shaped on the underside and comprises with a receptacle 12 a plurality of magnets 6 of the electric motor 24.
  • the rotor shaft 21 is guided centrally through the stator 8 and supported by means of two bearings 25.
  • the fan motor 9 forms together with the housing 10 below the bell-shaped contour of the fan motor 9, a fan interior 2 from.
  • the fan interior 2 is connected to the pressure-increasing coil 1 by a first gap 23.
  • a second fan 4 is mounted in the area of the upper receptacle of the fan motor 9, a second fan 4 is mounted.
  • a guide geometry 5 is arranged on the rotor shaft 21.
  • the guide geometry 5 protrudes in its outer contour in the region of the first fan wheel 14.
  • the first fan 14 is formed as a radial compressor and integrally connected to the fan rotor 9.
  • the housing 10 of the fan module 13 comprises with its side open at the top and a sealing lip 22 disposed thereon the upper edge of the fan motor 9.
  • the electric motor of the fan motor 9 has on the underside of the housing 10 via an electrical connection 18, which by means of a plug-in area 19th will be contacted.
  • the fan motor 9 sucks air from the upper side of the housing 10 into the fan module 13 with the aid of the first fan wheel 14. Due to the rotation of the air flow is led to the outside and accelerated radially.
  • the pressure-increasing coil 1 the dynamic pressure present is converted into static pressure.
  • the speed of the electric motor is usually controlled by the driver of the vehicle or by a control system of the ventilation system of the vehicle. From the pressure-increasing coil 1, the air flow is guided through a connection, not shown, into the equipment connected in the ventilation, such as heating or the evaporator of the air conditioning system.
  • the electric motor needs a cooling at its temperature-critical elements such as the coils or the magnets. This is achieved in that an air flow from the pressure-increasing spiral 1 is guided via a first gap 23 into the fan interior 2 sitting below the fan rotor 9. From there, the air flow is sucked through the second fan 4 between the magnet 6 and the coil 7 therethrough upwards. Sucked by the second fan 4, the air flow through the seated above the second fan 4 guide geometry 5 in his
  • the air flow is conveyed through a second gap 17 between the contour of the fan motor 9 and the guide geometry 5 into the region of the first fan wheel 14.
  • the first fan 14 pumps the heated air flow together with the freshly drawn air flow from the surroundings of the vehicle back into the pressure-increasing coil 1.
  • the air flow for the cooling of the electric motor 24 is guided independently of the operating points of the first fan 14 by the electric motor 24. In this way, a reliable cooling is accomplished even at high power reduction of the fan motor 9.
  • a reliable cooling of the magnets 6 and the coils 7 is ensured by the suction of cooling air from the pressure increasing spiral 1 in the overblown state. Since no air is blown out of the compressed air flow for cooling the electric motor 24, the efficiency of the fan module 13 is increased. Due to the axial fan arrangement of the second fan 4 is independent of the
  • FIG. 2 shows a schematic 3D sectional view of a fan motor 9 of the fan module 13 according to the invention, the fan rotor 9 in the embodiment without the magnets 6 of the fan module 13 shown in FIG. 1 being illustrated.
  • the magnets 6 are arranged in the fan rotor 9 inside along the circumference in the receptacle 12.
  • the rotor shaft 21 protrudes from the fan motor 9 on the underside.
  • the rotor shaft 21 is encompassed by the fan rotor 9 in the region of the second fan wheel 4 and fastened there to the fan rotor 9.
  • the guide geometry 5 for deflecting the air flow after the second fan 4 is arranged.
  • the first fan 14, the second fan 4, the receptacle 12 and the fan motor 9 are integrally formed in the embodiment and made of plastic.
  • injection molding is suitable for one-piece production.
  • To support the centrifugal forces of the magnets 6 in the receptacle 12 has the
  • the Ab-support elements 16 ensure that the receptacle 12 increased under
  • FIG. 3 shows a plan view of the underside and FIG. 4 shows a plan view of the upper side of the fan motor 9 of a fan module 13 according to the invention.
  • the integrally formed fan rotor 9 has a trifurcated second impeller 4, which is arranged in the upper region of the bell-shaped underside of the fan motor 9.
  • the fan wheel can also have a different number of fan blades, which the expert adapts depending on the air volume requirement in terms of shape and number.
  • the second fan 4 has the
  • a receptacle 23 for the rotor shaft 21 Furthermore, a receptacle 23 for the rotor shaft 21. Likewise, the support elements 16 are arranged for receiving 12 of the magnets of the electric motor on the underside of the fan module 9.
  • the expert is of course familiar that the guidance of the air flow through the fan module 13 is exemplary, but it is essential that the Electric motor and its temperature-critical components are cooled by cooling air, which is separately promoted by the fan module 13 by a suction through the electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Die Erfindung betrifft ein Gebläsemodul 13, insbesondere für Klimageräte in Fahrzeugen, aufweisend eine Druckerhöhungsspirale 1, die ein erstes Lüfterrad 14 auf einem Gebläserotor (9) zumindest teilweise radial umfasst, und einen Elektromotor 24, der den Gebläserotor 9 antreibt, wobei der Gebläserotor 9 eine Ansaugeinheit 4 aufweist, die ausgelegt ist, Kühlluft in den Elektromotor 24 zu fördern.

Description

Beschreibung
Titel Gebläsemodul
Die Erfindung betrifft ein Gebläsemodul, insbesondere für Klimageräte in Fahrzeugen, aufweisend eine Druckerhöhungsspirale, die ein erstes Lüfterrad auf einem Gebläserotor zumindest teilweise radial umfasst, und einen Elektromotor, der den Gebläserotor antreibt.
Stand der Technik
Der Fahrgastraum in Fahrzeugen wird zur Klimatisierung, zur Erhöhung des Komforts und der Fahrsicherheit durch ein Lüftungssystem belüftet, an welchem ein Heizungs- und/oder ein Klimagerät angeschlossen ist. Um die Luft in dem Fahrgastraum zu fördern, ist an das Lüftungssystem ein Gebläsemodul angeschlossen, welches Frischluft aus der Umgebung des Fahrzeugs ansaugt und durch das Heizungs- bzw. Klimagerät leitet, um so die angesaugte Luft auf die gewünschte Temperatur zu bringen. Die durch den Fahrzeuginnenraum strömende Luft wird meist durch Lüftungsschlitze, z. B. an der Hutablage über die Radkästen, aus dem Fahrzeuginnenraum geführt.
Das an das Lüftungssystem angeschlossene Gebläsemodul ist üblicherweise als Radialverdichter aufgebaut, welcher durch einen Elektromotor angetrieben wird. Der Elektromotor ist dabei in seiner Bauart in das Gebläsemodul integriert. Um den Elektromotor, vor allem seine temperaturkritischen Komponenten wie Spulen oder Magnete, zu kühlen, wird üblicherweise Luft aus dem bereits verdichtetem Luftstrom für den Fahrzeuginnenraum zu Kühlzwecken abgezweigt. Dies hat den Nachteil, dass der Arbeitspunkt aber auch der Wirkungsgrad des Gebläsemoduls negativ beeinflusst wird. Insbesondere bei kritischen Arbeitspunkten z. B. wenn das Gebläsemodul überblasen wird, erhält der Elektromotor und seine temperaturkritischen Bauteile nicht ausreichend Kühlluft. Unter dem Überblasen des Ge- bläsemoduls wird verstanden, wenn der durch das Gebläsemodul erzeugbare Druck geringer ist als die zwischen Einlass und Auslass des Gebläsemoduls anliegende Druckdifferenz. Dieser Betriebszustand tritt auf, wenn das Fahrzeug mit hoher Fahrgeschwindigkeit bewegt wird und/oder die Fahrzeugscheiben weit ge- öffnet sind. Wird das Fahrzeug mit einer hohen Geschwindigkeit bewegt, so wird der Druck am Einlass des Gebläsemoduls durch die hohe Fahrgeschwindigkeit erhöht. Ein Öffnen der Fahrzeugscheiben resultiert in einer Druckreduzierung im Fahrzeuginnenraum. Dies hat zur Folge, dass die am Ein- und Ausgang des Gebläsemoduls anliegende Druckdifferenz vergrößert wird und das Gebläsemodul in einen überblasenen Zustand gerät, sofern die Druckdifferenz größer als der durch das Gebläsemodul erzeugte Druck ist. Der überblasene Zustand hat für das Gebläsemodul zur Folge, dass der Elektromotor trotz erhöhter Beanspruchung nur einen reduzierten Kühlluftstromanteil enthält. Dies führt zu einer Überhitzung der temperaturkritischen Komponenten des Elektromotors.
Offenbarung der Erfindung
Es ist Aufgabe der Erfindung ein Gebläsemodul zur Verfügung zu stellen, das darauf ausgelegt ist, den Elektromotor auch in kritischen Arbeitspunkten mit aus- reichend Luft zur Kühlung zu versorgen.
Diese Aufgabe wird durch ein Gebläsemodul gemäß Anspruch 1 gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen angegeben.
Erfindungsgemäß wurde erkannt, dass ein Überhitzen von temperaturkritischen
Komponenten des Elektromotors eines Gebläsemoduls dadurch vermieden werden kann, indem das Gebläsemodul eine Ansaugeinheit aufweist, die darauf ausgelegt ist, Kühlluft in den Elektromotor zu fördern.
Durch eine Ansaugeinrichtung zur Förderung von Kühlluft in den Elektromotor kann der Elektromotor weitgehend unabhängig von den Arbeitspunkten des Gebläsemotors gekühlt werden, sodass eine Überhitzung der kritischen Komponenten wie etwa den Spulen oder den Magneten auch bei einem überblasenen Zustand des Gebläsemoduls vermieden wird. Dabei ist der Kühlluftstrom weitge- hend entkoppelt von den Arbeitspunkten des Gebläsemoduls. Gemäß einer Ausführungsform der Erfindung weist die Ansaugeinheit des Gebläserotors ein zweites Lüfterrad auf das dazu ausgelegt ist, einen Kühlkreislauf zu bilden, der Kühlluft aus der Druckerhöhungsspirale durch den Elektromotor wieder durch die Druckerhöhungsspirale fördert. Dies hat den Vorteil, dass der Elektromotor mit höheren Drehzahlen betrieben werden kann, so dass der durch das Gebläsemodul geförderte Massenstrom des Luftstroms erhöht wird.
Gemäß einer Ausführungsform der Erfindung ist die Ansaugeinheit ausgelegt mittels des zweiten Lüfterrads die Kühlluft durch einen Spalt zwischen dem Ge- bläserotors und der Druckerhöhungsspirale über den unterhalb des Gebläserotors vorhandenen Gebläseinnenraum an den Spulen und den Magneten des E- lektromotors zu dem zweiten Lüfterrad zu saugen. Dabei ist eine Leitgeometrie oberhalb des zweiten Lüfterrads dazu angeordnet, den Strom der Kühlluft oberhalb des zweiten Lüftungsrades so umzuleiten, dass der Strom der Kühlluft durch das erste Lüfterrad radial nach außen zurück in die Druckerhöhungsspirale geführt wird. Auf diese Weise wird keine verdichtete Luft aus der Druckerhöhungsspirale abgelassen, sodass das Gebläsemodul an seiner maximalen Förderleistung auslegbar ist und daher einen geringeren Bauraum benötigt als ein Gebläsemodul, bei welchem die Kühlluft aus der geförderten Luft abgezweigt wird.
Gemäß einer Ausführungsform der Erfindung ist das erste Lüfterrad, das zweite Lüfterrad und der Gebläserotor einstückig ausgeführt. Dies hat den Vorteil, dass das erste Lüfterrad, das zweite Lüfterrad und der Gebläserotor in einem Herstellungsschritt z. B. durch Spritzgießen herstellbar sind.
Nachfolgend wird die Erfindung anhand von Figuren näher erläutert. Dabei zeigt:
Fig. 1 eine schematische Schnittzeichnung durch ein erfindungsgemäßes Gebläsemodul entlang der Rotorachse;
Fig. 2 eine schematische 3D-Schnittdarstellung eines Gebläserotors eines erfindungsgemäßen Gebläsemoduls;
Fig. 3 eine Draufsicht auf die Unterseite des Gebläserotors eines erfindungsge- mäßen Gebläsemoduls; und Fig. 4 eine Draufsicht auf die Oberseite des Gebläserotors eines erfindungsgemäßen Gebläsemoduls.
Fig. 1 zeigt eine Schnittansicht durch ein Gebläsemodul 13 entlang der Rotor- achse 20. Der Kühlluftstrom ist in der Darstellung mittels Pfeilen symbolisiert, wobei die Strömungsrichtung durch die Pfeilrichtung aufgezeigt ist. Das Gebläsemodul 13 weist ein Gehäuse 10 auf, welches die Komponenten des Gebläsemoduls 13 radial umfassen. Das Gehäuse 10 des Gebläsemoduls 13 ist mittels Befestigungsöffnungen 1 1 im Fahrzeug befestigbar. Das Gehäuse 10 weist an seinen inneren Umfangsflächen eine kammerförmige Druckerhöhungsspirale 1 auf, die den beschleunigten Luftstrom aus einem ersten Lüfterrad 14 aufnimmt. Die Mittelachse des Gehäuses 10 ist auf einer Rotorachse 20 angeordnet.
Des Weiteren sind auf der Rotorachse 20 ein Gebläserotor 9 sowie ein Elektro- motor 24 zum Antrieb des Gebläserotors 9 angeordnet. Der Elektromotor 24 ist als Außenläufer aufgebaut, wobei die Spulen 7 auf einem Stator 8 angeordnet sind. Der Stator 8 weist innenseitig eine zwei Lager 25 für eine Rotorwelle 21 des Gebläserotors 9 auf. Der Gebläserotor 9 ist unterseitig glockenartig ausgebildet und umfasst mit einer Aufnahme 12 eine Mehrzahl von Magneten 6 des Elektro- motors 24. Die Rotorwelle 21 ist mittig durch den Stator 8 geführt und mittels zweier Lager 25 gelagert. Umfangsseitig zur Aufnahme 12 für die Magnete 6 bildet der Gebläserotor 9 zusammen mit dem Gehäuse 10 unterhalb der glockenförmigen Kontur des Gebläserotors 9 einen Gebläseinnenraum 2 aus.
Der Gebläseinnenraum 2 ist mit einem ersten Spalt 23 mit der Druckerhöhungsspirale 1 verbunden. Im Bereich der oberen Aufnahme des Gebläserotors 9 ist ein zweites Lüfterrad 4 angebracht. Oberhalb des zweiten Lüfterrades 4, welches einstückig mit Gebläserotor 9 verbunden ist, ist eine Leitgeometrie 5 auf der Rotorwelle 21 angeordnet. Die Leitgeometrie 5 ragt dabei in seiner Außenkontur in den Bereich des ersten Lüfterrades 14. Das erste Lüfterrad 14 ist als Radialverdichter ausgebildet und einstückig mit dem Gebläserotor 9 verbunden. Das Gehäuse 10 des Gebläsemoduls 13 umfasst mit seiner nach oben hin offenen Seite und einer daran angeordneten Dichtlippe 22 die Oberkante des Gebläserotors 9. Der Elektromotor des Gebläserotors 9 verfügt auf der Unterseite des Gehäuses 10 über einen elektrischen Anschluss 18, der mit Hilfe eines Steckbereiches 19 kontaktiert wird. In Rotation versetzt, saugt der Gebläserotor 9 mit Hilfe des ersten Lüfterrades 14 Luft von der Oberseite des Gehäuses 10 in das Gebläsemodul 13 ein. Durch die Rotation wird der Luftstrom nach außen geführt und radial beschleunigt. Ist der Luftstrom in der Druckerhöhungsspirale 1 angelangt, so wird der dynamisch vorhandene Druck in statischen Druck umgewandelt. Die Drehzahl des Elektromotors wird üblicherweise durch den Fahrer des Fahrzeuges oder durch eine Regelanlage der Lüftungsanlage des Fahrzeuges gesteuert. Aus der Druckerhöhungsspirale 1 wird der Luftstrom durch einen nicht dargestellten Anschluss in die in der Lüftung angeschlossenen Gerätschaften wie Heizung oder den Verdampfer der Klimaanlage geführt.
Bei höheren Drehzahlen des Elektromotors benötigt der Elektromotor an seinen temperaturkritischen Elementen wie den Spulen oder den Magneten eine Küh- lung. Diese wird dadurch erreicht, in dem ein Luftstrom aus der Druckerhöhungsspirale 1 über einen ersten Spalt 23 in den unterhalb des Gebläserotors 9 sitzenden Gebläseinnenraums 2 geführt wird. Von dort wird der Luftstrom durch das zweite Lüfterrad 4 zwischen den Magneten 6 und den Spulen 7 hindurch nach oben hin angesaugt. Durch das zweite Lüfterrad 4 angesaugt, wird der Luftstrom durch die oberhalb des zweiten Lüfterrads 4 sitzende Leitgeometrie 5 in seiner
Flussrichtung abgelenkt. Dabei wird der Luftstrom durch einen zweiten Spalt 17 zwischen der Kontur des Gebläserotors 9 und der Leitgeometrie 5 in den Bereich des ersten Lüfterrades 14 gefördert. Das erste Lüfterrad 14 pumpt den erwärmten Luftstrom zusammen mit dem frisch angesaugten Luftstrom aus der Umge- bung des Fahrzeuges wieder zurück in die Druckerhöhungsspirale 1.
Ferner wird der Luftstrom für die Kühlung des Elektromotors 24 unabhängig von den Arbeitspunkten des ersten Lüfterrades 14 durch den Elektromotor 24 geleitet. Auf diese Weise wird eine zuverlässige Kühlung auch bei hoher Leistungs- abnähme des Gebläserotor 9 bewerkstelligt. Insbesondere wird durch das Ansaugen von Kühlluft aus der Druckerhöhungsspirale 1 auch im überblasenen Zustand eine zuverlässige Kühlung der Magneten 6 und der Spulen 7 gewährleistet. Da keine Luft aus dem verdichtete Luftstrom zur Kühlung des Elektromotors 24 abgeblasen wird, wird der Wirkungsgrad des Gebläsemoduls 13 erhöht. Durch die axiale Lüfteranordnung des zweiten Lüfterrades 4 wird unabhängig von den
Arbeitspunkten eine Druckdifferenz zwischen dem Gebläseinnenraum und dem Raum oberhalb des zweiten Lüfterrades 4 zur Verfügung gestellt, sodass der Luftstrom über die kritischen Bauteile des Elektromotors strömt.
Fig. 2 zeigt eine schematische 3D-Schnittdarstellung eines Gebläserotors 9 des erfindungsgemäßen Gebläsemoduls 13, wobei der Gebläserotor 9 in der Ausführungsform ohne die Magnete 6 des in Fig. 1 gezeigten Gebläsemoduls 13 dargestellt ist. Die Magnete 6 sind im Gebläserotor 9 innenseitig entlang des Umfangs in der Aufnahme 12 angeordnet. Des Weiteren ragt die Rotorwelle 21 unterseitig aus dem Gebläserotor 9 heraus. Die Rotorwelle 21 wird im Bereich des zweiten Lüfterrades 4 durch den Gebläserotor 9 umfasst und dort am Gebläserotor 9 befestigt. Ebenso ist auf der Rotorwelle 21 die Leitgeometrie 5 zur Umlenkung des Luftstroms nach dem zweiten Lüfterrad 4 angeordnet.
Das erste Lüfterrad 14, das zweite Lüfterrad 4, die Aufnahme 12 sowie der Ge- bläserotor 9 sind in der Ausführungsform einstückig ausgebildet und aus Kunststoff gefertigt. Insbesondere eignet sich zur einstückigen Herstellung ein Spritzgussverfahren. Um die Zentrifugalkräfte der Magnete 6 in der Aufnahme 12 abzustützen weist die
Aufnahme 12 an ihren Außenseiten radial Abstützungselemente 16 auf. Die Ab- Stützungselemente 16 stellen sicher, dass die Aufnahme 12 sich unter erhöhten
Drehzahlen nicht aufbiegt, sodass die Magnete 6 einen gleichmäßigen Abstand zu den Spulen 7 des Stators 8 aufweisen.
Fig. 3 zeigt eine Draufsicht auf die Unterseite und Fig. 4 zeigt eine Draufsicht auf die Oberseite des Gebläserotors 9 eines erfindungsgemäßen Gebläsemoduls 13.
Der einstückig ausgebildete Gebläserotor 9 weist ein dreiblättig ausgebildetes zweites Lüfterrad 4 auf, welches im oberen Bereich der glockenförmigen Unterseite des Gebläserotors 9 angeordnet ist. Das Lüfterrad kann aber auch eine an- deszahlige Anzahl von Lüfterschaufeln aufweisen, die der Fachmann je nach Luftmengenbedarf in Form und Anzahl anpasst. Das zweite Lüfterrad 4 weist des
Weiteren eine Aufnahme 23 für die Rotorwelle 21 auf. Ebenso sind die Abstützungselemente 16 für die Aufnahme 12 der Magnete des Elektromotors auf der Unterseite des Gebläsemoduls 9 angeordnet.
Dem Fachmann ist selbstverständlich geläufig, dass die Führung des Luftstroms durch das Gebläsemodul 13 beispielhaft ist, wesentlich dabei ist jedoch, dass der Elektromotor und dessen temperaturkritischen Komponenten durch Kühlluft gekühlt werden, die separat durch das Gebläsemodul 13 durch eine Ansaugeinrichtung durch den Elektromotor gefördert wird.

Claims

Ansprüche
1 . Gebläsemodul (13), insbesondere für Klimageräte in Fahrzeugen, aufweisend eine Druckerhöhungsspirale (1 ), die ein erstes Lüfterrad (14) auf einem Gebläserotor zumindest teilweise radial umfasst, und einen Elektromotor (24), der den Gebläserotor (9) antreibt, dadurch gekennzeichnet, dass der
Gebläserotor (9) eine Ansaugeinheit (4) aufweist, die ausgelegt ist, Kühlluft in den Elektromotor (24) zu fördern.
2. Gebläsemodul (13) nach Anspruch 1 , dadurch gekennzeichnet, dass die An- saugeinheit des Gebläserotors (9) ein zweites Lüfterrad (4) aufweist, das ausgelegt ist, einen Kühlluftkreislauf zu bilden, der aus der Druckerhöhungsspirale (1 ) Kühlluft durch den Elektromotor (24) wieder in die Druckerhöhungsspirale (1 ) fördert.
3. Gebläsemodul (13) nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Gebläserotor (9) als Radialverdichter ausgeführt ist.
4. Gebläsemodul (13) nach Anspruch 1 oder 3, dadurch gekennzeichnet, dass das die Ansaugeinheit ausgelegt ist, mittels des zweiten Lüfterrad (4) die Kühlluft durch einen Spalt zwischen dem Gebläserotor (9) und der Druckerhöhungsspirale (1 ) über den unterhalb des Gebläserotors (9) vorhandenen Gebläseinnenraum an den Spulen (7) und den Magneten (6) des Elektromotors (24) zu dem zweiten Lüfterrad (4) zu saugen, wobei eine Leitgeometrie (5) oberhalb des zweiten Lüfterrads (4) dazu angeordnet ist, den Strom der Kühlluft oberhalb des zweiten Lüfterrads (4) umzuleiten und den Strom der
Kühlluft durch das ersten Lüfterrads (14) radial nach außen zurück in die Druckerhöhungsspirale (1 ) zu führen.
5. Gebläsemodul (13) nach einem der Ansprüche 2 bis 4, dadurch gekenn- zeichnet, dass das zweite Lüfterrad (4) dreiblättrig ausgeführt ist.
6. Gebläsemodul (13) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das erste Lüfterrad (14), das zweite Lüfterrad (4) und der Gebläserotor (9) einstückig ausgeführt sind.
7. Gebläsemodul (13) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das zweite Lüfterrad (4) im Wesentlichen aus Kunststoff gefertigt ist.
PCT/EP2010/054737 2009-04-16 2010-04-12 Gebläsemodul WO2010118999A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012505136A JP2012524200A (ja) 2009-04-16 2010-04-12 ブロワモジュール
CN2010800167298A CN102395795A (zh) 2009-04-16 2010-04-12 风扇模块
EP10714615A EP2419643A1 (de) 2009-04-16 2010-04-12 Gebläsemodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002416A DE102009002416A1 (de) 2009-04-16 2009-04-16 Gebläsemodul
DE102009002416.6 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010118999A1 true WO2010118999A1 (de) 2010-10-21

Family

ID=42269575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054737 WO2010118999A1 (de) 2009-04-16 2010-04-12 Gebläsemodul

Country Status (6)

Country Link
EP (1) EP2419643A1 (de)
JP (1) JP2012524200A (de)
KR (1) KR20120003887A (de)
CN (1) CN102395795A (de)
DE (1) DE102009002416A1 (de)
WO (1) WO2010118999A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197062B2 (en) 2015-10-21 2019-02-05 Rolls-Royce Plc Aero-engine low pressure pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897093B2 (en) 2015-03-25 2018-02-20 Hamilton Sundstrand Corporation Bearing cooling flow and energy recovery systems
DE112016005354T5 (de) * 2015-11-23 2018-08-02 Denso Corporation Turboventilator und Verfahren zur Herstellung eines Turboventilators

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988854A (en) * 1960-06-02 1965-04-14 Junker & Ruh Ag Method and rotary apparatus for generating an air current
DE1428034A1 (de) * 1962-12-21 1968-11-28 Electrolux Ab Motor-Geblaeseeinheit
DE2742962A1 (de) * 1977-09-23 1979-04-05 Siemens Ag Geblaeseanordnung
GB2060069A (en) * 1979-09-28 1981-04-29 Sueddeutsche Kuehler Behr Radial fan particularly for heating or air-conditioning apparatus for vehicles
GB2090338A (en) * 1980-12-31 1982-07-07 Birmid Qualcast Home & Garden Centrifugal fan
EP0345796A2 (de) * 1988-06-04 1989-12-13 Licentia Patent-Verwaltungs-GmbH Durch einen Elektromotor angetriebener Lüfter
DE9016808U1 (de) * 1990-12-12 1991-10-10 Siemens AG, 8000 München Radiallüfter
DE9111745U1 (de) * 1991-09-20 1992-12-10 Ebm Elektrobau Mulfingen Gmbh & Co, 7119 Mulfingen Radialgebläse für aggressive Medien
WO1997041630A1 (en) * 1996-04-30 1997-11-06 Siemens Canada Limited Blower wheel with axial air inlet for ventilation
DE202006013319U1 (de) * 2005-10-08 2007-02-15 Ebm-Papst St. Georgen Gmbh & Co. Kg Außenläufermotor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324698A (ja) * 1994-05-30 1995-12-12 Mitsubishi Heavy Ind Ltd 片吸込遠心ファンのモータ冷却構造
JP3426151B2 (ja) * 1998-03-16 2003-07-14 アスモ株式会社 ブラシレスモータ
US6099609A (en) * 1998-07-30 2000-08-08 3M Innovative Properties Company Moving sorbent filter device
DE19909507C1 (de) * 1999-03-04 2000-11-16 Temic Auto Electr Motors Gmbh Radialgebläse, insbesondere für Heizungs- und Klimaanlagen
JP2003219622A (ja) * 2002-01-25 2003-07-31 Zexel Valeo Climate Control Corp ブラシレスモータ
JP2004353510A (ja) * 2003-05-28 2004-12-16 Daikin Ind Ltd 遠心送風機及び遠心送風機を備えた空気調和装置
JP4682854B2 (ja) * 2006-01-25 2011-05-11 株式会社デンソー 送風機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988854A (en) * 1960-06-02 1965-04-14 Junker & Ruh Ag Method and rotary apparatus for generating an air current
DE1428034A1 (de) * 1962-12-21 1968-11-28 Electrolux Ab Motor-Geblaeseeinheit
DE2742962A1 (de) * 1977-09-23 1979-04-05 Siemens Ag Geblaeseanordnung
GB2060069A (en) * 1979-09-28 1981-04-29 Sueddeutsche Kuehler Behr Radial fan particularly for heating or air-conditioning apparatus for vehicles
GB2090338A (en) * 1980-12-31 1982-07-07 Birmid Qualcast Home & Garden Centrifugal fan
EP0345796A2 (de) * 1988-06-04 1989-12-13 Licentia Patent-Verwaltungs-GmbH Durch einen Elektromotor angetriebener Lüfter
DE9016808U1 (de) * 1990-12-12 1991-10-10 Siemens AG, 8000 München Radiallüfter
DE9111745U1 (de) * 1991-09-20 1992-12-10 Ebm Elektrobau Mulfingen Gmbh & Co, 7119 Mulfingen Radialgebläse für aggressive Medien
WO1997041630A1 (en) * 1996-04-30 1997-11-06 Siemens Canada Limited Blower wheel with axial air inlet for ventilation
DE202006013319U1 (de) * 2005-10-08 2007-02-15 Ebm-Papst St. Georgen Gmbh & Co. Kg Außenläufermotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197062B2 (en) 2015-10-21 2019-02-05 Rolls-Royce Plc Aero-engine low pressure pump

Also Published As

Publication number Publication date
JP2012524200A (ja) 2012-10-11
CN102395795A (zh) 2012-03-28
EP2419643A1 (de) 2012-02-22
KR20120003887A (ko) 2012-01-11
DE102009002416A1 (de) 2010-10-21

Similar Documents

Publication Publication Date Title
DE19909507C1 (de) Radialgebläse, insbesondere für Heizungs- und Klimaanlagen
DE202012013669U1 (de) Aktive Kühlung eines Motors mit integriertem Kühlkanal
WO2012130405A1 (de) Diagonalventilator
EP2470793A2 (de) Gebläse
DE112017000980T5 (de) Radiallüfter
DE102012216288A1 (de) Zentrifugalgebläseanordnung
WO2010118999A1 (de) Gebläsemodul
EP1731339A1 (de) Doppelgebläseanordnung für Kraftfahrzeuge
DE19757640B4 (de) Vorrichtung zum Belüften eines Backofens mit Backmuffel
DE102020115249B4 (de) Hochgeschwindigkeitsturbomaschine, die ein thermisches Kühlgleichgewicht ermöglicht
EP0780579B1 (de) Radialgebläse, insbesondere für Heizungs-und Klimaanlagen von Kraftfahrzeugen
DE10002951C1 (de) Radialgebläse zur Belüftung einer Fahrgastzelle eines Fahrzeugs
WO1992010682A1 (de) Radiallüfter
EP0784369A1 (de) Elektromotorisch angetriebenes Bypass-Gebläse
EP2459883B1 (de) Führungsgeometrie für halbaxiale lüfterräder
EP0261490A1 (de) Radialventilator
WO2014087009A1 (de) Kühlerlüfter eines kraftfahrzeugs und elektromotor
WO2015144733A1 (de) Elektromotoranordnung, fahrzeug mit einer elektromotoranordnung
WO2014064284A1 (de) Lüfter mit einem lüfterrad
DE202015101683U1 (de) Elektromotor mit drückender Kühlluftförderung
CH717838A2 (de) Zweistufige Gebläsevorrichtung für ein Beatmungsgerät.
DE102018124063A1 (de) Gebläse für Haushalts- und Kleingeräte und Verfahren zu dessen Betrieb
EP0452518B1 (de) Kühlsystem, insbesondere zur Verwendung in einem Kraftfahrzeug, mit einem durch einen Elektromotor angetriebenen Axiallüfterrad
DE102016105655A1 (de) Radialventilator und Verfahren zur Herstellung eines Radialventilators
WO2012163402A2 (de) Gebläsemotorkühlung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016729.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010714615

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024160

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012505136

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 8322/DELNP/2011

Country of ref document: IN