WO2010116856A1 - マイクロチップ - Google Patents

マイクロチップ Download PDF

Info

Publication number
WO2010116856A1
WO2010116856A1 PCT/JP2010/054321 JP2010054321W WO2010116856A1 WO 2010116856 A1 WO2010116856 A1 WO 2010116856A1 JP 2010054321 W JP2010054321 W JP 2010054321W WO 2010116856 A1 WO2010116856 A1 WO 2010116856A1
Authority
WO
WIPO (PCT)
Prior art keywords
chimney
liquid
microchip
sample
substrate
Prior art date
Application number
PCT/JP2010/054321
Other languages
English (en)
French (fr)
Inventor
平山 博士
貴志 鷲巣
俊則 瀧村
佳之 増田
毅彦 五島
清水 直紀
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/260,728 priority Critical patent/US9162225B2/en
Priority to EP10761557.7A priority patent/EP2416163A4/en
Priority to JP2011508300A priority patent/JPWO2010116856A1/ja
Publication of WO2010116856A1 publication Critical patent/WO2010116856A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/102Preventing or detecting loss of fluid by dripping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a microchip used in a chemical analysis system, and more particularly, to a microchip that can effectively prevent contamination by chemicals at the inlet during injection of a reagent solution and contamination of the lid of the microchip associated therewith.
  • ⁇ TAS Micro Total Analysis System
  • a fine flow path that is a liquid flow path, and a well for injecting liquid into the fine flow path and discharging liquid from the fine flow path (the fine flow path and the outside) (For example, see Patent Documents 1 and 2).
  • a hole serving as a well is simply formed in a planar chip
  • a type in which a cylindrical body called chimney is joined or integrally formed in the well etc.
  • a chip it is possible to secure a liquid injection amount of a liquid such as a gel, a reagent, or a sample, and it is possible to reliably and easily connect the analyzer.
  • the usage (use method) of the microchip having the chimney is as follows, for example. (1) Place the chip with the opening of the chimney facing upward (2) Inject a liquid such as a gel, a reagent, or a sample necessary for analysis into each chimney with a needle (in this case, a chimney without liquid injection) May be) (3) Cover a certain chimney and apply pressure or suction from other chimneys to introduce liquids such as gels, reagents, and samples into the microchannel (4) Pressure and voltage on the chip (5) Remove the lid and discard the chip as it is. A microchip simply having holes (not having chimneys) is used in the same manner as described above, although the amount of liquid injection is reduced.
  • This phenomenon is particularly remarkable in a microchip having no chimney. That is, in the case of having a chimney, even if the liquid L is dragged by a slight surface tension, the inner wall 104 of the chimney 100 has a certain height, so that it is possible to keep the liquid L inside the chimney 100 to some extent. When the chimney is not provided, the height of the inner wall 112 of the well 110 is low, so that the liquid L easily jumps out of the well 110.
  • the lid that closes the chimney or well is basically provided on the side of the analyzer main body separate from the microchip, and there are mainly two problems with the liquid droplets adhering to the lid. .
  • a main object of the present invention is to provide a microchip having a chimney, which can prevent or suppress the adhesion of liquid to the chimney top associated with the withdrawal of the needle after liquid injection. is there.
  • Another object of the present invention is a microchip having no chimney, which is capable of preventing or suppressing the adhesion of the liquid to the upper surface in the vicinity of the opening on the outlet side accompanying the withdrawal of the needle after the liquid is injected. To provide a chip.
  • a microchip having a substrate, a lid member joined to one surface of the substrate, and a flow path formed on at least one joint surface of the substrate and the lid member;
  • the microchip is A well provided on the substrate, the well being an opening communicating the flow path and the surface opposite to the bonding surface of the substrate;
  • a chimney that is a member provided so as to protrude from the surface opposite to the bonding surface of the substrate and has an opening communicating with the well;
  • the chimney is provided with a microchip characterized in that a liquid rise prevention portion for preventing the liquid from rising to the top of the chimney is formed.
  • a microchip having a substrate, a lid member joined to one surface of the substrate, and a flow path formed on at least one joint surface of the substrate and the lid member;
  • the microchip has a well that is an opening provided in the substrate and communicating the flow path and a surface opposite to the bonding surface of the substrate.
  • the microchip is provided, wherein the substrate is provided with a liquid rise prevention portion for preventing the liquid from rising to the upper surface near the opening on the outlet side of the well.
  • the liquid rise prevention portion is formed in the chimney, it is possible to prevent or suppress the liquid from adhering to the top of the chimney due to the withdrawal of the needle after the liquid is injected.
  • the liquid rise prevention portion is formed in the well, the adhesion of the liquid to the upper surface in the vicinity of the outlet side opening of the well due to the withdrawal of the needle after the liquid injection is prevented or suppressed. be able to.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and is a cross-sectional view showing a schematic configuration of a chimney used in a preferred embodiment (first embodiment) of the present invention and the vicinity thereof.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and is a cross-sectional view showing a schematic configuration of a chimney used in a preferred embodiment (second embodiment) of the present invention and the vicinity thereof.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a chimney used in a preferred embodiment (third embodiment) of the present invention and its vicinity.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and is a cross-sectional view showing a schematic configuration of a chimney used in a preferred embodiment (fourth embodiment) of the present invention and its vicinity.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and is a cross-sectional view showing a schematic configuration of a chimney used in a preferred embodiment (fifth embodiment) of the present invention and its vicinity.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 shows a schematic configuration of a chimney used in a preferred embodiment (sixth embodiment) of the present invention and the vicinity thereof. It is sectional drawing which shows schematic structure concerning the combination of the structure of FIG. 4, FIG. It is sectional drawing which shows schematic structure concerning the combination of the structure of FIG. 5, FIG. It is sectional drawing which shows schematic structure concerning the combination of the structure of FIG. 6, FIG. It is sectional drawing which shows schematic structure concerning the basic composition (comparative example) in the preferable Example of this invention. It is drawing for demonstrating the conventional problem roughly.
  • the “well” refers to an opening that communicates the flow path formed by being sandwiched between the substrate and the lid member and the outer surface of the substrate, that is, the surface opposite to the bonding surface.
  • the shape is not particularly limited.
  • the “inner wall near the opening on the outlet side of the well” refers to a region of the inner wall of the well that is closer to the opening on the outlet side, that is, on the opposite side of the joint surface, than the portion filled with the liquid serving as the reagent. .
  • “chimney” means a member provided so as to protrude from the surface opposite to the bonding surface of the substrate and having an opening communicating with the well.
  • the shape of the chimney is not particularly limited. Examples of the chimney include a cylindrical shape, a prismatic shape with an opening provided therein, and the like. A cylindrical shape is preferable in view of formability and the like.
  • the chimney shape may be a so-called truncated cone shape or a truncated pyramid shape whose outer diameter changes from the substrate side toward the top.
  • the top of the chimney represents the upper surface around the chimney outlet opening, and the ⁇ inner wall near the top of the chimney '' is filled with a reagent liquid in the opening formed by the chimney and well.
  • the inner wall portion on the outlet side from the upper surface of the filled liquid is represented. Therefore, if the top surface of the filled liquid does not reach the inner wall of the chimney, i.e., if the top surface of the filled liquid is lower than the depth of the well, any part of the inner wall of the chimney is "inner wall near the top of the chimney"
  • the liquid rise prevention part may be provided at any location on the inner wall of the chimney.
  • a microchip (1) uses a microfabrication technique to form a fine flow path or circuit on one surface of a resin substrate, and allows nucleic acid, protein, blood, etc.
  • a micro-analysis chip that performs chemical reaction, separation, and analysis of a liquid sample, or a device called ⁇ TAS (Micro Total Analysis Systems), and its practical use is being promoted.
  • the microchip is described as being made of resin, but the material is not particularly limited, and materials such as glass can also be used. However, considering moldability, it is preferably made of resin.
  • the microchip 1 has a rectangular shape in plan view, and basically has a rectangular resin substrate 3 (front side of the paper surface) and a resin film 5 (back side of the paper surface) as a lid member. Are attached to each other.
  • the resin film 5 is bonded as the lid member, but the present invention is not limited to the film, and the flow path and the well can be sealed by bonding a sheet-like (plate-like) member. It is.
  • the outer shape of the microchip 1 may be any shape that can be easily handled and analyzed, and is preferably a square or a rectangle.
  • the size may be 10 to 200 mm square. Further, the size may be 10 to 100 mm square.
  • the microchip 1 is formed with a fine channel 7 and a plurality of wells 9.
  • the fine channel 7 is a channel groove formed in the resin substrate 3, and the resin film 5 functions as a lid member (cover) for forming the fine channel 7.
  • the channel groove for forming the channel is provided on the substrate (resin substrate 3) side, but may be provided on the lid member (resin film 5) side, This groove may be formed in both the substrate and the lid member.
  • the well 9 is a hole for liquid injection / discharge penetrating the resin substrate 3, and communicates with the fine flow path 7.
  • the shape of the microchannel 7 is within the range of 10 to 200 ⁇ m in both width and depth in consideration of the fact that the amount of analysis sample and reagent used can be reduced, and the precision of mold fabrication, transferability, and mold release. Although it is preferable that it is the value of, it does not specifically limit. What is necessary is just to determine the width
  • FIG. in addition, the cross-sectional shape of the fine flow path 7 may be rectangular or curved.
  • the plate thickness T1 of the resin substrate 3 is preferably 0.2 to 5 mm, more preferably 0.5 to 2 mm in consideration of moldability.
  • the thickness T2 of the resin film 5 (sheet-like member) is preferably 30 ⁇ m to 300 ⁇ m, and more preferably 40 to 150 ⁇ m.
  • a chimney 10 (cylindrical body) having a predetermined height and having a cylindrical shape is erected on the resin substrate 3.
  • the chimney 10 is integrally formed with the resin substrate 3, and the internal space communicates with the well 9.
  • the chimney 10 is described as a cylindrical body here, but the shape thereof is not limited.
  • the chimney 10 may be formed separately from the resin substrate 3 and bonded to the resin substrate 3. In order to save labor for bonding to the resin substrate 3, it is preferable that the resin substrate 3 is integrally formed.
  • the chimney 10 preferably has a height H of about 1 to 10 mm and an inner diameter ID (opening diameter) of about 0.5 to 5 mm.
  • the “height H” of the chimney 10 refers to the height from the surface (upper surface) of the resin substrate 3 to the top surface (upper surface) of the chimney 10, and the “inner diameter ID” of the chimney 10 refers to the height of the chimney 10.
  • the top portion 12 (tip portion) of the chimney 10 has an annular shape, and the top portion 12 is formed with a liquid rise prevention portion 20 for preventing liquid rise to the top portion of the chimney 10.
  • the liquid rise prevention portion 20 is made of a UV curable resin (adhesive) and is formed in an annular shape along the top portion 12. When viewed in cross section, the liquid rise prevention unit 20 extends from the inner wall surface 14 of the chimney 10 through the top surface 16 (upper surface) to the outer wall surface 18 and covers the top portion 12. Therefore, the inner diameter ID1 (opening diameter) of the top 12 of the chimney 10 is smaller than the inner diameter ID.
  • Resin is preferably used for the resin substrate 3 and the resin film 5.
  • Preferred conditions for the resin include good moldability (transferability and releasability), high transparency, and low autofluorescence with respect to ultraviolet rays and visible light.
  • a thermoplastic resin is used for the resin substrate 3 and the resin film 5.
  • thermoplastic resin examples include polycarbonate, polymethyl methacrylate, polystyrene, polyacrylonitrile, polyvinyl chloride, polyethylene terephthalate, nylon 6, nylon 66, polyvinyl acetate, polyvinylidene chloride, polypropylene, polyisoprene, polyethylene, polydimethyl. It is preferable to use siloxane, cyclic polyolefin or the like. It is particularly preferable to use polymethyl methacrylate and cyclic polyolefin.
  • the resin substrate 3 and the resin film 5 may be made of the same material or different materials.
  • the above-described certain resin is injection-molded using a certain mold to form a plate-shaped resin molded product having the fine flow path 7, the well 9, and the chimney 10.
  • a core pin having a constant tip diameter is set up on the movable core side.
  • the resin film 5 prepared by cutting the above-mentioned certain resin into a predetermined size is prepared.
  • the fine flow path 7, the well 9, and the chimney 10 may be formed with a taper of 2 to 5 ° in order to improve transferability.
  • the resin substrate 3 and the resin film 5 are heated using a hot plate, hot air, a hot roll, ultrasonic waves, vibration, laser, or the like.
  • the resin substrate 3 and the resin film 5 are sandwiched by a heated hot plate using a hot press machine, and the pressure is applied by the hot plate and is held for a predetermined time, thereby making the resin substrate. 3 and the resin film 5 can be joined.
  • the resin film 5 functions as a lid (cover) for the channel groove and the fine channel 7 is completely closed.
  • the through-hole (well 9) formed in the resin substrate 3 is formed.
  • the chimney 10 is connected to the outside of the joined body of the fine flow path 7 and the resin substrate 3 and the resin film 5 so that the liquid sample can be injected and discharged.
  • the liquid rise prevention portion 20 is formed in the vicinity of the top portion 12 of the chimney 10 of the resin substrate 3. Specifically, a UV curable adhesive is applied in an annular shape along the top 12 of the chimney 10, and the adhesive is cured by irradiating the adhesive with ultraviolet rays. As a result, the microchip 1 can be manufactured.
  • liquid rise prevention unit 20 can be manufactured by applying and curing an adhesive, it is possible to provide a degree of freedom in changing the shape (inner diameter ID1, etc.).
  • the liquid rising prevention portion 20 is formed on the inner wall surface 14 (in the vicinity) of the top portion 12 of the chimney 10 and the opening diameter of the chimney 10 is narrowed. At this time, the liquid is returned to the inside of the chimney 10 by the liquid rise prevention unit 20, and the adhesion of the liquid to the chimney 10 (the top portion 12) can be prevented or suppressed.
  • the second embodiment is different from the first embodiment mainly in the following points, and is otherwise the same as the first embodiment.
  • the configuration of the top portion 12 of the chimney 10 is different, and a liquid rise prevention unit 30 is provided instead of the liquid rise prevention unit 20 of FIG.
  • the liquid rise prevention portion 30 is a portion obtained by deforming the top portion 12 of the chimney 10 and is integrally formed with the chimney 10.
  • the liquid rise prevention portion 30 is a portion that protrudes inward and outward from the top portion 12 of the chimney 10, and is formed in an annular shape along the top portion 12 of the chimney 10. Since the liquid rise prevention part 30 protrudes inward from the inner wall of the chimney 10, the inner diameter ID2 (opening diameter) of the top part 12 (the vicinity) of the chimney 10 is smaller than the inner diameter ID.
  • the temperature of the top 12 of the chimney 10 is kept constant with the side (resin film 5 side) on which the fine flow path 7 of the resin substrate 3 is formed kept at room temperature.
  • a heated hot press hot plate is pressed and this state is maintained for a certain time while applying a certain load, and the top 12 of the chimney 10 is thermally deformed.
  • liquid rise prevention unit 30 In manufacturing the liquid rise prevention unit 30, it is sufficient to simply press the hot plate against the top portion 12 of the chimney 10, so that it can be manufactured relatively easily. Since it is separated by 10, deformation of the fine channel 7 can also be prevented.
  • the liquid rise prevention portion 30 is formed on the top portion 12 of the chimney 10 and the opening diameter of the chimney 10 is narrowed.
  • the liquid is pulled out, the liquid is returned to the inside of the chimney 10 by the liquid rise prevention unit 30, and adhesion of the liquid to the chimney 10 (the top portion 12) can be prevented or suppressed.
  • liquid rise prevention part 30 is comprised separately from the chimney 10, and may be adhere
  • the third embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • the configuration of the top 12 of the chimney 10 is different, and a liquid rise prevention unit 40 is provided instead of the liquid rise prevention unit 20 of FIG. 2.
  • the liquid rise prevention part 40 is a part obtained by deforming the top part 12 of the chimney 10 and is integrally formed with the chimney 10.
  • the liquid rise prevention portion 40 is a portion protruding inward from the inner wall of the top portion 12 of the chimney 10, and is formed in an annular shape along the top portion 12 of the chimney 10.
  • the inner diameter ID3 (opening diameter) of the top part 12 (near the chimney 10) is smaller than the inner diameter ID.
  • a core pin having a fixed tip diameter is set up on the fixed core side, and the core pin on the fixed core side is set on the movable core side.
  • a core pin having a smaller tip diameter is erected and the resin is injection molded.
  • the liquid rise prevention unit 40 In manufacturing the liquid rise prevention unit 40, it can be formed by selecting and arranging the core pins in the injection molding process, so that accurate shape transfer and stable quality are ensured as compared with the liquid rise prevention units 20 and 30. can do.
  • the liquid rise prevention portion 40 is formed at (in the vicinity of) the top portion 12 of the chimney 10 and the opening diameter of the chimney 10 is narrowed.
  • liquid rise prevention part 40 is comprised separately from the chimney 10, and may be adhere
  • the fourth embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • the configuration of the top portion 12 of the chimney 10 is different, and a liquid rise prevention portion 50 is provided instead of the liquid rise prevention portion 20 of FIG.
  • the liquid rise prevention portion 50 is a portion obtained by deforming the top portion 12 of the chimney 10 and is integrally formed with the chimney 10.
  • the liquid rise prevention unit 50 has a step structure along the top 12 of the chimney 10 and is configured to increase the inner diameter of the top 12 (near) of the chimney 10.
  • the upper stage 52 and the lower stage 54 are configured.
  • the inner diameter (opening diameter) of the lower step portion 54 is the same as the inner diameter ID of the chimney 10, and the inner diameter ID 4 (opening diameter) of the upper step portion 52 is larger than the inner diameter ID of the chimney 10.
  • a stepped core pin is set up on the movable core side, and the resin is injection molded.
  • the liquid rise prevention unit 50 can be formed by selecting and arranging the core pins in the injection molding process. Therefore, the liquid rise prevention unit 50 is more accurate than the liquid rise prevention units 20 and 30. Shape transfer and stable quality can be ensured.
  • the liquid rise prevention portion 50 is formed on the top portion 12 of the chimney 10 and the opening diameter of the chimney 10 is widened, so that there is a gap between the liquid injection needle and the inner wall surface 14 of the chimney 10. A constant interval can be maintained. As a result, since the capillary effect between the needle and the inner wall surface 14 can be suppressed when the needle after liquid injection is pulled out, it is possible to prevent the liquid from rising, and the liquid chimney 10 (the top 12). Can be prevented or suppressed.
  • the liquid rise prevention portion 50 has a stepped shape, but the shape is not particularly limited as long as the rise of the liquid can be suppressed by expanding the inner diameter of the chimney 10. Further, it is not necessarily provided at the top portion 12, and may be provided in a region closer to the outlet side than the region filled with liquid, that is, in the vicinity of the top portion 12.
  • the fifth embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • the configuration of the top portion 12 of the chimney 10 is different, and a liquid rise prevention portion 60 is provided instead of the liquid rise prevention portion 20 of FIG. ing.
  • the liquid rise prevention portion 60 is a portion obtained by deforming the (in the vicinity of) the inner wall surface 14 of the top portion 12 of the chimney 10 and is integrally formed with the chimney 10.
  • the liquid rise prevention portion 60 is formed on the inner wall surface 14 of the top portion 12 of the chimney 10 and is formed in an annular shape along the top portion 12.
  • the liquid rise prevention part 60 is formed by embossing and has an uneven shape. That is, the liquid rise prevention part 60 functions as a hydrophobic treatment part by the uneven structure.
  • the core pin whose tip is crushed is set up on the movable core side, and the resin is injection molded.
  • the textured shape of the core pin may be linear, curved, latticed, or irregularly intersected. When the textured shape of the core pin is a lattice shape, the lattice spacing is preferably 10 to 200 ⁇ m.
  • the liquid rise prevention part 60 since it can be formed by selecting a core pin that has been subjected to a textured process, a uniform textured surface can be formed with good reproducibility on the inner wall surface 14 of the top 12 of the chimney 10. Since it can be controlled (optimized) according to the physical properties of the resin, the texture pattern on the core pin, the roughness, etc., the water repellency to the top 12 of the chimney 10 can be controlled according to the liquid used.
  • the liquid rising prevention portion 60 is formed on the top portion 12 of the chimney 10 and the top portion 12 has an uneven shape, so that the water repellent property is applied to the inner wall surface 14 (near) of the top portion 12 of the chimney 10. Is granted.
  • the liquid is prevented from rising between the needle and the inner wall surface 14, and the adhesion of the liquid to the chimney 10 (the top portion 12) can be prevented or suppressed. it can.
  • the second uneven structure 65 may be further formed on the surface of the liquid rise preventing unit 60, and the uneven structure of the liquid rise preventing unit 60 may be divided into two stages. In this case, the water repellency performance in the vicinity of the top 12 of the chimney 10 can be further improved.
  • the sixth embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • the configuration in the vicinity of the top 12 of the chimney 10 is different, and a liquid rise prevention unit 70 is provided instead of the liquid rise prevention unit 20 in FIG. .
  • the liquid rise prevention unit 70 is composed of a water-repellent treatment film and functions as a hydrophobic treatment unit.
  • the liquid rise prevention portion 70 is formed in an annular shape along the top portion 12. When viewed in cross-section, the liquid rise prevention unit 70 extends from the inner wall surface 14 of the chimney 10 through the top surface 16 (upper surface) to the outer wall surface 18 and covers the top portion 12.
  • the water-repellent treatment film constituting the liquid rise prevention unit 70 is a film of a fluorocarbon material.
  • the water-repellent film is formed from the inner wall surface 14 to the outer wall surface 18 through the top surface 16, but it is sufficient that it is provided at least on the inner wall surface 14.
  • the top part 12 of the chimney 10 is immersed in a certain fluorination treatment solution and dried.
  • it can be formed by simply immersing the top part 12 of the chimney 10 in the fluorination treatment solution, so that a uniform fluorination treatment surface is formed on the top part 12 of the chimney 10 with good reproducibility. Can do.
  • the SiO 2 film is used as an underlayer on the wall surface of the top portion 12 by vapor deposition or sputtering. It may be formed or may be subjected to plasma treatment.
  • the water-repellent treatment film constituting the liquid rise prevention unit 70 is not limited to a film of a fluorocarbon material, but may be a film of a hydrocarbon material (for example, a DLC (diamond-like carbon) film), or a parylene film.
  • a parellin film made by Japan Paleline or a triazine thiol film (for example, a triazine coat made by Takeuchi vacuum film) may be used.
  • the liquid rise prevention portion 70 is formed in the vicinity of the top portion 12 of the chimney 10 and the inner wall surface 14 in the vicinity of the top portion 12 is covered with the water-repellent treatment film. Water is imparted. As a result, when pulling out the needle after the liquid injection, the liquid is prevented from rising between the needle and the inner wall surface 14, and the adhesion of the liquid to the chimney 10 (the top portion 12) can be prevented or suppressed. it can.
  • liquid rising prevention portions 20, 30, 40, 50, 60, 70 may be combined with each other.
  • the liquid rise prevention parts 40 and 60 may be formed simultaneously, as shown in FIG. 9, the liquid rise prevention parts 50 and 60 may be formed simultaneously, or as shown in FIG.
  • the prevention parts 60 and 70 may be formed simultaneously.
  • liquid rise prevention units 20, 30, 40, 50, 60, 70 can be applied to the microchip 1 that does not have the chimney 10.
  • Liquid rising prevention portions 20, 30, 40, 50, 60, and 70 may be formed in the vicinity of the outlet side opening.
  • the “near the outlet side opening” of the well 9 is a portion above the liquid injection surface in the well 9 and extending from the upper inner wall of the well 9 to the upper surface of the resin substrate 3 (see FIG. 2 (see reference numeral 9a).
  • Sample preparation (1.1) Sample 1 As a resin substrate, a transparent resin material polymethyl methacrylate (acrylic resin, Delpet 70NH manufactured by Asahi Kasei) was injection-molded to produce a plate-like member having external dimensions of 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick.
  • the plate member is formed with a channel groove having a width of 30 ⁇ m and a depth of 30 ⁇ m, a well having an inner diameter of 2.5 mm, a bottom inner diameter of 2.5 mm ⁇ a height of 7 mm ⁇ (average) thickness of 0.75 mm.
  • a plurality of chimneys were formed.
  • the channel groove and the chimney were formed with a 2-5 ° taper in order to improve transferability in injection molding. As a result, the bottom inner diameter of the chimney was 2.5 mm, whereas the top inner diameter of the chimney was 3.2 mm (see FIG. 11).
  • a transparent resin material polymethyl methacrylate (acrylic resin, Mitsubishi Rayon acrylate, thickness 75 ⁇ m) cut into a length of 50 mm and a width of 50 mm was prepared as a resin film.
  • the resin substrate and the resin film were joined. Specifically, a resin film is superimposed on the bonding surface of the resin substrate on which the channel groove is formed, and the resin substrate and the resin are sandwiched between hot plates heated to a press temperature of 82 ° C. using a hot press machine. The resinous substrate and the resinous film were bonded together by applying a pressure of 3.72 ⁇ 10 6 Pa (38 kgf / cm 2 ) and holding it for 30 seconds.
  • Example 1 The microchip produced by the above processing was designated as “Sample 1”.
  • sample 2 In sample 1, a highly viscous UV adhesive was applied to the top of the chimney in an annular shape and cured by irradiating with ultraviolet rays to form a ring-shaped liquid rise prevention portion (see FIG. 2). As a result, the top inner diameter of the chimney was narrowed from 3.2 mm to 2.2 mm, and this was designated as “Sample 2”.
  • the top inner diameter of the chimney was narrowed from 3.2 mm to 2.4 mm (by thermal deformation), and this was designated as “Sample 3”.
  • Example 4 The resulting microchip was designated as “Sample 4”.
  • sample 5 In sample 1, the top of the chimney was deformed to form a liquid rise prevention portion (see FIG. 5).
  • the chimney was made with a core pin on the movable core side, but here, a stepped core pin was set up, and the size of the stepped portion (larger inner diameter, upper step) was 3 mm deep ⁇ 4 inner diameter.
  • the thickness was 2 mm ⁇ thickness 0.25 mm.
  • Sample 6 In sample 1, the shape of the top of the chimney was deformed to form a liquid rise prevention portion (see FIG. 6A).
  • the core pin was subjected to a texture treatment so that the texture was processed from the top (top) of the well to a depth of 3 mm.
  • sample 6 (1.6.2) Sample 6-2 In sample 6, a core pin having a textured process of “grid shape with a height of 10 ⁇ m ⁇ interval of 150 ⁇ m” was used, and the microchip thus obtained was designated as “sample 6 -2 ".
  • sample 7 In sample 1, the top of the chimney was fluorinated to form a liquid rise prevention part (see FIG. 7). Specifically, the top of the well was immersed for 1 minute at a depth of 3 mm in a solution obtained by diluting OPTOOL DX (manufactured by Daikin Industries) to 0.1% in a demnum solvent solution (manufactured by Daikin Industries), and then 24 It was dried for an hour and rinsed with demnam solvent solution.
  • OPTOOL DX manufactured by Daikin Industries
  • demnum solvent solution manufactured by Daikin Industries
  • the water repellency of Sample 7 was confirmed as follows (contact angle was measured).
  • a flat sample with a mirror finish was produced with PMMA delpet 70NH, which was the same material as the resin substrate of sample 1, and the contact angle with pure water was measured to be 70 °.
  • the flat sample was then subjected to the same fluorination treatment as described above, and the contact angle with pure water was measured to be 108 °.
  • the contact angle increased from 70 ° to 108 ° before and after the fluorination treatment, confirming that water repellency was imparted.
  • the core pin was subjected to an embossing range so that the inner diameter of the top of the well was 2.2 mm and the embossing was performed from the top of the well to a depth of 3 mm.
  • Sample 10 Sample 1 was subjected to the same processing as Sample 6 (texture processing) and Sample 7 (fluorination treatment) to form a liquid rise prevention portion (see FIG. 10). Specifically, a textured surface was formed on the inner wall of the top of the chimney for Sample 1 in the same manner as Sample 6, and then the same treatment as Sample 7 was applied to fluorinate the inner wall of the top of the chimney.
  • Example 10 The resulting microchip was designated as “Sample 10”.
  • the needle is lowered vertically from the height of the bottom of the well 50 mm to the height of 0.2 mm at a speed of 300 mm / sec, 15 ⁇ l of aqueous solution is injected in 0.1 second, and then the needle is moved to 300 mm / sec.
  • An operation of pulling out vertically from the well at a speed of sec was performed, and the presence / absence of adhesion of the liquid to the inner wall or the top of the chimney, the adhesion location, the adhesion amount, etc. were confirmed (adhesion inspection test).
  • the adhering liquid was blotted with the filter paper, and the weight before and behind blotting was measured with the precision balance, respectively, and was calculated.
  • the outline (specifications) of the adhesion inspection test is as follows.
  • Needle Made of stainless steel, outer diameter ⁇ 0.5mm x inner diameter ⁇ 0.25mm x length 50mm
  • Liquid Aqueous solution whose viscosity is adjusted to 10 cP with a viscosity modifier Needle insertion / extraction speed: 300 mm / sec Liquid injection volume: 15 ⁇ l
  • Well shape (sample 1): Inner diameter 2.5 mm Chimney shape (sample 1): bottom inner diameter 2.5 mm ⁇ height 7 mm ⁇ top inner diameter 3.2 mm ⁇ average wall thickness 0.75 mm (top wall thickness 1 mm)
  • the adhesion inspection test was performed 10 times, respectively, and the average (value) was obtained. The results of the adhesion inspection test are shown below for each sample, and are also briefly shown in Table 1.
  • sample 3 as in sample 2, the liquid dragged by the surface tension when the injection needle is pulled out is returned to the inside of the chimney by the liquid rise prevention portion whose inner diameter is narrowed. This is thought to be due to adhesion to the liquid rise prevention part. In addition, since adhesion to the top surface (upper surface) of the liquid rise prevention part was not recognized, it is thought that contamination can be prevented.
  • sample 4 as in sample 2, the liquid dragged by the surface tension when the injection needle is pulled out is returned to the inside of the chimney by the liquid rise prevention portion whose inner diameter is narrowed, and a part of the liquid is returned. This is thought to be due to adhering to the lower part of the liquid rise prevention part. In addition, since adhesion to the top surface (upper surface) of the liquid rise prevention part was not recognized, it is thought that contamination can be prevented.
  • the needle can be separated from the inner wall of the chimney by half (0.5 mm) of the inner diameter of the upper stage expanded from ⁇ 3.2 mm to ⁇ 4.2 mm. This is considered to be due to the fact that the graining process was performed and the liquid droplets were hardly attached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 液体注入後の針の引抜きに伴い、試薬となる液体が引き上げられ、チムニーの頂部、またはチムニーがない場合はウェルの出口側開口近傍の上面へ付着することを防止又は抑制することを目的とする。 そのためのマイクロチップは、液体注入・排出用のウェル9と、所定高さを有しかつウェル9に連通するチムニー10と、を有する。チムニー10には、液体の上昇を防止するための液体上昇防止部20が形成されている。

Description

マイクロチップ
 本発明は化学分析システムに用いられるマイクロチップに関し、特に試薬液注入時の注入口の薬液による汚れ及びそれに伴うマイクロチップの蓋の汚染が効果的に防止できるマイクロチップに関する。
 近年、医療や環境測定の分野において、μTAS(Micro Total Analysis System)との略称で親しまれている小型の化学分析システムに注目が集まっており(非特許文献1等)、特に大量生産,大幅なコストダウンが可能という理由で、射出成形やインプリント成形などで作製可能な樹脂製のマイクロチップの開発が望まれている。
 μTAS用のマイクロチップには、通常、液体の流路となる微細流路と、その微細流路に液体を注入したり微細流路から液体を排出したりするためのウェル(微細流路と外部を連通させる孔)とが、形成されている(例えば特許文献1,2参照)。
 マイクロチップの態様としては、平面状を呈するチップに対し単にウェルとなる孔を開けたのみタイプや、ウェルに対しチムニーと呼ばれる円筒体を接合又は一体成形したタイプなどがあり、特にチムニーを有するマイクロチップの場合には、ゲルや試薬、サンプルなどの液体の注液量を確保でき、分析装置との接続性を確実かつ簡便にすることが可能となる。
 チムニーを有するマイクロチップの使い方(使用方法)は、例えば、下記のようになる。
(1)チムニーの開口部を上方に向けてチップを載置する
(2)各チムニーに対し、分析に必要なゲルや試薬、サンプルなどの液体を針で注入する(この場合液体を注入しないチムニーがあってもよい)
(3)一定のチムニーに蓋をして、他のチムニーから圧力をかけたり吸引したりなどし、微細流路にゲルや試薬、サンプルなどの液体を導入する
(4)チップに対し圧力や電圧を印加するなどして、微細流路中で液体を移動させ、各液体間で反応(撹拌や合成、分離など)を進行させる
(5)蓋を外してチップをそのまま廃棄する
 なお、チップに対し単に孔(ウェル)を開けたのみの(チムニーを有しない)マイクロチップも、液体の注液量が少なくなるものの、その使い方は上記と同様である。
 従来のラボレベルでは、上記(1)~(5)の手順でマイクロチップを操作・使用しても問題は基本的には生じていない。これに対し、実用レベルでは、短時間で反応・解析できるというメリットを最大限に生かそうとすると、上記の動作を時間短縮する必要が生じる場合があり、特に液体注入用の針の挿入や液体注入、針の引き抜きを短時間で済ませる必要が出てきている。
特開2005-257544号公報 特開2003-185627号公報
北森武彦著,「マイクロ化学チップの技術と応用」,丸善出版,2004年
 ところで、液体注入用の針を、チムニーの中心部に挿入できた場合には特に問題は発生しなかったが、マイクロチップの位置決めに誤差が生じた場合に、図12に示す通り、チムニー100の内壁104近傍に針200が挿入されると、表面張力により液体Lが内壁104と針200との間を上昇してくる現象(いわゆる毛細管現象)が見られた。このとき、針200を素早く引き抜くと、液体Lが針200に引きずられ、チムニー100の頂部102付近の内壁104や頂部102に液滴として付着してとどまり、チムニー100に対し蓋をするときに、内壁104や頂部102に付着した液滴が蓋に付着してしまう(正確な量を測定したはずの液体Lに液漏れが発生してしまう)という現象が発生した。
 特に、チムニーを有しないマイクロチップでは、この現象が顕著である。すなわち、チムニーを有する場合は、液体Lが多少表面張力で引きずられても、チムニー100の内壁104に一定の高さがあるため、液体Lをチムニー100の内部にとどめることがある程度可能であるが、チムニーを有しない場合は、ウェル110の内壁112の高さが低いため、液体Lが容易にウェル110の外へ飛び出してしまう。
 ここで、チムニー又はウェルを閉塞する蓋は基本的にマイクロチップとは別体の分析装置本体側に装備されており、当該蓋に液滴が付着することの問題点は、主に2つある。
 その1つは、ゲルや試薬、サンプルなどの液体の定量性が損なわれることであり、もう1つは、蓋がゲルや試薬、サンプルなどの液体で汚染され、次に使用しようとするマイクロチップを分析装置本体に設置したときに、コンタミネーションの原因となることである。
 このような問題を解決するために、1つのマイクロチップを使用する(分析が終了する)たびに、蓋を洗浄するという方法も考えられるが、洗浄には時間がかかることに加え、完全な洗浄は難しくコストも増大してしまうことなどから、実用的ではない。また、針を抜き差しする位置決め精度を高めることも考えられるが、マイクロチップは将来的にはウェルや微細流路の集積度が高まり、チムニーやウェルの寸法も小径化されることが予想され根本的な解決とはならない。
 したがって、本発明の主な目的は、チムニーを有するマイクロチップであって、液体注入後の針の引抜きに伴う液体のチムニー頂部への付着を防止又は抑制することができるマイクロチップを提供することにある。
 本発明の他の目的は、チムニーを有しないマイクロチップであって、液体注入後の針の引抜きに伴う液体のウェルの出口側の開口近傍の上面への付着を防止又は抑制することができるマイクロチップを提供することにある。
 上記課題を解決するため本発明の一態様によれば、
 基板と、前記基板の一方の面に接合された蓋部材と、前記基板と前記蓋部材の少なくとも一方の接合面に形成された流路とを、有するマイクロチップであって、
 前記マイクロチップは、
 前記基板に設けられ、前記流路と前記基板の接合面の反対側の面とを連通させた開口部であるウェルと、
 前記基板の接合面の反対側の面から突出するように設けられ、前記ウェルに連通する開口部を有する部材であるチムニーとを有し、
 前記チムニーには、液体がチムニーの頂部へ上昇することを防止する液体上昇防止部が形成されていることを特徴とするマイクロチップが提供される。
 本発明の他の態様によれば、
 基板と、前記基板の一方の面に接合された蓋部材と、前記基板と前記蓋部材の少なくとも一方の接合面に形成された流路とを、有するマイクロチップであって、
 前記マイクロチップは、前記基板に設けられ、前記流路と前記基板の接合面の反対側の面とを連通させた開口部であるウェルを有しており、
 前記基板には、前記ウェルの出口側の開口近傍の上面へ液体が上昇することを防止するための液体上昇防止部が形成されていることを特徴とするマイクロチップが提供される。
 本発明の一態様によれば、チムニーに液体上昇防止部が形成されているから、液体注入後の針の引抜きに伴う液体のチムニーの頂部への付着を防止又は抑制することができる。
 本発明の他の態様によれば、ウェルに液体上昇防止部が形成されているから、液体注入後の針の引抜きに伴う液体のウェルの出口側開口近傍の上面への付着を防止又は抑制することができる。
本発明の好ましい実施形態で使用されるマイクロチップの概略構成を示す平面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第1の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第2の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第3の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第4の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第5の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図1のA-A線に沿う断面図であって、本発明の好ましい実施形態(第6の実施形態)で使用されるチムニーとその近傍の概略構成を示す断面図である。 図4,図6の構成の組合せにかかる概略構成を示す断面図である。 図5,図6の構成の組合せにかかる概略構成を示す断面図である。 図6,図7の構成の組合せにかかる概略構成を示す断面図である。 本発明の好ましい実施例における基本構成(比較例)にかかる概略構成を示す断面図である。 従来の問題点を概略的に説明するための図面である。
 まず、本発明で用いられる用語について解説する。
 本発明において、「ウェル」とは、基板と蓋部材とで挟まれることで形成された流路と基板の外側の面、即ち接合面とは反対側の面とを連通させる開口部を表しており、その形状については特に限定はない。「ウェルの出口側の開口近傍の内壁」とは、ウェルの内壁のうち、試薬となる液体が充填される部分よりも出口側、すなわち、接合面の反対側の開口に近い領域を表している。
 また、本発明において、「チムニー」とは、基板の接合面と反対側の面から突出するように設けられ、前記ウェルに連通する開口部を有する部材を意味しており、通常は筒状の形状を有する。チムニーの形状には特に限定はなく、筒状である場合は円筒状、内部に開口部が設けられた角柱状等が挙げられるが、成形性等を鑑みると円筒状であることが好ましい。また、チムニーの形状としては、基板側から頂部に向かって外径が変化するいわゆる円錐台状や角錐台状の形状であってもよい。
 チムニーの頂部とは、チムニーの出口側開口の周りの上面部を表しており、「チムニーの頂部近傍の内壁」は、チムニー及びウェルで形成された開口部の中に試薬となる液体が充填された際に、充填された液体の上面よりも出口側の内壁部分を表すものとする。従って、充填された液体の上面がチムニーの内壁まで達しない場合、すなわち充填された液体の上面がウェルの深さよりも低い場合は、チムニーの内壁のいずれの部分も「チムニーの頂部近傍の内壁」とみなすことができ、前記液体上昇防止部は、チムニーの内壁のいずれの場所に設けられていても良い。
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 以下の実施形態にかかるマイクロチップ(1)は、微細加工技術を利用して樹脂製の基板の片方の面に微細な流路や回路を形成し、微小空間で核酸、タンパク質、又は血液などの液体試料の化学反応や、分離、分析などを行うマイクロ分析チップ、あるいはμTAS(Micro Total Analysis Systems)と称される装置であり、実用化が進められている。ここでは、マイクロチップを樹脂製として記載するが、その素材は特に限定はなく、ガラス等の材料も使用可能である。但し、成形性を考慮すると樹脂製であることが好ましい。
 このようなマイクロチップの利点としては、サンプルや試薬の使用量又は廃液の排出量が軽減され、省スペースで持ち運び可能な安価なシステムの実現が考えられる。
 [第1の実施形態]
 図1に示す通り、マイクロチップ1は平面視して長方形状を呈しており、基本的には矩形状の樹脂製基板3(紙面表側)と蓋部材である樹脂製フィルム5(紙面裏側)とを互いに貼り合わせた構成を有している。ここでは、蓋部材として、樹脂製フィルム5を貼り合わせる構成としたが、フィルムには限られず、シート状(板状)の部材を貼り合わせることで、流路及びウェルを封止することも可能である。
 マイクロチップ1(樹脂製基板3及び樹脂製フィルム5)の外形形状は、ハンドリング、分析しやすい形状であれば良く、正方形や長方形などの形状が好ましい。一例として、10~200mm角の大きさであれば良い。また、10~100mm角の大きさであっても良い。
 マイクロチップ1には微細流路7と複数のウェル9とが形成されている。図2に示す通り、微細流路7は樹脂製基板3に形成された流路用溝であり、樹脂製フィルム5が微細流路7を形成するための蓋部材(カバー)として機能している。本実施の形態では、流路を形成するための流路用溝が基板(樹脂製基板3)側に設けられているが、蓋部材(樹脂製フィルム5)側に設けられていてもよく、基板と蓋部材の両方にこの溝が形成されていてもよい。
 ウェル9は、樹脂製基板3を貫通する液体注入・排出用の孔であり、微細流路7に連通している。
 微細流路7の形状は、分析試料、試薬の使用量を少なくできること、成形金型の作製精度、転写性、離型性などを考慮して、幅、深さともに、10~200μmの範囲内の値であることが好ましいが、特に限定されるものではない。微細流路7の幅と深さは、マイクロチップ1の用途によって決めれば良い。なお、微細流路7の断面形状は矩形状でも良いし、曲面状でも良い。
 樹脂製基板3の板厚T1は、成形性を考慮して、0.2~5mmが好ましく、0.5~2mmがより好ましい。樹脂製フィルム5(シート状の部材)の厚さT2は、30μm~300μmであることが好ましく、40~150μmであることがより好ましい。
 図2に示す通り、樹脂製基板3には所定高さを有しかつ円筒状を呈したチムニー10(円筒体)が立設されている。チムニー10は樹脂製基板3と一体成形されており、内部空間部がウェル9と連通している。上述のように、ここではチムニー10を円筒体として記載するが、その形状は限定されない。
 チムニー10は、樹脂製基板3と別体で構成され樹脂製基板3に対し接合されてもよい。樹脂製基板3に対する接着の手間を省く上では、樹脂製基板3に対し一体成形されているのがよい。
 チムニー10は、高さHが1~10mm程度で内径ID(開口径)が0.5~5mm程度であることが好ましい。チムニー10の「高さH」とは、樹脂製基板3の表面(上面)からチムニー10の頂面(上面)までの高さをいい、チムニー10の「内径ID」とは、チムニー10の高さ方向における中央部の内径をいう。
 チムニー10の頂部12(先端部)は円環状を呈しており、頂部12にはチムニー10の頂部への液体上昇を防止するための液体上昇防止部20が形成されている。
 液体上昇防止部20はUV硬化性の樹脂(接着剤)で構成されており、頂部12に沿って円環状に形成されている。液体上昇防止部20は断面視すると、チムニー10の内壁面14から頂面16(上面)を経て外壁面18にわたっており、頂部12を覆っている。そのため、チムニー10の頂部12の内径ID1(開口径)は内径IDより小さくなっている。
 ここでは、頂部12を覆う構造とされているが、内壁面14側に突出した構造となっていればよく、頂面16や外壁面18には設けられていなくてもよい。
 樹脂製基板3及び樹脂製フィルム5には樹脂が用いられることが好ましい。その樹脂としては、成形性(転写性、離型性)が良いこと、透明性が高いこと、紫外線や可視光に対する自己蛍光性が低いことなどが好ましい条件として挙げられる。例えば、樹脂製基板3及び樹脂製フィルム5には熱可塑性樹脂が用いられる。
 熱可塑性樹脂としては、例えば、ポリカーボネート、ポリメタクリル酸メチル、ポリスチレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン6、ナイロン66、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリイソプレン、ポリエチレン、ポリジメチルシロキサン、環状ポリオレフィンなどを用いることが好ましい。特に好ましいのは、ポリメタクリル酸メチル、環状ポリオレフィンを用いることである。なお、樹脂製基板3と樹脂製フィルム5とで、同じ材料を用いても良いし、異なる材料を用いても良い。
 続いて、マイクロチップ1の製造方法について説明する。
 樹脂製基板3として、一定の金型を用いて上記した一定の樹脂を射出成形し、微細流路7,ウェル9,チムニー10を有する板状の樹脂成形品を形成する。この場合、チムニー10を形成するために、可動コア側には一定の先端径を有するコアピンを立てる。
 他方、樹脂製フィルム5として、上記した一定の樹脂を所定の大きさにカットしたものを準備する。
 なお、樹脂製基板3の製造(射出成形)においては、転写性を高めるため、微細流路7,ウェル9,チムニー10には2~5°の抜きテーパを形成してもよい。
 その後、樹脂製基板3と樹脂製フィルム5とを熱融着により接合する。
 例えば、熱融着には、熱板、熱風、熱ロール、超音波、振動、レーザなどを用いて、樹脂製基板3と樹脂製フィルム5とを加熱する。接合例の一例としては、熱プレス機を用いて、加熱された熱板によって樹脂製基板3と樹脂製フィルム5とを挟み、熱板によって圧力を加えて所定時間保持することで、樹脂製基板3と樹脂製フィルム5とを接合することができる。
 このような接合によって、樹脂製フィルム5が流路用溝の蓋(カバー)として機能して微細流路7が完全に閉塞され、その結果、樹脂製基板3に形成された貫通孔(ウェル9),チムニー10を介して、微細流路7と樹脂製基板3,樹脂製フィルム5の接合体の外部とが繋がり、液体試料の注入や排出などが可能になる。
 その後、樹脂製基板3のチムニー10の頂部12の近傍に液体上昇防止部20を形成する。詳しくは、UV硬化性の接着剤をチムニー10の頂部12に沿って円環状に塗布し、当該接着剤に対し紫外線を照射して当該接着剤を硬化させる。その結果、マイクロチップ1を製造することができる。
 液体上昇防止部20の製造にあたっては、接着剤の塗布・硬化により製造可能であるから、形状(内径ID1など)の変更において自由度をもたせることができる。
 以上の本実施形態によれば、チムニー10の頂部12(の近傍)の内壁面14に液体上昇防止部20が形成されチムニー10の開口径が狭められているから、液体注入後の針を引き抜く際に、液体が液体上昇防止部20によってチムニー10の内部に戻され、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 [第2の実施形態]
 第2の実施形態は主には下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同じである。図3に示す通り、本実施形態にかかるマイクロチップ1ではチムニー10の頂部12の構成が異なっており、図2の液体上昇防止部20に代えて、液体上昇防止部30が設けられている。
 液体上昇防止部30はチムニー10の頂部12を変形させた部位であり、チムニー10と一体成形されている。液体上昇防止部30はチムニー10の頂部12に対し内側と外側とにそれぞれ突出した部位であり、チムニー10の頂部12に沿って円環状に形成されている。液体上昇防止部30がチムニー10の内壁から内側に突出しているため、チムニー10の頂部12(の近傍)の内径ID2(開口径)は内径IDより小さくなっている。
 液体上昇防止部30を製造する際には、樹脂製基板3の微細流路7を形成した側(樹脂製フィルム5側)を常温に保持した状態で、チムニー10の頂部12に対し一定温度に加熱した熱プレス機(熱板)を押し当て、一定の荷重を加えながらこの状態を一定時間保持し、チムニー10の頂部12を熱変形させる。
 液体上昇防止部30の製造にあたっては、チムニー10の頂部12に対し単に熱板を押圧することで足りるから、比較的簡単に製造することができるし、当該熱板と微細流路7とがチムニー10により離間しているから、微細流路7の変形も防止することができる。
 以上の本実施形態によれば、第1の実施形態と同様に、チムニー10の頂部12に液体上昇防止部30が形成されチムニー10の開口径が狭められているから、液体注入後の針を引き抜く際に、液体が液体上昇防止部30によってチムニー10の内部に戻され、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 なお、液体上昇防止部30は、チムニー10とは別体で構成され、チムニー10の頂部12の内壁面14に対し突出部として接着されてもよい。
 [第3の実施形態]
 第3の実施形態は主には下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同じである。図4に示す通り、本実施形態にかかるマイクロチップ1ではチムニー10の頂部12の構成が異なっており、図2の液体上昇防止部20に代えて、液体上昇防止部40が設けられている。
 液体上昇防止部40はチムニー10の頂部12を変形させた部位であり、チムニー10と一体成形されている。液体上昇防止部40はチムニー10の頂部12の内壁から内側に突出した部位であり、チムニー10の頂部12に沿って円環状に形成されている。
 液体上昇防止部40がチムニー10の内壁から内側に突出しているため、チムニー10の頂部12(の近傍)の内径ID3(開口径)は内径IDより小さくなっている。
 液体上昇防止部40を製造する際には、樹脂(樹脂製基板3)の射出成形工程において、固定コア側には一定の先端径を有するコアピンを立て、可動コア側には固定コア側のコアピンより小径の先端径を有するコアピンを立てて、樹脂を射出成形する。
 液体上昇防止部40の製造にあたっては、射出成形工程においてコアピンの選択と配置とにより形成可能であるから、液体上昇防止部20,30に比較して、正確な形状転写と安定した品質とを確保することができる。
 以上の本実施形態によれば、第1の実施形態と同様に、チムニー10の頂部12(の近傍)に液体上昇防止部40が形成されチムニー10の開口径が狭められているから、液体注入後の針を引き抜く際に、液体が液体上昇防止部40によってチムニー10の内部に戻され、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 なお、液体上昇防止部40は、チムニー10とは別体で構成され、チムニー10の頂部12の内壁面14に対し突出部として接着されてもよい。
 [第4の実施形態]
 第4の実施形態は主には下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同じである。図5に示す通り、本実施形態にかかるマイクロチップ1ではチムニー10の頂部12の構成が異なっており、図2の液体上昇防止部20に代えて、液体上昇防止部50が設けられている。
 液体上昇防止部50はチムニー10の頂部12を変形させた部位であり、チムニー10と一体成形されている。液体上昇防止部50はチムニー10の頂部12に沿う段差構造を有しており、チムニー10の頂部12(近傍の)内径を大きくさせる構成とされている。上段部52と下段部54とから構成されている。下段部54の内径(開口径)はチムニー10の内径IDと同じであり、上段部52の内径ID4(開口径)はチムニー10の内径IDより大きくなっている。
 液体上昇防止部50を製造する際には、樹脂(樹脂製基板3)の射出成形工程において、可動コア側に対し段付きのコアピンを立てて、樹脂を射出成形する。
 液体上昇防止部50の製造にあたっては、液体上昇防止部40と同様に、射出成形工程においてコアピンの選択と配置とにより形成可能であるから、液体上昇防止部20,30に比較して、正確な形状転写と安定した品質とを確保することができる。
 以上の本実施形態によれば、チムニー10の頂部12に液体上昇防止部50が形成されチムニー10の開口径が拡げられているから、液体注入用の針とチムニー10の内壁面14との間に一定の間隔を保持することができる。その結果、液体注入後の針を引き抜く際に、針と内壁面14との間の毛細管効果を抑えることができるために、液体が上昇するのを抑えられ、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 本実施の形態では、液体上昇防止部50を段差形状としたが、チムニー10の内径を拡大することで液体の上昇を抑制できれば特に形状に限定はない。また、必ずしも頂部12に設けられる必要はなく、液体が充填される領域より出口側に近い領域、即ち頂部12近傍に設けられていればよい。
 [第5の実施形態]
 第5の実施形態は主には下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同じである。図6(a)に示す通り、本実施形態にかかるマイクロチップ1ではチムニー10の頂部12の構成が異なっており、図2の液体上昇防止部20に代えて、液体上昇防止部60が設けられている。
 液体上昇防止部60はチムニー10の頂部12の(近傍の)内壁面14を変形させた部位であり、チムニー10と一体成形されている。液体上昇防止部60はチムニー10の頂部12の内壁面14に形成されており、頂部12に沿って円環状に形成されている。液体上昇防止部60はシボ加工により形成されており、凹凸状を呈している。すなわち、液体上昇防止部60は凹凸構造により疎水化処理部として機能している。
 液体上昇防止部60を製造する際には、樹脂(樹脂製基板3)の射出成形工程において、可動コア側に対し先端がシボ加工されたコアピンを立てて、樹脂を射出成形する。
 コアピンにおけるシボ加工の算術平均粗さは、好ましくはRa=0.5~50μmである。コアピンにおけるシボ加工の形状は直線状であってもよいし、曲線状であってもよいし、格子状であってもよいし、不規則に交差する形状であってもよい。コアピンにおけるシボ加工の形状を格子状とする場合には、格子間隔を10~200μmとするのが好ましい。
 液体上昇防止部60の製造にあたっては、シボ加工を施したコアピンの選択により形成可能であるから、チムニー10の頂部12の内壁面14に対し均一なシボ加工面を再現よく形成することができるし、樹脂の材料物性やコアピンへのシボ加工のパターン,粗さなどで制御(最適化)可能であるから、使用する液体に応じてチムニー10の頂部12への撥水性を制御することができる。
 以上の本実施形態によれば、チムニー10の頂部12に液体上昇防止部60が形成され頂部12が凹凸状を呈しているから、チムニー10の頂部12の(近傍の)内壁面14に撥水性が付与される。その結果、液体注入後の針を引き抜く際に、針と内壁面14との間で液体が上昇するのを抑えられ、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 [変形例]
 図6(b)に示す通り、液体上昇防止部60の表面に対しさらに第2の凹凸構造65を形成し、液体上昇防止部60の凹凸構造を2段階にわたるようにしてもよい。この場合、チムニー10の頂部12の近傍の撥水性能をさらに向上させることができる。
 [第6の実施形態]
 第6の実施形態は主には下記の点で第1の実施形態と異なっており、それ以外は第1の実施形態と同じである。図7に示す通り、本実施形態にかかるマイクロチップ1ではチムニー10の頂部12近傍の構成が異なっており、図2の液体上昇防止部20に代えて、液体上昇防止部70が設けられている。
 液体上昇防止部70は撥水処理膜で構成されており、疎水化処理部として機能している。液体上昇防止部70は頂部12に沿って円環状に形成されている。液体上昇防止部70は断面視すると、チムニー10の内壁面14から頂面16(上面)を経て外壁面18にわたっており、頂部12を覆っている。液体上昇防止部70を構成する撥水処理膜はフルオロカーボン系材料の膜である。
 本実施の形態では、撥水処理膜を内壁面14から頂面16を経て外壁面18まで形成しているが、少なくとも内壁面14に設けられていればよい。
 液体上昇防止部70を製造する際には、一定のフッ化処理溶液に対しチムニー10の頂部12を浸漬して乾燥させる。液体上昇防止部70の製造にあたっては、単なるフッ化処理溶液へのチムニー10の頂部12の浸漬により形成可能であるから、チムニー10の頂部12に対し均一なフッ化処理面を再現よく形成することができる。
 なお、液体上昇防止部70を構成する撥水処理膜とチムニー10の頂部12近傍の壁面との密着性を高めるため、頂部12の壁面に対し、蒸着やスパッタなどでSiO膜を下地層として形成したり、プラズマ処理を施したりしてもよい。
 また、液体上昇防止部70を構成する撥水処理膜は、フルオロカーボン系材料の膜に限らず、炭化水素系材料の膜(例えばDLC(ダイヤモンドライクカーボン)膜)であってもよいし、パレリン膜(例えば日本パレリン製パレリン膜)であってもよいし、トリアジンチオール膜(例えば竹内真空被膜製トリアジンコート)であってもよい。
 以上の本実施形態によれば、チムニー10の頂部12近傍に液体上昇防止部70が形成され頂部12近傍の内壁面14が撥水処理膜に覆われているから、チムニー10の頂部12に撥水性が付与される。その結果、液体注入後の針を引き抜く際に、針と内壁面14との間で液体が上昇するのを抑えられ、液体のチムニー10(の頂部12)への付着を防止又は抑制することができる。
 なお、第1~第6の実施形態にかかる構成(液体上昇防止部20,30,40,50,60,70)は互いに組み合わせられてもよく、例えば、チムニー10の頂部12に対し、図8に示す通りに液体上昇防止部40,60が同時に形成されてもよいし、図9に示す通りに液体上昇防止部50,60が同時に形成されてもよいし、図10に示す通りに液体上昇防止部60,70が同時に形成されてもよい。
 さらに、第1~第6の実施形態にかかる構成(液体上昇防止部20,30,40,50,60,70)は、チムニー10を有しないマイクロチップ1にも適用可能であり、ウェル9の出口側開口の近傍に対し、液体上昇防止部20,30,40,50,60,70(これらの組合せを含む。)が形成されてもよい。上述のようにウェル9の「出口側開口の近傍」とは、ウェル9内の注液面より上部の部位であってウェル9の上部内壁から樹脂製基板3の上面に至る部位をいう(図2中、符号9a参照)。
 この場合においては、液体注入後の針の引抜きに伴う液体のウェル9(の開口近傍の上面9a)への付着を防止又は抑制することができる。
(1)サンプルの作製
(1.1)サンプル1
 樹脂製基板として、透明樹脂材料のポリメチルメタクリレート(アクリル系樹脂,旭化成製デルペット70NH)を射出成形し、外形寸法が長さ50mm×幅50mm×厚さ1mmの板状部材を作製した。その板状部材には、幅30μm×深さ30μmの流路用溝を形成し、さらに内径が2.5mmのウェルと、底部内径2.5mm×高さ7mm×(平均)肉厚0.75mmのチムニーとを、それぞれ複数形成した。流路用溝およびチムニーには、射出成形での転写性を高めるため、2~5°の抜きテーパを形成した。その結果、チムニーの底部内径が2.5mmであるのに対し、チムニーの頂部内径は3.2mmとなった(図11参照)。
 他方、樹脂製フィルムとして、透明樹脂材料のポリメチルメタクリレート(アクリル系樹脂,三菱レイヨン製アクリプレン,厚さ75μm)を、長さ50mm×幅50mmにカットしたものを準備した。
 その後、樹脂製基板と樹脂製フィルムとを接合した。詳しくは、流路用溝が形成された樹脂製基板の接合面に対し樹脂製フィルムを重ね合わせ、熱プレス機を用いて、プレス温度82℃に加熱された熱板間に樹脂製基板と樹脂製フィルムとを挟み、3.72×10Pa(38kgf/cm)の圧力を加えて30秒間保持し、樹脂製基板と樹脂製フィルムとを接合した。
 以上の処理により作製されたマイクロチップを「サンプル1」とした。
 (1.2)サンプル2
 サンプル1において、粘性の高いUV接着剤をチムニーの頂部に円環状に塗布し紫外線を照射して硬化させ、リング状の液体上昇防止部を形成した(図2参照)。これによりチムニーの頂部内径を3.2mmから2.2mmに狭め、これを「サンプル2」とした。
 (1.3)サンプル3
 サンプル1において、チムニーの頂部の形状を変形させて液体上昇防止部を形成した(図3参照)。サンプル1において、樹脂製基板の流路用溝を形成した側を常温に保持した状態で、チムニーの頂部に対し150℃に加熱した熱プレス機(熱板)を押し当て、ウェル1箇所当たり1kgの荷重を加えて30秒間保持した。
 これにより(熱変形により)チムニーの頂部内径を3.2mmから2.4mmに狭め、これを「サンプル3」とした。
 (1.4)サンプル4
 サンプル1において、チムニーの頂部の形状を変形させて液体上昇防止部を形成した(図4参照)。サンプル1ではチムニーを作製する際に可動コア側にコアピンを立てたが、ここでは可動コア側にφ2.2mmの小径のコアピンを、固定コア側には先端径2.5mmのコアピンを、それぞれ立てて、チムニーの頂部の内径を2.2mmとした。
 これにより得られたマイクロチップを「サンプル4」とした。
 (1.5)サンプル5
 サンプル1において、チムニーの頂部の形状を変形させて液体上昇防止部を形成した(図5参照)。サンプル1ではチムニーを作製する際に可動コア側にコアピンを立てたが、ここでは段付きのコアピンを立て、段付き部(内径の大きい方,上段部)の寸法を深さ3mm×内径4.2mm×肉厚0.25mmとした。
 これにより得られたマイクロチップを「サンプル5」とした。
 (1.6)サンプル6
 サンプル1において、チムニーの頂部の形状を変形させて液体上昇防止部を形成した(図6(a)参照)。サンプル1ではチムニーを作製する際に可動コア側に鏡面仕上げのコアピンを立てたが、ここでは表面に算術平均粗さ「Ra=10μm」のシボ加工が施されたコアピンを立てた。ウェルの頂部(最頂部)から3mmの深さまでがシボ加工されるよう、コアピンをシボ加工処理した。
 これにより得られたマイクロチップを「サンプル6」とした。
 なお、予備実験として、サンプル6における撥水性を下記のように確認した(接触角を測定した。)。
 サンプル1の樹脂製基板と同じ材料のPMMAデルペット70NHの鏡面仕上げの平面サンプルを作製し、純水接触角を測定したところ、70°であった。その後その平面サンプルに算術平均粗さRa=10μmのシボ加工を施し、純水接触角を測定したところ、95°であった。シボ加工前後で接触角が70°から95°に増大し、撥水性能が付与されたことを確認することができた。
 (1.6.1)サンプル6-1について
 サンプル6において、算術平均粗さ「Ra=1μm」のシボ加工が施されたコアピンを使用し、これにより得られたマイクロチップを「サンプル6-1」とした。
 なお、予備実験として、サンプル6-1における撥水性を下記のように確認した。鏡面仕上げの樹脂製平面サンプルと、Ra=1μmのシボ加工が施された樹脂製平面サンプルと、Ra=0.3μmのシボ加工が施された樹脂製平面サンプルとを、それぞれ作製した。
 その後、一方の側に前記樹脂製平面サンプルを、他方の側にガラス製平面サンプルを配置し、各サンプル間に0.1mmの隙間を形成し、その隙間に3μlの液滴(水)を導入し、当該液滴が隙間に浸透する様子を観察した。
 その観察の結果、鏡面仕上げの樹脂製平面サンプルでは1秒未満で液滴が浸透したのに対し、Ra=1μmの樹脂製平面サンプルでは液滴が全量浸透するまで2秒以上を要した。Ra=0.3μmの樹脂製平面サンプルでは1秒未満で液滴が浸透した。
 以上の観察結果より、Ra=1μmのシボ加工を施すことにより、毛細管現象を抑制する効果が付与されたことを確認することができた。
 (1.6.2)サンプル6-2について
 サンプル6において、「高さ10μm×間隔150μmの格子状」のシボ加工が施されたコアピンを使用し、これにより得られたマイクロチップを「サンプル6-2」とした。
 なお、予備実験として、サンプル6-2における撥水性を下記のように確認した。鏡面仕上げの樹脂製平面サンプルと、格子状(高さ10μ×間隔150μm)のシボ加工が施された樹脂製平面サンプルと、直線状(高さ10μ×間隔150μm)のシボ加工が施された樹脂製平面サンプルとを、それぞれ作製した。
 一方の側に前記樹脂製平面サンプルを、他方の側にガラス製平面サンプルを配置し、各サンプル間に0.1mmの隙間を形成し、その隙間に3μlの液滴(水)を導入し、当該液滴が隙間に浸透する様子を観察した。
 その観察の結果、鏡面仕上げの樹脂製平面サンプルでは1秒未満で液滴が浸透したのに対し、格子状の凹凸を有する樹脂製平面サンプルでは液滴が全量浸透することはなかった。直線状の凹凸を有する樹脂製平面サンプルでは液滴が全量浸透するまで5秒以上を要した(直線状のパターンに関しては、直線を横切る方向に対しては全量浸透することがなかった。)。
 以上の観察結果より、表面に格子状(及び直線状)のシボ加工を施すことにより、毛細管現象を抑制する効果が付与されたことを確認することができた。
 (1.7)サンプル7
 サンプル1において、チムニーの頂部をフッ化処理して液体上昇防止部を形成した(図7参照)。具体的には、オプツールDX(ダイキン工業製)をデムナムソルベント液(ダイキン工業製)に0.1%に希釈した溶液に対し、ウェルの頂部を3mmの深さで1分間浸漬し、その後24時間乾燥させ、さらにデムナムソルベント液でリンスした。
 これにより得られたマイクロチップを「サンプル7」とした。
 なお、予備実験として、サンプル7における撥水性を下記のように確認した(接触角を測定した。)。サンプル1の樹脂製基板と同じ材料のPMMAデルペット70NHで鏡面仕上げの平面サンプルを作製し、純水接触角を測定したところ、70°であった。その後その平面サンプルに上記と同様のフッ化処理を施し、純水接触角を測定したところ、108°であった。フッ化処理前後で接触角が70°から108°に増大し、撥水性能が付与されたことを確認することができた。
 (1.8)サンプル8
 サンプル1に対し、サンプル4(開口部縮小),サンプル6(シボ加工)と同様の処理をそれぞれ施し、液体上昇防止部を形成した(図8参照)。
 詳しくは、サンプル1の射出成形工程において、可動コア側にφ2.2mmでRa=10μmのシボ加工されたコアピンを、固定コア側には先端径2.5mmでRa=10μmのシボ加工されたコアピンをそれぞれ立てて、ウェルの頂部の内径が2.2mmで、ウェルの頂部から3mmの深さまでがシボ加工されるよう、コアピンのシボ加工の範囲を調整した。
 これにより得られたマイクロチップを「サンプル8」とした。
 (1.9)サンプル9
 サンプル1に対し、サンプル5(段差形成),サンプル6(シボ加工)と同様の処理をそれぞれ施し、液体上昇防止部を形成した(図9参照)。詳しくは、サンプル1の射出成形工程において、段付きのコアピンであってRa=10μmのシボ加工されたコアピンを可動コア側に立てて、上段部の寸法が深さ3mm×内径4.2mm×肉厚0.25mmで上段部がシボ加工されるようにした。
 これにより得られたマイクロチップを「サンプル9」とした。
 (1.10)サンプル10
 サンプル1に対し、サンプル6(シボ加工),サンプル7(フッ化処理)と同様の処理をそれぞれ施し、液体上昇防止部を形成した(図10参照)。詳しくは、サンプル1に対し、サンプル6と同様の手法でチムニーの頂部の内壁にシボ加工面を形成し、その後サンプル7と同様の処理を施してチムニーの頂部の内壁をフッ化処理した。
 これにより得られたマイクロチップを「サンプル10」とした。
 なお、サンプル10において、サンプル6と同様の予備実験を行ったところ、シボ加工,フッ化処理の前後で純水接触角が70°から135°に大幅に増大し、超撥水性能が付与されたことを確認することができた。ここでいう「超撥水性」とは、表面に純水を滴下するとほとんど球状に見え、平面サンプルを傾けると滑落するような状態である。
 (2)評価の方法とその結果
 各サンプルにおいてチムニーへの液体の付着の有無とその付着箇所、付着量などを検査して各サンプルの良否を評価した。詳しくは、はじめに外径φ0.5mm×内径φ0.25mm×長さ50mmの針がついたシリンジポンプをZ軸ステージに組み付けた。シリンジには粘度調整剤にて粘度を10cPに調整した水溶液を入れた。針をチムニーの内壁から水平方向に0.2mm離間させ、かつ、ウェルの底部(樹脂製フィルムの樹脂製基板との接合面)から垂直方向に50mm離間した位置に固定した。
 この状態で、針を、300mm/secの速度でウェルの底部50mmの高さから0.2mmの高さまで垂直に下降させ、15μlの水溶液を0.1秒間で注入し、その後針を、300mm/secの速度でウェルの外に垂直に引き抜くという動作を行い、チムニーの内壁や頂部などへの液体の付着の有無とその付着箇所、付着量などを確認した(付着検査試験)。
 なお、液体の付着量については、付着した液体をろ紙で吸い取り、精密天秤で吸取り前後の重さをそれぞれ測定して算出した。
 付着検査試験の概要(仕様)は下記の通りである。
  針:ステンレス製,外径φ0.5mm×内径φ0.25mm×長さ50mm
  液体:粘度調整剤にて粘度を10cPに調整した水溶液
  針の抜き差し速度:300mm/sec
  液体の注入量:15μl
  ウェルの形状(サンプル1):内径2.5mm
  チムニーの形状(サンプル1):底部内径2.5mm×高さ7mm×頂部内径3.2mm×平均肉厚0.75mm(頂部肉厚1mm)
 各サンプルについて、付着検査試験をそれぞれ10回行い、その平均(値)を求めた。付着検査試験の結果を、サンプルごとに下記に示し、併せて簡単に表1にも示す。
 (2.1)サンプル1
 10回の付着検査試験を繰り返した結果、チムニーの頂部の内壁への液滴の付着が観察された。平均付着量は0.5μlであった。
 特に、10回の試験中2回で、チムニーの頂面(上面)への付着が認められた。
 (2.2)サンプル2
 10回の付着検査試験を繰り返した結果、チムニーの頂部の内壁であって液体上昇防止部の下部への液滴の付着がわずかに観察された。平均付着量は0.2μlであった。
 サンプル2では、注入用の針を引き抜く際に表面張力によって針に引きずられた液体が、内径が狭められた液体上昇防止部によってチムニーの内部に戻され、その一部が液体上昇防止部の下部へ付着したためと考えられる。なお、液体上昇防止部の頂面(上面)への付着は認められなかったので、コンタミネーションは防止可能であると考えられる。
 (2.3)サンプル3
 10回の付着検査試験を繰り返した結果、チムニーの頂部の内壁であって液体上昇防止部の下部への液滴の付着がわずかに観察された。平均付着量は0.3μlであった。
 サンプル3でも、サンプル2と同様に、注入用の針を引き抜く際に表面張力によって針に引きずられた液体が、内径が狭められた液体上昇防止部によってチムニーの内部に戻され、その一部が液体上昇防止部へ付着したためと考えられる。なお、液体上昇防止部の頂面(上面)への付着は認められなかったので、コンタミネーションは防止可能であると考えられる。
 (2.4)サンプル4
 10回の付着検査試験を繰り返した結果、チムニーの頂部の内壁であって液体上昇防止部の下部への液滴の付着がわずかに観察された。平均付着量は0.2μlであった。
 サンプル4でも、サンプル2と同様に、注入用の針を引き抜く際に表面張力によって針に引きずられた液体が、内径が狭められた液体上昇防止部によってチムニーの内部に戻され、その一部が液体上昇防止部の下部へ付着したためと考えられる。なお、液体上昇防止部の頂面(上面)への付着は認められなかったので、コンタミネーションは防止可能であると考えられる。
 (2.5)サンプル5
 10回の付着検査試験を繰り返した結果、チムニーの頂部(液体上昇防止部(段差構造部)の内壁)への付着は認められなかった。
 上段部の内径をφ3.2mmからφ4.2mmに拡げた分の半分(0.5mm分)だけ、針をチムニーの内壁から離間することができたため、付着現象が起こらなかったと考えられる。
 (2.6)サンプル6
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル6では、シボ加工(Ra=10μm)を施すことで、チムニーの頂部の内壁の純水接触角が70°から95°へと高まり、液体に対して撥水性を発揮したためと考えられる。
(2.6.1)サンプル6-1について
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル6-1では、微細なシボ加工(Ra=1μm)を施すことで、液体に対して毛細管現象を抑制する効果を発揮したためと考えられる。
 (2.6.2)サンプル6-2について
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル6-2では、シボ加工(格子状)を施すことで、液体に対して毛細管現象を抑制する効果を発揮したためと考えられる。
 (2.7)サンプル7
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル7では、フッ化処理を施すことで、チムニーの頂部の純水接触角が70°から108°へと高まり、液体に対して撥水性を発揮したためと考えられる。
 (2.8)サンプル8
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル8では、注入用の針を引き抜く際に表面張力によって針に引きずられた液体が、内径が狭められた液体上昇防止部によってチムニーの内部に戻されるとともに、チムニーの頂部自体がシボ加工によって撥水処理されたためと考えられる。
 (2.9)サンプル9
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル9では、上段部の内径をφ3.2mmからφ4.2mmに拡げた分の半分(0.5mm分)だけ、針をチムニーの内壁から離間することができ、内径が拡がったチムニーの頂部にはシボ加工が施され液滴が付着しにくい状態にあったためと考えられる。
 (2.10)サンプル10
 10回の付着検査試験を繰り返した結果、チムニーの頂部への付着は認められなかった。
 サンプル10では、シボ加工,フッ化処理を施すことで、チムニーの頂部の純水接触角が70°から135°へと高まり、液体に対して超撥水性を発揮したためと考えられる。
Figure JPOXMLDOC01-appb-T000001
 (3)まとめ
 サンプル1とサンプル2~10とを比較すると、サンプル2~10では良好な結果を得られた。
 この結果から、チムニーの開口径を縮小することやチムニーに凹凸構造を形成すること、チムニーに撥水処理膜を形成することは、液体のチムニーへの付着を防止又は抑制する上で有用であることがわかった。
 なお、サンプル1~10においてチムニーを形成せずに、ウェルの出口側開口の近傍に対しサンプル2~9と同様の処理を施し、それら各サンプルに対し付着検査試験を行ったところ、サンプル1~10と同様の結果を得られた。
 この結果から、ウェルの開口径を縮小することやウェルに凹凸構造を形成すること、ウェルに撥水処理膜を形成することは、液体のウェルへの付着を防止又は抑制する上で有用であることがわかった。
 1 マイクロチップ
 3 樹脂製基板
 T1 板厚
 5 樹脂製フィルム
 T2 厚さ
 7 微細流路
 9 ウェル
 10 チムニー
 12 頂部
 14 内壁面
 16 頂面
 18 外壁面
 H 高さ
 ID,ID1,ID2,ID3 内径
 20,30,40,50,60,70 液体上昇防止部
 52 上段部
 54 下段部
 65 第2の凹凸構造
 100 チムニー
 102 頂部
 104 内壁
 110 ウェル
 112 内壁
 200 針
 L 液体

Claims (16)

  1.  基板と、前記基板の一方の面に接合された蓋部材と、前記基板と前記蓋部材の少なくとも一方の接合面に形成された流路とを、有するマイクロチップであって、
     前記マイクロチップは、
     前記基板に設けられ、前記流路と前記基板の接合面の反対側の面とを連通させた開口部であるウェルと、
     前記基板の接合面の反対側の面から突出するように設けられ、前記ウェルに連通する開口部を有する部材であるチムニーとを有し、
     前記チムニーには、液体がチムニーの頂部へ上昇することを防止する液体上昇防止部が形成されていることを特徴とするマイクロチップ。
  2.  前記液体上昇防止部として、前記チムニーの頂部近傍の内壁に、前記開口部の内側に突出した突出部を有することを特徴とする請求項1に記載のマイクロチップ。
  3.  前記突出部が、前記チムニーに接着されていることを特徴とする請求項2に記載のマイクロチップ。
  4.  前記突出部が、前記チムニーを変形させることで形成されていることを特徴とする請求項2に記載のマイクロチップ。
  5.  前記液体上昇防止部として、前記チムニーの頂部近傍の内壁に前記チムニーの内径を大きくさせる内径拡大部を有することを特徴とする請求項1に記載のマイクロチップ。
  6.  前記内径拡大部は、前記チムニーの頂部近傍の内壁に設けられた段差構造であり、
     前記段差構造の上段部の開口径が下段部の開口径より大きいことを特徴とする請求項5に記載のマイクロチップ。
  7.  前記液体上昇防止部として、前記チムニーの頂部近傍の内壁には疎水化処理部が設けられていることを特徴とする請求項1に記載のマイクロチップ。
  8.  前記疎水化処理部は凹凸構造で構成されていることを特徴とする請求項7に記載のマイクロチップ。
  9.  前記疎水化処理部は撥水処理膜で構成されていることを特徴とする請求項7に記載のマイクロチップ。
  10.  基板と、前記基板の一方の面に接合された蓋部材と、前記基板と前記蓋部材の少なくとも一方の接合面に形成された流路とを、有するマイクロチップであって、
     前記マイクロチップは、前記基板に設けられ、前記流路と前記基板の接合面の反対側の面とを連通させた開口部であるウェルを有しており、
     前記基板には、前記ウェルの出口側の開口近傍の上面へ液体が上昇することを防止するための液体上昇防止部が形成されていることを特徴とするマイクロチップ。
  11.  前記液体上昇防止部として、前記ウェルの出口側の開口近傍の内壁に、前記開口部の内側に突出した突出部を有することを特徴とする請求項10に記載のマイクロチップ。
  12.  前記液体上昇防止部として、前記ウェルの出口側の開口近傍の内壁に、前記ウェルの内径を大きくさせる内径拡大部を有することを特徴とする請求項10に記載のマイクロチップ。
  13.  前記内径拡大部は、前記ウェルの出口側の開口近傍の内壁に設けられた段差構造であり、
     前記段差構造の上段部の開口径が下段部の開口径より大きいことを特徴とする請求項12に記載のマイクロチップ。
  14.  前記液体上昇防止部として、前記ウェルの出口側の開口近傍の内壁には疎水化処理部が設けられていることを特徴とする請求項10に記載のマイクロチップ。
  15.  前記疎水化処理部は凹凸構造で構成されていることを特徴とする請求項14に記載のマイクロチップ。
  16.  前記疎水化処理部は撥水処理膜で構成されていることを特徴とする請求項14に記載のマイクロチップ。
PCT/JP2010/054321 2009-03-30 2010-03-15 マイクロチップ WO2010116856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/260,728 US9162225B2 (en) 2009-03-30 2010-03-15 Microchip
EP10761557.7A EP2416163A4 (en) 2009-03-30 2010-03-15 MICROCHIP
JP2011508300A JPWO2010116856A1 (ja) 2009-03-30 2010-03-15 マイクロチップ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-081511 2009-03-30
JP2009081511 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010116856A1 true WO2010116856A1 (ja) 2010-10-14

Family

ID=42936143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054321 WO2010116856A1 (ja) 2009-03-30 2010-03-15 マイクロチップ

Country Status (4)

Country Link
US (1) US9162225B2 (ja)
EP (1) EP2416163A4 (ja)
JP (1) JPWO2010116856A1 (ja)
WO (1) WO2010116856A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180548A (ja) * 2012-03-05 2013-09-12 Konica Minolta Inc 射出成形品及び検査チップ
JP7458872B2 (ja) 2020-04-13 2024-04-01 株式会社日立ハイテク 液滴搬送デバイス、分析システム及び分析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102473981B1 (ko) * 2015-03-24 2022-12-05 프리시젼바이오 주식회사 시료 검사 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273478B1 (en) * 1999-03-30 2001-08-14 The Regents Of The University Of California Microfluidic interconnects
JP2003185627A (ja) 2001-12-14 2003-07-03 Aida Eng Ltd マイクロチップ及び電気泳動装置
JP2005514187A (ja) * 2001-06-20 2005-05-19 サイトノーム インコーポレーテッド 流体をマイクロ流体システムと相互接続するための仮想壁流体相互接続ポートを含むマイクロ流体システム
JP2005214782A (ja) * 2004-01-29 2005-08-11 Kubota Corp マイクロ流体デバイス反応用温度調節器
JP2005257544A (ja) 2004-03-12 2005-09-22 Gl Sciences Inc マイクロチップ
JP2006349347A (ja) * 2005-06-13 2006-12-28 Ushio Inc マイクロチップ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211442B2 (en) * 2001-06-20 2007-05-01 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20030087309A1 (en) * 2001-08-27 2003-05-08 Shiping Chen Desktop drug screening system
US20030082632A1 (en) * 2001-10-25 2003-05-01 Cytoprint, Inc. Assay method and apparatus
US20030206832A1 (en) * 2002-05-02 2003-11-06 Pierre Thiebaud Stacked microfluidic device
WO2005003769A1 (ja) * 2003-07-04 2005-01-13 Kubota Corporation バイオチップ
CN101044251A (zh) * 2005-09-15 2007-09-26 株式会社Lg生命科学 用于固定生物分子的粘合剂珠以及使用该粘合剂珠制造生物芯片的方法
GB2436616A (en) * 2006-03-29 2007-10-03 Inverness Medical Switzerland Assay device and method
JP2008076275A (ja) * 2006-09-22 2008-04-03 Fujifilm Corp 分注装置
US20090155840A1 (en) * 2007-12-17 2009-06-18 Beebe David J Method and device for cell counting
JPWO2010016372A1 (ja) * 2008-08-06 2012-01-19 コニカミノルタオプト株式会社 マイクロチップ
WO2010016359A1 (ja) * 2008-08-08 2010-02-11 コニカミノルタオプト株式会社 マイクロチップ及びマイクロチップの製造方法
CN102422164B (zh) * 2009-05-15 2015-12-16 柯尼卡美能达株式会社 微芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273478B1 (en) * 1999-03-30 2001-08-14 The Regents Of The University Of California Microfluidic interconnects
JP2005514187A (ja) * 2001-06-20 2005-05-19 サイトノーム インコーポレーテッド 流体をマイクロ流体システムと相互接続するための仮想壁流体相互接続ポートを含むマイクロ流体システム
JP2003185627A (ja) 2001-12-14 2003-07-03 Aida Eng Ltd マイクロチップ及び電気泳動装置
JP2005214782A (ja) * 2004-01-29 2005-08-11 Kubota Corp マイクロ流体デバイス反応用温度調節器
JP2005257544A (ja) 2004-03-12 2005-09-22 Gl Sciences Inc マイクロチップ
JP2006349347A (ja) * 2005-06-13 2006-12-28 Ushio Inc マイクロチップ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416163A4 *
TAKEHIKO KITAMORI: "Micro-Kagaku-chip No Gijutsu-to-Ohyou", 2004, MARUZEN CO. LTD.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013180548A (ja) * 2012-03-05 2013-09-12 Konica Minolta Inc 射出成形品及び検査チップ
JP7458872B2 (ja) 2020-04-13 2024-04-01 株式会社日立ハイテク 液滴搬送デバイス、分析システム及び分析方法

Also Published As

Publication number Publication date
JPWO2010116856A1 (ja) 2012-10-18
EP2416163A4 (en) 2014-07-02
EP2416163A1 (en) 2012-02-08
US9162225B2 (en) 2015-10-20
US20120020835A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
Agha et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices
EP1855114A1 (en) Microchannel and microfluid chip
JP2003156502A (ja) 流体マイクロチップ用ブレッドボードを用いたアセンブリマイクロチップ
JP2009175138A (ja) マイクロチップ
Jiang et al. A single low-cost microfabrication approach for polymethylmethacrylate, polystyrene, polycarbonate and polysulfone based microdevices
JP5187442B2 (ja) マイクロチップ
Rahmanian et al. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling
WO2010116856A1 (ja) マイクロチップ
JPH08334702A (ja) 光学顕微鏡用プラスチック・スライド
JP2007240461A (ja) プラスチック製マイクロチップ、及びその接合方法、及びそれを利用したバイオチップ又はマイクロ分析チップ。
EP2251698A1 (en) Microchip and method of manufacturing same
WO2007071174A1 (en) Bubble-resistant injector port for fluidic devices
JP2011214838A (ja) 樹脂製マイクロ流路チップ
JP2014122831A (ja) マイクロ流路デバイス
TW201017171A (en) Microchip
JP5182374B2 (ja) マイクロチップ、及びマイクロチップの製造方法
JP6363093B2 (ja) 流体ストップを備える流体システム
JP5207346B2 (ja) マイクロ流体チップ装置
JP2007021790A (ja) プラスチックの接合方法、及びその方法を利用して製造されたバイオチップ又はマイクロ分析チップ
JP2006218611A (ja) 微細流路を有するプラスチック製品
JP2008224499A (ja) 試料用チップ
KR20110102654A (ko) 마이크로 채널을 가진 구조물의 제조 방법 및 그 구조물
JP2020074709A (ja) 細胞培養チップ及びその製造方法
US12048927B2 (en) Microfluidic device capable of removing microbubbles in channel by using porous thin film, sample injection device for preventing inflow of bubbles, and method for bonding panel of microfluidic element by using mold-releasing film
US20230271180A1 (en) Microfluidic device capable of removing microbubbles in channel by using porous thin film, sample injection device for preventing inflow of bubbles, and method for bonding panel of microfluidic element by using mold-releasing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508300

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010761557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13260728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE