WO2010116486A1 - Stator and manufacturing method thereof - Google Patents

Stator and manufacturing method thereof Download PDF

Info

Publication number
WO2010116486A1
WO2010116486A1 PCT/JP2009/057093 JP2009057093W WO2010116486A1 WO 2010116486 A1 WO2010116486 A1 WO 2010116486A1 JP 2009057093 W JP2009057093 W JP 2009057093W WO 2010116486 A1 WO2010116486 A1 WO 2010116486A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
stator
resin
peripheral surface
inner peripheral
Prior art date
Application number
PCT/JP2009/057093
Other languages
French (fr)
Japanese (ja)
Inventor
康浩 遠藤
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/057093 priority Critical patent/WO2010116486A1/en
Publication of WO2010116486A1 publication Critical patent/WO2010116486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present invention relates to a stator and a manufacturing method thereof.
  • a motor or generator as a rotating electric machine mounted on a vehicle such as an automobile has a rotor and an annular stator that is annularly arranged around the rotor.
  • a rotational force is obtained by energizing the stator
  • a current is obtained by the rotation of the rotor.
  • the stator has an annular stator core having stator windings.
  • the stator core is resin-sealed, and the resin-sealed stator core is housed in a case called a cooling jacket.
  • a resin-sealed stator core is referred to as a stator (not accommodated in a case).
  • FIG. 8 shows the configuration of the motor / generator 100.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of the motor / generator 100.
  • the motor / generator 100 includes a rotating shaft 110 that is rotatably supported around a rotation axis P, and a columnar rotor 120 that is fixed to the rotating shaft 110 and rotatably provided with the rotating shaft 110. And an annular stator 140 ⁇ / b> C provided around the rotor 120.
  • the rotor 120 is provided on a rotor core 125 configured by laminating a plurality of electromagnetic steel plates and the like, a permanent magnet 123 inserted into a magnet insertion hole 126 formed in the rotor core 125, and an axial end surface of the rotor core 125. And an end plate 122.
  • the permanent magnet 123 is fixed to the inner surface of the magnet insertion hole 126 by a resin 124 filled in the magnet insertion hole 126.
  • the rotating shaft 110 is provided with a lubricating oil passage 110a along the rotating shaft P and a branched oil passage 110b branched from the lubricating oil passage 110a.
  • One end plate 122 is provided with a cooling space 122a, and lubricating oil is supplied to the cooling space 122a from the branch oil passage 110b.
  • the permanent magnet 123 and the rotor core 125 are cooled by the lubricating oil supplied into the cooling space 122a.
  • the end plate 122 is provided with a plurality of lubricating oil discharge holes 122b concentrically around the rotation axis P.
  • the lubricating oil discharged to the outside from the lubricating oil discharge hole 122b by the centrifugal force generated by the rotation of the rotor 120 cools the stator 140C.
  • the stator 140 ⁇ / b> C has an annular stator core 141.
  • the stator core 141 has a plurality of divided stator cores 141a arranged in an annular shape.
  • a ring 143 is fitted on the outer peripheral surface of the stator core 141.
  • the surface of the stator core 141 is covered with a resin coating 142 as shown in FIG. In FIG. 9, the resin coating 142 is not shown.
  • a method for manufacturing the stator 140C will be described with reference to FIG.
  • the stator core 141 fitted with the ring 143 is accommodated inside the lower mold 1000 for molding. Thereafter, the upper mold 2000 for molding is placed on the lower mold 1000 for molding. As a result, a resin injection space 1000C and a resin injection space 2000C are formed on the surface of the stator core 141.
  • T10 has a distance from the inner peripheral surface of the stator core 141 that is narrowest at the end farther from the opening end of the resin introduction passage 2100 and toward the end closer to the opening end of the resin introduction passage 2100. It is inclined to become wider.
  • the thickness of the resin coating 142 covering the inner peripheral surface of the stator core 141 is also the thinnest on the coil end side on one side (lower side in the figure) and on the other side (upper side in the figure) It gradually gets thicker toward the end.
  • An inclined surface T20 is formed on the surface of the resin film 142 covering the inner peripheral surface of the stator core 141 (the inclination angle ⁇ is about 0.5 ° to 1 °).
  • Patent Documents 1 to 3 are listed as prior art documents disclosing a method for producing a resin film on a stator core in such a stator.
  • JP 2006-174637 A Japanese Patent Laid-Open No. 08-009601 JP 2001-125524 A
  • an inclined surface T ⁇ b> 20 is formed on the surface of the resin coating 142 covering the inner peripheral surface of the stator core 141 from one end to the other end. .
  • the lubricating oil discharged from the lubricating oil discharge hole 122b provided in the end plate 122 flows into the gap G between the rotor 120 and the stator 140C along the inclined surface T20.
  • the viscosity of the lubricating oil hinders the rotation of the rotor 120 and degrades the performance of the rotating electrical machine.
  • the gap G is not uniform over the entire gap G, so the performance of the rotating electrical machine is degraded. Further, since the thickness of the resin film 142 covering the inner peripheral surface of the stator core 141 is increased, the inner peripheral diameter of the stator 140C cannot be reduced, and the gap G cannot be reduced.
  • the stator core 141 is pushed to the outer peripheral side in the resin coating process due to an increase in the resin amount of the resin coating 142 covering the inner peripheral surface of the stator core 141. As a result of the change in outer diameter size, the performance of the rotating electrical machine is degraded.
  • An object of the present invention is to provide a stator having a structure that does not deteriorate the performance of a rotating electrical machine and a method for manufacturing the same.
  • the stator according to the present invention is a stator having an annular shape used for a rotating electrical machine, and includes a stator core having an annular shape and a resin film covering the surface of the stator core.
  • the film thickness of the resin coating covering the inner peripheral surface of the stator core is greater than the center of the stator core in the extending direction of the rotating shaft of the rotating electrical machine. It is provided to be thinner.
  • the inner surface of the resin coating is provided so as to be gradually inclined from the central portion toward the end in the direction in which the rotating shaft of the rotating electrical machine extends.
  • stator manufacturing method having an annular form used for a rotating electrical machine, in order to cover a resin film so as to cover the surface of the stator core having an annular form, A step of accommodating the stator core in a molding die, and a resin discharge port provided in a substantially central region on the inner peripheral surface side of the stator core in the direction in which the rotating shaft core of the rotating electrical machine extends in the direction in which the rotating shaft of the rotating electrical machine extends. And injecting into the molding die.
  • a distance between the surface of the molding die facing the inner peripheral surface of the stator core and the inner peripheral surface of the stator core is from the resin outlet. It inclines so that it may become narrow toward the edge part of a stator core.
  • the inner peripheral surface of the stator core has a region farther from the molding die than other regions, and the resin discharge port of the molding die. Has an enlarged resin discharge port having an opening area larger than that of the other resin discharge ports at a position facing the away region.
  • stator and the manufacturing method thereof based on the present invention, it is possible to provide a stator having a structure that does not deteriorate the performance of the rotating electrical machine and the manufacturing method thereof.
  • FIG. 3 is a cross-sectional view showing the structure of the stator in the first embodiment.
  • FIG. 6 is a cross-sectional view showing the effect of the stator in the first embodiment.
  • FIG. 8 is a cross-sectional view showing the stator manufacturing method in the first embodiment. It is the elements on larger scale which show the relationship between a stator and a rotor.
  • FIG. 10 is a cross-sectional view showing a stator manufacturing method in the second embodiment.
  • FIG. 10 is a partially enlarged cross-sectional view showing a stator manufacturing method in the second embodiment.
  • FIG. 10 is a partial enlarged view of an upper mold for shaping used in the stator manufacturing method in the second embodiment. It is sectional drawing which shows the structure of the rotary electric machine in background art.
  • stator core in background art It is a top view which shows the structure of the stator core in background art. It is sectional drawing which shows the manufacturing method of the stator in background art. It is sectional drawing which shows the structure of the stator in background art. It is sectional drawing which shows the subject of the rotary electric machine in background art.
  • stator according to an embodiment of the present invention will be described with reference to the drawings. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In addition, parts that are the same as or equivalent to those described with reference to FIGS. 8 to 12 are given the same reference numerals, and redundant description may not be repeated.
  • stator 140A in the first embodiment With reference to FIG. 1, the structure of stator 140A in the first embodiment will be described.
  • the entire configuration of the stator 140A has an annular outer shape as in the stator shown in the background art.
  • the structure will be described with reference to a sectional view of the stator 140A. 1 shows a cross section cut by a plane including the rotation axis in the direction in which the rotation axis 110 (see FIG. 8) of the rotating electrical machine extends.
  • the stator 140 ⁇ / b> A includes a stator core 141 having an annular shape and a resin coating 142 that covers the surface of the stator core 141.
  • a ring 143 is fitted to the outer peripheral surface of the stator core 141 on the outer peripheral surface side.
  • the film thickness of the resin coating 142 covering the inner peripheral surface of the stator core 141 is such that the ends C2 and C3 are thinner than the center C1 of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends. Is provided. Specifically, the film thickness (t1) of the central portion C1 of the resin coating 142 is the thickest, and the film thickness (t2, t3) on the upper end C2 side and the lower end C3 side in the figure is It is provided so as to be thinner than the film thickness (t1) at the center.
  • stator 140A in the present embodiment in the direction in which rotating shaft P of the rotating electrical machine extends, the inner peripheral surface of resin coating 142 gradually increases from center C1 toward upper end C2 and lower end C3. Inclined surfaces T2 and T3 are provided.
  • inclined surfaces T2 and T3 that are gradually inclined from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side are provided on the inner peripheral surface of the resin coating 142.
  • the gap G is not uniform over the entire gap G, but the average interval is Since it can be made smaller than the conventional gap, the performance of the rotating electrical machine can be improved.
  • stator 140A A method for manufacturing the stator 140A will be described with reference to FIG. Here, a coating process of the resin coating 142 on the stator core 141 will be described. First, the stator core 141 is housed in a molding die formed by the lower molding die 1000 and the upper molding die 2000.
  • the lower mold 1000 for molding has an inner peripheral surface side post 1010 located on the inner peripheral surface side of the stator core 141 and an outer peripheral surface side post 1020 that supports the outer peripheral surface side of the stator core 141.
  • a space 1000 ⁇ / b> C for accommodating the stator core 141 is formed between the inner peripheral surface side post 1010 and the outer peripheral surface side post 1020.
  • the upper end surface 1010a of the inner peripheral surface side post 1010 is located in a substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends. Further, the outer peripheral surface of the inner peripheral surface side post 1010 is provided with an inclined surface T13 that gradually expands outward in the radial direction from the upper end surface 1010a. On the other hand, the outer peripheral surface side post 1020 is provided so as to extend to the upper end portion of the stator core 141.
  • the upper mold 2000 for molding has an inner peripheral surface side post 2010 located on the inner peripheral surface side of the stator core 141 and an outer peripheral surface side post 2020 that contacts the outer peripheral surface side of the stator core 141.
  • a space 2000 ⁇ / b> C for accommodating the stator core 141 is formed between the inner peripheral surface side post 2010 and the outer peripheral surface side post 2020.
  • the lower end surface 2010a of the inner peripheral surface side post 2010 is located in a substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends.
  • a resin introduction passage 2100 is provided in the central portion of the inner peripheral surface side post 2010 to communicate with the lower end surface 2010a and to send out a resin melted by heating. Further, a predetermined gap is formed between the upper end surface 1010a of the lower mold for molding 1000 and the lower end surface 2010a of the upper mold for molding 2000, and the annular resin discharge port 1110 is formed by the outer peripheral opening of this gap. Constitute.
  • the outer peripheral surface of the inner peripheral surface side post 2010 is provided with an inclined surface T12 that gradually expands outward in the radial direction from the lower end surface 2010a.
  • the outer peripheral surface side post 2020 is provided so as to extend to a position in contact with the upper end portion of the stator core 141.
  • the stator core 141 is accommodated in a molding die formed by the molding lower die 1000 and the molding upper die 2000 having the above-described configuration, and the resin melted by heating is substantially removed on the inner peripheral surface side of the stator core 141.
  • the resin is discharged from the resin discharge port 1110 provided in the central region into the spaces 1000C and 2000C in the molding die.
  • the surface of the lower mold 1000 and the upper mold 2000 facing the inner peripheral surface of the stator core 141 is the same as the inner peripheral surface of the stator core 141.
  • the inclined surface gradually inclines from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side on the inner peripheral surface of the resin coating 142. T2 and T3 can be formed.
  • the stator 140A is taken out from the molding die because the inclination direction of the inclined surfaces T2 and T3 is such that the stator 140A can be extracted from the lower molding die 1000 and the upper molding die 2000. Removal of the upper mold 2000 and removal of the stator 140A from the lower mold 1000 for molding can be easily performed.
  • the resin discharge port 1110 is provided in an annular shape in the substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends, the resin injection pressure is substantially equal to that of the stator core 141. Will join the central area.
  • the substantially central region of the stator core 141 is a highly rigid region in which a plurality of electromagnetic steel plates and the like are laminated. Therefore, no problem occurs when the resin injection pressure is applied to the substantially central region of the stator core 141.
  • the amount of resin adhering to the inner peripheral surface of the stator core 141 can be reduced. Thereby, it is possible to reduce the pressing force applied to the stator core 141 at the time of resin injection, and to suppress changes in the inner and outer diameters of the stator core 141.
  • FIG. 4 is a partially enlarged view showing the positional relationship between the lower end surface 2010a of the molding upper mold 2000 and the inner peripheral surface of the stator core 141.
  • the front end portion (tooth) 141b of the electromagnetic steel plate of each divided stator core 141a protrudes.
  • the region S2 is away from the inclined surface T12.
  • Resin is injected between the inclined surface T12 and the stator core 141, but the groove 2011 is formed at a position facing the away region S2 as shown in FIGS.
  • the region where the groove 2011 is provided constitutes an enlarged resin discharge port 1110a having a large opening area with respect to the resin discharge port 1110 where the groove 2011 is not provided.
  • the resin flow resistance in the away region S2 can be greatly reduced during resin injection, and the resin injection efficiency can be improved. it can. Further, since the flow resistance of the resin is reduced, it is possible to further reduce the pressing force applied to the stator core 141 at the time of resin injection and to suppress changes in the inner and outer diameter dimensions of the stator core 141.

Abstract

A stator core (141) is housed within a molding die formed with a lower molding die (1000) and an upper molding die (2000), and a resin melted by heating is poured into spaces (1000C, 2000C) within the molding dies from a resin discharge opening (1110) provided in the approximate center region of the inner circumferential side of the stator core (141). Thus, the surfaces of the lower molding die (1000) and the upper molding (2000) opposite the inner circumferential surface of the stator core (141) have an inclined surface (T12) and an inclined surface (T13), the distance of which from the inner circumferential surface of the stator core (141) becomes shorter from the resin discharge opening (110) toward the end of the stator core (141), so it is possible to form inclined surfaces (T2, T3) which gradually slope from the center (C1) toward the upper end (C2) and the lower end (C3), on the inner circumferential surface of a resin film (142).

Description

ステータおよびその製造方法Stator and manufacturing method thereof
 この発明は、ステータおよびその製造方法に関する。 The present invention relates to a stator and a manufacturing method thereof.
 自動車等の車両に搭載される回転電機としてのモータやジェネレータは、ロータと、ロータの周囲に環状に配置される環状形態のステータとを有している。モータの場合は、ステータに通電することにより回転力が得られ、ジェネレータの場合は、ロータの回転により電流が得られる。 2. Description of the Related Art A motor or generator as a rotating electric machine mounted on a vehicle such as an automobile has a rotor and an annular stator that is annularly arranged around the rotor. In the case of a motor, a rotational force is obtained by energizing the stator, and in the case of a generator, a current is obtained by the rotation of the rotor.
 ステータは、ステータ巻線を有する環状のステータコアを有し、このステータコアが樹脂封止されるとともに、樹脂封止されたステータコアが冷却ジャケットと呼ばれるケース内に収容されている。なお、本明細書においては、説明の便宜上、樹脂封止されたステータコアをステータ(ケースに収容されていない)と称することとする。 The stator has an annular stator core having stator windings. The stator core is resin-sealed, and the resin-sealed stator core is housed in a case called a cooling jacket. In the present specification, for convenience of explanation, a resin-sealed stator core is referred to as a stator (not accommodated in a case).
 図8に、モータ・ジェネレータ100の構成を示す。なお、図8は、モータ・ジェネレータ100の概略構成を示す断面図である。このモータ・ジェネレータ100は、回転軸芯Pを中心に回転可能に支持された回転シャフト110と、この回転シャフト110に固定され、回転シャフト110と共に回転可能に設けられた円柱形状のロータ120と、このロータ120の周囲に設けられた環状のステータ140Cとを備えている。 FIG. 8 shows the configuration of the motor / generator 100. FIG. 8 is a cross-sectional view showing a schematic configuration of the motor / generator 100. The motor / generator 100 includes a rotating shaft 110 that is rotatably supported around a rotation axis P, and a columnar rotor 120 that is fixed to the rotating shaft 110 and rotatably provided with the rotating shaft 110. And an annular stator 140 </ b> C provided around the rotor 120.
 ロータ120は、複数の電磁鋼板等を積層して構成されたロータコア125と、ロータコア125に形成された磁石挿入孔126内に挿入された永久磁石123と、ロータコア125の軸方向の端面に設けられたエンドプレート122とを備えている。永久磁石123は、磁石挿入孔126内に充填された樹脂124によって磁石挿入孔126の内面に固定されている。 The rotor 120 is provided on a rotor core 125 configured by laminating a plurality of electromagnetic steel plates and the like, a permanent magnet 123 inserted into a magnet insertion hole 126 formed in the rotor core 125, and an axial end surface of the rotor core 125. And an end plate 122. The permanent magnet 123 is fixed to the inner surface of the magnet insertion hole 126 by a resin 124 filled in the magnet insertion hole 126.
 回転シャフト110には、回転軸芯Pに沿って潤滑油路110aと、この潤滑油路110aから分岐する分岐油路110bとが設けられている。一方のエンドプレート122には、冷却用空間122aが設けられ、この冷却用空間122aに、分岐油路110bから潤滑油が供給される。永久磁石123およびロータコア125は、冷却用空間122a内に供給された潤滑油により冷却される。 The rotating shaft 110 is provided with a lubricating oil passage 110a along the rotating shaft P and a branched oil passage 110b branched from the lubricating oil passage 110a. One end plate 122 is provided with a cooling space 122a, and lubricating oil is supplied to the cooling space 122a from the branch oil passage 110b. The permanent magnet 123 and the rotor core 125 are cooled by the lubricating oil supplied into the cooling space 122a.
 エンドプレート122には、潤滑油排出孔122bが、回転軸芯Pを中心として同心円上に複数設けられている。ロータ120の回転により発生する遠心力により、潤滑油排出孔122bから外部に吐出した潤滑油は、ステータ140Cを冷却する。 The end plate 122 is provided with a plurality of lubricating oil discharge holes 122b concentrically around the rotation axis P. The lubricating oil discharged to the outside from the lubricating oil discharge hole 122b by the centrifugal force generated by the rotation of the rotor 120 cools the stator 140C.
 図9に示すように、ステータ140Cは環状のステータコア141を有している。ステータコア141は、複数の分割ステータコア141aが環状に配列されている。ステータコア141の外周面には、リング143が嵌合されている。ステータコア141の表面は、図8に示すように、樹脂製被膜142により被覆されている。図9では、樹脂製被膜142の図示は省略している。 As shown in FIG. 9, the stator 140 </ b> C has an annular stator core 141. The stator core 141 has a plurality of divided stator cores 141a arranged in an annular shape. A ring 143 is fitted on the outer peripheral surface of the stator core 141. The surface of the stator core 141 is covered with a resin coating 142 as shown in FIG. In FIG. 9, the resin coating 142 is not shown.
 図10を参照して、ステータ140Cの製造方法について説明する。リング143が嵌合されたステータコア141を、成形用下金型1000の型内部に収容する。その後、成形用上金型2000を成形用下金型1000の上に載置する。これにより、ステータコア141の表面に樹脂注入空間1000Cおよび樹脂注入空間2000Cが形成される。 A method for manufacturing the stator 140C will be described with reference to FIG. The stator core 141 fitted with the ring 143 is accommodated inside the lower mold 1000 for molding. Thereafter, the upper mold 2000 for molding is placed on the lower mold 1000 for molding. As a result, a resin injection space 1000C and a resin injection space 2000C are formed on the surface of the stator core 141.
 その後、成形用上金型2000の中央部に設けられた樹脂吐出口2100から加熱により溶融した樹脂を、樹脂注入空間1000Cおよび樹脂注入空間2000Cに注入する。これにより、図8に示すステータ140Cが完成する。 Thereafter, the resin melted by heating is injected into the resin injection space 1000C and the resin injection space 2000C from the resin discharge port 2100 provided in the center of the upper mold 2000 for molding. Thereby, the stator 140C shown in FIG. 8 is completed.
 ステータコア141の表面が樹脂製被膜142により被覆された状態で、ステータコア141を成形用下金型1000から抜き出し可能とするために、成形用下金型1000のステータコア141の内周面に対向する面T10は、ステータコア141の内周面との間の距離が、樹脂導入通路2100の開口端部に遠い側の端部が最も狭く、樹脂導入通路2100の開口端部に近い側の端部に向かって広くなるように傾斜している。 A surface facing the inner peripheral surface of the stator core 141 of the lower molding die 1000 so that the stator core 141 can be extracted from the lower molding die 1000 while the surface of the stator core 141 is covered with the resin coating 142. T10 has a distance from the inner peripheral surface of the stator core 141 that is narrowest at the end farther from the opening end of the resin introduction passage 2100 and toward the end closer to the opening end of the resin introduction passage 2100. It is inclined to become wider.
 そのため、図11に示すように、ステータコア141の内周面を覆う樹脂製被膜142の膜厚さも、一方(図中において下側)のコイルエンド側が最も薄く、他方(図中において上側)のコイルエンドに向かって徐々に厚くなる。ステータコア141の内周面を覆う樹脂製被膜142の表面には傾斜面T20が形成される(傾斜角度αは、約0.5°~1°)。 Therefore, as shown in FIG. 11, the thickness of the resin coating 142 covering the inner peripheral surface of the stator core 141 is also the thinnest on the coil end side on one side (lower side in the figure) and on the other side (upper side in the figure) It gradually gets thicker toward the end. An inclined surface T20 is formed on the surface of the resin film 142 covering the inner peripheral surface of the stator core 141 (the inclination angle α is about 0.5 ° to 1 °).
 このようなステータにおけるステータコアへの樹脂製被膜の製造方法を開示する先行技術文献として、下記の特許文献1~3が挙げられる。 The following Patent Documents 1 to 3 are listed as prior art documents disclosing a method for producing a resin film on a stator core in such a stator.
特開2006-174637号公報JP 2006-174637 A 特開平08-009601号公報Japanese Patent Laid-Open No. 08-009601 特開2001-125524号公報JP 2001-125524 A
 上述したステータの構造においては、図12に示すように、ステータコア141の内周面を覆う樹脂製被膜142の表面には、一方の端部から他方の端部に向かう傾斜面T20が形成される。 In the stator structure described above, as shown in FIG. 12, an inclined surface T <b> 20 is formed on the surface of the resin coating 142 covering the inner peripheral surface of the stator core 141 from one end to the other end. .
 そのため、エンドプレート122に設けられた潤滑油排出孔122bから吐出した潤滑油が、傾斜面T20に沿って、ロータ120とステータ140Cとの間のギャップGに流れ込むことが考えられる。ギャップGに潤滑油が流れ込んだ場合、潤滑油の粘性がロータ120の回転を阻害し、回転電機の性能を低下させる。 Therefore, it is conceivable that the lubricating oil discharged from the lubricating oil discharge hole 122b provided in the end plate 122 flows into the gap G between the rotor 120 and the stator 140C along the inclined surface T20. When the lubricating oil flows into the gap G, the viscosity of the lubricating oil hinders the rotation of the rotor 120 and degrades the performance of the rotating electrical machine.
 また、傾斜面T20が形成されることから、ギャップGの間隔が、ギャップG全体に渡って均一でないため、回転電機の性能を低下させる。また、ステータコア141の内周面を覆う樹脂製被膜142の厚さが大きくなるため、ステータ140Cの内周径を小さくすることができず、ギャップGの間隔を小さくすることができない。 Also, since the inclined surface T20 is formed, the gap G is not uniform over the entire gap G, so the performance of the rotating electrical machine is degraded. Further, since the thickness of the resin film 142 covering the inner peripheral surface of the stator core 141 is increased, the inner peripheral diameter of the stator 140C cannot be reduced, and the gap G cannot be reduced.
 また、図10に示したように、樹脂の被膜工程におていは、ステータコア141の一方端側から樹脂を樹脂注入空間1000Cおよび樹脂注入空間2000Cに注入した場合に、ステータコア141のコイルエンド部分に樹脂の射出圧力が加わる。そのために、コイルエンド部分の変形、被膜破損、コイル端末部の移動などが生じる結果、コイルエンド部分の絶縁性能が低下する。 Further, as shown in FIG. 10, in the resin coating process, when resin is injected from one end side of the stator core 141 into the resin injection space 1000C and the resin injection space 2000C, it is applied to the coil end portion of the stator core 141. Resin injection pressure is applied. Therefore, as a result of deformation of the coil end portion, damage to the coating, movement of the coil end portion, etc., the insulation performance of the coil end portion is lowered.
 また、傾斜面T20を設けることから、ステータコア141の内周面を覆う樹脂製被膜142の樹脂量の増加により、樹脂の被膜工程において、ステータコア141が外周側に押されるために、ステータコア141の内径および外径寸法が変化する結果、回転電機の性能を低下させる。 Further, since the inclined surface T20 is provided, the stator core 141 is pushed to the outer peripheral side in the resin coating process due to an increase in the resin amount of the resin coating 142 covering the inner peripheral surface of the stator core 141. As a result of the change in outer diameter size, the performance of the rotating electrical machine is degraded.
 この発明の目的は、上記課題を解決するためになされたものであり、回転電機の性能を低下させることのない構造を備えるステータおよびその製造方法を提供することにある。 An object of the present invention is to provide a stator having a structure that does not deteriorate the performance of a rotating electrical machine and a method for manufacturing the same.
 この発明に基づいたステータにおいては、回転電機に用いられる環状形態を有するステータであって、環状の形態を有するステータコアと、上記ステータコアの表面を覆う樹脂製被膜と、を備えている。 The stator according to the present invention is a stator having an annular shape used for a rotating electrical machine, and includes a stator core having an annular shape and a resin film covering the surface of the stator core.
 回転電機の回転軸芯の延びる方向において、上記ステータコアの内周面を覆う上記樹脂製被膜の膜厚さが、回転電機の回転軸芯の延びる方向において、上記ステータコアの中央部よりも端部の方が薄くなるように設けられている。 In the direction in which the rotating shaft of the rotating electrical machine extends, the film thickness of the resin coating covering the inner peripheral surface of the stator core is greater than the center of the stator core in the extending direction of the rotating shaft of the rotating electrical machine. It is provided to be thinner.
 上記ステータの別の局面に従えば、回転電機の回転軸芯の延びる方向において、上記樹脂製被膜の内表面は、中央部から端部に向かうにしたがって徐々に傾斜するように設けられている。 According to another aspect of the stator, the inner surface of the resin coating is provided so as to be gradually inclined from the central portion toward the end in the direction in which the rotating shaft of the rotating electrical machine extends.
 この発明に基づいたステータの製造方法においては、回転電機に用いられる環状形態を有するステータの製造方法であって、環状の形態を有するステータコアの表面を覆うように樹脂製被膜を被覆するために、上記ステータコアを成形用金型の内部に収容ステップと、加熱により溶融した樹脂を、回転電機の回転軸芯の延びる方向において、上記ステータコアの内周面側の略中央領域に設けられた樹脂吐出口から上記成形用金型内に注入するステップと、を備えている。 In the stator manufacturing method based on the present invention, a stator manufacturing method having an annular form used for a rotating electrical machine, in order to cover a resin film so as to cover the surface of the stator core having an annular form, A step of accommodating the stator core in a molding die, and a resin discharge port provided in a substantially central region on the inner peripheral surface side of the stator core in the direction in which the rotating shaft core of the rotating electrical machine extends in the direction in which the rotating shaft of the rotating electrical machine extends. And injecting into the molding die.
 上記ステータの製造方法の別の局面に従えば、上記成形用金型の上記ステータコアの内周面に対向する面は、上記ステータコアの内周面との間の距離が、上記樹脂吐出口から上記ステータコアの端部に向かって狭くなるように傾斜している。 According to another aspect of the manufacturing method of the stator, a distance between the surface of the molding die facing the inner peripheral surface of the stator core and the inner peripheral surface of the stator core is from the resin outlet. It inclines so that it may become narrow toward the edge part of a stator core.
 上記いずれかのステータの製造方法の局面に従えば、上記ステータコアの内周面には、他の領域よりも上記成形用金型から遠ざかる領域を有し、上記成形用金型の上記樹脂吐出口には、上記遠ざかる領域に対向する位置に、他の樹脂吐出口よりも開口面積の大きい拡大樹脂吐出口を有する。 According to one aspect of the stator manufacturing method, the inner peripheral surface of the stator core has a region farther from the molding die than other regions, and the resin discharge port of the molding die. Has an enlarged resin discharge port having an opening area larger than that of the other resin discharge ports at a position facing the away region.
 この発明に基づいたステータおよびその製造方法によれば、回転電機の性能を低下させることのない構造を備えるステータおよびその製造方法を提供することができる。 According to the stator and the manufacturing method thereof based on the present invention, it is possible to provide a stator having a structure that does not deteriorate the performance of the rotating electrical machine and the manufacturing method thereof.
実施の形態1におけるステータの構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the stator in the first embodiment. 実施の形態1におけるステータの効果を示す断面図である。FIG. 6 is a cross-sectional view showing the effect of the stator in the first embodiment. 実施の形態1におけるステータの製造方法を示す断面図である。FIG. 8 is a cross-sectional view showing the stator manufacturing method in the first embodiment. ステータとロータとの関係を示す部分拡大図である。It is the elements on larger scale which show the relationship between a stator and a rotor. 実施の形態2におけるステータの製造方法を示す断面図である。FIG. 10 is a cross-sectional view showing a stator manufacturing method in the second embodiment. 実施の形態2におけるステータの製造方法を示す部分拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view showing a stator manufacturing method in the second embodiment. 実施の形態2におけるステータの製造方法に用いる整形用上金型の部分拡大図である。FIG. 10 is a partial enlarged view of an upper mold for shaping used in the stator manufacturing method in the second embodiment. 背景技術における回転電機の構造を示す断面図である。It is sectional drawing which shows the structure of the rotary electric machine in background art. 背景技術におけるステータコアの構造を示す平面図である。It is a top view which shows the structure of the stator core in background art. 背景技術におけるステータの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the stator in background art. 背景技術におけるステータの構造を示す断面図である。It is sectional drawing which shows the structure of the stator in background art. 背景技術における回転電機の課題を示す断面図である。It is sectional drawing which shows the subject of the rotary electric machine in background art.
 本発明に基づいた実施の形態におけるステータについて、以下、図を参照しながら説明する。なお、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。また、上記図8から図12を用いて説明した部品と、同一および相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。 Hereinafter, a stator according to an embodiment of the present invention will be described with reference to the drawings. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In addition, parts that are the same as or equivalent to those described with reference to FIGS. 8 to 12 are given the same reference numerals, and redundant description may not be repeated.
 (実施の形態1)
 図1を参照して、実施の形態1におけるステータ140Aの構造について説明する。なお、ステータ140Aの全体構成は、背景技術に示すステータと同様に環状の外形形状を有している。ここでは、ステータ140Aの断面図を参照しながらその構造を説明する。なお、図1の断面は、回転電機の回転軸110(図8参照)の延びる方向において、その回転軸を含む平面により切断した断面を示すものである。
(Embodiment 1)
With reference to FIG. 1, the structure of stator 140A in the first embodiment will be described. The entire configuration of the stator 140A has an annular outer shape as in the stator shown in the background art. Here, the structure will be described with reference to a sectional view of the stator 140A. 1 shows a cross section cut by a plane including the rotation axis in the direction in which the rotation axis 110 (see FIG. 8) of the rotating electrical machine extends.
 (ステータ140Aの構成)
 まず、図1を参照して、本実施の形態におけるステータ140Aについて説明する。このステータ140Aは、環状の形態を有するステータコア141と、このステータコア141の表面を覆う樹脂製被膜142とを備えている。ステータコア141の外周面側には、の外周面には、リング143が嵌合されている。
(Configuration of stator 140A)
First, with reference to FIG. 1, the stator 140A in the present embodiment will be described. The stator 140 </ b> A includes a stator core 141 having an annular shape and a resin coating 142 that covers the surface of the stator core 141. A ring 143 is fitted to the outer peripheral surface of the stator core 141 on the outer peripheral surface side.
 ステータコア141の内周面を覆う樹脂製被膜142の膜厚さは、回転電機の回転軸芯Pの延びる方向において、ステータコア141の中央部C1よりも端部C2,C3の方が薄くなるように設けられている。具体的には、樹脂製被膜142の中央部C1の膜厚さ(t1)が最も厚く、図中において上端部C2側および下端部C3側での膜厚さ(t2,t3)の方が、中央部の膜厚さ(t1)よりも薄くなるように設けられている。 The film thickness of the resin coating 142 covering the inner peripheral surface of the stator core 141 is such that the ends C2 and C3 are thinner than the center C1 of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends. Is provided. Specifically, the film thickness (t1) of the central portion C1 of the resin coating 142 is the thickest, and the film thickness (t2, t3) on the upper end C2 side and the lower end C3 side in the figure is It is provided so as to be thinner than the film thickness (t1) at the center.
 本実施の形態におけるステータ140Aにおいては、回転電機の回転軸芯Pの延びる方向において、樹脂製被膜142の内周面は、中央部C1から上端部C2側および下端部C3側に向かうにしたがって徐々に傾斜する傾斜面T2,T3が設けられている。 In stator 140A in the present embodiment, in the direction in which rotating shaft P of the rotating electrical machine extends, the inner peripheral surface of resin coating 142 gradually increases from center C1 toward upper end C2 and lower end C3. Inclined surfaces T2 and T3 are provided.
 図2を参照して、上述のように、樹脂製被膜142の内周面に、中央部C1から上端部C2側および下端部C3側に向かうにしたがって徐々に傾斜する傾斜面T2,T3を設けることで、エンドプレート122に設けられた潤滑油排出孔122bから吐出した潤滑油が、ロータ120とステータ140Aとの間のギャップGに流れ込もうとした場合であっても(図中の矢印は、潤滑油の流れを示す)、傾斜面T2,T3の傾斜方向は、潤滑油の流れ込みを阻止する方向に傾斜していることから、潤滑油のギャップGへの流れ込みを未然に防止することができる。これにより、回転電機の性能の低下を防止することができる。 Referring to FIG. 2, as described above, inclined surfaces T2 and T3 that are gradually inclined from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side are provided on the inner peripheral surface of the resin coating 142. Thus, even when the lubricating oil discharged from the lubricating oil discharge hole 122b provided in the end plate 122 tries to flow into the gap G between the rotor 120 and the stator 140A (the arrow in the figure indicates , Indicating the flow of the lubricating oil), since the inclined directions of the inclined surfaces T2 and T3 are inclined in the direction of preventing the flowing of the lubricating oil, it is possible to prevent the lubricating oil from flowing into the gap G in advance. it can. Thereby, the fall of the performance of a rotary electric machine can be prevented.
 また、中央部C1から上端部C2側および下端部C3側に向かうにしたがって徐々に傾斜する傾斜面T2,T3の場合、ギャップGの間隔が、ギャップG全体に渡って均一でないものの、平均間隔は、従来の隙間よりも小さくすることができるため、回転電機の性能を向上させることができる。 In the case of the inclined surfaces T2 and T3 that are gradually inclined from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side, the gap G is not uniform over the entire gap G, but the average interval is Since it can be made smaller than the conventional gap, the performance of the rotating electrical machine can be improved.
 (ステータ140Aの製造方法)
 図3を参照して、上記ステータ140Aの製造方法について説明する。ここでは、ステータコア141への樹脂製被膜142の被膜工程について説明する。まず、ステータコア141を成形用下金型1000および成形用上金型2000により形成される成形用金型の内部に収容する。
(Method for manufacturing stator 140A)
A method for manufacturing the stator 140A will be described with reference to FIG. Here, a coating process of the resin coating 142 on the stator core 141 will be described. First, the stator core 141 is housed in a molding die formed by the lower molding die 1000 and the upper molding die 2000.
 成形用下金型1000は、ステータコア141の内周面側に位置する内周面側ポスト1010と、ステータコア141の外周面側を支持する外周面側ポスト1020とを有している。内周面側ポスト1010と外周面側ポスト1020との間によりステータコア141を収容する空間1000Cが形成されている。 The lower mold 1000 for molding has an inner peripheral surface side post 1010 located on the inner peripheral surface side of the stator core 141 and an outer peripheral surface side post 1020 that supports the outer peripheral surface side of the stator core 141. A space 1000 </ b> C for accommodating the stator core 141 is formed between the inner peripheral surface side post 1010 and the outer peripheral surface side post 1020.
 内周面側ポスト1010の上端面1010aは、回転電機の回転軸芯Pの延びる方向において、ステータコア141の内周面側の略中央領域に位置している。また、内周面側ポスト1010の外周面には、上端面1010aから徐々に半径方向の外側に向かって拡がる傾斜面T13が設けられている。一方、外周面側ポスト1020は、ステータコア141の上端部にまで延びるように設けられている。 The upper end surface 1010a of the inner peripheral surface side post 1010 is located in a substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends. Further, the outer peripheral surface of the inner peripheral surface side post 1010 is provided with an inclined surface T13 that gradually expands outward in the radial direction from the upper end surface 1010a. On the other hand, the outer peripheral surface side post 1020 is provided so as to extend to the upper end portion of the stator core 141.
 成形用上金型2000は、ステータコア141の内周面側に位置する内周面側ポスト2010と、ステータコア141の外周面側に当接する外周面側ポスト2020とを有している。内周面側ポスト2010と外周面側ポスト2020との間によりステータコア141を収容する空間2000Cが形成されている。 The upper mold 2000 for molding has an inner peripheral surface side post 2010 located on the inner peripheral surface side of the stator core 141 and an outer peripheral surface side post 2020 that contacts the outer peripheral surface side of the stator core 141. A space 2000 </ b> C for accommodating the stator core 141 is formed between the inner peripheral surface side post 2010 and the outer peripheral surface side post 2020.
 内周面側ポスト2010の下端面2010aは、回転電機の回転軸芯Pの延びる方向において、ステータコア141の内周面側の略中央領域に位置している。内周面側ポスト2010の中心部には、下端面2010aに連通し、加熱により溶融した樹脂を送り出すための樹脂導入通路2100が設けられている。また、成形用下金型1000の上端面1010aと成形用上金型2000の下端面2010aとの間には所定の隙間が形成され、この隙間の外周縁開口部により環状の樹脂吐出口1110を構成する。 The lower end surface 2010a of the inner peripheral surface side post 2010 is located in a substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends. A resin introduction passage 2100 is provided in the central portion of the inner peripheral surface side post 2010 to communicate with the lower end surface 2010a and to send out a resin melted by heating. Further, a predetermined gap is formed between the upper end surface 1010a of the lower mold for molding 1000 and the lower end surface 2010a of the upper mold for molding 2000, and the annular resin discharge port 1110 is formed by the outer peripheral opening of this gap. Constitute.
 また、内周面側ポスト2010の外周面には、下端面2010aから上方に向かって徐々に半径方向の外側に向かって拡がる傾斜面T12が設けられている。一方、外周面側ポスト2020は、ステータコア141の上端部に当接する位置にまで延びるように設けられている。 Further, the outer peripheral surface of the inner peripheral surface side post 2010 is provided with an inclined surface T12 that gradually expands outward in the radial direction from the lower end surface 2010a. On the other hand, the outer peripheral surface side post 2020 is provided so as to extend to a position in contact with the upper end portion of the stator core 141.
 上記構成からなる成形用下金型1000および成形用上金型2000により形成される成形用金型の内部にステータコア141を収容し、加熱により溶融した樹脂を、ステータコア141の内周面側の略中央領域に設けられた樹脂吐出口1110から成形用金型内の空間1000Cおよび2000Cに注入する。 The stator core 141 is accommodated in a molding die formed by the molding lower die 1000 and the molding upper die 2000 having the above-described configuration, and the resin melted by heating is substantially removed on the inner peripheral surface side of the stator core 141. The resin is discharged from the resin discharge port 1110 provided in the central region into the spaces 1000C and 2000C in the molding die.
 上述のステータコア141への樹脂製被膜142の被膜工程によれば、成形用下金型1000および成形用上金型2000のステータコア141の内周面に対向する面は、ステータコア141の内周面との間の距離が、樹脂吐出口111からステータコア141の端部に向かって狭くなる傾斜面T12および傾斜面T13を有している。これにより、図1に示した、ステータ140Aの構造のように、樹脂製被膜142の内周面に、中央部C1から上端部C2側および下端部C3側に向かうにしたがって徐々に傾斜する傾斜面T2,T3を成形することができる。 According to the coating process of the resin coating 142 on the stator core 141 described above, the surface of the lower mold 1000 and the upper mold 2000 facing the inner peripheral surface of the stator core 141 is the same as the inner peripheral surface of the stator core 141. Has an inclined surface T12 and an inclined surface T13 that become narrower from the resin discharge port 111 toward the end of the stator core 141. Thus, as in the structure of the stator 140A shown in FIG. 1, the inclined surface gradually inclines from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side on the inner peripheral surface of the resin coating 142. T2 and T3 can be formed.
 成形用金型内からのステータ140Aの取り出しは、傾斜面T2,T3の傾斜方向が、成形用下金型1000および成形用上金型2000からステータ140Aを抜き出し可能な傾斜であるため、成形用上金型2000の取り外し、および、ステータ140Aの成形用下金型1000からの取り出しは、容易に行うことができる。 The stator 140A is taken out from the molding die because the inclination direction of the inclined surfaces T2 and T3 is such that the stator 140A can be extracted from the lower molding die 1000 and the upper molding die 2000. Removal of the upper mold 2000 and removal of the stator 140A from the lower mold 1000 for molding can be easily performed.
 また、樹脂吐出口1110が、回転電機の回転軸芯Pの延びる方向において、ステータコア141の内周面側の略中央領域において環状に設けられていることから、樹脂の射出圧力はステータコア141の略中央領域に加わることになる。ステータコア141の略中央領域は、複数の電磁鋼板等を積層された剛性の強い領域である。したがって、樹脂の射出圧力が、ステータコア141の略中央領域に加わることによって、何ら問題は生じない。 Further, since the resin discharge port 1110 is provided in an annular shape in the substantially central region on the inner peripheral surface side of the stator core 141 in the direction in which the rotation axis P of the rotating electrical machine extends, the resin injection pressure is substantially equal to that of the stator core 141. Will join the central area. The substantially central region of the stator core 141 is a highly rigid region in which a plurality of electromagnetic steel plates and the like are laminated. Therefore, no problem occurs when the resin injection pressure is applied to the substantially central region of the stator core 141.
 また、中央部C1から上端部C2側および下端部C3側に向かうにしたがって徐々に傾斜する傾斜面T2,T3を有することで、ステータコア141の内周面に付着する樹脂量を減らすことができる。これにより、樹脂注入時にけるステータコア141への押圧力を低減し、ステータコア141の内径および外径寸法の変化の抑制を図ることが可能となる。 Further, by having the inclined surfaces T2 and T3 that gradually incline from the central portion C1 toward the upper end portion C2 side and the lower end portion C3 side, the amount of resin adhering to the inner peripheral surface of the stator core 141 can be reduced. Thereby, it is possible to reduce the pressing force applied to the stator core 141 at the time of resin injection, and to suppress changes in the inner and outer diameters of the stator core 141.
 (実施の形態2)
 次に、実施の形態2として、ステータ140Aの製造方法の他の製造方法について説明する。基本的な製造工程は、上記実施の形態1で示した製造方法と同じであるが、成形用上金型2000の内周面側ポスト2010の下端面2010aに、一端が樹脂導入通路2100に連通し、他端が内周面側ポスト2010の傾斜面T12で開放する溝2011が放射状に複数設けられている。
(Embodiment 2)
Next, as a second embodiment, another manufacturing method of the stator 140A will be described. The basic manufacturing process is the same as the manufacturing method shown in the first embodiment, but one end communicates with the lower end surface 2010a of the inner peripheral surface side post 2010 of the upper mold 2000 for molding and the resin introduction passage 2100. In addition, a plurality of grooves 2011 whose other ends open at the inclined surface T12 of the inner peripheral surface side post 2010 are provided in a radial manner.
 ここで、図4は、成形用上金型2000の下端面2010aとステータコア141の内周面との位置関係を示す部分拡大図である。ステータコア141の内周面側において、各分割ステータコア141aの電磁鋼板の先端部(ティース)141bが突出している。そのため、傾斜面T12とステータコア141の内周面との間において、先端部(ティース)141bと傾斜面T12との間の領域(S1)よりも、隣接する先端部(ティース)141b同士の間に傾斜面T12から遠ざかる領域S2を有することにある。 Here, FIG. 4 is a partially enlarged view showing the positional relationship between the lower end surface 2010a of the molding upper mold 2000 and the inner peripheral surface of the stator core 141. On the inner peripheral surface side of the stator core 141, the front end portion (tooth) 141b of the electromagnetic steel plate of each divided stator core 141a protrudes. For this reason, between the inclined surface T12 and the inner peripheral surface of the stator core 141, between the adjacent tip portions (teeth) 141b, rather than the region (S1) between the tip portion (teeth) 141b and the inclined surface T12. The region S2 is away from the inclined surface T12.
 傾斜面T12とステータコア141との間には、樹脂が注入されることになるが、上記溝2011は、図5から図7に示すように、遠ざかる領域S2に対向する位置に形成されている。このように、溝2011を設けることで、溝2011が設けられた領域は、溝2011が設けられていない樹脂吐出口1110に対して、開口面積の大きい拡大樹脂吐出口1110aを構成することになる。 Resin is injected between the inclined surface T12 and the stator core 141, but the groove 2011 is formed at a position facing the away region S2 as shown in FIGS. Thus, by providing the groove 2011, the region where the groove 2011 is provided constitutes an enlarged resin discharge port 1110a having a large opening area with respect to the resin discharge port 1110 where the groove 2011 is not provided. .
 このように、遠ざかる領域S2に対向する位置に拡大樹脂吐出口1110aを設けることで、樹脂注入時には遠ざかる領域S2での樹脂流動抵抗を大きく低減させることができ、樹脂の注入効率を向上させることができる。また、樹脂の流動抵抗が小さくなることから、樹脂注入時にけるステータコア141への押圧力をより低減し、ステータコア141の内径および外径寸法の変化の抑制を図ることが可能となる。 Thus, by providing the enlarged resin discharge port 1110a at a position facing the away region S2, the resin flow resistance in the away region S2 can be greatly reduced during resin injection, and the resin injection efficiency can be improved. it can. Further, since the flow resistance of the resin is reduced, it is possible to further reduce the pressing force applied to the stator core 141 at the time of resin injection and to suppress changes in the inner and outer diameter dimensions of the stator core 141.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 As mentioned above, although embodiment of this invention was described, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 110 回転軸、122 エンドプレート、122b 潤滑油排出孔、120 ロータ、140A ステータ、141 ステータコア、142 樹脂製被膜、143 リング、1000 成形用下金型、1000C,2000C 空間、1010 内周面側ポスト、1010a 上端面、1020 外周面側ポスト、1110 樹脂吐出口、1110a 拡大樹脂吐出口、2000 成形用上金型、2010 内周面側ポスト、2010a 下端面、2011 溝、2020 外周面側ポスト、2100 樹脂導入通路、C1 中央部、C2 上端部、C3 下端部、G ギャップ、P 回転軸芯、P 回転軸芯、S1,S2 領域、T2,T3,T12,T13 傾斜面。 110 Rotating shaft, 122 End plate, 122b Lubricating oil discharge hole, 120 rotor, 140A stator, 141 stator core, 142 resin coating, 143 ring, 1000 lower mold for molding, 1000C, 2000C space, 1010 inner peripheral side post, 1010a Upper end surface, 1020 Outer peripheral surface side post, 1110 Resin discharge port, 1110a Enlarged resin discharge port, 2000 Mold upper mold, 2010 Inner peripheral surface side post, 2010a Lower end surface, 2011 groove, 2020 Outer peripheral surface side post, 2100 Resin Introductory passage, C1, center, C2, upper end, C3 lower end, G gap, P rotation axis, P rotation axis, S1, S2 region, T2, T3, T12, T13 inclined surface.

Claims (5)

  1.  回転電機に用いられる環状形態を有するステータ(140A)であって、
     環状の形態を有するステータコア(141)と、
     前記ステータコア(141)の表面を覆う樹脂製被膜(142)と、を備え、
     前記ステータコア(141)の内周面を覆う前記樹脂製被膜(142)の膜厚さが、回転電機の回転軸芯(P)の延びる方向において、前記ステータコア(141)の中央部よりも端部の方が薄くなるように設けられている、ステータ。
    A stator (140A) having an annular shape used for a rotating electrical machine,
    A stator core (141) having an annular shape;
    A resinous coating (142) covering the surface of the stator core (141),
    The film thickness of the resin coating (142) covering the inner peripheral surface of the stator core (141) is more end than the center of the stator core (141) in the direction in which the rotating shaft (P) of the rotating electrical machine extends. The stator is provided to be thinner.
  2.  回転電機の回転軸芯(P)の延びる方向において、前記樹脂製被膜(142)の内表面は、中央部から端部に向かうにしたがって徐々に傾斜するように設けられている、請求の範囲第1項に記載のステータ。 The inner surface of the resin coating (142) is provided so as to be gradually inclined from the center to the end in the direction in which the rotation axis (P) of the rotating electrical machine extends. The stator according to item 1.
  3.  回転電機に用いられる環状形態を有するステータ(140A)の製造方法であって、
     環状の形態を有するステータコア(141)の表面を覆うように樹脂製被膜(142)を被覆するために、前記ステータコア(141)を成形用金型(1000,2000)の内部に収容ステップと、
     加熱により溶融した樹脂を、回転電機の回転軸芯(P)の延びる方向において、前記ステータコア(141)の内周面側の略中央領域に設けられた樹脂吐出口(1110)から前記成形用金型(1000,2000)内に注入するステップと、
    を備える、ステータの製造方法。
    A method for manufacturing a stator (140A) having an annular shape used in a rotating electrical machine,
    A step of accommodating the stator core (141) in a molding die (1000, 2000) to cover the resin coating (142) so as to cover the surface of the stator core (141) having an annular shape;
    In the direction in which the rotation axis (P) of the rotating electrical machine extends, the resin melted by heating is formed from the resin discharge port (1110) provided in the substantially central region on the inner peripheral surface side of the stator core (141). Injecting into a mold (1000, 2000);
    A method for manufacturing a stator.
  4.  前記成形用金型(1000,2000)の前記ステータコア(141)の内周面に対向する面は、前記ステータコア(141)の内周面との間の距離が、前記樹脂吐出口(1110)から前記ステータコア(141)の端部に向かって狭くなるように傾斜している、請求の範囲第3項に記載のステータの製造方法。 The surface facing the inner peripheral surface of the stator core (141) of the molding die (1000, 2000) has a distance from the inner peripheral surface of the stator core (141) from the resin discharge port (1110). The method for manufacturing a stator according to claim 3, wherein the stator core is inclined so as to become narrower toward an end of the stator core (141).
  5.  前記ステータコア(141)の内周面には、他の領域(S1)よりも前記成形用金型(1000,2000)から遠ざかる領域(S2)を有し、
     前記成形用金型(1000,2000)の前記樹脂吐出口(1110)には、前記遠ざかる領域(S2)に対向する位置に、他の樹脂吐出口よりも開口面積の大きい拡大樹脂吐出口(1110a)を有する、請求の範囲第3項に記載のステータの製造方法。
    The inner peripheral surface of the stator core (141) has a region (S2) farther from the molding die (1000, 2000) than the other region (S1),
    In the resin discharge port (1110) of the molding die (1000, 2000), an enlarged resin discharge port (1110a) having a larger opening area than the other resin discharge ports at a position facing the away region (S2). The method for manufacturing a stator according to claim 3, comprising:
PCT/JP2009/057093 2009-04-07 2009-04-07 Stator and manufacturing method thereof WO2010116486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057093 WO2010116486A1 (en) 2009-04-07 2009-04-07 Stator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057093 WO2010116486A1 (en) 2009-04-07 2009-04-07 Stator and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2010116486A1 true WO2010116486A1 (en) 2010-10-14

Family

ID=42935795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057093 WO2010116486A1 (en) 2009-04-07 2009-04-07 Stator and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2010116486A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692932A1 (en) * 2012-08-03 2014-02-05 Samsung Electronics Co., Ltd Washing machine
JP2015006034A (en) * 2013-06-19 2015-01-08 日産自動車株式会社 Core member, rotary electric machine employing the same, and method and device for manufacturing the same
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
JP7364479B2 (en) 2020-01-23 2023-10-18 ファナック株式会社 A stator for an electric motor that includes a cylindrical member placed outside the stator core.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157801A (en) * 1974-06-12 1975-12-20
JPS5714647U (en) * 1980-06-20 1982-01-25
JPS6434147A (en) * 1987-07-28 1989-02-03 Olympus Optical Co Armature for rotary electric machine
JP2005328689A (en) * 2004-04-15 2005-11-24 Hitachi Ltd Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157801A (en) * 1974-06-12 1975-12-20
JPS5714647U (en) * 1980-06-20 1982-01-25
JPS6434147A (en) * 1987-07-28 1989-02-03 Olympus Optical Co Armature for rotary electric machine
JP2005328689A (en) * 2004-04-15 2005-11-24 Hitachi Ltd Rotary electric machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692932A1 (en) * 2012-08-03 2014-02-05 Samsung Electronics Co., Ltd Washing machine
JP2015006034A (en) * 2013-06-19 2015-01-08 日産自動車株式会社 Core member, rotary electric machine employing the same, and method and device for manufacturing the same
US10537974B2 (en) 2014-10-17 2020-01-21 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10953515B2 (en) 2014-10-17 2021-03-23 Applied Materials, Inc. Apparatus and method of forming a polishing pads by use of an additive manufacturing process
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
JP7364479B2 (en) 2020-01-23 2023-10-18 ファナック株式会社 A stator for an electric motor that includes a cylindrical member placed outside the stator core.

Similar Documents

Publication Publication Date Title
WO2010116486A1 (en) Stator and manufacturing method thereof
CN103580325B (en) The manufacture method of rotor, motor and rotor
EP2940831B1 (en) Rotary machine, and electric vehicle
CN103339830B (en) The method of rotor unit, electric rotating machine and manufacture rotor unit
US20130119808A1 (en) Motor
US20060103253A1 (en) Rotor for permanent magnet motor of outer rotor type
US8590137B2 (en) Method of manufacturing a stator
JP5629860B2 (en) Rotor, rotor manufacturing method and motor
CN109687667A (en) Motor
JP2002186205A (en) Dynamo-electric machine
JP3808641B2 (en) Stator core manufacturing method, stator core insulating layer coating mold, and stator core
US20060186753A1 (en) Stator and electric motor having the same
KR20150095175A (en) Motor and method of molding resin casing
US20130280090A1 (en) Fan device
JP5274091B2 (en) Stator manufacturing method for rotating electrical machine
JP5714122B2 (en) Stator core manufacturing method and stator core
JP3882721B2 (en) Cooling structure for rotating electrical machine and method for manufacturing the same
JP2010268561A (en) Rotor for rotating electrical machine and the rotating electrical machine
JP4032687B2 (en) Rotating electric machine
US11387697B2 (en) Rotary electric machine
JP2008178256A (en) Stator and manufacturing method therefor, and motor
JP2015061482A (en) Resin mold stator and manufacturing method thereof
JP4710177B2 (en) Cooling structure for rotating electrical machine and method for manufacturing the same
JP2016184991A (en) Magnet embedded type rotor and manufacturing method of the same
JP7468049B2 (en) Yoke and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP