WO2010114108A1 - Aqueous emulsion - Google Patents

Aqueous emulsion Download PDF

Info

Publication number
WO2010114108A1
WO2010114108A1 PCT/JP2010/056043 JP2010056043W WO2010114108A1 WO 2010114108 A1 WO2010114108 A1 WO 2010114108A1 JP 2010056043 W JP2010056043 W JP 2010056043W WO 2010114108 A1 WO2010114108 A1 WO 2010114108A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
carboxylic acid
aqueous emulsion
unsaturated carboxylic
component
Prior art date
Application number
PCT/JP2010/056043
Other languages
French (fr)
Japanese (ja)
Inventor
吉田礼
肥後睦子
森本順次
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010114108A1 publication Critical patent/WO2010114108A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines

Definitions

  • the present invention relates to an aqueous emulsion.
  • Polypropylene is used for automobile parts such as bumpers because it has excellent processability and strength.
  • a paint is usually applied to automobile parts for decoration or the like.
  • a chlorinated polyolefin excellent in adhesiveness with polypropylene is applied to polypropylene, and the paint is applied thereon (for example, JP-A-5-7832).
  • the present invention ⁇ 1> An aqueous emulsion comprising the following component (A), component (B) and component (C); (A) a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid; A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an ⁇ , ⁇ -unsaturated carboxylic acid; Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
  • Monomer hydrophilic ratio 20 ⁇ (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
  • the aqueous emulsion according to ⁇ 1> comprising a polymer obtained by graft polymerization of an ⁇ , ⁇ -unsaturated carboxylic acid anhydride to a copolymer containing a structural unit derived from a vinyl compound represented by: ⁇ 4>
  • the aqueous emulsion is an aqueous emulsion having the component (A) and the component (B) as a dispersoid and the component (C) as a dispersion medium, and the volume-based median diameter of the dispersoid is 0.01 ⁇ m.
  • the aqueous emulsion according to any one of ⁇ 1> to ⁇ 5>, which is ⁇ 3 ⁇ m; ⁇ 7> Derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an optionally substituted amino group and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • aqueous emulsion according to any one of ⁇ 1> to ⁇ 6>, wherein the structural unit is a structural unit derived from N, N-dimethylaminoethyl methacrylate; ⁇ 8> The aqueous emulsion according to any one of ⁇ 1> to ⁇ 7>, wherein the structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid is a structural unit derived from acrylic acid or methacrylic acid; ⁇ 9> A method for producing an aqueous emulsion, wherein the component (A) and the component (B) are melt-kneaded, and the resulting molten mixture and water are mixed; (A) a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid; A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an
  • Monomer hydrophilic ratio 20 ⁇ (formula weight of monomer hydrophilic portion) / (monomer molecular weight)) (B) Thermoplastic polymer (C) Water ⁇ 10> Cured product obtained by drying the aqueous emulsion according to any one of ⁇ 1> to ⁇ 8>; ⁇ 11> A laminate having a base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material, and a metal material, and a layer made of the cured product according to ⁇ 10>; ⁇ 12> The aqueous emulsion according to any one of ⁇ 1> to ⁇ 8>, wherein the base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material, and a metal material To obtain a laminate having the base material layer and the aqueous emulsion layer, Drying the laminate obtained in
  • Monomer hydrophilic ratio 20 ⁇ (formula weight of monomer hydrophilic part) / (monomer molecular weight)); ⁇ 14> Derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an optionally substituted amino group and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the emulsifier according to ⁇ 13> wherein the structural unit is a structural unit derived from N, N-dimethylaminoethyl methacrylate; ⁇ 15>
  • the aqueous emulsion of the present invention comprises the following component (A), component (B) and component (C).
  • A a structural unit derived from ⁇ , ⁇ -unsaturated carboxylic acid (hereinafter abbreviated as structural unit (a1)); A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an ⁇ , ⁇ -unsaturated carboxylic acid and an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent (
  • structural unit (a2) wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
  • Thermoplastic polymer (C) Water First, the component (A) will be described.
  • the component (A) is an acrylic resin containing the structural unit (a1) and the structural unit (a2).
  • the ⁇ , ⁇ -unsaturated carboxylic acid that leads the structural unit (a1) includes acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, angelic acid, sorbic acid, mesaconic acid And ⁇ , ⁇ -unsaturated carboxylic acids having 3 to 20 carbon atoms such as
  • the ⁇ , ⁇ -unsaturated carboxylic acid is preferably an ⁇ , ⁇ -unsaturated carboxylic acid having one or two carboxyl groups (—COOH).
  • the acrylic resin of the component (A) may have two or more types of structural units (a1).
  • the structural unit (a1) is preferably at least one selected from the group consisting of a structural unit derived from acrylic acid and a structural unit derived from methacrylic acid.
  • the ⁇ , ⁇ -unsaturated carboxylic acid ester leading to the structural unit (a2) is an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent, an ⁇ , ⁇ -unsaturated carboxylic acid, Derived from. Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include those described above, and acrylic acid or methacrylic acid is preferable.
  • the amino group which may have a substituent is an amino group; methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butyl. 2 amino groups such as an amino group having a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms such as amino group; dimethylamino group, methylethylamino group, diethylamino group, dipropylamino group, etc.
  • an amino group having a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms; and a cyclic amino group, and two linear and branched chains having 1 to 10 carbon atoms An amino group having a linear or cyclic alkyl group is preferred, and an amino group having two linear, branched or cyclic alkyl groups having 1 to 3 carbon atoms is more preferred.
  • Examples of the aliphatic alcohol having 1 to 10 carbon atoms include methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, 3-methylbutanol, 2,2-dimethylpropanol, 3-methyl-2-butanol, 2 -Straight chain, branched chain or cyclic aliphatic alcohols having 1 to 10 carbon atoms such as ethylhexanol, nonanol, decanol, cyclohexanol, etc., straight chain or branched chains having 1 to 4 carbon atoms Or a cyclic aliphatic alcohol is preferable.
  • Examples of the aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent include N, N-dimethylaminoethanol, N, N-diethylaminoethanol, N-methyl-N-ethylaminoethanol, Examples include N, N-dipropylaminoethanol, N-methyl-N-propylaminoethanol, N-ethyl-N-propylaminoethanol, N, N-dimethylaminopropanol and N, N-dimethylaminobutanol.
  • the ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an ⁇ , ⁇ -unsaturated carboxylic acid includes N, N -Diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N-methyl-N-ethylaminoethyl acrylate and N-methyl-N-ethylamino Examples thereof include ethyl methacrylate, and N, N-dimethylaminoethyl methacrylate is preferable.
  • the acrylic resin of the component (A) may have two or more types of structural units (a2).
  • the content of the structural unit (a1) in the acrylic resin of component (A) is usually 20 to 99 mol, preferably 50 to 99 mol, relative to 100 mol of all structural units constituting the acrylic resin. is there.
  • the content of the structural unit (a2) in the acrylic resin of the component (A) is usually 1 to 80 mol, preferably 1 to 50 mol with respect to 100 mol of all structural units constituting the acrylic resin. is there.
  • the acrylic resin of component (A) may contain two or more kinds of acrylic resins. In addition to the structural unit (a1) and the structural unit (a2), the acrylic resin of the component (A) may have another structural unit.
  • structural units include A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 20 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b1)); A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b2)).
  • structural unit (b3 ) A structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having a carboxylic acid group and an ⁇ , ⁇ -unsaturated carboxylic acid (hereinafter referred to as structural unit (b3 ))), And And a structural unit derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from a polyalkylene glycol and an ⁇ , ⁇ -unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b4)).
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid for deriving the other structural units include those described above, and acrylic acid or methacrylic acid is preferable.
  • the ⁇ , ⁇ -unsaturated carboxylic acid ester that derives the structural unit (b1) is derived from an aliphatic alcohol having 1 to 20 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • Examples of the aliphatic alcohol having 1 to 20 carbon atoms include methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, 3-methylbutanol, 2,2-dimethylpropanol, 3-methyl-2-butanol, Examples thereof include linear, branched or cyclic aliphatic alcohols having 1 to 20 carbon atoms, such as 2-ethylhexanol, nonanol, decanol, dodecanol, tridecanol, hexadecanol, octadecanol, and cyclohexanol.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 20 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Pentyl acrylate, 3-methylbutyl acrylate, 2,2-dimethylpropyl acrylate, 3-methyl-2-butyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, tridecyl acrylate , Hexadecyl acrylate, octadecyl acrylate, cyclohexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate, 2-methyl-2-butyl me
  • the acrylic resin of component (A) may have two or more structural units (b1).
  • the ⁇ , ⁇ -unsaturated carboxylic acid ester that derives the structural unit (b2) is derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • Such polyhydric aliphatic alcohols having 1 to 10 carbon atoms include hydroxymethanol, hydroxyethanol, hydroxypropanol, hydroxybutanol, hydroxypentanol and hydroxyhexanol.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an ⁇ , ⁇ -unsaturated carboxylic acid include hydroxymethyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl Acrylate, hydroxypentyl acrylate, hydroxyhexyl acrylate, hydroxymethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, hydroxypentyl methacrylate and hydroxyhexyl methacrylate.
  • the acrylic resin of component (A) may have two or more structural units (b2).
  • the structural unit (b3) is derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from a C 1-10 aliphatic alcohol having a carboxylic acid group and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • carboxylic acid group means an organic group having a carboxyl group (—COOH), such as carboxymethyl group, 1,2-dicarboxyethyl group, 2-carboxyphenyl group and 2,3-dicarboxyphenyl. Groups.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having a carboxylic acid group and an ⁇ , ⁇ -unsaturated carboxylic acid include 2-acryloyloxyethyl succinic acid, 2- Examples include acryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl succinic acid and 2-methacryloyloxyethyl phthalic acid.
  • the acrylic resin of component (A) may have two or more structural units (b3).
  • the structural unit (b4) is derived from an ⁇ , ⁇ -unsaturated carboxylic acid ester derived from a polyalkylene glycol and an ⁇ , ⁇ -unsaturated carboxylic acid.
  • polyalkylene glycol 1 to 50 alkylene groups having 1 to 4 carbon atoms such as polyethylene glycol, polypropylene glycol, polyethylene glycol polypropylene glycol, polyethylene glycol polytetramethylene glycol and methoxypolyethylene glycol are bonded via oxygen atoms.
  • the polyalkylene glycol and the terminal hydroxyl group of these polyalkylene glycols may be protected with an alkyl group having 1 to 20 carbon atoms, an acryl group, a methacryl group or the like.
  • Examples of ⁇ , ⁇ -unsaturated carboxylic acid ester derived from polyalkylene glycol and ⁇ , ⁇ -unsaturated carboxylic acid include polypropylene glycol acrylate, polyethylene glycol acrylate, polyethylene glycol acrylate acrylate, polyethylene glycol monoacrylate
  • the acrylic resin of component (A) preferably contains the structural unit (b1) or the structural unit (b3), and more preferably contains the structural unit (b1) and the structural unit (b3).
  • the content of the structural unit (b1) is usually 5 to 95 mol with respect to 100 mol of all the structural units constituting the acrylic resin. Preferably, it is 10 to 80 mol.
  • the content of the structural unit (b2) in the acrylic resin of component (A) is usually 0 to 50 mol, preferably 0 to 30 mol, relative to 100 mol of all structural units constituting the acrylic resin. Yes, more preferably 0 to 1 mol.
  • the content of the structural unit (b3) is usually 0.1 to 100 mol per 100 mol of all the structural units constituting the acrylic resin. 80 moles, preferably 5 to 40 moles.
  • the content of the structural unit (b4) in the acrylic resin of component (A) is usually 0 to 50 mol, preferably 0 to 30 mol, relative to 100 mol of all the structural units constituting the acrylic resin. Yes, more preferably 0 to 1 mol.
  • the content of the structural unit having an anionic group such as the structural unit (a1) or the structural unit (b3) is determined by the adhesiveness of the cured product obtained from the aqueous emulsion of the present invention to polypropylene. From the viewpoint, the amount is preferably 45 to 85 mol, more preferably 50 to 80 mol, with respect to 100 mol of all the structural units constituting the acrylic resin.
  • the acrylic resin of component (A) 5 to 80 mol of structural unit (a1), 1 to 50 mol of structural unit (a2), 10 to 10 mol per 100 mol of all structural units constituting the acrylic resin.
  • the acrylic resin of component (A) is represented by a structural unit derived from ethylene, a structural unit derived from propylene, a structural unit derived from a linear ⁇ -olefin having 4 or more carbon atoms described later, and a formula (I) described later.
  • the acrylic resin of component (A) can be produced by addition polymerization of monomers that lead each structural unit.
  • an alcohol solvent such as isopropanol, a solvent such as water, and a monomer are mixed, and the resulting mixture and a polymerization initiator such as a radical initiator are usually 70 to 100 ° C., preferably 75 to 95 ° C., more preferably 75.
  • the mixture is mixed at ⁇ 85 ° C, and the resulting mixture is usually stirred for about 1 to 24 hours to carry out the polymerization reaction, the solvent and a part of the monomer are mixed, and the resulting mixture, the polymerization initiator and the remaining mixture are mixed.
  • a method of conducting a polymerization reaction by mixing the monomer with usually 70 to 100 ° C., preferably 75 to 95 ° C., more preferably 75 to 85 ° C., and stirring the resulting mixture usually for about 1 to 24 hours. It is done.
  • a solution obtained by dissolving a polymerization initiator and the remaining monomers in an organic solvent may be used.
  • the amount of the polymerization initiator used is usually 0.01 to 5 parts by weight, preferably 2 to 3 parts by weight with respect to 100 parts by weight of the total amount of monomers.
  • a redox initiator in which a polymerization initiator and a reducing agent are used in combination can also be used as the polymerization initiator.
  • the polymer hydrophilic ratio of the acrylic resin of the component (A) is 9 to 12, preferably 9.1 to 11, and more preferably 9.1 to 10.
  • the aqueous emulsion of the present invention containing an acrylic resin having a polymer hydrophilic ratio within the above range gives a cured product having excellent adhesion to a substrate such as polypropylene by drying at, for example, about 90 ° C to 120 ° C. Furthermore, even when the drying temperature is as low as about 65 to 90 ° C., a cured product having excellent adhesion to a substrate such as polypropylene is provided.
  • the polymer hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, and the hydrophilic ratio of the monomer is calculated by the following formula.
  • Monomer hydrophilic ratio 20 ⁇ (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
  • the hydrophilic part of the monomer means a carboxyl group (—COOH), a hydroxyl group (—OH), an amino group (—NH) in the monomer. 2 ), Sulfo group (-SO 3 H), a carbonyloxy group (—CO 2 -), Dialkylamino group (-NR) 2 ) Of a nitrogen atom (N) or the like.
  • the formula weight of the carboxyl group is 45.02, the formula weight of the hydroxyl group is 17.02, the formula weight of the amino group is 16.02, the formula weight of the sulfo group is 81.07, the formula weight of the carbonyloxy group is 44.01, The formula weight of the nitrogen atom of the dialkylamino group is 14.01.
  • acrylic acid molecular weight: 72.06
  • the hydrophilic ratio of acrylic acid is 12.5.
  • 2-methacryloyloxyethyl succinic acid molecular weight: 230.21
  • the hydrophilic ratio of 2-methacryloyloxyethyl succinic acid is 11.6.
  • N, N-dimethylaminoethyl methacrylate (molecular weight: 157.21) has one carbonyloxy group and one dialkylamino group nitrogen atom as the hydrophilic portion, The hydrophilic ratio is 7.4.
  • An acrylic resin having a polymer hydrophilic ratio of 9 to 12 can be prepared.
  • Component (A) acts as an emulsifier for dispersing component (B) in component (C) in the aqueous emulsion of the present invention.
  • the emulsifier of the present invention contains the component (A), and preferably further contains water.
  • the emulsifier of the present invention may further contain an ammonium cation.
  • ammonium cation source ammonia is preferable.
  • NH of the emulsifier of the present invention 3 The degree of neutralization is preferably 50 to 300, and more preferably 100 to 200.
  • NH 3 “Neutralization degree” means the ratio (%) of the number of moles of ammonium cation contained in the emulsifier to the total number of moles of structural units derived from the monomer having an anionic group contained in component (A). Subsequently, the component (B) will be described.
  • the component (B) is a thermoplastic polymer.
  • a thermoplastic polymer containing a structural unit derived from ethylene a thermoplastic polymer containing a structural unit derived from propylene, an ester wax, and a carnauba wax.
  • thermoplastic polymers containing structural units derived from amide compounds such as Fischer-Trops wax, microcrystalline wax, paraffin wax and oxides thereof, low molecular weight polyamides and fatty acid amides.
  • a thermoplastic polymer containing a structural unit derived from ethylene and / or propylene is preferable.
  • thermoplastic polymer containing structural units derived from ethylene and / or propylene examples include polyethylene such as low density polyethylene, polyethylene wax, ethylene / vinyl acetate copolymer, ethylene / propylene / vinyl acetate copolymer, and ethylene / acrylic.
  • Acid copolymer ethylene / propylene / acrylic acid copolymer, ethylene / acrylic ester copolymer, ethylene / propylene / acrylic ester copolymer, ethylene / acrylic acid copolymer, ethylene / propylene / methacrylic acid copolymer , Ethylene / methacrylic ester copolymer, ethylene / propylene / methacrylic ester copolymer, polypropylene, ethylene / propylene copolymer, ethylene / hexene copolymer, propylene / hexene copolymer, ethylene / propylene / hexe Copolymers, ethylene-butene copolymer, propylene-butene copolymer, ethylene-propylene-butene copolymer and these maleic acid modified products thereof.
  • a copolymer (hereinafter abbreviated as polymer (B-1)) containing a structural unit derived from a vinyl compound (hereinafter abbreviated as vinyl compound (I)), and a polymer (B- 1) is preferably a polymer obtained by graft polymerization of an ⁇ , ⁇ -unsaturated carboxylic acid anhydride (hereinafter abbreviated as polymer (B-2)).
  • the secondary alkyl group represented by R is preferably a secondary alkyl group having 3 to 20 carbon atoms
  • the tertiary alkyl group is preferably a tertiary alkyl group having 4 to 20 carbon atoms, and an alicyclic hydrocarbon group.
  • the group is preferably a 3- to 16-membered alicyclic hydrocarbon group. Examples of the alicyclic hydrocarbon group include a cycloalkyl group, a cycloalkenyl group, and a cycloalkynyl group, and a cycloalkyl group is preferable.
  • R is more preferably a 3- to 10-membered alicyclic hydrocarbon group having 3 to 20 carbon atoms and a tertiary alkyl group having 4 to 20 carbon atoms.
  • the vinyl compound (I) include 3-methyl-1-butene, 3-methyl-1-pentene, 3-methyl-1-hexene, 3-methyl-1-heptene, 3-methyl-1-octene, 3, 4-dimethyl-1-pentene, 3,4-dimethyl-1-hexene, 3,4-dimethyl-1-heptene, 3,4-dimethyl-1-octene, 3,5-dimethyl-1-hexene, 3, 5-dimethyl-1-heptene, 3,5-dimethyl-1-octene, 3,6-dimethyl-1-heptene, 3,6-dimethyl-1-octene, 3,7-dimethyl-1-octene, 3, R of 2,4-trimethyl-1-pentene, 3,4,4-trimethyl-1-hexene, 3,
  • 1-vinyladamantane, 5-vinyl-2-norbornene and 4-vinyl-1-cyclohexene are preferred, and 3-methyl-1-butene, 3-methyl-1-pentene, 3,4-dimethyl-1-pentene, 3,3-dimethyl-1- More preferred are butene, 3,3,4-trimethyl-1-pentene, vinylcyclohexane and vinylnorbornene,
  • the content of the structural unit derived from the vinyl compound (I) in the polymer (B-1) is usually 5 to 40 mol with respect to 100 mol of all the structural units constituting the polymer (B-1). From the viewpoint of adhesiveness of a cured product obtained by drying the aqueous emulsion of the present invention, the amount is preferably 10 to 30 mol, more preferably 10 to 20 mol.
  • the content of the structural unit derived from the vinyl compound (I) in the polymer (B-1) is the same as that of the polymer (B-1). 1 H-NMR analysis and 13 It can be determined by C-NMR analysis.
  • the polymer (B-1) may further contain a structural unit derived from a linear ⁇ -olefin having 4 to 20 carbon atoms.
  • linear ⁇ -olefin having 4 to 20 carbon atoms examples include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene. 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nanodecene and 1-eicosene. Of these, 1-butene, 1-pentene, 1-hexene and 1-octene are preferable.
  • the total content of structural units derived from ethylene, propylene and a linear ⁇ -olefin having 4 to 20 carbon atoms in the polymer (B-1) is all the constituents of the polymer (B-1).
  • the amount is usually 95 to 60 mol, preferably 90 to 70 mol%, more preferably 90 to 80 mol, per 100 mol of the structural unit.
  • the polymer (B-1) may further have a structural unit derived from a monomer capable of addition polymerization.
  • the addition-polymerizable monomer is a monomer other than ethylene, propylene, a linear ⁇ -olefin having 4 to 20 carbon atoms and a vinyl compound (I), and includes ethylene, propylene, and a linear ⁇ having 4 to 20 carbon atoms.
  • -A monomer capable of addition polymerization with an olefin and a vinyl compound (I), and the carbon number of the monomer is usually about 3 to 20.
  • addition-polymerizable monomers include cycloolefins, formula (II) (In the formula, R ′ and R ′′ each independently represent a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms or a halogen atom.)
  • -Unsaturated carboxylic acid anhydrides In the formula, R ′ and R ′′ each independently represent a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms or a halogen atom.
  • Cycloolefins include cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3-methylcyclopentene, 4-methylcyclopentene, 3-methylcyclohexene, 2-norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5 -Butyl-2-norbornene, 5-phenyl-2-norbornene, 5-benzyl-2-norbornene, 2-tetracyclododecene, 2-tricyclodecene, 2-tricycloundecene, 2-pentacyclopentadecene, 2-pentacyclohexadecene, 8-methyl-2-tetracyclododecene, 8-ethyl-2-tetracyclododecene, 5-acetyl-2-norbornene, 5-acetyloxy-2-norbornene, 5-meth
  • Examples of the olefin represented by the formula (II) include isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 2-methyl-1-hexene, 2-methyl-1-heptene, and 2-methyl-1. -Octene, 2,3-dimethyl-1-butene, 2,3-dimethyl-1-pentene, 2,3-dimethyl-1-hexene, 2,3-dimethyl-1-heptene, 2,3-dimethyl-1 -Octene, 2,4-dimethyl-1-pentene, 2,4,4-trimethyl-1-pentene and vinylidene chloride, isobutene, 2,3-dimethyl-1-butene and 2,4,4-trimethyl -1-pentene is preferred.
  • diene compound examples include 1,3-butadiene, 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,5-cyclooctadiene, 2,5-norbornadiene, and diene.
  • cyclopentadiene 5-vinyl-2-norbornene, 5-allyl-2-norbornene, 4-vinyl-1-cyclohexene and 5-ethylidene-2-norbornene, and include 1,4-pentadiene, 1,5-hexadiene, 2,5-norbornadiene, dicyclopentadiene, 5-vinyl-2-norbornene, 4-vinyl-1-cyclohexene and 5-ethylidene-2-norbornene are preferred.
  • Aliphatic vinyl carboxylates include vinyl acetate, vinyl propionate and vinyl butyrate
  • vinyl ether compounds include methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether.
  • Examples of the vinyl halide include vinyl chloride, and examples of the cyanovinyl compound include acrylonitrile and methacrylonitrile.
  • the content of the structural unit derived from the addition-polymerizable monomer in the polymer (B-1) may be an amount that does not impair the adhesion of the cured product obtained by drying the aqueous emulsion of the present invention. 5 mol or less is preferable with respect to 100 mol of all the structural units constituting the combination (B-1), and 1 mol or less is more preferable.
  • the polymer (B-1) can be produced, for example, by polymerizing a corresponding monomer using a transition metal compound having a group having an indenyl anion skeleton or a crosslinked cyclopentadienyl anion skeleton as a catalyst. .
  • a transition metal compound having a group having an indenyl anion skeleton or a crosslinked cyclopentadienyl anion skeleton as a catalyst.
  • the methods described in JP-A No. 2003-82028, JP-A No. 2003-160621 and JP-A No. 2000-128932 are preferable.
  • an ethylene homopolymer, a propylene homopolymer and / or a vinylcyclohexane single A polymer may form.
  • the polymer (B-1) can be easily taken out by performing solvent extraction using a Soxhlet extractor or the like.
  • a vinylcyclohexane homopolymer can be removed as an insoluble component.
  • chloroform is used as the solvent, olefin homopolymers such as ethylene homopolymer and propylene homopolymer can be removed as insoluble components.
  • the polymer (B-1) can be separated as a soluble component in these solvents.
  • the polymer (B-1) containing the by-product as described above may be used.
  • the weight average molecular weight (Mw) of the polymer (B-1) is usually about 5,000 to 1,000,000, and the mechanical strength of the cured product obtained by drying the aqueous emulsion of the present invention and the polymer From the viewpoint of the fluidity of (B-1), it is preferably about 10,000 to 500,000, more preferably about 15,000 to 400,000.
  • the molecular weight distribution of the polymer (B-1) can be determined by gel permeation chromatography (GPC).
  • the intrinsic viscosity [ ⁇ ] of the polymer (B-1) is usually about 0.25 to 10 dl / g, preferably from the viewpoint of the mechanical strength of the cured product obtained by drying the aqueous emulsion of the present invention. It is about 0.3 to 3 dl / g.
  • the melt flow rate (MFR) of the polymer (B-1) measured under the conditions of 190 ° C. and 2.16 kgf using a melt indexer (L217-E14011, manufactured by Techno Seven Co.) in accordance with JIS K 7210.
  • the polymer (B-2) is a polymer obtained by graft polymerizing an ⁇ , ⁇ -unsaturated carboxylic acid anhydride to the polymer (B-1).
  • the graft polymerization amount of the ⁇ , ⁇ -unsaturated carboxylic acid anhydride is usually about 0.01 to 20 parts by weight, preferably about 0.05 to 10 parts by weight with respect to 100 parts by weight of the polymer (B-2). More preferably, it is about 0.1 to 5 parts by weight.
  • the aqueous emulsion of the present invention containing a polymer (B-2) having a graft polymerization amount of ⁇ , ⁇ -unsaturated carboxylic acid anhydride of 0.01 part by weight or more is preferred because its adhesiveness tends to be improved.
  • the aqueous emulsion of the present invention containing a polymer (B-2) having a graft polymerization amount of ⁇ , ⁇ -unsaturated carboxylic acid anhydride of 20% by weight or less is preferred because its thermal stability tends to be improved.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid anhydride include ⁇ , ⁇ -unsaturated carboxylic acid anhydrides having 4 to 20 carbon atoms such as maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. preferable. Two or more ⁇ , ⁇ -unsaturated carboxylic acid anhydrides may be used in combination.
  • the polymer (B-2) is graft-polymerized by adding an ⁇ , ⁇ -unsaturated carboxylic acid anhydride to the melt polymer (B-1) obtained by melting the polymer (B-1).
  • the polymer (B-1) is dissolved in a solvent such as toluene and xylene, and ⁇ , ⁇ -unsaturated carboxylic acid anhydride is added to the resulting solution for graft polymerization. It can. Graft polymerization is usually performed in the presence of a radical initiator. When the amount of the radical initiator used is small, the amount of graft polymerization of the ⁇ , ⁇ -unsaturated carboxylic acid anhydride is reduced, and the adhesiveness of the cured product obtained by drying the aqueous emulsion of the present invention is improved.
  • the amount of the unreacted radical initiator contained in the polymer (B-2) tends to increase if the amount is too much, the amount of the polymer (B-1) is 100 parts by weight.
  • the amount is usually 0.01 to 10 parts by weight, preferably 0.01 to 1 part by weight.
  • the radical initiator an organic peroxide is usually used, and an organic peroxide having a decomposition temperature of 50 to 210 ° C. with a half-life of 1 minute is preferable. When an organic peroxide having a decomposition temperature of 50 ° C.
  • the amount of graft polymerization of ⁇ , ⁇ -unsaturated carboxylic acid anhydride tends to be improved, and an organic peroxide having a decomposition temperature of 210 ° C. or lower is preferred.
  • an oxide is used, decomposition of the polymer (B-1) in graft polymerization tends to be reduced.
  • An organic peroxide having a function of extracting protons from the polymer (B-1) after generating radicals by decomposition is preferred. Examples of the organic peroxide having a decomposition temperature of 50 to 210 ° C.
  • diacyl peroxide compounds with a half-life of 1 minute include diacyl peroxide compounds, dialkyl peroxide compounds, peroxyketal compounds, alkyl perester compounds, and percarbonate compounds. Dialkyl peroxide compounds, diacyl peroxide compounds, percarbonate compounds and alkyl perester compounds are preferred.
  • the addition amount of the organic peroxide is usually 0.01 to 20 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polymer (B-1).
  • the polymer (B) can be melt kneaded using an extruder, and various polymers or various known methods for mixing polymers and solid or liquid additives can be used.
  • a method of graft polymerization by adding an ⁇ , ⁇ -unsaturated carboxylic acid anhydride to the molten polymer (B-1) obtained by melting -1). It is more preferable to combine all or some of the components for graft polymerization and separately mix them with a Henschel mixer, ribbon blender, blender or the like to obtain a uniform mixture, and then melt and knead the mixture.
  • melt-kneading means known kneading means such as a Banbury mixer, a plast mill, a Brabender plastograph, a uniaxial or biaxial extruder can be widely employed.
  • the polymer (B-2) can be continuously produced and the productivity is improved, the polymer (B-1), the ⁇ , ⁇ -unsaturated carboxylic acid anhydride and the radical initiator are sufficiently sufficient in advance.
  • a method is preferred in which the mixture obtained by mixing is fed from the feed port of a single-screw or twin-screw extruder and kneaded.
  • the temperature of the portion where the melt kneading of the extruder is performed (for example, the cylinder temperature of the extruder) is usually 50 to 300 ° C., preferably 80 to 270 ° C.
  • the melt kneading is preferably performed in two stages, and the temperature of the second stage melt kneading is preferably higher than the temperature of the first stage melt kneading.
  • the melt kneading time is usually 0.1 to 30 minutes, preferably 0.1 to 5 minutes.
  • the structural unit derived from the ⁇ , ⁇ -unsaturated carboxylic acid anhydride in the polymer (B-2) may be a structural unit in which the acid anhydride structure is retained, or the acid anhydride structure is ring-opened.
  • the molecular weight distribution (Mw / Mn) of the polymer (B-2) is usually 1.5 to 10, preferably 1.5 to 7, and more preferably 1.5 to 5.
  • the molecular weight distribution of the polymer (B-2) can be measured by the same method as the molecular weight distribution of the polymer (B-1).
  • the value of the intrinsic viscosity [ ⁇ ] of the polymer (B-2) is usually about 0.25 to 10 dl / g, and from the viewpoint of the mechanical strength of a cured product obtained by drying the aqueous emulsion of the present invention, About 0.3 to 3 dl / g is preferable.
  • the melt flow rate (MFR) of the polymer (B-2) measured under the conditions of 190 ° C. and 2.16 kgf using a melt indexer (L217-E14011, manufactured by Techno Seven) in accordance with JIS K 7210.
  • the aqueous emulsion of the present invention contains water as the component (C) in addition to the component (A) and the component (B), the component (A) and the component (B) are dispersoids, and the component (C) is dispersed. It is an emulsion used as a medium.
  • the volume-based median diameter of the dispersoid is usually 0.01 to 3 ⁇ m, preferably 0.1 to 2 ⁇ m, and more preferably 0.5 to 1.7 ⁇ m.
  • the volume-based median diameter is 0.01 ⁇ m or more, it is easy to produce an aqueous emulsion, and when it is 3 ⁇ m or less, the stationary stability of the aqueous emulsion and the adhesiveness of a cured product obtained by drying the aqueous emulsion There is a tendency to improve.
  • “Standing stability” refers to the property that the aqueous emulsion is homogeneous when the aqueous emulsion is stored for 3 days without stirring, that is, the layer rich in component (B) and / or component (C) in the aqueous emulsion. This means that a layer rich in is difficult to form.
  • “Volume-based median diameter” means a particle diameter corresponding to 50% of the cumulative particle diameter distribution on a volume basis.
  • the content of the component (A) in the aqueous emulsion of the present invention is usually 1 to 30 parts by weight, preferably 2 to 10 parts by weight with respect to 100 parts by weight of (B).
  • the total content of component (A) and component (B) in the aqueous emulsion of the present invention is usually 10 to 90 parts by weight, preferably 30 to 70 parts by weight, more preferably 100 parts by weight of the aqueous emulsion. 40 to 60 parts by weight.
  • the content of (C) in the aqueous emulsion of the present invention is usually 90 to 10 parts by weight, preferably 70 to 30 parts by weight, more preferably 60 to 40 parts by weight with respect to 100 parts by weight of the aqueous emulsion.
  • the aqueous emulsion of the present invention is a method in which component (A) and component (B) are melt-kneaded, and the resulting molten mixture and water are mixed; the step of mixing component (A) with heated component (B)
  • a method comprising: heating and kneading component (A) and component (B), and dispersing the obtained kneaded mixture in component (C); and dissolving component (B) in an organic solvent such as toluene,
  • the method of mixing the obtained solution and component (A) and including the process of removing the said organic solvent from the obtained mixture is mentioned.
  • a chemical emulsification method such as self-emulsification can also be used.
  • a method comprising melting and kneading the component (A) and the component (B), mixing the obtained molten mixture and water, and a method including the step of mixing the component (A) with the heated component (B) are preferable. It is.
  • a twin screw extruder As an apparatus used for the process of melt kneading component (A) and component (B), a twin screw extruder, Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), Labo Plast Mill Micro (manufactured by Toyo Seiki Seisakusho Co., Ltd.) Multi-screw extruder, homogenizer, T. et al.
  • K-Filmics (Primics Co., Ltd.) and other equipment with barrels (cylinders), stirring tanks, chemical stirrers, vortex mixers, flow jet mixers, colloid mills, ultrasonic generators, high-pressure homogenizers, Dispersion (registered by Fujikin Co., Ltd.) Trademarks), static mixers, micro mixers, and other devices that do not have a barrel (cylinder).
  • the shear rate of equipment with a barrel is usually 200 to 100,000 seconds -1 Degree, preferably 1000 to 2500 seconds -1 Degree.
  • Shear rate is 200 seconds -1 When it is above, the adhesiveness of the cured product obtained by drying the aqueous emulsion tends to be improved, and 100,000 seconds -1 When it is below, it tends to be easy to industrially produce an aqueous emulsion.
  • “Shear rate” means a numerical value obtained by dividing the peripheral speed [mm / sec] of the outermost periphery of the screw element by the clearance [mm] between the screw and the barrel.
  • the component (A) is pressurized and supplied from at least one supply port provided in the compression zone, metering zone or degassing zone of the extruder, and the component (A) and the component (B) are kneaded with a screw. Subsequently, a method of continuously producing an aqueous emulsion from a die by supplying component (C) from at least one supply port provided in the compression zone of the extruder can be mentioned. As a method including the step of mixing the component (A) with the heated component (B), after heating the cylinder of the kneader, the component (B) is put into the cylinder and rotated while rotating the component (B).
  • the component (A) and the component (B) are mixed while the component (A) and the component (B) are mixed while rotating, and the resulting mixture is poured into warm water.
  • a method using a multi-screw extruder is suitable for the method including the step of mixing the component (A) with the heated component (B).
  • component (B) is supplied from a hopper of a multi-screw extruder having two or more screws in the casing, and component (B) is heated and melt-kneaded, and then the extruder
  • the component (A) is supplied from at least one liquid supply port provided in the compression zone or / and the metering zone, and the component (A) and the component (B) are kneaded and dispersed in the component (C).
  • the emulsion of the present invention is an aqueous polyurethane emulsion, other aqueous emulsion such as ethylene-vinyl acetate copolymer aqueous emulsion, thermosetting resin such as urea resin, melamine resin, phenol resin, clay, kaolin, talc, calcium carbonate, etc. Fillers, antiseptics, rust inhibitors, antifoaming agents, foaming agents, polyacrylic acid, polyether, methylcellulose, carboxymethylcellulose, polyvinyl alcohol, starch and other thickeners, viscosity modifiers, flame retardants, titanium oxide, etc.
  • other aqueous emulsion such as ethylene-vinyl acetate copolymer aqueous emulsion
  • thermosetting resin such as urea resin, melamine resin, phenol resin, clay, kaolin, talc, calcium carbonate, etc.
  • a cured product having excellent adhesion to a base material such as a wood material, a cellulose material, a plastic material, a ceramic material, or a metal material can be obtained.
  • the drying temperature is usually 30 to 180 ° C, preferably 60 to 150 ° C.
  • the drying time is usually about 1 minute to 12 hours, preferably about 10 minutes to 6 hours. Drying may be performed under ventilation or under reduced pressure.
  • the cured product of the present invention is excellent in adhesiveness with a substrate even at a low drying temperature of about 65 to 90 ° C.
  • the cured product obtained by drying the aqueous emulsion of the present invention has excellent adhesion to polyolefins (for example, polypropylene and the like) to which other materials such as paint are difficult to adhere.
  • polyolefins for example, polypropylene and the like
  • a laminate in which the aqueous emulsion layer is laminated on the substrate is obtained, and by drying the laminate, the substrate layer and the cured product are obtained. It is possible to form a laminate having a layer made of Such a layer formed of a cured product can be used as a paint, a primer, a base material, an adhesive, or the like.
  • Base materials include wood materials such as wood, plywood, MDF, particleboard, fiberboard; paper materials such as wallpaper and wrapping paper: cellulose materials such as cotton, linen, rayon; polyethylene (mainly structural units derived from ethylene) Polyolefin as component, the same applies hereinafter), polypropylene (polyolefin having a structural unit derived from propylene as a main component, the same applies hereinafter), polyolefin such as polystyrene, polycarbonate, acrylonitrile / butadiene / styrene copolymer (ABS resin), (meta ) Acrylic resin Polyester, polyether, polyvinyl chloride, polyurethane, foamed urethane and other plastic materials; glass, ceramics and other ceramic materials; and metal materials such as iron, stainless steel, copper and aluminum.
  • Base materials include wood materials such as wood, plywood, MDF, particleboard, fiberboard; paper materials such as wallpaper and wrapping paper: cellulose materials such as cotton, linen, rayon; polyethylene (mainly structural
  • Such a substrate may be a composite material composed of a plurality of materials.
  • an inorganic filler such as talc, silica, activated carbon, or a kneaded molded product of carbon fiber and a plastic material may be used.
  • polyurethane is a polymer crosslinked by a urethane bond, and is usually obtained by reaction of alcohol (compound having —OH) and isocyanate (compound having —NCO).
  • the foamed polyurethane is a polyurethane foamed with a volatile solvent such as carbon dioxide or freon produced by a reaction between isocyanate and water as a crosslinking agent.
  • Semi-rigid polyurethane is usually used for automobile interior members, and hard polyurethane is usually used for paints.
  • polypropylene, polystyrene, polycarbonate, acrylonitrile / butadiene / styrene copolymer (ABS resin), polyethylene terephthalate, polyvinyl chloride, (meth) acrylic resin, glass, aluminum and polyurethane are preferable, and polypropylene, More preferred are polyvinyl chloride, glass, aluminum and polyurethane.
  • ABS resin acrylonitrile / butadiene / styrene copolymer
  • polyvinyl chloride (meth) acrylic resin, glass, aluminum and polyurethane
  • polypropylene More preferred are polyvinyl chloride, glass, aluminum and polyurethane.
  • cured material obtained from the emulsion of this invention can be used as an adhesive layer which adhere
  • one of the substrates is a water-absorbing substrate such as a woody material, a paper-based material, or a cellulose material
  • aqueous emulsion of the present invention when applied onto the water-absorbing substrate, components contained in the aqueous emulsion ( C) is absorbed by the water-absorbing substrate, and an adhesive layer containing the component (A) and the component (B) is formed on the water-absorbing substrate. Therefore, a laminated body in which the water-absorbing base material, the adhesive layer, and the other base material are laminated in this order is obtained by pasting the other base material on the adhesive layer.
  • the aqueous emulsion of the present invention is applied on the non-water-absorbing substrate and then heated to cure on the non-water-absorbing substrate. After the product is formed, the other substrate is bonded onto the cured product and further heated to obtain a laminate.
  • the heating temperature is usually 60 to 200 ° C.
  • the aqueous emulsion of the present invention gives a cured product having excellent adhesiveness even when the heating temperature is 60 to 90 ° C, and further, cured product having excellent adhesiveness even when the heating temperature is a low temperature of 65 to 80 ° C. give.
  • a liquid material may be further applied as a paint to the cured product of the present invention. Examples of the coating material include materials for the base material such as polyurethane. When the material is a liquid material, the adhesiveness to the cured product is excellent.
  • a sample solution is prepared by dissolving 1.0 g of a sample in 20 ml of xylene.
  • the prepared solution is dropped into 300 ml of methanol while stirring.
  • the precipitate deposited in methanol is collected and dried at 80 ° C. for 8 hours.
  • a film having a thickness of 100 ⁇ m is prepared by hot pressing.
  • V The infrared absorption spectrum of the produced film was measured, and the amount of maleic acid graft was quantified based on the absorption peak near 1780 cm ⁇ 1 .
  • the intrinsic viscosity ([ ⁇ ], unit: dl / g) of component (B) was measured at 135 ° C. using tetralin as a solvent using an Ubbelohde viscometer.
  • [Glass transition temperature and melting point] The glass transition temperature ([Tg], unit: ° C) and melting point ([Tm], unit: ° C) of the component (B) are as follows using a differential scanning calorimeter (SSC-5200 manufactured by Seiko Denshi Kogyo Co., Ltd.). The differential scanning calorimetry curve was measured by using the differential scanning calorimetry curve obtained in step (c). ⁇ Measurement conditions> (A) The sample is heated from 20 ° C.
  • Acrylic acid manufactured by Mitsubishi Chemical Corporation, hereinafter abbreviated as AA
  • AA Acrylic acid
  • N, N-dimethylaminoethyl methacrylate (monomer for deriving the structural unit (a2) is used as the monomer for deriving the structural unit (a1).
  • DMA Sanyo Chemical Industries, Ltd.
  • MMA methyl methacrylate
  • lauryl methacrylate lauryl methacrylate.
  • -Component (A) was produced using -methacryloyloxyethyl succinic acid (manufactured by Kyoeisha Chemical Co., Ltd., hereinafter abbreviated as HO-MS).
  • HO-MS -methacryloyloxyethyl succinic acid
  • the “molar ratio” represents the number of moles of each monomer when the total number of moles of the monomer is 100.
  • a 1 L reactor equipped with a cooler, a nitrogen introducing tube, a stirrer, and a dropping funnel and having a heating jacket was charged with 150 parts of isopropanol and 100 parts of ion-exchanged water. While stirring the resulting solution, its internal temperature was adjusted to 80 ° C. After replacing the gas in the reaction vessel with nitrogen, 20 parts of the monomer mixture prepared above was charged all at once. Further, 2 parts of 2,2′-azobisisobutyronitrile was added as a polymerization initiator, and the resulting mixture was stirred at 80 ° C. Next, 80 parts of the monomer mixture was added dropwise to the resulting mixture at 80 ° C. with stirring for 4 hours.
  • the obtained emulsifier is referred to as (A-1).
  • the results are shown in Table 1.
  • ⁇ Production Examples 2 to 4 of component (A)> A viscous emulsifier containing an acrylic resin is obtained in the same manner as in Production Example 1 of the above component (A) except that the type and amount of monomer used and the amount of ammonia used are changed to those shown in Table 1. It was.
  • the obtained emulsifiers are referred to as (A-2), (A-3), and (A-4), respectively.
  • the results are shown in Table 1.
  • ⁇ Production Example 1 of Component (B)> After replacing the gas inside the stainless steel reactor with argon gas, 386 parts of vinylcyclohexane and 3640 parts of toluene were added.
  • This copolymer is referred to as (B-1b).
  • (B-1b) ⁇ Production Example 4 of Component (B)>
  • (B-1b) is used instead of (B-1a)
  • propylene A polymer obtained by graft polymerization of maleic anhydride to a vinylcyclohexane copolymer can be obtained. This polymer is referred to as (B-2b).
  • Example 1 After setting the cylinder temperature of the table type kneader PBV-0.3 (purchased from Irie Shokai) to 97 ° C, put 110 parts of (B-2a) into the cylinder and rotate it forward at 10 revolutions per minute. (B-2a) was melted for 10 minutes. Thereafter, (A-1) was added so that the solid content was 10 parts, and the cover glass was occasionally opened at 60 revolutions per minute to carry out kneading and emulsification for 3 minutes. Next, 110 parts of warm water at 90 ° C. was added to obtain an aqueous emulsion. The volume-based median diameter of the dispersoid in the obtained aqueous emulsion was 1.3 ⁇ m.
  • the volume-based median diameter was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd.).
  • the adhesiveness of the cured product obtained from the aqueous emulsion was evaluated by the following test method (cross cut tape method). The results are shown in Table 2. Moreover, when the obtained aqueous emulsion was stored for 3 days without stirring, its appearance and uniformity did not change, and its stationary stability was also good.
  • ⁇ Adhesion test method> After washing the surface of the 3 mm thick polypropylene plate with isopropanol, the aqueous emulsion was applied onto the polypropylene plate using a bar coater so that the cured product obtained by drying had a thickness of 10 ⁇ m.
  • the obtained coating film was dried with a hot air dryer at 80 ° C. for 5 minutes, and further dried by heating in an oven at 70 ° C. for 30 minutes to obtain a cured product.
  • the aqueous emulsion was applied onto the polypropylene plate using a bar coater so that the cured product obtained by drying had a thickness of 10 ⁇ m.
  • the obtained coating film was dried at 80 ° C. for 5 minutes with a hot air dryer, and further heated and dried in an oven at 90 ° C. for 30 minutes to obtain a cured product.
  • each cured product was cut with a grid-like cut with a gap interval of 1 mm, and then a cellophane tape was affixed thereon. After 1 to 2 minutes, the tape was held at one end and peeled off at a right angle, and the adhesion was evaluated based on the following evaluation criteria.
  • X Peeling of the cured product is observed, and the peeling area is 40% or more of the square area.
  • Example 3 In Example 1, except having replaced (A-1) with (A-2), it implemented similarly to Example 1 and obtained the milky white aqueous emulsion. When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good.
  • Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
  • Example 4 In Example 1, except having replaced (A-1) with (A-3), it implemented similarly to Example 1 and obtained the milky-white aqueous emulsion. When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good.
  • Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
  • Example 5 In Example 1, except having replaced (A-1) with (A-4), it implemented similarly to Example 1 and obtained the milky white aqueous emulsion. When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good. Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
  • Example 6 In Example 2, an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-1a) instead of (B-2a).
  • Example 7 an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-1b) instead of (B-2a).
  • Example 8 an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-2b) instead of (B-2a).
  • the aqueous emulsion of the present invention can give a cured product having excellent adhesion to a substrate to which other materials such as paint such as polypropylene are difficult to adhere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

Disclosed is an aqueous emulsion containing the following component (A), component (B), and component (C): (A) an acrylic resin containing a structural unit derived from an α,β-unsaturated carboxylic acid and a structural unit derived from an α,β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms and an amino group which may have a substituent and an α,β-unsaturated carboxylic acid, and having a hydrophilic ratio of 9 to 12 (wherein the hydrophilic ratio of the acrylic resin is the average unit weight of the hydrophilic ratios of monomers deriving the structural units of the acrylic resin and the hydrophilic ratio of a monomer is a value calculated from the following equation: (hydrophilic ratio of monomer) = 20 × (formula weight of hydrophilic moieties of monomer)/(molecular weight of monomer)); (B) a thermoplastic polymer; and (C) water.

Description

水性エマルションAqueous emulsion
 本発明は、水性エマルションに関する。 The present invention relates to an aqueous emulsion.
 ポリプロピレンは、加工性や強度に優れるため、バンパー等の自動車部品に用いられている。自動車部品には、装飾等のために、通常、塗料が塗布される。しかしながら、ポリプロピレンの表面には塗料等の他の材料が接着し難いため、一般には、ポリプロピレンとの接着性に優れた塩素化ポリオレフィンをポリプロピレンに塗布し、その上に塗料が塗布されている(例えば、特開平5−7832号公報参照)。 Polypropylene is used for automobile parts such as bumpers because it has excellent processability and strength. A paint is usually applied to automobile parts for decoration or the like. However, since it is difficult for other materials such as paint to adhere to the surface of polypropylene, generally, a chlorinated polyolefin excellent in adhesiveness with polypropylene is applied to polypropylene, and the paint is applied thereon (for example, JP-A-5-7832).
 本発明は、
<1> 下記成分(A)、成分(B)および成分(C)を含む水性エマルション;
(A)α,β−不飽和カルボン酸に由来する構造単位と、
置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
を含むアクリル樹脂であって、該アクリル樹脂の親水比率が9~12である(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
 モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
(B)熱可塑性ポリマー
(C)水
<2> 成分(B)が、エチレンおよび/またはプロピレンに由来する構造単位を含有する熱可塑性ポリマーを含む<1>に記載の水性エマルション;
<3> 成分(B)が、エチレンおよび/またはプロピレンに由来する構造単位と、式(I)
 CH=CH−R    (I)
(式中、Rは、2級アルキル基、3級アルキル基または脂環式炭化水素基を表わす。)
で示されるビニル化合物に由来する構造単位を含む共重合体に、α,β−不飽和カルボン酸無水物をグラフト重合させることにより得られる重合体を含む<1>に記載の水性エマルション;
<4> 式(I)で示されるビニル化合物が、ビニルシクロヘキサンである<3>に記載の水性エマルション;
<5> 成分(B)が、MFR(190℃、2.16kgf)が、130g/10分以上300g/10分以下の熱可塑性ポリマーである<1>~<4>のいずれかに記載の水性エマルション;
<6> 水性エマルションが、前記成分(A)および前記成分(B)を分散質とし、前記成分(C)を分散媒とする水性エマルションであり、該分散質の体積基準メジアン径が0.01μm~3μmである<1>~<5>のいずれかに記載の水性エマルション;
<7> 置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位が、N,N−ジメチルアミノエチルメタクリレートに由来する構造単位である<1>~<6>のいずれかに記載の水性エマルション;
<8> α,β−不飽和カルボン酸に由来する構造単位が、アクリル酸またはメタクリル酸に由来する構造単位である<1>~<7>のいずれかに記載の水性エマルション;
<9> 成分(A)および成分(B)を溶融混練し、得られた溶融混合物と水とを混合することを特徴とする水性エマルションの製造方法;
(A)α,β−不飽和カルボン酸に由来する構造単位と、
置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
を含むアクリル樹脂であって、該アクリル樹脂の親水比率が9~12である(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
 モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
(B)熱可塑性ポリマー
(C)水
<10> <1>~<8>のいずれかに記載の水性エマルションを乾燥させることにより得られる硬化物;
<11> 木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層と<10>に記載の硬化物からなる層とを有する積層体;
<12> 木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層に、<1>~<8>のいずれかに記載の水性エマルションを塗布し、該基材層と該水性エマルション層とを有する積層体を得る工程と、
前記工程で得られた積層体を乾燥して、前記基材層と前記水性エマルションから得られる硬化物層とを有する積層体を得る工程とを含む積層体の製造方法;
<13> α,β−不飽和カルボン酸に由来する構造単位と、
置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
を含むアクリル樹脂を有効成分として含み、該アクリル樹脂の親水比率が9~12である乳化剤(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
 モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量));
<14> 置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位が、N,N−ジメチルアミノエチルメタクリレートに由来する構造単位である<13>に記載の乳化剤;
<15> α,β−不飽和カルボン酸に由来する構造単位が、アクリル酸およびメタクリル酸からなる群から選ばれる少なくとも一種に由来する構造単位である<13>または<14>に記載の乳化剤;
<16> 木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層上に硬化物層を形成するための、<1>~<8>のいずれかに記載の水性エマルションの使用;を提供するものである。
The present invention
<1> An aqueous emulsion comprising the following component (A), component (B) and component (C);
(A) a structural unit derived from an α, β-unsaturated carboxylic acid;
A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
(B) Thermoplastic polymer (C) Water <2> The aqueous emulsion according to <1>, wherein the component (B) includes a thermoplastic polymer containing a structural unit derived from ethylene and / or propylene.
<3> A structural unit in which the component (B) is derived from ethylene and / or propylene, and the formula (I)
CH 2 = CH-R (I )
(In the formula, R represents a secondary alkyl group, a tertiary alkyl group, or an alicyclic hydrocarbon group.)
The aqueous emulsion according to <1>, comprising a polymer obtained by graft polymerization of an α, β-unsaturated carboxylic acid anhydride to a copolymer containing a structural unit derived from a vinyl compound represented by:
<4> The aqueous emulsion according to <3>, wherein the vinyl compound represented by the formula (I) is vinylcyclohexane;
<5> The aqueous solution according to any one of <1> to <4>, wherein the component (B) is a thermoplastic polymer having an MFR (190 ° C., 2.16 kgf) of 130 g / 10 min to 300 g / 10 min. Emulsion;
<6> The aqueous emulsion is an aqueous emulsion having the component (A) and the component (B) as a dispersoid and the component (C) as a dispersion medium, and the volume-based median diameter of the dispersoid is 0.01 μm. The aqueous emulsion according to any one of <1> to <5>, which is ~ 3 μm;
<7> Derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an optionally substituted amino group and an α, β-unsaturated carboxylic acid. The aqueous emulsion according to any one of <1> to <6>, wherein the structural unit is a structural unit derived from N, N-dimethylaminoethyl methacrylate;
<8> The aqueous emulsion according to any one of <1> to <7>, wherein the structural unit derived from an α, β-unsaturated carboxylic acid is a structural unit derived from acrylic acid or methacrylic acid;
<9> A method for producing an aqueous emulsion, wherein the component (A) and the component (B) are melt-kneaded, and the resulting molten mixture and water are mixed;
(A) a structural unit derived from an α, β-unsaturated carboxylic acid;
A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
(B) Thermoplastic polymer (C) Water <10> Cured product obtained by drying the aqueous emulsion according to any one of <1> to <8>;
<11> A laminate having a base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material, and a metal material, and a layer made of the cured product according to <10>;
<12> The aqueous emulsion according to any one of <1> to <8>, wherein the base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material, and a metal material To obtain a laminate having the base material layer and the aqueous emulsion layer,
Drying the laminate obtained in the step to obtain a laminate having the base material layer and a cured product layer obtained from the aqueous emulsion;
<13> a structural unit derived from an α, β-unsaturated carboxylic acid;
A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; An emulsifier having an acrylic resin containing 9 as an active ingredient and a hydrophilic ratio of the acrylic resin of 9 to 12 (where the hydrophilic ratio of the acrylic resin is the weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin) The hydrophilic ratio of the monomer is a value calculated by the following formula.
Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic part) / (monomer molecular weight));
<14> Derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an optionally substituted amino group and an α, β-unsaturated carboxylic acid. The emulsifier according to <13>, wherein the structural unit is a structural unit derived from N, N-dimethylaminoethyl methacrylate;
<15> The emulsifier according to <13> or <14>, wherein the structural unit derived from an α, β-unsaturated carboxylic acid is a structural unit derived from at least one selected from the group consisting of acrylic acid and methacrylic acid;
<16><1> to <8 for forming a cured product layer on a base material layer made of at least one material selected from the group consisting of a wood material, a cellulose material, a plastic material, a ceramic material, and a metal material > Use of the aqueous emulsion according to any of the above.
 本発明の水性エマルションは、下記成分(A)、成分(B)および成分(C)を含む。
(A)α,β−不飽和カルボン酸に由来する構造単位(以下、構造単位(a1)と略記する。)と、
置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位(以下、構造単位(a2)と略記する。)と
を含むアクリル樹脂であって、該アクリル樹脂の親水比率が9~12である(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
 モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
(B)熱可塑性ポリマー
(C)水
 まず、成分(A)について説明する。
 成分(A)は、構造単位(a1)と構造単位(a2)を含むアクリル樹脂である。構造単位(a1)を導くα,β−不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、アンゲリカ酸、ソルビン酸、メサコン酸等の炭素数3~20のα,β−不飽和カルボン酸が挙げられる。該α,β−不飽和カルボン酸としては、カルボキシル基(−COOH)を一つまたは二つ有するα,β−不飽和カルボン酸が好ましい。
 成分(A)のアクリル樹脂は、二種類以上の構造単位(a1)を有していてもよい。
 構造単位(a1)としては、アクリル酸に由来する構造単位およびメタクリル酸に由来する構造単位からなる群から選ばれる少なくとも一種が好ましい。
 構造単位(a2)を導くα,β−不飽和カルボン酸エステルは、置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれる。α,β−不飽和カルボン酸としては、前記したものと同様のものが挙げられ、アクリル酸またはメタクリル酸が好ましい。
 置換基を有していてもよいアミノ基としては、アミノ基;メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基等の1個の炭素数1~10の直鎖状、分枝鎖状または環状のアルキル基を有するアミノ基;ジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等の2個の炭素数1~10の直鎖状、分枝鎖状または環状のアルキル基を有するアミノ基;および環状アミノ基が挙げられ、2個の炭素数1~10の直鎖状、分枝鎖状または環状のアルキル基を有するアミノ基が好ましく、2個の炭素数1~3の直鎖状、分枝鎖状または環状のアルキル基を有するアミノ基がより好ましい。
 炭素数1~10の脂肪族アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブタノール、ペンタノール、3−メチルブタノール、2,2−ジメチルプロパノール、3−メチル−2−ブタノール、2−エチルヘキサノール、ノナノール、デカノール、シクロヘキサノール等の炭素数1~10の直鎖状、分枝鎖状または環状の脂肪族アルコールが挙げられ、炭素数1~4の直鎖状、分枝鎖状または環状の脂肪族アルコールが好ましい。
 置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとしては、N,N−ジメチルアミノエタノール、N,N−ジエチルアミノエタノール、N−メチル−N−エチルアミノエタノール、N,N−ジプロピルアミノエタノール、N−メチル−N−プロピルアミノエタノール、N−エチル−N−プロピルアミノエタノール、N,N−ジメチルアミノプロパノールおよびN,N−ジメチルアミノブタノールが挙げられる。
 置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルとしては、N,N−ジエチルアミノエチルアクリレート、N,N−ジエチルアミノエチルメタクリレート、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノエチルメタクリレート、N−メチル−N−エチルアミノエチルアクリレートおよびN−メチル−N−エチルアミノエチルメタクリレートが挙げられ、N,N−ジメチルアミノエチルメタクリレートが好ましい。
 成分(A)のアクリル樹脂は、二種類以上の構造単位(a2)を有していてもよい。
 成分(A)のアクリル樹脂中の構造単位(a1)の含有量は、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常20~99モルであり、好ましくは50~99モルである。
 成分(A)のアクリル樹脂中の構造単位(a2)の含有量は、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常1~80モルであり、好ましくは1~50モルである。
 成分(A)のアクリル樹脂は、二種類以上のアクリル樹脂を含んでもよい。
 成分(A)のアクリル樹脂は、構造単位(a1)および構造単位(a2)に加え、他の構造単位を有していてもよい。
 他の構造単位としては、
炭素数1~20の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位(以下、構造単位(b1)と略記する。)、炭素数1~10の多価脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位(以下、構造単位(b2)と略記する。)、カルボン酸基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位(以下、構造単位(b3)と略記する。)、および、
ポリアルキレングリコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位(以下、構造単位(b4)と略記する。)が挙げられる。
 上記他の構造単位を導くα,β−不飽和カルボン酸としては、前記したものと同様のものが挙げられ、アクリル酸またはメタクリル酸が好ましい。
 構造単位(b1)を導くα,β−不飽和カルボン酸エステルは、炭素数1~20の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれる。かかる炭素数1~20の脂肪族アルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert−ブタノール、ペンタノール、3−メチルブタノール、2,2−ジメチルプロパノール、3−メチル−2−ブタノール、2−エチルヘキサノール、ノナノール、デカノール、ドデカノール、トリデカノール、ヘキサデカノール、オクタデカノール、シクロヘキサノール等の炭素数1~20の直鎖状、分枝鎖状または環状の脂肪族アルコールが挙げられる。
 炭素数1~20の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸3−メチルブチル、アクリル酸2,2−ジメチルプロピル、アクリル酸3−メチル−2−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸トリデシル、アクリル酸ヘキサデシル、アクリル酸オクタデシル、アクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ペンチル、メタクリル酸2−メチル−2−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシル、メタクリル酸トリデシル、メタクリル酸ヘキサデシル、メタクリル酸オクタデシルおよびメタクリル酸シクロヘキシルが挙げられる。
 成分(A)のアクリル樹脂は、二種以上の構造単位(b1)を有していてもよい。
 構造単位(b2)を導くα,β−不飽和カルボン酸エステルは、炭素数1~10の多価脂肪族アルコールとα,β−不飽和カルボン酸とから導かれる。かかる炭素数1~10の多価脂肪族アルコールとしては、ヒドロキシメタノール、ヒドロキシエタノール、ヒドロキシプロパノール、ヒドロキシブタノール、ヒドロキシペンタノールおよびヒドロキシヘキサノールが挙げられる。
 炭素数1~10の多価脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルとしては、ヒドロキシメチルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、ヒドロキシペンチルアクリレート、ヒドロキシヘキシルアクリレート、ヒドロキシメチルメタクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート、ヒドロキシペンチルメタクリレートおよびヒドロキシヘキシルメタクリレートが挙げられる。
 成分(A)のアクリル樹脂は、二種以上の構造単位(b2)を有していてもよい。
 構造単位(b3)は、カルボン酸基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する。ここで、”カルボン酸基”は、カルボキシル基(−COOH)を有する有機基を意味し、カルボキシメチル基、1,2−ジカルボキシエチル基、2−カルボキシフェニル基および2,3−ジカルボキシフェニル基が挙げられる。
 かかるカルボン酸基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルとしては、2−アクリロイルオキシエチルコハク酸、2−アクリロイルオキシエチルフタル酸、2−メタクリロイルオキシエチルコハク酸および2−メタクリロイルオキシエチルフタル酸が挙げられる。
 成分(A)のアクリル樹脂は、二種以上の構造単位(b3)を有していてもよい。
 構造単位(b4)は、ポリアルキレングリコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する。かかるポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコールポリプロピレングリコール、ポリエチレングリコールポリテトラメチレングリコール、メトキシポリエチレングリコール等の炭素数1~4のアルキレン基が酸素原子を介して1~50個結合したポリアルキレングリコールおよびこれらポリアルキレングリコールの末端の水酸基が炭素数1~20のアルキル基、アクリル基、メタクリル基等で保護されていてもよい。
 ポリアルキレングリコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルとしては、アクリル酸ポリプロピレングリコール、アクリル酸ポリエチレングリコール、アクリル酸ポリエチレングリコールポリプロピレングリコール、モノアクリル酸ポリエチレングリコールポリテトラメチレングリコール、アクリル酸メトキシポリエチレングリコール、メタクリル酸ポリプロピレングリコール、メタクリル酸ポリエチレングリコール、メタクリル酸ポリエチレングリコールポリプロピレングリコール、モノメタクリル酸ポリエチレングリコールポリテトラメチレングリコールおよびメタクリル酸メトキシポリエチレングリコールが挙げられる。
 成分(A)のアクリル樹脂は、構造単位(b1)または構造単位(b3)を含むことが好ましく、構造単位(b1)および構造単位(b3)を含むことがより好ましい。
 成分(A)のアクリル樹脂が、構造単位(b1)を含む場合、構造単位(b1)の含有量としては、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常5~95モルであり、好ましくは10~80モルである。
 成分(A)のアクリル樹脂における構造単位(b2)の含有量としては、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常0~50モルであり、好ましくは0~30モルであり、より好ましくは0~1モルである。
 成分(A)のアクリル樹脂が、構造単位(b3)を含む場合、構造単位(b3)の含有量としては、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常0.1~80モルであり、好ましくは5~40モルである。
 成分(A)のアクリル樹脂における構造単位(b4)の含有量としては、該アクリル樹脂を構成する全ての構造単位100モルに対して、通常0~50モルであり、好ましくは0~30モルであり、より好ましくは0~1モルである。
 成分(A)のアクリル樹脂において、構造単位(a1)、構造単位(b3)等のアニオン性基を有する構造単位の含有量は、本発明の水性エマルションから得られる硬化物のポリプロピレンに対する接着性の観点から、該アクリル樹脂を構成する全ての構造単位100モルに対して、45~85モルが好ましく、50~80モルがより好ましい。
 成分(A)のアクリル樹脂としては、該アクリル樹脂を構成する全ての構造単位100モルに対して、5~80モルの構造単位(a1)、1~50モルの構造単位(a2)、10~80モルの構造単位(b1)および5~30モルの構造単位(b3)を含有し、構造単位(a1)、(a2)、(b1)および(b3)の合計が100モルであるアクリル樹脂が好ましい。
 成分(A)のアクリル樹脂は、エチレンに由来する構造単位、プロピレンに由来する構造単位、後述の炭素数4以上の直鎖状α−オレフィンに由来する構造単位、後述の式(I)で示されるビニル化合物に由来する構造単位、後述の付加重合可能なモノマーに由来する構造単位等を含有してもよいが、その含有量は、本発明の水性エマルションから得られる硬化物の接着性を損なわない量であればよく、該アクリル樹脂を構成する全ての構造単位100モルに対して、約5モル以下が好ましく、付加重合可能なモノマーに由来する構造単位は、1モル以下が好ましい。
 成分(A)のアクリル樹脂は、各構造単位を導くモノマーを付加重合させることにより製造することができる。例えば、イソプロパノール等のアルコール溶媒、水等の溶媒と、モノマーを混合し、得られる混合物とラジカル開始剤等の重合開始剤を、通常70~100℃、好ましくは75~95℃、より好ましくは75~85℃で混合し、得られる混合物を通常1~24時間程度攪拌することにより、重合反応を行う方法、前記溶媒とモノマーの一部とを混合し、得られる混合物と重合開始剤と残りのモノマーとを、通常70~100℃、好ましくは75~95℃、より好ましくは75~85℃で混合し、得られる混合物を通常1~24時間程度攪拌することにより、重合反応を行う方法が挙げられる。重合反応を制御しやすくするため、重合開始剤や残りのモノマーを有機溶媒に溶解して得られる溶液を用いてもよい。
 重合開始剤の使用量は、モノマーの合計量100重量部に対して、通常0.01~5重量部、好ましくは2~3重量部である。
 重合開始剤としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、2,2’−アゾビス(2−ヒドロキシメチルプロピオニトリル)等のアゾ化合物;ラウリルパーオキサイド、tert−ブチルハイドロパーオキサイド、過酸化ベンゾイル、tert−ブチルパーオキシベンゾエート、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジプロピルパーオキシジカーボネート、tert−ブチルパーオキシネオデカノエート、tert−ブチルパーオキシピバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド等の有機過酸化物;および、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等の無機過酸化物が挙げられる。重合開始剤と還元剤とを併用したレドックス開始剤も重合開始剤として使用することができる。
 成分(A)のアクリル樹脂のポリマー親水比率は9~12であり、9.1~11であることが好ましく、9.1~10であることがより好ましい。ポリマー親水比率が上記範囲内であるアクリル樹脂を含む本発明の水性エマルションは、例えば90℃~120℃程度で乾燥させることにより、ポリプロピレン等の基材に対する接着性に優れる硬化物を与える。さらに、乾燥温度が65~90℃程度の低温であっても、ポリプロピレン等の基材に対する接着性に優れる硬化物を与える。
 アクリル樹脂のポリマー親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される。
 モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
 モノマーの親水部とは、モノマー中のカルボキシル基(−COOH)、水酸基(−OH)、アミノ基(−NH)、スルホ基(−SOH)、カルボニルオキシ基(−CO−)、ジアルキルアミノ基(−NR)の窒素原子(N)等の極性部分を意味する。
 カルボキシル基の式量は45.02、水酸基の式量は17.02、アミノ基の式量は16.02、スルホ基の式量は81.07、カルボニルオキシ基の式量は44.01、ジアルキルアミノ基の窒素原子の式量は14.01である。
 例えば、アクリル酸(分子量:72.06)は、親水部として、カルボキシル基を1つ有するため、アクリル酸の親水比率は、12.5である。
 アクリル酸の親水比率=20×45.02/72.06=12.5
 例えば、2−メタクロイルオキシエチルコハク酸(分子量:230.21)は、親水部として、1つのカルボキシル基と2つのカルボニルオキシ基を有するため、2−メタクロイルオキシエチルコハク酸の親水比率は、11.6である。
 2−メタクロイルオキシエチルコハク酸の親水比率=20×133.04/230.21=11.6
 例えば、N,N−ジメチルアミノエチルメタクリレート(分子量:157.21)は、親水部として、1つのカルボニルオキシ基と1つのジアルキルアミノ基の窒素原子を有するため、N,N−ジメチルアミノエチルメタクリレートの親水比率は、7.4である。
 N,N−ジメチルアミノエチルメタクリレートの親水比率=20×58.02/157.21=7.4
 同様にして、メチルメタクリレートの親水比率は8.8であり、ラウリルメタクリレートの親水比率は3.5であり、トリデシルメタクリレートの親水比率は3.3である。
 例えば、アクリル酸24.5重量部、2−メタクロイルオキシエチルコハク酸22.5重量部、N,N−ジメチルアミノエチルメタクリレート28.0重量部、メチルメタクリレート15.0重量部、ラウリルメタクリレート3.8重量部およびトリデシルメタクリレート6.2重量部を重合させることにより得られるアクリル樹脂のポリマー親水比率は、9.40である。
 アクリル樹脂のポリマー親水比率=(12.5×24.5+11.6×22.5+7.4×28.0+8.8×15.0+3.5×3.8+3.3×6.2)/100=9.40
 アクリル酸や2−メタクロイルオキシエチルコハク酸等の親水比率の高いモノマーに由来する構造単位の含有量と親水比率の低いモノマーに由来する構造単位の含有量を適宜調整することにより、アクリル樹脂のポリマー親水比率が9~12であるアクリル樹脂を調製することができる。
 成分(A)は、本発明の水性エマルションにおいて、成分(B)を成分(C)中に分散させるための乳化剤として作用する。
 本発明の乳化剤は、成分(A)を含み、好ましくは、さらに、水を含むことが好ましい。本発明の乳化剤が、成分(A)と水とを含む場合、さらに、アンモニウムカチオンを含んでもよい。アンモニウムカチオン源としては、アンモニアが好ましい。本発明の乳化剤のNH中和度は、50~300であることが好ましく、100~200であることがより好ましい。ここで、”NH中和度”は、成分(A)に含まれるアニオン性基を有するモノマーに由来する構造単位の合計モル数に対する乳化剤に含まれるアンモニウムカチオンのモル数の割合(%)を意味する。
 続いて、成分(B)について説明する。
 成分(B)は、熱可塑性ポリマーであり、その具体例としては、エチレンに由来する構造単位を含有する熱可塑性ポリマー、プロピレンに由来する構造単位を含有する熱可塑性ポリマー、エステル系ワックス、カルナバワックス、フィッシャートロプスワックス、マイクロクリスタリンワックス、パラフィンワックスおよびそれらの酸化物、低分子量ポリアミドおよび脂肪酸アミド等のアミド化合物に由来する構造単位を含有する熱可塑性ポリマー等が挙げられる。
 熱可塑性ポリマーとしては、エチレンおよび/またはプロピレンに由来する構造単位を含有する熱可塑性ポリマーが好ましい。エチレンおよび/またはプロピレンに由来する構造単位を含有する熱可塑性ポリマーとしては、低密度ポリエチレン等のポリエチレン、ポリエチレンワックス、エチレン・酢酸ビニル共重合体、エチレン・プロピレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体、エチレン・プロピレン・アクリル酸共重合体、エチレン・アクリルエステル共重合体、エチレン・プロピレン・アクリルエステル共重合体、エチレン・アクリル酸共重合体、エチレン・プロピレン・メタクリル酸共重合体、エチレン・メタクリルエステル共重合体、エチレン・プロピレン・メタクリルエステル共重合体、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・ヘキセン共重合体、プロピレン・ヘキセン共重合体、エチレン・プロピレン・ヘキセン共重合体、エチレン・ブテン共重合体、プロピレン・ブテン共重合体、エチレン・プロピレン・ブテン共重合体およびこれらの無水マレイン酸変性物が挙げられる。
 なかでも、エチレンおよび/またはプロピレンに由来する構造単位と、式(I)
 CH=CH−R    (I)
(式中、Rは、2級アルキル基、3級アルキル基または脂環式炭化水素基を表わす。)
で示されるビニル化合物(以下、ビニル化合物(I)と略記する。)に由来する構造単位を含む共重合体(以下、重合体(B−1)と略記する。)、および重合体(B−1)に、α,β−不飽和カルボン酸無水物をグラフト重合させることにより得られる重合体(以下、重合体(B−2)と略記する。)が好ましい。
 Rで示される2級アルキル基としては、炭素数3~20の2級アルキル基が好ましく、3級アルキル基としては、炭素原子数4~20の3級アルキル基が好ましく、脂環式炭化水素基としては、3~16員環の脂環式炭化水素基が好ましい。脂環式炭化水素基としては、シクロアルキル基、シクロアルケニル基およびシクロアルキニル基が挙げられ、シクロアルキル基が好ましい。
 Rとしては、3~10員環の炭素数3~20の脂環式炭化水素基および炭素数4~20の3級アルキル基がより好ましい。
 ビニル化合物(I)としては、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−メチル−1−ヘキセン、3−メチル−1−ヘプテン、3−メチル−1−オクテン、3,4−ジメチル−1−ペンテン、3,4−ジメチル−1−ヘキセン、3,4−ジメチル−1−ヘプテン、3,4−ジメチル−1−オクテン、3,5−ジメチル−1−ヘキセン、3,5−ジメチル−1−ヘプテン、3,5−ジメチル−1−オクテン、3,6−ジメチル−1−ヘプテン、3,6−ジメチル−1−オクテン、3,7−ジメチル−1−オクテン、3,4,4−トリメチル−1−ペンテン、3,4,4−トリメチル−1−ヘキセン、3,4,4−トリメチル−1−ヘプテン、3,4,4−トリメチル−1−オクテン等のRが2級アルキル基であるビニル化合物(I);3,3−ジメチル−1−ブテン、3,3−ジメチル−1−ペンテン、3,3−ジメチル−1−ヘキセン、3,3−ジメチル−1−ヘプテン、3,3−ジメチル−1−オクテン、3,3,4−トリメチル−1−ペンテン、3,3,4−トリメチル−1−ヘキセン、3,3,4−トリメチル−1−ヘプテン、3,3,4−トリメチル−1−オクテン等のRが3級アルキル基であるビニル化合物(I);ビニルシクロプロパン、ビニルシクロブタン、ビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタン等のRがシクロアルキル基であるビニル化合物(I);1−ビニルアダマンタン、5−ビニル−2−ノルボルネンおよび4−ビニル−1−シクロヘキセンが挙げられる。
 なかでも、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−メチル−1−ヘキセン、3,4−ジメチル−1−ペンテン、3,5−ジメチル−1−ヘキセン、3,4,4−トリメチル−1−ペンテン、3,3−ジメチル−1−ブテン、3,3−ジメチル−1−ペンテン、3,3,4−トリメチル−1−ペンテン、ビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタンおよび5−ビニル−2−ノルボルネンが好ましく、3−メチル−1−ブテン、3−メチル−1−ペンテン、3,4−ジメチル−1−ペンテン、3,3−ジメチル−1−ブテン、3,3,4−トリメチル−1−ペンテン、ビニルシクロヘキサンおよびビニルノルボルネンがより好ましく、3,3−ジメチル−1−ブテンおよびビニルシクロヘキサンが特に好ましく、ビニルシクロヘキサンが最も好ましい。
 重合体(B−1)中のビニル化合物(I)に由来する構造単位の含有量は、重合体(B−1)を構成する全ての構造単位100モルに対して、通常5~40モルであり、本発明の水性エマルションを乾燥して得られる硬化物の接着性の観点から、好ましくは10~30モルであり、より好ましくは10~20モルである。
 重合体(B−1)中のビニル化合物(I)に由来する構造単位の含有量は、重合体(B−1)をH−NMR分析や13C−NMR分析することにより求めることができる。
 重合体(B−1)は、さらに、炭素数4~20の直鎖状α−オレフィンに由来する構造単位を含んでいてもよい。炭素数4~20の直鎖状α−オレフィンとしては、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ナノデセンおよび1−エイコセンが挙げられる。中でも、1−ブテン、1−ペンテン、1−ヘキセンおよび1−オクテンが好ましい。
 重合体(B−1)中の、エチレン、プロピレンおよび炭素数4~20の直鎖状α−オレフィンに由来する構造単位の含有量の合計は、重合体(B−1)を構成する全ての構造単位100モルに対して、通常95~60モルであり、好ましくは90~70モル%であり、より好ましくは90~80モルである。
 重合体(B−1)は、さらに、付加重合可能なモノマーに由来する構造単位を有していてもよい。
 付加重合可能なモノマーは、エチレン、プロピレン、炭素数4~20の直鎖状α−オレフィンおよびビニル化合物(I)以外のモノマーであって、エチレン、プロピレン、炭素数4~20の直鎖状α−オレフィンおよびビニル化合物(I)と付加重合可能なモノマーであり、該モノマーの炭素数は、通常3~20程度である。
 付加重合可能なモノマーの具体例としては、シクロオレフィン、式(II)
Figure JPOXMLDOC01-appb-I000001
(式中、R’およびR”はそれぞれ独立して、炭素数1~18の直鎖状、分枝状または環状のアルキル基またはハロゲン原子を表わす。)
で示されるオレフィン、ジエン化合物、ハロゲン化ビニル、脂肪族カルボン酸ビニル、ビニルエーテル化合物、シアノビニル化合物、前記α,β−不飽和カルボン酸、前記α,β−不飽和カルボン酸エステルおよび後述するα,β−不飽和カルボン酸無水物が挙げられる。
 シクロオレフィンとしては、シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3−メチルシクロペンテン、4−メチルシクロペンテン、3−メチルシクロヘキセン、2−ノルボルネン、5−メチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−フェニル−2−ノルボルネン、5−ベンジル−2−ノルボルネン、2−テトラシクロドデセン、2−トリシクロデセン、2−トリシクロウンデセン、2−ペンタシクロペンタデセン、2−ペンタシクロヘキサデセン、8−メチル−2−テトラシクロドデセン、8−エチル−2−テトラシクロドデセン、5−アセチル−2−ノルボルネン、5−アセチルオキシ−2−ノルボルネン、5−メトキシカルボニル−2−ノルボルネン、5−エトキシカルボニル−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネン、5−シアノ−2−ノルボルネン、8−メトキシカルボニル−2−テトラシクロドデセン、8−メチル−8−メトキシカルボニル−2−テトラシクロドデセンおよび8−シアノ−2−テトラシクロドデセンが挙げられる。なかでも、シクロペンテン、シクロヘキセン、シクロオクテン、2−ノルボルネン、5−メチル−2−ノルボルネン、5−フェニル−2−ノルボルネン、2−テトラシクロドデセン、2−トリシクロデセン、2−トリシクロウンデセン、2−ペンタシクロペンタデセン、2−ペンタシクロヘキサデセン、5−アセチル−2−ノルボルネン、5−アセチルオキシ−2−ノルボルネン、5−メトキシカルボニル−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネンおよび5−シアノ−2−ノルボルネンが好ましく、2−ノルボルネンおよび2−テトラシクロドデセンがより好ましい。
 式(II)で示されるオレフィンとしては、イソブテン、2−メチル−1−ブテン、2−メチル−1−ペンテン、2−メチル−1−ヘキセン、2−メチル−1−ヘプテン、2−メチル−1−オクテン、2,3−ジメチル−1−ブテン、2,3−ジメチル−1−ペンテン、2,3−ジメチル−1−ヘキセン、2,3−ジメチル−1−ヘプテン、2,3−ジメチル−1−オクテン、2,4−ジメチル−1−ペンテン、2,4,4−トリメチル−1−ペンテンおよび塩化ビニリデンが挙げられ、イソブテン、2,3−ジメチル−1−ブテンおよび2,4,4−トリメチル−1−ペンテンが好ましい。
 ジエン化合物としては、1,3−ブタジエン、1,4−ペンタジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、1,5−シクロオクタジエン、2,5−ノルボルナジエン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、5−アリル−2−ノルボルネン、4−ビニル−1−シクロヘキセンおよび5−エチリデン−2−ノルボルネンが挙げられ、1,4−ペンタジエン、1,5−ヘキサジエン、2,5−ノルボルナジエン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、4−ビニル−1−シクロヘキセンおよび5−エチリデン−2−ノルボルネンが好ましい。
 脂肪族カルボン酸ビニルとしては、酢酸ビニル、プロピオン酸ビニルおよび酪酸ビニルが挙げられ、ビニルエーテル化合物としては、メチルビニルエーテル、エチルビニルエーテルおよびブチルビニルエーテルが挙げられる。ハロゲン化ビニルとしては、塩化ビニルが挙げられ、シアノビニル化合物としては、アクリロニトリルおよびメタクリロニトリルが挙げられる。
 重合体(B−1)中の付加重合可能なモノマーに由来する構造単位の含有量は、本発明の水性エマルションを乾燥して得られる硬化物の接着性を損なわない量であればよく、重合体(B−1)を構成するすべての構造単位100モルに対して、5モル以下が好ましく、1モル以下がより好ましい。
 重合体(B−1)は、例えば、インデニルアニオン骨格または架橋されたシクロペンタジエニルアニオン骨格を有する基を有する遷移金属化合物を触媒として、対応するモノマーを重合させることにより製造することができる。なかでも、特開2003−82028号公報、特開2003−160621号公報および特開2000−128932号公報に記載の方法が好適である。
 重合体(B−1)の製造においては、用いる触媒の種類や重合条件によって、重合体(B−1)に加えて、エチレンの単独重合体、プロピレンの単独重合体および/またはビニルシクロヘキサンの単独重合体が生成することがある。そのような場合は、ソックスレー抽出器等を用いた溶媒抽出を行うことにより、重合体(B−1)を容易に取り出すことができる。溶媒として、トルエンを用いると、不溶成分として、ビニルシクロヘキサンの単独重合体を除去することができる。溶媒として、クロロホルムを用いると、エチレンの単独重合体、プロピレンの単独重合体などのオレフィンの単独重合体を、不溶成分として除去することができる。重合体(B−1)は、これら溶媒への可溶成分として分離することができる。その用途において問題がない場合には、上記のような副生物を含む重合体(B−1)を用いてもよい。
 重合体(B−1)の分子量分布(Mw/Mn=[重量平均分子量]/[数平均分子量])は、通常1.5~10.0程度であり、本発明の水性エマルションを乾燥して得られる硬化物の機械的強度および透明性の観点から、好ましくは1.5~7.0程度であり、より好ましくは1.5~5.0程度である。
 重合体(B−1)の重量平均分子量(Mw)は、通常5,000~1,000,000程度であり、本発明の水性エマルションを乾燥して得られる硬化物の機械的強度および重合体(B−1)の流動性の観点から、好ましくは10,000~500,000程度であり、より好ましくは15,000~400,000程度である。
 重合体(B−1)の分子量分布は、ゲル・パーミエーション・クロマトグラフィー(GPC)により求めることができる。
 重合体(B−1)の極限粘度[η]は、通常0.25~10dl/g程度であり、本発明の水性エマルションを乾燥して得られる硬化物の機械的強度の観点から、好ましくは0.3~3dl/g程度である。
 JIS K 7210に準拠して、メルトインデクサ(L217−E14011、テクノ・セブン社製)を用いて、190℃、2.16kgfの条件下で測定した重合体(B−1)のメルトフローレート(MFR)の値は、通常130~300g/10分であり、本発明の水性エマルション中の重合体(B−1)の分散性の観点から、好ましくは130~220g/10分である。
 重合体(B−2)とは、重合体(B−1)にα,β−不飽和カルボン酸無水物をグラフト重合させることにより得られる重合体である。
 α,β−不飽和カルボン酸無水物のグラフト重合量は、重合体(B−2)100重量部に対して、通常0.01~20重量部程度、好ましくは0.05~10重量部程度、より好ましくは0.1~5重量部程度である。
 α,β−不飽和カルボン酸無水物のグラフト重合量が0.01重量部以上の重合体(B−2)を含む本発明の水性エマルションは、その接着性が向上する傾向にあり好ましい。α,β−不飽和カルボン酸無水物のグラフト重合量が20重量%以下の重合体(B−2)を含む本発明の水性エマルションは、その熱安定性が向上する傾向にあり好ましい。
 α,β−不飽和カルボン酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の炭素数4~20のα,β−不飽和カルボン酸無水物が挙げられ、無水マレイン酸が好ましい。二種以上のα,β−不飽和カルボン酸無水物を組み合わせて用いてもよい。
 重合体(B−2)は、例えば、重合体(B−1)を溶融させて得られる溶融重合体(B−1)に、α,β−不飽和カルボン酸無水物を添加してグラフト重合させる方法、重合体(B−1)をトルエン、キシレン等の溶媒に溶解し、得られた溶液にα,β−不飽和カルボン酸無水物を添加してグラフト重合させる方法等により製造することができる。
 グラフト重合は、通常ラジカル開始剤の存在下に行われる。
 ラジカル開始剤の使用量は、それが少ないと、α,β−不飽和カルボン酸無水物のグラフト重合量が少なくなり、本発明の水性エマルションを乾燥して得られる硬化物の接着性が向上しにくい傾向があり、また、それが多いと、重合体(B−2)中に含まれる未反応のラジカル開始剤の量が増える傾向にあるため、重合体(B−1)100重量部に対して、通常0.01~10重量部、好ましくは0.01~1重量部である。
 ラジカル開始剤としては、通常有機過酸化物が用いられ、半減期が1分となる分解温度が50~210℃である有機過酸化物が好ましい。分解温度が50℃以上である有機過酸化物を用いた場合には、α,β−不飽和カルボン酸無水物のグラフト重合量が向上する傾向があり、分解温度が210℃以下である有機過酸化物を用いた場合には、グラフト重合における重合体(B−1)の分解が低減される傾向がある。分解によりラジカルを発生した後、重合体(B−1)からプロトンを引き抜く機能を有する有機過酸化物が好ましい。
 半減期が1分となる分解温度が50~210℃である有機過酸化物としては、ジアシルパーオキサイド化合物、ジアルキルパーオキサイド化合物、パーオキシケタール化合物、アルキルパーエステル化合物およびパーカーボネート化合物が挙げられ、ジアルキルパーオキサイド化合物、ジアシルパーオキサイド化合物、パーカーボネート化合物およびアルキルパーエステル化合物が好ましい。具体的には、ジセチル パーオキシジカルボネート、ジ−3−メトキシブチル パーオキシジカルボネート,ジ−2−エチルヘキシル パーオキシジカルボネート、ビス(4−tert−ブチル シクロヘキシル)パーオキシジカルボネート、ジイソプロピル パーオキシジカルボネート、tert−ブチル パーオキシイソプロピルカーボネート、ジミリスチル パーオキシカルボネート、1,1,3,3−テトラメチルブチル パーオキシネオデカノエート、α−クミル パーオキシネオデカノエート,tert−ブチル パーオキシネオデカノエート、1,1ビス(tert−ブチルパーオキシ)シクロヘキサン、2,2ビス(4,4−ジ−tert−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(tert−ブチルパーオキシ)シクロドデカン,tert−ヘキシルパーオキシイソプロピルモノカーボネート,tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート,tert−ブチルパーオキシラウレート,2,5ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン,tert−ブチルパーオキシアセテート、2,2−ビス(tert−ブチルパーオキシ)ブテン,tert−ブチルパーオキシベンゾエート、ブチル 4,4−ビス(tert−ブチルパーオキシ)バレレート、ジ−tert−ブチルベルオキシイソフタレート、ジクミルパーオキサイド、α−α’−ビス(tert−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、tert−ブチルクミルパーオキサイド、ジ−tert−ブチルパーオキサイド、p−メンタンハイドロパーオキサイドおよび2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)−3−ヘキシンが挙げられる。
 有機過酸化物の添加量は、重合体(B−1)100重量部に対して、通常0.01~20重量部、好ましくは0.01~10重量部である。
 押出機を用いて溶融混練を行うことができ、複数の重合体または重合体と固体もしくは液体の添加物とを混合するための公知の各種方法が採用可能であるという点で、重合体(B−1)を溶融させて得られる溶融重合体(B−1)に、α,β−不飽和カルボン酸無水物を添加してグラフト重合させる方法が好ましい。グラフト重合を行う各成分の全部またはいくつかを組み合わせ、別々に、ヘンシェルミキサー、リボンブレンダー、ブレンダー等により混合し、均一な混合物を得た後、該混合物を溶融混練する方法がさらに好ましい。溶融混練の手段としては、バンバリーミキサー、プラストミル、ブラベンダープラストグラフ、一軸または二軸の押出機等の公知の混練手段が広く採用可能である。重合体(B−2)を連続的に生産可能であり、生産性が向上するという観点から、重合体(B−1)、α,β−不飽和カルボン酸無水物およびラジカル開始剤を予め十分に混合して得られる混合物を、一軸または二軸の押出機の供給口より供給し、混練を行う方法が好ましい。押出機の溶融混練を行う部分の温度(例えば、押出機のシリンダー温度)は、通常50~300℃、好ましくは80~270℃である。温度が50℃以上であるとグラフト量が向上する傾向があり、温度が300℃以下であると重合体(B−1)の分解が抑制される傾向がある。溶融混練は、二段階で行うことが好ましく、二段階目の溶融混練の温度を、一段階目の溶融混練の温度よりも高くすることが好ましい。溶融混練時間は、通常0.1~30分間、好ましくは0.1~5分間である。溶融混練時間が0.1分以上であるとグラフト量が向上する傾向があり、また、溶融混練時間が30分以下であると重合体(B−1)の分解が抑制される傾向がある。
 重合体(B−2)中のα,β−不飽和カルボン酸無水物に由来する構造単位は、酸無水物構造が保持された構造単位であってもよいし、酸無水物構造が開環したα,β−不飽和カルボン酸に由来する構造単位であってもよく、酸無水物構造が保持された構造単位と酸無水物構造が開環したα,β−不飽和カルボン酸に由来する構造単位の両方を含む構造単位であってもよい。
 重合体(B−2)の分子量分布(Mw/Mn)は、通常1.5~10であり、好ましくは1.5~7、より好ましくは1.5~5である。重合体(B−2)の分子量分布は、前記重合体(B−1)の分子量分布と同様の方法により測定することができる。
 重合体(B−2)の極限粘度[η]の値は、通常0.25~10dl/g程度であり、本発明の水性エマルションを乾燥して得られる硬化物の機械的強度の観点から、0.3~3dl/g程度が好ましい。
 JIS K 7210に準拠し、メルトインデクサ(L217−E14011、テクノ・セブン社製)を用いて、190℃、2.16kgfの条件下で測定した、重合体(B−2)のメルトフローレート(MFR)の値は、通常130g/10分以上300g/10分以下であり、本発明の水性エマルション中の重合体(B−2)の分散性の観点から、130g/10分以上200g/10分以下が好ましい。
 本発明の水性エマルションは、成分(A)および成分(B)に加えて、成分(C)である水を含み、成分(A)および成分(B)を分散質とし、成分(C)を分散媒とするエマルションである。
 分散質の体積基準メジアン径は、通常0.01~3μmであり、好ましくは0.1~2μmであり、より好ましくは0.5~1.7μmである。
 体積基準メジアン径が0.01μm以上であると、水性エマルションの製造が容易であり、3μm以下であると、水性エマルションの静置安定性および水性エマルションを乾燥して得られる硬化物の接着性が向上する傾向がある。”静置安定性”は、水性エマルションを攪拌せずに3日間保存したとき、水性エマルションが均一である性質、すなわち、水性エマルション中に成分(B)が豊富な層および/又は成分(C)が豊富な層が生じにくい性質を意味する。”体積基準メジアン径”は、体積基準で積算粒子径分布の値が50%に相当する粒子径を意味する。
 本発明の水性エマルション中の成分(A)の含有量は、(B)100重量部に対して、通常1~30重量部であり、好ましくは2~10重量部である。
 本発明の水性エマルション中の成分(A)と成分(B)の含有量の合計は、水性エマルション100重量部に対して、通常10~90重量部、好ましくは30~70重量部、より好ましくは40~60重量部である。
 本発明の水性エマルションにおける(C)の含有量は、水性エマルション100重量部に対して、通常90~10重量部、好ましくは70~30重量部、より好ましくは60~40重量部である。
 本発明の水性エマルションは、成分(A)および成分(B)を溶融混練し、得られた溶融混合物と水とを混合する方法;加熱した成分(B)に成分(A)を混合する工程を含む方法;成分(A)および成分(B)を加熱および混練し、得られた混練混合物を成分(C)中に分散させる方法;および、成分(B)をトルエン等の有機溶媒に溶解させ、得られた溶液と成分(A)を混合し、得られた混合物から前記有機溶媒を除去する工程を含む方法が挙げられる。
 また、自己乳化等の化学乳化法を用いることもできる。
 なかでも、成分(A)および成分(B)を溶融混練し、得られた溶融混合物と水とを混合する方法および加熱した成分(B)に成分(A)を混合する工程を含む方法が好適である。
 成分(A)および成分(B)を溶融混練する工程に用いられる装置としては、2軸押出機、ラボプラストミル(株式会社東洋精機製作所製)、ラボプラストミルマイクロ(株式会社 東洋精機製作所製)等の多軸押出機、ホモジナイザー、T.Kフィルミクス(プライミクス株式会社製)等バレル(シリンダー)を有する機器、攪拌槽、ケミカルスターラー、ボルテックスミキサー、フロージェットミキサー、コロイドミル、超音波発生機、高圧ホモジナイザー、分散君(株式会社フジキンの登録商標)、スタティックミキサー、マイクロミキサー等のバレル(シリンダー)を有さない機器等が挙げられる。
 バレルを有する機器の剪断速度は、通常200~100000秒−1程度、好ましくは1000~2500秒−1程度である。剪断速度が200秒−1以上であると、水性エマルションを乾燥して得られる硬化物の接着性が向上する傾向があり、100000秒−1以下であると、水性エマルションを工業的に製造することが容易になる傾向がある。”剪断速度”は、スクリューエレメント最外周部の周速度[mm/sec]をスクリューとバレルとのクリアランス[mm]で除した数値を意味する。
 成分(A)および成分(B)を溶融混練する方法としては、二軸押出機のホッパーまたは供給口から、成分(B)を連続的に供給して、成分(B)の加熱溶融混練を行い、該押出機の圧縮ゾーン、計量ゾーンまたは脱気ゾーンに設けられた少なくとも1個の供給口から、成分(A)を加圧供給し、成分(A)と成分(B)とをスクリューで混練し、続いて、該押出機の圧縮ゾーンに設けられた少なくとも1個の供給口から、成分(C)を供給することにより、ダイより連続的に水性エマルションを押出製造する方法が挙げられる。
 加熱された成分(B)に、成分(A)を混合する工程を含む方法としては、ニーダーのシリンダーを加熱した後、該シリンダー内に成分(B)を投入し、回転させながら成分(B)を溶融させ、続いて、成分(A)を投入し、回転させながら成分(A)と成分(B)を混合し、得られた混合物を温水中に投入することにより、成分(A)と成分(B)とを成分(C)中に分散させて、水性エマルションを得る方法が挙げられる。
 加熱された成分(B)に成分(A)を混合する工程を含む方法には、多軸押出機を用いる方法が好適である。具体的には、まず、2本以上のスクリューをケーシング内に有する多軸押出機のホッパーから、成分(B)を供給し、成分(B)の加熱溶融混練を行い、次に、該押出機の圧縮ゾーンまたは/および計量ゾーンに設けられた少なくとも1個の液体供給口から成分(A)を供給し、成分(A)と成分(B)とを混練しながら成分(C)に分散させる方法が挙げられる。
 本発明のエマルションは、ポリウレタン水性エマルション、エチレン−酢酸ビニル共重合体水性エマルション等の他の水性エマルション、尿素樹脂、メラミン樹脂、フェノール樹脂等の熱硬化性樹脂、クレー、カオリン、タルク、炭酸カルシウム等の充填剤、防腐剤、防錆剤、消泡剤、発泡剤、ポリアクリル酸、ポリエーテル、メチルセルロース、カルボキシルメチルセルロース、ポリビニルアルコール、澱粉等の増粘剤、粘度調整剤、難燃剤、酸化チタン等の顔料、コハク酸ジメチル、アジピン酸ジメチル等の高沸点溶剤、可塑剤等を含んでいてもよい。
 本発明の水性エマルションを乾燥させることにより、木質材料、セルロース材料、プラスチック材料、セラミック材料、金属材料等の基材との接着性に優れる硬化物を得ることができる。乾燥温度は、通常30~180℃であり、好ましくは60~150℃である。乾燥時間は、通常1分~12時間程度、好ましくは10分~6時間程度である。乾燥は、通風下で行ってもよいし、減圧下で行ってもよい。本発明の硬化物は、乾燥温度が65~90℃程度の低温であっても、基材との接着性に優れる。また、本発明の水性エマルションを乾燥させて得られる硬化物は、塗料等の他の材料が接着し難いポリオレフィン(例えば、ポリプロピレンなど)に対しても、優れた接着性を有する。
 本発明の水性エマルションを、基材上に、塗布することにより、基材上に該水性エマルション層が積層された積層体が得られ、該積層体を乾燥することにより、基材層と硬化物からなる層とを有する積層体を形成することができる。かかる硬化物からなる層は、塗料、プライマー、下地材、接着剤等として使用することができる。
 基材は、本発明の水性エマルションを塗布可能なものであればよく、その形状も任意である。
 基材としては、木材、合板、MDF、パーティクルボード、ファイバーボード等の木質材料;壁紙、包装紙等の紙質材料:綿布、麻布、レーヨン等のセルロース材料;ポリエチレン(エチレンに由来する構造単位を主成分とするポリオレフィン、以下同じ)、ポリプロピレン(プロピレンに由来する構造単位を主成分とするポリオレフィン、以下同じ)、ポリスチレン等のポリオレフィン、ポリカーボネート、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、(メタ)アクリル樹脂ポリエステル、ポリエーテル、ポリ塩化ビニル、ポリウレタン、発泡ウレタン等のプラスチック材料;ガラス、陶磁器等のセラミック材料;および、鉄、ステンレス、銅、アルミニウム等の金属材料が挙げられる。
 かかる基材は、複数の材料からなる複合材料であってもよい。また、タルク、シリカ、活性炭等の無機充填剤や炭素繊維等とプラスチック材料との混練成形品であってもよい。
 ここで、ポリウレタンは、ウレタン結合によって架橋された高分子であり、通常、アルコール(−OHを有する化合物)とイソシアネート(−NCOを有する化合物)との反応によって得られる。発泡ポリウレタンは、イソシアネートと、架橋剤である水との反応によって生じる二酸化炭素やフレオン等の揮発性溶剤によって発泡されたポリウレタンである。自動車の内装用部材には、通常半硬質のポリウレタンが用いられ、塗料には、通常硬質のポリウレタンが用いられる。
 基材としては、なかでも、ポリプロピレン、ポリスチレン、ポリカーボネート、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリエチレンテレフタレート、ポリ塩化ビニル、(メタ)アクリル樹脂、ガラス、アルミニウムおよびポリウレタンが好ましく、ポリプロピレン、ポリ塩化ビニル、ガラス、アルミニウムおよびポリウレタンがより好ましい。
 本発明のエマルションから得られる硬化物は、二種類の基材を接着する接着層として用いることができる。一方の基材が、木質材料、紙質材料、セルロース材料等の吸水性の基材である場合は、本発明の水性エマルションを該吸水性の基材上に塗布すると、水性エマルションに含まれる成分(C)が吸水性の基材に吸収され、吸水性の基材上に成分(A)および成分(B)を含む接着層が形成される。そのため、該接着層上に、もう一方の基材を貼りあわせることにより、吸水性の基材、接着層およびもう一方の基材とがこの順で積層した積層体が得られる。
 一方の基材がポリオレフィン等の非吸水性の基材である場合は、該非吸水性の基材上に本発明の水性エマルションを塗布した後、加熱して、非吸水性の基材上に硬化物を形成した後、もう一方の基材を、該硬化物上に貼合し、さらに、加熱することにより、積層体を得ることができる。加熱温度は、通常60~200℃である。本発明の水性エマルションは、加熱温度が60~90℃であっても、接着性に優れる硬化物を与え、さらに、加熱温度が65~80℃の低温であっても、接着性に優れる硬化物を与える。
 本発明の硬化物には、さらに、液状材料を塗料として塗布してもよい。塗料としては、ポリウレタン等の前記基材の材料が挙げられ、液状材料であると、該硬化物との接着性に優れる。
The aqueous emulsion of the present invention comprises the following component (A), component (B) and component (C).
(A) a structural unit derived from α, β-unsaturated carboxylic acid (hereinafter abbreviated as structural unit (a1));
A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an α, β-unsaturated carboxylic acid and an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent ( Hereinafter, abbreviated as structural unit (a2).)
Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
(B) Thermoplastic polymer
(C) Water
First, the component (A) will be described.
The component (A) is an acrylic resin containing the structural unit (a1) and the structural unit (a2). The α, β-unsaturated carboxylic acid that leads the structural unit (a1) includes acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, angelic acid, sorbic acid, mesaconic acid And α, β-unsaturated carboxylic acids having 3 to 20 carbon atoms such as The α, β-unsaturated carboxylic acid is preferably an α, β-unsaturated carboxylic acid having one or two carboxyl groups (—COOH).
The acrylic resin of the component (A) may have two or more types of structural units (a1).
The structural unit (a1) is preferably at least one selected from the group consisting of a structural unit derived from acrylic acid and a structural unit derived from methacrylic acid.
The α, β-unsaturated carboxylic acid ester leading to the structural unit (a2) is an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent, an α, β-unsaturated carboxylic acid, Derived from. Examples of the α, β-unsaturated carboxylic acid include those described above, and acrylic acid or methacrylic acid is preferable.
The amino group which may have a substituent is an amino group; methylamino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butyl. 2 amino groups such as an amino group having a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms such as amino group; dimethylamino group, methylethylamino group, diethylamino group, dipropylamino group, etc. And an amino group having a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms; and a cyclic amino group, and two linear and branched chains having 1 to 10 carbon atoms An amino group having a linear or cyclic alkyl group is preferred, and an amino group having two linear, branched or cyclic alkyl groups having 1 to 3 carbon atoms is more preferred.
Examples of the aliphatic alcohol having 1 to 10 carbon atoms include methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, 3-methylbutanol, 2,2-dimethylpropanol, 3-methyl-2-butanol, 2 -Straight chain, branched chain or cyclic aliphatic alcohols having 1 to 10 carbon atoms such as ethylhexanol, nonanol, decanol, cyclohexanol, etc., straight chain or branched chains having 1 to 4 carbon atoms Or a cyclic aliphatic alcohol is preferable.
Examples of the aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent include N, N-dimethylaminoethanol, N, N-diethylaminoethanol, N-methyl-N-ethylaminoethanol, Examples include N, N-dipropylaminoethanol, N-methyl-N-propylaminoethanol, N-ethyl-N-propylaminoethanol, N, N-dimethylaminopropanol and N, N-dimethylaminobutanol.
The α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid includes N, N -Diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N-methyl-N-ethylaminoethyl acrylate and N-methyl-N-ethylamino Examples thereof include ethyl methacrylate, and N, N-dimethylaminoethyl methacrylate is preferable.
The acrylic resin of the component (A) may have two or more types of structural units (a2).
The content of the structural unit (a1) in the acrylic resin of component (A) is usually 20 to 99 mol, preferably 50 to 99 mol, relative to 100 mol of all structural units constituting the acrylic resin. is there.
The content of the structural unit (a2) in the acrylic resin of the component (A) is usually 1 to 80 mol, preferably 1 to 50 mol with respect to 100 mol of all structural units constituting the acrylic resin. is there.
The acrylic resin of component (A) may contain two or more kinds of acrylic resins.
In addition to the structural unit (a1) and the structural unit (a2), the acrylic resin of the component (A) may have another structural unit.
Other structural units include
A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 20 carbon atoms and an α, β-unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b1)); A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an α, β-unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b2)). ), A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having a carboxylic acid group and an α, β-unsaturated carboxylic acid (hereinafter referred to as structural unit (b3 ))), And
And a structural unit derived from an α, β-unsaturated carboxylic acid ester derived from a polyalkylene glycol and an α, β-unsaturated carboxylic acid (hereinafter abbreviated as structural unit (b4)).
Examples of the α, β-unsaturated carboxylic acid for deriving the other structural units include those described above, and acrylic acid or methacrylic acid is preferable.
The α, β-unsaturated carboxylic acid ester that derives the structural unit (b1) is derived from an aliphatic alcohol having 1 to 20 carbon atoms and an α, β-unsaturated carboxylic acid. Examples of the aliphatic alcohol having 1 to 20 carbon atoms include methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, 3-methylbutanol, 2,2-dimethylpropanol, 3-methyl-2-butanol, Examples thereof include linear, branched or cyclic aliphatic alcohols having 1 to 20 carbon atoms, such as 2-ethylhexanol, nonanol, decanol, dodecanol, tridecanol, hexadecanol, octadecanol, and cyclohexanol.
Examples of the α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 20 carbon atoms and an α, β-unsaturated carboxylic acid include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, Pentyl acrylate, 3-methylbutyl acrylate, 2,2-dimethylpropyl acrylate, 3-methyl-2-butyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, dodecyl acrylate, tridecyl acrylate , Hexadecyl acrylate, octadecyl acrylate, cyclohexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate, 2-methyl-2-butyl methacrylate, 2-ethylhexyl methacrylate, methacryl Nonyl, decyl methacrylate, dodecyl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, methacrylic acid octadecyl and cyclohexyl methacrylate.
The acrylic resin of component (A) may have two or more structural units (b1).
The α, β-unsaturated carboxylic acid ester that derives the structural unit (b2) is derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an α, β-unsaturated carboxylic acid. Such polyhydric aliphatic alcohols having 1 to 10 carbon atoms include hydroxymethanol, hydroxyethanol, hydroxypropanol, hydroxybutanol, hydroxypentanol and hydroxyhexanol.
Examples of the α, β-unsaturated carboxylic acid ester derived from a polyhydric aliphatic alcohol having 1 to 10 carbon atoms and an α, β-unsaturated carboxylic acid include hydroxymethyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl Acrylate, hydroxypentyl acrylate, hydroxyhexyl acrylate, hydroxymethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, hydroxypentyl methacrylate and hydroxyhexyl methacrylate.
The acrylic resin of component (A) may have two or more structural units (b2).
The structural unit (b3) is derived from an α, β-unsaturated carboxylic acid ester derived from a C 1-10 aliphatic alcohol having a carboxylic acid group and an α, β-unsaturated carboxylic acid. Here, “carboxylic acid group” means an organic group having a carboxyl group (—COOH), such as carboxymethyl group, 1,2-dicarboxyethyl group, 2-carboxyphenyl group and 2,3-dicarboxyphenyl. Groups.
Examples of the α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having a carboxylic acid group and an α, β-unsaturated carboxylic acid include 2-acryloyloxyethyl succinic acid, 2- Examples include acryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl succinic acid and 2-methacryloyloxyethyl phthalic acid.
The acrylic resin of component (A) may have two or more structural units (b3).
The structural unit (b4) is derived from an α, β-unsaturated carboxylic acid ester derived from a polyalkylene glycol and an α, β-unsaturated carboxylic acid. As such polyalkylene glycol, 1 to 50 alkylene groups having 1 to 4 carbon atoms such as polyethylene glycol, polypropylene glycol, polyethylene glycol polypropylene glycol, polyethylene glycol polytetramethylene glycol and methoxypolyethylene glycol are bonded via oxygen atoms. The polyalkylene glycol and the terminal hydroxyl group of these polyalkylene glycols may be protected with an alkyl group having 1 to 20 carbon atoms, an acryl group, a methacryl group or the like.
Examples of α, β-unsaturated carboxylic acid ester derived from polyalkylene glycol and α, β-unsaturated carboxylic acid include polypropylene glycol acrylate, polyethylene glycol acrylate, polyethylene glycol acrylate acrylate, polyethylene glycol monoacrylate Examples include polytetramethylene glycol, methoxypolyethylene glycol acrylate, polypropylene glycol methacrylate, polyethylene glycol methacrylate, polyethylene glycol methacrylate methacrylate, polyethylene glycol monomethacrylate, polytetramethylene glycol and methoxypolyethylene glycol methacrylate.
The acrylic resin of component (A) preferably contains the structural unit (b1) or the structural unit (b3), and more preferably contains the structural unit (b1) and the structural unit (b3).
When the acrylic resin of the component (A) includes the structural unit (b1), the content of the structural unit (b1) is usually 5 to 95 mol with respect to 100 mol of all the structural units constituting the acrylic resin. Preferably, it is 10 to 80 mol.
The content of the structural unit (b2) in the acrylic resin of component (A) is usually 0 to 50 mol, preferably 0 to 30 mol, relative to 100 mol of all structural units constituting the acrylic resin. Yes, more preferably 0 to 1 mol.
When the acrylic resin of the component (A) contains the structural unit (b3), the content of the structural unit (b3) is usually 0.1 to 100 mol per 100 mol of all the structural units constituting the acrylic resin. 80 moles, preferably 5 to 40 moles.
The content of the structural unit (b4) in the acrylic resin of component (A) is usually 0 to 50 mol, preferably 0 to 30 mol, relative to 100 mol of all the structural units constituting the acrylic resin. Yes, more preferably 0 to 1 mol.
In the acrylic resin of the component (A), the content of the structural unit having an anionic group such as the structural unit (a1) or the structural unit (b3) is determined by the adhesiveness of the cured product obtained from the aqueous emulsion of the present invention to polypropylene. From the viewpoint, the amount is preferably 45 to 85 mol, more preferably 50 to 80 mol, with respect to 100 mol of all the structural units constituting the acrylic resin.
As the acrylic resin of component (A), 5 to 80 mol of structural unit (a1), 1 to 50 mol of structural unit (a2), 10 to 10 mol per 100 mol of all structural units constituting the acrylic resin. An acrylic resin containing 80 mol of the structural unit (b1) and 5 to 30 mol of the structural unit (b3), wherein the total of the structural units (a1), (a2), (b1) and (b3) is 100 mol preferable.
The acrylic resin of component (A) is represented by a structural unit derived from ethylene, a structural unit derived from propylene, a structural unit derived from a linear α-olefin having 4 or more carbon atoms described later, and a formula (I) described later. May contain a structural unit derived from a vinyl compound, a structural unit derived from a monomer capable of addition polymerization, which will be described later, etc., but its content impairs the adhesion of the cured product obtained from the aqueous emulsion of the present invention. The amount is preferably not more than about 5 mol or less per 100 mol of all the structural units constituting the acrylic resin, and the structural unit derived from a monomer capable of addition polymerization is preferably 1 mol or less.
The acrylic resin of component (A) can be produced by addition polymerization of monomers that lead each structural unit. For example, an alcohol solvent such as isopropanol, a solvent such as water, and a monomer are mixed, and the resulting mixture and a polymerization initiator such as a radical initiator are usually 70 to 100 ° C., preferably 75 to 95 ° C., more preferably 75. The mixture is mixed at ~ 85 ° C, and the resulting mixture is usually stirred for about 1 to 24 hours to carry out the polymerization reaction, the solvent and a part of the monomer are mixed, and the resulting mixture, the polymerization initiator and the remaining mixture are mixed. A method of conducting a polymerization reaction by mixing the monomer with usually 70 to 100 ° C., preferably 75 to 95 ° C., more preferably 75 to 85 ° C., and stirring the resulting mixture usually for about 1 to 24 hours. It is done. In order to easily control the polymerization reaction, a solution obtained by dissolving a polymerization initiator and the remaining monomers in an organic solvent may be used.
The amount of the polymerization initiator used is usually 0.01 to 5 parts by weight, preferably 2 to 3 parts by weight with respect to 100 parts by weight of the total amount of monomers.
As polymerization initiators, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate) Azo compounds such as 2,2′-azobis (2-hydroxymethylpropionitrile); lauryl peroxide, tert-butyl hydroperoxide, benzoyl peroxide, tert-butyl peroxybenzoate, cumene hydroperoxide, diisopropyl peroxide Oxydicarbonate, dipropylperoxydicarbonate, tert-butylperoxyneodeca Organic peroxides such as noate, tert-butyl peroxypivalate and (3,5,5-trimethylhexanoyl) peroxide; and inorganic peroxides such as potassium persulfate, ammonium persulfate and hydrogen peroxide . A redox initiator in which a polymerization initiator and a reducing agent are used in combination can also be used as the polymerization initiator.
The polymer hydrophilic ratio of the acrylic resin of the component (A) is 9 to 12, preferably 9.1 to 11, and more preferably 9.1 to 10. The aqueous emulsion of the present invention containing an acrylic resin having a polymer hydrophilic ratio within the above range gives a cured product having excellent adhesion to a substrate such as polypropylene by drying at, for example, about 90 ° C to 120 ° C. Furthermore, even when the drying temperature is as low as about 65 to 90 ° C., a cured product having excellent adhesion to a substrate such as polypropylene is provided.
The polymer hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, and the hydrophilic ratio of the monomer is calculated by the following formula.
Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
The hydrophilic part of the monomer means a carboxyl group (—COOH), a hydroxyl group (—OH), an amino group (—NH) in the monomer. 2 ), Sulfo group (-SO 3 H), a carbonyloxy group (—CO 2 -), Dialkylamino group (-NR) 2 ) Of a nitrogen atom (N) or the like.
The formula weight of the carboxyl group is 45.02, the formula weight of the hydroxyl group is 17.02, the formula weight of the amino group is 16.02, the formula weight of the sulfo group is 81.07, the formula weight of the carbonyloxy group is 44.01, The formula weight of the nitrogen atom of the dialkylamino group is 14.01.
For example, since acrylic acid (molecular weight: 72.06) has one carboxyl group as a hydrophilic portion, the hydrophilic ratio of acrylic acid is 12.5.
Hydrophilic ratio of acrylic acid = 20 × 45.72 / 72.06 = 12.5
For example, since 2-methacryloyloxyethyl succinic acid (molecular weight: 230.21) has one carboxyl group and two carbonyloxy groups as a hydrophilic part, the hydrophilic ratio of 2-methacryloyloxyethyl succinic acid is 11.6.
Hydrophilic ratio of 2-methacryloyloxyethyl succinic acid = 20 × 133.04 / 230.21 = 11.6
For example, N, N-dimethylaminoethyl methacrylate (molecular weight: 157.21) has one carbonyloxy group and one dialkylamino group nitrogen atom as the hydrophilic portion, The hydrophilic ratio is 7.4.
Hydrophilic ratio of N, N-dimethylaminoethyl methacrylate = 20 × 58.02 / 157.21 = 7.4
Similarly, the hydrophilic ratio of methyl methacrylate is 8.8, the hydrophilic ratio of lauryl methacrylate is 3.5, and the hydrophilic ratio of tridecyl methacrylate is 3.3.
For example, 24.5 parts by weight of acrylic acid, 22.5 parts by weight of 2-methacryloyloxyethyl succinic acid, 28.0 parts by weight of N, N-dimethylaminoethyl methacrylate, 15.0 parts by weight of methyl methacrylate, lauryl methacrylate; The polymer hydrophilic ratio of the acrylic resin obtained by polymerizing 8 parts by weight and 6.2 parts by weight of tridecyl methacrylate is 9.40.
Polymer hydrophilic ratio of acrylic resin = (12.5 × 24.5 + 11.6 × 22.5 + 7.4 × 28.0 + 8.8 × 15.0 + 3.5 × 3.8 + 3.3 × 6.2) / 100 = 9 .40
By appropriately adjusting the content of structural units derived from monomers having a high hydrophilic ratio such as acrylic acid and 2-methacryloyloxyethyl succinic acid and the content of structural units derived from monomers having a low hydrophilic ratio, An acrylic resin having a polymer hydrophilic ratio of 9 to 12 can be prepared.
Component (A) acts as an emulsifier for dispersing component (B) in component (C) in the aqueous emulsion of the present invention.
The emulsifier of the present invention contains the component (A), and preferably further contains water. When the emulsifier of the present invention contains component (A) and water, it may further contain an ammonium cation. As the ammonium cation source, ammonia is preferable. NH of the emulsifier of the present invention 3 The degree of neutralization is preferably 50 to 300, and more preferably 100 to 200. Where "NH 3 “Neutralization degree” means the ratio (%) of the number of moles of ammonium cation contained in the emulsifier to the total number of moles of structural units derived from the monomer having an anionic group contained in component (A).
Subsequently, the component (B) will be described.
The component (B) is a thermoplastic polymer. Specific examples thereof include a thermoplastic polymer containing a structural unit derived from ethylene, a thermoplastic polymer containing a structural unit derived from propylene, an ester wax, and a carnauba wax. And thermoplastic polymers containing structural units derived from amide compounds such as Fischer-Trops wax, microcrystalline wax, paraffin wax and oxides thereof, low molecular weight polyamides and fatty acid amides.
As the thermoplastic polymer, a thermoplastic polymer containing a structural unit derived from ethylene and / or propylene is preferable. Examples of the thermoplastic polymer containing structural units derived from ethylene and / or propylene include polyethylene such as low density polyethylene, polyethylene wax, ethylene / vinyl acetate copolymer, ethylene / propylene / vinyl acetate copolymer, and ethylene / acrylic. Acid copolymer, ethylene / propylene / acrylic acid copolymer, ethylene / acrylic ester copolymer, ethylene / propylene / acrylic ester copolymer, ethylene / acrylic acid copolymer, ethylene / propylene / methacrylic acid copolymer , Ethylene / methacrylic ester copolymer, ethylene / propylene / methacrylic ester copolymer, polypropylene, ethylene / propylene copolymer, ethylene / hexene copolymer, propylene / hexene copolymer, ethylene / propylene / hexe Copolymers, ethylene-butene copolymer, propylene-butene copolymer, ethylene-propylene-butene copolymer and these maleic acid modified products thereof.
Among them, structural units derived from ethylene and / or propylene, and the formula (I)
CH 2 = CH-R (I)
(In the formula, R represents a secondary alkyl group, a tertiary alkyl group, or an alicyclic hydrocarbon group.)
A copolymer (hereinafter abbreviated as polymer (B-1)) containing a structural unit derived from a vinyl compound (hereinafter abbreviated as vinyl compound (I)), and a polymer (B- 1) is preferably a polymer obtained by graft polymerization of an α, β-unsaturated carboxylic acid anhydride (hereinafter abbreviated as polymer (B-2)).
The secondary alkyl group represented by R is preferably a secondary alkyl group having 3 to 20 carbon atoms, and the tertiary alkyl group is preferably a tertiary alkyl group having 4 to 20 carbon atoms, and an alicyclic hydrocarbon group. The group is preferably a 3- to 16-membered alicyclic hydrocarbon group. Examples of the alicyclic hydrocarbon group include a cycloalkyl group, a cycloalkenyl group, and a cycloalkynyl group, and a cycloalkyl group is preferable.
R is more preferably a 3- to 10-membered alicyclic hydrocarbon group having 3 to 20 carbon atoms and a tertiary alkyl group having 4 to 20 carbon atoms.
Examples of the vinyl compound (I) include 3-methyl-1-butene, 3-methyl-1-pentene, 3-methyl-1-hexene, 3-methyl-1-heptene, 3-methyl-1-octene, 3, 4-dimethyl-1-pentene, 3,4-dimethyl-1-hexene, 3,4-dimethyl-1-heptene, 3,4-dimethyl-1-octene, 3,5-dimethyl-1-hexene, 3, 5-dimethyl-1-heptene, 3,5-dimethyl-1-octene, 3,6-dimethyl-1-heptene, 3,6-dimethyl-1-octene, 3,7-dimethyl-1-octene, 3, R of 2,4-trimethyl-1-pentene, 3,4,4-trimethyl-1-hexene, 3,4,4-trimethyl-1-heptene, 3,4,4-trimethyl-1-octene and the like is 2 Vinyl compounds that are secondary alkyl groups I); 3,3-dimethyl-1-butene, 3,3-dimethyl-1-pentene, 3,3-dimethyl-1-hexene, 3,3-dimethyl-1-heptene, 3,3-dimethyl-1 -Octene, 3,3,4-trimethyl-1-pentene, 3,3,4-trimethyl-1-hexene, 3,3,4-trimethyl-1-heptene, 3,3,4-trimethyl-1-octene Vinyl compound (I) wherein R is a tertiary alkyl group; vinyl compound (I) where R is a cycloalkyl group such as vinylcyclopropane, vinylcyclobutane, vinylcyclopentane, vinylcyclohexane, vinylcycloheptane, vinylcyclooctane, etc. ); 1-vinyladamantane, 5-vinyl-2-norbornene and 4-vinyl-1-cyclohexene.
Among them, 3-methyl-1-butene, 3-methyl-1-pentene, 3-methyl-1-hexene, 3,4-dimethyl-1-pentene, 3,5-dimethyl-1-hexene, 3,4 , 4-Trimethyl-1-pentene, 3,3-dimethyl-1-butene, 3,3-dimethyl-1-pentene, 3,3,4-trimethyl-1-pentene, vinylcyclopentane, vinylcyclohexane, vinylcyclo Heptane, vinylcyclooctane and 5-vinyl-2-norbornene are preferred, and 3-methyl-1-butene, 3-methyl-1-pentene, 3,4-dimethyl-1-pentene, 3,3-dimethyl-1- More preferred are butene, 3,3,4-trimethyl-1-pentene, vinylcyclohexane and vinylnorbornene, 3,3-dimethyl-1-butene and Particularly preferred Le cyclohexane, vinyl cyclohexane being most preferred.
The content of the structural unit derived from the vinyl compound (I) in the polymer (B-1) is usually 5 to 40 mol with respect to 100 mol of all the structural units constituting the polymer (B-1). From the viewpoint of adhesiveness of a cured product obtained by drying the aqueous emulsion of the present invention, the amount is preferably 10 to 30 mol, more preferably 10 to 20 mol.
The content of the structural unit derived from the vinyl compound (I) in the polymer (B-1) is the same as that of the polymer (B-1). 1 H-NMR analysis and 13 It can be determined by C-NMR analysis.
The polymer (B-1) may further contain a structural unit derived from a linear α-olefin having 4 to 20 carbon atoms. Examples of the linear α-olefin having 4 to 20 carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene. 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nanodecene and 1-eicosene. Of these, 1-butene, 1-pentene, 1-hexene and 1-octene are preferable.
The total content of structural units derived from ethylene, propylene and a linear α-olefin having 4 to 20 carbon atoms in the polymer (B-1) is all the constituents of the polymer (B-1). The amount is usually 95 to 60 mol, preferably 90 to 70 mol%, more preferably 90 to 80 mol, per 100 mol of the structural unit.
The polymer (B-1) may further have a structural unit derived from a monomer capable of addition polymerization.
The addition-polymerizable monomer is a monomer other than ethylene, propylene, a linear α-olefin having 4 to 20 carbon atoms and a vinyl compound (I), and includes ethylene, propylene, and a linear α having 4 to 20 carbon atoms. -A monomer capable of addition polymerization with an olefin and a vinyl compound (I), and the carbon number of the monomer is usually about 3 to 20.
Specific examples of addition-polymerizable monomers include cycloolefins, formula (II)
Figure JPOXMLDOC01-appb-I000001
(In the formula, R ′ and R ″ each independently represent a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms or a halogen atom.)
An olefin, a diene compound, a vinyl halide, a vinyl aliphatic carboxylate, a vinyl ether compound, a cyanovinyl compound, the α, β-unsaturated carboxylic acid, the α, β-unsaturated carboxylic acid ester, and α, β described below. -Unsaturated carboxylic acid anhydrides.
Cycloolefins include cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3-methylcyclopentene, 4-methylcyclopentene, 3-methylcyclohexene, 2-norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5 -Butyl-2-norbornene, 5-phenyl-2-norbornene, 5-benzyl-2-norbornene, 2-tetracyclododecene, 2-tricyclodecene, 2-tricycloundecene, 2-pentacyclopentadecene, 2-pentacyclohexadecene, 8-methyl-2-tetracyclododecene, 8-ethyl-2-tetracyclododecene, 5-acetyl-2-norbornene, 5-acetyloxy-2-norbornene, 5-methoxycarbonyl- 2-norbornene, 5-d Xoxycarbonyl-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 8-methoxycarbonyl-2-tetracyclododecene, 8-methyl-8-methoxycarbonyl-2 -Tetracyclododecene and 8-cyano-2-tetracyclododecene. Among them, cyclopentene, cyclohexene, cyclooctene, 2-norbornene, 5-methyl-2-norbornene, 5-phenyl-2-norbornene, 2-tetracyclododecene, 2-tricyclodecene, 2-tricycloundecene, 2-pentacyclopentadecene, 2-pentacyclohexadecene, 5-acetyl-2-norbornene, 5-acetyloxy-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-methyl-5-methoxycarbonyl-2- Norbornene and 5-cyano-2-norbornene are preferred, and 2-norbornene and 2-tetracyclododecene are more preferred.
Examples of the olefin represented by the formula (II) include isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 2-methyl-1-hexene, 2-methyl-1-heptene, and 2-methyl-1. -Octene, 2,3-dimethyl-1-butene, 2,3-dimethyl-1-pentene, 2,3-dimethyl-1-hexene, 2,3-dimethyl-1-heptene, 2,3-dimethyl-1 -Octene, 2,4-dimethyl-1-pentene, 2,4,4-trimethyl-1-pentene and vinylidene chloride, isobutene, 2,3-dimethyl-1-butene and 2,4,4-trimethyl -1-pentene is preferred.
Examples of the diene compound include 1,3-butadiene, 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,5-cyclooctadiene, 2,5-norbornadiene, and diene. And cyclopentadiene, 5-vinyl-2-norbornene, 5-allyl-2-norbornene, 4-vinyl-1-cyclohexene and 5-ethylidene-2-norbornene, and include 1,4-pentadiene, 1,5-hexadiene, 2,5-norbornadiene, dicyclopentadiene, 5-vinyl-2-norbornene, 4-vinyl-1-cyclohexene and 5-ethylidene-2-norbornene are preferred.
Aliphatic vinyl carboxylates include vinyl acetate, vinyl propionate and vinyl butyrate, and vinyl ether compounds include methyl vinyl ether, ethyl vinyl ether and butyl vinyl ether. Examples of the vinyl halide include vinyl chloride, and examples of the cyanovinyl compound include acrylonitrile and methacrylonitrile.
The content of the structural unit derived from the addition-polymerizable monomer in the polymer (B-1) may be an amount that does not impair the adhesion of the cured product obtained by drying the aqueous emulsion of the present invention. 5 mol or less is preferable with respect to 100 mol of all the structural units constituting the combination (B-1), and 1 mol or less is more preferable.
The polymer (B-1) can be produced, for example, by polymerizing a corresponding monomer using a transition metal compound having a group having an indenyl anion skeleton or a crosslinked cyclopentadienyl anion skeleton as a catalyst. . Of these, the methods described in JP-A No. 2003-82028, JP-A No. 2003-160621 and JP-A No. 2000-128932 are preferable.
In the production of the polymer (B-1), depending on the type of the catalyst used and the polymerization conditions, in addition to the polymer (B-1), an ethylene homopolymer, a propylene homopolymer and / or a vinylcyclohexane single A polymer may form. In such a case, the polymer (B-1) can be easily taken out by performing solvent extraction using a Soxhlet extractor or the like. When toluene is used as a solvent, a vinylcyclohexane homopolymer can be removed as an insoluble component. When chloroform is used as the solvent, olefin homopolymers such as ethylene homopolymer and propylene homopolymer can be removed as insoluble components. The polymer (B-1) can be separated as a soluble component in these solvents. When there is no problem in the use, the polymer (B-1) containing the by-product as described above may be used.
The molecular weight distribution (Mw / Mn = [weight average molecular weight] / [number average molecular weight]) of the polymer (B-1) is usually about 1.5 to 10.0, and the aqueous emulsion of the present invention is dried. From the viewpoint of mechanical strength and transparency of the obtained cured product, it is preferably about 1.5 to 7.0, more preferably about 1.5 to 5.0.
The weight average molecular weight (Mw) of the polymer (B-1) is usually about 5,000 to 1,000,000, and the mechanical strength of the cured product obtained by drying the aqueous emulsion of the present invention and the polymer From the viewpoint of the fluidity of (B-1), it is preferably about 10,000 to 500,000, more preferably about 15,000 to 400,000.
The molecular weight distribution of the polymer (B-1) can be determined by gel permeation chromatography (GPC).
The intrinsic viscosity [η] of the polymer (B-1) is usually about 0.25 to 10 dl / g, preferably from the viewpoint of the mechanical strength of the cured product obtained by drying the aqueous emulsion of the present invention. It is about 0.3 to 3 dl / g.
The melt flow rate (MFR) of the polymer (B-1) measured under the conditions of 190 ° C. and 2.16 kgf using a melt indexer (L217-E14011, manufactured by Techno Seven Co.) in accordance with JIS K 7210. ) Is usually 130 to 300 g / 10 min, and preferably 130 to 220 g / 10 min from the viewpoint of dispersibility of the polymer (B-1) in the aqueous emulsion of the present invention.
The polymer (B-2) is a polymer obtained by graft polymerizing an α, β-unsaturated carboxylic acid anhydride to the polymer (B-1).
The graft polymerization amount of the α, β-unsaturated carboxylic acid anhydride is usually about 0.01 to 20 parts by weight, preferably about 0.05 to 10 parts by weight with respect to 100 parts by weight of the polymer (B-2). More preferably, it is about 0.1 to 5 parts by weight.
The aqueous emulsion of the present invention containing a polymer (B-2) having a graft polymerization amount of α, β-unsaturated carboxylic acid anhydride of 0.01 part by weight or more is preferred because its adhesiveness tends to be improved. The aqueous emulsion of the present invention containing a polymer (B-2) having a graft polymerization amount of α, β-unsaturated carboxylic acid anhydride of 20% by weight or less is preferred because its thermal stability tends to be improved.
Examples of the α, β-unsaturated carboxylic acid anhydride include α, β-unsaturated carboxylic acid anhydrides having 4 to 20 carbon atoms such as maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. preferable. Two or more α, β-unsaturated carboxylic acid anhydrides may be used in combination.
For example, the polymer (B-2) is graft-polymerized by adding an α, β-unsaturated carboxylic acid anhydride to the melt polymer (B-1) obtained by melting the polymer (B-1). The polymer (B-1) is dissolved in a solvent such as toluene and xylene, and α, β-unsaturated carboxylic acid anhydride is added to the resulting solution for graft polymerization. it can.
Graft polymerization is usually performed in the presence of a radical initiator.
When the amount of the radical initiator used is small, the amount of graft polymerization of the α, β-unsaturated carboxylic acid anhydride is reduced, and the adhesiveness of the cured product obtained by drying the aqueous emulsion of the present invention is improved. Since the amount of the unreacted radical initiator contained in the polymer (B-2) tends to increase if the amount is too much, the amount of the polymer (B-1) is 100 parts by weight. The amount is usually 0.01 to 10 parts by weight, preferably 0.01 to 1 part by weight.
As the radical initiator, an organic peroxide is usually used, and an organic peroxide having a decomposition temperature of 50 to 210 ° C. with a half-life of 1 minute is preferable. When an organic peroxide having a decomposition temperature of 50 ° C. or higher is used, the amount of graft polymerization of α, β-unsaturated carboxylic acid anhydride tends to be improved, and an organic peroxide having a decomposition temperature of 210 ° C. or lower is preferred. When an oxide is used, decomposition of the polymer (B-1) in graft polymerization tends to be reduced. An organic peroxide having a function of extracting protons from the polymer (B-1) after generating radicals by decomposition is preferred.
Examples of the organic peroxide having a decomposition temperature of 50 to 210 ° C. with a half-life of 1 minute include diacyl peroxide compounds, dialkyl peroxide compounds, peroxyketal compounds, alkyl perester compounds, and percarbonate compounds. Dialkyl peroxide compounds, diacyl peroxide compounds, percarbonate compounds and alkyl perester compounds are preferred. Specifically, dicetyl peroxydicarbonate, di-3-methoxybutyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, diisopropyl peroxydicarbonate Bonate, tert-butyl peroxyisopropyl carbonate, dimyristyl peroxycarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, α-cumyl peroxyneodecanoate, tert-butyl peroxyneo Decanoate, 1,1bis (tert-butylperoxy) cyclohexane, 2,2bis (4,4-di-tert-butylperoxycyclohexyl) propane, 1,1-bis (tert-butylperoxy) cyclo Dodecane, tert-hexylperoxyisopropyl monocarbonate, tert-butylperoxy-3,5,5-trimethylhexanoate, tert-butylperoxylaurate, 2,5 dimethyl-2,5-di (benzoylperoxy) ) Hexane, tert-butyl peroxyacetate, 2,2-bis (tert-butylperoxy) butene, tert-butylperoxybenzoate, butyl 4,4-bis (tert-butylperoxy) valerate, di-tert- Butylberoxyisophthalate, dicumyl peroxide, α-α'-bis (tert-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, 1,3-bis (tert-butyl pero Cyisopropyl) benzene, tert-butylcumyl peroxide, di-tert-butyl peroxide, p-menthane hydroperoxide and 2,5-dimethyl-2,5-di (tert-butylperoxy) -3-hexyne Can be mentioned.
The addition amount of the organic peroxide is usually 0.01 to 20 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the polymer (B-1).
The polymer (B) can be melt kneaded using an extruder, and various polymers or various known methods for mixing polymers and solid or liquid additives can be used. A method of graft polymerization by adding an α, β-unsaturated carboxylic acid anhydride to the molten polymer (B-1) obtained by melting -1). It is more preferable to combine all or some of the components for graft polymerization and separately mix them with a Henschel mixer, ribbon blender, blender or the like to obtain a uniform mixture, and then melt and knead the mixture. As the melt-kneading means, known kneading means such as a Banbury mixer, a plast mill, a Brabender plastograph, a uniaxial or biaxial extruder can be widely employed. From the viewpoint that the polymer (B-2) can be continuously produced and the productivity is improved, the polymer (B-1), the α, β-unsaturated carboxylic acid anhydride and the radical initiator are sufficiently sufficient in advance. A method is preferred in which the mixture obtained by mixing is fed from the feed port of a single-screw or twin-screw extruder and kneaded. The temperature of the portion where the melt kneading of the extruder is performed (for example, the cylinder temperature of the extruder) is usually 50 to 300 ° C., preferably 80 to 270 ° C. When the temperature is 50 ° C. or higher, the graft amount tends to be improved, and when the temperature is 300 ° C. or lower, the decomposition of the polymer (B-1) tends to be suppressed. The melt kneading is preferably performed in two stages, and the temperature of the second stage melt kneading is preferably higher than the temperature of the first stage melt kneading. The melt kneading time is usually 0.1 to 30 minutes, preferably 0.1 to 5 minutes. If the melt-kneading time is 0.1 minutes or more, the graft amount tends to be improved, and if the melt-kneading time is 30 minutes or less, decomposition of the polymer (B-1) tends to be suppressed.
The structural unit derived from the α, β-unsaturated carboxylic acid anhydride in the polymer (B-2) may be a structural unit in which the acid anhydride structure is retained, or the acid anhydride structure is ring-opened. It may be a structural unit derived from an α, β-unsaturated carboxylic acid, derived from an α, β-unsaturated carboxylic acid in which the acid anhydride structure is held and the structural unit in which the acid anhydride structure is retained. It may be a structural unit including both of the structural units.
The molecular weight distribution (Mw / Mn) of the polymer (B-2) is usually 1.5 to 10, preferably 1.5 to 7, and more preferably 1.5 to 5. The molecular weight distribution of the polymer (B-2) can be measured by the same method as the molecular weight distribution of the polymer (B-1).
The value of the intrinsic viscosity [η] of the polymer (B-2) is usually about 0.25 to 10 dl / g, and from the viewpoint of the mechanical strength of a cured product obtained by drying the aqueous emulsion of the present invention, About 0.3 to 3 dl / g is preferable.
The melt flow rate (MFR) of the polymer (B-2) measured under the conditions of 190 ° C. and 2.16 kgf using a melt indexer (L217-E14011, manufactured by Techno Seven) in accordance with JIS K 7210. ) Is usually 130 g / 10 min or more and 300 g / 10 min or less, and from the viewpoint of dispersibility of the polymer (B-2) in the aqueous emulsion of the present invention, 130 g / 10 min or more and 200 g / 10 min or less. Is preferred.
The aqueous emulsion of the present invention contains water as the component (C) in addition to the component (A) and the component (B), the component (A) and the component (B) are dispersoids, and the component (C) is dispersed. It is an emulsion used as a medium.
The volume-based median diameter of the dispersoid is usually 0.01 to 3 μm, preferably 0.1 to 2 μm, and more preferably 0.5 to 1.7 μm.
When the volume-based median diameter is 0.01 μm or more, it is easy to produce an aqueous emulsion, and when it is 3 μm or less, the stationary stability of the aqueous emulsion and the adhesiveness of a cured product obtained by drying the aqueous emulsion There is a tendency to improve. “Standing stability” refers to the property that the aqueous emulsion is homogeneous when the aqueous emulsion is stored for 3 days without stirring, that is, the layer rich in component (B) and / or component (C) in the aqueous emulsion. This means that a layer rich in is difficult to form. “Volume-based median diameter” means a particle diameter corresponding to 50% of the cumulative particle diameter distribution on a volume basis.
The content of the component (A) in the aqueous emulsion of the present invention is usually 1 to 30 parts by weight, preferably 2 to 10 parts by weight with respect to 100 parts by weight of (B).
The total content of component (A) and component (B) in the aqueous emulsion of the present invention is usually 10 to 90 parts by weight, preferably 30 to 70 parts by weight, more preferably 100 parts by weight of the aqueous emulsion. 40 to 60 parts by weight.
The content of (C) in the aqueous emulsion of the present invention is usually 90 to 10 parts by weight, preferably 70 to 30 parts by weight, more preferably 60 to 40 parts by weight with respect to 100 parts by weight of the aqueous emulsion.
The aqueous emulsion of the present invention is a method in which component (A) and component (B) are melt-kneaded, and the resulting molten mixture and water are mixed; the step of mixing component (A) with heated component (B) A method comprising: heating and kneading component (A) and component (B), and dispersing the obtained kneaded mixture in component (C); and dissolving component (B) in an organic solvent such as toluene, The method of mixing the obtained solution and component (A) and including the process of removing the said organic solvent from the obtained mixture is mentioned.
A chemical emulsification method such as self-emulsification can also be used.
Among them, a method comprising melting and kneading the component (A) and the component (B), mixing the obtained molten mixture and water, and a method including the step of mixing the component (A) with the heated component (B) are preferable. It is.
As an apparatus used for the process of melt kneading component (A) and component (B), a twin screw extruder, Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), Labo Plast Mill Micro (manufactured by Toyo Seiki Seisakusho Co., Ltd.) Multi-screw extruder, homogenizer, T. et al. K-Filmics (Primics Co., Ltd.) and other equipment with barrels (cylinders), stirring tanks, chemical stirrers, vortex mixers, flow jet mixers, colloid mills, ultrasonic generators, high-pressure homogenizers, Dispersion (registered by Fujikin Co., Ltd.) Trademarks), static mixers, micro mixers, and other devices that do not have a barrel (cylinder).
The shear rate of equipment with a barrel is usually 200 to 100,000 seconds -1 Degree, preferably 1000 to 2500 seconds -1 Degree. Shear rate is 200 seconds -1 When it is above, the adhesiveness of the cured product obtained by drying the aqueous emulsion tends to be improved, and 100,000 seconds -1 When it is below, it tends to be easy to industrially produce an aqueous emulsion. “Shear rate” means a numerical value obtained by dividing the peripheral speed [mm / sec] of the outermost periphery of the screw element by the clearance [mm] between the screw and the barrel.
As a method of melt-kneading component (A) and component (B), component (B) is continuously supplied from the hopper or supply port of a twin-screw extruder, and component (B) is heated and melt-kneaded. The component (A) is pressurized and supplied from at least one supply port provided in the compression zone, metering zone or degassing zone of the extruder, and the component (A) and the component (B) are kneaded with a screw. Subsequently, a method of continuously producing an aqueous emulsion from a die by supplying component (C) from at least one supply port provided in the compression zone of the extruder can be mentioned.
As a method including the step of mixing the component (A) with the heated component (B), after heating the cylinder of the kneader, the component (B) is put into the cylinder and rotated while rotating the component (B). Next, the component (A) and the component (B) are mixed while the component (A) and the component (B) are mixed while rotating, and the resulting mixture is poured into warm water. There is a method in which (B) is dispersed in component (C) to obtain an aqueous emulsion.
A method using a multi-screw extruder is suitable for the method including the step of mixing the component (A) with the heated component (B). Specifically, first, component (B) is supplied from a hopper of a multi-screw extruder having two or more screws in the casing, and component (B) is heated and melt-kneaded, and then the extruder The component (A) is supplied from at least one liquid supply port provided in the compression zone or / and the metering zone, and the component (A) and the component (B) are kneaded and dispersed in the component (C). Is mentioned.
The emulsion of the present invention is an aqueous polyurethane emulsion, other aqueous emulsion such as ethylene-vinyl acetate copolymer aqueous emulsion, thermosetting resin such as urea resin, melamine resin, phenol resin, clay, kaolin, talc, calcium carbonate, etc. Fillers, antiseptics, rust inhibitors, antifoaming agents, foaming agents, polyacrylic acid, polyether, methylcellulose, carboxymethylcellulose, polyvinyl alcohol, starch and other thickeners, viscosity modifiers, flame retardants, titanium oxide, etc. Pigments, high-boiling solvents such as dimethyl succinate and dimethyl adipate, and plasticizers.
By drying the aqueous emulsion of the present invention, a cured product having excellent adhesion to a base material such as a wood material, a cellulose material, a plastic material, a ceramic material, or a metal material can be obtained. The drying temperature is usually 30 to 180 ° C, preferably 60 to 150 ° C. The drying time is usually about 1 minute to 12 hours, preferably about 10 minutes to 6 hours. Drying may be performed under ventilation or under reduced pressure. The cured product of the present invention is excellent in adhesiveness with a substrate even at a low drying temperature of about 65 to 90 ° C. In addition, the cured product obtained by drying the aqueous emulsion of the present invention has excellent adhesion to polyolefins (for example, polypropylene and the like) to which other materials such as paint are difficult to adhere.
By applying the aqueous emulsion of the present invention on a substrate, a laminate in which the aqueous emulsion layer is laminated on the substrate is obtained, and by drying the laminate, the substrate layer and the cured product are obtained. It is possible to form a laminate having a layer made of Such a layer formed of a cured product can be used as a paint, a primer, a base material, an adhesive, or the like.
The base material should just be a thing which can apply | coat the aqueous emulsion of this invention, and the shape is also arbitrary.
Base materials include wood materials such as wood, plywood, MDF, particleboard, fiberboard; paper materials such as wallpaper and wrapping paper: cellulose materials such as cotton, linen, rayon; polyethylene (mainly structural units derived from ethylene) Polyolefin as component, the same applies hereinafter), polypropylene (polyolefin having a structural unit derived from propylene as a main component, the same applies hereinafter), polyolefin such as polystyrene, polycarbonate, acrylonitrile / butadiene / styrene copolymer (ABS resin), (meta ) Acrylic resin Polyester, polyether, polyvinyl chloride, polyurethane, foamed urethane and other plastic materials; glass, ceramics and other ceramic materials; and metal materials such as iron, stainless steel, copper and aluminum.
Such a substrate may be a composite material composed of a plurality of materials. Further, an inorganic filler such as talc, silica, activated carbon, or a kneaded molded product of carbon fiber and a plastic material may be used.
Here, polyurethane is a polymer crosslinked by a urethane bond, and is usually obtained by reaction of alcohol (compound having —OH) and isocyanate (compound having —NCO). The foamed polyurethane is a polyurethane foamed with a volatile solvent such as carbon dioxide or freon produced by a reaction between isocyanate and water as a crosslinking agent. Semi-rigid polyurethane is usually used for automobile interior members, and hard polyurethane is usually used for paints.
Among them, polypropylene, polystyrene, polycarbonate, acrylonitrile / butadiene / styrene copolymer (ABS resin), polyethylene terephthalate, polyvinyl chloride, (meth) acrylic resin, glass, aluminum and polyurethane are preferable, and polypropylene, More preferred are polyvinyl chloride, glass, aluminum and polyurethane.
The hardened | cured material obtained from the emulsion of this invention can be used as an adhesive layer which adhere | attaches two types of base materials. When one of the substrates is a water-absorbing substrate such as a woody material, a paper-based material, or a cellulose material, when the aqueous emulsion of the present invention is applied onto the water-absorbing substrate, components contained in the aqueous emulsion ( C) is absorbed by the water-absorbing substrate, and an adhesive layer containing the component (A) and the component (B) is formed on the water-absorbing substrate. Therefore, a laminated body in which the water-absorbing base material, the adhesive layer, and the other base material are laminated in this order is obtained by pasting the other base material on the adhesive layer.
When one of the substrates is a non-water-absorbing substrate such as polyolefin, the aqueous emulsion of the present invention is applied on the non-water-absorbing substrate and then heated to cure on the non-water-absorbing substrate. After the product is formed, the other substrate is bonded onto the cured product and further heated to obtain a laminate. The heating temperature is usually 60 to 200 ° C. The aqueous emulsion of the present invention gives a cured product having excellent adhesiveness even when the heating temperature is 60 to 90 ° C, and further, cured product having excellent adhesiveness even when the heating temperature is a low temperature of 65 to 80 ° C. give.
A liquid material may be further applied as a paint to the cured product of the present invention. Examples of the coating material include materials for the base material such as polyurethane. When the material is a liquid material, the adhesiveness to the cured product is excellent.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[固形分]
 固形分は、JIS K−6828に準じた方法で測定した。
[分子量および分子量分布]
 成分(B)の分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定した。ポリスチレン(分子量688~400,000)標準物質で校正を行い、下記条件にて求めた。なお、分子量分布は、数平均分子量(以下、Mnという)に対する重量平均分子量(以下、Mwという)の比(Mw/Mn)で評価した。
機種   Waters製 150−C
カラム  shodex packed column A−80M
測定温度 140℃
測定溶媒 オルトジクロロベンゼン
測定濃度 1mg/ml
[NH中和度]
 乳化剤のNH中和度は、乳化剤中に含まれる成分(A)のアクリル酸に由来する構造単位のモル数と2−メタクロイルオキシエチルコハク酸に由来する構造単位のモル数の合計に対する用いたアンモニアのモル数の割合(%)で表した。ここで、各構造単位のモル数は、成分(A)を製造する際に用いた各モノマーのモル数と同じであると仮定した。
[ビニルシクロヘキサンに由来する構造単位の含有量]
 成分(B)中のビニルシクロヘキサンに由来する構造単位の含有量は、成分(B)の13C−NMRスペクトルを、下記条件で測定して得られた結果と下記式(X)に基づき、算出した。
13C−NMR装置:BRUKER社製 DRX600
   測定溶媒:オルトジクロロベンゼンとオルトジクロロベンゼン−d4
        4:1(容積比)混合液
   測定温度:135℃
   測定方法:Powergate Decouping法
        パルス角度:45度
   測定基準:テトラメチルシラン
ビニルシクロヘキサンに由来する構造単位の含有量(mol%)
                    =100×A/(B−2A)    (X)
(式(1)中、Aは、45ppm~40ppmのシグナルの積分積算値を表わし、Bは、35ppm~25ppmのシグナルの積分積算値を表わす。)
[グラフト量]
 成分(B)中の無水マレイン酸のグラフト量は以下のようにして求めた。
(i)試料1.0gをキシレン20mlに溶解させて、試料溶液を調製する。
(ii)調製した溶液をメタノール300ml中に攪拌しながら滴下する。
(iii)メタノール中に析出した沈殿を回収し、80℃で、8時間乾燥する。
(iv)乾燥した固体を用いて、熱プレスにより厚さ100μmのフィルムを作製する。
(v)作製したフィルムの赤外吸収スペクトルを測定し、1780cm−1付近の吸収ピークに基づきマレイン酸グラフト量を定量した。
[極限粘度]
 成分(B)の極限粘度([η]、単位:dl/g)は、ウベローデ型粘度計を用い、テトラリンを溶媒として135℃で測定した。
[ガラス転移温度および融点]
 成分(B)のガラス転移温度([Tg]、単位:℃)および融点([Tm]、単位:℃)は、示差走査熱量計(セイコー電子工業社製 SSC−5200)を用いて、下記条件で示差走査熱量測定曲線を測定し、工程(c)で得られる示差走査熱量測定曲線に基づき求めた。
<測定条件>
(a)試料を、20℃から200℃まで、10℃/分で昇温した後、200℃で10分間保持する。
(b)(a)で得られる試料を、200℃から−100℃まで、10℃/分で降温した後、−100℃で10分間保持する。
(c)(b)で得られる試料を、−100℃から200℃まで10℃/分で昇温する。
 構造単位(a1)を導くモノマーとして、アクリル酸(三菱化学(株)製、以下、AAと略記する。)を用い、構造単位(a2)を導くモノマーとして、N,N−ジメチルアミノエチルメタクリレート(三洋化成工業(株)製、以下、DMAと略記する。)を用い、構造単位(b1)を導くモノマーとして、メチルメタクリレート(三菱レイヨン(株)製、以下、MMAと略記する。)、ラウリルメタクリレート(三菱レイヨン(株)製、以下、LMAと略記する。)およびトリデシルメタクリレート(三菱レイヨン(株)製、以下、TDMAと略記する。)を用い、構造単位(b3)を導くモノマーとして、2−メタクロイルオキシエチルコハク酸(共栄社化学(株)製、以下、HO−MSと略記する。)を用い、成分(A)を製造した。なお、以下の例中の”部”および”%”は、特に断らないかぎり重量基準を意味する。
<成分(A)の製造例1>
 AA24.5部(42.3モル比)、HO−MS22.5部(12.2モル比)、DMA28.0部(22.2モル比)、MMA15.0部(18.6モル比)、LMA3.8部(1.8モル比)およびTDMA6.2部(2.9モル比)を10~30℃で混合し、モノマー混合物100部を調製した。ここで、”モル比”は、上記モノマーの合計モル数を100としたときの、それぞれのモノマーのモル数を表わす。
 冷却器、窒素導入管、攪拌機および滴下ロートを備え、加熱用のジャケットを有する1L反応器に、イソプロパノール150部とイオン交換水100部を仕込んだ。得られた溶液を攪拌しながら、その内温を80℃に調整した。反応容器内のガスを窒素に置換した後、上記で調製したモノマー混合物20部を一括で投入した。さらに、重合開始剤として2,2’−アゾビスイソブチロニトリル2部を加え、得られた混合物を80℃で攪拌した。次に、得られた混合物に、モノマー混合物80部を、80℃で、攪拌しながら、4時間かけて滴下した。モノマー混合物の滴下開始から1時間毎に、2,2’−アゾビスイソブチロニトリルを0.15部ずつ、4回にわけて添加した。得られた混合物をさらに3時間、同温度で攪拌した。得られた反応混合物を、沸騰する程度まで加熱して、イソプロパノールを留去した。得られた濃縮物の内温を50℃に冷却した後、28%アンモニア水溶液39.9部(81.7モル比、該モル比は、上記モノマーの合計モル数を100としたときの、アンモニアのモル数を表わす。)を混合し、ポリマー親水比率が、9.40であるアクリル樹脂を含み、中和度150%の粘稠な乳化剤を得た。収率90%。得られた乳化剤を(A−1)と称す。結果を表1に示す。
<成分(A)の製造例2~4>
 使用するモノマーの種類および使用量、ならびにアンモニアの使用量を表1に記載のものに変更した以外は上記成分(A)の製造例1と同様に行い、アクリル樹脂を含む粘稠な乳化剤を得た。得られた乳化剤を、それぞれ、(A−2)、(A−3)および(A−4)と称す。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
<成分(B)の製造例1>
 ステンレス製反応器の内部の気体をアルゴンガスで置換した後、ビニルシクロヘキサン386部とトルエン3640部を投入した。得られた混合物を50℃に昇温した後、エチレンを0.6MPaで加圧しながら反応器内に仕込んだ。さらに、トリイソブチルアルミニウムのトルエン溶液(東ソー・アクゾ(株)製、濃度20%)10部を仕込み、続いて、ジエチルシリル(テトラメチルシクロペンタジエニル)(3−tert−ブチル−5−メチル−2−フェノキシ)チタニウムジクロライド0.001部を脱水トルエン87部に溶解させることにより得られた溶液とジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.03部を脱水トルエン122部に溶解させることにより得られた溶液を、反応器内に仕込んだ。得られた混合物を2時間攪拌した。得られた反応混合物をアセトン約10,000部中に注ぎ、沈殿した白色固体を濾過により取り出した。取り出した固体をアセトンで洗浄した後、減圧乾燥し、エチレン・ビニルシクロヘキサン共重合体300部を得た。得られた共重合体の[η]は0.48dl/gであり、Mnは15,600であり、Mw/Mnは2.0であり、Tmは57℃であり、Tgは−28℃であり、ビニルシクロヘキサンに由来する構造単位の含有率は13モル%であった。得られた共重合体を(B−1a)と称す。
<成分(B)の製造例2>
 (B−1a)100部に、無水マレイン酸0.4部および1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン0.04部を添加し、得られた混合物を十分に攪拌し、予備混合を行った。得られた混合物を二軸押出機の供給口より供給して溶融混練を行った。なお、溶融混練を前半と後半の二段階に分けて行い、押出機の溶融混練を行う部分の前半部分の温度は180℃に、後半部分の温度は260℃に、それぞれ設定し、溶融混練を行った。その結果、エチレン・ビニルシクロヘキサン共重合体に無水マレイン酸をグラフト重合させることにより得られた重合体を得た。得られた重合体のマレイン酸グラフト量は0.2%であり、MFRは180g/10分(190℃、荷重:2.16kgf)であった。得られた重合体を、(B−2a)と称す。
<成分(B)の製造例3>
 <成分(B)の製造例1>において、エチレンに代えてプロピレンを用いる以外は、<成分(B)の製造例1>と同様に実施することにより、プロピレン・ビニルシクロヘキサン共重合体を得ることができる。該共重合体を(B−1b)と称す。
<成分(B)の製造例4>
 <成分(B)の製造例2>において、(B−1a)に代えて(B−1b)を用いる以外は、<成分(B)の製造例2>と同様に実施することにより、プロピレン・ビニルシクロヘキサン共重合体に無水マレイン酸をグラフト重合させることにより得られる重合体を得ることができる。該重合体を(B−2b)と称す。
実施例1
 卓上型ニーダーPBV−0.3型(入江商会から購入)のシリンダー温度を97℃に設定した後、該シリンダー内に、(B−2a)110部を投入し、毎分10回転で順回転させながら、(B−2a)10分間かけて溶融させた。その後、固形分量が10部となる量の(A−1)を投入し、毎分60回転でカバーガラスをときどき開け、3分間混練乳化を行った。次いで、90℃の温水110部を投入し、水性エマルションを得た。
 得られた水性エマルション中の分散質の体積基準メジアン径は1.3μmであった。該体積基準メジアン径は、レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製)により測定した。
 該水性エマルションから得られた硬化物の接着性を、下記試験方法(碁盤目剥離テープ法)で評価した。結果を表2に示す。
 また、得られた水性エマルションを3日間、攪拌せずに保管したところ、その外観および均一性に変化はなく、その静置安定性も良好であった。
<接着性の試験方法>
 厚さ3mmのポリプロピレン板の表面をイソプロパノールで洗浄した後、乾燥して得られる硬化物の膜厚が10μmとなるように、バーコーターを用いて、水性エマルションをポリプロピレン板上に塗布した。得られた塗膜を熱風乾燥機で80℃5分間乾燥させ、さらに70℃のオーブンで30分間加熱乾燥して、硬化物を得た。
 厚さ3mmのポリプロピレン板の表面をイソプロパノールで洗浄した後、乾燥して得られる硬化物の膜厚が10μmとなるように、バーコーターを用いて、水性エマルションをポリプロピレン板上に塗布した。得られた塗膜を熱風乾燥機で80℃5分間乾燥させ、さらに90℃のオーブンで30分間加熱乾燥して、硬化物を得た。
 JIS−K5400(碁盤目剥離テープ法試験)に準拠して、得られた各硬化物に、すきま間隔1mmの碁盤目状の切り傷を付けた後、その上にセロハンテープを貼り付けた。1~2分経過後に、テープの一方の端を持って直角に引き剥がし、接着性を下記評価基準に基づき、評価した。
◎:硬化物の剥がれは全く観察されない。
○:硬化物の剥がれが観察され、剥がれの面積が正方形面積の40%未満である。
×:硬化物の剥がれが観察され、剥がれの面積が正方形面積の40%以上である。
実施例2
 同方向回転噛合型二軸スクリュー押出機((株)日本製鋼所社製:TEX30φ、L/D=30)のシリンダー温度を110℃に設定した後、該押出機のホッパーから、(B−2a)110部をスクリューの回転数350rpmで連続的にシリンダー内に供給した。該押出機のベント部に設けた供給口から、固形分量が10部となる量の(A−1)をギヤーポンプで加圧しながら連続的に供給し、(B−2a)および(A−1)を連続的に押出ししながら混合し、乳白色の水性エマルションを得た。
 得られた水性エマルション中の分散質の体積基準メジアン径は1.0μmであった。該体積基準メジアン径は、レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製)により測定した。
 該水性エマルションから得られた硬化物の接着性を、実施例1に記載の試験方法で評価した。結果を表2に示す。
実施例3
 実施例1において、(A−1)を(A−2)に代えた以外は、実施例1と同様に実施して、乳白色の水性エマルションを得た。
 得られた水性エマルションを3日間、攪拌せずに保管したところ、その外観および均一性に変化はなく、その静置安定性も良好であった。
 得られた水性エマルション中の分散質の体積基準メジアン径および該水性エマルションから得られた硬化物の接着性の評価結果を表2に示す。
実施例4
 実施例1において、(A−1)を(A−3)に代えた以外は、実施例1と同様に実施して、乳白色の水性エマルションを得た。
 得られた水性エマルションを3日間、攪拌せずに保管したところ、その外観および均一性に変化はなく、その静置安定性も良好であった。
 得られた水性エマルション中の分散質の体積基準メジアン径および該水性エマルションから得られた硬化物の接着性の評価結果を表2に示す。
実施例5
 実施例1において、(A−1)を(A−4)に代えた以外は、実施例1と同様に実施して、乳白色の水性エマルションを得た。
 得られた水性エマルションを3日間、攪拌せずに保管したところ、その外観および均一性に変化はなく、その静置安定性も良好であった。
 得られた水性エマルション中の分散質の体積基準メジアン径および該水性エマルションから得られた硬化物の接着性の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
実施例6
 実施例2において、(B−2a)に代えて(B−1a)を用いる以外は、実施例2と同様に実施することにより、水性エマルションを得ることができる。
実施例7
 実施例2において、(B−2a)に代えて(B−1b)を用いる以外は、実施例2と同様に実施することにより、水性エマルションを得ることができる。
実施例8
 実施例2において、(B−2a)に代えて(B−2b)を用いる以外は、実施例2と同様に実施することにより、水性エマルションを得ることができる。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[Solid content]
The solid content was measured by a method according to JIS K-6828.
[Molecular weight and molecular weight distribution]
The molecular weight of component (B) was measured by gel permeation chromatography (GPC). Calibration was performed with polystyrene (molecular weight 688 to 400,000) standard substance, and the measurement was performed under the following conditions. The molecular weight distribution was evaluated by the ratio (Mw / Mn) of the weight average molecular weight (hereinafter referred to as Mw) to the number average molecular weight (hereinafter referred to as Mn).
Model Waters 150-C
Column shodex packed column A-80M
Measurement temperature 140 ℃
Measurement solvent Orthodichlorobenzene measurement concentration 1mg / ml
[NH 3 neutralization degree]
The degree of NH 3 neutralization of the emulsifier is used for the sum of the number of moles of structural units derived from acrylic acid of the component (A) contained in the emulsifier and the number of moles of structural units derived from 2-methacryloyloxyethyl succinic acid It was expressed as a percentage (%) of the number of moles of ammonia. Here, it was assumed that the number of moles of each structural unit was the same as the number of moles of each monomer used when the component (A) was produced.
[Content of structural unit derived from vinylcyclohexane]
The content of the structural unit derived from vinylcyclohexane in the component (B) is calculated based on the result obtained by measuring the 13 C-NMR spectrum of the component (B) under the following conditions and the following formula (X). did.
13 C-NMR apparatus: DRX600 manufactured by BRUKER
Measuring solvent: orthodichlorobenzene and orthodichlorobenzene-d4
4: 1 (volume ratio) liquid mixture Measurement temperature: 135 ° C
Measurement method: Powergate Decoupling method Pulse angle: 45 degrees Measurement standard: Content of structural unit derived from tetramethylsilanevinylcyclohexane (mol%)
= 100 × A / (B-2A) (X)
(In the formula (1), A represents an integrated integrated value of a signal of 45 ppm to 40 ppm, and B represents an integrated integrated value of a signal of 35 ppm to 25 ppm.)
[Graft amount]
The amount of maleic anhydride grafted in component (B) was determined as follows.
(I) A sample solution is prepared by dissolving 1.0 g of a sample in 20 ml of xylene.
(Ii) The prepared solution is dropped into 300 ml of methanol while stirring.
(Iii) The precipitate deposited in methanol is collected and dried at 80 ° C. for 8 hours.
(Iv) Using the dried solid, a film having a thickness of 100 μm is prepared by hot pressing.
(V) The infrared absorption spectrum of the produced film was measured, and the amount of maleic acid graft was quantified based on the absorption peak near 1780 cm −1 .
[Intrinsic viscosity]
The intrinsic viscosity ([η], unit: dl / g) of component (B) was measured at 135 ° C. using tetralin as a solvent using an Ubbelohde viscometer.
[Glass transition temperature and melting point]
The glass transition temperature ([Tg], unit: ° C) and melting point ([Tm], unit: ° C) of the component (B) are as follows using a differential scanning calorimeter (SSC-5200 manufactured by Seiko Denshi Kogyo Co., Ltd.). The differential scanning calorimetry curve was measured by using the differential scanning calorimetry curve obtained in step (c).
<Measurement conditions>
(A) The sample is heated from 20 ° C. to 200 ° C. at a rate of 10 ° C./min, and then held at 200 ° C. for 10 minutes.
(B) The sample obtained in (a) is cooled from 200 ° C. to −100 ° C. at 10 ° C./min, and then held at −100 ° C. for 10 minutes.
(C) The sample obtained in (b) is heated from −100 ° C. to 200 ° C. at 10 ° C./min.
Acrylic acid (manufactured by Mitsubishi Chemical Corporation, hereinafter abbreviated as AA) is used as a monomer for deriving the structural unit (a1), and N, N-dimethylaminoethyl methacrylate (monomer for deriving the structural unit (a2) is used as the monomer for deriving the structural unit (a1). As a monomer for deriving the structural unit (b1) using Sanyo Chemical Industries, Ltd. (hereinafter abbreviated as DMA), methyl methacrylate (Mitsubishi Rayon Co., Ltd., hereinafter abbreviated as MMA), lauryl methacrylate. (Mitsubishi Rayon Co., Ltd., hereinafter abbreviated as LMA) and tridecyl methacrylate (Mitsubishi Rayon Co., Ltd., hereinafter abbreviated as TDMA) are used as monomers for deriving the structural unit (b3). -Component (A) was produced using -methacryloyloxyethyl succinic acid (manufactured by Kyoeisha Chemical Co., Ltd., hereinafter abbreviated as HO-MS). In the following examples, “parts” and “%” mean weight basis unless otherwise specified.
<Production Example 1 of Component (A)>
AA 24.5 parts (42.3 molar ratio), HO-MS 22.5 parts (12.2 molar ratio), DMA 28.0 parts (22.2 molar ratio), MMA 15.0 parts (18.6 molar ratio), LMA 3.8 parts (1.8 molar ratio) and TDMA 6.2 parts (2.9 molar ratio) were mixed at 10 to 30 ° C. to prepare 100 parts of a monomer mixture. Here, the “molar ratio” represents the number of moles of each monomer when the total number of moles of the monomer is 100.
A 1 L reactor equipped with a cooler, a nitrogen introducing tube, a stirrer, and a dropping funnel and having a heating jacket was charged with 150 parts of isopropanol and 100 parts of ion-exchanged water. While stirring the resulting solution, its internal temperature was adjusted to 80 ° C. After replacing the gas in the reaction vessel with nitrogen, 20 parts of the monomer mixture prepared above was charged all at once. Further, 2 parts of 2,2′-azobisisobutyronitrile was added as a polymerization initiator, and the resulting mixture was stirred at 80 ° C. Next, 80 parts of the monomer mixture was added dropwise to the resulting mixture at 80 ° C. with stirring for 4 hours. Every 2 hours from the start of the dropwise addition of the monomer mixture, 2,5′-azobisisobutyronitrile was added in 0.15 parts in four portions. The resulting mixture was stirred at the same temperature for an additional 3 hours. The resulting reaction mixture was heated to a boiling point to distill off isopropanol. After the internal temperature of the obtained concentrate was cooled to 50 ° C., 39.9 parts of a 28% aqueous ammonia solution (81.7 mole ratio, the mole ratio is ammonia when the total number of moles of the monomers was 100) And a viscous emulsifier containing an acrylic resin having a polymer hydrophilic ratio of 9.40 and having a neutralization degree of 150%. Yield 90%. The obtained emulsifier is referred to as (A-1). The results are shown in Table 1.
<Production Examples 2 to 4 of component (A)>
A viscous emulsifier containing an acrylic resin is obtained in the same manner as in Production Example 1 of the above component (A) except that the type and amount of monomer used and the amount of ammonia used are changed to those shown in Table 1. It was. The obtained emulsifiers are referred to as (A-2), (A-3), and (A-4), respectively. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
<Production Example 1 of Component (B)>
After replacing the gas inside the stainless steel reactor with argon gas, 386 parts of vinylcyclohexane and 3640 parts of toluene were added. After heating up the obtained mixture to 50 degreeC, it charged in the reactor, pressurizing ethylene at 0.6 Mpa. Furthermore, 10 parts of a toluene solution of triisobutylaluminum (manufactured by Tosoh Akzo Co., Ltd., concentration 20%) was added, and then diethylsilyl (tetramethylcyclopentadienyl) (3-tert-butyl-5-methyl- 2-phenoxy) obtained by dissolving 0.001 part of titanium dichloride in 87 parts of dehydrated toluene and 0.03 part of dimethylanilinium tetrakis (pentafluorophenyl) borate in 122 parts of dehydrated toluene. The resulting solution was charged into the reactor. The resulting mixture was stirred for 2 hours. The obtained reaction mixture was poured into about 10,000 parts of acetone, and the precipitated white solid was removed by filtration. The solid thus taken out was washed with acetone and then dried under reduced pressure to obtain 300 parts of an ethylene / vinylcyclohexane copolymer. [Η] of the obtained copolymer is 0.48 dl / g, Mn is 15,600, Mw / Mn is 2.0, Tm is 57 ° C., and Tg is −28 ° C. Yes, the content of structural units derived from vinylcyclohexane was 13 mol%. The obtained copolymer is referred to as (B-1a).
<Production Example 2 of Component (B)>
To 100 parts of (B-1a), 0.4 part of maleic anhydride and 0.04 part of 1,3-bis (tert-butylperoxyisopropyl) benzene are added, and the resulting mixture is sufficiently stirred and preliminarily prepared. Mixing was performed. The obtained mixture was supplied from a supply port of a twin screw extruder and melt kneaded. The melt kneading is performed in two stages, the first half and the latter half, and the temperature of the first half of the portion where the melt kneading of the extruder is set to 180 ° C. and the temperature of the second half is set to 260 ° C. went. As a result, a polymer obtained by graft polymerization of maleic anhydride to an ethylene / vinylcyclohexane copolymer was obtained. The resulting polymer had a maleic acid graft amount of 0.2% and an MFR of 180 g / 10 min (190 ° C., load: 2.16 kgf). The obtained polymer is referred to as (B-2a).
<Production Example 3 of Component (B)>
<Producing Example 1 of Component (B)> In the same manner as <Manufacturing Example 1 of Component (B)> except that propylene is used instead of ethylene, a propylene / vinylcyclohexane copolymer is obtained. Can do. This copolymer is referred to as (B-1b).
<Production Example 4 of Component (B)>
In <Production Example 2 of Component (B)>, in the same manner as in <Production Example 2 of Component (B)> except that (B-1b) is used instead of (B-1a), propylene. A polymer obtained by graft polymerization of maleic anhydride to a vinylcyclohexane copolymer can be obtained. This polymer is referred to as (B-2b).
Example 1
After setting the cylinder temperature of the table type kneader PBV-0.3 (purchased from Irie Shokai) to 97 ° C, put 110 parts of (B-2a) into the cylinder and rotate it forward at 10 revolutions per minute. (B-2a) was melted for 10 minutes. Thereafter, (A-1) was added so that the solid content was 10 parts, and the cover glass was occasionally opened at 60 revolutions per minute to carry out kneading and emulsification for 3 minutes. Next, 110 parts of warm water at 90 ° C. was added to obtain an aqueous emulsion.
The volume-based median diameter of the dispersoid in the obtained aqueous emulsion was 1.3 μm. The volume-based median diameter was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd.).
The adhesiveness of the cured product obtained from the aqueous emulsion was evaluated by the following test method (cross cut tape method). The results are shown in Table 2.
Moreover, when the obtained aqueous emulsion was stored for 3 days without stirring, its appearance and uniformity did not change, and its stationary stability was also good.
<Adhesion test method>
After washing the surface of the 3 mm thick polypropylene plate with isopropanol, the aqueous emulsion was applied onto the polypropylene plate using a bar coater so that the cured product obtained by drying had a thickness of 10 μm. The obtained coating film was dried with a hot air dryer at 80 ° C. for 5 minutes, and further dried by heating in an oven at 70 ° C. for 30 minutes to obtain a cured product.
After washing the surface of the 3 mm thick polypropylene plate with isopropanol, the aqueous emulsion was applied onto the polypropylene plate using a bar coater so that the cured product obtained by drying had a thickness of 10 μm. The obtained coating film was dried at 80 ° C. for 5 minutes with a hot air dryer, and further heated and dried in an oven at 90 ° C. for 30 minutes to obtain a cured product.
In accordance with JIS-K5400 (cross-cut peeling tape method test), each cured product was cut with a grid-like cut with a gap interval of 1 mm, and then a cellophane tape was affixed thereon. After 1 to 2 minutes, the tape was held at one end and peeled off at a right angle, and the adhesion was evaluated based on the following evaluation criteria.
A: No peeling of the cured product is observed.
◯: Peeling of the cured product is observed, and the peeling area is less than 40% of the square area.
X: Peeling of the cured product is observed, and the peeling area is 40% or more of the square area.
Example 2
After setting the cylinder temperature of a co-rotating meshing twin screw extruder (manufactured by Nippon Steel Works Co., Ltd .: TEX30φ, L / D = 30) to 110 ° C., from the hopper of the extruder, (B-2a ) 110 parts were continuously fed into the cylinder at a screw speed of 350 rpm. From the supply port provided in the vent portion of the extruder, (A-1) having an amount of solid content of 10 parts is continuously supplied while being pressurized with a gear pump, and (B-2a) and (A-1) Were mixed with continuous extrusion to obtain a milky white aqueous emulsion.
The volume-based median diameter of the dispersoid in the obtained aqueous emulsion was 1.0 μm. The volume-based median diameter was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd.).
The adhesiveness of the cured product obtained from the aqueous emulsion was evaluated by the test method described in Example 1. The results are shown in Table 2.
Example 3
In Example 1, except having replaced (A-1) with (A-2), it implemented similarly to Example 1 and obtained the milky white aqueous emulsion.
When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good.
Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
Example 4
In Example 1, except having replaced (A-1) with (A-3), it implemented similarly to Example 1 and obtained the milky-white aqueous emulsion.
When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good.
Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
Example 5
In Example 1, except having replaced (A-1) with (A-4), it implemented similarly to Example 1 and obtained the milky white aqueous emulsion.
When the obtained aqueous emulsion was stored for 3 days without stirring, the appearance and uniformity did not change, and the standing stability was also good.
Table 2 shows the volume-based median diameter of the dispersoid in the obtained aqueous emulsion and the evaluation results of the adhesiveness of the cured product obtained from the aqueous emulsion.
Figure JPOXMLDOC01-appb-T000003
Example 6
In Example 2, an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-1a) instead of (B-2a).
Example 7
In Example 2, an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-1b) instead of (B-2a).
Example 8
In Example 2, an aqueous emulsion can be obtained by carrying out similarly to Example 2 except using (B-2b) instead of (B-2a).
 本発明の水性エマルションは、ポリプロピレン等の塗料等の他の材料が接着し難い基材との接着性に優れた硬化物を与えることができる。 The aqueous emulsion of the present invention can give a cured product having excellent adhesion to a substrate to which other materials such as paint such as polypropylene are difficult to adhere.

Claims (16)

  1.  下記成分(A)、成分(B)および成分(C)を含む水性エマルション。
    (A)α,β−不飽和カルボン酸に由来する構造単位と、
    置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
    を含むアクリル樹脂であって、該アクリル樹脂の親水比率が9~12である(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
     モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
    (B)熱可塑性ポリマー
    (C)水
    An aqueous emulsion comprising the following component (A), component (B) and component (C).
    (A) a structural unit derived from an α, β-unsaturated carboxylic acid;
    A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
    Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
    (B) Thermoplastic polymer (C) Water
  2.  成分(B)が、エチレンおよび/またはプロピレンに由来する構造単位を含有する熱可塑性ポリマーを含む請求項1に記載の水性エマルション。 The aqueous emulsion according to claim 1, wherein the component (B) contains a thermoplastic polymer containing a structural unit derived from ethylene and / or propylene.
  3.  成分(B)が、エチレンおよび/またはプロピレンに由来する構造単位と、式(I)
     CH=CH−R    (I)
    (式中、Rは、2級アルキル基、3級アルキル基または脂環式炭化水素基を表わす。)
    で示されるビニル化合物に由来する構造単位を含む共重合体に、α,β−不飽和カルボン酸無水物をグラフト重合させることにより得られる重合体を含む請求項1に記載の水性エマルション。
    A structural unit wherein component (B) is derived from ethylene and / or propylene, and a compound of formula (I)
    CH 2 = CH-R (I )
    (In the formula, R represents a secondary alkyl group, a tertiary alkyl group, or an alicyclic hydrocarbon group.)
    The aqueous emulsion of Claim 1 containing the polymer obtained by carrying out the graft polymerization of (alpha), (beta) -unsaturated carboxylic acid anhydride to the copolymer containing the structural unit derived from the vinyl compound shown by these.
  4.  式(I)で示されるビニル化合物が、ビニルシクロヘキサンである請求項3に記載の水性エマルション。 The aqueous emulsion according to claim 3, wherein the vinyl compound represented by the formula (I) is vinylcyclohexane.
  5.  成分(B)が、MFR(190℃、2.16kgf)が、130g/10分以上300g/10分以下の熱可塑性ポリマーである請求項1~4のいずれかに記載の水性エマルション。 The aqueous emulsion according to any one of claims 1 to 4, wherein the component (B) is a thermoplastic polymer having an MFR (190 ° C, 2.16 kgf) of 130 g / 10 min to 300 g / 10 min.
  6.  水性エマルションが、前記成分(A)および前記成分(B)を分散質とし、前記成分(C)を分散媒とする水性エマルションであり、該分散質の体積基準メジアン径が0.01μm~3μmである請求項1~5のいずれかに記載の水性エマルション。 The aqueous emulsion is an aqueous emulsion having the component (A) and the component (B) as a dispersoid and the component (C) as a dispersion medium, and the volume-based median diameter of the dispersoid is 0.01 μm to 3 μm. The aqueous emulsion according to any one of claims 1 to 5.
  7.  置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位が、N,N−ジメチルアミノエチルメタクリレートに由来する構造単位である請求項1~6のいずれかに記載の水性エマルション。 A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; 7. The aqueous emulsion according to claim 1, which is a structural unit derived from N, N-dimethylaminoethyl methacrylate.
  8.  α,β−不飽和カルボン酸に由来する構造単位が、アクリル酸またはメタクリル酸に由来する構造単位である請求項1~7のいずれかに記載の水性エマルション。 The aqueous emulsion according to any one of claims 1 to 7, wherein the structural unit derived from an α, β-unsaturated carboxylic acid is a structural unit derived from acrylic acid or methacrylic acid.
  9.  成分(A)および成分(B)を溶融混練し、得られた溶融混合物と水とを混合することを特徴とする水性エマルションの製造方法。
    (A)α,β−不飽和カルボン酸に由来する構造単位と、
    置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
    を含むアクリル樹脂であって、該アクリル樹脂の親水比率が9~12である(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
     モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))
    (B)熱可塑性ポリマー
    (C)水
    A method for producing an aqueous emulsion, wherein the component (A) and the component (B) are melt-kneaded, and the resulting molten mixture and water are mixed.
    (A) a structural unit derived from an α, β-unsaturated carboxylic acid;
    A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; Wherein the hydrophilic ratio of the acrylic resin is 9 to 12 (where the hydrophilic ratio of the acrylic resin is a weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin, The hydrophilic ratio of the monomer is a value calculated by the following formula.
    Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic portion) / (monomer molecular weight))
    (B) Thermoplastic polymer (C) Water
  10.  請求項1~8のいずれかに記載の水性エマルションを乾燥させることにより得られる硬化物。 A cured product obtained by drying the aqueous emulsion according to any one of claims 1 to 8.
  11.  木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層と請求項10に記載の硬化物からなる層とを有する積層体。 A laminate having a base material layer made of at least one material selected from the group consisting of a wood material, a cellulose material, a plastic material, a ceramic material, and a metal material, and a layer made of the cured product according to claim 10.
  12.  木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層に、請求項1~8のいずれかに記載の水性エマルションを塗布し、該基材層と該水性エマルション層とを有する積層体を得る工程と、
    前記工程で得られた積層体を乾燥して、前記基材層と前記水性エマルションから得られる硬化物層とを有する積層体を得る工程とを含む積層体の製造方法。
    9. The aqueous emulsion according to claim 1 is applied to a base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material, and a metal material, Obtaining a laminate having a base material layer and the aqueous emulsion layer;
    A method for producing a laminate comprising: drying the laminate obtained in the step to obtain a laminate having the base material layer and a cured product layer obtained from the aqueous emulsion.
  13.  α,β−不飽和カルボン酸に由来する構造単位と、
    置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位と
    を含むアクリル樹脂を有効成分として含み、該アクリル樹脂の親水比率が9~12である乳化剤(ここで、アクリル樹脂の親水比率は、該アクリル樹脂の構造単位を導くモノマーの親水比率の重量平均値であり、モノマーの親水比率は、下記式により算出される値である。
     モノマーの親水比率=20×(モノマーの親水部の式量)/(モノマーの分子量))。
    a structural unit derived from an α, β-unsaturated carboxylic acid;
    A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; An emulsifier having an acrylic resin containing 9 as an active ingredient and a hydrophilic ratio of the acrylic resin of 9 to 12 (where the hydrophilic ratio of the acrylic resin is the weight average value of the hydrophilic ratio of the monomer leading to the structural unit of the acrylic resin) The hydrophilic ratio of the monomer is a value calculated by the following formula.
    Monomer hydrophilic ratio = 20 × (formula weight of monomer hydrophilic part) / (monomer molecular weight)).
  14.  置換基を有していてもよいアミノ基を有する炭素数1~10の脂肪族アルコールとα,β−不飽和カルボン酸とから導かれるα,β−不飽和カルボン酸エステルに由来する構造単位が、N,N−ジメチルアミノエチルメタクリレートに由来する構造単位である請求項13に記載の乳化剤。 A structural unit derived from an α, β-unsaturated carboxylic acid ester derived from an aliphatic alcohol having 1 to 10 carbon atoms having an amino group which may have a substituent and an α, β-unsaturated carboxylic acid; The emulsifier according to claim 13, which is a structural unit derived from N, N-dimethylaminoethyl methacrylate.
  15.  α,β−不飽和カルボン酸に由来する構造単位が、アクリル酸およびメタクリル酸からなる群から選ばれる少なくとも一種に由来する構造単位である請求項13または請求項14に記載の乳化剤。 The emulsifier according to claim 13 or 14, wherein the structural unit derived from an α, β-unsaturated carboxylic acid is a structural unit derived from at least one selected from the group consisting of acrylic acid and methacrylic acid.
  16.  木質材料、セルロース材料、プラスチック材料、セラミック材料および金属材料からなる群から選ばれる少なくとも1種の材料からなる基材層上に硬化物層を形成するための、請求項1~8のいずれかに記載の水性エマルションの使用。 9. The cured product layer for forming a cured product layer on a base material layer made of at least one material selected from the group consisting of a woody material, a cellulose material, a plastic material, a ceramic material and a metal material. Use of the described aqueous emulsion.
PCT/JP2010/056043 2009-03-31 2010-03-26 Aqueous emulsion WO2010114108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-085805 2009-03-31
JP2009085805 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010114108A1 true WO2010114108A1 (en) 2010-10-07

Family

ID=42828396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056043 WO2010114108A1 (en) 2009-03-31 2010-03-26 Aqueous emulsion

Country Status (3)

Country Link
JP (1) JP2010254988A (en)
TW (1) TW201041645A (en)
WO (1) WO2010114108A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312122A (en) * 2016-06-08 2019-02-05 三菱化学株式会社 Aqueous resin dispersion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024755A (en) * 2006-07-18 2008-02-07 Chuo Rika Kogyo Corp Thermoplastic resin aqueous dispersion liquid
JP2008063557A (en) * 2006-04-21 2008-03-21 Sumitomo Chemical Co Ltd Aqueous emulsion of olefinic copolymer or its modified substance
JP2009172503A (en) * 2008-01-23 2009-08-06 Chuo Rika Kogyo Corp Polymeric emulsifier, and polyolefin resin emulsion employing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063557A (en) * 2006-04-21 2008-03-21 Sumitomo Chemical Co Ltd Aqueous emulsion of olefinic copolymer or its modified substance
JP2008024755A (en) * 2006-07-18 2008-02-07 Chuo Rika Kogyo Corp Thermoplastic resin aqueous dispersion liquid
JP2009172503A (en) * 2008-01-23 2009-08-06 Chuo Rika Kogyo Corp Polymeric emulsifier, and polyolefin resin emulsion employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312122A (en) * 2016-06-08 2019-02-05 三菱化学株式会社 Aqueous resin dispersion
CN109312122B (en) * 2016-06-08 2021-10-29 三菱化学株式会社 Aqueous resin dispersion

Also Published As

Publication number Publication date
TW201041645A (en) 2010-12-01
JP2010254988A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP2012144692A (en) Composition
WO2010030033A1 (en) Aqueous emulsion
US20100035073A1 (en) Aqueous emulsion of olefin copolymer
WO2007123071A1 (en) Aqueous emulsion of olefin copolymer or modified product of the olefin copolymer
JP2008063557A (en) Aqueous emulsion of olefinic copolymer or its modified substance
JP5701521B2 (en) Aqueous emulsion
JP2010248416A (en) Aqueous emulsion
WO2010122966A1 (en) Aqueous emulsion
WO2010114108A1 (en) Aqueous emulsion
WO2011010679A1 (en) Aqueous emulsion
WO2010143724A1 (en) Aqueous emulsion
JP5556138B2 (en) Aqueous emulsion
JP2011246572A (en) Aqueous emulsion
JP2011241326A (en) Manufacturing method of aqueous emulsion
US20120100384A1 (en) Laminate
JP2011246573A (en) Aqueous emulsion
JP2011246616A (en) Aqueous emulsion
JP2011241325A (en) Manufacturing method of aqueous emulsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758879

Country of ref document: EP

Kind code of ref document: A1