WO2010113659A1 - Film forming device, film forming method, and organic el element - Google Patents

Film forming device, film forming method, and organic el element Download PDF

Info

Publication number
WO2010113659A1
WO2010113659A1 PCT/JP2010/054675 JP2010054675W WO2010113659A1 WO 2010113659 A1 WO2010113659 A1 WO 2010113659A1 JP 2010054675 W JP2010054675 W JP 2010054675W WO 2010113659 A1 WO2010113659 A1 WO 2010113659A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
organic
blowing mechanism
deposition source
film
Prior art date
Application number
PCT/JP2010/054675
Other languages
French (fr)
Japanese (ja)
Inventor
知彦 江面
浩平 継田
美子 鰐渕
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2011507089A priority Critical patent/JPWO2010113659A1/en
Priority to CN2010800147449A priority patent/CN102369787A/en
Publication of WO2010113659A1 publication Critical patent/WO2010113659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present invention relates to a film forming apparatus, a film forming method, and an organic EL element, and more particularly to a film structure included in the organic EL element and a film forming apparatus and a film forming method for forming the film structure.
  • an organic EL display using an organic EL (Organic Electroluminescence) element that emits light using an organic compound has attracted attention.
  • This organic EL element has features such as self-emission, fast reaction speed, and low power consumption. For this reason, the image is not only very beautiful as compared with a liquid crystal display, but also requires no backlight, can be thinned, and is particularly expected to be applied to a display unit of a portable device.
  • the organic EL element is formed on a glass substrate and has a structure in which an organic layer is sandwiched between an anode layer (anode) and a cathode layer (cathode).
  • anode anode
  • cathode cathode
  • the injection of electrons and holes causes the organic material vapor to be in an excited state. However, when the excited organic material vapor returns to the original ground state due to recombination of electrons and holes, the excess energy is released as light.
  • an electron injection layer made of a material such as an alkali metal having a low work function is generally formed at the interface between the organic layer and the cathode (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 discloses forming an organic layer doped with a metal between each cathode and the emitter layer.
  • the dopant metal include lithium (Li), strontium (Sr), and samarium (Sm).
  • Alkali metal is preferable as a material for forming the electron injection layer because it has a small work function.
  • alkali metals are highly active species, they easily react with moisture, nitrogen, oxygen, etc. remaining in the processing chamber in a high vacuum state. Therefore, when the electron injection layer is formed in a state where such an impurity exists on the surface of the organic layer that is the base of the electron injection layer, a metal such as lithium reacts with the impurity at the interface, for example, lithium oxide ( The film was deteriorated, such as being an insulator of Li 2 O).
  • the present invention provides a film forming apparatus, a film forming method, and an organic EL element that prevent deterioration of the metal layer forming the electron injection layer and increase the electron injection efficiency of the same layer. .
  • a processing container that performs a desired process on a target object and an organic material are stored therein, and the stored organic material is heated.
  • a first vapor deposition source to be vaporized, and an object to be processed in the processing container that is incorporated in the processing container and connected to the first vapor deposition source and vaporized in the first vapor deposition source.
  • a first blow-out mechanism that blows out toward the substrate, a second vapor deposition source that contains alkali metal, heats and vaporizes the contained alkali metal, and is incorporated in the processing vessel and is included in the second vapor deposition source.
  • a film forming apparatus having a second blowing mechanism that is connected and blows out the alkali metal vaporized in the second vapor deposition source toward an object to be processed in the processing container.
  • the 1st blowing mechanism which blows off the organic material vaporized by the 1st vapor deposition source toward the to-be-processed object in a processing container, and the alkali metal vaporized by the 2nd vapor deposition source are mentioned above.
  • steam of an organic material, and the 2nd blowing mechanism which blows off the vapor atom of an alkali metal are arrange
  • the film can be formed thicker than the conventional one.
  • the alkali metal layer can be formed to a thickness of 0.5 nm to 100 nm.
  • the alkali metal layer can function not only as an electron injection layer but also as a cathode of an organic EL element.
  • the alkali metal layer in order to prevent the active alkali metal layer from reacting with residual moisture, nitrogen, oxygen, etc. in the processing vessel, immediately after forming the alkali metal layer, such as silicon oxynitride film such as metal, resin, SiN, etc. It is necessary to protect the alkali metal layer with a protective film.
  • the film forming apparatus stores a protective film material, a third vapor deposition source that heats and vaporizes the stored protective film material, and a built-in process container and the third vapor deposition source.
  • a third blowing mechanism that blows out the protective film material that is connected and vaporized in the third vapor deposition source toward the target object in the processing container may be further included.
  • the apparatus may further include a sputtering apparatus that is built in the processing vessel and that sputters a target made of a protective film material.
  • the mounting table includes a mounting table on which the object to be processed conveyed to the processing container is mounted, and the mounting table is configured to move the processing object mounted in the upward, downward, or vertical direction from the first blowing mechanism side to the second. You may make it slide toward the blowing mechanism side.
  • a roller is provided at both ends of the processing container, and the film wound around the rollers at both ends is moved from the first blowing mechanism side toward the second blowing mechanism side by winding the rollers at both ends. You may make it make it.
  • an exhaust device may be disposed at least on the first blowing mechanism side.
  • a partition may be provided between the first blowing mechanism and the second blowing mechanism.
  • the first vapor deposition source is formed from a plurality of crucibles that store a plurality of organic materials
  • the first blowing mechanism is formed from a plurality of blowing portions connected to the plurality of crucibles. A plurality of organic materials vaporized in this manner are blown out from a plurality of blowing portions provided in the first blowing mechanism, thereby continuously forming an organic layer in which a plurality of organic materials are laminated on the object to be processed. Also good.
  • the alkali metal may be any of lithium, cesium, sodium, potassium, or rubidium.
  • the organic material stored in the first vapor deposition source is heated and vaporized, and the organic vaporized in the first vapor deposition source is obtained.
  • a material is blown into a processing container from a first blowing mechanism connected to the first vapor deposition source, and an organic layer is formed on the object to be processed in the processing container by the blown-out organic material.
  • the alkali metal stored in the second vapor deposition source is heated to vaporize the alkali metal vaporized in the second vapor deposition source from the second blowing mechanism connected to the second vapor deposition source.
  • a film forming method in which a metal layer is immediately formed on the organic layer of the object to be processed in the processing container by the alkali metal blown out and blown out.
  • the metal layer may be formed to a thickness of 0.5 nm to 100 nm. According to this, the said metal layer can be functioned as an electron injection layer and an electrode.
  • the protective film material housed in the third vapor deposition source is heated and vaporized, and the protective film material vaporized in the third vapor deposition source is connected to the third vapor deposition source.
  • a protective film may be immediately formed on the metal layer of the object to be processed in the processing container with the blown-out protective film material blown out from the mechanism into the processing container.
  • a target made of a protective film material is sputtered by a sputtering apparatus built in the processing container, and a protective film is immediately formed on the metal layer of the object to be processed in the processing container by the sputtered protective film material.
  • a film may be formed.
  • the surface of the metal layer is etched by an etching apparatus disposed outside the processing container, a target made of a protective film material is sputtered by a sputtering apparatus disposed outside the processing container, and the sputtered protective film material
  • a protective film may be formed immediately on the metal layer of the object to be processed outside the processing container.
  • the metal layer surface is etched by an etching apparatus disposed outside the processing container, plasma is excited from a protective film material gas by a CVD apparatus disposed outside the processing container, and the processing container is excited by the excited plasma.
  • a protective film may be formed immediately on the metal layer of the object to be processed outside.
  • an organic layer formed on the ITO of the object to be processed, and lithium, cesium, sodium, potassium, or rubidium on the organic layer Provided is an organic EL device comprising a metal layer that functions as an electron injection layer and an electrode by forming any of them in a thickness of 0.5 to 100 nm, and a protective film formed on the metal layer.
  • the alkali metal is retained in the processing container at the interface between the alkali metal layer and the organic layer. It can be prevented from reacting with nitrogen, oxygen, etc. and being deteriorated. As a result, a high-performance organic EL element that maintains a high electron injection efficiency can be manufactured.
  • a processing container that performs a desired process on a target object inside, an organic material is stored, and the stored organic material is heated.
  • a first vapor deposition source to be vaporized, and an organic material which is built in the processing container and connected to the first vapor deposition source and vaporized in the first vapor deposition source is applied to an object to be processed in the processing container.
  • a first blowing mechanism that blows out, a first sputtering device that is built in the processing vessel and that sputters a target made of an alkali metal material, and a target that is built in the processing vessel and is made of a protective film material.
  • a second sputtering apparatus that blows out, a first sputtering device that is built in the processing vessel and that sputters a target made of an alkali metal material, and a target that is built in the processing vessel and is made of a protective film material.
  • an exhaust device may be disposed at least on the first blowing mechanism side.
  • a partition may be provided between the first blowing mechanism and the first sputtering apparatus.
  • the present invention As described above, according to the present invention, deterioration of the metal layer forming the electron injection layer can be prevented, and the electron injection efficiency of the same layer can be increased.
  • FIG. 6 is a schematic configuration diagram of a substrate processing system according to first to fourth embodiments and modifications thereof. It is the figure which showed an example of the manufacturing process of the organic EL element which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 1st Embodiment.
  • FIG. 5 is a diagram showing an organic EL element formed by a six-layer continuous film forming process according to the first to fourth embodiments. It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on the modification of 1st Embodiment. It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 2nd Embodiment.
  • the substrate processing system Sys includes a load lock device LLM (Load Lock Module), a transfer device TM (Transfer Module), a cleaning device (pretreatment chamber) CM (Cleaning Module), a film forming device PM1 (Process Module), It has an etching device PM2, a CVD (Chemical Vapor Deposition) device PM3, and a sputtering device PM4.
  • the film forming apparatus PM1 corresponds to a film forming apparatus that continuously forms an organic layer and an alkali metal layer in the same processing container.
  • the load lock device LLM is a vacuum transfer chamber in which a glass substrate G (hereinafter referred to as a substrate G) transferred from the atmospheric system is held in a reduced pressure state in order to transfer the glass substrate G to the transfer device TM in a reduced pressure state.
  • the transfer device TM is provided with a multi-joint transfer arm Arm that can be bent, stretched and swiveled substantially at the center.
  • the substrate G is first transported from the load lock device LLM to the cleaning device CM using the transport arm Arm.
  • the substrate G is formed with ITO (Indium Tin Oxide) as an anode layer, and contaminants (mainly organic matter) adhering to the surface thereof are removed by the cleaning device CM.
  • ITO Indium Tin Oxide
  • FIG. 2 shows a manufacturing process of the organic EL element.
  • the cleaned substrate G is carried into the film forming apparatus PM1.
  • the film forming apparatus PM1 As shown in FIG. 2B, six organic layers 20 are continuously formed on the ITO surface of the substrate by vapor deposition.
  • the metal layer 30 is immediately formed by vapor deposition.
  • a vaporizer is used to form the metal layer 30.
  • the metal forming the metal layer 30 is preferably an alkali metal having a low work function, and in particular, lithium, cesium, sodium, potassium, or rubidium is preferable.
  • the substrate G is held by the arm Arm of the transfer apparatus TM and transferred to the etching apparatus PM2.
  • the etching apparatus PM2 as shown in FIG. 2D, the surface of the metal layer 30 is soft-etched to remove impurities attached to the surface of the metal layer 30.
  • the substrate G is held by the arm Arm of the transfer apparatus TM and transferred to the sputtering apparatus PM4.
  • the sputtering apparatus PM4 atoms of the protective film material jumped out by sputtering a target made of a protective film material such as aluminum or silver are stacked on the metal layer 30.
  • the protective film 40 is formed on the metal layer 30 as shown in FIG.
  • the metal layer 30 When extracting light from the upper part of the laminated film, it is necessary to transmit the light to the metal layer 30, and thus the metal layer 30 needs to be formed thin. In this case, since the metal layer 30 is a thin film, the soft etching shown in FIG. Therefore, a transparent oxide film such as an ITO film may be formed on the surface of the metal layer 30 so that soft etching may not be performed.
  • a CVD apparatus PM3 may be used instead of the sputtering apparatus PM4. Also in this case, as shown in FIG. 2D, first, the surface of the metal layer 30 is soft-etched to remove impurities attached to the surface of the metal layer 30. Thereafter, the substrate G is transferred to the CVD apparatus PM3. In the CVD apparatus PM3, plasma is excited from the protective film material gas, and the protective film 40 is formed on the metal layer of the substrate G by the excited plasma. This also forms the protective film 40 on the metal layer 30 as shown in FIG.
  • the CVD apparatus PM3 excites gases such as a capacitively coupled (parallel plate) plasma processing apparatus, an inductively coupled (ICP) plasma processing apparatus, an ECR (Electron Cyclotron Resonance), and a microwave plasma processing apparatus. Any apparatus may be used as long as it generates plasma and deposits the substrate G using the generated plasma.
  • gases such as a capacitively coupled (parallel plate) plasma processing apparatus, an inductively coupled (ICP) plasma processing apparatus, an ECR (Electron Cyclotron Resonance), and a microwave plasma processing apparatus. Any apparatus may be used as long as it generates plasma and deposits the substrate G using the generated plasma.
  • the controller 50 includes a ROM 50a, a RAM 50b, a CPU 50c, and an input / output I / F (interface) 50d.
  • ROM 50a and the RAM 50b for example, data for controlling the evaporation rate of the organic material when forming the organic layer 20 or controlling the evaporation rate of the alkali metal when forming the metal layer 30 are stored.
  • a control program is stored.
  • Each device of the substrate processing system Sys is controlled by the controller 50.
  • the CPU 50c generates a drive signal for controlling transport and processes in the substrate processing system Sys using data and control programs stored in the ROM 50a and RAM 50b.
  • the input / output I / F 50d outputs a drive signal generated by the CPU 50c to the substrate processing system Sys, inputs a response signal output from the substrate processing system Sys in response to this, and transmits the response signal to the CPU 50c.
  • FIG. 3 is a longitudinal sectional view schematically showing the film forming apparatus PM1 according to this embodiment.
  • the film forming apparatus PM1 includes a processing container 100, a vapor deposition source 200 as a first vapor deposition source, and a vaporizer 300 as a second vapor deposition source.
  • the processing container 100 is a rectangular parallelepiped, and includes a slidable mounting table 110, six first blowing mechanisms 120a to 120f, one second blowing mechanism 130, a partition 140, and a partition 150.
  • Gate valves 160 a and 160 b that can load and unload the substrate G by opening and closing are provided on the sidewall of the processing container 100.
  • the mounting table 110 electrostatically attracts the substrate G carried from the gate valve 160a by a high voltage applied from a high voltage power source (not shown).
  • the mounting table 110 slides on the rail 110a provided on the ceiling surface from the first blowing mechanism 120a side to the second blowing mechanism 130 side in a state where the substrate G is placed downward in this manner. Move. Thereby, the board
  • the first blowing mechanisms 120a to 120f have the same shape and structure, and are arranged in parallel at equal intervals.
  • the first blowing mechanisms 120a to 120f have a rectangular shape with a hollow interior (buffer space S), and blow out organic material vapor from an opening provided at the upper center thereof.
  • Lower portions of the first blowing mechanisms 120a to 120f are connected to the vapor deposition source 200 via first gas supply pipes 170a to 170f penetrating the bottom wall of the processing vessel 100.
  • a second blowing mechanism 130 is provided a little away from the first blowing mechanism 120f.
  • the lower part of the second blowing mechanism 130 is connected to the vaporizer 300 via a second gas supply pipe 180 that penetrates the bottom wall of the processing container 100.
  • the first gas supply pipes 170a to 170f and the second gas supply pipe 180 are respectively provided with valves V1 and V2 for controlling the supply and disconnection of the organic material and the alkali metal material conveyed to the processing container side and the flow rate.
  • partition walls 140 and 150 that partition the blowing mechanisms are provided. This prevents various organic materials and alkali metal materials blown out from the blowout ports of the adjacent first blowout mechanisms 120a to 120f and the second blowout mechanism 130 from being mixed.
  • the processing vessel 100 is provided with an exhaust port 190a on the first blowing mechanism 120a side.
  • the exhaust device 195a connected to the exhaust port 190a is driven, the organic material residue blown from the first blowing mechanisms 120a to 120f is discharged out of the processing container through the exhaust port 190a.
  • the processing container 100 is provided with an exhaust port 190b on the second blowing mechanism 130 side.
  • the exhaust device 195b connected to the exhaust port 190b is driven, the residual atoms of the alkali metal material vapor blown out from the second blowing mechanism 130 are discharged out of the processing container through the exhaust port 190b.
  • vaporized atoms fly to the inside of the processing container and reach the substrate G while being diffused, and are used for film formation. Even gas atoms once adsorbed on the substrate G may be separated from the substrate G and re-enter the processing container. Thus, in the film formation by vapor deposition, the vaporized atoms have a strong tendency to diffuse in a fairly wide range in the processing container.
  • the evaporation source 200 includes six crucibles 210a to 210f having the same shape and structure. Each of the crucibles 210a to 210f accommodates different organic materials A to F, respectively. Heaters 220a to 220f are embedded in the bottom surfaces of the containers in which the organic materials A to F are stored, respectively. By heating the heaters 220a to 220f, respectively, the crucibles 210a to 210f are heated to a high temperature of about 200 to 500 ° C., thereby controlling the vaporization rate of the organic materials A to F. Vaporization includes not only a phenomenon in which a liquid changes into a gas but also a phenomenon in which a solid changes directly into a gas without passing through a liquid state (that is, sublimation).
  • the crucibles 210a to 210f are provided with gas lines for supplying argon gas Ar.
  • Argon gas supplied from the gas line into the crucible 210f causes the organic material vapors A to F vaporized in the crucibles 210a to 210f to pass through the first blowing mechanisms 120a to 120f via the first gas supply pipes 170a to 170f. It is transported to 120f and discharged into the processing container 100 from the outlets of the first blowing mechanisms 120a to 120f.
  • the vapor deposition source 200 is provided with an exhaust port 230. By driving the exhaust device 240, the inside of the processing container is maintained at a desired degree of vacuum.
  • the first gas supply pipes 170a to 170f through which the argon gas and the organic material vapor are passed are also adjusted to a temperature of 200 ° C. or higher, like the crucible. Accordingly, when the organic material vapor is conveyed by the argon gas, it can be prevented from adhering to the first gas supply pipes 170a to 170f and liquefying. Thereby, the material efficiency at the time of forming the organic layer 20 can be improved.
  • a vaporizer 300 that heats and vaporizes lithium is provided outside the processing vessel 100.
  • an evaporation container Ds1 that can store an alkali metal such as lithium is provided inside the vaporizer 300.
  • a power source Ds2 is connected to the evaporation container Ds1.
  • a desired voltage is applied to the power source Ds2 based on the drive signal output from the controller 50, and a predetermined current flows through the evaporation container Ds1.
  • the evaporation container Ds1 is heated and maintained at a desired temperature. In this way, the evaporation amount of lithium stored in the evaporation container Ds1 is adjusted.
  • the material stored in the evaporation container Ds1 may be lithium, sodium, potassium, rubidium, cesium, or the like as long as it is an alkali metal material having a low work function.
  • the vaporizer 300 is connected to the vacuum pump 310 via an opening adjustable valve V3.
  • the inside of the vaporizer 300 is controlled to a desired vacuum pressure by adjusting the opening of the valve V3 based on the drive signal output from the controller 50.
  • the vaporizer 300 is connected to an argon gas supply source 320 via a mass flow controller MFC that adjusts the flow rate of gas and a valve V4.
  • the supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V4 based on the drive signal output from the controller 50.
  • the device for blowing out the alkali metal from the second blowing mechanism 130 is not limited to the vaporizer 300, and a mechanism for directly evaporating and blowing out the alkali metal alone may be used.
  • the second gas supply pipe 180 and the vaporizer 300 that allow argon gas and organic material vapor to pass through are adjusted to a temperature of 200 ° C. or higher. Accordingly, the evaporation rate of lithium can be controlled, and when lithium is transported by argon gas, it can be prevented from adhering to the second gas supply pipe 180 and liquefying. Thereby, the material efficiency at the time of forming the metal layer 30 can be improved.
  • a vapor deposition source having the same configuration as that of the crucible used to form the organic layer 20 may be used. It may be a vessel.
  • the organic layer 20 is formed by the organic material vapor blown from the first blowing mechanisms 120a to 120f, and then the organic material vapor blown from the second blowing mechanism 130. Thus, the organic layer 20 is continuously formed.
  • the organic material vapor blown from the first blowing mechanism 120a travels at a certain speed above the blowing mechanism 120a.
  • the organic material vapor A blown out from the first blowing mechanism 120a is deposited on the substrate G as shown in FIG. A hole injection layer is formed.
  • the organic material vapors B to F blown from the first blowing mechanisms 120b to 120f are deposited on the substrate G, respectively.
  • organic layers second layer to sixth layer
  • the lithium released from the second blowing mechanism 130 is deposited on the substrate G, whereby the metal layer 30 is formed.
  • Alkali metals such as lithium and cesium are preferable as materials for forming the electron injection layer of the organic EL element because of their small work functions.
  • alkali metals are highly active species, they easily react with moisture, nitrogen, oxygen, etc. remaining in the processing chamber in a high vacuum state. Therefore, when the metal layer 30 is formed on the surface of the organic layer 20 that is the base of the metal layer 30 in a state where such impurities are present, an alkali is formed at the interface between the organic layer 20 and the metal layer 30.
  • the metal and the impurities adhering to the organic layer react with each other to cause deterioration in the metal layer 30 such as an insulator of lithium oxide (Li 2 O). For this reason, conventionally, taking into account that an alkali metal such as lithium changes to an insulator, a method of forming a very thin lithium film has been employed. However, even in this case, when the lithium film is formed very thin, the in-plane uniformity of the film is deteriorated and the performance of the organic EL element varies.
  • the film forming apparatus PM1 it is not necessary to transfer the substrate to another chamber after the organic layer 20 is formed and before the metal layer 30 is formed. Therefore, the probability that impurities are deposited on the organic layer is very low. Therefore, the probability that the metal layer 30 immediately formed on the organic layer in the same processing container reacts with impurities at the interface of the organic layer 20 to become an insulator is very low. As a result, the electron injection efficiency of the metal layer 30 can be increased, and the photoelectric conversion efficiency of the organic layer 20 can be increased.
  • the metal layer 30 can be formed to a thickness of 0.5 nm to 100 nm, and the film thickness can be controlled. By forming the metal layer 30 to a certain thickness, the in-plane uniformity of the metal layer 30 can be improved, and variations in the performance of the organic EL element can be suppressed.
  • the metal layer 30 is formed to a thickness of about 50 nm to 100 nm, for example, so that the metal layer 30 can function as an electron injection layer and an electrode (cathode). it can.
  • the damage can be absorbed by the metal layer 30 with respect to sputtering of the protective film in the subsequent process, and damage to the organic layer 20 due to sputtering can be reduced. Can do.
  • the substrate G is transferred to the etching apparatus PM2 of FIG. 1, and the surface of the metal layer 30 that is easily reacted is soft-etched to clean the surface (see FIG. 2D). Thereafter, the substrate is immediately transported to the sputtering apparatus PM4, and argon gas ions are collided with a sputtering material formed from aluminum Al or silver Ag, thereby sputtering sputtering atoms Ag. The sputtered sputtering atoms Ag are deposited on the metal layer 30. Thereby, the protective film 40 shown in FIG. 2E is formed. The protective film 40 prevents oxidation of the highly activated species metal layer 30.
  • the metal layer 30 When extracting light from the upper part of the laminated film, it is necessary to transmit the light to the metal layer 30, and thus the metal layer 30 needs to be formed thin. In this case, since the metal layer 30 is a thin film, the soft etching shown in FIG. Therefore, a transparent oxide film such as an ITO film may be formed on the surface of the metal layer 30 so that soft etching may not be performed.
  • the protective film 40 may be made of a resin other than silver or aluminum as long as it can protect the alkali metal layer 30 which is a highly activated species.
  • a resin is used for the protective film 40, a film formation method by sputtering cannot be used, so a film formation method by vapor deposition or CVD is used.
  • the protective film 40 In the case of an organic EL element that emits light from the ITO side, it is preferable to use silver or aluminum with high light reflectivity as the protective film 40. Further, since the light is transmitted if the protective film 40 is thin, the protective film 40 needs to have a certain thickness in order to emit light from the ITO side. In this case, the protective film 40 cannot be made of a resin that does not reflect light.
  • the protective film 40 in the case of an organic EL element that extracts light from the side opposite to the ITO side (protective film side), it is better to form a thin film of silver or aluminum as the protective film 40 so that light can be easily transmitted. In this case, any resin that does not easily absorb light and easily transmits light can be used for the protective film 40.
  • the thickness ratio between the metal layer 30 such as lithium and the protective film 40 such as aluminum or silver the light transmittance and the light reflectance for the metal layer 30 and the protective film 40 are optimized. can do.
  • the organic layer 20 is formed by depositing the material vapor of the organic material blown from the first blowing mechanisms 120a to 120f on the substrate G. Immediately thereafter, vaporized atoms of alkali metal blown out from the second blowing mechanism 130 in the same space are deposited on the substrate G, whereby the metal layer 30 is formed. According to this, after the organic layer 20 is formed, the metal layer 30 can be formed in the same chamber without transporting the substrate G toward another processing apparatus.
  • the metal layer 30 can be made thicker than before.
  • the metal layer 30 can be formed to a thickness of 0.5 nm to 100 nm.
  • the metal layer 30 can function not only as an electron injection layer but also as a cathode of an organic EL element.
  • the variation in the performance of the organic EL element can be suppressed.
  • the mounting table 110 is installed on the bottom surface of the processing container 100 as shown in FIG.
  • the mounting table 110 mounts the substrate G loaded from the gate valve 160a in an upward state. If gas transport film formation is possible, the film formation substrate may be not only upward (face-up) but also downward (face-down) or vertical (side).
  • the mounting table 110 slides on a rail 110a provided on the bottom surface of the processing container from the first blowing mechanism 120a side to the second blowing mechanism 130 side.
  • substrate G moves in parallel in the slightly upper direction of each blowing outlet in order of the 1st blowing mechanism 120a, 120b, 120c, 120d, 120e, 120f, and the 2nd blowing mechanism 130.
  • the organic layer 20 and the metal layer 30 are continuously formed in the same processing container 100.
  • the film forming process is executed in a state where the substrate G is placed upward. Therefore, even in the case of a large substrate, the substrate G can be easily transported without warping. Further, the in-plane uniformity of the film formed on the substrate can be improved.
  • the deposition of the organic layer 20, the deposition of the metal layer 30, and the deposition of the protective film 40 are continuously performed inside the processing vessel 100. Processed. Therefore, in the film forming apparatus PM1 according to the present embodiment, the vapor deposition source 200 (first vapor deposition source) and the first vapor deposition apparatus provided for depositing the organic layer 20 in the film forming apparatus PM1 according to the first embodiment. In addition to the first blowing mechanism 120a to 120f, the vaporizer 300 (second vapor deposition source) and the second blowing mechanism 130 provided for vapor deposition of the metal layer 30, a sputtering apparatus 400 described below performs processing. It is installed inside the container.
  • the sputtering apparatus 400 is provided next to the second blowing mechanism 130 inside the processing container 100.
  • a partition wall 410 is provided between the second blowing mechanism 130 and the sputtering apparatus 400. Is provided.
  • the sputtering apparatus 400 excites argon gas to generate plasma, sputters a silver target with argon ions, and knocks out silver atoms.
  • the struck silver is deposited on the substrate, whereby the protective film 40 is formed.
  • the sputtering apparatus 400 includes target materials 420a and 420b, backing plates 430a and 430b, target holders 440a and 440b, magnetic field generation means 450a and 450b, and a gas shower head 460.
  • the pair of target materials 420a and 420b are arranged to face each other so that the sputtering surfaces are parallel.
  • the target materials 420a and 420b are preferably silver or aluminum having a low electrical resistance and a high light reflectance as a protective film material.
  • the target materials 420a and 420b are made of silver.
  • the pair of target materials 420a and 420b are held by the target holders 440a and 440b via the backing plates 430a and 430b.
  • the magnetic field generation means 450a and 450b are magnets in this embodiment, and are arranged so that an S-pole magnet is positioned on the target material 420a and an N-pole magnet is positioned on the target 420b on the back surface of each target material 420a and 420b. Yes.
  • a magnetic field perpendicular to each of the target materials 420a and 420b is generated in the facing space of the target materials 420a and 420b so as to surround the space.
  • the argon gas output from the argon gas supply source 320 is supplied from the gas shower head 460 into the processing container.
  • the supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V5 based on the drive signal output from the controller 50.
  • DC power supply 470 applies a desired DC voltage (DC constant power) based on the drive signal output from controller 50 shown in FIG. 1, with each target material 420a, 420b as a cathode and backing plate 430b as an anode. Thereby, plasma is generated in the facing space between the target materials 420a and 420b.
  • the type of power is not limited to DC constant power, and may be AC power, RF power, MF power, pulsed DC power, or the like, or superimposed power thereof.
  • the DC power source 470 is an example of an energy source that supplies desired energy into the processing container 100.
  • An exhaust port 480 and an exhaust device 490 connected to the exhaust port 480 are provided in the vicinity of the sputtering device 400. By driving the exhaust device 490, the remaining target atoms in the processing chamber are exhausted to the outside. .
  • the internal pressure of the processing container 100 greatly affects each film formation.
  • the pressure in the processing container during vapor deposition is preferably about 10 ⁇ 2 Pa.
  • the organic layer 20 and the metal layer 30 are delicate films, and the environment during film formation greatly affects the film quality.
  • the organic layer 20 film reacts with moisture and the like, and dark spots or the like are generated in the film to deteriorate the photoelectric conversion efficiency, The life of the EL element is deteriorated.
  • the metal layer 30 since a highly active metal such as lithium is used for the metal layer 30, the metal layer 30 reacts with oxygen or the like to become an insulator when the pressure in the processing container is high and a large amount of impurities are present, and the electron injection efficiency is increased. Gets worse. For this reason, it is not a good idea to deposit the organic layer 20 and the metal layer 30 in a state where the pressure in the processing container is lower than 10 ⁇ 2 Pa.
  • the film forming apparatus PM1 it is possible to form the high-quality organic layer 20 and the metal layer 30 while preventing the oxidation and nitridation of the organic material and the alkali metal material.
  • the argon gas can be ignited by plasma in the sputtering apparatus 400 provided in the same processing chamber, and sputtering atoms Ag are knocked out by the ions of the argon gas, and as shown in FIG.
  • the protective film 40 can be formed in the same chamber.
  • the metal layer 30 is placed in the processing container. It can be oxidized by reacting with impurities, and can be converted into an insulator to prevent deterioration of the film. In this manner, by forming the protective film 40 in the same chamber before the highly activated species metal layer 30 is oxidized, a high-performance organic EL element with high electron injection efficiency can be manufactured. .
  • the soft etching process ((d) in FIG. 2) performed as the pretreatment for sputtering in the first embodiment is not necessary. Thereby, throughput can be increased and productivity can be improved.
  • sputtering can be performed at a low vacuum of about 10 ⁇ 2 to 10 ⁇ 3 Pa, which is lower than conventional. For this reason, exhaust efficiency becomes high and the time concerning conveyance and processing of substrate G can be shortened conventionally. This can also increase the throughput and improve the productivity.
  • the substrate processing system Sys according to the third embodiment is the same as that of the first embodiment, and the organic EL element is manufactured in the cluster type substrate processing system Sys shown in FIG.
  • the vapor deposition of the organic layer 20, the vapor deposition of the metal layer 30, and the vapor deposition of the protective film 40 are continuously performed inside the processing vessel 100.
  • the vapor deposition source 200 (first vapor deposition source) and the first vapor deposition apparatus provided for depositing the organic layer 20 in the film formation apparatus PM1 according to the second embodiment.
  • a vaporizer 300 (second vapor deposition source) and the second blowing mechanism 130 provided for vapor deposition of the metal layer 30, a vaporizer 500 (first 3) and a third blowing mechanism 510 are installed inside the processing vessel.
  • a vaporizer 500 for vaporizing silver or aluminum is provided in addition to the vaporizer 300 for heating and vaporizing lithium.
  • the vaporizer 500 is connected to a vacuum pump 520 via an opening adjustable valve V6.
  • the inside of the vaporizer 500 is controlled to a desired vacuum pressure by adjusting the opening of the valve V6 based on the drive signal output from the controller 50.
  • the vaporizer 500 is connected to an argon gas supply source 320 via a mass flow controller MFC for adjusting the gas flow rate and a valve V7.
  • the supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V7 based on the drive signal output from the controller 50.
  • the vaporizer 500 and the third blowing mechanism 510 are connected by a third gas supply pipe 530.
  • the third gas supply pipe 530 is provided with a valve V8 that controls the supply and disconnection of the protective film material conveyed to the processing container side and the flow rate.
  • the aluminum or silver evaporated in the vaporizer 500 passes through the passage in the third gas supply pipe 520 to the inside of the processing container using a predetermined amount of argon gas fed into the vaporizer 500 as a carrier gas. Be transported.
  • a partition wall 540 is provided between the second blowing mechanism 130 and the third blowing mechanism 510. Further, an exhaust port 550 is provided on the third blowing mechanism 510 side of the processing container 100. The exhaust port 550 is connected to the exhaust device 560. When the exhaust device 560 is driven, residual silver atoms blown out from the third blowing mechanism 510 are discharged out of the processing container through the exhaust port 550.
  • an evaporation source having the same configuration as that of the crucible used for forming the organic layer 20 may be used.
  • the protective film material gas is a metal material, care must be taken such that it does not become an alloy.
  • the organic material vapors A to F blown from the first blowing mechanisms 120b to 120f
  • organic layers first to sixth layers
  • the lithium released from the second blowing mechanism 130 is deposited on the substrate G, whereby the metal layer 30 is formed.
  • the silver released from the third blowing mechanism 510 is deposited on the substrate G, whereby the protective film 40 is formed.
  • the protective film 40 is immediately formed on the metal layer 30 by the silver blown out from the third blowing mechanism 510 provided in the same processing chamber. Be filmed.
  • the metal layer 30 is placed in the processing container. It can be oxidized by reacting with impurities, and can be converted into an insulator to prevent deterioration of the film. In this manner, by forming the protective film 40 in the same chamber before the highly activated species metal layer 30 is oxidized, a high-performance organic EL element with high electron injection efficiency can be manufactured. .
  • the soft etching step ((d) in FIG. 2) performed as the pretreatment for sputtering in the first embodiment is not necessary. Thereby, throughput can be increased and productivity can be improved.
  • the substrate G is mounted on the mounting table 110, and the mounting table 110 is slid using the rail 110a.
  • the film was continuously formed.
  • rollers 610 and 620 are installed at both ends of the processing container as shown in FIG. By winding the rollers 610 and 620, the film Flm wound around the rollers 610 and 620 at both ends is passed through the second blowing mechanism 130 from the first blowing mechanisms 120a to 120f side through the third blowing mechanism 510.
  • the organic materials A to F, lithium, and silver are blown out from the first blowing mechanism 120a to 120f, the second blowing mechanism 130, and the third blowing mechanism 510, respectively, and sequentially deposited on the film Flm.
  • the organic layer 20, the metal layer 30, and the protective film 40 can be continuously formed on the film Flm in the same space in the processing container.
  • the deterioration during the film-forming of the organic layer 20 and the metal layer 30 that react sensitively to the atmosphere during the film-forming can be prevented.
  • the organic layer 20 is vapor-deposited, the organic material vapor vaporized by the vapor deposition source 200 is blown out from the first blowing mechanisms 120a to 120f toward the substrate, whereby the organic layer 20 is continuously formed into six layers.
  • the membrane is executed.
  • the processing vessel 100 has a built-in sputtering apparatus 401 for forming the metal layer 30 next to the first blowing mechanism 120f. Further, a sputtering apparatus 402 is built in next to the sputtering apparatus 401 to form the protective film 40. Since the main internal configurations of the sputtering apparatus 401 and the sputtering apparatus 402 are the same as those of the sputtering apparatus 400 described in the second embodiment, description thereof is omitted here. Note that the sputtering apparatus 401 corresponds to a first sputtering apparatus, and the sputtering apparatus 402 corresponds to a second sputtering apparatus.
  • the substrate moves to a position below the sputtering apparatus 401, where the metal layer 30 having a high work function is formed.
  • the sputtering apparatus 401 forms a metal layer 30 by stacking the struck magnesium Mg on the substrate by sputtering a target made of, for example, magnesium Mg.
  • the substrate moves below the sputtering apparatus 402 and forms the protective film 40 that functions as a cathode.
  • the sputtering apparatus 402 forms a protective film 40 by sputtering a target made of, for example, silver Ag to stack the struck silver Ag atoms on the substrate.
  • Aluminum Al may be used for the protective film 40.
  • an alkaline dispenser may be used in place of the sputtering apparatuses 401 and 402.
  • a sealing film made of a silicon oxide film SiO 2 , a silicon nitride film SiN, or the like is formed on the protective film 40, thereby manufacturing an organic EL element.
  • an exhaust device 195b is disposed on the first blowing mechanism 120f side, and the organic material vapor blown mainly from the first blowing mechanisms 120a to 120f is exhausted, and the organic material vapor is sputtered. Jumping into the device 401 is prevented.
  • the partition wall 410 between the first blowing mechanism 120 f and the sputtering apparatus 401 prevents the organic material vapor from flying into the sputtering apparatus 401.
  • these structures also prevent sputtered atoms from flying to the organic film forming side.
  • the organic layer 20, the metal layer 30, and the protective film 40 can be formed while preventing oxidation and nitridation of organic materials and alkali metal materials.
  • by arranging the sputtering devices 401 and 402 side by side it is possible to continuously perform film formation under different conditions, different device structures, and sputter film formation of different materials. effective.
  • two sputtering apparatuses are arranged, but three or more sputtering apparatuses may be arranged.
  • a high-performance organic EL device can be stably manufactured without oxidizing an alkali metal that is easily activated.
  • the operations of the respective units are related to each other, and can be replaced as a series of operations in consideration of the relationship between each other. And by replacing in this way, the embodiment of the film forming apparatus for manufacturing the organic EL element is manufactured using the embodiment of the film forming method for manufacturing the organic EL element and the film forming apparatus. It can be set as the embodiment of the made organic EL element.
  • the alkali metal is vaporized to form a film.
  • the alkali metal since the alkali metal has a low melting point, it can be continuously supplied as a liquid. Therefore, in this case, there is a feature that the film can be formed while continuously supplying the alkali metal in a liquid state using a dedicated container instead of the vaporizer.
  • continuous supply of materials is difficult with the vaporizer. For this reason, in order to continuously supply the material by the vaporizer, it is necessary to devise such as preparing a plurality of vaporizers and switching the vaporizers for use.
  • the alkali metal material used in the present invention can be used alone or as a compound. However, in the case of using a compound, it is necessary to enclose a getter material in the vaporizer so that materials other than the metal vapor necessary for forming the film do not enter the film.
  • the processing container 100 and the vapor deposition source 200 of the film forming apparatus are provided separately, but the vapor deposition source of each organic material may be built in one processing container.
  • the object to be processed may be a substrate of 730 mm ⁇ 920 mm or more, or a silicon wafer of 200 mm or 300 mm or more.
  • the organic layer and the work function vapor deposition layer may be formed while the material vapors are mixed with each other.
  • the organic material vapor remaining from the first blowing mechanism 120 a side may fly to the second blowing mechanism 130 side and be mixed into the metal layer 30.
  • lithium may be allowed to fly to the first blowing mechanism 120a to 120f side and mixed into the organic layer 20.

Abstract

In order to prevent the deterioration of a metallic layer that forms the electron-injecting layer of an organic EL element, a film forming device (PM1) is equipped with a processing container (100) that carries out desired processes upon a substrate therewithin; a vapor deposition source (200) (a first vapor deposition source) that stores organic materials, and that heats and vaporizes the stored organic materials; first spray mechanisms (120a-120f) that are contained within the processing container (100) and connected to the vapor deposition source (200), and that sprays the organic materials vaporized in the vapor deposition source (200) towards the substrate (G) in the processing container; a vaporizer (300) (a second vapor deposition source) that stores an alkali metal such as lithium, and that heats and vaporizes the stored alkali metal; and a second spray mechanism (130) that is contained within the processing container (100) and connected to the vaporizer (300), and that sprays the alkali metal vaporized in the vaporizing device (300) towards the substrate (G) in the processing container.

Description

成膜装置、成膜方法及び有機EL素子Film forming apparatus, film forming method, and organic EL element
 本発明は、成膜装置、成膜方法及び有機EL素子に関し、より詳しくは、有機EL素子に含まれる膜構造及びその膜構造を形成するための成膜装置及び成膜方法に関する。 The present invention relates to a film forming apparatus, a film forming method, and an organic EL element, and more particularly to a film structure included in the organic EL element and a film forming apparatus and a film forming method for forming the film structure.
 近年、有機化合物を用いて発光させる有機EL(Organic Electroluminescence)素子を利用した有機ELディスプレイが注目されている。この有機EL素子は、自発光し、反応速度が速く、消費電力が低い等の特徴を有している。このため、液晶ディスプレイに比べて映像が大変美しいだけでなく、バックライトを必要とせず、薄型が可能で、特に携帯型機器の表示部への応用等が期待されている。 In recent years, an organic EL display using an organic EL (Organic Electroluminescence) element that emits light using an organic compound has attracted attention. This organic EL element has features such as self-emission, fast reaction speed, and low power consumption. For this reason, the image is not only very beautiful as compared with a liquid crystal display, but also requires no backlight, can be thinned, and is particularly expected to be applied to a display unit of a portable device.
 有機EL素子は、ガラス基板上に形成され、有機層を陽極層(アノード)および陰極層(カソード)にてサンドイッチした構造を有している。この有機EL素子に外部から数Vの電圧を印加して電流を流すと、陰極側から有機層に電子が注入され、陽極側から有機層にホールが注入される。電子とホールの注入により有機材料蒸気は励起状態になるが、電子とホールが再結合して励起された有機材料蒸気が元の基底状態に戻るときその余分なエネルギーが光として放出される。 The organic EL element is formed on a glass substrate and has a structure in which an organic layer is sandwiched between an anode layer (anode) and a cathode layer (cathode). When a voltage of several volts is applied to the organic EL element from the outside to pass a current, electrons are injected from the cathode side into the organic layer and holes are injected from the anode side into the organic layer. The injection of electrons and holes causes the organic material vapor to be in an excited state. However, when the excited organic material vapor returns to the original ground state due to recombination of electrons and holes, the excess energy is released as light.
 電子を有機層に注入する際、電子注入障壁を低下させて陰極側から有機層に効率よく電子を注入することができれば、高性能な有機EL素子を製造することができる。このため、有機層と陰極との界面に仕事関数が低いアルカリ金属などの材料からなる電子注入層を形成することが一般的に行われている(たとえば、非特許文献1を参照。)。 When injecting electrons into the organic layer, a high-performance organic EL device can be manufactured if the electron injection barrier is lowered and electrons can be efficiently injected into the organic layer from the cathode side. For this reason, an electron injection layer made of a material such as an alkali metal having a low work function is generally formed at the interface between the organic layer and the cathode (see, for example, Non-Patent Document 1).
 非特許文献1では、各陰極とエミッタ層との間に金属をドープした有機層を形成することが開示されている。ドーパントメタルとしては、たとえば、リチウム(Li)やストロンチウム(Sr)やサマリウム(Sm)が一例として挙げられている。 Non-Patent Document 1 discloses forming an organic layer doped with a metal between each cathode and the emitter layer. Examples of the dopant metal include lithium (Li), strontium (Sr), and samarium (Sm).
 アルカリ金属は、仕事関数が小さいので電子注入層を形成する材料として好ましい。しかしながら、一方でアルカリ金属は高活性種であるため、高真空状態にある処理室内であっても室内に残留している水分、窒素、酸素などと容易に反応してしまう。よって、電子注入層の下地となる有機層の表面にこのような不純物が存在する状態で電子注入層を成膜すると、その界面でリチウム等の金属と不純物とが反応し、たとえば、酸化リチウム(LiO)の絶縁物となる等、膜に劣化が生じていた。このため、従来は、リチウム等の金属が酸化リチウム等の絶縁物に変化することを考慮して、リチウムの膜をごく薄く成膜する方法がとられていた。ただし、これによっても、リチウムの膜をごく薄く成膜すると膜の面内均一性が悪くなり、有機EL素子の性能のバラツキが生じる等の課題を残していた。 Alkali metal is preferable as a material for forming the electron injection layer because it has a small work function. However, on the other hand, since alkali metals are highly active species, they easily react with moisture, nitrogen, oxygen, etc. remaining in the processing chamber in a high vacuum state. Therefore, when the electron injection layer is formed in a state where such an impurity exists on the surface of the organic layer that is the base of the electron injection layer, a metal such as lithium reacts with the impurity at the interface, for example, lithium oxide ( The film was deteriorated, such as being an insulator of Li 2 O). For this reason, conventionally, taking into consideration that a metal such as lithium is changed to an insulator such as lithium oxide, a method of forming a very thin lithium film has been employed. However, even in this case, when the lithium film is formed very thin, the in-plane uniformity of the film is deteriorated and the performance of the organic EL element varies.
 そこで、上記問題を解消するために、本発明は、電子注入層を形成する金属層の劣化を防ぎ、同層の電子注入効率を高めた成膜装置、成膜方法及び有機EL素子を提供する。 In order to solve the above problem, the present invention provides a film forming apparatus, a film forming method, and an organic EL element that prevent deterioration of the metal layer forming the electron injection layer and increase the electron injection efficiency of the same layer. .
 すなわち、上記課題を解決するために、本発明のある態様によれば、内部にて被処理体上に所望の処理を施す処理容器と、有機材料を収納し、収納された有機材料を加熱して気化させる第1の蒸着源と、前記処理容器に内蔵されるとともに前記第1の蒸着源に連結され、前記第1の蒸着源にて気化された有機材料を前記処理容器内の被処理体に向けて吹き出す第1の吹き出し機構と、アルカリ金属を収納し、収納されたアルカリ金属を加熱して気化させる第2の蒸着源と、前記処理容器に内蔵されるとともに前記第2の蒸着源に連結され、前記第2の蒸着源にて気化されたアルカリ金属を前記処理容器内の被処理体に向けて吹き出す第2の吹き出し機構と、を有する成膜装置が提供される。 That is, in order to solve the above-described problems, according to an aspect of the present invention, a processing container that performs a desired process on a target object and an organic material are stored therein, and the stored organic material is heated. A first vapor deposition source to be vaporized, and an object to be processed in the processing container that is incorporated in the processing container and connected to the first vapor deposition source and vaporized in the first vapor deposition source. A first blow-out mechanism that blows out toward the substrate, a second vapor deposition source that contains alkali metal, heats and vaporizes the contained alkali metal, and is incorporated in the processing vessel and is included in the second vapor deposition source. There is provided a film forming apparatus having a second blowing mechanism that is connected and blows out the alkali metal vaporized in the second vapor deposition source toward an object to be processed in the processing container.
 これによれば、第1の蒸着源にて気化された有機材料を処理容器内の被処理体に向けて吹き出す第1の吹き出し機構と、第2の蒸着源にて気化されたアルカリ金属を前記処理容器内の被処理体に向けて吹き出す第2の吹き出し機構と、を有する。これによれば、有機材料の材料蒸気を吹き出す第1の吹き出し機構とアルカリ金属の気化原子を吹き出す第2の吹き出し機構とが一つの処理容器内に配設される。これによれば、有機層の成膜後、被処理体を他の処理装置に向けて搬送することなく、同一チャンバ内でアルカリ金属層を成膜できる。これにより、有機層の表面に水分、窒素、酸素等の不純物が付着することを避けることができる。これにより、アルカリ金属層が有機層の表面に付着した不純物と反応して酸化し、絶縁物となる等の膜の劣化を防止することができる。この結果、電子注入効率を高くすることができ、高性能な有機EL素子を製造することができる。 According to this, the 1st blowing mechanism which blows off the organic material vaporized by the 1st vapor deposition source toward the to-be-processed object in a processing container, and the alkali metal vaporized by the 2nd vapor deposition source are mentioned above. And a second blowing mechanism that blows out toward the object to be processed in the processing container. According to this, the 1st blowing mechanism which blows off the material vapor | steam of an organic material, and the 2nd blowing mechanism which blows off the vapor atom of an alkali metal are arrange | positioned in one processing container. According to this, after forming the organic layer, the alkali metal layer can be formed in the same chamber without transporting the object to be processed to another processing apparatus. Thereby, it can avoid that impurities, such as a water | moisture content, nitrogen, and oxygen, adhere to the surface of an organic layer. Thereby, it is possible to prevent deterioration of the film such that the alkali metal layer reacts with the impurities attached to the surface of the organic layer and is oxidized to become an insulator. As a result, the electron injection efficiency can be increased, and a high-performance organic EL element can be manufactured.
 また、上述したようにアルカリ金属層の劣化を防ぐことができるので、従来に比べて膜を厚く成膜することができる。たとえば、アルカリ金属層を0.5nm~100nmの厚さに成膜することができる。アルカリ金属層をある程度厚く成膜することにより、有機EL素子の性能のバラツキを抑制することができる。また、アルカリ金属層にある程度の厚みを設けることにより、アルカリ金属層を電子注入層として機能させるだけでなく、有機EL素子の陰極としても機能させることができる。 Further, as described above, since the alkali metal layer can be prevented from being deteriorated, the film can be formed thicker than the conventional one. For example, the alkali metal layer can be formed to a thickness of 0.5 nm to 100 nm. By forming the alkali metal layer to be thick to some extent, variations in the performance of the organic EL element can be suppressed. Further, by providing a certain thickness to the alkali metal layer, the alkali metal layer can function not only as an electron injection layer but also as a cathode of an organic EL element.
 ただし、活性なアルカリ金属層が、処理容器内の残留水分、窒素、酸素等と反応することを防ぐために、アルカリ金属層を成膜後、直ちに金属や樹脂やSiN等のシリコン酸化窒化膜等の保護膜にてアルカリ金属層を保護する必要がある。 However, in order to prevent the active alkali metal layer from reacting with residual moisture, nitrogen, oxygen, etc. in the processing vessel, immediately after forming the alkali metal layer, such as silicon oxynitride film such as metal, resin, SiN, etc. It is necessary to protect the alkali metal layer with a protective film.
 そこで、成膜装置は、保護膜用材料を収納し、収納された保護膜用材料を加熱して気化させる第3の蒸着源と、前記処理容器に内蔵されるとともに前記第3の蒸着源に連結され、前記第3の蒸着源にて気化された保護膜用材料を前記処理容器内の被処理体に向けて吹き出す第3の吹き出し機構と、をさらに有していてもよい。 Therefore, the film forming apparatus stores a protective film material, a third vapor deposition source that heats and vaporizes the stored protective film material, and a built-in process container and the third vapor deposition source. A third blowing mechanism that blows out the protective film material that is connected and vaporized in the third vapor deposition source toward the target object in the processing container may be further included.
 前記処理容器に内蔵され、保護膜用材料からなるターゲットをスパッタするスパッタ装置をさらに有していてもよい。 The apparatus may further include a sputtering apparatus that is built in the processing vessel and that sputters a target made of a protective film material.
 前記処理容器に搬送された被処理体を載置する載置台を備え、前記載置台は、上向き又は下向き又は縦向きに載置された被処理体を前記第1の吹き出し機構側から前記第2の吹き出し機構側へ向けて摺動するようにしてもよい。 The mounting table includes a mounting table on which the object to be processed conveyed to the processing container is mounted, and the mounting table is configured to move the processing object mounted in the upward, downward, or vertical direction from the first blowing mechanism side to the second. You may make it slide toward the blowing mechanism side.
 前記処理容器の両端にローラを備え、前記両端のローラを巻回することにより、前記両端のローラに巻き付けられたフィルムを前記第1の吹き出し機構側から前記第2の吹き出し機構側へ向けて移動させるようにしてもよい。 A roller is provided at both ends of the processing container, and the film wound around the rollers at both ends is moved from the first blowing mechanism side toward the second blowing mechanism side by winding the rollers at both ends. You may make it make it.
 前記処理容器には、少なくとも前記第1の吹き出し機構側に排気装置が配設されていてもよい。 In the processing container, an exhaust device may be disposed at least on the first blowing mechanism side.
 前記第1の吹き出し機構と前記第2の吹き出し機構との間には、隔壁が設けられていてもよい。 A partition may be provided between the first blowing mechanism and the second blowing mechanism.
 前記第1の蒸着源は、複数の有機材料を収納する複数のるつぼから形成され、前記第1の吹き出し機構は、複数のるつぼに連結された複数の吹き出し部から形成され、前記複数のるつぼにて気化された複数の有機材料を前記第1の吹き出し機構に設けられた複数の吹き出し部からそれぞれ吹き出すことにより、被処理体上に複数の有機材料を積層させた有機層を連続成膜してもよい。 The first vapor deposition source is formed from a plurality of crucibles that store a plurality of organic materials, and the first blowing mechanism is formed from a plurality of blowing portions connected to the plurality of crucibles. A plurality of organic materials vaporized in this manner are blown out from a plurality of blowing portions provided in the first blowing mechanism, thereby continuously forming an organic layer in which a plurality of organic materials are laminated on the object to be processed. Also good.
 前記アルカリ金属は、リチウム、セシウム、ナトリウム、カリウム又はルビシウムのいずれかであってもよい。 The alkali metal may be any of lithium, cesium, sodium, potassium, or rubidium.
 また、上記課題を解決するために、本発明の他の態様によれば、第1の蒸着源に収納された有機材料を加熱して気化させ、前記第1の蒸着源にて気化された有機材料を前記第1の蒸着源に連結された第1の吹き出し機構から処理容器内に吹き出し、前記吹き出された有機材料により、前記処理容器内にて被処理体に有機層を成膜し、第2の蒸着源に収納されたアルカリ金属を加熱して気化させ、前記第2の蒸着源にて気化されたアルカリ金属を前記第2の蒸着源に連結された第2の吹き出し機構から前記処理容器内に吹き出し、前記吹き出されたアルカリ金属により、前記処理容器内にて被処理体の有機層上に直ちに金属層を成膜する成膜方法が提供される。 In order to solve the above problem, according to another aspect of the present invention, the organic material stored in the first vapor deposition source is heated and vaporized, and the organic vaporized in the first vapor deposition source is obtained. A material is blown into a processing container from a first blowing mechanism connected to the first vapor deposition source, and an organic layer is formed on the object to be processed in the processing container by the blown-out organic material. The alkali metal stored in the second vapor deposition source is heated to vaporize the alkali metal vaporized in the second vapor deposition source from the second blowing mechanism connected to the second vapor deposition source. There is provided a film forming method in which a metal layer is immediately formed on the organic layer of the object to be processed in the processing container by the alkali metal blown out and blown out.
 このとき、前記金属層を0.5nm~100nmの厚さに成膜してもよい。これによれば、前記金属層を電子注入層及び電極として機能させることができる。 At this time, the metal layer may be formed to a thickness of 0.5 nm to 100 nm. According to this, the said metal layer can be functioned as an electron injection layer and an electrode.
 第3の蒸着源に収納された保護膜用材料を加熱して気化させ、前記第3の蒸着源にて気化された保護膜用材料を前記第3の蒸着源に連結された第3の吹き出し機構から処理容器内に吹き出し、前記吹き出された保護膜用材料により、前記処理容器内にて被処理体の金属層上に直ちに保護膜を成膜してもよい。 The protective film material housed in the third vapor deposition source is heated and vaporized, and the protective film material vaporized in the third vapor deposition source is connected to the third vapor deposition source. A protective film may be immediately formed on the metal layer of the object to be processed in the processing container with the blown-out protective film material blown out from the mechanism into the processing container.
 前記処理容器に内蔵されたスパッタ装置により保護膜用材料からなるターゲットをスパッタし、前記スパッタされた保護膜用材料により、前記処理容器内にて被処理体の金属層上に直ちに保護膜を成膜してもよい。 A target made of a protective film material is sputtered by a sputtering apparatus built in the processing container, and a protective film is immediately formed on the metal layer of the object to be processed in the processing container by the sputtered protective film material. A film may be formed.
 前記処理容器外に配置されたエッチング装置により前記金属層の表面をエッチングし、前記処理容器外に配置されたスパッタ装置により保護膜用材料からなるターゲットをスパッタし、前記スパッタされた保護膜用材料により、前記処理容器外にて被処理体の金属層上に直ちに保護膜を成膜してもよい。 The surface of the metal layer is etched by an etching apparatus disposed outside the processing container, a target made of a protective film material is sputtered by a sputtering apparatus disposed outside the processing container, and the sputtered protective film material Thus, a protective film may be formed immediately on the metal layer of the object to be processed outside the processing container.
 前記処理容器外に配置されたエッチング装置により前記金属層表面をエッチングし、前記処理容器外に配置されたCVD装置により保護膜用材料ガスからプラズマを励起し、励起されたプラズマにより、前記処理容器外にて被処理体の金属層上に直ちに保護膜を成膜してもよい。 The metal layer surface is etched by an etching apparatus disposed outside the processing container, plasma is excited from a protective film material gas by a CVD apparatus disposed outside the processing container, and the processing container is excited by the excited plasma. A protective film may be formed immediately on the metal layer of the object to be processed outside.
 また、上記課題を解決するために、本発明の他の態様によれば、被処理体のITO上に成膜された有機層と、前記有機層上にリチウム、セシウム、ナトリウム、カリウム又はルビシウムのいずれかを0.5nm~100nmの厚さに成膜することにより電子注入層及び電極として機能させる金属層と、前記金属層上に成膜された保護膜と、を含む有機EL素子が提供される。 In order to solve the above-described problem, according to another aspect of the present invention, an organic layer formed on the ITO of the object to be processed, and lithium, cesium, sodium, potassium, or rubidium on the organic layer Provided is an organic EL device comprising a metal layer that functions as an electron injection layer and an electrode by forming any of them in a thickness of 0.5 to 100 nm, and a protective film formed on the metal layer. The
 これによれば、処理容器内の同一空間にて有機層とアルカリ金属層とを連続的に成膜することにより、アルカリ金属層と有機層との界面で、アルカリ金属が処理容器内の残留水分、窒素、酸素等と反応し、劣化することを防止することができる。これにより、電子の注入効率を高く維持した高性能な有機EL素子を製造することができる。 According to this, by continuously forming the organic layer and the alkali metal layer in the same space in the processing container, the alkali metal is retained in the processing container at the interface between the alkali metal layer and the organic layer. It can be prevented from reacting with nitrogen, oxygen, etc. and being deteriorated. As a result, a high-performance organic EL element that maintains a high electron injection efficiency can be manufactured.
 上記課題を解決するために、本発明の他の態様によれば、内部にて被処理体上に所望の処理を施す処理容器と、有機材料を収納し、収納された有機材料を加熱して気化させる第1の蒸着源と、前記処理容器に内蔵されるとともに前記第1の蒸着源に連結され、前記第1の蒸着源にて気化された有機材料を前記処理容器内の被処理体に向けて吹き出す第1の吹き出し機構と、前記処理容器に内蔵され、アルカリ金属材料からなるターゲットをスパッタする第1のスパッタ装置と、前記処理容器に内蔵され、保護膜用材料からなるターゲットをスパッタする第2のスパッタ装置と、を備えた成膜装置が提供される。 In order to solve the above-described problem, according to another aspect of the present invention, a processing container that performs a desired process on a target object inside, an organic material is stored, and the stored organic material is heated. A first vapor deposition source to be vaporized, and an organic material which is built in the processing container and connected to the first vapor deposition source and vaporized in the first vapor deposition source is applied to an object to be processed in the processing container. A first blowing mechanism that blows out, a first sputtering device that is built in the processing vessel and that sputters a target made of an alkali metal material, and a target that is built in the processing vessel and is made of a protective film material. And a second sputtering apparatus.
 前記処理容器には、少なくとも前記第1の吹き出し機構側に排気装置が配設されていてもよい。 In the processing container, an exhaust device may be disposed at least on the first blowing mechanism side.
 前記第1の吹き出し機構と前記第1のスパッタ装置との間には、隔壁が設けられていてもよい。 A partition may be provided between the first blowing mechanism and the first sputtering apparatus.
 以上説明したように、本発明によれば、電子注入層を形成する金属層の劣化を防ぎ、同層の電子注入効率を高めることができる。 As described above, according to the present invention, deterioration of the metal layer forming the electron injection layer can be prevented, and the electron injection efficiency of the same layer can be increased.
第1~第4の実施形態及びその変形例に係る基板処理システムの概略構成図である。FIG. 6 is a schematic configuration diagram of a substrate processing system according to first to fourth embodiments and modifications thereof. 本発明の一実施形態に係る有機EL素子の製造プロセスの一例を示した図である。It is the figure which showed an example of the manufacturing process of the organic EL element which concerns on one Embodiment of this invention. 第1の実施形態に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 1st Embodiment. 第1~第4の実施形態に係る6層連続成膜処理により形成された有機EL素子を示した図である。FIG. 5 is a diagram showing an organic EL element formed by a six-layer continuous film forming process according to the first to fourth embodiments. 第1の実施形態の変形例に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on the modification of 1st Embodiment. 第2の実施形態に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 2nd Embodiment. 第3の実施形態に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 3rd Embodiment. 第3の実施形態の変形例に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on the modification of 3rd Embodiment. 第4の実施形態に係る成膜装置PM1の縦断面図である。It is a longitudinal cross-sectional view of film-forming apparatus PM1 which concerns on 4th Embodiment.
 以下に添付図面を参照しながら、本発明の各実施形態について詳細に説明する。なお、以下の説明及び添付図面において、同一の構成及び機能を有する構成要素については、同一符号を付することにより、重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description and the accompanying drawings, the same reference numerals are given to the constituent elements having the same configuration and function, and redundant description is omitted.
 また、以下に示す順序に従って説明する。
〔1〕第1の実施形態
 〔1-1〕基板処理システムの全体構成
 〔1-2〕成膜装置の内部構成
 〔1-3〕第1の実施形態の変形例
〔2〕第2の実施形態
 〔2-1〕成膜装置の内部構成
〔3〕第3の実施形態
 〔3-1〕成膜装置の内部構成
 〔3-2〕第3の実施形態の変形例
〔4〕第4の実施形態
Moreover, it demonstrates according to the order shown below.
[1] First Embodiment [1-1] Overall Configuration of Substrate Processing System [1-2] Internal Configuration of Film Forming Apparatus [1-3] Modification of First Embodiment [2] Second Embodiment Form [2-1] Internal Configuration of Film Forming Apparatus [3] Third Embodiment [3-1] Internal Structure of Film Forming Apparatus [3-2] Modified Example of Third Embodiment [4] Fourth Embodiment
〔1〕第1の実施形態
 〔1-1〕基板処理システムの全体構成
 まず、第1の実施形態に係る成膜装置を含む基板処理システムの全体構成について、図1を参照しながら説明する。有機EL素子は、たとえば、図1に示したクラスタ型の基板処理システムSys内で製造される。
[1] First Embodiment [1-1] Overall Configuration of Substrate Processing System First, the overall configuration of a substrate processing system including a film forming apparatus according to a first embodiment will be described with reference to FIG. The organic EL element is manufactured, for example, in the cluster type substrate processing system Sys shown in FIG.
 基板処理システムSysでは、複数の処理容器がクラスタ側に連結されている。実際には、基板処理システムSysは、ロードロック装置LLM(Load Lock Module)、搬送装置TM(Transfer Module)、クリーニング装置(前処理室)CM(Cleaning Module)、成膜装置PM1(Process Module)、エッチング装置PM2、CVD(Chemical Vapor Deposition:化学蒸着薄膜成膜法)装置PM3及びスパッタ装置PM4を有している。成膜装置PM1は、同一処理容器内にて有機層とアルカリ金属層とを連続的に成膜する成膜装置に相当する。 In the substrate processing system Sys, a plurality of processing containers are connected to the cluster side. Actually, the substrate processing system Sys includes a load lock device LLM (Load Lock Module), a transfer device TM (Transfer Module), a cleaning device (pretreatment chamber) CM (Cleaning Module), a film forming device PM1 (Process Module), It has an etching device PM2, a CVD (Chemical Vapor Deposition) device PM3, and a sputtering device PM4. The film forming apparatus PM1 corresponds to a film forming apparatus that continuously forms an organic layer and an alkali metal layer in the same processing container.
 ロードロック装置LLMは、大気系から搬送されたガラス基板G(以下、基板Gという。)を、減圧状態にある搬送装置TMに搬送するために内部を減圧状態に保持した真空搬送室である。搬送装置TMには、略中央に屈伸および旋回可能な多関節状の搬送アームArmが配設されている。基板Gは、最初に、搬送アームArmを用いてロードロック装置LLMからクリーニング装置CMに搬送される。基板Gには、陽極層としてのITO(Indium Tin Oxide)が形成されていて、クリーニング装置CMにてその表面に付着した汚染物(主に有機物)を除去する。 The load lock device LLM is a vacuum transfer chamber in which a glass substrate G (hereinafter referred to as a substrate G) transferred from the atmospheric system is held in a reduced pressure state in order to transfer the glass substrate G to the transfer device TM in a reduced pressure state. The transfer device TM is provided with a multi-joint transfer arm Arm that can be bent, stretched and swiveled substantially at the center. The substrate G is first transported from the load lock device LLM to the cleaning device CM using the transport arm Arm. The substrate G is formed with ITO (Indium Tin Oxide) as an anode layer, and contaminants (mainly organic matter) adhering to the surface thereof are removed by the cleaning device CM.
 図2には、有機EL素子の製造プロセスが示されている。図2の(a)に示したように、成膜装置PM1には、クリーニング済みの基板Gが搬入される。成膜装置PM1では、図2の(b)に示したように、蒸着により基板のITO表面に6層の有機層20が連続的に成膜される。有機層を成膜後、同成膜装置PM1では、図2の(c)に示したように、直ちに蒸着により金属層30が成膜される。金属層30の成膜には気化器が利用される。金属層30を形成する金属は仕事関数が低いアルカリ金属が好ましく、特に、リチウム、セシウム、ナトリウム、カリウム又はルビシウムのいずれかが好ましい。これらのアルカリ金属は高活性種であり不安定であること、特に、薄膜の場合、面内均一性を図ることが難しいことを考慮して、本実施形態では成膜装置PM1の同一空間内にて有機層20及び金属層30を連続して成膜する。これについては、本実施形態では、アルカリ金属としてリチウムを使用した場合を例に挙げて後程、詳述する。 FIG. 2 shows a manufacturing process of the organic EL element. As shown in FIG. 2A, the cleaned substrate G is carried into the film forming apparatus PM1. In the film forming apparatus PM1, as shown in FIG. 2B, six organic layers 20 are continuously formed on the ITO surface of the substrate by vapor deposition. After forming the organic layer, in the film forming apparatus PM1, as shown in FIG. 2C, the metal layer 30 is immediately formed by vapor deposition. A vaporizer is used to form the metal layer 30. The metal forming the metal layer 30 is preferably an alkali metal having a low work function, and in particular, lithium, cesium, sodium, potassium, or rubidium is preferable. In consideration of the fact that these alkali metals are highly active species and are unstable, and in particular, it is difficult to achieve in-plane uniformity in the case of a thin film, in this embodiment, in the same space of the film forming apparatus PM1. Thus, the organic layer 20 and the metal layer 30 are continuously formed. In this embodiment, the case where lithium is used as the alkali metal will be described later in detail as an example.
 次に、基板Gは、搬送装置TMのアームArmに把持され、エッチング装置PM2に搬送される。エッチング装置PM2では、図2の(d)に示したように、金属層30の表面をソフトエッチングして、金属層30の表面に付着した不純物を取り除く。その後、基板Gは、搬送装置TMのアームArmに把持され、スパッタ装置PM4に搬送される。スパッタ装置PM4では、アルミニウムや銀等の保護膜用材料からなるターゲットをスパッタすることにより飛び出した保護膜用材料の原子を金属層30の上に積層させる。これにより、図2の(e)に示したように、金属層30の上に保護膜40が成膜される。 Next, the substrate G is held by the arm Arm of the transfer apparatus TM and transferred to the etching apparatus PM2. In the etching apparatus PM2, as shown in FIG. 2D, the surface of the metal layer 30 is soft-etched to remove impurities attached to the surface of the metal layer 30. Thereafter, the substrate G is held by the arm Arm of the transfer apparatus TM and transferred to the sputtering apparatus PM4. In the sputtering apparatus PM4, atoms of the protective film material jumped out by sputtering a target made of a protective film material such as aluminum or silver are stacked on the metal layer 30. As a result, the protective film 40 is formed on the metal layer 30 as shown in FIG.
 積層膜の上部から光を取り出す場合、金属層30に光を透過させる必要があるため、金属層30を薄く形成する必要がある。この場合、金属層30は薄膜であるため、図2の(d)に示したソフトエッチングができない場合がある。よって、ソフトエッチングをしなくてもよいように、金属層30の表面にITO膜のような透明酸化物膜を形成しておいてもよい。 When extracting light from the upper part of the laminated film, it is necessary to transmit the light to the metal layer 30, and thus the metal layer 30 needs to be formed thin. In this case, since the metal layer 30 is a thin film, the soft etching shown in FIG. Therefore, a transparent oxide film such as an ITO film may be formed on the surface of the metal layer 30 so that soft etching may not be performed.
 保護膜40の成膜には、スパッタ装置PM4に替えてCVD装置PM3を用いてもよい。この場合にも、図2の(d)に示したように、まず、金属層30の表面をソフトエッチングして、金属層30の表面に付着した不純物を取り除く。その後、基板GをCVD装置PM3に搬送する。CVD装置PM3では、保護膜用材料ガスからプラズマを励起し、励起されたプラズマにより基板Gの金属層上に保護膜40を成膜する。これによっても、図2の(e)に示したように、金属層30の上に保護膜40が成膜される。なお、CVD装置PM3は、容量結合型(平行平板)プラズマ処理装置、誘導結合型(ICP:Inductively Coupled Plasma)プラズマ処理装置、ECR(Electron Cyclotron Resonance)、マイクロ波プラズマ処理装置等、ガスを励起してプラズマを生成し、生成されたプラズマを用いて基板Gを成膜する装置であればいずれであってもよい。 For forming the protective film 40, a CVD apparatus PM3 may be used instead of the sputtering apparatus PM4. Also in this case, as shown in FIG. 2D, first, the surface of the metal layer 30 is soft-etched to remove impurities attached to the surface of the metal layer 30. Thereafter, the substrate G is transferred to the CVD apparatus PM3. In the CVD apparatus PM3, plasma is excited from the protective film material gas, and the protective film 40 is formed on the metal layer of the substrate G by the excited plasma. This also forms the protective film 40 on the metal layer 30 as shown in FIG. The CVD apparatus PM3 excites gases such as a capacitively coupled (parallel plate) plasma processing apparatus, an inductively coupled (ICP) plasma processing apparatus, an ECR (Electron Cyclotron Resonance), and a microwave plasma processing apparatus. Any apparatus may be used as long as it generates plasma and deposits the substrate G using the generated plasma.
(制御器)
 制御器50は、ROM50a、RAM50b、CPU50cおよび入出力I/F(インターフェース)50dを有している。ROM50a、RAM50bには、たとえば、有機層20を成膜する際の有機材料の蒸発速度を制御したり、金属層30を成膜する際のアルカリ金属の蒸発速度を制御したりするためのデータや制御プログラムが格納されている。
(Controller)
The controller 50 includes a ROM 50a, a RAM 50b, a CPU 50c, and an input / output I / F (interface) 50d. In the ROM 50a and the RAM 50b, for example, data for controlling the evaporation rate of the organic material when forming the organic layer 20 or controlling the evaporation rate of the alkali metal when forming the metal layer 30 are stored. A control program is stored.
 基板処理システムSysの各装置は、制御器50によって制御される。具体的には、CPU50cは、ROM50a、RAM50bに格納されたデータや制御プログラムを用いて、基板処理システムSys内の搬送やプロセスを制御するための駆動信号を生成する。入出力I/F50dは、CPU50cにより生成された駆動信号を基板処理システムSysに出力し、これに応じて基板処理システムSysから出力された応答信号を入力して、CPU50cに伝える。 Each device of the substrate processing system Sys is controlled by the controller 50. Specifically, the CPU 50c generates a drive signal for controlling transport and processes in the substrate processing system Sys using data and control programs stored in the ROM 50a and RAM 50b. The input / output I / F 50d outputs a drive signal generated by the CPU 50c to the substrate processing system Sys, inputs a response signal output from the substrate processing system Sys in response to this, and transmits the response signal to the CPU 50c.
 〔1-2〕成膜装置の内部構成
 次に、成膜装置PM1の内部構成について、図3を参照しながら詳細に説明する。図3は、本実施形態に係る成膜装置PM1を模式的に示した縦断面図である。成膜装置PM1は、処理容器100、第1の蒸着源としての蒸着源200、第2の蒸着源としての気化器300を有している。
[1-2] Internal Configuration of Film Forming Apparatus Next, the internal structure of the film forming apparatus PM1 will be described in detail with reference to FIG. FIG. 3 is a longitudinal sectional view schematically showing the film forming apparatus PM1 according to this embodiment. The film forming apparatus PM1 includes a processing container 100, a vapor deposition source 200 as a first vapor deposition source, and a vaporizer 300 as a second vapor deposition source.
 処理容器100は直方体であり、摺動可能な載置台110、6つの第1の吹き出し機構120a~120f、1つの第2の吹き出し機構130、隔壁140及び隔壁150を内蔵する。処理容器100の側壁には、開閉により基板Gを搬入、搬出可能なゲートバルブ160a,160bが設けられている。 The processing container 100 is a rectangular parallelepiped, and includes a slidable mounting table 110, six first blowing mechanisms 120a to 120f, one second blowing mechanism 130, a partition 140, and a partition 150. Gate valves 160 a and 160 b that can load and unload the substrate G by opening and closing are provided on the sidewall of the processing container 100.
 載置台110は、図示しない高電圧電源から印加された高電圧により、ゲートバルブ160aから搬入された基板Gを静電吸着する。載置台110は、このようにして下向きに基板Gを載置した状態にて、天井面に設けられたレール110a上を第1の吹き出し機構120a側から第2の吹き出し機構130側へ向けて摺動する。これにより、基板Gは、第1の吹き出し機構120a、120b、120c、120d、120e、120f、第2の吹き出し機構130の順に、各吹き出し口のわずか上空を平行移動する。 The mounting table 110 electrostatically attracts the substrate G carried from the gate valve 160a by a high voltage applied from a high voltage power source (not shown). The mounting table 110 slides on the rail 110a provided on the ceiling surface from the first blowing mechanism 120a side to the second blowing mechanism 130 side in a state where the substrate G is placed downward in this manner. Move. Thereby, the board | substrate G moves in parallel in the slightly upper direction of each blowing outlet in order of the 1st blowing mechanism 120a, 120b, 120c, 120d, 120e, 120f, and the 2nd blowing mechanism 130.
 第1の吹き出し機構120a~120fは、形状および構造がすべて同一であって、互いに平行して等間隔に配置されている。第1の吹き出し機構120a~120fは、その内部が中空(緩衝空間S)の矩形形状をしていて、その上部中央に設けられた開口から有機材料蒸気を吹き出すようになっている。第1の吹き出し機構120a~120fの下部は、処理容器100の底壁を貫通する第1のガス供給管170a~170fを介して蒸着源200に連結されている。 The first blowing mechanisms 120a to 120f have the same shape and structure, and are arranged in parallel at equal intervals. The first blowing mechanisms 120a to 120f have a rectangular shape with a hollow interior (buffer space S), and blow out organic material vapor from an opening provided at the upper center thereof. Lower portions of the first blowing mechanisms 120a to 120f are connected to the vapor deposition source 200 via first gas supply pipes 170a to 170f penetrating the bottom wall of the processing vessel 100.
 処理容器100の同一空間中には、第1の吹き出し機構120fに少し離れて第2の吹き出し機構130が設けられている。第2の吹き出し機構130の下部は、処理容器100の底壁を貫通する第2のガス供給管180を介して気化器300に連結されている。第1のガス供給管170a~170f及び第2のガス供給管180には、処理容器側に搬送される有機材料やアルカリ金属材料の給断及び流量を制御するバルブV1,V2がそれぞれ設けられている。 In the same space of the processing container 100, a second blowing mechanism 130 is provided a little away from the first blowing mechanism 120f. The lower part of the second blowing mechanism 130 is connected to the vaporizer 300 via a second gas supply pipe 180 that penetrates the bottom wall of the processing container 100. The first gas supply pipes 170a to 170f and the second gas supply pipe 180 are respectively provided with valves V1 and V2 for controlling the supply and disconnection of the organic material and the alkali metal material conveyed to the processing container side and the flow rate. Yes.
 第1の吹き出し機構120a~120f及び第2の吹き出し機構130の両脇には各吹き出し機構を仕切る隔壁140、150が設けられている。これにより、隣接する第1の吹き出し機構120a~120f及び第2の吹き出し機構130の吹き出し口から吹き出される各種の有機材料及びアルカリ金属材料が混入し合うことを防止する。 On both sides of the first blowing mechanisms 120a to 120f and the second blowing mechanism 130, partition walls 140 and 150 that partition the blowing mechanisms are provided. This prevents various organic materials and alkali metal materials blown out from the blowout ports of the adjacent first blowout mechanisms 120a to 120f and the second blowout mechanism 130 from being mixed.
 処理容器100には、第1の吹き出し機構120a側に排気口190aが設けられている。排気口190aに接続された排気装置195aを駆動すると、第1の吹き出し機構120a~120fから吹き出された有機材料の残留物は排気口190aから処理容器外に排出される。また、処理容器100には、第2の吹き出し機構130側に排気口190bが設けられている。排気口190bに接続された排気装置195bを駆動すると、第2の吹き出し機構130から吹き出されたアルカリ金属材料蒸気の残留原子は排気口190bから処理容器外に排出される。特に、蒸着による成膜では、気化原子は、処理容器内を飛来して拡散しながら基板Gまで到達し成膜に使われる。基板Gに一旦吸着した気体原子であっても、基板Gから離れて処理容器内を再び飛来するものも存在する。このように、蒸着による成膜では、気化原子は、処理容器内をかなり広範囲に拡散する傾向が強い。 The processing vessel 100 is provided with an exhaust port 190a on the first blowing mechanism 120a side. When the exhaust device 195a connected to the exhaust port 190a is driven, the organic material residue blown from the first blowing mechanisms 120a to 120f is discharged out of the processing container through the exhaust port 190a. Further, the processing container 100 is provided with an exhaust port 190b on the second blowing mechanism 130 side. When the exhaust device 195b connected to the exhaust port 190b is driven, the residual atoms of the alkali metal material vapor blown out from the second blowing mechanism 130 are discharged out of the processing container through the exhaust port 190b. In particular, in film formation by vapor deposition, vaporized atoms fly to the inside of the processing container and reach the substrate G while being diffused, and are used for film formation. Even gas atoms once adsorbed on the substrate G may be separated from the substrate G and re-enter the processing container. Thus, in the film formation by vapor deposition, the vaporized atoms have a strong tendency to diffuse in a fairly wide range in the processing container.
 よって、第1の吹き出し機構120a側から残留した有機材料蒸気を排気することにより、第2の吹き出し機構130側に有機材料蒸気が飛来して金属層30に混入することを抑制することができる。また、第2の吹き出し機構130側から残留したリチウムを排気することにより、第1の吹き出し機構120a~120f側にリチウムが飛来して有機層20に混入することを抑制することができる。有機層20の成膜中は、排気装置195aのみを駆動し、第2の吹き出し機構130側に残留有機材料蒸気が飛来しないようにし、金属層30の成膜中は、排気装置195bのみを駆動し、第1の吹き出し機構120a~120f側に残留リチウムが飛来しないようにしてもよい。成膜中、処理容器内は、各排気装置195a、195bを駆動することにより10-2Pa~10-3Pa程度の減圧状態に保たれている。 Therefore, by exhausting the remaining organic material vapor from the first blowing mechanism 120 a side, it is possible to suppress the organic material vapor from flying to the second blowing mechanism 130 side and mixing into the metal layer 30. Further, by exhausting the remaining lithium from the second blowing mechanism 130 side, it is possible to prevent lithium from flying into the first blowing mechanism 120a to 120f side and mixing into the organic layer 20. During the deposition of the organic layer 20, only the exhaust device 195a is driven so that the residual organic material vapor does not fly to the second blowing mechanism 130 side. During the deposition of the metal layer 30, only the exhaust device 195b is driven. However, residual lithium may be prevented from flying toward the first blowing mechanisms 120a to 120f. During film formation, the inside of the processing container is kept in a reduced pressure state of about 10 −2 Pa to 10 −3 Pa by driving the exhaust devices 195a and 195b.
 蒸着源200には、形状および構造が同一の6つのるつぼ210a~210fが内蔵されている。各るつぼ210a~210fは、内部に異なる有機材料A~Fをそれぞれ収納している。有機材料A~Fがそれぞれ収納された容器底面には、ヒータ220a~220fがそれぞれ埋め込まれている。ヒータ220a~220fをそれぞれ加熱することにより、るつぼ210a~210fを200~500℃程度の高温にすることにより、有機材料A~Fの気化速度を制御するようになっている。なお、気化とは、液体が気体に変わる現象だけでなく、固体が液体の状態を経ずに直接気体に変わる現象(すなわち、昇華)も含んでいる。 The evaporation source 200 includes six crucibles 210a to 210f having the same shape and structure. Each of the crucibles 210a to 210f accommodates different organic materials A to F, respectively. Heaters 220a to 220f are embedded in the bottom surfaces of the containers in which the organic materials A to F are stored, respectively. By heating the heaters 220a to 220f, respectively, the crucibles 210a to 210f are heated to a high temperature of about 200 to 500 ° C., thereby controlling the vaporization rate of the organic materials A to F. Vaporization includes not only a phenomenon in which a liquid changes into a gas but also a phenomenon in which a solid changes directly into a gas without passing through a liquid state (that is, sublimation).
 るつぼ210a~210fには、アルゴンガスArを供給するガスラインが設けられている。ガスラインからるつぼ210f内に供給されたアルゴンガスは、各るつぼ210a~210fにて気化された有機材料蒸気A~Fを第1のガス供給管170a~170fを介して第1の吹き出し機構120a~120fまで搬送し、第1の吹き出し機構120a~120fの吹き出し口から処理容器100の内部に放出される。蒸着源200には排気口230が設けられている。排気装置240を駆動することにより、処理容器内を所望の真空度に維持するようになっている。 The crucibles 210a to 210f are provided with gas lines for supplying argon gas Ar. Argon gas supplied from the gas line into the crucible 210f causes the organic material vapors A to F vaporized in the crucibles 210a to 210f to pass through the first blowing mechanisms 120a to 120f via the first gas supply pipes 170a to 170f. It is transported to 120f and discharged into the processing container 100 from the outlets of the first blowing mechanisms 120a to 120f. The vapor deposition source 200 is provided with an exhaust port 230. By driving the exhaust device 240, the inside of the processing container is maintained at a desired degree of vacuum.
 アルゴンガスおよび有機材料蒸気を通す第1のガス供給管170a~170fも、るつぼと同様に200℃以上の温度に調節される。これにより、有機材料蒸気がアルゴンガスにより搬送される際、第1のガス供給管170a~170f等に付着して液化することを防ぐことができる。これにより、有機層20を成膜する際の材料効率を高めることができる。 The first gas supply pipes 170a to 170f through which the argon gas and the organic material vapor are passed are also adjusted to a temperature of 200 ° C. or higher, like the crucible. Accordingly, when the organic material vapor is conveyed by the argon gas, it can be prevented from adhering to the first gas supply pipes 170a to 170f and liquefying. Thereby, the material efficiency at the time of forming the organic layer 20 can be improved.
 処理容器100の外部には、リチウムを加熱して気化させる気化器300が設けられている。気化器300の内部にはリチウム等のアルカリ金属を収納できる蒸発容器Ds1が設けられている。蒸発容器Ds1には、電源Ds2が接続されている。電源Ds2には、制御器50から出力された駆動信号に基づき所望の電圧が印加され、蒸発容器Ds1に所定の電流が流れる。これにより、蒸発容器Ds1は、加熱されて所望の温度に保持される。このようにして、蒸発容器Ds1に収納されたリチウムの蒸発量が調整される。なお、蒸発容器Ds1に収納される材料は、仕事関数が低いアルカリ金属材料であれば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等いずれであってもよい。 A vaporizer 300 that heats and vaporizes lithium is provided outside the processing vessel 100. Inside the vaporizer 300, an evaporation container Ds1 that can store an alkali metal such as lithium is provided. A power source Ds2 is connected to the evaporation container Ds1. A desired voltage is applied to the power source Ds2 based on the drive signal output from the controller 50, and a predetermined current flows through the evaporation container Ds1. Thereby, the evaporation container Ds1 is heated and maintained at a desired temperature. In this way, the evaporation amount of lithium stored in the evaporation container Ds1 is adjusted. The material stored in the evaporation container Ds1 may be lithium, sodium, potassium, rubidium, cesium, or the like as long as it is an alkali metal material having a low work function.
 気化器300は、開度調整可能バルブV3を介して真空ポンプ310に連結されている。気化器300の内部は、制御器50から出力された駆動信号に基づきバルブV3の開度を調節することにより所望の真空圧に制御される。 The vaporizer 300 is connected to the vacuum pump 310 via an opening adjustable valve V3. The inside of the vaporizer 300 is controlled to a desired vacuum pressure by adjusting the opening of the valve V3 based on the drive signal output from the controller 50.
 また、気化器300は、ガスの流量を調整するマスフローコントローラMFCおよびバルブV4を介してアルゴンガス供給源320に連結されている。アルゴンガスの給断および流量は、制御器50から出力された駆動信号に基づき、マスフローコントローラMFC及びバルブV4を制御することによって調節される。 The vaporizer 300 is connected to an argon gas supply source 320 via a mass flow controller MFC that adjusts the flow rate of gas and a valve V4. The supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V4 based on the drive signal output from the controller 50.
 これにより、気化器300内で蒸発したリチウムは、気化器300内に送り込まれた所定量のアルゴンガスをキャリアガスとして、第2のガス供給管180を通って第2の吹き出し機構130まで搬送され、吹き出し口から処理容器内に放出される。なお、第2の吹き出し機構130からアルカリ金属を吹き出す機器としては、上記気化器300に限られず、アルカリ金属単体を直接蒸発させて吹き出させる機構を用いてもよい。 Thereby, the lithium evaporated in the vaporizer 300 is transported to the second blowing mechanism 130 through the second gas supply pipe 180 using the predetermined amount of argon gas fed into the vaporizer 300 as a carrier gas. , And discharged from the outlet into the processing container. The device for blowing out the alkali metal from the second blowing mechanism 130 is not limited to the vaporizer 300, and a mechanism for directly evaporating and blowing out the alkali metal alone may be used.
 アルゴンガスおよび有機材料蒸気を通す第2のガス供給管180及び気化器300は、200℃以上の温度に調節される。これにより、リチウムの蒸発速度を制御するとともにリチウムがアルゴンガスにより搬送される際、第2のガス供給管180等に付着して液化することを防ぐことができる。これにより、金属層30を成膜する際の材料効率を高めることができる。 The second gas supply pipe 180 and the vaporizer 300 that allow argon gas and organic material vapor to pass through are adjusted to a temperature of 200 ° C. or higher. Accordingly, the evaporation rate of lithium can be controlled, and when lithium is transported by argon gas, it can be prevented from adhering to the second gas supply pipe 180 and liquefying. Thereby, the material efficiency at the time of forming the metal layer 30 can be improved.
 なお、金属層30を成膜するためには、気化器300に替えて、有機層20を成膜するために使用したるつぼと同じ構成の蒸着源を用いてもよく、抵抗加熱ボード等の加熱器であってもよい。 In order to form the metal layer 30, instead of the vaporizer 300, a vapor deposition source having the same configuration as that of the crucible used to form the organic layer 20 may be used. It may be a vessel.
 以上に説明した成膜装置PM1によれば、第1の吹き出し機構120a~120fから吹き出される有機材料蒸気により有機層20が形成され、その後、第2の吹き出し機構130から吹き出される有機材料蒸気により有機層20が連続的に形成される。 According to the film forming apparatus PM1 described above, the organic layer 20 is formed by the organic material vapor blown from the first blowing mechanisms 120a to 120f, and then the organic material vapor blown from the second blowing mechanism 130. Thus, the organic layer 20 is continuously formed.
 具体的には、第1の吹き出し機構120a~120fから吹き出される有機材料蒸気のうち、まず、第1の吹き出し機構120aから吹き出された有機材料蒸気が、吹き出し機構120aの上方をある速度で進行する基板G上のITO(陽極)に付着することにより、図4に示したように、第1の吹き出し機構120aから吹き出された有機材料蒸気Aが基板Gに堆積することにより基板上に第1層のホール注入層が形成される。続いて、基板Gが第1の吹き出し機構120bから第1の吹き出し機構120fまで順に移動する際、第1の吹き出し機構120b~120fから吹き出された有機材料蒸気B~Fがそれぞれ基板Gに堆積することにより、有機層(第2層~第6層)が順に形成される。最後に、第2の吹き出し機構130から放出されるリチウムが基板Gに堆積することにより、金属層30が形成される。 Specifically, out of the organic material vapor blown from the first blowing mechanisms 120a to 120f, first, the organic material vapor blown from the first blowing mechanism 120a travels at a certain speed above the blowing mechanism 120a. By adhering to the ITO (anode) on the substrate G, the organic material vapor A blown out from the first blowing mechanism 120a is deposited on the substrate G as shown in FIG. A hole injection layer is formed. Subsequently, when the substrate G sequentially moves from the first blowing mechanism 120b to the first blowing mechanism 120f, the organic material vapors B to F blown from the first blowing mechanisms 120b to 120f are deposited on the substrate G, respectively. Thus, organic layers (second layer to sixth layer) are formed in order. Finally, the lithium released from the second blowing mechanism 130 is deposited on the substrate G, whereby the metal layer 30 is formed.
 このようにして、有機層20及び金属層30を同一処理装置内で連続的に成膜することにより、有機層20及び金属層30の劣化を防止することができる。これについて、具体的に説明する。リチウムやセシウム等のアルカリ金属は、仕事関数が小さいので有機EL素子の電子注入層を形成する材料として好ましい。しかしながら、一方でアルカリ金属は高活性種であるため、高真空状態にある処理室内であっても室内に残留している水分、窒素、酸素などと容易に反応してしまう。よって、金属層30の下地となる有機層20の表面にこのような不純物が存在する状態でその上に金属層30を成膜すると、有機層20と金属層30との界面で成膜させるアルカリ金属と有機層に付着した不純物とが反応し、たとえば、酸化リチウム(LiO)の絶縁物となる等、金属層30に劣化が生じてしまう。このため、従来は、リチウム等のアルカリ金属が絶縁物に変化することを考慮して、リチウムの膜をごく薄く成膜する方法がとられていた。ただし、これによっても、リチウムの膜をごく薄く成膜すると膜の面内均一性が悪くなり、有機EL素子の性能のバラツキが生じる等の課題を残していた。 In this way, the organic layer 20 and the metal layer 30 are continuously formed in the same processing apparatus, whereby deterioration of the organic layer 20 and the metal layer 30 can be prevented. This will be specifically described. Alkali metals such as lithium and cesium are preferable as materials for forming the electron injection layer of the organic EL element because of their small work functions. However, on the other hand, since alkali metals are highly active species, they easily react with moisture, nitrogen, oxygen, etc. remaining in the processing chamber in a high vacuum state. Therefore, when the metal layer 30 is formed on the surface of the organic layer 20 that is the base of the metal layer 30 in a state where such impurities are present, an alkali is formed at the interface between the organic layer 20 and the metal layer 30. The metal and the impurities adhering to the organic layer react with each other to cause deterioration in the metal layer 30 such as an insulator of lithium oxide (Li 2 O). For this reason, conventionally, taking into account that an alkali metal such as lithium changes to an insulator, a method of forming a very thin lithium film has been employed. However, even in this case, when the lithium film is formed very thin, the in-plane uniformity of the film is deteriorated and the performance of the organic EL element varies.
 これに対して、本実施形態に係る成膜装置PM1では、有機層20の成膜後、金属層30の成膜前に基板を別チャンバに搬送する必要がない。よって、有機層上に不純物が付着する確率は非常に低くなる。よって、同一処理容器内にて有機層上に直ちに成膜される金属層30が、有機層20の界面にて不純物と反応して絶縁物化する確率も非常に低くなる。この結果、金属層30の電子注入効率を高め、有機層20の光電変換効率を高めることができる。 On the other hand, in the film forming apparatus PM1 according to the present embodiment, it is not necessary to transfer the substrate to another chamber after the organic layer 20 is formed and before the metal layer 30 is formed. Therefore, the probability that impurities are deposited on the organic layer is very low. Therefore, the probability that the metal layer 30 immediately formed on the organic layer in the same processing container reacts with impurities at the interface of the organic layer 20 to become an insulator is very low. As a result, the electron injection efficiency of the metal layer 30 can be increased, and the photoelectric conversion efficiency of the organic layer 20 can be increased.
 また、本実施形態に係る成膜装置PM1によれば、上述のように、金属層30が有機層20の界面にて不純物と反応して絶縁物化する確率が非常に低くなるため、電子注入効率を低下させることなくアルカリ金属の膜を従来よりも厚く成膜することができる。このため、本成膜装置PM1によれば、たとえば、金属層30を0.5nm~100nmの厚さに成膜することができ、成膜プロセスを管理できる膜厚になる。金属層30をある程度の厚さに成膜することにより、金属層30の面内均一性を改善し、有機EL素子の性能のバラツキを抑制することができる。 In addition, according to the film forming apparatus PM1 according to the present embodiment, as described above, the probability that the metal layer 30 reacts with impurities at the interface of the organic layer 20 to become an insulator becomes very low. An alkali metal film can be formed thicker than before without lowering the thickness. Therefore, according to the film forming apparatus PM1, for example, the metal layer 30 can be formed to a thickness of 0.5 nm to 100 nm, and the film thickness can be controlled. By forming the metal layer 30 to a certain thickness, the in-plane uniformity of the metal layer 30 can be improved, and variations in the performance of the organic EL element can be suppressed.
 さらに、金属層30をある程度の厚さに成膜することにより、従来は膜が薄すぎて不可能であった電子注入層の電極化を可能とすることができる。つまり、本実施形態に係る成膜装置によれば、金属層30をたとえば50nm~100nm程度の厚さに成膜することにより、金属層30を電子注入層及び電極(陰極)として機能させることができる。また、金属層30をある程度厚く成膜することにより、後工程の保護膜のスパッタに対してそのダメージを金属層30にて吸収することができ、スパッタによる有機層20へのダメージを低減させることができる。 Furthermore, by forming the metal layer 30 to a certain thickness, the electron injection layer can be formed into an electrode, which has been impossible because the film is too thin. That is, according to the film forming apparatus according to the present embodiment, the metal layer 30 is formed to a thickness of about 50 nm to 100 nm, for example, so that the metal layer 30 can function as an electron injection layer and an electrode (cathode). it can. In addition, by forming the metal layer 30 to be thick to some extent, the damage can be absorbed by the metal layer 30 with respect to sputtering of the protective film in the subsequent process, and damage to the organic layer 20 due to sputtering can be reduced. Can do.
 金属層30を成膜後、基板Gは、図1のエッチング装置PM2に搬送され、反応しやすいリチウムの金属層30をソフトエッチングしてその表面をクリーニングする(図2の(d)参照)。その後、直ちにスパッタ装置PM4に搬送され、アルミニウムAlや銀Agから形成されたスパッタリング材にアルゴンガスのイオンを衝突させることにより、スパッタリング原子Agを叩き出す。叩き出されたスパッタリング原子Agは、金属層30上に堆積する。これにより、図2の(e)に示した保護膜40が成膜される。保護膜40は、高活性化種の金属層30の酸化を防止する。 After the metal layer 30 is formed, the substrate G is transferred to the etching apparatus PM2 of FIG. 1, and the surface of the metal layer 30 that is easily reacted is soft-etched to clean the surface (see FIG. 2D). Thereafter, the substrate is immediately transported to the sputtering apparatus PM4, and argon gas ions are collided with a sputtering material formed from aluminum Al or silver Ag, thereby sputtering sputtering atoms Ag. The sputtered sputtering atoms Ag are deposited on the metal layer 30. Thereby, the protective film 40 shown in FIG. 2E is formed. The protective film 40 prevents oxidation of the highly activated species metal layer 30.
 積層膜の上部から光を取り出す場合、金属層30に光を透過させる必要があるため、金属層30を薄く形成する必要がある。この場合、金属層30は薄膜であるため、図2の(d)に示したソフトエッチングができない場合がある。よって、ソフトエッチングをしなくてもよいように、金属層30の表面にITO膜のような透明酸化物膜を形成しておいてもよい。 When extracting light from the upper part of the laminated film, it is necessary to transmit the light to the metal layer 30, and thus the metal layer 30 needs to be formed thin. In this case, since the metal layer 30 is a thin film, the soft etching shown in FIG. Therefore, a transparent oxide film such as an ITO film may be formed on the surface of the metal layer 30 so that soft etching may not be performed.
 なお、保護膜40は、高活性化種であるアルカリ金属の金属層30を保護できる材質であれば、銀やアルミニウムの他に樹脂なども使用することができる。ただし、保護膜40に樹脂を用いる場合には、スパッタによる成膜方法は使えないため、蒸着かCVDによる成膜方法が使われる。 The protective film 40 may be made of a resin other than silver or aluminum as long as it can protect the alkali metal layer 30 which is a highly activated species. However, when a resin is used for the protective film 40, a film formation method by sputtering cannot be used, so a film formation method by vapor deposition or CVD is used.
 ITO側から光を放出する有機EL素子の場合、光の反射率の高い銀やアルミニウムを保護膜40として使用することが好ましい。また、保護膜40が薄いと光が透過してしまうので、ITO側から光を放出するために保護膜40にはある程度の厚みが必要である。また、この場合には、保護膜40には、光を反射しない樹脂は使えない。 In the case of an organic EL element that emits light from the ITO side, it is preferable to use silver or aluminum with high light reflectivity as the protective film 40. Further, since the light is transmitted if the protective film 40 is thin, the protective film 40 needs to have a certain thickness in order to emit light from the ITO side. In this case, the protective film 40 cannot be made of a resin that does not reflect light.
 一方、ITO側と反対側(保護膜側)から光を取り出す有機EL素子の場合、光を透過しやすいように、保護膜40として銀やアルミニウムを薄くする成膜する方がよい。また、この場合には、光を吸収しにくく、かつ光を透過しやすい樹脂であれば保護膜40に使うことができる。 On the other hand, in the case of an organic EL element that extracts light from the side opposite to the ITO side (protective film side), it is better to form a thin film of silver or aluminum as the protective film 40 so that light can be easily transmitted. In this case, any resin that does not easily absorb light and easily transmits light can be used for the protective film 40.
 さらに、リチウム等の金属層30とアルミニウムや銀等の保護膜40との厚さの比を最適化することにより、金属層30及び保護膜40に対する光の透過率や光の反射率を最適化することができる。 Furthermore, by optimizing the thickness ratio between the metal layer 30 such as lithium and the protective film 40 such as aluminum or silver, the light transmittance and the light reflectance for the metal layer 30 and the protective film 40 are optimized. can do.
 以上に説明したように、本実施形態に係る成膜装置PM1によれば、第1の吹き出し機構120a~120fから吹き出された有機材料の材料蒸気が基板Gに堆積することにより有機層20が形成され、その直後に同空間内にて第2の吹き出し機構130から吹き出されたアルカリ金属の気化原子が基板Gに堆積することにより金属層30が形成される。これによれば、有機層20を成膜後、基板Gを他の処理装置に向けて搬送することなく、同一チャンバ内で金属層30を成膜できる。これにより、有機層20の表面に水分、窒素、酸素等の不純物が付着することを避けることができ、金属層30が有機層20の表面に付着した不純物と反応して酸化し,絶縁物化して膜の劣化を防ぐことができる。この結果、電子注入効率が高く、高性能な有機EL素子を製造することができる。 As described above, according to the film forming apparatus PM1 according to the present embodiment, the organic layer 20 is formed by depositing the material vapor of the organic material blown from the first blowing mechanisms 120a to 120f on the substrate G. Immediately thereafter, vaporized atoms of alkali metal blown out from the second blowing mechanism 130 in the same space are deposited on the substrate G, whereby the metal layer 30 is formed. According to this, after the organic layer 20 is formed, the metal layer 30 can be formed in the same chamber without transporting the substrate G toward another processing apparatus. As a result, it is possible to avoid impurities such as moisture, nitrogen, and oxygen from adhering to the surface of the organic layer 20, and the metal layer 30 reacts with the impurities adhering to the surface of the organic layer 20 to be oxidized and converted into an insulator. Therefore, deterioration of the film can be prevented. As a result, a high-performance organic EL element with high electron injection efficiency can be manufactured.
 また、上述したように金属層30の劣化を防ぐことができるので、従来に比べて金属層30を厚くすることができる。たとえば、金属層30を0.5nm~100nmの厚さに成膜することができる。金属層30にある程度の厚みを設けることにより、金属層30を電子注入層として機能させるだけでなく、有機EL素子の陰極としても機能させることができる。また、有機EL素子の性能のバラツキを抑制することができる。 Moreover, since the deterioration of the metal layer 30 can be prevented as described above, the metal layer 30 can be made thicker than before. For example, the metal layer 30 can be formed to a thickness of 0.5 nm to 100 nm. By providing the metal layer 30 with a certain thickness, the metal layer 30 can function not only as an electron injection layer but also as a cathode of an organic EL element. Moreover, the variation in the performance of the organic EL element can be suppressed.
 〔1-3〕第1の実施形態の変形例
 第1の実施形態に係る成膜装置PM1の変形例について、図5を参照しながら説明する。第1の実施形態に係る成膜装置PM1では、基板Gを下向き方式で成膜した。
[1-3] Modification of First Embodiment A modification of the film forming apparatus PM1 according to the first embodiment will be described with reference to FIG. In the film forming apparatus PM1 according to the first embodiment, the substrate G is formed in a downward direction.
 これに対して、第1の実施形態の変形例に係る成膜装置PM1では、載置台110は、図5に示したように、処理容器100の底面に設置されている。載置台110は、ゲートバルブ160aから搬入された基板Gを、上向きの状態で載置する。なお、ガス輸送成膜が可能になれば、成膜基材は、上向き(フェースアップ)だけでなく、下向き(フェースダウン)や縦向き(サイド)でもよい。載置台110は、処理容器の底面に設けられたレール110a上を第1の吹き出し機構120a側から第2の吹き出し機構130側へ向けて摺動する。これにより、基板Gは、第1の吹き出し機構120a、120b、120c、120d、120e、120f、第2の吹き出し機構130の順に、各吹き出し口のわずか上空を平行移動する。この結果、第1の実施形態と同様に、同一処理容器100の内部にて有機層20及び金属層30が連続的に成膜される。 On the other hand, in the film forming apparatus PM1 according to the modification of the first embodiment, the mounting table 110 is installed on the bottom surface of the processing container 100 as shown in FIG. The mounting table 110 mounts the substrate G loaded from the gate valve 160a in an upward state. If gas transport film formation is possible, the film formation substrate may be not only upward (face-up) but also downward (face-down) or vertical (side). The mounting table 110 slides on a rail 110a provided on the bottom surface of the processing container from the first blowing mechanism 120a side to the second blowing mechanism 130 side. Thereby, the board | substrate G moves in parallel in the slightly upper direction of each blowing outlet in order of the 1st blowing mechanism 120a, 120b, 120c, 120d, 120e, 120f, and the 2nd blowing mechanism 130. As a result, as in the first embodiment, the organic layer 20 and the metal layer 30 are continuously formed in the same processing container 100.
 これによれば、基板Gを上向きに載置した状態にて成膜処理が実行される。よって、大型基板の場合であっても、基板Gを反らすことなくその搬送を容易にすることができる。また、基板上に形成される膜の面内均一性を高めることができる。 According to this, the film forming process is executed in a state where the substrate G is placed upward. Therefore, even in the case of a large substrate, the substrate G can be easily transported without warping. Further, the in-plane uniformity of the film formed on the substrate can be improved.
〔2〕第2の実施形態
 次に、第2の実施形態に係る成膜装置について、図6を参照しながら説明する。なお、第2の実施形態に係る基板処理システムSysは、第1の実施形態と同様であり、有機EL素子は図1に示したクラスタ型の基板処理システムSys内で製造される。
[2] Second Embodiment Next, a film forming apparatus according to a second embodiment will be described with reference to FIG. The substrate processing system Sys according to the second embodiment is the same as that of the first embodiment, and the organic EL element is manufactured in the cluster type substrate processing system Sys shown in FIG.
 〔2-1〕成膜装置の内部構成
 本実施形態に係る成膜装置PM1では、有機層20の蒸着、金属層30の蒸着、及び保護膜40の成膜が処理容器100の内部にて連続的に処理される。よって、本実施形態に係る成膜装置PM1では、第1の実施形態に係る成膜装置PM1にて有機層20を蒸着するために設けられていた蒸着源200(第1の蒸着源)及び第1の吹き出し機構120a~120f、金属層30を蒸着するために設けられていた気化器300(第2の蒸着源)及び第2の吹き出し機構130の他に、以下に説明するスパッタ装置400が処理容器内部に設置されている。
[2-1] Internal Configuration of Film Forming Apparatus In the film forming apparatus PM1 according to this embodiment, the deposition of the organic layer 20, the deposition of the metal layer 30, and the deposition of the protective film 40 are continuously performed inside the processing vessel 100. Processed. Therefore, in the film forming apparatus PM1 according to the present embodiment, the vapor deposition source 200 (first vapor deposition source) and the first vapor deposition apparatus provided for depositing the organic layer 20 in the film forming apparatus PM1 according to the first embodiment. In addition to the first blowing mechanism 120a to 120f, the vaporizer 300 (second vapor deposition source) and the second blowing mechanism 130 provided for vapor deposition of the metal layer 30, a sputtering apparatus 400 described below performs processing. It is installed inside the container.
 スパッタ装置400は、処理容器100の内部にて第2の吹き出し機構130の隣に設けられている。第1の吹き出し機構120a~120fと第2の吹き出し機構130との間に隔壁140,150が設けられているのと同様に、第2の吹き出し機構130とスパッタ装置400の間には隔壁410が設けられている。 The sputtering apparatus 400 is provided next to the second blowing mechanism 130 inside the processing container 100. In the same manner as the partition walls 140 and 150 are provided between the first blowing mechanism 120 a to 120 f and the second blowing mechanism 130, a partition wall 410 is provided between the second blowing mechanism 130 and the sputtering apparatus 400. Is provided.
 スパッタ装置400は、アルゴンガスを励起させてプラズマを生成し、アルゴンのイオンにより銀のターゲットをスパッタして銀の原子を叩き出す。叩き出された銀は、基板上に堆積し、これにより保護膜40が形成される。 The sputtering apparatus 400 excites argon gas to generate plasma, sputters a silver target with argon ions, and knocks out silver atoms. The struck silver is deposited on the substrate, whereby the protective film 40 is formed.
 具体的には、スパッタ装置400は、ターゲット材420a、420b、バッキングプレート430a、430b、ターゲットホルダー440a、440b、磁界発生手段450a、450b及びガスシャワーヘッド460を有している。 Specifically, the sputtering apparatus 400 includes target materials 420a and 420b, backing plates 430a and 430b, target holders 440a and 440b, magnetic field generation means 450a and 450b, and a gas shower head 460.
 一対のターゲット材420a、420bは、スパッタ面が平行になるように対向して配置されている。ターゲット材420a、420bは、保護膜用材料として電気抵抗が低く、光の反射率が高い銀またはアルミニウムであることが好ましい。本実施形態では、ターゲット材420a、420bは、銀から形成されている。 The pair of target materials 420a and 420b are arranged to face each other so that the sputtering surfaces are parallel. The target materials 420a and 420b are preferably silver or aluminum having a low electrical resistance and a high light reflectance as a protective film material. In the present embodiment, the target materials 420a and 420b are made of silver.
 一対のターゲット材420a、420bは、バッキングプレート430a、430bを介してターゲットホルダー440a、440bに保持されている。磁界発生手段450a、450bは、本実施形態では磁石であり、各ターゲット材420a、420bの背面にてターゲット材420aにS極の磁石、ターゲット420bにN極の磁石が位置するように配置されている。これにより、ターゲット材420a、420bの対向空間には、この空間を囲むように各ターゲット材420a、420bに垂直な磁界が発生する。 The pair of target materials 420a and 420b are held by the target holders 440a and 440b via the backing plates 430a and 430b. The magnetic field generation means 450a and 450b are magnets in this embodiment, and are arranged so that an S-pole magnet is positioned on the target material 420a and an N-pole magnet is positioned on the target 420b on the back surface of each target material 420a and 420b. Yes. As a result, a magnetic field perpendicular to each of the target materials 420a and 420b is generated in the facing space of the target materials 420a and 420b so as to surround the space.
 アルゴンガス供給源320から出力されたアルゴンガスは、ガスシャワーヘッド460から処理容器内に供給される。アルゴンガスの給断および流量は、制御器50から出力された駆動信号に基づき、マスフローコントローラMFCおよびバルブV5を制御することにより調節される。 The argon gas output from the argon gas supply source 320 is supplied from the gas shower head 460 into the processing container. The supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V5 based on the drive signal output from the controller 50.
 直流電源470は、各ターゲット材420a、420bを陰極、バッキングプレート430bを陽極として、図1に示した制御器50から出力された駆動信号に基づき所望の直流電圧(DC定電力)を印加する。これにより、ターゲット材420a、420bの対向空間にプラズマが生成される。電力の種類としては、DC定電力に限られず、AC電力、RF電力、MF電力、パルスDC電力等であってもよく、これらの重畳電力であってもよい。なお、直流電源470は、処理容器100の内部に所望のエネルギーを供給するエネルギー源の一例である。 DC power supply 470 applies a desired DC voltage (DC constant power) based on the drive signal output from controller 50 shown in FIG. 1, with each target material 420a, 420b as a cathode and backing plate 430b as an anode. Thereby, plasma is generated in the facing space between the target materials 420a and 420b. The type of power is not limited to DC constant power, and may be AC power, RF power, MF power, pulsed DC power, or the like, or superimposed power thereof. The DC power source 470 is an example of an energy source that supplies desired energy into the processing container 100.
 スパッタ装置400の近傍には、排気口480及び排気口480に接続された排気装置490が設けられていて、排気装置490を駆動することにより、処理容器内の残余のターゲット原子を外部に排気する。 An exhaust port 480 and an exhaust device 490 connected to the exhaust port 480 are provided in the vicinity of the sputtering device 400. By driving the exhaust device 490, the remaining target atoms in the processing chamber are exhausted to the outside. .
 ここで、処理容器100の内部の圧力について説明する。処理容器100の内部圧力は各成膜に大きな影響を与える。たとえば、有機層20及び金属層30は、水分、窒素、酸素などと反応するとその膜質が劣化する。このため、蒸着時の処理容器内の圧力は10-2Pa程度が好ましい。特に、有機層20及び金属層30はデリケートな膜であり、成膜時の環境が膜質に大きく影響する。たとえば、処理容器内の圧力が高く処理容器内に不純物が多く存在する状態では、有機層20膜が水分等と反応し、膜中にダークスポット等が生じて光電変換効率を悪化させたり、有機EL素子の寿命を劣化させたりする。また、金属層30にはリチウム等の高活性金属を用いるため、処理容器内の圧力が高く不純物が多く存在する状態では、金属層30が酸素等と反応して絶縁物になり、電子注入効率が悪化する。このため、処理容器内の圧力を10-2Paより低真空度にした状態にて有機層20及び金属層30を蒸着することは得策でない。 Here, the pressure inside the processing container 100 will be described. The internal pressure of the processing container 100 greatly affects each film formation. For example, when the organic layer 20 and the metal layer 30 react with moisture, nitrogen, oxygen, etc., the film quality deteriorates. For this reason, the pressure in the processing container during vapor deposition is preferably about 10 −2 Pa. In particular, the organic layer 20 and the metal layer 30 are delicate films, and the environment during film formation greatly affects the film quality. For example, in a state where the pressure in the processing container is high and there are many impurities in the processing container, the organic layer 20 film reacts with moisture and the like, and dark spots or the like are generated in the film to deteriorate the photoelectric conversion efficiency, The life of the EL element is deteriorated. In addition, since a highly active metal such as lithium is used for the metal layer 30, the metal layer 30 reacts with oxygen or the like to become an insulator when the pressure in the processing container is high and a large amount of impurities are present, and the electron injection efficiency is increased. Gets worse. For this reason, it is not a good idea to deposit the organic layer 20 and the metal layer 30 in a state where the pressure in the processing container is lower than 10 −2 Pa.
 本実施形態では、処理容器内の圧力を10-2~10-3Pa程度に維持することにより、有機層20の蒸着、金属層30の蒸着、保護膜40のスパッタを同一容器内で連続的に処理する成膜装置を実現する。 In this embodiment, by maintaining the pressure in the processing container at about 10 −2 to 10 −3 Pa, vapor deposition of the organic layer 20, vapor deposition of the metal layer 30, and sputtering of the protective film 40 are continuously performed in the same container. A film forming apparatus that performs processing is realized.
 本実施形態に係る成膜装置PM1によれば、有機材料およびアルカリ金属材料の酸化や窒化を防止しながら、良質な有機層20及び金属層30を成膜することができる。それとともに、同一処理室内に設けられたスパッタ装置400にてアルゴンガスをプラズマ着火することができ、アルゴンガスのイオンにより、スパッタリング原子Agを叩き出し、これにより、図2の(e)に示した保護膜40を同一チャンバ内にて成膜することができる。 According to the film forming apparatus PM1 according to the present embodiment, it is possible to form the high-quality organic layer 20 and the metal layer 30 while preventing the oxidation and nitridation of the organic material and the alkali metal material. At the same time, the argon gas can be ignited by plasma in the sputtering apparatus 400 provided in the same processing chamber, and sputtering atoms Ag are knocked out by the ions of the argon gas, and as shown in FIG. The protective film 40 can be formed in the same chamber.
 これによれば、金属層30を成膜後、基板Gを処理容器100の外部に搬送する必要がない。この結果、金属層30の表面に水分、窒素、酸素等の不純物が付着することを避けることができ、金属層30の上に保護膜40が形成される前に、金属層30が処理容器内の不純物と反応して酸化し,絶縁物化して膜の劣化を防ぐことができる。このようにして、高活性化種の金属層30が酸化する前に同チャンバ内で保護膜40を成膜することにより、電子注入効率が高く、高性能な有機EL素子を製造することができる。 According to this, it is not necessary to transport the substrate G to the outside of the processing container 100 after the metal layer 30 is formed. As a result, it is possible to prevent impurities such as moisture, nitrogen and oxygen from adhering to the surface of the metal layer 30, and before the protective film 40 is formed on the metal layer 30, the metal layer 30 is placed in the processing container. It can be oxidized by reacting with impurities, and can be converted into an insulator to prevent deterioration of the film. In this manner, by forming the protective film 40 in the same chamber before the highly activated species metal layer 30 is oxidized, a high-performance organic EL element with high electron injection efficiency can be manufactured. .
 また、本実施形態では、第1の実施形態にてスパッタリングの前処理として行っていたソフトエッチングの工程(図2の(d))が不要となる。これにより、スループットを高め、生産性を向上させることができる。 Further, in this embodiment, the soft etching process ((d) in FIG. 2) performed as the pretreatment for sputtering in the first embodiment is not necessary. Thereby, throughput can be increased and productivity can be improved.
 さらに、本実施形態によれば、スパッタリングを従来より低真空の10-2~10-3Pa程度で実行することができる。このため、排気効率が高くなり、基板Gの搬送及び処理にかかる時間を従来より短縮することができる。これによっても、スループットを高め、生産性を向上させることができる。 Furthermore, according to this embodiment, sputtering can be performed at a low vacuum of about 10 −2 to 10 −3 Pa, which is lower than conventional. For this reason, exhaust efficiency becomes high and the time concerning conveyance and processing of substrate G can be shortened conventionally. This can also increase the throughput and improve the productivity.
〔3〕第3の実施形態
 次に、第3の実施形態に係る成膜装置について、図7を参照しながら説明する。なお、第3の実施形態に係る基板処理システムSysは、第1の実施形態と同様であり、有機EL素子は図1に示したクラスタ型の基板処理システムSys内で製造される。
[3] Third Embodiment Next, a film forming apparatus according to a third embodiment will be described with reference to FIG. The substrate processing system Sys according to the third embodiment is the same as that of the first embodiment, and the organic EL element is manufactured in the cluster type substrate processing system Sys shown in FIG.
 〔3-1〕成膜装置の内部構成
 本実施形態に係る成膜装置PM1では、有機層20の蒸着、金属層30の蒸着、及び保護膜40の蒸着が処理容器100の内部にて連続的に処理される。よって、本実施形態に係る成膜装置PM1では、第2の実施形態に係る成膜装置PM1にて有機層20を蒸着するために設けられていた蒸着源200(第1の蒸着源)及び第1の吹き出し機構120a~120f、金属層30を蒸着するために設けられていた気化器300(第2の蒸着源)及び第2の吹き出し機構130の他に、以下に説明する気化器500(第3の蒸着源に相当)及び第3の吹き出し機構510が処理容器内部に設置されている。
[3-1] Internal Configuration of Film Forming Apparatus In the film forming apparatus PM1 according to the present embodiment, the vapor deposition of the organic layer 20, the vapor deposition of the metal layer 30, and the vapor deposition of the protective film 40 are continuously performed inside the processing vessel 100. To be processed. Therefore, in the film formation apparatus PM1 according to the present embodiment, the vapor deposition source 200 (first vapor deposition source) and the first vapor deposition apparatus provided for depositing the organic layer 20 in the film formation apparatus PM1 according to the second embodiment. In addition to the first blowing mechanism 120a to 120f, the vaporizer 300 (second vapor deposition source) and the second blowing mechanism 130 provided for vapor deposition of the metal layer 30, a vaporizer 500 (first 3) and a third blowing mechanism 510 are installed inside the processing vessel.
 処理容器100の外部には、リチウムを加熱して気化させる気化器300の他に、銀又はアルミニウムを気化させる気化器500が設けられている。気化器500は、開度調整可能バルブV6を介して真空ポンプ520に連結されている。気化器500の内部は、制御器50から出力された駆動信号に基づきバルブV6の開度を調節することにより所望の真空圧に制御される。 Outside the processing vessel 100, a vaporizer 500 for vaporizing silver or aluminum is provided in addition to the vaporizer 300 for heating and vaporizing lithium. The vaporizer 500 is connected to a vacuum pump 520 via an opening adjustable valve V6. The inside of the vaporizer 500 is controlled to a desired vacuum pressure by adjusting the opening of the valve V6 based on the drive signal output from the controller 50.
 また、気化器500は、ガスの流量を調整するマスフローコントローラMFCおよびバルブV7を介してアルゴンガス供給源320に連結されている。アルゴンガスの給断および流量は、制御器50から出力された駆動信号に基づき、マスフローコントローラMFC及びバルブV7を制御することによって調節される。気化器500と第3の吹き出し機構510とは、第3のガス供給管530にて連結されている。第3のガス供給管530には、処理容器側に搬送される保護膜用材料の給断及び流量を制御するバルブV8が設けられている。 The vaporizer 500 is connected to an argon gas supply source 320 via a mass flow controller MFC for adjusting the gas flow rate and a valve V7. The supply / disconnection and flow rate of the argon gas are adjusted by controlling the mass flow controller MFC and the valve V7 based on the drive signal output from the controller 50. The vaporizer 500 and the third blowing mechanism 510 are connected by a third gas supply pipe 530. The third gas supply pipe 530 is provided with a valve V8 that controls the supply and disconnection of the protective film material conveyed to the processing container side and the flow rate.
 これにより、気化器500内で蒸発したアルミニウムや銀は、気化器500内に送り込まれた所定量のアルゴンガスをキャリアガスとして、第3のガス供給管520内部の通路を通って処理容器内まで搬送される。 As a result, the aluminum or silver evaporated in the vaporizer 500 passes through the passage in the third gas supply pipe 520 to the inside of the processing container using a predetermined amount of argon gas fed into the vaporizer 500 as a carrier gas. Be transported.
 第2の吹き出し機構130と第3の吹き出し機構510の間には隔壁540が設けられている。また、処理容器100の第3の吹き出し機構510側には排気口550が設けられている。排気口550は排気装置560に接続されている。排気装置560を駆動すると、第3の吹き出し機構510から吹き出された銀の残留原子は排気口550から処理容器外に排出される。 A partition wall 540 is provided between the second blowing mechanism 130 and the third blowing mechanism 510. Further, an exhaust port 550 is provided on the third blowing mechanism 510 side of the processing container 100. The exhaust port 550 is connected to the exhaust device 560. When the exhaust device 560 is driven, residual silver atoms blown out from the third blowing mechanism 510 are discharged out of the processing container through the exhaust port 550.
 なお、保護膜40を成膜するためには、気化器500に替えて、有機層20を成膜するために使用したるつぼと同じ構成の蒸着源を用いてもよい。ただし、保護膜用材料ガスが金属材料であるため、合金にならない等の注意が必要となる。 In addition, in order to form the protective film 40, instead of the vaporizer 500, an evaporation source having the same configuration as that of the crucible used for forming the organic layer 20 may be used. However, since the protective film material gas is a metal material, care must be taken such that it does not become an alloy.
 以上に説明した連続成膜装置によれば、基板Gが第1の吹き出し機構120b~120fの上空を順に移動する際、第1の吹き出し機構120b~120fから吹き出された有機材料蒸気A~Fがそれぞれ基板Gに堆積することにより、有機層(第1層~第6層)が順に形成される。次に、第2の吹き出し機構130から放出されたリチウムが基板Gに堆積することにより、金属層30が形成される。最後に、第3の吹き出し機構510から放出された銀が基板Gに堆積することにより、保護膜40が形成される。 According to the continuous film forming apparatus described above, when the substrate G sequentially moves over the first blowing mechanisms 120b to 120f, the organic material vapors A to F blown from the first blowing mechanisms 120b to 120f By depositing each on the substrate G, organic layers (first to sixth layers) are sequentially formed. Next, the lithium released from the second blowing mechanism 130 is deposited on the substrate G, whereby the metal layer 30 is formed. Finally, the silver released from the third blowing mechanism 510 is deposited on the substrate G, whereby the protective film 40 is formed.
 これによれば、有機材料およびアルカリ金属材料の酸化や窒化を防止しながら、良質な有機層20及び金属層30を成膜することができる。これに加えて、本実施形態に係る成膜装置PM1によれば、同一処理室内に設けられた第3の吹き出し機構510から吹き出される銀により、金属層30の上に直ちに保護膜40が成膜される。 According to this, it is possible to form the high-quality organic layer 20 and the metal layer 30 while preventing the oxidation and nitridation of the organic material and the alkali metal material. In addition, according to the film forming apparatus PM1 according to the present embodiment, the protective film 40 is immediately formed on the metal layer 30 by the silver blown out from the third blowing mechanism 510 provided in the same processing chamber. Be filmed.
 これによれば、金属層30を成膜後、基板Gを処理容器100の外部に搬送する必要がない。この結果、金属層30の表面に水分、窒素、酸素等の不純物が付着することを避けることができ、金属層30の上に保護膜40が形成される前に、金属層30が処理容器内の不純物と反応して酸化し,絶縁物化して膜の劣化を防ぐことができる。このようにして、高活性化種の金属層30が酸化する前に同チャンバ内で保護膜40を成膜することにより、電子注入効率が高く、高性能な有機EL素子を製造することができる。 According to this, it is not necessary to transport the substrate G to the outside of the processing container 100 after the metal layer 30 is formed. As a result, it is possible to prevent impurities such as moisture, nitrogen and oxygen from adhering to the surface of the metal layer 30, and before the protective film 40 is formed on the metal layer 30, the metal layer 30 is placed in the processing container. It can be oxidized by reacting with impurities, and can be converted into an insulator to prevent deterioration of the film. In this manner, by forming the protective film 40 in the same chamber before the highly activated species metal layer 30 is oxidized, a high-performance organic EL element with high electron injection efficiency can be manufactured. .
 また、第1の実施形態にてスパッタリングの前処理として行っていたソフトエッチングの工程(図2の(d))が不要となる。これにより、スループットを高め、生産性を向上させることができる。 Also, the soft etching step ((d) in FIG. 2) performed as the pretreatment for sputtering in the first embodiment is not necessary. Thereby, throughput can be increased and productivity can be improved.
 〔3-2〕第3の実施形態の変形例
 以上の各実施形態では、載置台110に基板Gを載置し、レール110aを用いて載置台110をスライド移動させることにより、各層を基板Gに連続的に成膜した。これに対して、第3の実施形態の変形例では、載置台110に基板Gを載置する替わりに、図8に示したように、処理容器の両端にローラ610、620を設置し、両端のローラ610、620を巻回することにより、両端のローラ610、620に巻き付けられたフィルムFlmを第1の吹き出し機構120a~120f側から第2の吹き出し機構130を経て、第3の吹き出し機構510へ向けて巻きつけていく。この間、第1の第1の吹き出し機構120a~120f、第2の吹き出し機構130、第3の吹き出し機構510からはそれぞれ、有機材料A~F、リチウム、銀が吹き出され、フィルムFlmに順に蒸着される。これにより、処理容器内の同一空間にてフィルムFlmに有機層20、金属層30、保護膜40を連続的に成膜することができる。これにより、成膜中の雰囲気にデリケートに反応する有機層20及び金属層30の成膜中の劣化を防止することができる。これにより、フィルムFlm上に光電変換効率及び電子注入効率を高く維持した、長寿命の有機EL素子を製造することができるとともに、基板Gに替えてフィルムFlmを被処理体に用いることにより製造コストを下げることができる。なお、フィルムFlmとしては、PET(ポリエチレンテレフタレート:Polyethylene Terephthalate)やPPE(ポニフェニレンエーテル:Polyphenylene Ether)を使用することができる。
[3-2] Modification of Third Embodiment In each of the above embodiments, the substrate G is mounted on the mounting table 110, and the mounting table 110 is slid using the rail 110a. The film was continuously formed. On the other hand, in the modified example of the third embodiment, instead of placing the substrate G on the placing table 110, rollers 610 and 620 are installed at both ends of the processing container as shown in FIG. By winding the rollers 610 and 620, the film Flm wound around the rollers 610 and 620 at both ends is passed through the second blowing mechanism 130 from the first blowing mechanisms 120a to 120f side through the third blowing mechanism 510. Wrapping towards During this time, the organic materials A to F, lithium, and silver are blown out from the first blowing mechanism 120a to 120f, the second blowing mechanism 130, and the third blowing mechanism 510, respectively, and sequentially deposited on the film Flm. The Thereby, the organic layer 20, the metal layer 30, and the protective film 40 can be continuously formed on the film Flm in the same space in the processing container. Thereby, the deterioration during the film-forming of the organic layer 20 and the metal layer 30 that react sensitively to the atmosphere during the film-forming can be prevented. This makes it possible to produce a long-life organic EL element that maintains high photoelectric conversion efficiency and electron injection efficiency on the film Flm, and at the same time, uses the film Flm as the object to be processed instead of the substrate G. Can be lowered. In addition, as the film Flm, PET (polyethylene terephthalate) or PPE (polyphenylene ether) can be used.
 〔4〕第4の実施形態
 次に、第4の実施形態に係る成膜装置の内部構成について、図9を参照しながら説明する。本実施形態に係る成膜装置PM1では、有機層20の蒸着に続けて、2つの異なるターゲットを用いた2つの異なるスパッタ処理が同一の処理容器100内にて連続的に処理される。
[4] Fourth Embodiment Next, an internal configuration of a film forming apparatus according to a fourth embodiment will be described with reference to FIG. In the film forming apparatus PM <b> 1 according to this embodiment, following the vapor deposition of the organic layer 20, two different sputtering processes using two different targets are continuously processed in the same processing container 100.
 具体的な処理を説明する。まず、有機層20を蒸着する際、蒸着源200にて気化された有機材料蒸気は、第1の吹き出し機構120a~120fから基板に向けてそれぞれ吹き出され、これにより有機層20の6層連続成膜が実行される。 Specific processing will be explained. First, when the organic layer 20 is vapor-deposited, the organic material vapor vaporized by the vapor deposition source 200 is blown out from the first blowing mechanisms 120a to 120f toward the substrate, whereby the organic layer 20 is continuously formed into six layers. The membrane is executed.
 処理容器100には、第1の吹き出し機構120fの隣に、金属層30を成膜するためにスパッタ装置401が内蔵されている。さらに、スパッタ装置401の隣には、保護膜40を成膜するためにスパッタ装置402が内蔵されている。スパッタ装置401及びスパッタ装置402の主な内部構成は、第2の実施形態にて説明したスパッタ装置400と同様であるのでここでは説明を省略する。なお、スパッタ装置401は、第1のスパッタ装置に相当し、スパッタ装置402は、第2のスパッタ装置に相当する。 The processing vessel 100 has a built-in sputtering apparatus 401 for forming the metal layer 30 next to the first blowing mechanism 120f. Further, a sputtering apparatus 402 is built in next to the sputtering apparatus 401 to form the protective film 40. Since the main internal configurations of the sputtering apparatus 401 and the sputtering apparatus 402 are the same as those of the sputtering apparatus 400 described in the second embodiment, description thereof is omitted here. Note that the sputtering apparatus 401 corresponds to a first sputtering apparatus, and the sputtering apparatus 402 corresponds to a second sputtering apparatus.
 有機層20の成膜後、基板は、スパッタ装置401の下方まで移動し、そこで、仕事関数の高い金属層30が成膜される。スパッタ装置401は、例えばマグネシウムMgからなるターゲットをスパッタすることにより、叩き出されたマグネシウムMgを基板上に積層させて、金属層30を形成する。 After the organic layer 20 is formed, the substrate moves to a position below the sputtering apparatus 401, where the metal layer 30 having a high work function is formed. The sputtering apparatus 401 forms a metal layer 30 by stacking the struck magnesium Mg on the substrate by sputtering a target made of, for example, magnesium Mg.
 金属層30の成膜後、基板は、スパッタ装置402の下方まで移動し、陰極として機能する保護膜40を成膜する。スパッタ装置402は、例えば銀Agからなるターゲットをスパッタすることにより、叩き出された銀Ag原子を基板上に積層させて、保護膜40を形成する。保護膜40には、アルミニウムAlを使用しても良い。また、スパッタ装置401、402に替えて、アルカリディスペンサを使用しても良い。 After the metal layer 30 is formed, the substrate moves below the sputtering apparatus 402 and forms the protective film 40 that functions as a cathode. The sputtering apparatus 402 forms a protective film 40 by sputtering a target made of, for example, silver Ag to stack the struck silver Ag atoms on the substrate. Aluminum Al may be used for the protective film 40. Further, an alkaline dispenser may be used in place of the sputtering apparatuses 401 and 402.
 なお、保護膜40上には、酸化シリコン膜SiOや窒化シリコン膜SiN等からなる封止膜(図示せず)が形成され、これにより、有機EL素子が製造される。 Note that a sealing film (not shown) made of a silicon oxide film SiO 2 , a silicon nitride film SiN, or the like is formed on the protective film 40, thereby manufacturing an organic EL element.
 有機材料蒸気の蒸着では、有機材料蒸気が拡がりながら基板に到達する。一方、スパッタ原子は、比較的直線的に基板に到達する。よって、有機材料蒸気の方が、スパッタ原子より隣まで飛来しやすい。よって、有機材料蒸気がスパッタ装置まで飛来して、金属層30の成膜に悪影響を及ぼさないように、有機成膜側に少なくとも1以上の排気機構を設けることが好ましい。本実施形態では、第1の吹き出し機構120f側に排気装置195bが配設されていて、主に第1の吹き出し機構120a~120fから吹き出された有機材料蒸気を排気して、有機材料蒸気がスパッタ装置401へ飛来することを防止している。第1の吹き出し機構120fとスパッタ装置401との間の隔壁410も同様に、有機材料蒸気がスパッタ装置401へ飛来することを防止している。もちろん、これらの構造は、スパッタ原子が有機成膜側に飛来することも防止している。 In the vapor deposition of organic material vapor, the organic material vapor reaches the substrate while spreading. On the other hand, the sputtered atoms reach the substrate relatively linearly. Therefore, the organic material vapor is likely to fly closer to the next than the sputtered atoms. Therefore, it is preferable to provide at least one exhaust mechanism on the organic film forming side so that the organic material vapor does not fly to the sputtering apparatus and adversely affect the film formation of the metal layer 30. In the present embodiment, an exhaust device 195b is disposed on the first blowing mechanism 120f side, and the organic material vapor blown mainly from the first blowing mechanisms 120a to 120f is exhausted, and the organic material vapor is sputtered. Jumping into the device 401 is prevented. Similarly, the partition wall 410 between the first blowing mechanism 120 f and the sputtering apparatus 401 prevents the organic material vapor from flying into the sputtering apparatus 401. Of course, these structures also prevent sputtered atoms from flying to the organic film forming side.
 本実施形態によっても、有機材料およびアルカリ金属材料等の酸化や窒化を防止しながら、有機層20、金属層30及び保護膜40を成膜することができる。本実施形態では、同一処理容器内にて有機層20の蒸着、金属層30及び保護膜40の形成を連続的に実行することができるので、生産性の向上を図るとともに製造時のコストダウンを図ることができる。特に、スパッタ装置401,402を横並びに配置することにより、異なる条件の成膜、異なる装置構造、異なる材料のスパッタ成膜を連続して行うことができ、同一処理容器で機能分離及び時間短縮の効果がある。 Also in this embodiment, the organic layer 20, the metal layer 30, and the protective film 40 can be formed while preventing oxidation and nitridation of organic materials and alkali metal materials. In this embodiment, it is possible to continuously perform the vapor deposition of the organic layer 20 and the formation of the metal layer 30 and the protective film 40 in the same processing container, so that the productivity is improved and the manufacturing cost is reduced. Can be planned. In particular, by arranging the sputtering devices 401 and 402 side by side, it is possible to continuously perform film formation under different conditions, different device structures, and sputter film formation of different materials. effective.
 なお、本実施形態では、スパッタ装置を2つ並べたが、3つ以上のスパッタ装置を並べてもよい。 In the present embodiment, two sputtering apparatuses are arranged, but three or more sputtering apparatuses may be arranged.
 以上説明したように、各実施形態によれば、活性化しやすいアルカリ金属を酸化等させることなく、高性能な有機ELデバイスを安定的に製造することができる。 As described above, according to each embodiment, a high-performance organic EL device can be stably manufactured without oxidizing an alkali metal that is easily activated.
 上記実施形態において、各部の動作はお互いに関連しており、互いの関連を考慮しながら、一連の動作として置き換えることができる。そして、このように置き換えることにより、上記有機EL素子を製造するための成膜装置の実施形態を、上記有機EL素子を製造するための成膜方法の実施形態および上記成膜装置を用いて製造された有機EL素子の実施形態とすることができる。 In the above embodiment, the operations of the respective units are related to each other, and can be replaced as a series of operations in consideration of the relationship between each other. And by replacing in this way, the embodiment of the film forming apparatus for manufacturing the organic EL element is manufactured using the embodiment of the film forming method for manufacturing the organic EL element and the film forming apparatus. It can be set as the embodiment of the made organic EL element.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As described above, the preferred embodiments of the present invention have been described with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
 たとえば、本発明では、アルカリ金属を気化させて成膜したが、アルカリ金属は融点が低いため、液体で連続供給することも可能である。よって、この場合には、上記気化器に替えて専用容器を用いてアルカリ金属を液体のまま連続供給しながら成膜を行うことができるという特徴がある。一方、上記気化器では材料の連続供給が難しい。このため、気化器による材料の連続供給のためには、気化器を複数用意しておき、各気化器を切り替えて使用する等の工夫が必要となる。 For example, in the present invention, the alkali metal is vaporized to form a film. However, since the alkali metal has a low melting point, it can be continuously supplied as a liquid. Therefore, in this case, there is a feature that the film can be formed while continuously supplying the alkali metal in a liquid state using a dedicated container instead of the vaporizer. On the other hand, continuous supply of materials is difficult with the vaporizer. For this reason, in order to continuously supply the material by the vaporizer, it is necessary to devise such as preparing a plurality of vaporizers and switching the vaporizers for use.
 また、本発明に用いるアルカリ金属材料は、単体でも化合物でも使用することができる。ただし、化合物を用いる場合は、膜を形成するために必要な金属蒸気以外の材料が膜中に混入することがないように、気化器にゲッター材を同梱する必要がある。 Also, the alkali metal material used in the present invention can be used alone or as a compound. However, in the case of using a compound, it is necessary to enclose a getter material in the vaporizer so that materials other than the metal vapor necessary for forming the film do not enter the film.
 本実施形態では、成膜装置の処理容器100と蒸着源200とを別体で設けたが、一つの処理容器内に各有機材料の蒸着源を内蔵させてもよい。 In this embodiment, the processing container 100 and the vapor deposition source 200 of the film forming apparatus are provided separately, but the vapor deposition source of each organic material may be built in one processing container.
 また、被処理体は、730mm×920mm以上の基板であってもよく、200mmや300mm以上のシリコンウエハであってもよい。 Further, the object to be processed may be a substrate of 730 mm × 920 mm or more, or a silicon wafer of 200 mm or 300 mm or more.
 また、有機層と仕事関数蒸着層(金属層)とは、互いの材料蒸気が混ざり合いながら成膜されてもよい。例えば、第1の吹き出し機構120a側から残留した有機材料蒸気を第2の吹き出し機構130側に飛来させて金属層30に混入するようにしてもよい。また、第1の吹き出し機構120a~120f側にリチウムを飛来させて有機層20に混入するようにしてもよい。 Further, the organic layer and the work function vapor deposition layer (metal layer) may be formed while the material vapors are mixed with each other. For example, the organic material vapor remaining from the first blowing mechanism 120 a side may fly to the second blowing mechanism 130 side and be mixed into the metal layer 30. Further, lithium may be allowed to fly to the first blowing mechanism 120a to 120f side and mixed into the organic layer 20.
 10   ITO
 20   有機層
 30   金属層
 40   保護膜
 50   制御器
 100  処理容器
 110  載置台
 120a~120f  第1の吹き出し機構
 130  第2の吹き出し機構
 140、150、410、540  隔壁
 195a、195b、240、490、560  排気装置
 200  蒸着源
 300、500  気化器
 400、401  スパッタ装置
 420a、420b  ターゲット材
 510  第3の吹き出し機構
 610、620  ローラ
 G    基板
 Sys  基板処理システム
 PM1  成膜装置
 PM2  エッチング装置
 PM3  CVD装置
 PM4  スパッタ装置
 CM   クリーニング装置
 TM   搬送装置
 LLM  ロードロック装置
 Flm  フィルム
 
10 ITO
20 Organic layer 30 Metal layer 40 Protective film 50 Controller 100 Processing vessel 110 Mounting table 120a to 120f First blowing mechanism 130 Second blowing mechanism 140, 150, 410, 540 Bulkhead 195a, 195b, 240, 490, 560 Exhaust Apparatus 200 vapor deposition source 300, 500 vaporizer 400, 401 sputtering apparatus 420a, 420b target material 510 third blowing mechanism 610, 620 roller G substrate Sys substrate processing system PM1 film forming apparatus PM2 etching apparatus PM3 CVD apparatus PM4 sputtering apparatus CM cleaning Equipment TM Transport device LLM Load lock device Film film

Claims (12)

  1.  内部にて被処理体上に所望の処理を施す処理容器と、
     有機材料を収納し、収納された有機材料を加熱して気化させる第1の蒸着源と、
     前記処理容器に内蔵されるとともに前記第1の蒸着源に連結され、前記第1の蒸着源にて気化された有機材料を前記処理容器内の被処理体に向けて吹き出す第1の吹き出し機構と、
     アルカリ金属材料を収納し、収納されたアルカリ金属材料を加熱して気化させる第2の蒸着源と、
     前記処理容器に内蔵されるとともに前記第2の蒸着源に連結され、前記第2の蒸着源にて気化されたアルカリ金属材料を前記処理容器内の被処理体に向けて吹き出す第2の吹き出し機構と、を備えた成膜装置。
    A processing container for performing desired processing on the object to be processed inside;
    A first vapor deposition source that contains the organic material and heats and vaporizes the stored organic material;
    A first blow-out mechanism that is built in the processing vessel and connected to the first vapor deposition source, and blows out an organic material vaporized in the first vapor deposition source toward an object to be treated in the treatment vessel; ,
    A second vapor deposition source that contains the alkali metal material and heats and vaporizes the stored alkali metal material;
    A second blowing mechanism that is built in the processing vessel and connected to the second vapor deposition source, and blows out the alkali metal material vaporized in the second vapor deposition source toward the object to be processed in the processing vessel. And a film forming apparatus.
  2.  保護膜用材料を収納し、収納された保護膜用材料を加熱して気化させる第3の蒸着源と、
     前記処理容器に内蔵されるとともに前記第3の蒸着源に連結され、前記第3の蒸着源にて気化された保護膜用材料を前記処理容器内の被処理体に向けて吹き出す第3の吹き出し機構と、をさらに備える請求項1に記載された成膜装置。
    A third deposition source for storing the protective film material and heating and storing the stored protective film material;
    A third blowout that is built in the processing vessel and connected to the third vapor deposition source, and blows out the protective film material vaporized by the third vapor deposition source toward the target object in the treatment vessel. The film forming apparatus according to claim 1, further comprising a mechanism.
  3.  前記処理容器に内蔵され、保護膜用材料からなるターゲットをスパッタするスパッタ装置をさらに備える請求項1に記載された成膜装置。 The film forming apparatus according to claim 1, further comprising a sputtering apparatus that is built in the processing container and that sputters a target made of a protective film material.
  4.  前記処理容器に搬送された被処理体を載置する載置台を備え、
     前記載置台は、上向き又は下向き又は縦向きに載置された被処理体を前記第1の吹き出し機構側から前記第2の吹き出し機構側へ向けて摺動する請求項1に記載された成膜装置。
    A mounting table for mounting the object to be processed conveyed to the processing container;
    2. The film formation according to claim 1, wherein the mounting table slides an object to be processed placed upward, downward, or vertically from the first blowing mechanism side toward the second blowing mechanism side. apparatus.
  5.  前記処理容器の両端にローラを備え、
     前記両端のローラを巻回することにより、前記両端のローラに巻き付けられたフィルムを前記第1の吹き出し機構側から前記第2の吹き出し機構側へ向けて移動させる請求項1に記載された成膜装置。
    Provided with rollers at both ends of the processing vessel,
    The film formation according to claim 1, wherein the film wound around the rollers at both ends is moved from the first blowing mechanism side toward the second blowing mechanism side by winding the rollers at both ends. apparatus.
  6.  前記処理容器には、少なくとも前記第1の吹き出し機構側に排気装置が配設される請求項1に記載された成膜装置。 The film forming apparatus according to claim 1, wherein an exhaust device is disposed at least on the first blowing mechanism side in the processing container.
  7.  前記第1の吹き出し機構と前記第2の吹き出し機構との間には、隔壁が設けられている請求項1に記載された成膜装置。 The film forming apparatus according to claim 1, wherein a partition wall is provided between the first blowing mechanism and the second blowing mechanism.
  8.  前記第1の蒸着源は、複数の有機材料を収納する複数のるつぼから形成され、
     前記第1の吹き出し機構は、複数のるつぼに連結された複数の吹き出し部から形成され、
     前記複数のるつぼにて気化された複数の有機材料を前記第1の吹き出し機構に設けられた複数の吹き出し部からそれぞれ吹き出すことにより、被処理体上に複数の有機材料を積層させた有機層を連続成膜する請求項1に記載された成膜装置。
    The first evaporation source is formed from a plurality of crucibles that store a plurality of organic materials,
    The first blowing mechanism is formed from a plurality of blowing portions connected to a plurality of crucibles,
    A plurality of organic materials vaporized in the plurality of crucibles are blown out from a plurality of blowing portions provided in the first blowing mechanism, respectively, to thereby form an organic layer in which a plurality of organic materials are laminated on the object to be processed. The film forming apparatus according to claim 1, wherein the film forming is performed continuously.
  9.  前記アルカリ金属材料は、リチウム、セシウム、ナトリウム、カリウム又はルビシウムのいずれかである請求項1に記載された成膜装置。 2. The film forming apparatus according to claim 1, wherein the alkali metal material is any one of lithium, cesium, sodium, potassium, or rubidium.
  10.  内部にて被処理体上に所望の処理を施す処理容器と、
     有機材料を収納し、収納された有機材料を加熱して気化させる第1の蒸着源と、
     前記処理容器に内蔵されるとともに前記第1の蒸着源に連結され、前記第1の蒸着源にて気化された有機材料を前記処理容器内の被処理体に向けて吹き出す第1の吹き出し機構と、
     前記処理容器に内蔵され、アルカリ金属材料からなるターゲットをスパッタする第1のスパッタ装置と、
     前記処理容器に内蔵され、保護膜用材料からなるターゲットをスパッタする第2のスパッタ装置と、を備えた成膜装置。
    A processing container for performing desired processing on the object to be processed inside;
    A first vapor deposition source that contains the organic material and heats and vaporizes the stored organic material;
    A first blow-out mechanism that is built in the processing vessel and connected to the first vapor deposition source, and blows out an organic material vaporized in the first vapor deposition source toward an object to be treated in the treatment vessel; ,
    A first sputtering device built in the processing vessel and sputtering a target made of an alkali metal material;
    And a second sputtering apparatus that sputters a target made of a protective film material, which is built in the processing vessel.
  11.  前記処理容器には、少なくとも前記第1の吹き出し機構側に排気装置が配設される請求項10に記載された成膜装置。 The film forming apparatus according to claim 10, wherein the processing container is provided with an exhaust device at least on the first blowing mechanism side.
  12.  前記第1の吹き出し機構と前記第1のスパッタ装置との間には、隔壁が設けられている請求項10に記載された成膜装置。 The film forming apparatus according to claim 10, wherein a partition wall is provided between the first blowing mechanism and the first sputtering apparatus.
PCT/JP2010/054675 2009-03-31 2010-03-18 Film forming device, film forming method, and organic el element WO2010113659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011507089A JPWO2010113659A1 (en) 2009-03-31 2010-03-18 Film forming apparatus, film forming method, and organic EL element
CN2010800147449A CN102369787A (en) 2009-03-31 2010-03-18 Film forming device, film forming method, and organic EL element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-087744 2009-03-31
JP2009087744 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113659A1 true WO2010113659A1 (en) 2010-10-07

Family

ID=42827956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054675 WO2010113659A1 (en) 2009-03-31 2010-03-18 Film forming device, film forming method, and organic el element

Country Status (5)

Country Link
JP (1) JPWO2010113659A1 (en)
KR (1) KR20110116210A (en)
CN (1) CN102369787A (en)
TW (1) TW201107502A (en)
WO (1) WO2010113659A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120137508A1 (en) * 2010-12-01 2012-06-07 Oladeji Isaiah O Method of forming a solid state cathode for high energy density secondary batteries
WO2012118199A1 (en) * 2011-03-03 2012-09-07 東京エレクトロン株式会社 Vapor-deposition device, vapor-deposition method, organic el display, and lighting device
WO2014029845A1 (en) * 2012-08-24 2014-02-27 Technische Universität Braunschweig Method for coating a substrate with multiple material layers, and multi-material dispensing device for said method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963193B2 (en) 2011-07-29 2016-08-03 日東電工株式会社 Manufacturing method of laminate
JP6049051B2 (en) 2011-07-29 2016-12-21 日東電工株式会社 Double-side vacuum deposition method
JP2014095131A (en) * 2012-11-09 2014-05-22 Tokyo Electron Ltd Film deposition apparatus
CN109609909B (en) * 2019-01-03 2021-01-26 京东方科技集团股份有限公司 Evaporation method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253590A (en) * 2006-03-27 2007-10-04 Fujifilm Corp Gas barrier film, substrate film, and organic electroluminescence element
JP2008159381A (en) * 2006-12-22 2008-07-10 Tokyo Electron Ltd Substrate treatment device and cleaning method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253590A (en) * 2006-03-27 2007-10-04 Fujifilm Corp Gas barrier film, substrate film, and organic electroluminescence element
JP2008159381A (en) * 2006-12-22 2008-07-10 Tokyo Electron Ltd Substrate treatment device and cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120137508A1 (en) * 2010-12-01 2012-06-07 Oladeji Isaiah O Method of forming a solid state cathode for high energy density secondary batteries
US8465556B2 (en) * 2010-12-01 2013-06-18 Sisom Thin Films Llc Method of forming a solid state cathode for high energy density secondary batteries
US20130283602A1 (en) * 2010-12-01 2013-10-31 Isaiah O. Oladeji Method of forming a solid state cathode for high energy density secondary batteries
US8808405B2 (en) * 2010-12-01 2014-08-19 Quantumscape Corp. Method of forming a solid state cathode for high energy density secondary batteries
WO2012118199A1 (en) * 2011-03-03 2012-09-07 東京エレクトロン株式会社 Vapor-deposition device, vapor-deposition method, organic el display, and lighting device
WO2014029845A1 (en) * 2012-08-24 2014-02-27 Technische Universität Braunschweig Method for coating a substrate with multiple material layers, and multi-material dispensing device for said method

Also Published As

Publication number Publication date
TW201107502A (en) 2011-03-01
CN102369787A (en) 2012-03-07
JPWO2010113659A1 (en) 2012-10-11
KR20110116210A (en) 2011-10-25

Similar Documents

Publication Publication Date Title
US8158012B2 (en) Film forming apparatus and method for manufacturing light emitting element
EP1547448B1 (en) Fabricating method of organic compound-containing layer
JP4463492B2 (en) Manufacturing equipment
WO2010113659A1 (en) Film forming device, film forming method, and organic el element
US7977255B1 (en) Method and system for depositing a thin-film transistor
US20130062199A1 (en) Film-forming apparatus for forming a cathode on an organic layer formed on a target object
WO2007145255A1 (en) Light-emitting device and method for manufacturing light-emitting device
US20100259162A1 (en) Film forming device control method, film forming method, film forming device, organic el electronic device, and recording medium storing its control program
KR101046239B1 (en) Deposition Device, Deposition System and Deposition Method
JP4494126B2 (en) Film forming apparatus and manufacturing apparatus
JP6185498B2 (en) Evaporation mask
WO2009096250A1 (en) Organic light-emitting diode, method for manufacturing organic light-emitting diode, manufacturing device for manufacturing organic light-emitting diode, and plasma processing device
JP2003313655A (en) Producing apparatus
JP2010121215A (en) Deposition apparatus and deposition method
US20090202708A1 (en) Apparatus for Manufacturing Light Emitting Elements and Method of Manufacturing Light Emitting Elements
JP5568683B2 (en) Vapor deposition mask and vapor deposition method using the mask
JP2004006311A (en) Method and apparatus for manufacturing light-emitting device
JP2008226472A (en) Electronic device, its manufacturing method, structural body of sealing film, manufacturing device for manufacturing electronic device, and plasma processing device
JP2013067867A (en) Vessel
JP2017036512A (en) Deposition device
WO2007142315A1 (en) Light emitting element manufacturing apparatus and light emitting element manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014744.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507089

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117020914

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758435

Country of ref document: EP

Kind code of ref document: A1