WO2010110505A1 - 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법 - Google Patents

저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법 Download PDF

Info

Publication number
WO2010110505A1
WO2010110505A1 PCT/KR2009/002001 KR2009002001W WO2010110505A1 WO 2010110505 A1 WO2010110505 A1 WO 2010110505A1 KR 2009002001 W KR2009002001 W KR 2009002001W WO 2010110505 A1 WO2010110505 A1 WO 2010110505A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
alloy
low temperature
temperature
magnesium alloy
Prior art date
Application number
PCT/KR2009/002001
Other languages
English (en)
French (fr)
Inventor
배동현
신범수
Original Assignee
주식회사 지알로이테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지알로이테크놀로지 filed Critical 주식회사 지알로이테크놀로지
Publication of WO2010110505A1 publication Critical patent/WO2010110505A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to a Mg-Zn-based magnesium alloy and a method for manufacturing the same, which are capable of forming a high-speed high-temperature forming at low temperatures by activating non-basis slip at low temperatures as the temperature at which recovery and recrystallization start at a low temperature is lowered. will be.
  • the magnesium alloy Since the magnesium alloy has an HCP structure, the slip system required for the plastic working is limited, so it is very difficult to form and manufacture the product at room temperature. Therefore, there is a problem that the molded product must be manufactured through hot working.
  • the crystal structure of the magnesium alloy is made fine to improve the elongation or to operate the limited slip system of the HCP structure, Is the most effective method.
  • the demand of magnesium plate material is gradually increasing, it is difficult to manufacture a magnesium alloy plate having good low-temperature formability by making the micro structure required for the commercially available magnesium alloy or by increasing the operation possibility of the non- It is true.
  • the present invention has been made in order to solve the above problems of the prior art, and it is an object of the present invention to provide a method and apparatus for activating non-base slip at a low temperature by lowering the temperature at which recovery and recrystallization start at a low temperature, A Mg-Zn-based magnesium alloy excellent in high-speed forming capability.
  • Another object of the present invention is to stabilize the microstructure by adding an element which improves the stability and deformability of a minute amount of microstructure to the Mg-Zn-based magnesium alloy, and to facilitate the activation of the non-basis slip at low temperature Zn-based magnesium alloy, which is excellent in high-speed forming capability at a low temperature, in which low-temperature / high-speed formability is greatly improved because the strain at low temperature is greatly increased and the uniformity /
  • the present invention provides a magnesium-zinc-based magnesium alloy, which is excellent in low-temperature and high-speed forming capability, comprises 3.5 wt% or less of zinc (Zn), iron (Fe), scandium (Sc) (Ag), titanium (Ti), zirconium (Zr), manganese (Mn), silicon (Si), nickel (Ni), strontium (Sr), copper (Cu) 1.0 wt% or less of one or more elements selected from rare earth elements or a misch metal consisting of rare earth elements, and magnesium (Mg) balance; Recovery and recrystallization are initiated at a temperature of 120-140 to activate the non-basis slip.
  • the method for producing a magnesium-magnesium-based alloy according to the present invention is characterized in that it contains 3.5 wt% or less of zinc (Zn), iron (Fe), scandium (Sc), calcium (Ca) ), Titanium (Ti), zirconium (Zr), manganese (Mn), silicon (Si), nickel (Ni), strontium (Sr), copper (Cu) 1.0 wt% or less, and magnesium (Mg) balance of one or more elements selected from rare earth elements (e.g., rare earth elements) or a miscible metal (misch metal) consisting of rare earth elements). Heating the alloy composition to produce a cast material; And repeatedly warm-rolling the cast material at a thickness shrinkage ratio of 130 to 180 at a thickness of 1 to 20% to produce a plate having a thickness of 0.3 to 1.5 mm.
  • rare earth elements e.g., rare earth elements
  • misch metal miscible metal
  • the present invention further includes a step of homogenizing and solidifying the cast material at 200 to 400 ° C. for 5 to 20 hours in a process for producing a magnesium alloy material having a Mg-Zn system structure having excellent high-speed forming capability at low temperatures.
  • the Mg-Zn-based magnesium alloy of the present invention which is excellent in high-speed forming capability at a low temperature, the Mg-Zn-based magnesium alloy is recrystallized through a rolling-annealing process to form fine grains.
  • the Mg-Zn-based magnesium alloy sheet of the present invention which has a high crystallinity at a low temperature and at a low temperature, has a fine crystal structure, exhibits mechanical properties having high strength and high toughness at room temperature, The elongation at a temperature at which molding is actually performed is excellent and the moldability is improved.
  • the magnesium alloy sheet made of the magnesium alloy of the working material Mg-Zn based on the high-temperature and low-temperature forming capability of the present invention can reduce the number of roads, air and railway transportation water and can be used for mobile communication, And the like.
  • FIG. 1 is a process diagram for explaining a method for producing a Mg-Zn-based magnesium alloy, which is excellent in low-temperature high-speed forming capability according to the present invention.
  • FIG. 2 is an optical microscope photograph of the plate produced through the warm rolling process of Alloy 1 of Example 2 according to the present invention.
  • FIG. 3 is an optical microscope photograph of a sheet material prepared by hot rolling and heat treatment of Alloy 1 of Example 2 according to the present invention.
  • FIG. 4 is a graph showing a comparison between Alloy 1 of Example 5 according to the present invention and 150 tensile test data of a commercial magnesium alloy sheet AZ31.
  • FIG. 4 is a graph showing a comparison between Alloy 1 of Example 5 according to the present invention and 150 tensile test data of a commercial magnesium alloy sheet AZ31.
  • Example 5 is a graph showing 150 different tensile test data of Alloy 1 of Example 5 and AZ31, a commercial magnesium alloy sheet, according to the present invention.
  • FIG. 6 is a graph showing the temperature at which recovery of an Mg-Zn-based magnesium alloy sheet and a commercial magnesium alloy sheet, AZ31, which have excellent high-speed forming capability at low temperatures according to an embodiment of the present invention, occurs using a differential scanning calorimeter.
  • FIG. 7 is a photograph of a Mg-Zn-based magnesium alloy sheet having excellent high-speed forming capability at low temperature according to an embodiment of the present invention, and observing it through TEM after deformation at low temperature.
  • the working Mg-Zn-based magnesium alloy which is capable of high-speed forming at low temperatures according to the present invention is added to magnesium within a composition range of zinc (Zn) at room temperature and maximum solubility limit (3.5 wt%).
  • the temperature at which recovery of the Mg-Zn-based magnesium alloy having a high forming ability at low temperatures according to the present invention at a low temperature is started is about 130, and the recovery and recrystallization are initiated by diffusion at a low temperature As the temperature is lowered, non-base slip is activated at a low temperature, so that the high-speed forming capability is excellent at a low temperature.
  • the addition of zinc (Zn) to magnesium within the compositional range of the maximum solid solubility (3.5 wt%) at room temperature lowers the temperature at which the recovery starts and activates the non-basis slip at low temperature. If the addition range of the zinc (Zn) element exceeds 3.5 wt%, the precipitate is formed and the recovery temperature is lowered. However, since the strengthening effect is caused by precipitation, the formability is decreased. Therefore, Is limited to 3.5 wt% or less.
  • This element is composed of iron (Fe), scandium (Sc), calcium (Ca), silver (Ag), titanium (Ti), zirconium (Zr), manganese (Mn), silicon (Si), nickel Sr, and Cu, Al, Sn, Rare earth elements, or a miscible metal composed of rare earth elements.
  • Secondary or tertiary phases may be produced by elements which are stable because of their higher melting point than magnesium or which can increase the solid solubility of -Mg base, and they may be crystallized due to nucleation by secondary or tertiary particles during recrystallization Thereby improving the effect.
  • the addition range of the element which can be stabilized because the melting point is higher than that of magnesium or can increase the solid solubility of -Mg base is more than 0.5 wt%, the melting point is higher than magnesium and it is stable or can increase the solid solubility of Mg base
  • the second phase or the three phases that can be formed by a trace amount of elements are excessively formed on the magnesium base, which causes a crack at the time of deformation at a high temperature and may degrade the formability, which is not preferable. Therefore, in the present invention, the addition range of a trace amount of element which can be stabilized because of a higher melting point than magnesium or which can increase the solid solubility of Mg base is limited to 1.0 wt% or less.
  • the rare earth elements include scandium (Sc), yttrium (Y), and lanthanum (La) -based elements (lanthanum (La), cerium (Ce), praseodymium (Pr) (Sm), Eu (Eu), Gadolinium (Gd), Terebium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Erterebium Lu)) are collectively referred to as 17 elements.
  • alloys composed of rare earth elements are commercially available alloys composed of elements of atomic numbers 57 to 71 and include various types of mis-metal, and include Didymium misch metal, Ce-rich misch metal ) Or lanthanum-based misch metal (La-rich misch metal).
  • the magnesium alloy can not ensure workability at room temperature.
  • the processing material Mg-Zn-based magnesium alloy having excellent low-temperature and high-speed forming capability according to the present invention can be processed at various temperatures from room temperature to below 150, In order to obtain a working material, room temperature and warm working are performed, and the processing temperature of the casting material is set within a range in which the soundness of the working material can be ensured through experiments.
  • FIG. 1 is a process diagram for explaining a method of manufacturing a magnesium alloy material Mg-Zn according to the present invention.
  • FIG. A casting step 113, a homogenization and solidification step 115, a repeated warm rolling step 117 and a grain refinement heat treatment step 119.
  • the alloy composition preparing step 111 is a step of preparing an alloy composition containing not more than 3.5 wt% of zinc, Fe, Sc, Ca, Ag, Ti, Zr, Mn, A commercially available misch metal consisting of silicon (Si), nickel (Ni), strontium (Sr), copper (Cu), aluminum (Al), tin (Sn), rare earth elements or rare earth elements A Mg-Zn alloy composition in which one or two or more elements selected is added in an amount of 1.0 wt% or less and magnesium is added in a proportion of the remaining wt% is prepared.
  • a rolled material (plate) having a thickness of 0.3 to 1.5 mm is obtained by repeating warm-rolling the cast material at a temperature shrinkage ratio of 1 to 20% at a temperature of 130 to 180. (117)
  • the casting material is homogenized and solidified at 200 to 400 ° C for 5 to 20 hours,
  • the processing material Mg-Zn-based magnesium alloy and the commercial magnesium alloy magnesium alloy (AZ31) according to the embodiment of the present invention In order to investigate the effect of the non-basis slip on the deformed specimens of 150 Mg-Zn magnesium alloy sheet,
  • Table 1 below is a table showing the yield strength, the tensile strength, and the elongation at room temperature measured by casting and hot rolling the various alloying compositions of various examples.
  • the magnesium alloy composition as described is prepared, and the casting or strip casting casting To obtain a cast material. Alloy 1 to Alloy 1 to 10 were melted by heating the carbon crucible to 700 ° C in an electric induction furnace, then magnesium alloy was added by adding other additives, alloyed molten metal was injected into a casting mold cooled with cooling water to produce a casting material .
  • the cast material was hot-rolled to obtain a plate material, then heat-treated to refine the crystal grains through the recrystallization, and then subjected to a tensile test at room temperature.
  • Example 2 the casting material of Alloy 1 shown in Table 1 is processed by warm rolling. The machining conditions were repeatedly rolled until the thickness became 0.6 mm by decreasing the thickness at a roll temperature of 150 by using a casting material at a rolling temperature of 150 to produce a magnesium plate. After rolling, Heat treatment for a minute.
  • FIG. 2 is an optical microscope photograph of a plate produced through hot rolling of Alloy 1 of Example 2 according to the present invention, showing that crystal grains are not properly formed without recrystallization.
  • FIG. 3 is an optical microscope photograph of a sheet material produced through hot rolling of Alloy 1 of Example 2 according to the present invention.
  • FIG. 3 is a micrograph of a sheet of a- .
  • Example 3 the Alloy 2 casting material shown in Table 1 is treated at 350 for 15 hours for warm-rolling.
  • the machining conditions were repeatedly rolled until the thickness became 1.0 mm by decreasing the thickness by 10% at a roll temperature of 140 using a casting material.
  • Heat treatment for a minute.
  • the lattice constants of the specimens were analyzed by X-ray diffraction and then the lattice constants were calculated using the Cohen method.
  • the value of the lattice constant a axis was increased to 3.216 and the value of the c axis was increased to 5.221 (pure magnesium a: 3.209, c: 5.210) It was confirmed that the added element could be solved in the -Mg base to improve the microstructure stability and further facilitate the activation of the non-base slip.
  • Example 4 the casting material of Alloy 3 shown in Table 1 is homogenized and solidified at 200 to 9 hours, and then subjected to warm rolling.
  • the processing conditions were repeatedly rolling until the thickness became 1.0 mm by reducing the thickness by 20% at a roll temperature of 180 without heating the material by using a casting material.
  • Magnesium plate was manufactured by rolling, Heat treatment for 300 to 10 minutes.
  • Alloy 4 ⁇ 10 As shown in Table 1, the cast material was subjected to repeated hot rolling at a roll temperature of 130 ⁇ 180 to a thickness shrinkage of 1 ⁇ 20% Alloy 4 ⁇ 10 is made of plate. Subsequently, the plate was subjected to heat treatment at 250 for 5 minutes, and elongation at a strain of 1 x 10 -3 s -1 at room temperature was measured. The results are shown in Table 1. As can be seen from Example 5, all of the tensile tests showed a tensile strength of more than 140 MPa and a high elongation of 23% to 33%.
  • FIG. 4 is a graph showing a comparison of 150 tensile test data of Alloy 1 of Example 5 and AZ31 of a commercial magnesium alloy sheet according to the present invention.
  • Alloy 1 is a commercial magnesium alloy Excellent elongation of 20 ⁇ 25% than that of plate material AZ31.
  • FIG. 5 is a graph showing 150 tensile test data of Alloy 1 of Example 5 and AZ31 of a commercial magnesium alloy sheet according to the present invention, and a tensile test was conducted at 150 at a strain of 1x10 -2 s -1 .
  • 150 and 1x10 -1 s -1 the plate material made of a magnesium alloy having a low temperature at which recovery according to the present invention starts, exhibits a high strain at a molding temperature of 150 at the time of press forming, This is possible.
  • FIG. 6 is a graph illustrating the temperature at which recovery of an Mg-Zn-based magnesium alloy sheet and a commercial magnesium alloy sheet, AZ31, which have excellent high-speed forming capability at low temperatures according to an embodiment of the present invention, occurs using a differential scanning calorimeter. It can be seen that the Mg-Zn-based magnesium alloy having excellent forming ability at low temperatures at a low temperature of the present invention starts to recover from about 120, which is about 20 lower than that of AZ31, and the residual stress is completely removed at about 235.
  • FIG. 7 is a photograph of a Mg-Zn-based magnesium alloy sheet material having excellent high-speed forming capability at low temperatures according to an embodiment of the present invention and observed through TEM after deformation at a low temperature.
  • non-basis slip was activated in many of the plates made of Mg-Zn-based magnesium alloy, which has excellent high-speed forming capability at low temperatures.
  • the magnesium alloy sheet made of the Mg-Zn-based magnesium alloy which is superior in low-temperature and high-speed forming ability according to the present invention, as compared with the magnesium alloy for forming the conventional plate, diffuses at low temperature, As the non-base slip is activated, the low-temperature high-speed strain is high, and addition of a rare earth element or high melting point element to the Mg-Zn type magnesium alloy further facilitates the activation of the non-base slip at low temperature, The moldability of the plate can be improved and the moldability of the produced magnesium plate can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 낮은 온도에서 확산되어 회복 및 재결정이 시작되는 온도가 낮아짐에 따라 저온에서 비-기저 슬립을 활성화시켜 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금 및 그 합금판재의 제조방법에 관한 것이다. 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금은, 아연(Zn) 3.5 wt% 이하, 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소 1.0 wt% 이하, 마그네슘(Mg) 나머지의 합금조성비를 가지며; 120~140의 온도에서 회복(recovery) 및 재결정(Recrystallization)이 시작되어 비-기저 슬립이 활성화되는 것을 특징으로 한다. 본 발명에 따르면, 150이하의 온도에서도 성형성이 우수한 마그네슘 합금의 판재 생산이 가능하게 되고 이렇게 제조된 마그네슘 판재는 저온에서 비-기저 슬립을 활성화시킴에 따라 저온 고속 변형능이 증가되기 때문에 성형성이 대단히 우수하다.

Description

저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
본 발명은 낮은 온도에서 확산되어 회복 및 재결정이 시작되는 온도가 낮아짐에 따라 저온에서 비-기저 슬립을 활성화시켜 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 및 그 합금판재의 제조방법에 관한 것이다.
마그네슘 합금은 HCP 구조로서 소성가공에 필요한 슬립시스템이 제한을 받기 때문에 상온에서 제품을 성형 제조하는 것이 매우 어려우므로 열간 가공을 통하여 성형품을 제조해야 하는 문제점이 있었다.
따라서 마그네슘 합금의 중간재 및 제품의 개발을 위해서는 성형성의 향상이 절대적으로 필요한데, 이를 위하여는 마그네슘 합금의 결정 구조를 미세하게 하여 연신율을 향상시키거나 HCP 구조의 제한된 슬립계를 작동하게 하여 성형성을 개선하는 것이 가장 유효한 방법이다. 그러나, 마그네슘 판재의 수요가 점차 증가하는 현실에 비추어 현재 상용화된 마그네슘 합금에서는 요구되는 미세구조를 갖게 하거나 비-기저 슬립계의 작동 가능성을 높여 저온 성형성이 좋은 마그네슘 합금 판재의 제조가 효율적이지 못한 실정이다.
기존의 마그네슘 합금의 경우 결정립을 미세화 하기 위하여 압연의 압하율을 높여야 하는데, 이 경우 심각한 균열 발생으로 인하여 두께감소율에 제한을 받게 되므로 결정립 미세화가 제한되고 또한 반복 열간 압연하여 동적 재결정에 의하여 결정립을 미세화시키기 때문에 집합 조직이 크게 발달하여 판재의 이방성이 커져 성형성이 저하되는 문제점이 있다. 즉, 이와 같은 마그네슘 합금의 경우 열간 가공하는 동안 동적 재결정에 의하여 결정립을 미세화 하는데 한계가 있고, 저온에서의 성형성 뿐만 아니라 고속 성형이 불가능하여 열간에서 느린 속도로 성형을 해야만 하는 문제점을 가지고 있다.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 낮은 온도에서 확산되어 회복 및 재결정이 시작되는 온도가 낮아짐에 따라 저온에서 비-기저 슬립을 활성화시켜 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금을 제공하는 것이다.
또한, 본 발명의 다른 목적은 Mg-Zn계 마그네슘 합금에 미량의 미세구조의 안정성 및 변형능을 향상시키는 원소를 첨가하여 미세구조를 안정화하고 낮은 온도에서의 비-기저 슬립을 활성화를 더욱 용이하게 함으로써 저온에서의 변형률이 매우 증가하고, 균일/고속 변형능 또한 증가되기 때문에 저온/고속 성형성이 크게 향상되는 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금은, 아연(Zn) 3.5 wt% 이하, 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal)) 중에서 선택되는 하나 또는 둘 이상의 원소 1.0 wt% 이하, 마그네슘(Mg) 나머지의 합금조성비를 가지며; 120~140의 온도에서 회복(recovery) 및 재결정(Recrystallization)이 시작되어 비-기저 슬립이 활성화되는 것을 특징으로 한다.
또한 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재의 제조방법은 아연(Zn) 3.5 wt% 이하, 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal)) 중에서 선택되는 하나 또는 둘 이상의 원소 1.0 wt% 이하, 마그네슘(Mg) 나머지의 조성비를 갖는 합금조성물을 준비하는 단계; 상기 합금조성물을 가열하여 주조재를 제조하는 단계; 상기 주조재를 130~180에서 1~20% 두께 수축률로 반복 온간 압연하여 두께 0.3~1.5mm의 판재를 제조하는 단계를 포함한다.
또한 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재의 제조방법에 있어서, 상기 판재를 150~300에서 1~60분 간 열처리하여 재결정에 의하여 결정립 크기를 미세화하는 단계를 더욱 포함한다.
또한 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재의 제조방법에 있어서, 상기 주조재를 200~400에서 5~20시간 동안 균질화 및 고용화 처리하는 단계를 더욱 포함한다.
이상과 같은 구성의 본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금에 따르면, 압연-열처리 공정을 거쳐 재결정됨으로써 미세한 결정립이 형성된다.
또한, 본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재는, 미세한 결정 구조를 가짐으로써 합금이 실제 사용되는 상온 영역에서는 고강도와 고인성(高靭性)을 지니는 기계적 성질을 나타내고, 실제로 성형이 되는 온도에서 연신율이 우수하여 성형성이 향상된다.
또한, 본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금을 압연을 통해 150이하의 온도에서도 성형성이 우수한 마그네슘 합금의 판재 생산이 가능하게 되고 이렇게 제조된 마그네슘 판재는 저온에서 비-기저 슬립을 활성화시킴에 따라 저온 고속 변형능이 증가되기 때문에 성형성이 대단히 우수하다.
따라서 본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금으로 제조된 마그네슘 합금 판재는 도로 및 항공, 철도운송 수의 경량화를 가능하게 하고 이동 통신 및 노트북 컴퓨터, 카메라 등의 전자/통신 제품 등의 외장재로서 널리 응용될 수 있다.
도 1은 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금의 제조방법을 설명하는 공정도.
도 2는 본 발명에 따른 실시예 2의 Alloy 1을 온간 압연 과정을 통해 제작한 판재의 광학현미경 사진.
도 3은 본 발명에 따른 실시예 2의 Alloy 1을 온간 압연 및 열처리 과정을 통해 제작한 판재의 열처리 후의 광학현미경 사진.
도 4는 본 발명에 따른 실시예 5의 Alloy 1과 상용 마그네슘 합금 판재인 AZ31의 150 인장 실험 데이타를 비교하여 나타내는 그래프.
도 5는 본 발명에 따른 실시예 5의 Alloy 1과 상용 마그네슘 합금 판재인 AZ31의 150 다른 인장 실험 데이타를 나타내는 그래프.
도 6은 본 발명의 실시예에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재과 상용 마그네슘 합금 판재인 AZ31의 회복이 일어나는 온도를 시차주사열량계를 통하여 분석한 그래프.
도 7은 본 발명의 실시예에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재를 선정하여 저온에서 변형 후 TEM을 통하여 관찰한 사진.
이하, 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금의 구성을 첨부도면을 참조하여 상세히 설명한다.
본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금은 마그네슘에 아연(Zn)이 상온 최대 고용 한도(3.5 wt%) 조성 범위 이내로 첨가된다.
여기에 미세구조의 안정성 및 변형능을 향상시키는 원소로 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는, 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소를 1.0 wt% 이하의 미량으로 첨가한다.
이러한 구성의 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금의 회복이 시작되는 온도는 130 정도로서, 낮은 온도에서 확산(Diffusion)되어 회복(recovery) 및 재결정(Recrystallization)이 시작되는 온도가 낮아짐에 따라 저온에서 비-기저 슬립을 활성화시켜 저온에서 고속 성형능이 우수하게 된다.
보다 상세하게는, 마그네슘에 아연(Zn)을 상온 최대 고용 한도(3.5 wt%) 조성 범위 내에서 첨가하면 회복이 시작되는 온도가 낮춰져서 저온에서 비-기저 슬립이 활성화된다. 아연(Zn) 원소의 첨가 범위가 3.5 wt%를 초과할 경우 석출물이 형성되어 회복 온도가 낮아지더라도 석출에 의한 강화 효과가 나타나 성형성이 감소하기 때문에 본 발명에서 아연(Zn) 원소의 첨가 범위는 3.5 wt% 이하로 제한한다.
본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금에서는 -Mg 기지에 고용되어 비-기저 슬립(non-basal slip)의 활성화를 더욱 용이하게 하고 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는 미량의 원소가 첨가되어야 한다. 이 원소는 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소이다. 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는 원소들에 의하여 제 2상 또는 3상이 생성될 수도 있으며 이들은 재결정시 제 2상 또는 3상 입자에 의한 핵생성으로 인하여 결정립 미세화 효과를 향상시킨다. 이 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는 원소의 첨가 범위가 0.5 wt%를 초과할 경우, 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는 미량의 원소들에 의해 형성될 수 있는 제 2상이나 3상이 마그네슘 기지에 과하게 형성되면서 오히려 고온에서 변형시 크랙(crack)의 원인이 되어 성형성을 떨어뜨릴 수 있으므로 바람직하지 않다. 따라서 본 발명에서 마그네슘보다 융점이 높아 안정하거나 -Mg 기지의 고용도를 증가시킬 수 있는 미량의 원소의 첨가범위는 1.0 wt% 이하로 제한한다.
여기에서 희토류 원소(Rare earth elements)는 스칸듐(Sc), 이트륨(Y) 및 원자번호 57에서 71인 란탄(La) 계열의 15원소(란탄(La), 세륨(Ce), 프라세오디뮴(Pr), 사마륨(Sm), 유로륨(Eu), 가돌리늄(Gd), 테류븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 툴륨(Tm), 에르테븀(Yb), 루테튬(Lu))를 합친 17원소를 총칭한다.
희토류 원소로 이루어진 상용화된 합금은 원자 번호 57에서 71까지의 원소로 이루어진 상용화된 합금으로 다양한 종류의 미시메탈을 포함하며 디디늄계 미시메탈(Didymium misch metal), 세륨계 미시메탈(Ce-rich misch metal) 또는 란타늄계 미시메탈(La-rich misch metal) 중 선택되는 하나 또는 둘 이상의 원소 및 합금이다. 디디늄계 미시메탈은 Nd(neodymium)과 Pr(praseodymuim)을 포함하는 희토류계 합금 조성이며, 특히 세륨계 미시메탈은 45wt%=Ce=65wt%, 20wt%=La=30wt%, 5wt%=Nd=15wt%, Pr 10wt% 이하의 주조성 범위를 가지면서, 미시메탈이 정출되는 특성상 기타 15 가지 이상의 미량 원소가 존재하는 상용화된 미시메탈 합금을 의미한다.
일반적으로 마그네슘 합금은 상온에서 가공성을 확보할 수 없으나 본 발명에 따르는 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금은 상온에서부터 150 이하의 온도에서 다양한 방법으로 가공이 가능하므로 본 실시예에서는 건전한 가공재를 얻기 위하여 상온 및 온간 가공을 행하게 되며 주조재의 가공 온도는 실험을 통하여 가공재의 건전성을 확보할 수 있는 범위로 설정한다.
다음으로 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금의 제조방법에 대하여 설명한다.
도 1은 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금의 제조방법을 설명하는 공정도로서, 도시된 바와 같이 본 발명에 따른 합금판재의 제조방법은 합금조성물 준비단계(111), 주조단계(113), 균질화 및 고용화 처리단계(115), 반복 온간압연단계(117), 결정립 미세화 열처리 단계(119)로 구성된다.
합금조성물 준비단계(111)는, 아연 3.5wt% 이하, 철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소를 1.0 wt% 이하, 마그네슘을 그 나머지 wt%의 비율로 첨가한 Mg-Zn 합금조성물을 준비한다.
다음으로 전기유도가열로에서 700로 카본 도가니를 가열하여 준비된 Mg-Zn 합금조성물을 용융시켜 합금 용탕을 만들고 냉각수로 냉각시킨 주조틀에 합금 용탕을 주입하여 주조재를 제조하거나 스트립 캐스팅법에 의해 주조재를 제조한다.(113)
이어서 온도 130~180에서 주조재를 1~20% 두께 수축률로 반복 온간 압연하는 방법을 통하여 두께 0.3~1.5mm의 압연물(판재)을 얻는다.(117)
이때 필요할 경우 주조재를 200~400에서 5~20시간 동안 균질화 및 고용화 처리를 한 후 온간 압연으로 가공한다.(115)
다음으로 재결정에 의하여 제조한 압연물(판재)의 결정립 크기를 미세화하기 위하여 150~300에서 1~60분 간 열처리한다.(119)
이상의 압연과 열처리 공정을 통해 재결정에 의하여 3~4 크기의 미세한 결정립을 갖는 마그네슘 판재로 제조할 수 있는 바, 후술한 실시예에서 알 수 있는 바와 같이 상온 인장 실험에 의해 제조된 각 판재의 결정립 크기, 연신률과 항복, 인장 강도를 측정하고 그 중 일실시예의 원자 반경이 큰 원소가 -Mg 기지에 고용되는 조성의 합금을 X선 회절 분석을 이용하여 격자 상수를 계산한 결과 첨가한 원소가 미세구조의 안정성을 증가시키는 것을 확인할 수 있다.
또한, 본 발명의 일 실시예에 따른 판재와 상용 마그네슘 합금 판재(AZ31)의 시차주사 열량계 분석을 통하여 본 발명의 실시예에 따른 가공재 Mg-Zn계 마그네슘 합금과 상용 마그네슘 합금마그네슘 합금(AZ31)의 회복 온도를 측정 비교하였으며, 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재의 150에서 변형된 시편에서 비-기저 슬립이 활성화 되었음을 TEM으로 관찰하였다.
[실시예 1]
아래의 표 1은 다양한 실시예의 합금 조성물을 주조, 온간 압연 과정을 통해 판재로 만들어 항복강도, 인장강도, 상온연신률을 측정한 표로서, 개시된 바와 같은 마그네슘 합금 조성물을 준비하고 몰드 캐스팅 또는 스트립 캐스팅 주조방법에 의해 주조재를 얻는다. 주조는 Alloy 1~10은 전기유도가열로에서 700로 카본 도가니를 가열하여 마그네슘을 용융시킨 다음 다른 첨가물을 첨가하여 합금 용탕을 만들고 냉각수로 냉각시킨 주조틀에 합금 용탕을 주입하여 주조재를 제조하였다.
본 실시예에서는 제조한 주조재를 온간 압연을 통해 판재로 만든 후 열처리하여 재결정을 통하여 결정립을 미세화 시킨 후 상온에서 인장 실험을 실시하였다.
표 1
조성(wt%) 항복강도(MPa) 인장강도(MPa) 상온 연신율(%)
Mg Zn Sn MM
Alloy 1 95.5 3.5 - 0.5 125 253 32
Alloy 2 95.6 3.5 - 0.4 142 248 27
Alloy 3 95.5 3.5 0.1 0.4 148 261 31
Alloy 4 95.36 3.5 0.3 0.34 151 215 29
Alloy 5 97.66 2.0 0.3 0.34 145 220 26
Alloy 6 97.65 2.0 0.1 0.25 172 248 27
Alloy 7 96.81 2.94 - 0.25 148 223 33
Alloy 8 96.86 2.94 0.1 0.1 156 243 32
Alloy 9 96.9 3.0 - 0.1 147 232 29
Alloy 10 98.0 1.5 0.2 0.3 161 226 27
[실시예 2]
실시예 2에서는 표 1에서 제시한 Alloy 1의 주조재를 온간 압연으로 가공한다. 가공 조건은 주조재를 이용하여 롤 온도 150에서 두께를 15%씩 감소시키는 방법으로 두께가 0.6mm가 될 때까지 반복 압연하여 마그네슘 판재를 제작하고 압연 후 재결정을 통해 결정립을 미세화하기 위하여 250에서 5분간 열처리한다. 도 2는 본 발명에 따른 실시예 2의 Alloy 1을 온간 압연 과정을 통해 제작한 판재의 광학현미경 사진으로서, 재결정이 일어나지 않아 결정립이 제대로 생성되지 않음을 보여주고 있다.
도 3은 본 발명에 따른 실시예 2의 Alloy 1을 온간 압연 과정을 통해 제작한 판재의 열처리 후의 광학현미경 사진으로서, 압연 후 열처리 과정에서 재결정을 통하여 a-Mg 조직의 결정립이 3~4로 미세화된 것을 보여준다.
[실시예 3]
실시예 3에서는 표 1에서 제시한 Alloy 2의 주조재를 350에서 15시간 동안 고용화 처리를 한 후 온간 압연으로 가공한다. 가공 조건은 주조재를 이용하여 롤 온도 140에서 두께를 10%씩 감소시키는 방법으로 두께가 1.0mm가 될 때까지 반복 압연하여 마그네슘 판재를 제작하고 압연 후 재결정을 통해 결정립을 미세화하기 위하여 250에서 5분간 열처리한다. 제조한 시편을 X선 회절 분석을 한 뒤 Cohen법을 이용하여 격자상수를 계산하여 본 결과 격자상수 a축의 값이 3.216, c축의 값이 5.221로 증가(순 마그네슘 a : 3.209, c: 5.210)하여 첨가원소가 -Mg 기지에 고용되어 미세구조 안정성을 향상시키고 비-기저 슬립의 활성화를 더욱 용이하게 할 수 있음을 확인하였다.
[실시예 4]
실시예 4에서는 표 1에서 제시한 Alloy 3의 주조재를 200에서 9시간 동안 균질화 및 고용화 처리를 한 후 온간 압연으로 가공한다. 가공 조건은 주조재를 이용하여 소재를 가열하지 않고 롤 온도 180에서 두께를 20%씩 감소시키는 방법으로 두께가 1.0mm가 될 때까지 반복 압연하여 마그네슘 판재를 제작하고 압연 후 재결정을 통하여 결정립을 미세화하기 위하여 300에서 10분간 열처리한다.
[실시예 5]
표 1에서 제시한 Alloy 4~10의 합금 조성을 주조한 후 실시예 2~4와 같은 과정을 통해 주조재를 롤 온도 130~180에서 1~20% 두께 수축률로 두께 0.3~1.5mm까지 반복 온간 압연하여 Alloy 4~10을 판재로 제조한다. 이어서 판재를 250에서 5분간 열처리하고, 상온에서 변형률 1x10-3s-1로 인장 시험을 통해 얻은 연신율을 측정하여, 그 결과를 표 1에 표시하였다. 실시예 5에서 알 수 있는 바와 같이 인장 실험을 실시한 모든 조성에서 140MPa 이상의 신뢰성 있는 강도와 23%~33%의 높은 연신율을 보였다.
도 4는 본 발명에 따른 실시예 5의 Alloy 1과 상용 마그네슘 합금 판재인 AZ31의 150 인장 실험 데이타를 비교하여 나타내는 그래프로 150에서 1x10-1s-1의 비교적 높은 변형률에서 Alloy 1이 상용 마그네슘 합금 판재인 AZ31보다 20~25% 이상의 우수한 연신을 보인다.
도 5는 본 발명에 따른 실시예 5의 Alloy 1과 상용 마그네슘 합금 판재인 AZ31의 150 인장 실험 데이타를 나타내는 그래프로 150에서 변형률 1x10-2s-1에서 인장 시험을 하였다. 150, 1x10-1s-1의 높은 변형률에서 65% 이상의 높은 연신률을 보이므로 본 발명에 의한 회복이 시작되는 온도가 낮은 마그네슘 합금으로 제조된 판재는 프레스 성형시 150의 성형 온도에서 고변형률로 성형이 가능함을 알 수 있다.
도 6은 본 발명의 실시예에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재과 상용 마그네슘 합금 판재인 AZ31의 회복이 일어나는 온도를 시차주사열량계를 통하여 분석한 그래프이다. 본 발명의 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금은 AZ31보다 약 20 낮은 약 120부터 회복이 일어나기 시작하는 것을 알 수 있으며, 약 235에서 잔류 응력이 모두 해소되는 것을 알 수 있다.
도 7은 본 발명의 실시예에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금 판재를 선정하여 저온에서 변형 후 TEM을 통하여 관찰한 사진이다. 일반적인 마그네슘 합금과 비교하였을 때 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금으로 제조한 판재에서 비-기저 슬립이 활성화되어 다수 관찰되었다.
따라서 기존 판재 성형용 마그네슘 합금과 비교할 때 본 발명에 따른 저온에서 고속 성형능이 우수한 가공재 Mg-Zn계 마그네슘 합금으로 제조된 마그네슘 합금 판재는 낮은 온도에서 확산되어 회복이 시작되는 온도가 낮아짐에 따라 저온에서 비-기저 슬립이 활성화시켜 저온 고속 변형률이 높으며, 또한 Mg-Zn계 마그네슘 합금에 미량의 희토류 원소 또는 고융점 원소를 첨가하여 낮은 온도에서의 비-기저 슬립의 활성화를 더욱 용이하게 함에 따라 저온에서의 변형률이 매우 증가하고, 균일/고속 변형능 또한 증가되기 때문에 판재의 성형성을 향상시킬 수 있어 제조된 마그네슘 판재의 성형성을 크게 높일 수 있다.

Claims (4)

  1. 아연(Zn) 3.5 wt% 이하,
    철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소 1.0 wt% 이하,
    마그네슘(Mg) 나머지의 합금조성비를 가지며;
    120~140의 온도에서 회복(recovery) 및 재결정(Recrystallization)이 시작되어 비-기저 슬립이 활성화되는 것을 특징으로 하는 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금.
  2. 아연(Zn) 3.5 wt% 이하,
    철(Fe), 스칸듐(Sc), 칼슘(Ca), 은(Ag), 티타늄(Ti), 지르코늄(Zr), 망간(Mn), 규소(Si), 니켈(Ni), 스트론튬(Sr), 구리(Cu), 알루미늄(Al), 주석(Sn), 희토류 원소(Rare earth elements) 또는 희토류 원소로 이루어진 상용화된 합금(misch metal) 중에서 선택되는 하나 또는 둘 이상의 원소 1.0 wt% 이하,
    마그네슘(Mg) 나머지의 조성비를 갖는 합금조성물을 준비하는 단계;
    상기 합금조성물을 가열하여 주조재를 제조하는 단계;
    상기 주조재를 130~180에서 1~20% 두께 수축률로 반복 온간 압연하여 두께 0.3~1.5mm의 판재를 제조하는 단계를 포함하는 것을 특징으로 하는 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금 판재의 제조방법.
  3. 청구항 2에 있어서,
    상기 판재를 150~300에서 1~60분 간 열처리하여 재결정에 의하여 결정립 크기를 미세화하는 단계를 더욱 포함하는 것을 특징으로 하는 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금 판재의 제조방법.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 주조재를 200~400에서 5~20시간 동안 균질화 및 고용화 처리하는 단계를 더욱 포함하는 것을 특징으로 하는 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금 판재의 제조방법.
PCT/KR2009/002001 2009-03-23 2009-04-17 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법 WO2010110505A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0024614 2009-03-23
KR1020090024614A KR20100106137A (ko) 2009-03-23 2009-03-23 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법

Publications (1)

Publication Number Publication Date
WO2010110505A1 true WO2010110505A1 (ko) 2010-09-30

Family

ID=42781188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002001 WO2010110505A1 (ko) 2009-03-23 2009-04-17 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법

Country Status (2)

Country Link
KR (1) KR20100106137A (ko)
WO (1) WO2010110505A1 (ko)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388116A (zh) * 2013-08-09 2013-11-13 重庆大学 一种高效轧制Mg-Al-Zn系镁合金的方法
CN107190191A (zh) * 2017-06-05 2017-09-22 东莞宜安科技股份有限公司 一种生物医用镁合金及其制备方法
CN107974567A (zh) * 2018-01-30 2018-05-01 山东建筑大学 一种可控的医用降解镁合金的制备工艺与方法
US10329643B2 (en) * 2014-07-28 2019-06-25 Magnesium Elektron Limited Corrodible downhole article
CN109972007A (zh) * 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN110343924A (zh) * 2019-05-31 2019-10-18 南阳师范学院 一种高导电率Mg-Zn-Sn-Sc-xCa镁合金及其制备方法
CN110684915A (zh) * 2019-10-29 2020-01-14 东莞市腾美金属科技有限公司 一种高强度镁合金
US20200269297A1 (en) * 2017-09-25 2020-08-27 Baoshan Iron & Steel Co., Ltd. Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
CN111850367A (zh) * 2020-07-30 2020-10-30 中国石油化工股份有限公司 一种大塑性可溶解镁合金及其制备方法和应用
DE112014002336B4 (de) * 2013-05-07 2021-02-25 Baoshan Iron & Steel Co., Ltd. Kostengünstiges feinkörniges Magnesiumlegierungsblech mit schwacher Textur und Verfahren zur Herstellung desselben
CN112981202A (zh) * 2021-02-20 2021-06-18 维欧(天津)能源技术服务股份有限公司 一种高强度镁合金材料及其制备方法
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
CN115491558A (zh) * 2021-06-17 2022-12-20 比亚迪股份有限公司 一种压铸镁合金及其制备方法和应用
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586661A (zh) * 2012-03-09 2012-07-18 中国兵器工业第五九研究所 一种锻造用稀土镁合金铸坯材料及其制备方法
US20150080998A1 (en) * 2012-06-26 2015-03-19 Biotronik Ag Magnesium-aluminum-zinc alloy, method for the production thereof and use thereof
KR101696993B1 (ko) * 2015-01-06 2017-01-23 백진욱 마그네슘 박판 제조방법
WO2018117695A1 (ko) 2016-12-22 2018-06-28 주식회사 포스코 마그네슘 합금 판재 및 이의 제조방법
KR102306290B1 (ko) * 2016-12-23 2021-09-29 주식회사 포스코 내식성이 우수한 마그네슘 합금 및 그 제조방법
CN114086046B (zh) * 2021-11-23 2022-08-02 承德石油高等专科学校 一种兼具室温与高温高强度变形Mg-Sn-Sr-Zr-Sc合金及其制备工艺
CN114561579A (zh) * 2022-03-03 2022-05-31 上海康德莱医疗器械股份有限公司 不含稀土元素的生物可降解镁合金及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293944A (ja) * 1993-04-06 1994-10-21 Nippon Steel Corp プレス成形性に優れたマグネシウム合金薄板の製造方法
JP2006144059A (ja) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd プレス成形性に優れたマグネシウム合金板およびその製造方法
JP2007083261A (ja) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology マグネシウム合金大クロス圧延材によるプレス成形体
JP2008156725A (ja) * 2006-12-25 2008-07-10 Nagaoka Univ Of Technology 展伸用マグネシウム薄板及び展伸用マグネシウム薄板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293944A (ja) * 1993-04-06 1994-10-21 Nippon Steel Corp プレス成形性に優れたマグネシウム合金薄板の製造方法
JP2006144059A (ja) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd プレス成形性に優れたマグネシウム合金板およびその製造方法
JP2007083261A (ja) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology マグネシウム合金大クロス圧延材によるプレス成形体
JP2008156725A (ja) * 2006-12-25 2008-07-10 Nagaoka Univ Of Technology 展伸用マグネシウム薄板及び展伸用マグネシウム薄板の製造方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002336B4 (de) * 2013-05-07 2021-02-25 Baoshan Iron & Steel Co., Ltd. Kostengünstiges feinkörniges Magnesiumlegierungsblech mit schwacher Textur und Verfahren zur Herstellung desselben
CN103388116A (zh) * 2013-08-09 2013-11-13 重庆大学 一种高效轧制Mg-Al-Zn系镁合金的方法
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US11613952B2 (en) 2014-02-21 2023-03-28 Terves, Llc Fluid activated disintegrating metal system
US11365164B2 (en) 2014-02-21 2022-06-21 Terves, Llc Fluid activated disintegrating metal system
US10329643B2 (en) * 2014-07-28 2019-06-25 Magnesium Elektron Limited Corrodible downhole article
US10337086B2 (en) 2014-07-28 2019-07-02 Magnesium Elektron Limited Corrodible downhole article
CN107190191A (zh) * 2017-06-05 2017-09-22 东莞宜安科技股份有限公司 一种生物医用镁合金及其制备方法
US11898223B2 (en) 2017-07-27 2024-02-13 Terves, Llc Degradable metal matrix composite
US11649526B2 (en) 2017-07-27 2023-05-16 Terves, Llc Degradable metal matrix composite
US20200269297A1 (en) * 2017-09-25 2020-08-27 Baoshan Iron & Steel Co., Ltd. Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
CN107974567A (zh) * 2018-01-30 2018-05-01 山东建筑大学 一种可控的医用降解镁合金的制备工艺与方法
CN109972007A (zh) * 2019-03-20 2019-07-05 北京科技大学 一种生物体内可降解Mg-Zn-Ca-M的吻合钉材料及其制备方法
CN110343924B (zh) * 2019-05-31 2021-08-17 南阳师范学院 一种高导电率Mg-Zn-Sn-Sc-xCa镁合金及其制备方法
CN110343924A (zh) * 2019-05-31 2019-10-18 南阳师范学院 一种高导电率Mg-Zn-Sn-Sc-xCa镁合金及其制备方法
CN110684915A (zh) * 2019-10-29 2020-01-14 东莞市腾美金属科技有限公司 一种高强度镁合金
CN111850367A (zh) * 2020-07-30 2020-10-30 中国石油化工股份有限公司 一种大塑性可溶解镁合金及其制备方法和应用
CN112981202A (zh) * 2021-02-20 2021-06-18 维欧(天津)能源技术服务股份有限公司 一种高强度镁合金材料及其制备方法
CN115491558A (zh) * 2021-06-17 2022-12-20 比亚迪股份有限公司 一种压铸镁合金及其制备方法和应用
CN115491558B (zh) * 2021-06-17 2024-03-19 比亚迪股份有限公司 一种压铸镁合金及其制备方法和应用

Also Published As

Publication number Publication date
KR20100106137A (ko) 2010-10-01

Similar Documents

Publication Publication Date Title
WO2010110505A1 (ko) 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
KR100860091B1 (ko) 축비가 감소된 마그네슘 합금 및 그 마그네슘 합금의 판재제조방법
US10570490B2 (en) Strain-induced age strengthening in dilute magnesium alloy sheets
KR101594857B1 (ko) 열전도성과 난연성이 우수한 소성가공용 마그네슘 합금의 제조방법
KR100671195B1 (ko) 미시메탈이 첨가된 고온 구조용 마그네슘 합금
EP2987874B1 (en) Fire-resistant magnesium alloy and production method therefor
JP6607464B2 (ja) 成形可能なマグネシウム型の展伸用合金
US10056165B2 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
KR102210236B1 (ko) 마그네슘 합금재 및 이의 제조방법
US20130284327A1 (en) Copper alloy for electronic device, method of producing copper alloy for electronic device, and copper alloy rolled material for electronic device
WO2012070870A2 (ko) 상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법
KR101600590B1 (ko) 열전도성과 난연성이 우수한 소성가공용 마그네슘 합금
WO2016137210A1 (ko) 열전도성과 난연성이 우수한 소성가공용 마그네슘 합금과 그의 제조방법
CN105018813A (zh) 一种抗蠕变稀土镁合金及其制备方法
WO2015126054A1 (ko) 마그네슘 합금 판재 및 이의 제조방법
CN100482834C (zh) 易加工性镁合金及其制造方法
KR20160136832A (ko) 고강도 마그네슘 합금 가공재 및 이의 제조방법
JP5059505B2 (ja) 高強度で成形が可能なアルミニウム合金冷延板
US10358703B2 (en) Magnesium alloy and method of preparing the same
CN113584356A (zh) 一种高强度铝合金汽车车身板材及其制备方法
EP0549998A1 (en) High-strength magnesium-based alloy
CN110656270B (zh) 压铸镁合金及其制备方法与应用
KR101001893B1 (ko) 고강도 및 고연성의 마그네슘 합금 및 그 제조방법
CN115821133B (zh) 一种高导电高塑性变形镁合金及其制备方法
CN116426797A (zh) 铝合金材料、制备方法及铝合金制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842355

Country of ref document: EP

Kind code of ref document: A1