WO2010110420A1 - 多孔質成形体及びその製造方法 - Google Patents

多孔質成形体及びその製造方法 Download PDF

Info

Publication number
WO2010110420A1
WO2010110420A1 PCT/JP2010/055360 JP2010055360W WO2010110420A1 WO 2010110420 A1 WO2010110420 A1 WO 2010110420A1 JP 2010055360 W JP2010055360 W JP 2010055360W WO 2010110420 A1 WO2010110420 A1 WO 2010110420A1
Authority
WO
WIPO (PCT)
Prior art keywords
parison
molded body
porous molded
producing
acid
Prior art date
Application number
PCT/JP2010/055360
Other languages
English (en)
French (fr)
Inventor
清一 渡辺
徹 小倉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2011506142A priority Critical patent/JP5685525B2/ja
Publication of WO2010110420A1 publication Critical patent/WO2010110420A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Definitions

  • the present invention relates to a porous molded body and a method for manufacturing the same, and more particularly to a porous molded body molded by blow molding and a method for manufacturing the same.
  • the molded parison (preform) is once cooled to room temperature, reheated with a blow molding device to adjust the temperature, and blow molded, and the molded parison is not cooled completely.
  • a hot parison system that moves to a temperature adjustment process and then blow-molds (see, for example, Patent Document 1).
  • a bottomed cylindrical parison 10 that has been molded in advance is set in the blow molding apparatus 1 (FIG.
  • the molded body 30 is manufactured by superimposing and heating 20b, supplying air from above, and causing the parison 10 to follow the inner surface shape of the mold 20 (FIG. 1B).
  • the hot parison system for example, as shown in FIGS. 2A and 2B, the parison 10 is extruded in a molten state in a tube shape (FIG. 2A), and then the molds 20a and 20b are overlapped, and the parison 10 is completely cooled. In this state, air is supplied from below and the parison 10 is made to follow the inner surface shape of the mold 20 to produce the molded body 30 (FIG. 2B).
  • the molded body 30 manufactured by such blow molding is excellent in transparency, impact resistance, hygiene, gas barrier properties, pressure resistance, and the like.
  • various foods, beverages, detergents, cosmetics, etc. Widely used as a packaging container (see, for example, Patent Document 2).
  • a high-temperature or low-temperature substance may be charged or injected into the packaging container, and it is desired to improve the heat insulation of the packaging container.
  • a high-brightness blow molded article excellent in heat insulation has not yet existed.
  • an object of the present invention is to provide a high-luminance porous molded body excellent in heat insulation and a method for producing the same.
  • a porous body characterized in that a parison containing at least one of a crystalline polymer and a fine particle-containing polymer is cooled to form cavity-origin particles and blow-molded to produce a molded body having a cavity inside. It is a manufacturing method of a quality molded object.
  • a parison including at least one of a crystalline polymer and a fine particle-containing polymer is cooled to form cavity-starting particles, which are then blow-molded to have a cavity inside. Is manufactured.
  • ⁇ 2> The method for producing a porous molded body according to ⁇ 1>, wherein the parison is cooled to a temperature not higher than 10 ° C. higher than the glass transition temperature of the parison.
  • ⁇ 3> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 2>, wherein the parison is cooled below the glass transition temperature of the parison.
  • ⁇ 4> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 3>, wherein the cooling rate of the parison at the time of forming the cavity starting particles is 5 ° C./sec to 200 ° C./sec. .
  • ⁇ 5> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 4>, wherein the stretch rate of the parison in blow molding is 10 mm / min to 40,000 mm / min.
  • ⁇ 6> The method for producing a porous molded article according to any one of ⁇ 1> to ⁇ 5>, wherein the crystalline polymer contains at least one of polyethylene terephthalate and polybutylene terephthalate.
  • ⁇ 7> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 6>, wherein the fine particles have a volume average particle diameter of 0.01 ⁇ m to 10 ⁇ m.
  • ⁇ 8> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 7>, wherein the fine particles are either an organic filler or an inorganic filler.
  • ⁇ 9> The method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 7>, wherein the fine particles are resin fine particles incompatible with the fine particle-containing polymer.
  • ⁇ 10> The porous molded body according to any one of ⁇ 1> to ⁇ 9>, further comprising blow molding a parison in a mold and transferring the inner surface shape of the mold to the parison. It is a manufacturing method.
  • ⁇ 11> The method for producing a porous molded body according to ⁇ 10>, further comprising heating the parison in the mold.
  • ⁇ 12> The method for producing a porous molded body according to any one of ⁇ 10> to ⁇ 11>, wherein the cavity formation and the transfer are performed by the same blow molding.
  • ⁇ 13> A porous molded body produced by the method for producing a porous molded body according to any one of ⁇ 1> to ⁇ 12>.
  • the above-mentioned problems can be solved, the object can be achieved, and a high-luminance porous molded body excellent in heat insulation and a method for producing the same can be provided.
  • FIG. 1A is a diagram for explaining a cold parison system in blow molding (part 1).
  • FIG. 1B is a diagram for explaining a cold parison method in blow molding (part 2).
  • FIG. 2A is a diagram for explaining a hot parison system in blow molding (part 1).
  • FIG. 2B is a diagram for explaining a hot parison system in blow molding (part 2).
  • the porous molded body of the present invention can be preferably manufactured by the manufacturing method of the present invention.
  • the manufacturing method of the porous molded object of this invention and the porous molded object manufactured by this method are demonstrated.
  • the method for producing a porous molded body of the present invention includes at least a cavity starting particle forming step and a cavity forming step, and further includes other steps as necessary.
  • the cavity starting particle forming step is a step of cooling the parison including at least one of the crystalline polymer and the fine particle-containing polymer to form the cavity starting particle inside the parison.
  • the parison is made of a crystalline polymer
  • the parison is crystallized by the cooling to form microcrystals inside the parison, and the microcrystals become cavity starting particles.
  • the parison is made of a fine particle-containing polymer, the fine particles in the fine particle-containing polymer become cavity starting particles.
  • the parison includes at least one of a crystalline polymer and a fine particle-containing polymer, and further includes other components as necessary.
  • -Crystalline polymer- In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even crystalline polymers are not 100% crystalline, and long chain molecules are regularly formed in the molecular structure. It includes aligned crystalline regions and non-regularly arranged amorphous (amorphous) regions. Therefore, the crystalline polymer only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
  • polyolefin for example, low density polyethylene, high density polyethylene, polypropylene, etc.
  • PA polyamides
  • POM polyacetals
  • polyesters eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketones
  • polyolefins polyolefins
  • polyesters syndiotactic polystyrene (SPS) and liquid crystal polymers (LCP) are preferable from the viewpoint of durability, mechanical strength, production and cost, and polyolefins (PP, PE, etc.), polyesters Are more preferred, and PET is particularly preferred. Two or more kinds of these polymers may be blended or copolymerized.
  • the crystalline polymer may not contain a functional group having high absorption in the ultraviolet region, such as an aromatic ring. preferable. Therefore, aliphatic polyester is preferable among the polyesters.
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. Particularly preferred is s to 300 Pa ⁇ s.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the shape of the polymer discharged from the die head at the time of melting is stabilized. Further, the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the viscosity at the time of melting becomes appropriate and the extrusion becomes easy.
  • the melt viscosity can be measured by a plate type rheometer or a capillary rheometer.
  • the intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.4. 0.7 to 1.3 is particularly preferable.
  • the IV of 0.4 to 1.5 is preferable in that the strength of the porous molded body is increased and the film can be efficiently stretched.
  • the IV can be measured by an Ubbelohde viscometer.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 100 ° C to 260 ° C. ° C is particularly preferred.
  • the melting point of 40 ° C. to 350 ° C. is preferable in that the shape can be easily maintained in the temperature range expected for normal use.
  • the melting point can be measured by a differential thermal analyzer (DSC).
  • the content of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80% by mass to 99.5% by mass, and 85% by mass to 99% by mass with respect to the parison. % Is more preferable, and 90% by mass to 98% by mass is particularly preferable.
  • the content of the crystalline polymer is less than 80% by mass with respect to the parison, it may be difficult to maintain the shape during processing and handling of the parison.
  • the content exceeds 99.5% by mass, the parison May become brittle.
  • polyester resins mean a general term for polymer compounds having an ester bond as a main bond chain.
  • polyester resin suitable as the crystalline polymer include the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT ( Polycondensation of polypentamethylene terephthalate), PHT (polyhexamethylene terephthalate), PBN (polybutylene naphthalate), PES (polyethylene succinate), PBS (polybutylene succinate), dicarboxylic acid component and diol component All polymer compounds obtained by the reaction are included.
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • aromatic dicarboxylic acid aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, oxycarboxylic acid, polyfunctional acid, etc. Is mentioned.
  • the aromatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
  • the aliphatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cyclohexane dicarboxylic acid etc. are mentioned.
  • the oxycarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include p-oxybenzoic acid.
  • polyfunctional acid there is no restriction
  • trimellitic acid, pyromellitic acid, etc. are mentioned.
  • succinic acid, adipic acid, and cyclohexane are used in that the porous molded body has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
  • Dicarboxylic acids are preferred, and succinic acid and adipic acid are more preferred.
  • the diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Among these, aliphatic diols are preferable in that the porous molded body has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
  • the aliphatic diol is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene glycol, propane diol, butane diol, pentane diol, hexane diol, neopentyl glycol, and triethylene glycol. Can be mentioned. Of these, propanediol, butanediol, pentanediol, and hexanediol are preferable.
  • propanediol, butanediol, pentanediol, and hexanediol are preferable.
  • limiting in particular as said alicyclic diol According to the objective, it can select suitably, For example, cyclohexane dimethanol etc. are mentioned.
  • aromatic diol According to the objective, it can select suitably, For example, bisphenol A, bisphenol S, etc. are mentioned.
  • the melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. ⁇ 300 Pa ⁇ s is particularly preferred.
  • the melt viscosity is higher, voids are more likely to be generated during stretching.
  • the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s, extrusion becomes easier and the resin flow becomes stable and retention is less likely to occur. It is preferable in that the quality is stabilized.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the drawing tension is appropriately maintained at the time of drawing, and it becomes easy to draw uniformly and is difficult to break. Further, when the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s or more, it becomes easy to maintain the form of the discharged material discharged from the die head, and it can be stably molded, and the product is not easily damaged. , Which is preferable in terms of enhancing physical properties.
  • the intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.3, Particularly preferred is 0.7 to 1.2.
  • IV is larger, voids are more likely to be generated during stretching.
  • the IV is 0.4 to 1.5, extrusion becomes easier and the resin flow is more stable, and it is difficult for retention to occur. Is preferable in that it is stabilized.
  • the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly and it is preferable in that the load is not easily applied to the apparatus.
  • the IV is 0.4 to 1.5, it is preferable in that the product is hardly damaged and the physical properties are increased.
  • the melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 ° C. to 300 ° C., more preferably 90 ° C. to 270 ° C. from the viewpoint of heat resistance.
  • the said dicarboxylic acid component and the said diol component may respectively superpose
  • a polymer may be formed by copolymerization.
  • two or more kinds of polymers may be blended and used.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller, and the physical properties at the time of melt extrusion are smaller. It is preferable in terms of increasing and facilitating extrusion.
  • a resin other than polyester may be added to the polyester resin.
  • the fine particle-containing polymer is not particularly limited as long as it contains fine particles, and can be appropriately selected according to the purpose.
  • Fine particles-- The fine particles are not particularly limited as long as they can serve as cavity starting particles, and can be appropriately selected according to the purpose. Examples thereof include fillers and resin fine particles.
  • the filler is not particularly limited and may be appropriately selected depending on the intended purpose.For example, sodium stearate salt, montanic acid sodium salt, aluminum benzoate, sodium adipate, pt-butylbenzoate aluminum salt, Examples thereof include organic fillers such as hydroxystearic acid amide and ricinoleic acid amide, inorganic fillers such as talc, silica, kaolin, clay, smectite, and vermiculite.
  • the resin fine particles are not particularly limited as long as they are incompatible with the fine particle-containing polymer, and can be appropriately selected according to the purpose. Examples thereof include PTFE (polytetrafluoroethylene).
  • the content of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.05% by mass to 5% by mass and preferably 0.1% by mass to 2% by mass with respect to the parison. % Is more preferable, and 0.2% by mass to 0.5% by mass is particularly preferable. If the content of the fine particles is less than 0.05% with respect to the parison, sufficient crystallization may not be promoted, and if it exceeds 5 mass%, the parison may become brittle.
  • the volume average particle diameter of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.02 ⁇ m to 5 ⁇ m, and more preferably 0.05 ⁇ m to 1 ⁇ m. Particularly preferred. If the volume average particle size of the fine particles is less than 0.01 ⁇ m, sufficient crystallization may not be promoted, and if it exceeds 10 ⁇ m, the parison may become brittle.
  • Crystal nucleating agent-- The crystal nucleating agent is not particularly limited as long as it promotes microcrystal formation inside the crystalline polymer, and can be appropriately selected according to the purpose. i) simple substances, metal compounds including complex oxides, (ii) low molecular compounds having a metal salt of a carboxyl group, (iii) high molecular organic compounds, (iv) phosphoric acid, phosphorous acid, or metal salts thereof ( v) sorbitol derivatives, (vi) quaternary ammonium compounds, (vii) other compounds, and the like. Moreover, the said crystal nucleating agent may use 1 type or 2 types or more simultaneously.
  • the metal compound containing (i) simple substance and complex oxide is not particularly limited and may be appropriately selected depending on the purpose.
  • calcium carbonate, synthetic silicic acid and silicate, silica, zinc white high examples include cytoclay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomaceous earth, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, and boron nitride.
  • Examples of the low molecular compound having a metal salt of (ii) carboxyl group include octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, serotic acid, montanic acid, Melicic acid, benzoic acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, isophthalic acid monomethyl ester, camphoric acid, citronellic acid, hinokic acid, abitienic acid, rosin acid, hydrogenated rosin acid, etc.
  • the metal salt is mentioned.
  • the (iii) polymer organic compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • 3,3-dimethylbutene-1, 3-methylpentene-1, 3-methylbutene-1 , 3-methylhexene-1, 3,5,5-trimethylhexene-1, etc. and 3-position branched ⁇ -olefins having 5 or more carbon atoms
  • vinylcycloalkanes such as vinylcyclopentane, vinylcyclohexane, and vinylnorbornane.
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyglycolic acid, cellulose, cellulose ester, cellulose ether, polyvinyl alcohol, chitin, chitosan, nylon 6, nylon 66, nylon 610, nylon 612 and other aliphatic polyamides Compound, tele Wholly aromatic polyester fine powder to the barrel acid and resorcinol as main constitutional units, polyhydroxyalkanoates, and the like.
  • the (iv) phosphoric acid, phosphorous acid, or a metal salt thereof is not particularly limited and may be appropriately selected depending on the intended purpose.
  • diphenyl phosphate diphenyl phosphite, bis (4-tert-butyl phosphate) Phenyl) sodium, methylene phosphate (2,4-tert-butylphenyl) sodium, and the like.
  • the (v) sorbitol derivative is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bis (p-methylbenzylidene) sorbitol and bis (p-ethylbenzylidene) sorbitol.
  • the (vi) quaternary ammonium compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include tetraethylammonium chloride, tetran-propylammonium chloride, tetran-butylammonium chloride, tetraethylammonium bromide. Tetra n-propylammonium bromide, tetra n-butylammonium bromide, tetraethylammonium silicate, tetra n-butylammonium silicate, and the like.
  • the (vii) other compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • crystal nucleating agent examples thereof include thioglycolic anhydride, p-toluenesulfonic acid, and metal salts thereof, dibasic acid bis (benzoic acid) Acid hydrazide) compounds, isocyanurate compounds, compounds having a barbituric acid structure, and the like.
  • the content of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.01% by mass to 15% by mass with respect to the parison, and 0.05% by mass. Is more preferably 10% by mass, and particularly preferably 0.1% by mass to 3% by mass.
  • the volume average particle size of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 20 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.2 ⁇ m. Particularly preferred is ⁇ 3 ⁇ m. If the volume average particle size of the crystal nucleating agent is less than 0.01 ⁇ m, the effect may not be sufficiently obtained, and if it exceeds 20 ⁇ m, the parison may become brittle.
  • the cooling temperature is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferably 10 ° C. or lower than the glass transition temperature of the parison, and is lower than the glass transition temperature of the parison. More preferably, from the viewpoint of blow moldability, the temperature is preferably 20 ° C. or lower than the glass transition temperature. When the temperature exceeds 10 ° C. higher than the glass transition temperature of the parison, the cavity starting particles may not be formed inside the parison.
  • the cooling rate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C / sec to 200 ° C / sec, more preferably 10 ° C / sec to 100 ° C / sec, It is particularly preferably from °C / sec to 60 °C / sec.
  • the cooling rate is less than 5 ° C./sec, crystallization may proceed excessively, and when it exceeds 200 ° C./sec, crystallization may be insufficient.
  • the cavity forming step is a step of blow molding the parison in which the cavity starting particles are formed to produce a molded body having a cavity inside.
  • the blow molding is not particularly limited as long as the gas is supplied to the hollow portion of the parison, and can be appropriately selected according to the purpose.
  • extrusion blow molding injection blow molding, stretch blow molding, multilayer blow molding
  • examples include multi-dimensional blow molding.
  • stretch blow molding a gas is supplied after the parison is stretched, and examples thereof include sequential biaxial stretch blow molding and simultaneous biaxial stretch blow molding.
  • blow molding a cavity is formed inside the molded body. The reason why cavities are formed inside the molded body is that the parison is pulled (stretched) by blow molding, so that fine destruction occurs inside the parison, and this forms a cavity to form a cavity. it is conceivable that.
  • the stretching speed of the parison in the blow molding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 mm / min to 40,000 mm / min, and preferably 500 mm / min to 20,000 mm / min. More preferred is 1,000 mm / min to 10,000 mm / min. If the stretching speed is less than 10 mm / min, voids may not be formed, and if it exceeds 40,000 mm / min, the parison may be easily broken during blowing.
  • the plane stretch ratio (longitudinal stretch ratio ⁇ transverse stretch ratio) of the parison in the blow molding is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 to 150 times.
  • the gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. . If the supply pressure of the gas is less than 0.2 Mpa, the gas may not be blown at a sufficient speed, and if it exceeds 20 Mpa, the parison may be broken during blowing.
  • the transfer step is a step of blow-molding a parison in a mold and transferring the inner surface shape of the mold to the parison.
  • the said transfer process is performed by the same blow molding as the said cavity formation process.
  • the mold is not particularly limited as long as it has an inner surface, and can be appropriately selected according to the purpose. Examples thereof include a mold 20 shown in FIGS. 1A to 2B.
  • the transfer is performed by supplying gas and bringing the parison into close contact (following) with the inner surface of the mold.
  • gas There is no restriction
  • the gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. .
  • the gas supply pressure is less than 0.2 Mpa, the parison may not adhere (follow) the inner surface of the mold, and when it exceeds 20 Mpa, the parison may burst without being uniformly stretched.
  • the temperature of the mold is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably a parison softening point to a parison (melting point + 60 ° C.), and a parison softening point to a parison (melting point + 50). ° C) is more preferable, and the softening point of the parison to the melting point of the parison are particularly preferable.
  • the temperature of the mold is lower than the softening point of the parison, the parison may not adhere (follow) to the inner surface of the mold, and when the temperature exceeds the (melting point + 60 ° C.) of the parison, It may not be maintained.
  • the heating step is a step of heating the parison in the mold.
  • the temperature of the parison in the mold can be raised, and the parison can be brought into close contact (following) with the inner surface of the mold.
  • the heating can be performed by a heating mechanism or the like provided in the mold.
  • the heating temperature in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably from the glass transition temperature of the parison to the (melting point + 60) ° C. of the parison, and from the glass transition temperature of the parison to the parison. (Melting point + 30) ° C.
  • the glass transition temperature of the parison to the (melting point + 20) ° C. of the parison is particularly preferable. If the heating temperature is lower than the glass transition temperature of the parison, the parison may not adhere (follow) to the inner surface of the mold, and if it exceeds the (melting point + 60) ° C. of the parison, the resin may flow. is there.
  • the heating rate in the heating step is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ° C / min to 300 ° C / min, more preferably 2 ° C / min to 250 ° C / min. 5 ° C./min to 200 ° C./min is particularly preferable.
  • the opening part (end part) of the obtained parison was heated with an infrared heater and crystallized to impart heat resistance.
  • Cross-sectional observation using an electron microscope (the sample was embedded in an epoxy resin and then cut out with LEICA ULTRACUT UCT (manufactured by Leica), cut into thin pieces, and observed with an electron microscope JEM-2010 (manufactured by JEOL Ltd.) ), It was found that the cavity starting particles were formed when the parison was cooled.
  • the bottle was blow molded using a biaxial stretch blow molding apparatus.
  • the parison was set in a molding machine, heated to 120 ° C.
  • ⁇ Insulation evaluation> A bottle with a capacity of 500 mL was molded, hot water at 75 ° C. was poured to the mouth, and the temperature was measured using a thermocouple installed at a position half the total height of the bottle inside the bottle.
  • the evaluation criteria are as follows, and the obtained results are shown in Table 1.
  • ⁇ Evaluation criteria >> The temperature difference with respect to the blank after 60 minutes is + 3 ° C. or less: ⁇
  • the temperature difference with respect to the blank after 60 minutes is greater than + 3 ° C. and not more than + 10 ° C .: ⁇ ,
  • the temperature difference with respect to the blank after 60 minutes is larger than + 10 ° C.
  • the said blank used the container blow-molded without forming a porous using the same material and the same metal mold as a porous molded object.
  • ⁇ High brightness evaluation> A bottle with a capacity of 500 mL was molded, and a relatively flat portion centering on a height of 10 cm from the bottom of the container on the side of the container was cut into a 2 cm ⁇ 2 cm rectangle, and the light transmittance of this sample at a wavelength of 550 nm was measured.
  • the evaluation criteria are as follows, and the obtained results are shown in Table 1.
  • ⁇ Evaluation criteria >> Transmittance 60% or more ⁇ Transmittance 50% or more and less than 60% Transmittance 40 to less than 50% ⁇ Transmittance less than 40% ⁇
  • ⁇ Blow moldability evaluation> The molded bottle is filled with water at 25 ° C. in an atmosphere at 25 ° C., and the capacity of the bottle is measured. Let the bottle capacity at this time be V1. After draining the water, it is filled with hot water at 85 ° C., left for 10 minutes, drained, and left for 20 minutes with the bottle empty. Thereafter, the bottle is filled again with water at 25 ° C., and the capacity of the bottle is measured. The bottle capacity at this time was set to V2. If V2 / V1 is calculated and the change in capacity is 2% or less of the original capacity, it is acceptable ( ⁇ ). If it exceeds 2% and 5% or less, it is acceptable (O). If it exceeds 5%, NG ( X). The obtained results are shown in Table 1.
  • Example 2 In Example 1, instead of setting the cooling temperature at the time of parison production to 76 ° C., a PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of parison production was 15 ° C. High brightness evaluation and blow moldability evaluation were performed. The obtained results are shown in Table 1. In addition, it became clear from the cross-sectional observation using the electron microscope that the cavity origin particle
  • Example 3 Instead of using polyethylene terephthalate resin pellets in Example 1, a fine particle-containing polymer in which silica having an average particle size of 0.1 ⁇ m was added to polyethylene terephthalate resin pellets was used.
  • a PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of creating the parison was 88 ° C. instead of 76 ° C., and heat insulation evaluation, high brightness evaluation, and blow moldability evaluation were performed. The obtained results are shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, instead of setting the cooling temperature at the time of parison production to 76 ° C, the PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of parison production was 101 ° C. High brightness evaluation and blow moldability evaluation were performed. In addition, it was found by cross-sectional observation using an electron microscope that no cavity starting particles were formed when the parison was cooled.
  • Example 2 (Comparative Example 2) In Example 1, instead of setting the cooling temperature at the time of parison production to 76 ° C., a PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of parison production was 80 ° C. High brightness evaluation and blow moldability evaluation were performed. In addition, it was found by cross-sectional observation using an electron microscope that no cavity starting particles were formed when the parison was cooled.
  • Example 4 In Example 1, instead of setting the cooling temperature at the time of parison production to 76 ° C, the PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of parison production was 68 ° C. High brightness evaluation and blow moldability evaluation were performed. In addition, it became clear from the cross-sectional observation using the electron microscope that the cavity origin particle
  • Example 5 In Example 1, instead of setting the cooling temperature at the time of parison production to 76 ° C, the PET bottle was molded in the same manner as in Example 1 except that the cooling temperature at the time of parison production was 64 ° C. High brightness evaluation and blow moldability evaluation were performed. In addition, it became clear from the cross-sectional observation using the electron microscope that the cavity origin particle
  • Example 6 (Example 6) In Example 1, instead of molding the PET bottle, the heat insulation evaluation, the high brightness evaluation, and the blow moldability evaluation were performed in the same manner as in Example 1 except that the PBT bottle was molded as follows. The obtained results are shown in Table 1.
  • ⁇ PBT bottle molding> Polybutylene terephthalate resin pellets (manufactured by Polyplastic Co., 300FP) were dried at 105 ° C for 9 hours using a vacuum dryer, and then the temperature was adjusted to 5 ° C from an injection molding machine set at 245 ° C to 260 ° C. The sample was injected into the mold for parison (the parison cooling temperature was set to 5 ° C.), and a parison was produced in a molding cycle of 20 seconds. The opening part (end part) of the obtained parison was heated with an infrared heater and crystallized to impart heat resistance.
  • the bottle was blow molded using a biaxial stretch blow molding apparatus.
  • the parison was set in a molding machine, heated to 45 ° C. with an infrared heater, and then stretched and brought into close contact with a compressed air with a pressure of 1.0 MPa in a blow molding mold adjusted to 115 ° C. to give a shape. Thereafter, the bottle was solidified, cooled to 30 ° C. where handling was possible, and the bottle was taken out.
  • the porous molded body of the present invention contains cavities inside, it can be used, for example, as a bottle container that requires high heat insulation and high brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 本発明は、断熱性に優れた高輝度の多孔質成形体及びその製造方法を提供することを目的とする。 本発明の多孔質成形体の製造方法は、結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含むパリソンを冷却して、空洞起点粒子を形成し、ブロー成形して、内部に空洞を有する成形体を製造することを特徴とする。

Description

多孔質成形体及びその製造方法
 本発明は、多孔質成形体及びその製造方法に関し、特に、ブロー成形により成形された多孔質成形体及びその製造方法に関する。
 ブロー成形には、成形したパリソン(プリフォーム)を一度室温まで冷却し、ブロー成形装置で再加熱して調温し、ブロー成形するコールドパリソン方式と、成形したパリソンを、完全に冷却しない状態で調温工程に移し、その後ブロー成形するホットパリソン方式と、がある(例えば、特許文献1参照)。
 前記コールドパリソン方式では、例えば、図1A及び図1Bに示すように、予め成形しておいた有底筒状のパリソン10をブロー成形装置1にセットし(図1A)、その後、金型20a,20bを重ね合わせ、加熱し、上方からエアーを供給し、パリソン10を金型20の内表面形状に追従させて、成形体30を製造する方式である(図1B)。
 前記ホットパリソン方式では、例えば、図2A及び図2Bに示すように、パリソン10をチューブ状に溶融状態で押し出し(図2A)、その後、金型20a,20bを重ね合わせ、パリソン10が完全に冷却しない状態で、下方からエアーを供給し、パリソン10を金型20の内表面形状に追従させて、成形体30を製造する方式である(図2B)。
 このようなブロー成形により製造された成形体30は、透明性、耐衝撃性、衛生性、ガスバリア性、耐圧性、などに優れており、このために各種の食品、飲料、洗剤、化粧品等の包装用容器として広く使用されている(例えば、特許文献2参照)。
 前記包装用容器には、高温や低温の物質が投入乃至注入されることもあり、前記包装用容器の断熱性を向上することが望まれている。また、審美的観点などから、包装用容器の高輝度化についても望まれている。
 しかしながら、断熱性に優れた高輝度のブロー成形体は、未だ存在していない。
国際公開第00/23252号パンフレット 特開平7-257534号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、断熱性に優れた高輝度の多孔質成形体及びその製造方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含むパリソンを冷却して、空洞起点粒子を形成し、ブロー成形して、内部に空洞を有する成形体を製造することを特徴とする多孔質成形体の製造方法である。
 該多孔質成形体の製造方法では、結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含むパリソンが冷却されて、空洞起点粒子が形成された後、ブロー成形されて、内部に空洞を有する成形体が製造される。
 <2> パリソンを前記パリソンのガラス転移温度よりも10℃高い温度以下に冷却する前記<1>に記載の多孔質成形体の製造方法である。
 <3> パリソンを前記パリソンのガラス転移温度未満に冷却する前記<1>から<2>のいずれかに記載の多孔質成形体の製造方法である。
 <4> 空洞起点粒子の形成時におけるパリソンの冷却速度が、5℃/sec~200℃/secである前記<1>から<3>のいずれかに記載の多孔質成形体の製造方法である。
 <5> ブロー成形におけるパリソンの延伸速度が、10mm/min~40,000mm/minである前記<1>から<4>のいずれかに記載の多孔質成形体の製造方法である。
 <6> 結晶性ポリマーが、ポリエチレンテレフタレート及びポリブチレンテレフタレートの少なくともいずれかを含有する前記<1>から<5>のいずれかに記載の多孔質成形体の製造方法である。
 <7> 微粒子の体積平均粒径が、0.01μm~10μmである前記<1>から<6>のいずれかに記載の多孔質成形体の製造方法である。
 <8> 微粒子が、有機フィラー及び無機フィラーのいずれかである前記<1>から<7>のいずれかに記載の多孔質成形体の製造方法である。
 <9> 微粒子が、該微粒子含有ポリマーと非相溶な樹脂微粒子である前記<1>から<7>のいずれかに記載の多孔質成形体の製造方法である。
 <10> パリソンを金型内でブロー成形して、前記金型の内表面形状を前記パリソンに転写することをさらに含む前記<1>から<9>のいずれかに記載の多孔質成形体の製造方法である。
 <11> 金型内のパリソンを加熱することをさらに含む前記<10>に記載の多孔質成形体の製造方法である。
 <12> 空洞形成及び転写が同一のブロー成形により行われる前記<10>から<11>のいずれかに記載の多孔質成形体の製造方法である。
 <13> 前記<1>から<12>のいずれかに記載の多孔質成形体の製造方法により製造されたことを特徴とする多孔質成形体である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、断熱性に優れた高輝度の多孔質成形体及びその製造方法を提供することができる。
図1Aは、ブロー成形におけるコールドパリソン方式を説明するための図である(その1)。 図1Bは、ブロー成形におけるコールドパリソン方式を説明するための図である(その2)。 図2Aは、ブロー成形におけるホットパリソン方式を説明するための図である(その1)。 図2Bは、ブロー成形におけるホットパリソン方式を説明するための図である(その2)。
(多孔質成形体の製造方法、及び多孔質成形体)
 本発明の多孔質成形体は、本発明の製造方法により、好適に製造することができる。以下、本発明の多孔質成形体の製造方法、及び該方法により製造された多孔質成形体について説明する。
 本発明の多孔質成形体の製造方法は、空洞起点粒子形成工程と、空洞形成工程とを少なくとも含み、さらに必要に応じて、その他の工程を含んでなる。
<空洞起点粒子形成工程>
 前記空洞起点粒子形成工程は、結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含むパリソンを冷却して、前記パリソン内部に空洞起点粒子を形成する工程である。
 前記パリソンが結晶性ポリマーからなる場合は、前記冷却によりパリソンが結晶化し、パリソン内部に微結晶が形成され、該微結晶が空洞起点粒子となる。
 前記パリソンが微粒子含有ポリマーからなる場合は、微粒子含有ポリマーにおける微粒子が空洞起点粒子となる。
<<パリソン>>
 前記パリソンの成形方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出成形、射出成形、などが挙げられる。
 前記パリソンの形状としては、中空形状である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、有底筒状、チューブ状、などが挙げられる。
 前記パリソンの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単層構造、複層構造、などが挙げられる。
 前記パリソンの大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記パリソンとしては、結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含み、さらに必要に応じて、その他の成分を含む。
-結晶性ポリマー-
 一般に、ポリマーは、結晶性ポリマーと非晶性(アモルファス)ポリマーとに分けられるが、結晶性ポリマーといえども100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 したがって、前記結晶性ポリマーとしては、分子構造の中に少なくとも前記結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
 前記結晶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン類(例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなど)、ポリアミド類(PA)(例えば、ナイロン-6など)、ポリアセタール類(POM)、ポリエステル類(例えば、PET、PEN、PTT、PBT、PPT、PHT、PBN、PES、PBSなど)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド類(PPS)、ポリエーテルエーテルケトン類(PEEK)、液晶ポリマー類(LCP)、フッ素樹脂、アイソタクティックポリプロピレン(isoPP)、などが挙げられる。その中でも、耐久性、力学強度、製造およびコストの観点から、ポリオレフィン類、ポリエステル類、シンジオタクチック・ポリスチレン(SPS)、液晶ポリマー類(LCP)が好ましく、ポリオレフィン類(PP、PE等)、ポリエステル類がより好ましく、PETが特に好ましい。また、これらのうち2種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。
 前記結晶性ポリマーは、多孔質成形体の紫外領域における光透過率を低くする(反射特性を高める)ためには、例えば、芳香環などの、紫外領域において吸収が高い官能基を含まないことが好ましい。したがって、前記ポリエステル類の中でも、脂肪族ポリエステルが好ましい。
 前記結晶性ポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が50Pa・s~700Pa・sであると、溶融時にダイヘッドから吐出されるポリマーの形状が安定する点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、溶融時の粘度が適切になって押出ししやすくなる点で好ましい。
 ここで、前記溶融粘度は、プレートタイプのレオメーターやキャピラリーレオメーターにより測定することができる。
 前記結晶性ポリマーの極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.5が好ましく、0.6~1.4がより好ましく、0.7~1.3が特に好ましい。前記IVが0.4~1.5であると、多孔質成形体の強度が高くなり、効率よく延伸することができる点で好ましい。
 ここで、前記IVは、ウベローデ型粘度計により測定することができる。
 前記結晶性ポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~350℃が好ましく、100℃~300℃がより好ましく、100℃~260℃が特に好ましい。前記融点が40℃~350℃であると、通常の使用で予想される温度範囲で形を保ちやすくなる点で好ましい。
 ここで、前記融点は、示差熱分析装置(DSC)により測定することができる。
 前記結晶性ポリマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、80質量%~99.5質量%が好ましく、85質量%~99質量%がより好ましく、90質量%~98質量%が特に好ましい。
 前記結晶性ポリマーの含有量が、パリソンに対して、80質量%未満であると、パリソンの加工時及びハンドリング時に形状の維持が困難になることがあり、99.5質量%を超えると、パリソンが脆くなることがある。
--ポリエステル樹脂--
 前記ポリエステル類(以下、「ポリエステル樹脂」と称する。)は、エステル結合を主鎖の主要な結合鎖とする高分子化合物の総称を意味する。したがって、前記結晶性ポリマーとして好適な前記ポリエステル樹脂としては、前記例示したPET(ポリエチレンテレフタエレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPT(ポリペンタメチレンテレフタレート)、PHT(ポリヘキサメチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PES(ポリエチレンサクシネート)、PBS(ポリブチレンサクシネート)だけでなく、ジカルボン酸成分とジオール成分との重縮合反応によって得られる高分子化合物が全て含まれる。
 前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸、などが挙げられる。
 前記芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸、などが挙げられる。中でも、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。
 前記脂肪族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸、などが挙げられる。前記脂環族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シクロヘキサンジカルボン酸、などが挙げられる。前記オキシカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p-オキシ安息香酸、などが挙げられる。前記多官能酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリメリット酸、ピロメリット酸、などが挙げられる。前記脂肪族ジカルボン酸及び脂環族ジカルボン酸の中では、前記多孔質成形体が紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、コハク酸、アジピン酸、シクロヘキサンジカルボン酸が好ましく、コハク酸、アジピン酸がより好ましい。
 前記ジオール成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコール、などが挙げられる。中でも、前記多孔質成形体が紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、脂肪族ジオールが好ましい。
 前記脂肪族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、などが挙げられる。中でも、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオールが好ましい。前記脂環族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シクロヘキサンジメタノール、などが挙げられる。前記芳香族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA、ビスフェノールS、などが挙げられる。
 前記ポリエステル樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が大きいほうが延伸時にボイドを発現しやすいが、前記溶融粘度が50Pa・s~700Pa・sであると、押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなる点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・s以上であると、ダイヘッドから吐出される吐出物の形態が維持しやすくなって、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で好ましい。
 前記ポリエステル樹脂の極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.5が好ましく、0.6~1.3がより好ましく、0.7~1.2が特に好ましい。前記IVが大きいほうが延伸時にボイドを発現しやすいが、前記IVが0.4~1.5であると、押出しがしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。さらに、前記IVが0.4~1.5であると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、装置に負荷がかかりにくい点で好ましい。加えて、前記IVが0.4~1.5であると、製品が破損しにくくなって、物性が高まる点で好ましい。
 前記ポリエステル樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、耐熱性などの観点から、70℃~300℃が好ましく、90℃~270℃がより好ましい。
 なお、前記ポリエステル樹脂として、前記ジカルボン酸成分と前記ジオール成分とが、それぞれ1種で重合してポリマーを形成していてもよく、前記ジカルボン酸成分及び/又は前記ジオール成分が、2種以上で共重合してポリマーを形成していてもよい。また、前記ポリエステル樹脂として、2種以上のポリマーをブレンドして使用してもよい。
 前記2種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、前記主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量であるほうが、溶融押出し時に物性が高まり、押出ししやすくなる点で好ましい。
 また、前記ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、前記ポリエステル樹脂に対してポリエステル系以外の樹脂を添加してもよい。
-微粒子含有ポリマー-
 前記微粒子含有ポリマーとしては、微粒子を含有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、前述した結晶性ポリマー、ポリ塩化ビニル、アタクチックのポリスチレン、ポリメタクリル酸メチル等の非晶性ポリマー、などが挙げられる。
--微粒子--
 前記微粒子としては、空洞起点粒子となり得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィラー、樹脂微粒子、などが挙げられる。
 前記フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステアリン酸ナトリウム塩、モンタン酸ナトリウム塩、安息香酸アルミニウム塩、アジピン酸ナトリウム、p-t-ブチル安息香酸アルミニウム塩、ヒドロキシステアリン酸アミド、リシノレイン酸アミド等の有機フィラー、タルク、シリカ、カオリン、クレー、スメクタイト、バーミキュライト等の無機フィラー、などが挙げられる。
 前記樹脂微粒子としては、前記微粒子含有ポリマーと非相溶である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、PTFE(ポリテトラフルオロエチレン)などが挙げられる。
 前記微粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、0.05質量%~5質量%が好ましく、0.1質量%~2質量%がより好ましく、0.2質量%~0.5質量%が特に好ましい。
 前記微粒子の含有量が、パリソンに対して、0.05%未満であると充分な結晶化が促進されないことがあり、5質量%を超えると、パリソンが脆くなることがある。
 前記微粒子の体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~10μmが好ましく、0.02μm~5μmがより好ましく、0.05μm~1μmが特に好ましい。
 前記微粒子の体積平均粒径が、0.01μm未満であると、充分な結晶化が促進されないことがあり、10μmを超えると、パリソンが脆くなることがある。
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶造核剤、などが挙げられる。
--結晶造核剤--
 前記結晶造核剤としては、結晶性ポリマー内部の微結晶形成を促進するものであれば、無機物、有機物を問わず、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)単体、複合酸化物を含む金属化合物類、(ii)カルボキシル基の金属塩を有する低分子化合物、(iii)高分子有機化合物、(iv)燐酸、亜燐酸、又はそれらの金属塩、(v)ソルビトール誘導体、(vi)4級アンモニウム化合物、(vii)他の化合物、などが挙げられる。また、前記結晶造核剤は、1種類又は2種類以上を同時に用いてもよい。
 前記(i)単体、複合酸化物を含む金属化合物類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、炭酸カルシウム、合成珪酸及び珪酸塩、シリカ、亜鉛華、ハイサイトクレー、カオリン、塩基性炭酸マグネシウム、マイカ、タルク、石英粉、珪藻土、ドロマイト粉、酸化チタン、酸化亜鉛、酸化アンチモン、硫酸バリウム、硫酸カルシウム、アルミナ、珪酸カルシウム、窒化ホウ素、などが挙げられる。
 前記(ii)カルボキシル基の金属塩を有する低分子化合物としては、オクチル酸、トルイル酸、ヘプタン酸、ペラルゴン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、ベヘニン酸、セロチン酸、モンタン酸、メリシン酸、安息香酸、p-tert-ブチル安息香酸、テレフタル酸、テレフタル酸モノメチルエステル、イソフタル酸、イソフタル酸モノメチルエステル、ショウノウ酸、シトロネル酸、ヒノキ酸、アビチエン酸、ロジン酸、水素化ロジン酸などの金属塩が挙げられる。
 前記(iii)高分子有機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,3-ジメチルブテン-1、3-メチルペンテン-1、3-メチルブテン-1、3-メチルヘキセン-1、3,5,5-トリメチルヘキセン-1、などの炭素数5以上の3位分岐α-オレフィン、並びに、ビニルシクロペンタン、ビニルシクロヘキサン、ビニルノルボルナンなどのビニルシクロアルカンの重合体、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、ポリグリコール酸、セルロース、セルロースエステル、セルロースエーテル、ポリビニルアルコール、キチン、キトサン、ナイロン6、ナイロン66、ナイロン610、ナイロン612などの脂肪族系ポリアミド化合物、テレフタル酸とレゾルシンを主な構成単位とする全芳香族ポリエステル微粉末、ポリヒドロキシアルカノエート類、などが挙げられる。
 前記(iv)燐酸、亜燐酸、又はそれらの金属塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、燐酸ジフェニル、亜燐酸ジフェニル、燐酸ビス(4-tert-ブチルフェニル)ナトリウム、燐酸メチレン(2,4-tert-ブチルフェニル)ナトリウム、などが挙げられる。
 前記(v)ソルビトール誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、などが挙げられる。
 前記(vi)4級アンモニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テトラエチルアンモニウムクロリド、テトラn-プロピルアンモニウムクロリド、テトラn-ブチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラn-プロピルアンモニウムブロミド、テトラn-ブチルアンモニウムブロミド、テトラエチルアンモニウムシリケート、テトラn-ブチルアンモニウムシリケート、などが挙げられる。
 前記(vii)他の化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水チオグリコール酸、パラトルエンスルフォン酸、及びそれらの金属塩、二塩基酸ビス(安息香酸ヒドラジド)化合物、イソシアヌレート化合物、バルビツル酸構造を有する化合物、などが挙げられる。
 前記結晶造核剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、0.01質量%~15質量%が好ましく、0.05質量%~10質量%がより好ましく、0.1質量%~3質量%が特に好ましい。
 前記結晶造核剤の含有量が、パリソンに対して、0.01質量%未満であると、その効果が充分に得られにくいことがあり、15質量%を超えると、パリソンが脆くなることがある。
 前記結晶造核剤の体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~20μmが好ましく、0.1μm~10μmがより好ましく、0.2μm~3μmが特に好ましい。
 前記結晶造核剤の体積平均粒径が、0.01μm未満であると、その効果が充分に得られにくいことがあり、20μmを超えると、パリソンが脆くなることがある。
<<冷却>>
 前記冷却の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンのガラス転移温度よりも10℃高い温度以下であることが好ましく、パリソンのガラス転移温度未満であることがより好ましく、また、ブロー成形性の観点から、ガラス転移温度より20℃低い温度以上であることが好ましい。パリソンのガラス転移温度よりも10℃高い温度を超えると、前記パリソン内部に空洞起点粒子が形成されないことがある。また、パリソンのガラス転移温度よりも10℃高い温度を超えても、前記パリソン内部に空洞起点粒子が形成される場合は、パリソンのガラス転移温度よりも10℃高い温度を超える温度まで冷却すれば足りる。
 前記冷却の速度としては、特に制限はなく、目的に応じて適宜選択することができるが、5℃/sec~200℃/secが好ましく、10℃/sec~100℃/secがより好ましく、30℃/sec~60℃/secが特に好ましい。
 前記冷却の速度が、5℃/sec未満であると、結晶化が進みすぎることがあり、200℃/secを超えると、結晶化が不足することがある。
<空洞形成工程>
 前記空洞形成工程は、空洞起点粒子が形成されたパリソンをブロー成形して、内部に空洞を有する成形体を製造する工程である。
<<ブロー成形>>
 前記ブロー成形は、パリソンの中空部に気体を供給する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出ブロー成形、射出ブロー成形、延伸ブロー成形、多層ブロー成形、多次元ブロー成形、などが挙げられる。 前記延伸ブロー成形は、パリソンを延伸した後に、気体を供給するものであり、例えば、逐次2軸延伸ブロー成形、同時2軸延伸ブロー成形、などが挙げられる。
 前記ブロー成形により、成形体内部に空洞が形成される。成形体内部に空洞が形成される理由としては、パリソンがブロー成形により引っ張られる(延伸される)ことにより、パリソン内部に微細な破壊が生じ、これが空洞形成源となって空洞が形成されるものと考えられる。
 前記ブロー成形におけるパリソンの延伸速度としては、特に制限はなく、目的に応じて適宜選択することができるが、10mm/min~40,000mm/minが好ましく、500mm/min~20,000mm/minがより好ましく、1,000mm/min~10,000mm/minが特に好ましい。
 前記延伸速度が、10mm/min未満であると、空洞(ボイド)ができないことがあり、40,000mm/minを超えると、ブロー時にパリソンが破断しやすくなることがある。
 前記ブロー成形におけるパリソンの平面延伸倍率(縦延伸倍率×横延伸倍率)としては、特に制限はなく、目的に応じて適宜選択することができるが、5倍~150倍が好ましく、
10倍~100倍がより好ましく、15倍~50倍が特に好ましい。
 前記平面延伸倍率が、5倍未満であると、パリソンの厚みムラが解消できないことがあり、150倍を超えると、ブロー時にパリソンが破断しやすくなることがある。
 前記気体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空気、窒素、などが挙げられる。
 前記気体の供給圧としては、特に制限はなく、目的に応じて適宜選択することができるが、0.2Mpa~20Mpaが好ましく、0.4Mpa~10Mpaがより好ましく、0.5Mpa~5Mpaが特に好ましい。
 前記気体の供給圧が、0.2Mpa未満であると、充分な速度でブローし切れないことがあり、20Mpaを超えると、ブロー中にパリソンが破けることがある。
<その他の工程>
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、転写工程、加熱工程、などが挙げられる。
<<転写工程>>
 前記転写工程は、パリソンを金型内でブロー成形して、前記金型の内表面形状を前記パリソンに転写する工程である。なお、前記転写工程は、前記空洞形成工程と同一のブロー成形により行われることが好ましい。
-金型-
 前記金型としては、内表面を有するものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、図1A~図2Bに示す金型20、などが挙げられる。
-転写-
 前記転写は、気体を供給して、パリソンを金型の内表面に密着(追従)させることにより、行われる。
 前記気体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空気、窒素、などが挙げられる。
 前記気体の供給圧としては、特に制限はなく、目的に応じて適宜選択することができるが、0.2Mpa~20Mpaが好ましく、0.4Mpa~10Mpaがより好ましく、0.5Mpa~5Mpaが特に好ましい。
 前記気体の供給圧が、0.2Mpa未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、20Mpaを超えると、パリソンが均一に伸びずに破裂することがある。
 前記金型の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンの軟化点~パリソンの(融点+60℃)が好ましく、パリソンの軟化点~パリソンの(融点+50℃)がより好ましく、パリソンの軟化点~パリソンの融点が特に好ましい。
 前記金型の温度が、パリソンの軟化点未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、パリソンの(融点+60℃)を超えると、パリソンの転写及び形状を維持できないことがある。
<<加熱工程>>
 前記加熱工程は、金型内のパリソンを加熱する工程である。
 該加熱により、金型内のパリソンの温度を上げることができ、もってパリソンを金型の内表面に密着(追従)させることができる。例えば、金型に設けられた加熱機構などにより、前記加熱を行うことができる。
 前記加熱工程における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンのガラス転移温度~パリソンの(融点+60)℃が好ましく、パリソンのガラス転移温度~パリソンの(融点+30)℃がより好ましく、パリソンのガラス転移温度~パリソンの(融点+20)℃が特に好ましい。
 前記加熱温度が、パリソンのガラス転移温度未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、パリソンの(融点+60)℃を超えると、樹脂が流れてしまうことがある。
 前記加熱工程における昇温速度としては、特に制限はなく、目的に応じて適宜選択することができるが、1℃/min~300℃/minが好ましく、2℃/min~250℃/minがより好ましく、5℃/min~200℃/minが特に好ましい。
 前記昇温速度が、1℃/min未満であると、昇温時に過度に結晶化が進んでしまうことがあり、300℃/minを超えると、加熱装置の加熱能力が大きくなるため、加熱装置が大型化し、一連のブロー成形システム中に、加熱装置を組み込むことが困難になるほか、高精度の温調(制御系)が必要になるなど高コストになることがある。
 次に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に制限されるものではない。
(実施例1)
<PETボトルの成形>
 ポリエチレンテレフタレート樹脂ペレット(富士フイルム社内製、極限粘度(IV)=0.91、ガラス転移温度=68℃)を除湿乾燥エア乾燥機により165℃で5時間乾燥した後、射出シリンダー温度を270℃~300℃に設定した射出成形機より、76℃に温調したパリソン用金型内に射出して(パリソンの冷却温度を76℃として)、成形サイクル35秒でパリソンを作製した。得られたパリソンの開口部分(端部)を赤外線ヒータにて加熱し、結晶化させて耐熱性を付与した。なお、電子顕微鏡を用いた断面観察(サンプルをエポキシ樹脂に樹脂包埋したのち、LEICA ULTRACUT UCT(ライカ製)により切出し、薄片とし、電子顕微鏡JEM-2010(日本電子(株)製)にて観察)により、パリソンの冷却時に空洞起点粒子が形成されていたことが分かった。
 次に、2軸延伸ブロー成形装置を用いて、ボトルのブロー成形を行った。パリソンを成形機にセットし、赤外線ヒータにより120℃まで加熱した後、170℃に温調したブロー成型用金型内に圧力1.5MPaの圧縮空気により延伸、密着させて形状付与を行った。
 その後、ボトルが固化して、ハンドリングが可能な70℃まで冷却して、ボトルを取り出した。
<断熱性評価>
 容量500mLのボトルを成形し、75℃の熱水を口のところまで注ぎ、ボトル内部中央のボトルの全高さの1/2の位置に設置した熱電対を用いて温度を測定した。
 評価基準は、下記の通りとし、得られた結果を表1に示す。
<<評価基準>>
60分後のブランクに対する温度差が+3℃以下である:×
60分後のブランクに対する温度差が+3℃より大きく+10℃以下である:△、
60分後のブランクに対する温度差が+10℃より大きく+15℃以下:〇
60分後のブランクに対する温度差が+15℃より大:◎
 なお、前記ブランクには、多孔質成形体と同じ材料、同じ金型を用いて多孔質を形成させないでブロー成形した容器を用いた。
<高輝性評価>
 容量500mLのボトルを成形し、容器側面の容器底部から10cmの高さを中心とする、比較的平坦な部分を2cm×2cmの矩形に切出し、このサンプルの波長550nmにおける光線透過率を測定した。
 評価基準は、下記の通りとし、得られた結果を表1に示す。
<<評価基準>>
透過率60%以上       ×
透過率50%以上60%未満  △
透過率40以上50%未満   〇
透過率40%未満       ◎
<ブロー成形性評価>
 成形したボトルに25℃の雰囲気下で25℃の水を充填しボトルの容量を測定する。このときのボトル容量をV1とする。
 水を排水した後、85℃の熱水を充填し、10分放置後に排水し、ボトルが空になった状態で20分放置する。
 その後、再度、ボトルに25℃の水を充填してボトルの容量を測定する。このときのボトル容量をV2とした。
 V2/V1を計算して容量の変化が、元の容量の2%以下なら合格(◎)、2%を超え5%以下である場合は許容可(〇)、5%を超える場合はNG(×)とした。得られた結果を表1に示す。
(実施例2)
 実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作製時の冷却温度を15℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。得られた結果を表1に示す。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていたことが分かった。
(実施例3)
 実施例1において、ポリエチレンテレフタレート樹脂ペレットを用いる代わりに、ポリエチレンテレフタレート樹脂ペレットに平均粒径0.1μmのシリカを添加した微粒子含有ポリマーを用い、また、実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作成時の冷却温度を88℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。得られた結果を表1に示す。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていたことが分かった。
(比較例1)
 実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作製時の冷却温度を101℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていなかったことが分かった。
(比較例2)
 実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作製時の冷却温度を80℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていなかったことが分かった。
(実施例4)
 実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作製時の冷却温度を68℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていたことが分かった。
(実施例5)
 実施例1において、パリソン作製時の冷却温度を76℃とする代わりに、パリソン作製時の冷却温度を64℃とした以外は、実施例1と同様に、PETボトルを成形し、断熱性評価、高輝性評価及びブロー成形性評価を行った。なお、電子顕微鏡を用いた断面観察により、パリソンの冷却時に空洞起点粒子が形成されていたことが分かった。
(実施例6)
 実施例1において、PETボトルを成形する代わりに、下記のようにPBTボトルを成形した以外は、実施例1と同様に、断熱性評価、高輝性評価及びブロー成形性評価を行った。得られた結果を表1に示す。
<PBTボトルの成形>
 ポリブチレンテレフタレート樹脂ペレット(ポリプラスッチック社製、300FP)を
真空乾燥機により105℃で9時間乾燥した後、射出シリンダー温度を245℃~260℃に設定した射出成形機より、5℃に温調したパリソン用金型内に射出して(パリソンの冷却温度を5℃として)、成形サイクル20秒でパリソンを作製した。
 得られたパリソンの開口部分(端部)を赤外線ヒータにて加熱し、結晶化させて耐熱性を付与した。なお、パリソンの開口部の結晶化させて白化した部位以外は透明であったが、透明部位を切出してX線解析を行なった結果、結晶化度が15%あり、可視光を透過する微細な結晶核が(空洞起点粒子)が形成されていたことが分かった。
 次に、2軸延伸ブロー成形装置を用いて、ボトルのブロー成形を行った。パリソンを成形機にセットし、赤外線ヒータにより45℃まで加熱した後、115℃に温調したブロー成型用金型内に圧力1.0MPaの圧縮空気により延伸、密着させて形状付与を行った。
 その後、ボトルが固化して、ハンドリングが可能な30℃まで冷却して、ボトルを取り出した。
Figure JPOXMLDOC01-appb-T000001
 本発明の多孔質成形体は、内部に空洞を含有しているため、例えば、高断熱性及び高輝性が必要とされるボトル容器として利用することができる。
1   ブロー成形機
10  パリソン
20  金型
20a 金型
20b 金型
30  成形体

Claims (13)

  1.  結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含むパリソンを冷却して、空洞起点粒子を形成し、ブロー成形して、内部に空洞を有する成形体を製造することを特徴とする多孔質成形体の製造方法。
  2.  パリソンを前記パリソンのガラス転移温度よりも10℃高い温度以下に冷却する請求項1に記載の多孔質成形体の製造方法。
  3.  パリソンを前記パリソンのガラス転移温度未満に冷却する請求項1から2のいずれかに記載の多孔質成形体の製造方法。
  4.  空洞起点粒子の形成時におけるパリソンの冷却速度が、5℃/min~200℃/minである請求項1から3のいずれかに記載の多孔質成形体の製造方法。
  5.  ブロー成形におけるパリソンの延伸速度が、10mm/min~40,000mm/minである請求項1から4のいずれかに記載の多孔質成形体の製造方法。
  6.  結晶性ポリマーが、ポリエチレンテレフタレート及びポリブチレンテレフタレートの少なくともいずれかを含有する請求項1から5のいずれかに記載の多孔質成形体の製造方法。
  7.  微粒子の体積平均粒径が、0.01μm~10μmである請求項1から6のいずれかに記載の多孔質成形体の製造方法。
  8.  微粒子が、有機フィラー及び無機フィラーのいずれかである請求項1から7のいずれかに記載の多孔質成形体の製造方法。
  9.  微粒子が、該微粒子含有ポリマーと非相溶な樹脂微粒子である請求項1から7のいずれかに記載の多孔質成形体の製造方法。
  10.  パリソンを金型内でブロー成形して、前記金型の内表面形状を前記パリソンに転写することをさらに含む請求項1から9のいずれかに記載の多孔質成形体の製造方法。
  11.  金型内のパリソンを加熱することをさらに含む請求項10に記載の多孔質成形体の製造方法。
  12.  空洞形成及び転写が同一のブロー成形により行われる請求項10から11のいずれかに記載の多孔質成形体の製造方法。
  13.  請求項1から12のいずれかに記載の多孔質成形体の製造方法により製造されたことを特徴とする多孔質成形体。
     
PCT/JP2010/055360 2009-03-27 2010-03-26 多孔質成形体及びその製造方法 WO2010110420A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011506142A JP5685525B2 (ja) 2009-03-27 2010-03-26 多孔質成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-079994 2009-03-27
JP2009079994 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010110420A1 true WO2010110420A1 (ja) 2010-09-30

Family

ID=42781110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055360 WO2010110420A1 (ja) 2009-03-27 2010-03-26 多孔質成形体及びその製造方法

Country Status (2)

Country Link
JP (1) JP5685525B2 (ja)
WO (1) WO2010110420A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077821A1 (ja) * 2009-12-24 2011-06-30 富士フイルム株式会社 内部に空洞を含有する成形体、及びその製造方法
JP2016529139A (ja) * 2013-08-12 2016-09-23 エイジーアール インターナショナル,インコーポレイテッド ブロー成形制御システムおよび方法
CN109562556A (zh) * 2016-08-05 2019-04-02 萨克米伊莫拉机械合作社合作公司 通过将空气吹入管状体而形成由聚合物材料制成的物体的设备和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204924A (ja) * 1986-03-05 1987-09-09 Toyo Seikan Kaisha Ltd 中空成形容器の製造法
JPH10329203A (ja) * 1997-05-30 1998-12-15 Yoshino Kogyosho Co Ltd 発泡ブローボトルの成形方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958082B2 (ja) * 1990-09-05 1999-10-06 大日本印刷株式会社 耐熱遮光性多層ボトル
JP2000301596A (ja) * 1999-04-19 2000-10-31 Toppan Printing Co Ltd フロスト調プラスチック製ボトル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204924A (ja) * 1986-03-05 1987-09-09 Toyo Seikan Kaisha Ltd 中空成形容器の製造法
JPH10329203A (ja) * 1997-05-30 1998-12-15 Yoshino Kogyosho Co Ltd 発泡ブローボトルの成形方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077821A1 (ja) * 2009-12-24 2011-06-30 富士フイルム株式会社 内部に空洞を含有する成形体、及びその製造方法
JP2016529139A (ja) * 2013-08-12 2016-09-23 エイジーアール インターナショナル,インコーポレイテッド ブロー成形制御システムおよび方法
US9539756B2 (en) 2013-08-12 2017-01-10 Agr International, Inc. Blow molder control systems and methods
US9868247B2 (en) 2013-08-12 2018-01-16 Agr International, Inc. Blow molder control systems and methods
US11155018B2 (en) 2013-08-12 2021-10-26 Agr International, Inc. Blow molder control systems and methods
US11597135B2 (en) 2013-08-12 2023-03-07 Agr International, Inc. Blow molder control systems and methods
US11904520B2 (en) 2013-08-12 2024-02-20 Agr International, Inc. Blow molder control systems and methods
CN109562556A (zh) * 2016-08-05 2019-04-02 萨克米伊莫拉机械合作社合作公司 通过将空气吹入管状体而形成由聚合物材料制成的物体的设备和方法
CN109562556B (zh) * 2016-08-05 2021-09-28 萨克米伊莫拉机械合作社合作公司 通过将空气吹入管状体而形成由聚合物材料制成的物体的设备和方法

Also Published As

Publication number Publication date
JPWO2010110420A1 (ja) 2012-10-04
JP5685525B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP3978012B2 (ja) 多層容器及びその製造方法
KR100948723B1 (ko) 락트산계 폴리머 조성물, 상기 조성물로 이루어지는 성형품및 그의 제조방법
JP5305610B2 (ja) 耐圧性ポリエステル容器及びその製造方法
KR20060132725A (ko) 발포 벽을 갖는 용기
JP2006001108A (ja) プリフォーム及びこのプリフォームから成るブロー成形容器
JPWO2003008178A1 (ja) 延伸熱固定成形体及びその製法
JP5609039B2 (ja) ポリエステル系容器
US20100044928A1 (en) Process for Shaped Articles from Polyester Blends
JP5685525B2 (ja) 多孔質成形体の製造方法
CN108431102A (zh) 聚乳酸树脂组合物以及聚乳酸树脂成型品
WO2007138842A1 (ja) 耐熱性に優れた生分解性延伸成形容器
WO2011077821A1 (ja) 内部に空洞を含有する成形体、及びその製造方法
TW587980B (en) Processes for producing PET preforms and containers such as food bottles, containers and intermediate preforms obtained
JP3997102B2 (ja) 多層ブロー成形容器
JP2003020344A (ja) ポリグリコール酸成形物
JP2001354223A (ja) 脂肪族ポリエステル製容器
JPH0379189B2 (ja)
TW202219172A (zh) 聚酯系熱收縮膜
JPH1045886A (ja) ポリエステル、該ポリエステルからなるプリフォームお よび二軸延伸ボトルならびにポリエステル製二軸延伸ボ トルの製造方法
WO2004096525A1 (fr) Procede de fabrication de bouteilles en polyester resistant a la chaleur et produits fabriques selon ce procede
JP3737302B2 (ja) 新規なポリエステルペレットおよびポリエステルペレットの製造方法
JP3522043B2 (ja) ポリエステル、該ポリエステルからなるプリフォームおよび二軸延伸ボトルならびにポリエステル製二軸延伸ボトルの製造方法
JP3498939B2 (ja) ポリエステル、該ポリエステルからなるプリフォームおよび二軸延伸ボトルならびにポリエステル製二軸延伸ボトルの製造方法
JPS6212023B2 (ja)
WO2013040096A1 (en) Low pearlescence compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506142

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756216

Country of ref document: EP

Kind code of ref document: A1