WO2010110125A1 - Supply system and supply method for functional solution - Google Patents

Supply system and supply method for functional solution Download PDF

Info

Publication number
WO2010110125A1
WO2010110125A1 PCT/JP2010/054440 JP2010054440W WO2010110125A1 WO 2010110125 A1 WO2010110125 A1 WO 2010110125A1 JP 2010054440 W JP2010054440 W JP 2010054440W WO 2010110125 A1 WO2010110125 A1 WO 2010110125A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
gas
acid solution
liquid separation
unit
Prior art date
Application number
PCT/JP2010/054440
Other languages
French (fr)
Japanese (ja)
Inventor
晴義 山川
内田 稔
大津 徹
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020117024202A priority Critical patent/KR101323193B1/en
Priority to US13/259,848 priority patent/US20130092553A1/en
Publication of WO2010110125A1 publication Critical patent/WO2010110125A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention can be suitably used for cleaning a resist attached to an electronic material such as a silicon wafer, and a function capable of supplying a functional solution obtained by electrolyzing sulfuric acid to a use side for cleaning the resist.
  • the present invention relates to a neutral solution supply system and a supply method.
  • the resist attached to the electronic material such as a silicon wafer in the semiconductor manufacturing process becomes unnecessary after that, it is necessary to remove the resist from the electronic material.
  • a solution called SPM in which concentrated sulfuric acid and hydrogen peroxide solution are mixed is used.
  • SPM concentrated sulfuric acid and hydrogen peroxide solution
  • the stripping process using SPM consumes a large amount of sulfuric acid and hydrogen peroxide solution, so the running cost is high, and a large amount of waste liquid is discharged.
  • the present inventors use an electrolytic sulfuric acid solution containing an oxidizing substance such as persulfuric acid composed of peroxodisulfuric acid and peroxomonosulfuric acid obtained by electrolyzing sulfuric acid as a cleaning liquid for stripping the resist.
  • Patent Documents 1 and 2 Have developed and proposed a cleaning method and a cleaning system in which the electrolytic sulfuric acid solution used for cleaning is electrolyzed again and circulated (Patent Documents 1 and 2). According to these cleaning systems, a high cleaning effect can be obtained while reducing the amount of cleaning liquid used and the amount of waste liquid.
  • the amount of ions implanted into an electronic material such as a silicon wafer tends to increase.
  • the same amount of ions is implanted into the resist that is not required in the subsequent process and is removed.
  • the amount of ion implantation increases, it becomes difficult to remove unnecessary resist from the electronic material.
  • the ion dose is 1 ⁇ 10 15 atoms / cm 2 or more, it is difficult to completely remove the resist. Therefore, it is necessary to perform an ashing process using oxygen plasma or the like called ashing as a pre-process.
  • the resist can be stripped without ashing, but when cleaning a resist with an increased ion implantation amount, the processing time decreases because the resist cleaning time becomes longer. There's a problem.
  • the single wafer cleaning apparatus In addition to the batch method, there is a single wafer method for cleaning electronic materials and the like.
  • the single wafer type for example, an object to be cleaned is fixed to a turntable, and a chemical solution or the like is sprayed and washed while rotating the object.
  • the configuration of the single wafer cleaning apparatus is not limited to this, and the apparatus configuration disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2004-172493 and 2007-266495 may be used.
  • an unnecessary resist can be efficiently peeled from an electronic material such as a silicon wafer by using a relatively small amount of chemical solution.
  • an electrolytic sulfuric acid solution containing an oxidizing substance such as persulfuric acid generated by an oxidation reaction at the anode by sulfuric acid electrolysis can be used as in the batch type. Also in single wafer cleaning equipment, the electrolytic sulfuric acid solution used for strip cleaning is recovered, and the solution supply system that can be repeatedly supplied by electrolytic treatment again is used to generate resist strip cleaning. The amount of waste liquid to be reduced can be reduced.
  • the chemical solution used in the single wafer cleaning device is required to have more severe characteristics than the electrolytic sulfuric acid solution used in the batch cleaning device.
  • a functional solution having a higher persulfuric acid concentration and a higher liquid temperature is required.
  • persulfuric acid has a very high self-decomposition rate at a high temperature, it is difficult to supply a functional solution that simultaneously satisfies a high persulfuric acid concentration and a high liquid temperature by a conventional functional solution supply system.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a functional solution supply system and a supply method capable of supplying a functional solution that simultaneously satisfies a high persulfuric acid concentration and a high liquid temperature to the use side. To do.
  • the first aspect of the present invention includes an electrolysis unit that electrolyzes a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass to generate persulfuric acid, and an electrolyzed sulfuric acid solution.
  • a gas-liquid separation unit for liquid separation, a circulation line for circulating a part of the sulfuric acid solution separated in the gas-liquid separation unit to the gas-liquid separation unit via the electrolysis unit, and the gas-liquid separation unit A supply line for supplying a part of the gas-liquid separated sulfuric acid solution to the use side, and a heating unit interposed in the supply line to heat the sulfuric acid solution to 120 to 190 ° C. to obtain a functional solution
  • the solution passing time from when the sulfuric acid solution is introduced into the inlet of the heating unit until it is used on the use side is set to be less than 1 minute.
  • the functional solution supply system according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the electrolysis unit is configured as a non-diaphragm type.
  • the electrolysis unit is configured as a diaphragm type, and the gas-liquid separation unit is connected to the anode side of the electrolysis unit.
  • a cathode-side gas-liquid separation unit is connected to the cathode side of the electrolysis unit.
  • the gas-liquid separation unit also serves as a storage unit that stores a sulfuric acid solution.
  • a functional solution supply system includes a storage unit that stores the sulfuric acid solution that has been gas-liquid separated by the gas-liquid separation unit according to any one of the first to third aspects of the present invention.
  • the circulation line performs the circulation of the sulfuric acid solution stored in the storage section.
  • the functional solution supply system of the sixth aspect of the present invention is characterized in that, in the fifth aspect of the present invention, the supply line supplies the sulfuric acid solution stored in the storage section.
  • the functional solution supply system provides the functional solution supply system according to any one of the first to fourth aspects of the present invention, wherein sulfuric acid drainage discharged after use on the use side is discharged into the gas-liquid separation unit and the electrolysis unit.
  • the functional solution supply system is the fifth or sixth aspect of the present invention, wherein in the fifth or sixth aspect of the present invention, the sulfuric acid drainage discharged after use on the use side is one of the storage unit and the electrolysis unit or It is characterized by comprising a reflux line for refluxing both, and a cooling unit interposed in the reflux line for cooling the sulfuric acid drainage.
  • the functional solution supply system of the ninth aspect of the present invention is the seventh or eighth aspect of the present invention, wherein the sulfuric acid drainage is retained in the upstream of the cooling section of the reflux line and is included in the sulfuric acid drainage. It is characterized in that a decomposition part for interposing the residual organic matter is interposed.
  • the functional solution supply system is characterized in that, in any one of the first to ninth aspects of the present invention, a heat source of the heating unit is a near infrared heater.
  • the functional solution supply system of the eleventh aspect of the present invention is the tenth aspect of the present invention, wherein the near-infrared heater has a near-infrared ray in the thickness direction with respect to a flow path having a thickness of 10 mm or less through which the sulfuric acid solution is passed. And the sulfuric acid solution is arranged to be heated by radiant heat.
  • the functional solution supply system of the twelfth aspect of the present invention is characterized in that, in any of the first to eleventh aspects of the present invention, the use side is a single wafer cleaning system.
  • electrolysis is carried out while circulating a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass while being separated into gas and liquid, and a part of the electrolyzed sulfuric acid solution is taken out.
  • a method for supplying a functional solution comprising: heating to a temperature of 190 ° C., and supplying the solution to the use side so that the time from the start of heating to use is less than 1 minute.
  • a functional solution containing persulfuric acid at a high temperature while maintaining a high concentration of persulfuric acid to the use side such as a single wafer cleaning device.
  • This functional solution has strong oxidizing power due to the self-decomposition of persulfuric acid contained in the solution on the use side. For example, even a resist ion-implanted at a high concentration has a high peeling cleaning effect. Can be obtained.
  • the sulfuric acid solution has a sulfuric acid concentration of 75 to 96% by mass, and persulfuric acid is produced by electrolyzing the sulfuric acid solution. If the sulfuric acid concentration is lower than 75% by mass, there is an advantage that the current efficiency (the amount of persulfuric acid generated per unit current amount) is increased, but the boiling point is low, so the liquid temperature cannot be raised sufficiently. In addition, the cleaning effect such as resist peeling is reduced. On the other hand, when the sulfuric acid concentration exceeds 96% by mass, the boiling point rises, so that the liquid temperature can be increased.
  • the sulfuric acid concentration of the sulfuric acid solution is set within the above range.
  • the lower limit of the sulfuric acid concentration is 80% by mass and the upper limit is 92% by mass.
  • the sulfuric acid solution is electrolyzed in the electrolysis section to produce persulfuric acid.
  • an electrode used for electrolysis it is desirable that at least the anode of the anode and the cathode is a conductive diamond electrode. At this time, it is sufficient that at least the wetted part acting as the anode is a conductive diamond. Furthermore, it is more desirable if both electrodes are conductive diamond electrodes. Conductive diamond is known to be suitable as an electrode material for producing persulfuric acid from a sulfuric acid solution because it has high chemical stability and a wide potential window (see JP 2001-192874 A).
  • the conductive diamond electrode As a configuration of the conductive diamond electrode, a conductive diamond thin film deposited on a conductive Si or metal substrate, or a flat plate made of only conductive diamond without a substrate can be used. Alternatively, a plurality of non-powered electrodes may be incorporated between an anode and a cathode that are fed from a DC power supply, and electrolysis may be performed with these electrodes being bipolar.
  • the electrode for the bipolar electrode can also be constituted by the conductive diamond electrode.
  • Examples of the electrolysis unit include a diaphragm-type electrolysis apparatus having no diaphragm such as an ion exchange membrane between electrodes, and a diaphragm-type electrolysis apparatus in which the anode and the cathode are partitioned by a diaphragm such as an ion exchange membrane. Can be used.
  • a diaphragm-type electrolysis apparatus having no diaphragm such as an ion exchange membrane between electrodes
  • a diaphragm-type electrolysis apparatus in which the anode and the cathode are partitioned by a diaphragm such as an ion exchange membrane.
  • an oxidizing substance such as persulfuric acid generated by the anodic reaction is reduced at the cathode, resulting in a loss and a decrease in current efficiency.
  • the diaphragm type electrolyzer requires a gas-liquid separation part and a circulation line independently on both the anode side and the cathode side partitioned by the diaphragm, so that the system configuration is greater than when a non-diaphragm type electrolyzer is used. Becomes complicated. However, since the reduction of the oxidizing substance at the cathode does not occur, the current efficiency is improved.
  • the electrolysis part of this invention is not limited to these specific things, What is necessary is just to generate
  • the anode and the cathode are disposed so as to be immersed in the sulfuric acid solution.
  • the sulfuric acid solution is electrolyzed, and sulfate ions in the sulfuric acid solution are oxidized to generate persulfate ions.
  • oxygen gas is generated by the anode reaction on the anode side
  • hydrogen gas is generated by the cathode reaction on the cathode side.
  • these gases are mixed in the electrolyzer. Since this mixed gas has explosive properties, it is desirable that the sulfuric acid solution after the electrolytic treatment is immediately sent to the gas-liquid separator through the circulation line to separate the gas.
  • the separated gas is desirably treated safely by diluting it with a gas such as nitrogen gas outside the system and decomposing it with a catalytic device.
  • a gas such as nitrogen gas outside the system and decomposing it with a catalytic device.
  • oxygen gas is generated in the electrolytic sulfuric acid solution on the anode side and mixed in the solution.
  • a heating loss occurs in the heating unit described later, so that the oxygen gas is separated in the gas-liquid separation unit on the anode side before being sent to the heating unit.
  • hydrogen gas is generated and mixed in the solution on the cathode side
  • the hydrogen gas is separated by a gas-liquid separation unit on the cathode side and is safely processed by, for example, a catalyst device.
  • the gas contained in the sulfuric acid solution sent from the electrolysis unit is separated and discharged out of the system.
  • the gas-liquid separation unit can be provided with a discharge unit for discharging the gas.
  • one or both of a concentrated sulfuric acid supply line for supplying concentrated sulfuric acid and a pure water supply line for supplying pure water can be connected to the gas-liquid separator.
  • a storage part can be provided in the downstream of a gas-liquid separation part, and one or both of the said concentrated sulfuric acid supply line and the said pure water supply line can be connected to this storage part.
  • concentrated sulfuric acid or pure water is supplied from these supply lines to the gas-liquid separation unit or the storage unit, and is operated or controlled so that the sulfuric acid concentration of the circulating sulfuric acid solution does not deviate from the range of 75 to 96% by mass. Can do.
  • the sulfuric acid concentration can be adjusted in a decomposition tank described later in addition to the gas-liquid separation unit and the storage unit. Further, a concentration adjusting unit for adjusting the concentration of the circulating sulfuric acid solution may be interposed on the front side of the electrolytic unit of the circulation line. In addition, in order to adjust the temperature of the sulfuric acid solution at the electrolytic unit inlet, it is desirable to provide a cooling unit in the circulation line.
  • Part of the sulfuric acid solution from which the gas has been separated in the gas-liquid separation unit is sent again to the electrolysis unit through the circulation line, electrolyzed, and circulated to the gas-liquid separation unit.
  • the sulfuric acid solution can increase the persulfuric acid concentration by performing electrolysis while circulating while performing gas-liquid separation.
  • the other part of the sulfuric acid solution is sent to the use side through the supply line.
  • the electrolysis unit is a diaphragm type electrolysis device
  • the supply line is provided so as to communicate with the gas-liquid separation unit on the anode side.
  • the gas-liquid separation unit it is desirable that the sulfuric acid solution can be temporarily stored.
  • the gas-liquid separation unit also has a function as a storage unit. Moreover, you may provide a storage part other than the said gas-liquid separation part.
  • the reservoir is connected to the downstream side of the gas-liquid separator.
  • the circulation line or / and the supply line may be connected to the storage unit and circulated or / and supplied.
  • the oxidizing substance mainly composed of persulfuric acid contained in the liquid decomposes and disappears early.
  • the cleaning effect such as resist stripping becomes small even if the oxidizing substance is sufficiently contained.
  • a heating unit for heating the sulfuric acid solution is interposed in the supply line.
  • the heating unit heats the sulfuric acid solution containing persulfuric acid to generate a functional solution.
  • the heating unit is set so as to heat the temperature of the sulfuric acid solution in a range of 120 ° C.
  • the temperature is less than 120 ° C.
  • the effect of removing the resist on the use side is not sufficient because the oxidizing power of the generated functional solution is not sufficient.
  • the temperature exceeds 190 ° C., the rate of self-decomposition of persulfuric acid is too high, so much of the persulfuric acid is lost before being supplied to the use side. For this reason, the temperature of the functional solution heated with a heating part is made into the said range.
  • the lower limit of the temperature be 130 ° C.
  • a heating part In order to raise the temperature of the oxidizing substance contained in the sulfuric acid solution while maintaining a high concentration, it is desirable to rapidly heat it in as short a time as possible.
  • a structure of a heating part what can heat a sulfuric acid solution to the said temperature range should just be sufficient, and what is further heated by a transient type is desirable.
  • the whole sulfuric acid solution can be transmitted uniformly, and it can raise temperature efficiently. Moreover, the problem that decomposition of persulfuric acid is promoted by local high temperature is also solved.
  • the near-infrared heater include those that irradiate near-infrared rays having a wavelength of about 0.7 to 3.0 ⁇ m.
  • the near-infrared heater has a liquid passage space with a thickness of 10 mm or less through which a sulfuric acid solution is passed, and preferably irradiates a channel made of quartz.
  • the sulfuric acid solution passing through the narrow channel can be heated more uniformly and rapidly.
  • the thickness of the flow path exceeds 10 mm, it becomes difficult to uniformly heat the sulfuric acid solution flowing through the flow path by the radiant heat of the near infrared heater.
  • the functional solution generated in the heating part contains an oxidizing substance mainly composed of persulfuric acid, and this oxidizing substance gradually accelerates the self-decomposition rate when heated. . Therefore, the oxidizing power of the functional solution is gradually lost with time, and the peeling cleaning effect on the material to be cleaned such as the electronic material on which the resist is formed gradually decreases.
  • the liquid passing time from the start of heating the sulfuric acid solution until it is used on the use side is set to less than 1 minute. Furthermore, it is more preferable that the liquid passing time is within 30 seconds.
  • the liquid passing time When the liquid passing time is 1 minute or longer, most of the oxidizing substances contained in the functional solution disappear, and it is difficult to obtain a sufficient function on the use side.
  • the flow rate of the sulfuric acid solution so that the liquid is passed in less than 1 minute with respect to the volume of the liquid passing path from the inlet of the heating unit to the site used on the use side Should be set.
  • the volume of the flow path may be set so that the flow time is less than 1 minute with respect to a predetermined flow rate of the sulfuric acid solution.
  • the flow rate and volume may be variably controlled.
  • the generated functional solution is supplied through a supply line to the use side of, for example, a single wafer cleaning device.
  • the flow rate of the functional solution supplied to the use side is not particularly limited, but is 350 to 2000 mL / min. Per one object to be cleaned such as a silicon wafer.
  • the flow rate is preferably 500 to 2000 mL / min. Is more desirable. It is preferable to increase the flow rate as the material to be cleaned increases, but 2000 mL / min. Even if the flow rate exceeds 1, the cleaning effect is not improved and the energy required for the production of the functional solution increases, which is not preferable.
  • the use side is described here as a single wafer cleaning device, the use side is not limited to a specific device or system in the present invention.
  • a reflux line for refluxing this sulfuric acid drain into the system can be provided.
  • the reflux line is provided with a cooling unit in order to keep the liquid temperature of the gas-liquid separation unit and the storage unit and the liquid temperature of the electrolytic unit inlet at a predetermined temperature.
  • the sulfuric acid solution refluxed in the reflux line contains a solid residue of a resist generated on the use side, which cannot be decomposed with a functional solution, for example.
  • a filter can be provided in the reflux line.
  • the filter can be installed on the upstream side or downstream side of the cooling unit, or on the heating unit inlet side of the supply line, and a plurality of these filters may be provided side by side.
  • the sulfuric acid drainage received from the use side is retained upstream of the cooling section described above, and the residual organic substances such as resist that are peeled from the electronic substrate material and contained in the sulfuric acid drainage are decomposed.
  • a disassembling part can be provided. Oxidizing substances such as persulfuric acid remain in the sulfuric acid effluent, and the resist in the sulfuric acid effluent retained in the decomposition section using the residual heat of the sulfuric acid effluent is oxidized by the action of the oxidizing substance. Decompose and remove. This oxidative decomposition is more effective as the temperature increases.
  • the decomposition unit may be configured so long as it can promote decomposition of residual organic substances such as a resist contained in the sulfuric acid drainage solution.
  • one or both of a concentrated sulfuric acid supply line and a pure water supply line can be provided in the decomposition unit.
  • the sulfuric acid concentration in the decomposition tank can be adjusted to a predetermined range. According to this configuration, it is possible to adjust the sulfuric acid concentration of the sulfuric acid effluent that is refluxed to one or both of the gas-liquid separation unit and the electrolysis unit, so that the stability of the system operation can be further improved.
  • the reflux line can be provided with a drain line for removing the sulfuric acid drain solution refluxed from the use side outside the system without sending it to the decomposition unit.
  • a drainage line for example, when the resist stripping amount in the sulfuric acid drainage is extremely large, such as immediately after the start of cleaning, the sulfuric acid drainage can be passed through the drainage line without being sent to the decomposition section. It is possible to control so that the sulfuric acid drainage is sent to the decomposition section when the resist is removed from the system and the resist stripping amount is reduced. Therefore, the drainage line needs to be connected to the reflux line upstream of the decomposition unit.
  • the drain line is preferably connected to the return line upstream of the filter.
  • the high-concentration resist stripping solution discharged from the drainage line may be subjected to waste liquid treatment, for example, by mixing with drainage liquid generated in another process.
  • a functional solution containing persulfuric acid can be supplied to the use side at a high temperature while maintaining the persulfuric acid at a high concentration. Therefore, even when the use side is a harsh cleaning condition such as a single wafer cleaning device, it is used for highly ion-implanted resist formed on the surface of electronic materials such as silicon wafers, glass substrates for liquid crystals, and photomask substrates. In addition, it becomes possible to perform excellent peeling and cleaning.
  • FIG. 1 is a system configuration in the case where the electrolysis unit is configured by a diaphragm-type electrolysis device.
  • the electrolysis apparatus 1 corresponding to the electrolysis unit of the present invention is a diaphragm type, and an anode and a cathode (not shown) constituted by diamond electrodes are arranged inside without being separated by a diaphragm, and both electrodes are not shown in a DC power source. Is connected.
  • a gas-liquid separation tank 10 corresponding to the gas-liquid separation unit of the present invention is connected to the electrolysis apparatus 1 through a circulation line 11 so as to allow circulation and liquid flow.
  • the gas-liquid separation tank 10 contains a sulfuric acid solution containing gas, separates the gas in the sulfuric acid solution, and discharges it outside the system. A known one can be used. If separation is possible, the configuration is not particularly limited.
  • a circulation pump 12 for circulating the sulfuric acid solution in the gas-liquid separation tank 10 and the sulfuric acid solution are cooled.
  • a cooler 13 is interposed.
  • the cooler 13 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature, and the configuration of the present invention is not particularly limited.
  • the outlet side of the electrolysis apparatus 1 and the inlet side of the gas-liquid separation tank 10 are connected to each other through a circulation line 11.
  • a concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas-liquid separation tank 10 so that concentrated sulfuric acid or pure water can be appropriately supplied into the gas-liquid separation tank 10. .
  • a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10, and a single-wafer cleaning apparatus 100 corresponding to the use side of the present invention is connected to the supply line 20. Is provided.
  • a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided.
  • the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates the near-infrared ray in the thickness direction with respect to the flow path 22a.
  • the near-infrared heater 22b is arranged, and the sulfuric acid solution passing through the flow path 22a can be heated in a transient manner by the heater 22b.
  • the near infrared heater 22b can irradiate near infrared rays within a wavelength range of 0.7 to 3.0 ⁇ m.
  • the single-wafer cleaning apparatus 100 is connected to one end of a reflux line 30 that recovers the sulfuric acid drainage discharged by cleaning the object to be cleaned and returns it to the gas-liquid separation tank 10.
  • 30 is provided with a decomposition tank 31 corresponding to the decomposition portion of the present invention.
  • a liquid feed pump 32 for feeding the sulfuric acid drainage stored in the decomposition tank 31 to the reflux line 30 and an SS contained in the sulfuric acid drainage are captured.
  • a filter 33 for removing the sulfuric acid waste liquid and a cooler 34 for cooling the sulfuric acid solution are sequentially provided.
  • the other end of the reflux line 30 is connected to the gas-liquid separation tank 10.
  • the cooler 34 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature.
  • the configuration of the present invention is not particularly limited.
  • the operation (supply method) of the functional solution supply system configured as described above will be described.
  • a sulfuric acid solution having a sulfuric acid concentration of 75 to 96 mass% is stored so that it can be supplied to the electrolysis apparatus 1 through the circulation line 11. That is, the gas-liquid separation tank 10 also has a function as a storage tank for storing the sulfuric acid solution.
  • the sulfuric acid solution is fed by the circulation pump 12, adjusted to a temperature suitable for electrolysis by the cooler 13, and introduced to the liquid inlet side of the electrolysis apparatus 1.
  • a sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed by energization between an anode and a cathode by a direct current power source (not shown).
  • the electrolysis apparatus 1 generates an oxidizing substance containing persulfuric acid on the anode side, generates oxygen gas, and generates hydrogen gas on the cathode side.
  • These oxidizing substances and gases are sent to the gas-liquid separation tank 10 through the reflux line 11 in a mixed state with the sulfuric acid solution, and the gases are separated.
  • the gas is discharged out of the system and safely processed by a catalyst device (not shown).
  • the sulfuric acid solution from which gas has been separated in the gas-liquid separation tank 10 contains persulfuric acid, and is further sent to the electrolyzer 1 through the circulation line 11 to increase the concentration of persulfuric acid by electrolysis.
  • the persulfuric acid concentration becomes moderate, a part of the sulfuric acid solution in the gas-liquid separation tank 10 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
  • a sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a to become a functional solution.
  • the functional solution is supplied to the single wafer cleaning device 100 through the supply line 20 and used as a chemical solution for cleaning.
  • the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
  • the flow rate at 500 to 2000 mL / min. Is set to an appropriate amount, and the flow path 22a of the heating unit 22 is set so that the liquid passing time is less than 1 minute at the flow rate.
  • the channel cross-sectional area, the line length of the supply line 20 on the downstream side, the channel cross-sectional area, and the like are set.
  • a silicon wafer 101 provided with a resist ion-implanted at a high concentration of 1 ⁇ 10 15 atoms / cm 2 or more becomes a cleaning target, and the silicon wafer 101 is placed on a turntable 102.
  • the resist is effectively peeled and removed by bringing the functional solution into contact with the resist while rotating.
  • the functional solution used for cleaning is discharged from the single wafer cleaning apparatus 100 as sulfuric acid drainage and is stored in the decomposition tank 31 through the reflux line 30.
  • the sulfuric acid drainage liquid contains residual organic substances such as a resist cleaned by the single wafer cleaning apparatus 100, and the residual organic substances are contained in the sulfuric acid drainage liquid while being stored in the decomposition tank 31.
  • the storage time of the said sulfuric acid drainage in the decomposition tank 31 can be arbitrarily adjusted with content, such as a residual organic substance. At this time, by allowing the decomposition tank 31 to be kept warm, it is possible to ensure oxidative decomposition utilizing the residual heat of the sulfuric acid waste solution. Moreover, it is also possible to provide a heating device in the decomposition tank 31 as desired.
  • the sulfuric acid effluent obtained by oxidizing and decomposing the oxidizing substance contained in the decomposition tank 31 is returned to the gas-liquid separation tank 10 by the liquid feed pump 32 through the filter 33 and the cooler 34 provided in the reflux line 30. At this time, SS that could not be processed in the decomposition tank 31 is captured and removed by the filter 33.
  • the high-temperature sulfuric acid drainage is refluxed to the gas-liquid separation tank 10
  • decomposition of persulfuric acid in the sulfuric acid solution stored in the gas-liquid separation tank 10 is promoted. After being cooled by the vessel 34, it is introduced into the gas-liquid separation tank 10.
  • the sulfuric acid effluent introduced into the gas-liquid separation tank 10 is sent as a sulfuric acid solution to the electrolysis apparatus 1 by the circulation line 11 to generate persulfuric acid by electrolysis, and is returned to the gas-liquid separation tank 10 by the circulation line 11 again. Is done.
  • a high-temperature functional solution containing a high concentration of persulfuric acid can be continuously supplied to the single-wafer cleaning apparatus 100 on the use side.
  • a drain line 35 is branched and connected to the reflux line 30 on the upstream side of the decomposition tank 31 so that the sulfuric acid drain liquid is not sent to the decomposition tank 31 at an appropriate time. You may comprise so that it can drain.
  • the resist stripping amount in the sulfuric acid drainage is extremely large, such as immediately after the start of cleaning, by the drainage line 35, the sulfuric acid drainage is discharged out of the system system to reduce the burden on the decomposition tank 31, and the resist stripping amount is reduced. It is possible to control so that the sulfuric acid drainage is sent to the decomposition tank 31 when it is lowered. This control can be performed by opening / closing control of on-off valves provided in the reflux line or the drain line.
  • the second embodiment is a system configuration in which the electrolysis unit is configured by a diaphragm type electrolysis device.
  • symbol is attached
  • the electrolysis apparatus 2 includes an anode and a cathode (not shown) made of diamond electrodes, and the anode and the cathode are partitioned by a diaphragm 2a.
  • the anode side is connected to the gas-liquid separation tank 10a corresponding to the gas-liquid separation part of the present invention through a circulation line 11a so as to be circulated, and the cathode side is connected to the present invention via the circulation line 11b.
  • the gas-liquid separation tank 10b corresponding to the cathode-side gas-liquid separation unit is circulated and connected in a circulating manner.
  • Circulation pumps 12a and 12b for feeding the sulfuric acid solution in the gas-liquid separation tanks 10a and 10b to the liquid inlet side of the electrolysis device 2 are interposed in the circulation line 11a and the circulation line 11b, respectively.
  • a cooler 13a for cooling the sulfuric acid solution on the downstream side of the circulation pump 12a and on the upstream side of the liquid inlet side of the electrolysis apparatus 2 corresponds to the cooling unit of the present invention. It is installed as.
  • the sulfuric acid solution on the anode side that is heated during electrolysis can be cooled and adjusted to a temperature suitable for electrolysis.
  • a concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas-liquid separation tanks 10a and 10b, respectively, so that liquids can pass therethrough, and concentrated sulfuric acid and pure water are appropriately transferred into the gas-liquid separation tanks 10a and 10b. It is possible to supply to.
  • a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10a, and a single-wafer cleaning apparatus 100 corresponding to the use side of the present invention is connected to the supply line 20 as a supply destination. Is provided.
  • a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided.
  • the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates near infrared rays in the thickness direction with respect to the flow path 22a. And a near-infrared heater 22b arranged as described above.
  • a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30.
  • the other end side of the reflux line 30 is connected to the gas-liquid separation tank 10a.
  • a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 2 through the circulation lines 11a and 11b.
  • the sulfuric acid solution is fed by circulation pumps 12a and 12b, and is introduced to the liquid inlet side of the anode and cathode of the electrolysis apparatus 2 through the circulation lines 11a and 11b.
  • the sulfuric acid solution is adjusted to a temperature suitable for electrolysis by the cooler 13a and then introduced into the anode inlet side of the electrolysis apparatus 2.
  • a direct current power source (not shown) is energized between the anode and the cathode, and the sulfuric acid solution introduced into the electrolysis apparatus 2 is electrolyzed.
  • the electrolysis apparatus 2 generates an oxidizing substance containing persulfuric acid and oxygen gas on the anode side, and generates hydrogen gas on the cathode side.
  • the oxidizing substance and the oxygen gas are mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 10a through the circulation line 11a to separate the oxygen gas.
  • the hydrogen gas is mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 10b through the circulation line 11b to separate the hydrogen gas.
  • Each gas is discharged out of the system and safely processed by a catalyst device (not shown).
  • the sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10a contains persulfuric acid, and is further sent to the anode side of the electrolyzer 2 through the circulation line 11a to increase the concentration of persulfuric acid by electrolysis.
  • the sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10b is repeatedly sent to the cathode side of the electrolysis apparatus 2 through the circulation line 11b and used for electrolysis.
  • the sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near infrared heater 22b while passing through the flow path 22a to become a functional solution.
  • the functional solution is supplied from the heating unit 22 to the single wafer cleaning device 100 through the supply line 20.
  • the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
  • the silicon wafer 101 provided with a resist ion-implanted at a high concentration as in the above embodiment is used as the cleaning target, and the silicon wafer 101 rotated on the turntable 102 is described above.
  • the resist is effectively stripped and removed by contacting the functional solution.
  • the functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
  • the sulfuric acid effluent obtained by oxidizing and decomposing residual organic matter in the decomposition tank 31 is refluxed to the gas-liquid separation tank 10 a through the filter 33 and the cooler 34 by the liquid feed pump 32.
  • SS is captured and removed by the filter 33, cooled by the cooler 34, and then introduced into the gas-liquid separation tank 10a. Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
  • FIG. 3 Another embodiment of the functional solution supply system of the present invention will be described with reference to FIG.
  • This embodiment has a configuration in which the liquid is directly passed from the decomposition tank to the electrolysis apparatus without passing through the gas-liquid separation tank.
  • the same reference numerals in the third embodiment denote the same parts as in the first and second embodiments, and a description thereof will be omitted or simplified.
  • This embodiment also includes a diaphragm-type electrolysis apparatus 1 as in the first embodiment, and includes an anode and a cathode made of diamond electrodes.
  • a gas-liquid separation tank 10 corresponding to a gas-liquid separation unit of the present invention is connected to a liquid discharge side of the electrolysis apparatus 1 through a liquid feed line 11c corresponding to a part of a circulation line. .
  • a concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas-liquid separation tank 10 so that concentrated sulfuric acid or pure water can be appropriately supplied into the gas-liquid separation tank 10.
  • a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10, and a liquid feed pump 21 and a sulfuric acid solution sent by the liquid feed pump 21 are connected to the supply line 20.
  • a heating unit 22 for heating is sequentially provided, and a single wafer cleaning apparatus 100 is connected to the downstream side thereof.
  • the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates near infrared rays in the thickness direction with respect to the flow path 22a. And a near-infrared heater 22b arranged as described above.
  • a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30.
  • the other end side of the reflux line 30 is connected to the liquid inlet side of the electrolysis apparatus 1.
  • the cooler 34 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature.
  • the configuration of the present invention is not particularly limited.
  • the liquid feed line 11c and the return line 11d and the return line 30 downstream from the point where the return line 11d joins cooperate to form the circulation line of the present invention.
  • the sulfuric acid solution can be circulated between the separation tank 10 and the electrolysis apparatus 1 while being electrolyzed.
  • a sulfuric acid solution having a sulfuric acid concentration of 75 to 96 mass% is stored so that it can be supplied to the electrolysis apparatus 1 through the return line 11 d and the reflux line 30.
  • the sulfuric acid solution is fed by the liquid feed pump 32, passes through the filter 33, is adjusted to a temperature suitable for electrolysis by the cooler 34, and is introduced to the liquid inlet side of the electrolysis apparatus 1.
  • a sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed by energization between an anode and a cathode by a direct current power source (not shown).
  • an oxidizing substance containing persulfuric acid and oxygen gas are generated on the anode side, and hydrogen gas is generated on the cathode side.
  • the oxidizing substance and the gas are sent to the gas-liquid separation tank 10 through the liquid feeding line 11c in a state of being mixed with the sulfuric acid solution, and the gas is separated.
  • the sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10 contains persulfuric acid, and a part thereof is repeatedly sent to the electrolyzer 1 through the return line 11d and the reflux line 30, and the concentration of persulfuric acid by electrolysis. Is increased.
  • a part of the sulfuric acid solution in the gas-liquid separation tank 10 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
  • the sulfuric acid solution sent to the heating unit 22 is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a, and is fed as a functional solution through the supply line 20 to a single wafer cleaning device. 100.
  • the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning device 100 is less than 1 minute.
  • a silicon wafer or the like provided with a resist ion-implanted at a high concentration is cleaned with the functional solution, and the resist is effectively stripped and removed.
  • the functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
  • the sulfuric acid effluent obtained by oxidizing and decomposing the remaining organic matter in the decomposition tank 31 is joined with the sulfuric acid solution sent from the gas-liquid separation tank 10 by the liquid feed pump 32, and then passed through the filter 33 and the cooler 34 as the sulfuric acid solution. To reflux.
  • SS is introduced into the electrolysis apparatus 1 after the SS is captured and removed by the filter 33 and cooled by the cooler 34. Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
  • a gas-liquid separation tank 40 corresponding to the gas-liquid separation unit of the present invention is connected to the liquid discharge side of the electroless membrane type electrolysis apparatus 1 through the circulation line 11 so as to be able to circulate and flow.
  • the gas-liquid separation tank 40 contains a sulfuric acid solution containing a gas, separates the gas in the sulfuric acid solution, and discharges it outside the system, and a known one can be used.
  • a storage tank 50 for storing the sulfuric acid solution subjected to gas-liquid separation is connected to the drain side of the gas-liquid separation tank 40 by the circulation line 11.
  • the storage tank 50 corresponds to the storage unit of the present invention.
  • the circulation line 11 extends further downstream via the storage tank 50 and is connected to the liquid inlet side of the electrolysis apparatus 1.
  • a circulation line 11 located between the storage tank 50 and the liquid inlet side of the electrolysis apparatus 1 is provided with a circulation pump 12 for circulating the sulfuric acid solution in the storage tank 50 and a cooler 13 for cooling the sulfuric acid solution. ing.
  • the cooler 13 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature, and the configuration of the present invention is not particularly limited.
  • the storage tank 50 is connected to a concentrated sulfuric acid supply line 15 and a pure water supply line 16 so that concentrated sulfuric acid or pure water can be appropriately supplied into the storage tank 50.
  • a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the storage tank 50, and a single wafer cleaning device 100 is provided at the supply destination of the supply line 20.
  • a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21.
  • Units 22 are sequentially provided.
  • the single-wafer cleaning apparatus 100 is connected to one end of a reflux line 30 that collects the sulfuric acid drainage discharged by cleaning the object to be cleaned and returns it to the storage tank 50.
  • a decomposition tank 31 corresponding to the decomposition portion of the present invention.
  • a liquid feed pump 32 for feeding the sulfuric acid drainage stored in the decomposition tank 31 to the reflux line 30 and an SS contained in the sulfuric acid drainage are captured.
  • a filter 33 for removing the sulfuric acid waste liquid and a cooler 34 for cooling the sulfuric acid solution are sequentially provided.
  • the other end side of the reflux line 30 is connected to the storage tank 50.
  • a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 1 through the circulation line 11.
  • the sulfuric acid solution is fed by the circulation pump 12, adjusted to a temperature suitable for electrolysis by the cooler 13, introduced to the liquid inlet side of the electrolysis apparatus 1, and the sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed.
  • the electrolysis apparatus 1 generates an oxidizing substance containing persulfuric acid on the anode side, generates oxygen gas, and generates hydrogen gas on the cathode side.
  • These oxidizing substances and gases are sent to the gas-liquid separation tank 40 through the reflux line 11 in a mixed state with the sulfuric acid solution, and the gases are separated.
  • the gas is discharged out of the system and safely processed by a catalyst device (not shown).
  • the sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 40 contains persulfuric acid, and is further sent to the storage tank 50 through the circulation line 11.
  • the sulfuric acid solution in the storage tank 50 is repeatedly sent to the electrolysis apparatus 1, and the concentration of persulfuric acid is increased by electrolysis.
  • the persulfuric acid concentration becomes moderate a part of the sulfuric acid solution in the storage tank 50 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
  • a sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a to become a functional solution.
  • the functional solution is supplied to the single wafer cleaning device 100 through the supply line 20 and used as a chemical solution for cleaning. At this time, the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
  • the silicon wafer 101 or the like becomes an object to be cleaned, and the resist is effectively removed by contacting the functional solution while rotating the silicon wafer 101 on the turntable 102.
  • the functional solution used for cleaning is discharged from the single wafer cleaning apparatus 100 as sulfuric acid drainage and is stored in the decomposition tank 31 through the reflux line 30. While being stored in the decomposition tank 31, residual organic matter is oxidatively decomposed by an oxidizing substance contained in the sulfuric acid drainage.
  • the storage time of the said sulfuric acid drainage in the decomposition tank 31 can be arbitrarily adjusted with content, such as a residual organic substance.
  • the decomposition tank 31 by allowing the decomposition tank 31 to be kept warm, it is possible to ensure oxidative decomposition utilizing the residual heat of the sulfuric acid waste solution. Moreover, it is also possible to provide a heating device in the decomposition tank 31 as desired.
  • the sulfuric acid effluent obtained by oxidizing and decomposing the oxidizing substance contained in the decomposition tank 31 is returned to the storage tank 50 by the liquid feed pump 32 through the filter 33 and the cooler 34 provided in the reflux line 30. At this time, SS that could not be processed in the decomposition tank 31 is captured and removed by the filter 33.
  • SS that could not be processed in the decomposition tank 31 is captured and removed by the filter 33.
  • decomposition of persulfuric acid in the sulfuric acid solution stored in the storage tank 50 is promoted, so that the sulfuric acid drainage is cooled by the cooler 34. After being introduced, it is introduced into the storage tank 50.
  • the sulfuric acid effluent introduced into the storage tank 50 is sent as a sulfuric acid solution to the electrolysis apparatus 1 by the circulation line 11 to generate persulfuric acid by electrolysis, and the storage tank again passes through the gas-liquid separation tank 40 by the circulation line 11. Reflux to 50.
  • a high-temperature functional solution containing a high concentration of persulfuric acid can be continuously supplied to the single-wafer cleaning apparatus 100 on the use side.
  • Embodiment 5 Although Embodiment 4 has been described with respect to a device including a diaphragm-type electrolysis device and a storage tank, it may include a gas-liquid separation tank and a storage tank so as to be connected to the diaphragm-type electrolysis device.
  • Embodiment 5 having such a configuration will be described with reference to FIG.
  • the same reference numerals are given to the same configurations as those of the respective embodiments, and the description thereof is omitted or simplified.
  • the electrolysis apparatus 2 has a diaphragm type configuration, and includes an anode and a cathode (not shown) formed of diamond electrodes, and the anode and the cathode are partitioned by a diaphragm 2a.
  • the circulation line 11a Via the circulation line 11a, the anode side is circulated and connected to a gas-liquid separation tank 40a corresponding to the gas-liquid separation part of the present invention and a storage tank 50a corresponding to the storage part of the present invention.
  • the storage tank 50a is connected to the drain side of the gas-liquid separation tank 40a via the circulation line 11a, and the sulfuric acid solution separated in the gas-liquid separation tank 40a is sent to the storage tank 50a and stored.
  • the cathode side of the electrolysis apparatus 2 is circulated and connected to a gas-liquid separation tank 40b and a storage tank 50b corresponding to the cathode-side gas-liquid separation unit of the present invention through a circulation line 11b.
  • the storage tank 50b is connected to the drain side of the gas-liquid separation tank 40b via the circulation line 11b, and the sulfuric acid solution separated in the gas-liquid separation tank 40b is sent to the storage tank 50b and stored.
  • the Circulation pumps 12a and 12b for feeding the sulfuric acid solution in the storage tank 50a and the storage tank 50b to the liquid inlet side of the electrolysis device 2 are interposed in the circulation line 11a and the circulation line 11b, respectively.
  • a cooler 13a for cooling the sulfuric acid solution on the downstream side of the circulation pump 12a and on the upstream side of the liquid inlet side of the electrolysis apparatus 2 corresponds to the cooling unit of the present invention. It is installed as.
  • the sulfuric acid solution on the anode side that is heated during electrolysis can be cooled and adjusted to a temperature suitable for electrolysis.
  • the concentrated sulfuric acid supply line 15 and the pure water supply line 16 are connected to the storage tank 50a so as to allow liquid to pass therethrough, so that concentrated sulfuric acid and pure water can be appropriately supplied into the storage tank 50a.
  • a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the storage tank 50a, and a single wafer cleaning device 100 corresponding to the use side of the present invention is provided at the supply destination of the supply line 20. It has been.
  • a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided.
  • the heating part 22 irradiates near-infrared rays in the thickness direction with respect to the flow path 22a having a liquid passage space made of quartz and having a thickness (t) of 10 mm or less, as in the above embodiments. And a near-infrared heater 22b arranged as described above.
  • One end of a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30. On the downstream side, the other end side of the reflux line 30 is connected to the storage tank 50a.
  • a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 2 through the circulation lines 11a and 11b.
  • the sulfuric acid solution is fed by circulation pumps 12a and 12b, and is introduced to the liquid inlet side of the anode and cathode of the electrolysis apparatus 2 through the circulation lines 11a and 11b.
  • the sulfuric acid solution is adjusted to a temperature suitable for electrolysis by the cooler 13, and then introduced into the anode inlet side of the electrolysis apparatus 2.
  • a direct current power source (not shown) is energized between the anode and the cathode, and the sulfuric acid solution introduced into the electrolysis apparatus 2 is electrolyzed.
  • the electrolysis apparatus 2 generates an oxidizing substance containing persulfuric acid and oxygen gas on the anode side, and generates hydrogen gas on the cathode side.
  • the oxidizing substance and the oxygen gas are mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 40a through the circulation line 11a to separate the oxygen gas.
  • the sulfuric acid solution from which oxygen gas has been separated is sent to the storage tank 50a through the circulation line 11a and stored.
  • the hydrogen gas generated on the cathode side of the electrolysis apparatus 2 is sent to the gas-liquid separation tank 40b through the circulation line 11b in a state of being mixed with the sulfuric acid solution, and the hydrogen gas is separated.
  • the sulfuric acid solution from which the hydrogen gas has been separated is sent to the storage tank 50b through the circulation line 11b and stored. Each gas is discharged out of the system and safely processed by a catalyst device (not shown).
  • the sulfuric acid solution in which the oxygen gas is separated in the gas-liquid separation tank 40a and stored in the storage tank 50a contains persulfuric acid, and is further sent to the anode side of the electrolyzer 2 through the circulation line 11a and passed through electrolysis.
  • the concentration of sulfuric acid is increased.
  • the sulfuric acid solution separated from the hydrogen gas in the gas-liquid separation tank 40b and stored in the storage tank 50b is repeatedly sent to the cathode side of the electrolysis apparatus 2 through the circulation line 11b and used for electrolysis.
  • a part of the sulfuric acid solution in the storage tank 50 a is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
  • the sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near infrared heater 22b while passing through the flow path 22a to become a functional solution.
  • the functional solution is supplied from the heating unit 22 to the single wafer cleaning device 100 through the supply line 20.
  • the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
  • the resist is effectively removed by bringing the functional solution into contact with the silicon wafer 101 rotated on the turntable 102 with the silicon wafer 101 or the like as an object to be cleaned. Remove.
  • the functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
  • the sulfuric acid effluent obtained by oxidizing and decomposing residual organic matter in the decomposition tank 31 is returned to the storage tank 50 a through the filter 33 and the cooler 34 by the liquid feed pump 32. At this time, the sulfuric acid drainage is introduced into the storage tank 50a after SS is captured and removed by the filter 33 and cooled by the cooler 34. Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
  • Example 1 A resist peeling test was performed using the functional solution supply system shown in FIG.
  • the silicon wafer was placed on a turntable of a single wafer cleaning apparatus, and the turntable was rotated at a speed of 500 rpm.
  • the electrolysis conditions were such that the liquid temperature at the electrolyzer inlet was 50 ° C., the amount of electricity charged was 280 A, and the current density was constant at 0.5 A / cm 2 .
  • the liquid storage capacity in the decomposition tank is about 3L
  • the liquid volume in the gas-liquid separation tank is about 6L
  • the sulfuric acid drainage discharged by the single wafer cleaning device is retained in the decomposition tank for about 3 minutes, and then the cooler Then, the mixture was refluxed to the gas-liquid separation tank, and the sulfuric acid effluent was reused.
  • the sulfuric acid solution temperature in the gas-liquid separation tank was about 60 to 70 ° C.
  • the supply amount of the functional solution supplied from the gas-liquid separation tank to the single wafer cleaning machine is 1000 mL / min. It was.
  • a 9 kW near-infrared heater was placed on a quartz channel having a thickness of 10 mm so as to irradiate with infrared rays in the thickness direction to constitute a heating unit.
  • the liquid volume from the entrance of the heating unit to the use in the single wafer cleaning apparatus is about 300 mL, and the liquid passing time in this example is about 18 seconds.
  • a heater was installed at a pipe length of about 1 m from the nozzle outlet of the single wafer cleaning device, the liquid temperature at the nozzle outlet was measured, and the near-infrared heater output of the heating unit was controlled to reach a predetermined temperature.
  • the sulfuric acid concentration was 50, 75, 80, 85, 92, 96 wt.
  • the oxidizing substance concentration in the gas-liquid separation tank when the nozzle outlet temperature of the single wafer cleaning device is 100, 130, 160, 180, 190, 200 ° C., the oxidizing substance concentration at the nozzle outlet, The resist was completely peeled and removed from the silicon wafer, and the time for completing the cleaning was measured. In addition, after the wafer which completed the process judged the presence or absence of the resist residue by visual observation, it confirmed that there was no resist residue with an electron microscope.
  • Table 1 shows the concentration of oxidizing substances in the gas-liquid separation tank when this apparatus is operated continuously for several hours and is operating stably. From this, it can be seen that the higher the concentration of sulfuric acid, the less the oxidizing substance produced by electrolysis. This is a sulfuric acid concentration of 50 wt. In the case of% or more, the production efficiency of persulfuric acid decreases as the sulfuric acid concentration increases.
  • Table 2 shows the concentration of the oxidizing substance containing persulfuric acid at the nozzle outlet in each condition. As the sulfuric acid concentration increases, the boiling point increases, so that the liquid temperature at the nozzle outlet can be increased.
  • the sulfuric acid concentration is high, the concentration at the nozzle outlet is low because the concentration of the oxidizing substance produced by electrolysis is low. Therefore, if the sulfuric acid concentration and the liquid temperature at the nozzle outlet are too high, the oxidizing substance mainly composed of persulfuric acid in the electrolytic solution disappears by thermal decomposition.
  • Table 3 shows the time required to completely remove the resist.
  • Sulfuric acid concentration 50 wt. % Did not peel even when the oxidizing substance concentration was high. Moreover, even if there was a high sulfuric acid concentration and an oxidizing substance was present, peeling was not possible at a nozzle outlet temperature of 100 ° C. Sulfuric acid concentration 96 wt. %, The persulfuric acid almost disappeared at the nozzle outlet, so the peeling and cleaning effect deteriorated. Therefore, in the system of the present invention, when stripping a resist implanted with a high concentration, the sulfuric acid concentration is 75 to 96 wt. %, Preferably 85-92 wt. %, And the liquid temperature for washing the electronic material is set to 120 to 190 ° C., more preferably 130 to 180 ° C., thereby enabling peeling cleaning treatment in a short time without ashing.
  • Table 4 shows the concentration of persulfuric acid at the nozzle outlet and the completion time of peeling cleaning under each flow rate condition.
  • the amount of liquid supplied to the material to be cleaned is 500 mL / min. It can be seen that when the amount is smaller, it takes more time to complete the peeling cleaning.
  • Example 2 As in Reference Example 1, sulfuric acid concentrations of 80, 85, and 92 wt. %, The flow rate of the sulfuric acid solution supplied from the gas-liquid separation tank to the single wafer washer was 600 mL / min. Assuming that the liquid volume from the heater inlet to the nozzle outlet is 300 mL and 600 mL, the nozzle outlet temperature is heated to 160 ° C., and the time it takes to complete the peeling cleaning is confirmed in 1 minute increments. Each was compared.
  • FIG. 7 shows a schematic view of the heater used in Example 2 and the nozzle outlet.
  • the tube After leaving the heater, the tube is supplied to the cleaning section.
  • the heater is designed to reach the cleaning section in about several tens of seconds (less than 1 minute). Since the temperature after the temperature rise may be a temperature at which sulfuric acid does not boil in the heater or the tube at the rear stage of the heater, the upper limit value of the heating temperature is less than the boiling point. Therefore, it is necessary to use a material having high heat resistance and corrosion resistance as a material of the tube.
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • the apparatus used here is an example showing from the heater to the nozzle outlet, and it is necessary if the residence time from the heater inlet to use for the material to be cleaned is within 40 seconds (preferably within 20 seconds). Since the cleaning performance is maintained, the shape of the heater, the size and the total length of the tube are not limited.
  • FIG. 7 (a) Sulfuric acid solution flow rate 600mL / min Heater capacity 250mL T1 inside diameter 3/8 inch, total length 300mm T2 inner diameter 1/4 inch, total length 700mm T3 inner diameter 1/4 inch, total length 200mm Residence time: 30 seconds
  • Table 5 shows the heater residence time, the persulfuric acid concentration at the nozzle outlet, and the completion time of the peeling cleaning in each sulfuric acid concentration condition.
  • Electrolyzer 10 Gas-liquid separation tank 10a Gas-liquid separation tank 10b Gas-liquid separation tank 11 Circulation line 11a Circulation line 11b Circulation line 11c Liquid feeding line 11d Return line 12 Circulation pump 12a Circulation pump 12b Circulation pump 13 Cooler 13a cooler 20 supply line 21 supply pump 22 heater 22a flow path 22b near infrared heater 30 reflux line 31 decomposition tank 32 liquid feed pump 33 filter 34 cooler 40 gas-liquid separation tank 40a gas-liquid separation tank 40b gas-liquid separation tank 50 Reservoir 50a Reservoir 50b Reservoir

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Provided is a supply system for a functional solution that is equipped with an electrolyzing unit (an electrolyzer (1)) that electrolyzes a sulfuric acid solution having a sulfuric acid concentration of 75-90 wt% and produces persulfuric acid, a gas-liquid separating unit (a gas-liquid separation tank (10)) that separates the electrolyzed sulfuric acid solution into a gas and a liquid, a circulating line (11) that circulates a portion of the sulfuric acid solution separated by the aforementioned gas-liquid separating unit between the aforementioned electrolyzing unit and the gas-liquid separating unit, a supply line (20) that supplies a portion of the sulfuric acid solution separated by the aforementioned gas-liquid separating unit to an application side (a single-wafer cleaning device (100)), and a heating unit (22) that is disposed along the supply line (20) and that heats the sulfuric acid solution to 120-190℃; and is configured so that the duration from when the sulfuric acid solution is introduced into the inlet of the heating unit to when the solution is applied on the application side is less than one minute.

Description

機能性溶液供給システムおよび供給方法Functional solution supply system and supply method
 本発明は、シリコンウエハ等の電子材料に付着したレジストの洗浄に好適に使用することができ、硫酸を電解して得られる機能性溶液を前記レジストの洗浄などを行う使用側に供給可能な機能性溶液供給システムおよび供給方法に関するものである。 The present invention can be suitably used for cleaning a resist attached to an electronic material such as a silicon wafer, and a function capable of supplying a functional solution obtained by electrolyzing sulfuric acid to a use side for cleaning the resist. The present invention relates to a neutral solution supply system and a supply method.
 半導体製造工程などでシリコンウエハ等の電子材料に付着したレジストは、その後、不要になるため電子材料から剥離除去することが必要である。従来から行われているレジスト剥離工程の一方法では、濃硫酸と過酸化水素水を混合したSPMと呼ばれる溶液が用いられている。SPMを使用する剥離工程は、硫酸や過酸化水素水を大量に消費するのでランニングコストが高く、さらに多量の廃液を排出することが欠点である。
 これに対して本発明者らは、硫酸を電解することによって得られるペルオキソ二硫酸とペルオキソ一硫酸とからなる過硫酸などの酸化性物質を含有した電解硫酸液を洗浄液として前記レジストの剥離に用い、洗浄に使用された電解硫酸液を再度電解して循環使用する洗浄方法および洗浄システムを開発、提案している(特許文献1、2)。これらの洗浄システムによれば、洗浄液使用量や廃液量を削減すると同時に、高い洗浄効果が得られる。
Since the resist attached to the electronic material such as a silicon wafer in the semiconductor manufacturing process becomes unnecessary after that, it is necessary to remove the resist from the electronic material. In a conventional resist stripping method, a solution called SPM in which concentrated sulfuric acid and hydrogen peroxide solution are mixed is used. The stripping process using SPM consumes a large amount of sulfuric acid and hydrogen peroxide solution, so the running cost is high, and a large amount of waste liquid is discharged.
On the other hand, the present inventors use an electrolytic sulfuric acid solution containing an oxidizing substance such as persulfuric acid composed of peroxodisulfuric acid and peroxomonosulfuric acid obtained by electrolyzing sulfuric acid as a cleaning liquid for stripping the resist. Have developed and proposed a cleaning method and a cleaning system in which the electrolytic sulfuric acid solution used for cleaning is electrolyzed again and circulated (Patent Documents 1 and 2). According to these cleaning systems, a high cleaning effect can be obtained while reducing the amount of cleaning liquid used and the amount of waste liquid.
特開2006-114880号公報JP 2006-111488 A 特開2006-278687号公報JP 2006-278687 A
 ところで、近年のLSI微細化に伴い、シリコンウエハなどの電子材料へ注入されるイオン量が増加傾向にある。電気回路の製作工程においては、後工程で不要となり剥離除去されるレジストに対しても同量のイオンが注入される。しかし、イオン注入量が増加すると、電子材料から不要なレジストを剥離するのが難しくなる。特にSPM処理においては、イオンドーズ量が1×1015atoms/cm以上になると、レジストを完全に剥離することが困難となる。そのため、アッシングと呼ばれる酸素プラズマなどによる灰化処理を前工程として行う必要がある。
 一方、電解硫酸液によるバッチ処理では、アッシングを行うことなくレジストの剥離が可能であるが、イオン注入量が増加したレジストを洗浄する場合、レジスト洗浄の時間が長くなるため処理量が低下するという問題がある。
By the way, with the recent miniaturization of LSI, the amount of ions implanted into an electronic material such as a silicon wafer tends to increase. In the manufacturing process of the electric circuit, the same amount of ions is implanted into the resist that is not required in the subsequent process and is removed. However, when the amount of ion implantation increases, it becomes difficult to remove unnecessary resist from the electronic material. In particular, in the SPM process, when the ion dose is 1 × 10 15 atoms / cm 2 or more, it is difficult to completely remove the resist. Therefore, it is necessary to perform an ashing process using oxygen plasma or the like called ashing as a pre-process.
On the other hand, in batch processing with an electrolytic sulfuric acid solution, the resist can be stripped without ashing, but when cleaning a resist with an increased ion implantation amount, the processing time decreases because the resist cleaning time becomes longer. There's a problem.
 なお、電子材料などを洗浄する方法としては、バッチ式の他に枚葉式がある。枚葉式では、例えば被洗浄物を回転台に固定し、これを回転させながら薬液などを散布して洗浄する。但し、枚葉式洗浄装置の構成がこれに限定されるものではなく、例えば特開2004-172493、特開2007-266495で開示される装置構成でもよい。枚葉式洗浄装置では、比較的少ない薬液使用量によって、不要なレジストをシリコンウエハなどの電子材料から効率的に剥離することができる。枚葉式洗浄装置に用いる薬液としては、バッチ式と同様に硫酸の電解によって陽極での酸化反応によって生成した過硫酸などの酸化性物質を含有する電解硫酸液を用いることができる。また、枚葉式洗浄装置においても、剥離洗浄に使用された電解硫酸液を回収して、再度、電解処理することによって繰り返し供給可能な溶液供給システムを採用することで、レジストの剥離洗浄で発生する廃液量を削減することができる。 In addition to the batch method, there is a single wafer method for cleaning electronic materials and the like. In the single wafer type, for example, an object to be cleaned is fixed to a turntable, and a chemical solution or the like is sprayed and washed while rotating the object. However, the configuration of the single wafer cleaning apparatus is not limited to this, and the apparatus configuration disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2004-172493 and 2007-266495 may be used. In the single wafer cleaning apparatus, an unnecessary resist can be efficiently peeled from an electronic material such as a silicon wafer by using a relatively small amount of chemical solution. As the chemical solution used in the single wafer cleaning apparatus, an electrolytic sulfuric acid solution containing an oxidizing substance such as persulfuric acid generated by an oxidation reaction at the anode by sulfuric acid electrolysis can be used as in the batch type. Also in single wafer cleaning equipment, the electrolytic sulfuric acid solution used for strip cleaning is recovered, and the solution supply system that can be repeatedly supplied by electrolytic treatment again is used to generate resist strip cleaning. The amount of waste liquid to be reduced can be reduced.
 しかし、枚葉式洗浄装置に用いられる薬液には、バッチ式洗浄装置で用いられる電解硫酸液よりもさらに厳しい条件の特性が求められる。特に、1×1015atoms/cm以上の高濃度にイオン注入されたレジストの剥離洗浄においては、より高い過硫酸濃度と、より高い液温度をもつ機能性溶液が求められる。しかし、過硫酸は高温になると自己分解速度が非常に高くなるため、高い過硫酸濃度と高い液温度を同時に満たす機能性溶液を従来の機能性溶液供給システムにより供給することは困難である。    However, the chemical solution used in the single wafer cleaning device is required to have more severe characteristics than the electrolytic sulfuric acid solution used in the batch cleaning device. In particular, in the resist stripping cleaning of ions implanted at a high concentration of 1 × 10 15 atoms / cm 2 or more, a functional solution having a higher persulfuric acid concentration and a higher liquid temperature is required. However, since persulfuric acid has a very high self-decomposition rate at a high temperature, it is difficult to supply a functional solution that simultaneously satisfies a high persulfuric acid concentration and a high liquid temperature by a conventional functional solution supply system.
 本発明は上記事情を鑑みてなされたものであり、高い過硫酸濃度と高い液温度を同時に満たす機能性溶液を使用側に供給可能な機能性溶液供給システムおよび供給方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a functional solution supply system and a supply method capable of supplying a functional solution that simultaneously satisfies a high persulfuric acid concentration and a high liquid temperature to the use side. To do.
 すなわち、本発明の機能性溶液供給システムのうち、第1の本発明は、硫酸濃度75~96質量%の硫酸溶液を電解して過硫酸を生成する電解部と、電解された硫酸溶液を気液分離する気液分離部と、前記気液分離部で気液分離された硫酸溶液の一部を前記電解部を介して前記気液分離部に循環させる循環ラインと、前記気液分離部で気液分離された硫酸溶液の一部を使用側に供給する供給ラインと、前記供給ラインに介設され、前記硫酸溶液を120~190℃に加熱して機能性溶液とする加熱部とを備え、前記硫酸溶液が該加熱部の入口に導入されて前記使用側で使用に至るまでの通液時間が1分未満となるように設定されていることを特徴とする。 That is, of the functional solution supply system of the present invention, the first aspect of the present invention includes an electrolysis unit that electrolyzes a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass to generate persulfuric acid, and an electrolyzed sulfuric acid solution. A gas-liquid separation unit for liquid separation, a circulation line for circulating a part of the sulfuric acid solution separated in the gas-liquid separation unit to the gas-liquid separation unit via the electrolysis unit, and the gas-liquid separation unit A supply line for supplying a part of the gas-liquid separated sulfuric acid solution to the use side, and a heating unit interposed in the supply line to heat the sulfuric acid solution to 120 to 190 ° C. to obtain a functional solution The solution passing time from when the sulfuric acid solution is introduced into the inlet of the heating unit until it is used on the use side is set to be less than 1 minute.
 第2の本発明の機能性溶液供給システムは、前記第1の本発明において、前記電解部は、無隔膜型で構成されていることを特徴とする。 The functional solution supply system according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the electrolysis unit is configured as a non-diaphragm type.
 第3の本発明の機能性溶液供給システムは、前記第1の本発明において、前記電解部は、隔膜型で構成されており、該電解部の陽極側に前記気液分離部が接続されているとともに、前記電解部の陰極側に陰極側気液分離部が接続されていることを特徴とする。 In the functional solution supply system of the third aspect of the present invention, in the first aspect of the present invention, the electrolysis unit is configured as a diaphragm type, and the gas-liquid separation unit is connected to the anode side of the electrolysis unit. In addition, a cathode-side gas-liquid separation unit is connected to the cathode side of the electrolysis unit.
 第4の本発明の機能性溶液供給システムは、前記第1~第3の本発明のいずれかにおいて、前記気液分離部は、硫酸溶液を貯留する貯留部を兼ねているものであることを特徴とする。 In the functional solution supply system according to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the gas-liquid separation unit also serves as a storage unit that stores a sulfuric acid solution. Features.
 第5の本発明の機能性溶液供給システムは、前記第1~第3の本発明のいずれかにおいて、前記気液分離部で気液分離された前記硫酸溶液を貯留する貯留部を備えており、前記循環ラインは、該貯留部に貯留された前記硫酸溶液の前記循環を行うものであることを特徴とする。 A functional solution supply system according to a fifth aspect of the present invention includes a storage unit that stores the sulfuric acid solution that has been gas-liquid separated by the gas-liquid separation unit according to any one of the first to third aspects of the present invention. The circulation line performs the circulation of the sulfuric acid solution stored in the storage section.
 第6の本発明の機能性溶液供給システムは、前記第5の本発明において、前記供給ラインは、前記貯留部に貯留された前記硫酸溶液の前記供給を行うものであることを特徴とする。 The functional solution supply system of the sixth aspect of the present invention is characterized in that, in the fifth aspect of the present invention, the supply line supplies the sulfuric acid solution stored in the storage section.
 第7の本発明の機能性溶液供給システムは、前記第1~第4の本発明のいずれかにおいて、前記使用側において使用後、排出される硫酸排液を前記気液分離部および前記電解部のいずれか一方または両方に還流させる還流ラインと、該還流ラインに介設されて前記硫酸排液を冷却する冷却部と、を備えることを特徴とする。 The functional solution supply system according to a seventh aspect of the present invention provides the functional solution supply system according to any one of the first to fourth aspects of the present invention, wherein sulfuric acid drainage discharged after use on the use side is discharged into the gas-liquid separation unit and the electrolysis unit. A reflux line for refluxing to one or both of the above and a cooling unit that is interposed in the reflux line and cools the sulfuric acid effluent.
 第8の本発明の機能性溶液供給システムは、前記第5または第6の本発明において、前記使用側において使用後、排出される硫酸排液を前記貯留部および前記電解部のいずれか一方または両方に還流させる還流ラインと、該還流ラインに介設されて前記硫酸排液を冷却する冷却部と、を備えることを特徴とする。 The functional solution supply system according to an eighth aspect of the present invention is the fifth or sixth aspect of the present invention, wherein in the fifth or sixth aspect of the present invention, the sulfuric acid drainage discharged after use on the use side is one of the storage unit and the electrolysis unit or It is characterized by comprising a reflux line for refluxing both, and a cooling unit interposed in the reflux line for cooling the sulfuric acid drainage.
 第9の本発明の機能性溶液供給システムは、前記第7または第8の本発明において、前記還流ラインの前記冷却部上流側に、前記硫酸排液を滞留させて、前記硫酸排液に含まれる残留有機物の分解を図る分解部が介設されていることを特徴とする。 The functional solution supply system of the ninth aspect of the present invention is the seventh or eighth aspect of the present invention, wherein the sulfuric acid drainage is retained in the upstream of the cooling section of the reflux line and is included in the sulfuric acid drainage. It is characterized in that a decomposition part for interposing the residual organic matter is interposed.
 第10の本発明の機能性溶液供給システムは、前記第1~第9の本発明のいずれかにおいて、前記加熱部の熱源が近赤外線ヒーターであることを特徴とする。 The functional solution supply system according to a tenth aspect of the present invention is characterized in that, in any one of the first to ninth aspects of the present invention, a heat source of the heating unit is a near infrared heater.
 第11の本発明の機能性溶液供給システムは、前記第10の本発明において、前記近赤外線ヒーターは、前記硫酸溶液を通液する厚さ10mm以下の流路に対して厚さ方向に近赤外線を照射して輻射熱により前記硫酸溶液を加熱するように配置されることを特徴とする。 The functional solution supply system of the eleventh aspect of the present invention is the tenth aspect of the present invention, wherein the near-infrared heater has a near-infrared ray in the thickness direction with respect to a flow path having a thickness of 10 mm or less through which the sulfuric acid solution is passed. And the sulfuric acid solution is arranged to be heated by radiant heat.
 第12の本発明の機能性溶液供給システムは、前記第1~第11の本発明のいずれかにおいて、前記使用側が枚葉式洗浄システムであることを特徴とする。 The functional solution supply system of the twelfth aspect of the present invention is characterized in that, in any of the first to eleventh aspects of the present invention, the use side is a single wafer cleaning system.
 第13の本発明の機能性溶液供給方法は、硫酸濃度75~96質量%の硫酸溶液を気液分離しつつ循環させながら電解を行い、電解された硫酸溶液の一部を取り出して、120~190℃の温度に加熱した後、該加熱の開始後、使用に至るまでの時間が1分未満となるように、使用側に供給することを特徴とする機能性溶液供給方法。 In the thirteenth functional solution supply method of the present invention, electrolysis is carried out while circulating a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass while being separated into gas and liquid, and a part of the electrolyzed sulfuric acid solution is taken out. A method for supplying a functional solution, comprising: heating to a temperature of 190 ° C., and supplying the solution to the use side so that the time from the start of heating to use is less than 1 minute.
 すなわち本発明によれば、枚葉式洗浄装置などの使用側に対して、過硫酸を含んだ機能性溶液を、過硫酸を高濃度に維持したままで高温の状態で供給することが可能となる。この機能性溶液は、その溶液中に含まれる過硫酸が使用側での使用に際し自己分解することで強い酸化力をもち、例えば高濃度にイオン注入されたレジストに対しても、高い剥離洗浄効果を得ることができる。 That is, according to the present invention, it is possible to supply a functional solution containing persulfuric acid at a high temperature while maintaining a high concentration of persulfuric acid to the use side such as a single wafer cleaning device. Become. This functional solution has strong oxidizing power due to the self-decomposition of persulfuric acid contained in the solution on the use side. For example, even a resist ion-implanted at a high concentration has a high peeling cleaning effect. Can be obtained.
 本発明では、硫酸溶液の硫酸濃度を75~96質量%とし、この硫酸溶液を電解することにより過硫酸が生成される。前記硫酸濃度が75質量%よりも低いと、電流効率(単位電流量当りの過硫酸生成量)が高くなるなどの利点があるが、沸点が低くなるため液温を十分に上げることができず、レジストの剥離などの洗浄効果が小さくなる。また、前記硫酸濃度が96質量%を超えると、沸点が上昇するため液温を高くすることができる。しかし、硫酸濃度が高いと電解時の過硫酸の生成効率が低下し、過硫酸の濃度が不十分となり、レジストの剥離などの洗浄効果が小さくなる。これらの理由により、硫酸溶液の硫酸濃度を前記範囲に定める。また、同様の理由から、前記硫酸濃度の下限を80質量%、上限を92質量%とするのが望ましい。 In the present invention, the sulfuric acid solution has a sulfuric acid concentration of 75 to 96% by mass, and persulfuric acid is produced by electrolyzing the sulfuric acid solution. If the sulfuric acid concentration is lower than 75% by mass, there is an advantage that the current efficiency (the amount of persulfuric acid generated per unit current amount) is increased, but the boiling point is low, so the liquid temperature cannot be raised sufficiently. In addition, the cleaning effect such as resist peeling is reduced. On the other hand, when the sulfuric acid concentration exceeds 96% by mass, the boiling point rises, so that the liquid temperature can be increased. However, if the sulfuric acid concentration is high, the production efficiency of persulfuric acid at the time of electrolysis decreases, the concentration of persulfuric acid becomes insufficient, and the cleaning effect such as resist peeling becomes small. For these reasons, the sulfuric acid concentration of the sulfuric acid solution is set within the above range. For the same reason, it is desirable that the lower limit of the sulfuric acid concentration is 80% by mass and the upper limit is 92% by mass.
 硫酸溶液は、電解部で電解され、過硫酸が生成される。電解に使用される電極としては、陽極と陰極のうち、少なくとも陽極を導電性ダイヤモンド電極とすることが望ましい。この際に、少なくとも陽極として作用する接液部が導電性ダイヤモンドであればよい。さらには両極を導電性ダイヤモンド電極とすれば一層望ましい。導電性ダイヤモンドは、化学的な安定性が高く電位窓が広いことから、硫酸溶液から過硫酸を生成する電極の材料として適していることが知られている(特開2001-192874号参照)。導電性ダイヤモンド電極の構成としては、導電性Siや金属などの基盤上に導電性薄膜を堆積したものや、基盤を持たない導電性ダイヤモンドのみで構成された平板状のものを用いることができる。また、直流電源から給電される陽極と陰極の間に、給電されない複数枚の電極を組み込み、これらを複極させて電解を行うようにしても良い。この複極用の電極を上記導電性ダイヤモンド電極で構成することもできる。 The sulfuric acid solution is electrolyzed in the electrolysis section to produce persulfuric acid. As an electrode used for electrolysis, it is desirable that at least the anode of the anode and the cathode is a conductive diamond electrode. At this time, it is sufficient that at least the wetted part acting as the anode is a conductive diamond. Furthermore, it is more desirable if both electrodes are conductive diamond electrodes. Conductive diamond is known to be suitable as an electrode material for producing persulfuric acid from a sulfuric acid solution because it has high chemical stability and a wide potential window (see JP 2001-192874 A). As a configuration of the conductive diamond electrode, a conductive diamond thin film deposited on a conductive Si or metal substrate, or a flat plate made of only conductive diamond without a substrate can be used. Alternatively, a plurality of non-powered electrodes may be incorporated between an anode and a cathode that are fed from a DC power supply, and electrolysis may be performed with these electrodes being bipolar. The electrode for the bipolar electrode can also be constituted by the conductive diamond electrode.
 上記電解部としては、電極間にイオン交換膜などの隔膜をもたない無隔膜型の電解装置や、陽極と陰極との間がイオン交換膜などの隔膜によって仕切られた隔膜型の電解装置を使用することができる。無隔膜型電解装置では、陽極反応で生成した過硫酸などの酸化性物質が陰極で還元されるためロスとなり、電流効率が低下する。一方、隔膜型電解装置では、隔膜で仕切られた陽極側と陰極側の双方に独立して気液分離部や循環ラインが必要となるため、無隔膜型電解装置を用いる場合よりもシステムの構成が複雑になる。しかし、陰極における酸化性物質の還元が起こらないため、電流効率が向上する。なお、本発明の電解部はこれら特定のものに限定されず、硫酸溶液が電解されて過硫酸を生成するものであればよい。 Examples of the electrolysis unit include a diaphragm-type electrolysis apparatus having no diaphragm such as an ion exchange membrane between electrodes, and a diaphragm-type electrolysis apparatus in which the anode and the cathode are partitioned by a diaphragm such as an ion exchange membrane. Can be used. In the membrane-type electrolysis apparatus, an oxidizing substance such as persulfuric acid generated by the anodic reaction is reduced at the cathode, resulting in a loss and a decrease in current efficiency. On the other hand, the diaphragm type electrolyzer requires a gas-liquid separation part and a circulation line independently on both the anode side and the cathode side partitioned by the diaphragm, so that the system configuration is greater than when a non-diaphragm type electrolyzer is used. Becomes complicated. However, since the reduction of the oxidizing substance at the cathode does not occur, the current efficiency is improved. In addition, the electrolysis part of this invention is not limited to these specific things, What is necessary is just to generate | occur | produce persulfuric acid by electrolyzing a sulfuric acid solution.
 上記電解部では、陽極および陰極は硫酸溶液中に浸漬されるよう配置される。これらの電極間に電流を流すことにより硫酸溶液が電解され、硫酸溶液中の硫酸イオンが酸化されて過硫酸イオンを生成する。このとき、陽極側では陽極反応により酸素ガス、陰極側では陰極反応により水素ガスが発生する。
 無隔膜型電解装置の場合には、これらのガスが電解装置内で混合される。この混合ガスは爆発性を有するため、電解処理後の硫酸溶液は直ちに循環ラインを通じて気液分離部に送液し、ガスを分離するのが望ましい。分離されたガスは、本システム系外で窒素ガスなどのガスによって希釈し、触媒装置で分解するなどして、安全に処理するのが望ましい。
 一方、隔膜型電解装置の場合には、陽極側の電解硫酸溶液中に酸素ガスが生成し、溶液に混在する。この気液混合状態では、後述する加熱部において加熱ロスが生じるため、加熱部に送液される前に陽極側の気液分離部で酸素ガスを分離する。また、陰極側では水素ガスが発生し溶液に混在するが、陰極側の気液分離部によって水素ガスを分離し、例えば触媒装置などにより安全に処理する。
In the electrolysis unit, the anode and the cathode are disposed so as to be immersed in the sulfuric acid solution. By passing a current between these electrodes, the sulfuric acid solution is electrolyzed, and sulfate ions in the sulfuric acid solution are oxidized to generate persulfate ions. At this time, oxygen gas is generated by the anode reaction on the anode side, and hydrogen gas is generated by the cathode reaction on the cathode side.
In the case of a diaphragm type electrolyzer, these gases are mixed in the electrolyzer. Since this mixed gas has explosive properties, it is desirable that the sulfuric acid solution after the electrolytic treatment is immediately sent to the gas-liquid separator through the circulation line to separate the gas. The separated gas is desirably treated safely by diluting it with a gas such as nitrogen gas outside the system and decomposing it with a catalytic device.
On the other hand, in the case of a diaphragm type electrolysis device, oxygen gas is generated in the electrolytic sulfuric acid solution on the anode side and mixed in the solution. In this gas-liquid mixed state, a heating loss occurs in the heating unit described later, so that the oxygen gas is separated in the gas-liquid separation unit on the anode side before being sent to the heating unit. Further, although hydrogen gas is generated and mixed in the solution on the cathode side, the hydrogen gas is separated by a gas-liquid separation unit on the cathode side and is safely processed by, for example, a catalyst device.
 気液分離部では、電解部から送液された硫酸溶液に含まれるガスが分離され、本システム系外に排出される。気液分離部には、前記ガスを排出するための排出部を設けることができる。また、気液分離部には、濃硫酸を供給する濃硫酸供給ライン、純水を供給する純水供給ラインの一方または両方を接続することができる。また、気液分離部の下流側に貯留部を設け、この貯留部に上記濃硫酸供給ライン、上記純水供給ラインの一方または両方を接続することができる。
 本システムを稼働中には、硫酸溶液の電解や水分の蒸発、吸湿などにより、システム内の硫酸溶液濃度が変動する。このため、これらの供給ラインから濃硫酸あるいは純水を気液分離部や貯留部に供給し、循環する硫酸溶液の硫酸濃度が75~96質量%の範囲から外れないように操作または制御することができる。 
 前記硫酸濃度の調整は、気液分離部や貯留部のほか、後述する分解槽で行うこともできる。また、前記循環ラインの電解部手前側に、循環する硫酸溶液濃度を調整するための濃度調整部を介設してもよい。なお、循環ラインには、電解部入口での硫酸溶液の温度を調整するために、冷却部を介設するのが望ましい。
In the gas-liquid separation unit, the gas contained in the sulfuric acid solution sent from the electrolysis unit is separated and discharged out of the system. The gas-liquid separation unit can be provided with a discharge unit for discharging the gas. In addition, one or both of a concentrated sulfuric acid supply line for supplying concentrated sulfuric acid and a pure water supply line for supplying pure water can be connected to the gas-liquid separator. Moreover, a storage part can be provided in the downstream of a gas-liquid separation part, and one or both of the said concentrated sulfuric acid supply line and the said pure water supply line can be connected to this storage part.
During operation of this system, the sulfuric acid solution concentration in the system fluctuates due to electrolysis of sulfuric acid solution, evaporation of moisture, moisture absorption, and the like. For this reason, concentrated sulfuric acid or pure water is supplied from these supply lines to the gas-liquid separation unit or the storage unit, and is operated or controlled so that the sulfuric acid concentration of the circulating sulfuric acid solution does not deviate from the range of 75 to 96% by mass. Can do.
The sulfuric acid concentration can be adjusted in a decomposition tank described later in addition to the gas-liquid separation unit and the storage unit. Further, a concentration adjusting unit for adjusting the concentration of the circulating sulfuric acid solution may be interposed on the front side of the electrolytic unit of the circulation line. In addition, in order to adjust the temperature of the sulfuric acid solution at the electrolytic unit inlet, it is desirable to provide a cooling unit in the circulation line.
 気液分離部でガスが分離された硫酸溶液の一部は、循環ラインによって再度電解部に送液され、電解されて気液分離部に循環される。硫酸溶液は、気液分離を行いつつ循環させながら電解を行うことで、過硫酸濃度を高めることができる。また、硫酸溶液の他の一部は供給ラインを通じて使用側に送液される。なお、電解部を隔膜型電解装置とするときは、供給ラインを陽極側の気液分離部と連通するように設ける。
 上記気液分離部では、上記硫酸溶液を一時的に貯留できるのが望ましく、この場合、気液分離部は、貯留部としての機能も兼ね備える。
 また、上記気液分離部以外に貯留部を備えるものであってもよい。該貯留部は、気液分離部の下流側に接続する。循環ライン又は/及び供給ラインは、この貯留部に接続して循環又は/及び供給するようにしてもよい。
Part of the sulfuric acid solution from which the gas has been separated in the gas-liquid separation unit is sent again to the electrolysis unit through the circulation line, electrolyzed, and circulated to the gas-liquid separation unit. The sulfuric acid solution can increase the persulfuric acid concentration by performing electrolysis while circulating while performing gas-liquid separation. The other part of the sulfuric acid solution is sent to the use side through the supply line. When the electrolysis unit is a diaphragm type electrolysis device, the supply line is provided so as to communicate with the gas-liquid separation unit on the anode side.
In the gas-liquid separation unit, it is desirable that the sulfuric acid solution can be temporarily stored. In this case, the gas-liquid separation unit also has a function as a storage unit.
Moreover, you may provide a storage part other than the said gas-liquid separation part. The reservoir is connected to the downstream side of the gas-liquid separator. The circulation line or / and the supply line may be connected to the storage unit and circulated or / and supplied.
 なお、硫酸溶液の液温は高い方が洗浄効果が大きくなるが、液中に含まれる過硫酸を主体とする酸化性物質が早期に分解して消失する。一方、硫酸溶液の液温が低いと、酸化性物質を十分に含んでいてもレジストの剥離などの洗浄効果が小さくなる。このため、電解後の硫酸溶液を使用側に送液する際に、適度に加熱する必要がある。
 そこで前記供給ラインに、硫酸溶液を加熱するための加熱部が介設される。この加熱部は、過硫酸を含む前記硫酸溶液を加熱して機能性溶液を生成する。なお、該加熱部は、前記硫酸溶液の温度を120℃~190℃の範囲に加熱するように設定される。該温度が120℃未満の場合には、生成する機能性溶液の酸化力が十分でないために、使用側においてレジストを剥離するなどの効果が十分でない。また、前記温度が190℃を超えると過硫酸の自己分解速度が高すぎるために、使用側に供給するまでに過硫酸の多くが失われてしまう。このため、加熱部で加熱される機能性溶液の温度を上記範囲とする。さらには、上記温度の下限を130℃とするのが望ましい。
The higher the temperature of the sulfuric acid solution, the greater the cleaning effect. However, the oxidizing substance mainly composed of persulfuric acid contained in the liquid decomposes and disappears early. On the other hand, when the liquid temperature of the sulfuric acid solution is low, the cleaning effect such as resist stripping becomes small even if the oxidizing substance is sufficiently contained. For this reason, when sending the sulfuric acid solution after electrolysis to the use side, it is necessary to heat moderately.
Therefore, a heating unit for heating the sulfuric acid solution is interposed in the supply line. The heating unit heats the sulfuric acid solution containing persulfuric acid to generate a functional solution. The heating unit is set so as to heat the temperature of the sulfuric acid solution in a range of 120 ° C. to 190 ° C. When the temperature is less than 120 ° C., the effect of removing the resist on the use side is not sufficient because the oxidizing power of the generated functional solution is not sufficient. On the other hand, if the temperature exceeds 190 ° C., the rate of self-decomposition of persulfuric acid is too high, so much of the persulfuric acid is lost before being supplied to the use side. For this reason, the temperature of the functional solution heated with a heating part is made into the said range. Furthermore, it is desirable that the lower limit of the temperature be 130 ° C.
 なお、前記硫酸溶液に含まれる酸化性物質を高濃度に維持したまま昇温するためには、できるだけ短時間で急速加熱することが望ましい。
 加熱部の構成としては、硫酸溶液を前記温度範囲に加熱できるものであればよく、さらには一過式で加熱するものが望ましい。なお、本発明の加熱部構成としては特定のものに限定されないが、熱源として近赤外線ヒーターを用いるのが望ましい。近赤外線ヒーターを熱源とすれば、熱源と被加熱物との間に伝熱面がなく輻射熱により被加熱物を均等かつ急速に加熱するため、対流伝熱における伝熱面のように前記硫酸溶液が局所的に高温となることがない。このため硫酸溶液全体を均等に伝熱することができ、効率よく昇温することができる。また、局所的高温により過硫酸の分解が促進されてしまうという問題も解消される。なお、近赤外線ヒーターとしては、0.7~3.0μm程度の波長の近赤外線を照射するものが挙げられる。
In order to raise the temperature of the oxidizing substance contained in the sulfuric acid solution while maintaining a high concentration, it is desirable to rapidly heat it in as short a time as possible.
As a structure of a heating part, what can heat a sulfuric acid solution to the said temperature range should just be sufficient, and what is further heated by a transient type is desirable. In addition, although it is not limited to a specific thing as a heating part structure of this invention, it is desirable to use a near-infrared heater as a heat source. If a near-infrared heater is used as a heat source, there is no heat transfer surface between the heat source and the object to be heated, and the object to be heated is uniformly and rapidly heated by radiant heat. Does not become locally hot. For this reason, the whole sulfuric acid solution can be transmitted uniformly, and it can raise temperature efficiently. Moreover, the problem that decomposition of persulfuric acid is promoted by local high temperature is also solved. Examples of the near-infrared heater include those that irradiate near-infrared rays having a wavelength of about 0.7 to 3.0 μm.
 さらに、近赤外線ヒーターは、硫酸溶液を通液する厚さ10mm以下の通液空間を有する、好適には石英製の流路に対して照射するのが望ましい。このような構成とすれば、狭い流路を通過する硫酸溶液をより均等かつ急速に加熱することができる。前記流路の厚さが10mmを越えると、近赤外線ヒーターの輻射熱によって流路を流れる硫酸溶液を均等に加熱することが難しくなる。 Furthermore, it is desirable that the near-infrared heater has a liquid passage space with a thickness of 10 mm or less through which a sulfuric acid solution is passed, and preferably irradiates a channel made of quartz. With such a configuration, the sulfuric acid solution passing through the narrow channel can be heated more uniformly and rapidly. When the thickness of the flow path exceeds 10 mm, it becomes difficult to uniformly heat the sulfuric acid solution flowing through the flow path by the radiant heat of the near infrared heater.
 なお、加熱部で生成した機能性溶液には、過硫酸を主体とする酸化性物質が含まれているが、この酸化性物質は、加熱されることによって徐々に自己分解速度が加速してしまう。そのため、機能性溶液の酸化力は経時により徐々に失われ、レジストが形成された電子材料などの被洗浄材料に対する剥離洗浄効果も徐々に減少する。
 本発明では、硫酸溶液の加熱の開始から使用側で使用されるまでの通液時間は、1分未満に設定される。さらには、前記通液時間を30秒以内とすることがより望ましい。このように設定すれば、過硫酸などの酸化性物質の分解が進む前に、機能性溶液が高い酸化力を持ったまま使用側において使用に供することができる。前記通液時間が1分以上になると、機能性溶液に含まれる酸化性物質の多くが消滅してしまい、使用側で十分な機能を得ることが困難になる。
 前記通液時間を1分未満とするためには、例えば加熱部の入口から使用側で使用される部位までの通液経路の容積に対して、1分未満で通液するように硫酸溶液流量を設定すればよい。また、予め定められた硫酸溶液の流量に対して、通液時間が1分未満となるように前記通液経路の容積を設定してもよい。さらには、前記流量および容積が可変に制御されるものでもよい。
The functional solution generated in the heating part contains an oxidizing substance mainly composed of persulfuric acid, and this oxidizing substance gradually accelerates the self-decomposition rate when heated. . Therefore, the oxidizing power of the functional solution is gradually lost with time, and the peeling cleaning effect on the material to be cleaned such as the electronic material on which the resist is formed gradually decreases.
In the present invention, the liquid passing time from the start of heating the sulfuric acid solution until it is used on the use side is set to less than 1 minute. Furthermore, it is more preferable that the liquid passing time is within 30 seconds. By setting in this way, the functional solution can be used on the use side with high oxidizing power before the decomposition of the oxidizing substance such as persulfuric acid proceeds. When the liquid passing time is 1 minute or longer, most of the oxidizing substances contained in the functional solution disappear, and it is difficult to obtain a sufficient function on the use side.
In order to set the liquid passing time to less than 1 minute, for example, the flow rate of the sulfuric acid solution so that the liquid is passed in less than 1 minute with respect to the volume of the liquid passing path from the inlet of the heating unit to the site used on the use side Should be set. In addition, the volume of the flow path may be set so that the flow time is less than 1 minute with respect to a predetermined flow rate of the sulfuric acid solution. Furthermore, the flow rate and volume may be variably controlled.
 生成した機能性溶液は、例えば枚葉式洗浄装置などの使用側に対して供給ラインを通じて供給される。使用側に供給される機能性溶液の流量に特に制限はないが、シリコンウエハなどの被洗浄物1枚あたりに対して、350~2000mL/min.の流量とするのが望ましく、さらには500~2000mL/min.とするのが一層望ましい。被洗浄材料が大きくなるほど流量を大きくする方が好ましいが、1枚あたり2000mL/min.を超える流量としても洗浄効果は上がらず、機能性溶液の生成に必要なエネルギーが増大してしまうため、好ましくない。なお、ここでは使用側を枚葉式洗浄装置として説明をしているが、本発明においては、使用側が特定の装置やシステムに限定されるものではない。 The generated functional solution is supplied through a supply line to the use side of, for example, a single wafer cleaning device. The flow rate of the functional solution supplied to the use side is not particularly limited, but is 350 to 2000 mL / min. Per one object to be cleaned such as a silicon wafer. The flow rate is preferably 500 to 2000 mL / min. Is more desirable. It is preferable to increase the flow rate as the material to be cleaned increases, but 2000 mL / min. Even if the flow rate exceeds 1, the cleaning effect is not improved and the energy required for the production of the functional solution increases, which is not preferable. Although the use side is described here as a single wafer cleaning device, the use side is not limited to a specific device or system in the present invention.
 使用側では、電子基板材料などの被洗浄物が洗浄されるなどした後、比較的高温の硫酸排液が排出される。本発明では、この硫酸排液をシステム内に還流させる還流ラインを設けることができる。前記還流ラインを前記気液分離部、前記貯留部および前記電解部の少なくとも一つに接続することにより、硫酸排液を本システムに還流させることができる。
 還流ラインには、気液分離部や貯留部の液温度や電解部入口の液温度を所定温度に保つために、冷却部を介設する。また、還流ラインで還流される硫酸溶液には、使用側で発生した、例えば機能性溶液で分解処理できないレジストの固形残渣を含んでいる。この残渣を除去するため、還流ラインにフィルタを設けることができる。該フィルタは、冷却部の上流側または下流側、あるいは前記供給ラインの加熱部入口側へ設置することが可能であり、これらのフィルタを複数併設してもよい。
On the use side, a relatively high-temperature sulfuric acid drainage is discharged after an object to be cleaned such as an electronic substrate material is cleaned. In the present invention, a reflux line for refluxing this sulfuric acid drain into the system can be provided. By connecting the reflux line to at least one of the gas-liquid separator, the reservoir, and the electrolyzer, the sulfuric acid drainage can be refluxed to the system.
The reflux line is provided with a cooling unit in order to keep the liquid temperature of the gas-liquid separation unit and the storage unit and the liquid temperature of the electrolytic unit inlet at a predetermined temperature. In addition, the sulfuric acid solution refluxed in the reflux line contains a solid residue of a resist generated on the use side, which cannot be decomposed with a functional solution, for example. In order to remove this residue, a filter can be provided in the reflux line. The filter can be installed on the upstream side or downstream side of the cooling unit, or on the heating unit inlet side of the supply line, and a plurality of these filters may be provided side by side.
 また、還流ラインには、前記した冷却部の上流側に、使用側から受け取った硫酸排液を滞留させて、電子基板材料から剥離されて硫酸排液に含まれるレジストなどの残留有機物の分解を行う分解部を設けることができる。硫酸排液中には過硫酸などの酸化性物質が残留しており、硫酸排液の余熱を利用して分解部に滞留させた硫酸排液中のレジストなどを前記酸化性物質の作用によって酸化分解除去する。この酸化分解は、温度が高いほど効果的になされる。このため分解部では、使用側から還流される硫酸排液の余熱を有効利用するために保温するのが望ましい。また、分解部の構成は、硫酸排液に含まれるレジストなどの残留有機物を分解促進できるものであればよく、たとえば硫酸排液を滞留する構造の分解槽が挙げられる。 Also, in the reflux line, the sulfuric acid drainage received from the use side is retained upstream of the cooling section described above, and the residual organic substances such as resist that are peeled from the electronic substrate material and contained in the sulfuric acid drainage are decomposed. A disassembling part can be provided. Oxidizing substances such as persulfuric acid remain in the sulfuric acid effluent, and the resist in the sulfuric acid effluent retained in the decomposition section using the residual heat of the sulfuric acid effluent is oxidized by the action of the oxidizing substance. Decompose and remove. This oxidative decomposition is more effective as the temperature increases. For this reason, in the decomposition part, it is desirable to keep the temperature in order to effectively use the residual heat of the sulfuric acid effluent recirculated from the use side. Further, the decomposition unit may be configured so long as it can promote decomposition of residual organic substances such as a resist contained in the sulfuric acid drainage solution.
 分解部には、前記した気液分離部と同様に、濃硫酸供給ラインと純水供給ラインの一方または両方を設けることができる。これらの供給ラインから濃硫酸または純水を分解槽に供給することによって、分解槽の硫酸濃度を所定範囲に調整することができる。この構成によれば、気液分離部および電解部のいずれか一方または両方に還流される硫酸排液の硫酸濃度を調整できるため、本システム稼動の安定性をさらに向上することができる。 As in the gas-liquid separation unit described above, one or both of a concentrated sulfuric acid supply line and a pure water supply line can be provided in the decomposition unit. By supplying concentrated sulfuric acid or pure water from these supply lines to the decomposition tank, the sulfuric acid concentration in the decomposition tank can be adjusted to a predetermined range. According to this configuration, it is possible to adjust the sulfuric acid concentration of the sulfuric acid effluent that is refluxed to one or both of the gas-liquid separation unit and the electrolysis unit, so that the stability of the system operation can be further improved.
 また、還流ラインには、使用側から還流される硫酸排液を分解部に送液せずに本システムの系外に除去する排液ラインを設けることができる。このような排液ラインを設けることにより、例えば、洗浄開始直後など硫酸排液中のレジスト剥離量が著しく多量であるときは、分解部に送液せずに硫酸排液を排液ラインを通してシステム系外に排出し、レジスト剥離量が下がった段階で、上記硫酸排液を分解部に送液するように制御することができる。したがって排液ラインは、分解部の上流側で還流ラインに接続していることが必要である。上記構成により、例えば分解部においては残留有機物分解の負荷が軽減されるほか、洗浄直後に発生するSS(固体浮遊物)をシステム内部のフィルタなどで処理することなくシステム系外に排出できるため、本システムの負荷を軽減することができる。したがって、還流ラインにフィルタを設けている場合、排液ラインはフィルタの上流側で還流ラインに接続させるのが望ましい。
 なお、排液ラインから排出された高濃度レジスト剥離液は、例えば他のプロセスで発生した排液と混合するなどして廃液処理してもよい。
Further, the reflux line can be provided with a drain line for removing the sulfuric acid drain solution refluxed from the use side outside the system without sending it to the decomposition unit. By providing such a drainage line, for example, when the resist stripping amount in the sulfuric acid drainage is extremely large, such as immediately after the start of cleaning, the sulfuric acid drainage can be passed through the drainage line without being sent to the decomposition section. It is possible to control so that the sulfuric acid drainage is sent to the decomposition section when the resist is removed from the system and the resist stripping amount is reduced. Therefore, the drainage line needs to be connected to the reflux line upstream of the decomposition unit. With the above configuration, for example, in the decomposition unit, in addition to reducing the load of residual organic matter decomposition, SS (solid suspended matter) generated immediately after cleaning can be discharged out of the system without being processed by a filter inside the system, The load on this system can be reduced. Therefore, when a filter is provided in the return line, the drain line is preferably connected to the return line upstream of the filter.
Note that the high-concentration resist stripping solution discharged from the drainage line may be subjected to waste liquid treatment, for example, by mixing with drainage liquid generated in another process.
 以上説明したように、本発明によれば、過硫酸を含んだ機能性溶液を、過硫酸を高濃度に維持したまま高温の状態で使用側に供給することができる。したがって、使用側が枚葉式洗浄装置のような厳しい洗浄条件の場合でも、シリコンウエハ、液晶用ガラス基板、フォトマスク基板などの電子材料表面に形成された高濃度にイオン注入されたレジストに対しても、良好に剥離洗浄することが可能となる。 As described above, according to the present invention, a functional solution containing persulfuric acid can be supplied to the use side at a high temperature while maintaining the persulfuric acid at a high concentration. Therefore, even when the use side is a harsh cleaning condition such as a single wafer cleaning device, it is used for highly ion-implanted resist formed on the surface of electronic materials such as silicon wafers, glass substrates for liquid crystals, and photomask substrates. In addition, it becomes possible to perform excellent peeling and cleaning.
本発明における機能性溶液供給システムの一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the functional solution supply system in this invention. 同じく、加熱部の構成を示す拡大図である。Similarly, it is an enlarged view which shows the structure of a heating part. 同じく、他の実施形態におけるシステムを示す概略図である。Similarly, it is the schematic which shows the system in other embodiment. 同じく、さらに他の実施形態におけるシステムを示す概略図である。Similarly, it is the schematic which shows the system in other embodiment. 同じく、さらに他の実施形態におけるシステムを示す概略図である。Similarly, it is the schematic which shows the system in other embodiment. 同じく、さらに他の実施形態におけるシステムを示す概略図である。Similarly, it is the schematic which shows the system in other embodiment. 同じく、実施形態のシステムにおける加熱器からノズル出口に至るまでの概略図である。Similarly, it is the schematic from the heater in the system of an embodiment to a nozzle exit.
(実施形態1)
 以下に、本発明の機能性溶液供給システムにおける一実施形態を図1に基づいて説明する。この実施形態は、電解部を無隔膜型電解装置で構成した場合のシステム構成である。
 本発明の電解部に相当する電解装置1は無隔膜型であり、ダイヤモンド電極により構成された陽極および陰極(図示しない)が隔膜で隔てることなく内部に配置され、両電極には図示しない直流電源が接続されている。
 上記電解装置1には、本発明の気液分離部に相当する気液分離槽10が循環ライン11を介して循環通液可能に接続されている。気液分離槽10は、気体を含んだ硫酸溶液を収容して硫酸溶液中の気体を分離して系外に排出するものであり、既知のものを用いることができ、本発明としては気液分離が可能であれば、特にその構成が限定されるものではない。
(Embodiment 1)
Below, one Embodiment in the functional solution supply system of this invention is described based on FIG. This embodiment is a system configuration in the case where the electrolysis unit is configured by a diaphragm-type electrolysis device.
The electrolysis apparatus 1 corresponding to the electrolysis unit of the present invention is a diaphragm type, and an anode and a cathode (not shown) constituted by diamond electrodes are arranged inside without being separated by a diaphragm, and both electrodes are not shown in a DC power source. Is connected.
A gas-liquid separation tank 10 corresponding to the gas-liquid separation unit of the present invention is connected to the electrolysis apparatus 1 through a circulation line 11 so as to allow circulation and liquid flow. The gas-liquid separation tank 10 contains a sulfuric acid solution containing gas, separates the gas in the sulfuric acid solution, and discharges it outside the system. A known one can be used. If separation is possible, the configuration is not particularly limited.
 上記気液分離槽10の排液側と電解装置1の入液側間に位置する循環ライン11には、気液分離槽10内の硫酸溶液を循環させる循環ポンプ12と、硫酸溶液を冷却する冷却器13が介設されている。冷却器13は、本発明の冷却部に相当するものであり、硫酸溶液を適宜の温度に冷却できるものであればよく、本発明としてはその構成が特に限定されるものではない。なお、電解装置1の出液側と気液分離槽10の入液側とは循環ライン11で通液可能に接続されている。
 また、気液分離槽10には濃硫酸供給ライン15と純水供給ライン16が接続されており、気液分離槽10内への濃硫酸または純水を適宜供給することが可能になっている。
In a circulation line 11 located between the drain side of the gas-liquid separation tank 10 and the inlet side of the electrolysis apparatus 1, a circulation pump 12 for circulating the sulfuric acid solution in the gas-liquid separation tank 10 and the sulfuric acid solution are cooled. A cooler 13 is interposed. The cooler 13 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature, and the configuration of the present invention is not particularly limited. Note that the outlet side of the electrolysis apparatus 1 and the inlet side of the gas-liquid separation tank 10 are connected to each other through a circulation line 11.
A concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas-liquid separation tank 10 so that concentrated sulfuric acid or pure water can be appropriately supplied into the gas-liquid separation tank 10. .
 さらに、気液分離槽10には槽内の硫酸溶液を取り出し可能な供給ライン20が接続されており、該供給ライン20の供給先には本発明の使用側に相当する枚葉式洗浄装置100が設けられている。該供給ライン20には、枚葉式洗浄装置100の上流側で、気液分離槽10内の硫酸溶液を送液する送液ポンプ21と、送液ポンプ21で送られる硫酸溶液を加熱する加熱部22が順次介設されている。  Further, a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10, and a single-wafer cleaning apparatus 100 corresponding to the use side of the present invention is connected to the supply line 20. Is provided. In the supply line 20, on the upstream side of the single wafer cleaning device 100, a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided. *
 加熱部22は、図2に示すように、石英製で厚さ(t)10mm以下の通液空間を有する流路22aと、該流路22aに対し前記厚さ方向に近赤外線を照射するよう配置された近赤外線ヒーター22bとを有しており、流路22a内を通液する硫酸溶液を前記加熱ヒーター22bによって一過式で加熱可能となっている。近赤外線ヒーター22bは、波長0.7~3.0μmの範囲内の近赤外線を照射することができる。 As shown in FIG. 2, the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates the near-infrared ray in the thickness direction with respect to the flow path 22a. The near-infrared heater 22b is arranged, and the sulfuric acid solution passing through the flow path 22a can be heated in a transient manner by the heater 22b. The near infrared heater 22b can irradiate near infrared rays within a wavelength range of 0.7 to 3.0 μm.
 また、枚葉式洗浄装置100には、被洗浄物の洗浄により排出された硫酸排液を回収して前記気液分離槽10へ還流させる還流ライン30の一端が接続されており、該還流ライン30には、本発明の分解部に相当する分解槽31が介設されている。該分解槽31の下流側では、該還流ライン30に、前記分解槽31内に貯留された硫酸排液を送液する送液ポンプ32と、前記硫酸排液中に含まれるSSを捕捉して硫酸排液から除去するフィルタ33と、前記硫酸溶液を冷却する冷却器34が順次介設されている。その下流側で還流ライン30の他端側は前記気液分離槽10に接続されている。冷却器34は、本発明の冷却部に相当するものであり、硫酸溶液を適宜の温度に冷却できるものであればよく、本発明としてはその構成が特に限定されるものではない。 The single-wafer cleaning apparatus 100 is connected to one end of a reflux line 30 that recovers the sulfuric acid drainage discharged by cleaning the object to be cleaned and returns it to the gas-liquid separation tank 10. 30 is provided with a decomposition tank 31 corresponding to the decomposition portion of the present invention. On the downstream side of the decomposition tank 31, a liquid feed pump 32 for feeding the sulfuric acid drainage stored in the decomposition tank 31 to the reflux line 30 and an SS contained in the sulfuric acid drainage are captured. A filter 33 for removing the sulfuric acid waste liquid and a cooler 34 for cooling the sulfuric acid solution are sequentially provided. On the downstream side, the other end of the reflux line 30 is connected to the gas-liquid separation tank 10. The cooler 34 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature. The configuration of the present invention is not particularly limited.
 次に、上記構成からなる機能性溶液供給システムの動作(供給方法)について説明する。
 気液分離槽10には、硫酸濃度75~96質量%の硫酸溶液が、循環ライン11を通して電解装置1に供給できるように貯留されている。すなわち、気液分離槽10は、硫酸溶液を貯留する貯留槽としての機能も兼ね備えている。前記硫酸溶液は、循環ポンプ12により送液され、冷却器13で電解に好適な温度に調整されて電解装置1の入液側に導入される。電解装置1では、図示しない直流電源によって陽極、陰極間に通電され、電解装置1内に導入された硫酸溶液が電解される。なお、該電解によって電解装置1では、陽極側で過硫酸を含む酸化性物質が生成されるとともに酸素ガスが発生し、陰極側では水素ガスが発生する。これらの酸化性物質とガスは、前記硫酸溶液と混在した状態で還流ライン11を通して気液分離槽10に送られ、前記ガスが分離される。なお、前記ガスは本システム系外に排出されて触媒装置(図示しない)などにより安全に処理される。
Next, the operation (supply method) of the functional solution supply system configured as described above will be described.
In the gas-liquid separation tank 10, a sulfuric acid solution having a sulfuric acid concentration of 75 to 96 mass% is stored so that it can be supplied to the electrolysis apparatus 1 through the circulation line 11. That is, the gas-liquid separation tank 10 also has a function as a storage tank for storing the sulfuric acid solution. The sulfuric acid solution is fed by the circulation pump 12, adjusted to a temperature suitable for electrolysis by the cooler 13, and introduced to the liquid inlet side of the electrolysis apparatus 1. In the electrolysis apparatus 1, a sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed by energization between an anode and a cathode by a direct current power source (not shown). The electrolysis apparatus 1 generates an oxidizing substance containing persulfuric acid on the anode side, generates oxygen gas, and generates hydrogen gas on the cathode side. These oxidizing substances and gases are sent to the gas-liquid separation tank 10 through the reflux line 11 in a mixed state with the sulfuric acid solution, and the gases are separated. The gas is discharged out of the system and safely processed by a catalyst device (not shown).
 気液分離槽10でガスが分離された前記硫酸溶液は、過硫酸を含んでおり、さらに循環ライン11を通じて、繰り返し電解装置1に送られ電解により過硫酸の濃度が高められる。過硫酸濃度が適度になると、気液分離槽10内の硫酸溶液の一部は供給ライン20を通して供給ポンプ21によって加熱部22に送液される。
 加熱部22では、過硫酸を含む硫酸溶液が流路22aを通過しながら近赤外線ヒーター22bによって120℃~190℃の範囲に加熱され、機能性溶液となる。そして、該機能性溶液は、供給ライン20を通して枚葉式洗浄装置100に供給され、薬液として洗浄に使用される。このとき前記機能性溶液は、加熱部22の入口から枚葉式洗浄装置100で使用されるまでの通液時間が1分未満となるように、流量が調整されている。なお、枚葉式洗浄装置100では、500~2000mL/min.での流量が適量とされており、該流量において、前記通液時間が1分未満となるように、加熱部22の流路22aの長さ、流路断面積およびその下流側での供給ライン20のライン長、流路断面積などを設定する。
The sulfuric acid solution from which gas has been separated in the gas-liquid separation tank 10 contains persulfuric acid, and is further sent to the electrolyzer 1 through the circulation line 11 to increase the concentration of persulfuric acid by electrolysis. When the persulfuric acid concentration becomes moderate, a part of the sulfuric acid solution in the gas-liquid separation tank 10 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
In the heating unit 22, a sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a to become a functional solution. The functional solution is supplied to the single wafer cleaning device 100 through the supply line 20 and used as a chemical solution for cleaning. At this time, the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute. In the single wafer cleaning apparatus 100, the flow rate at 500 to 2000 mL / min. Is set to an appropriate amount, and the flow path 22a of the heating unit 22 is set so that the liquid passing time is less than 1 minute at the flow rate. , The channel cross-sectional area, the line length of the supply line 20 on the downstream side, the channel cross-sectional area, and the like are set.
 枚葉式洗浄装置100では、例えば1×1015atoms/cm以上の高濃度にイオン注入されたレジストが設けられたシリコンウェハ101などが洗浄対象になり該シリコンウェハ101を回転台102上で回転させつつ前記した機能性溶液を接触させることでレジストを効果的に剥離除去する。
 洗浄に使用された機能性溶液は、硫酸排液として枚葉式洗浄装置100から排出され、還流ライン30を通して分解槽31に貯留される。前記硫酸排液には枚葉式洗浄装置100で洗浄されたレジストなどの残留有機物が含まれており、分解槽31に貯留されている間に、前記残留有機物が硫酸排液に含まれる酸化性物質によって酸化分解される。なお、分解槽31における前記硫酸排液の貯留時間は、残留有機物などの含有量などによって、任意に調整することができる。この際に、分解槽31を保温可能にすることで、硫酸排液の余熱を利用した酸化分解を確実なものにすることができる。また、所望により分解槽31に加熱装置を設けることも可能である。
In the single wafer cleaning apparatus 100, for example, a silicon wafer 101 provided with a resist ion-implanted at a high concentration of 1 × 10 15 atoms / cm 2 or more becomes a cleaning target, and the silicon wafer 101 is placed on a turntable 102. The resist is effectively peeled and removed by bringing the functional solution into contact with the resist while rotating.
The functional solution used for cleaning is discharged from the single wafer cleaning apparatus 100 as sulfuric acid drainage and is stored in the decomposition tank 31 through the reflux line 30. The sulfuric acid drainage liquid contains residual organic substances such as a resist cleaned by the single wafer cleaning apparatus 100, and the residual organic substances are contained in the sulfuric acid drainage liquid while being stored in the decomposition tank 31. It is oxidatively decomposed by substances. In addition, the storage time of the said sulfuric acid drainage in the decomposition tank 31 can be arbitrarily adjusted with content, such as a residual organic substance. At this time, by allowing the decomposition tank 31 to be kept warm, it is possible to ensure oxidative decomposition utilizing the residual heat of the sulfuric acid waste solution. Moreover, it is also possible to provide a heating device in the decomposition tank 31 as desired.
 分解槽31において含有する酸化性物質が酸化分解された硫酸排液は、送液ポンプ32により還流ライン30に介設されたフィルタ33および冷却器34を通して気液分離槽10に還流される。このとき、フィルタ33によって分解槽31で処理しきれなかったSSが捕捉除去される。また、高温の硫酸排液が気液分離槽10に還流されると、気液分離槽10に貯留されている硫酸溶液中の過硫酸の分解が促進されてしまうため、前記硫酸排液は冷却器34により冷却された後、気液分離槽10内に導入される。気液分離槽10内に導入された硫酸排液は、硫酸溶液として循環ライン11によって電解装置1に送液されて電解により過硫酸が生成され、循環ライン11により再度気液分離槽10に還流される。
 上記本システムの動作によって、使用側である枚葉式洗浄装置100に高濃度の過硫酸を含む高温の機能性溶液を連続して供給することが可能になる。
The sulfuric acid effluent obtained by oxidizing and decomposing the oxidizing substance contained in the decomposition tank 31 is returned to the gas-liquid separation tank 10 by the liquid feed pump 32 through the filter 33 and the cooler 34 provided in the reflux line 30. At this time, SS that could not be processed in the decomposition tank 31 is captured and removed by the filter 33. In addition, when the high-temperature sulfuric acid drainage is refluxed to the gas-liquid separation tank 10, decomposition of persulfuric acid in the sulfuric acid solution stored in the gas-liquid separation tank 10 is promoted. After being cooled by the vessel 34, it is introduced into the gas-liquid separation tank 10. The sulfuric acid effluent introduced into the gas-liquid separation tank 10 is sent as a sulfuric acid solution to the electrolysis apparatus 1 by the circulation line 11 to generate persulfuric acid by electrolysis, and is returned to the gas-liquid separation tank 10 by the circulation line 11 again. Is done.
By the operation of the present system, a high-temperature functional solution containing a high concentration of persulfuric acid can be continuously supplied to the single-wafer cleaning apparatus 100 on the use side.
 なお、上記では説明しなかったが、分解槽31の上流側で還流ライン30に排液ライン35を分岐接続しておき、適宜時に、硫酸排液を分解槽31に送液せずに系外に排液できるように構成しても良い。
 排液ライン35により、洗浄開始直後など硫酸排液中のレジスト剥離量が著しく多量であるときは、硫酸排液をシステム系外に排出して分解槽31の負担を軽減し、レジスト剥離量が下がった段階で、上記硫酸排液を分解槽31に送液するように制御することができる。該制御は、還流ラインや排液ラインに設けた開閉弁の開閉制御などにより行うことができる。
Although not described above, a drain line 35 is branched and connected to the reflux line 30 on the upstream side of the decomposition tank 31 so that the sulfuric acid drain liquid is not sent to the decomposition tank 31 at an appropriate time. You may comprise so that it can drain.
When the resist stripping amount in the sulfuric acid drainage is extremely large, such as immediately after the start of cleaning, by the drainage line 35, the sulfuric acid drainage is discharged out of the system system to reduce the burden on the decomposition tank 31, and the resist stripping amount is reduced. It is possible to control so that the sulfuric acid drainage is sent to the decomposition tank 31 when it is lowered. This control can be performed by opening / closing control of on-off valves provided in the reflux line or the drain line.
(実施形態2)
 次に、本発明の機能性溶液供給システムの他の実施形態を図3に基づき説明する。
 この実施形態2は、電解部を隔膜型電解装置で構成した場合のシステム構成である。なお、この実施形態2において前記実施形態1と同様の構成については同一の符号を付して、その説明を省略または簡略にする。
 電解装置2は、ダイヤモンド電極によって構成された陽極と陰極(図示しない)とを備えており、これら陽極と陰極との間が隔膜2aによって仕切られている。前記陽極側は、循環ライン11aを介して本発明の気液分離部に相当する気液分離槽10aと循環可能に通液接続されており、前記陰極側は、循環ライン11bを介して本発明の陰極側気液分離部に相当する気液分離槽10bと循環可能に通液接続されている。循環ライン11aおよび循環ライン11bには、それぞれ気液分離槽10a、10b内の硫酸溶液を電解装置2の入液側に送液する循環ポンプ12a、12bがそれぞれ介設されている。また、陽極側の循環ライン11aには、循環ポンプ12aの下流側であって電解装置2の入液側の上流側に、硫酸溶液を冷却する冷却器13aが本発明の冷却部に相当するものとして介設されている。これにより電解時に昇温する陽極側の硫酸溶液を冷却して電解に適した温度に調整することができる。
(Embodiment 2)
Next, another embodiment of the functional solution supply system of the present invention will be described with reference to FIG.
The second embodiment is a system configuration in which the electrolysis unit is configured by a diaphragm type electrolysis device. In addition, in this Embodiment 2, the same code | symbol is attached | subjected about the structure similar to the said Embodiment 1, and the description is abbreviate | omitted or simplified.
The electrolysis apparatus 2 includes an anode and a cathode (not shown) made of diamond electrodes, and the anode and the cathode are partitioned by a diaphragm 2a. The anode side is connected to the gas-liquid separation tank 10a corresponding to the gas-liquid separation part of the present invention through a circulation line 11a so as to be circulated, and the cathode side is connected to the present invention via the circulation line 11b. The gas-liquid separation tank 10b corresponding to the cathode-side gas-liquid separation unit is circulated and connected in a circulating manner. Circulation pumps 12a and 12b for feeding the sulfuric acid solution in the gas- liquid separation tanks 10a and 10b to the liquid inlet side of the electrolysis device 2 are interposed in the circulation line 11a and the circulation line 11b, respectively. Further, in the circulation line 11a on the anode side, a cooler 13a for cooling the sulfuric acid solution on the downstream side of the circulation pump 12a and on the upstream side of the liquid inlet side of the electrolysis apparatus 2 corresponds to the cooling unit of the present invention. It is installed as. Thus, the sulfuric acid solution on the anode side that is heated during electrolysis can be cooled and adjusted to a temperature suitable for electrolysis.
 なお、気液分離槽10a、10bには、それぞれ濃硫酸供給ライン15と純水供給ライン16が通液可能に接続されており、濃硫酸および純水を気液分離槽10a、10b内へ適宜に供給することが可能になっている。 A concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas- liquid separation tanks 10a and 10b, respectively, so that liquids can pass therethrough, and concentrated sulfuric acid and pure water are appropriately transferred into the gas- liquid separation tanks 10a and 10b. It is possible to supply to.
 また、気液分離槽10aには槽内の硫酸溶液を取り出し可能な供給ライン20が接続されており、該供給ライン20の供給先には本発明の使用側に相当する枚葉式洗浄装置100が設けられている。該供給ライン20には、枚葉式洗浄装置100の上流側で、気液分離槽10内の硫酸溶液を送液する送液ポンプ21と、送液ポンプ21で送られる硫酸溶液を加熱する加熱部22が順次介設されている。  Further, a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10a, and a single-wafer cleaning apparatus 100 corresponding to the use side of the present invention is connected to the supply line 20 as a supply destination. Is provided. In the supply line 20, on the upstream side of the single wafer cleaning device 100, a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided. *
 加熱部22は、前記実施形態1と同様に、石英製で厚さ(t)10mm以下の通液空間を有する流路22aと、該流路22aに対し前記厚さ方向に近赤外線を照射するよう配置された近赤外線ヒーター22bとを有している。
 枚葉式洗浄装置100には、還流ライン30の一端が接続され、該還流ライン30に、分解槽31、送液ポンプ32、フィルタ33、冷却器34が順次介設されている。その下流側で還流ライン30の他端側は前記気液分離槽10aに接続されている。
As in the first embodiment, the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates near infrared rays in the thickness direction with respect to the flow path 22a. And a near-infrared heater 22b arranged as described above.
One end of a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30. On the downstream side, the other end side of the reflux line 30 is connected to the gas-liquid separation tank 10a.
 次に、上記構成からなる機能性溶液供給システムの動作(供給方法)について説明する。
 気液分離槽10a、10bには、硫酸濃度75~96質量%の硫酸溶液が、循環ライン11a、11bを通して電解装置2に供給できるように貯留されている。前記硫酸溶液は、循環ポンプ12a、12bにより送液され、循環ライン11a、11bを通して電解装置2の陽極および陰極の入液側に導入される。なお、循環ライン11aでは冷却器13aで硫酸溶液が電解に好適な温度に調整された後、電解装置2の陽極入液側に導入される。電解装置2では、図示しない直流電源によって陽極、陰極間に通電され、電解装置2内に導入された硫酸溶液が電解される。なお、該電解によって電解装置2では、陽極側で過硫酸を含む酸化性物質と酸素ガスが生成し、陰極側では水素ガスが発生する。酸化性物質と酸素ガスは、前記硫酸溶液と混在した状態で循環ライン11aを通して気液分離槽10aに送られ、酸素ガスが分離される。水素ガスは硫酸溶液と混在した状態で循環ライン11bを通じて気液分離槽10bに送られ、水素ガスが分離される。なお、各ガスは本システム系外に排出されて触媒装置(図示しない)などにより安全に処理される。
Next, the operation (supply method) of the functional solution supply system configured as described above will be described.
In the gas- liquid separation tanks 10a and 10b, a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 2 through the circulation lines 11a and 11b. The sulfuric acid solution is fed by circulation pumps 12a and 12b, and is introduced to the liquid inlet side of the anode and cathode of the electrolysis apparatus 2 through the circulation lines 11a and 11b. In the circulation line 11a, the sulfuric acid solution is adjusted to a temperature suitable for electrolysis by the cooler 13a and then introduced into the anode inlet side of the electrolysis apparatus 2. In the electrolysis apparatus 2, a direct current power source (not shown) is energized between the anode and the cathode, and the sulfuric acid solution introduced into the electrolysis apparatus 2 is electrolyzed. The electrolysis apparatus 2 generates an oxidizing substance containing persulfuric acid and oxygen gas on the anode side, and generates hydrogen gas on the cathode side. The oxidizing substance and the oxygen gas are mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 10a through the circulation line 11a to separate the oxygen gas. The hydrogen gas is mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 10b through the circulation line 11b to separate the hydrogen gas. Each gas is discharged out of the system and safely processed by a catalyst device (not shown).
 気液分離槽10aでガスが分離された前記硫酸溶液は、過硫酸を含んでおり、さらに循環ライン11aを通して、繰り返し電解装置2の陽極側に送られ電解により過硫酸の濃度が高められる。過硫酸濃度が適度になると、気液分離槽10a内の硫酸溶液の一部は供給ライン20を通して供給ポンプ21によって加熱部22に送液される。気液分離槽10bでガスが分離された前記硫酸溶液は、循環ライン11bを通して、繰り返し電解装置2の陰極側に送られ電解に供される。
 加熱部22では、前記過硫酸を含む硫酸溶液は、流路22aを通過しながら、近赤外線ヒーター22bによって120℃~190℃の範囲に加熱されて機能性溶液となる。該機能性溶液は、加熱部22から供給ライン20を通して枚葉式洗浄装置100に供給される。機能性溶液は、加熱部22の入口から枚葉式洗浄装置100で使用されるまでの通液時間が1分未満となるように流量が調整されている。
The sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10a contains persulfuric acid, and is further sent to the anode side of the electrolyzer 2 through the circulation line 11a to increase the concentration of persulfuric acid by electrolysis. When the persulfuric acid concentration becomes moderate, a part of the sulfuric acid solution in the gas-liquid separation tank 10 a is sent to the heating unit 22 through the supply line 20 by the supply pump 21. The sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10b is repeatedly sent to the cathode side of the electrolysis apparatus 2 through the circulation line 11b and used for electrolysis.
In the heating unit 22, the sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near infrared heater 22b while passing through the flow path 22a to become a functional solution. The functional solution is supplied from the heating unit 22 to the single wafer cleaning device 100 through the supply line 20. The flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
 枚葉式洗浄装置100では、前記実施形態と同様に高濃度にイオン注入されたレジストが設けられたシリコンウェハ101などを洗浄対象として、回転台102上で回転される前記シリコンウェハ101に前記した機能性溶液を接触させることでレジストを効果的に剥離除去する。
 洗浄に使用された機能性溶液は、硫酸排液として還流ライン30を通して分解槽31に貯留され、分解槽31で残留有機物が酸化分解される。
In the single wafer cleaning apparatus 100, the silicon wafer 101 provided with a resist ion-implanted at a high concentration as in the above embodiment is used as the cleaning target, and the silicon wafer 101 rotated on the turntable 102 is described above. The resist is effectively stripped and removed by contacting the functional solution.
The functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
 分解槽31において残留有機物が酸化分解された硫酸排液は、送液ポンプ32によりフィルタ33および冷却器34を通して気液分離槽10aに還流される。このとき、硫酸排液は、フィルタ33によってSSが捕捉除去され、冷却器34により冷却された後、気液分離槽10a内に導入される。
 このシステムの動作によっても、使用側である枚葉式洗浄装置100に高濃度の過硫酸を含む高温の機能性溶液を連続して供給することが可能になる。
The sulfuric acid effluent obtained by oxidizing and decomposing residual organic matter in the decomposition tank 31 is refluxed to the gas-liquid separation tank 10 a through the filter 33 and the cooler 34 by the liquid feed pump 32. At this time, in the sulfuric acid drainage liquid, SS is captured and removed by the filter 33, cooled by the cooler 34, and then introduced into the gas-liquid separation tank 10a.
Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
(実施形態3)
 次に、本発明の機能性溶液供給システムの他の実施形態を図4に基づいて説明する。この実施形態は、分解槽から気液分離槽を通さずに直接電解装置に通液する構成を有している。なお、この実施形態3で前記実施形態1、2と同様の構成については同一の符号を付して、その説明を省略または簡略にする。
(Embodiment 3)
Next, another embodiment of the functional solution supply system of the present invention will be described with reference to FIG. This embodiment has a configuration in which the liquid is directly passed from the decomposition tank to the electrolysis apparatus without passing through the gas-liquid separation tank. Note that the same reference numerals in the third embodiment denote the same parts as in the first and second embodiments, and a description thereof will be omitted or simplified.
 この実施形態でも、前記実施形態1と同様に無隔膜型の電解装置1を備えており、ダイヤモンド電極により構成された陽極および陰極を備えている。
 上記電解装置1の出液側には、本発明の気液分離部に相当する気液分離槽10が循環ラインの一部に相当する送液ライン11cを介して通液可能に接続されている。
This embodiment also includes a diaphragm-type electrolysis apparatus 1 as in the first embodiment, and includes an anode and a cathode made of diamond electrodes.
A gas-liquid separation tank 10 corresponding to a gas-liquid separation unit of the present invention is connected to a liquid discharge side of the electrolysis apparatus 1 through a liquid feed line 11c corresponding to a part of a circulation line. .
 上記気液分離槽10の排液側には、循環ラインの一部に相当する返流ライン11dの一端が接続されており、該返流ライン11dの他端側は後述する還流ライン30に合流するように接続されている。
 なお、気液分離槽10には濃硫酸供給ライン15と純水供給ライン16が接続されており、気液分離槽10内への濃硫酸または純水を適宜供給することが可能になっている。
 さらに、気液分離槽10には槽内の硫酸溶液を取り出し可能な供給ライン20が接続されており、該供給ライン20には、送液ポンプ21と、送液ポンプ21で送られる硫酸溶液を加熱する加熱部22とが順次介設され、その下流側に枚葉式洗浄装置100が接続されている。 
One end of a return line 11d corresponding to a part of the circulation line is connected to the drain side of the gas-liquid separation tank 10, and the other end side of the return line 11d joins a reflux line 30 described later. To be connected.
A concentrated sulfuric acid supply line 15 and a pure water supply line 16 are connected to the gas-liquid separation tank 10 so that concentrated sulfuric acid or pure water can be appropriately supplied into the gas-liquid separation tank 10. .
Further, a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the gas-liquid separation tank 10, and a liquid feed pump 21 and a sulfuric acid solution sent by the liquid feed pump 21 are connected to the supply line 20. A heating unit 22 for heating is sequentially provided, and a single wafer cleaning apparatus 100 is connected to the downstream side thereof.
 加熱部22は、前記実施形態1と同様に、石英製で厚さ(t)10mm以下の通液空間を有する流路22aと、該流路22aに対し前記厚さ方向に近赤外線を照射するよう配置された近赤外線ヒーター22bとを有している。
 枚葉式洗浄装置100には、還流ライン30の一端が接続され、該還流ライン30に、分解槽31、送液ポンプ32、フィルタ33、冷却器34が順次介設されている。その下流側で還流ライン30の他端側は前記電解装置1の入液側に接続されている。冷却器34は、本発明の冷却部に相当するものであり、硫酸溶液を適宜の温度に冷却できるものであればよく、本発明としてはその構成が特に限定されるものではない。
 前記送液ライン11cおよび返流ライン11dと、該返流ライン11dが合流する地点から下流側の該還流ライン30は、協働して本発明の循環ラインを構成しており、これにより気液分離槽10と電解装置1との間で硫酸溶液を電解しつつ循環させることができる。
As in the first embodiment, the heating unit 22 is made of quartz and has a flow path 22a having a liquid passing space with a thickness (t) of 10 mm or less, and irradiates near infrared rays in the thickness direction with respect to the flow path 22a. And a near-infrared heater 22b arranged as described above.
One end of a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30. On the downstream side, the other end side of the reflux line 30 is connected to the liquid inlet side of the electrolysis apparatus 1. The cooler 34 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature. The configuration of the present invention is not particularly limited.
The liquid feed line 11c and the return line 11d and the return line 30 downstream from the point where the return line 11d joins cooperate to form the circulation line of the present invention. The sulfuric acid solution can be circulated between the separation tank 10 and the electrolysis apparatus 1 while being electrolyzed.
 次に、上記構成からなる機能性溶液供給システムの動作(供給方法)について説明する。
 気液分離槽10には、硫酸濃度75~96質量%の硫酸溶液が、返流ライン11d、還流ライン30を通して電解装置1に供給できるように貯留されている。前記硫酸溶液は、送液ポンプ32により送液され、フィルタ33を通過した後、冷却器34で電解に好適な温度に調整されて電解装置1の入液側に導入される。電解装置1では、図示しない直流電源によって陽極、陰極間に通電され、電解装置1内に導入された硫酸溶液が電解される。該電解によって電解装置1では、陽極側で過硫酸を含む酸化性物質と酸素ガスが生成し、陰極側では水素ガスが発生する。酸化性物質とガスは、前記硫酸溶液と混在した状態で送液ライン11cを通じて気液分離槽10に送られ、ガスが分離される。
Next, the operation (supply method) of the functional solution supply system configured as described above will be described.
In the gas-liquid separation tank 10, a sulfuric acid solution having a sulfuric acid concentration of 75 to 96 mass% is stored so that it can be supplied to the electrolysis apparatus 1 through the return line 11 d and the reflux line 30. The sulfuric acid solution is fed by the liquid feed pump 32, passes through the filter 33, is adjusted to a temperature suitable for electrolysis by the cooler 34, and is introduced to the liquid inlet side of the electrolysis apparatus 1. In the electrolysis apparatus 1, a sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed by energization between an anode and a cathode by a direct current power source (not shown). By the electrolysis, in the electrolysis apparatus 1, an oxidizing substance containing persulfuric acid and oxygen gas are generated on the anode side, and hydrogen gas is generated on the cathode side. The oxidizing substance and the gas are sent to the gas-liquid separation tank 10 through the liquid feeding line 11c in a state of being mixed with the sulfuric acid solution, and the gas is separated.
 気液分離槽10でガスが分離された前記硫酸溶液は、過硫酸を含んでおり、一部は、返流ライン11d、還流ライン30を通して、繰り返し電解装置1に送られ電解により過硫酸の濃度が高められる。過硫酸濃度が適度になると、気液分離槽10内の硫酸溶液の一部は供給ライン20を通して供給ポンプ21によって加熱部22に送液される。
 加熱部22に送液された硫酸溶液は、流路22aを通過しながら、近赤外線ヒーター22bによって120℃~190℃の範囲に加熱され、機能性溶液として、供給ライン20を通して枚葉式洗浄装置100に供給される。このとき機能性溶液は、加熱部22の入口から枚葉式洗浄装置100で使用されるまでの通液時間が1分未満となるように、流量が調整されている。
The sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10 contains persulfuric acid, and a part thereof is repeatedly sent to the electrolyzer 1 through the return line 11d and the reflux line 30, and the concentration of persulfuric acid by electrolysis. Is increased. When the persulfuric acid concentration becomes moderate, a part of the sulfuric acid solution in the gas-liquid separation tank 10 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
The sulfuric acid solution sent to the heating unit 22 is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a, and is fed as a functional solution through the supply line 20 to a single wafer cleaning device. 100. At this time, the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning device 100 is less than 1 minute.
 枚葉式洗浄装置100では、前記実施形態と同様に高濃度にイオン注入されたレジストが設けられたシリコンウェハなどが前記機能性溶液で洗浄され、レジストが効果的に剥離除去される。洗浄に使用された機能性溶液は、硫酸排液として還流ライン30を通して分解槽31に貯留され、分解槽31で残留有機物が酸化分解される。 In the single wafer cleaning apparatus 100, as in the above-described embodiment, a silicon wafer or the like provided with a resist ion-implanted at a high concentration is cleaned with the functional solution, and the resist is effectively stripped and removed. The functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
 分解槽31で残留有機物が酸化分解された硫酸排液は、送液ポンプ32により気液分離槽10から送液される硫酸溶液と合流してフィルタ33および冷却器34を通して硫酸溶液として電解装置1に還流される。このとき、硫酸溶液は、フィルタ33によってSSが捕捉除去され、冷却器34により冷却された後、電解装置1内に導入される。
 このシステムの動作によっても、使用側である枚葉式洗浄装置100に高濃度の過硫酸を含む高温の機能性溶液を連続して供給することが可能になる。
The sulfuric acid effluent obtained by oxidizing and decomposing the remaining organic matter in the decomposition tank 31 is joined with the sulfuric acid solution sent from the gas-liquid separation tank 10 by the liquid feed pump 32, and then passed through the filter 33 and the cooler 34 as the sulfuric acid solution. To reflux. At this time, SS is introduced into the electrolysis apparatus 1 after the SS is captured and removed by the filter 33 and cooled by the cooler 34.
Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
(実施形態4)
 上記各実施形態では、気液分離部で貯留された硫酸溶液を循環ライン、供給ラインを通して通液するものとしている。ただし、本発明としては、気液分離部の他に貯留槽を設け、該貯留槽を介して循環ライン、供給ラインによって硫酸溶液を通液するようにしてもよい。係る構成の実施形態4を図5に基づいて以下に説明する。なお、前記各実施形態と同様の構成については同一の符号を付してその説明を簡略化または省略する。
(Embodiment 4)
In each of the above embodiments, the sulfuric acid solution stored in the gas-liquid separator is passed through the circulation line and the supply line. However, in the present invention, a storage tank may be provided in addition to the gas-liquid separator, and the sulfuric acid solution may be passed through the circulation line and the supply line via the storage tank. A fourth embodiment having such a configuration will be described below with reference to FIG. In addition, about the structure similar to each said embodiment, the same code | symbol is attached | subjected and the description is simplified or abbreviate | omitted.
 無隔膜型の電解装置1の出液側には、本発明の気液分離部に相当する気液分離槽40が循環ライン11を介して循環通液可能に接続されている。気液分離槽40は、気体を含んだ硫酸溶液を収容して硫酸溶液中の気体を分離して系外に排出するものであり、既知のものを用いることができる。 A gas-liquid separation tank 40 corresponding to the gas-liquid separation unit of the present invention is connected to the liquid discharge side of the electroless membrane type electrolysis apparatus 1 through the circulation line 11 so as to be able to circulate and flow. The gas-liquid separation tank 40 contains a sulfuric acid solution containing a gas, separates the gas in the sulfuric acid solution, and discharges it outside the system, and a known one can be used.
 上記気液分離槽40の排液側には、気液分離がされた硫酸溶液を貯留する貯留槽50が前記循環ライン11によって接続されている。貯留槽50は、本発明の貯留部に相当する。また循環ライン11は、該貯留槽50を介してさらに下流側に延長して電解装置1の入液側に接続されている。
 貯留槽50と電解装置1の入液側との間に位置する循環ライン11には、貯留槽50内の硫酸溶液を循環させる循環ポンプ12と、硫酸溶液を冷却する冷却器13が介設されている。冷却器13は、本発明の冷却部に相当するものであり、硫酸溶液を適宜の温度に冷却できるものであればよく、本発明としてはその構成が特に限定されるものではない。
 また、貯留槽50には濃硫酸供給ライン15と純水供給ライン16が接続されており、貯留槽50内への濃硫酸または純水を適宜供給することが可能になっている。
A storage tank 50 for storing the sulfuric acid solution subjected to gas-liquid separation is connected to the drain side of the gas-liquid separation tank 40 by the circulation line 11. The storage tank 50 corresponds to the storage unit of the present invention. The circulation line 11 extends further downstream via the storage tank 50 and is connected to the liquid inlet side of the electrolysis apparatus 1.
A circulation line 11 located between the storage tank 50 and the liquid inlet side of the electrolysis apparatus 1 is provided with a circulation pump 12 for circulating the sulfuric acid solution in the storage tank 50 and a cooler 13 for cooling the sulfuric acid solution. ing. The cooler 13 corresponds to the cooling unit of the present invention, and may be any one that can cool the sulfuric acid solution to an appropriate temperature, and the configuration of the present invention is not particularly limited.
The storage tank 50 is connected to a concentrated sulfuric acid supply line 15 and a pure water supply line 16 so that concentrated sulfuric acid or pure water can be appropriately supplied into the storage tank 50.
 さらに、貯留槽50には槽内の硫酸溶液を取り出し可能な供給ライン20が接続されており、該供給ライン20の供給先には枚葉式洗浄装置100が設けられている。該供給ライン20には、枚葉式洗浄装置100の上流側で、気液分離槽10内の硫酸溶液を送液する送液ポンプ21と、送液ポンプ21で送られる硫酸溶液を加熱する加熱部22が順次介設されている。  Furthermore, a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the storage tank 50, and a single wafer cleaning device 100 is provided at the supply destination of the supply line 20. In the supply line 20, on the upstream side of the single wafer cleaning device 100, a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided. *
 また、枚葉式洗浄装置100には、被洗浄物の洗浄により排出された硫酸排液を回収して前記貯留槽50へ還流させる還流ライン30の一端が接続されており、該還流ライン30には、本発明の分解部に相当する分解槽31が介設されている。該分解槽31の下流側では、該還流ライン30に、前記分解槽31内に貯留された硫酸排液を送液する送液ポンプ32と、前記硫酸排液中に含まれるSSを捕捉して硫酸排液から除去するフィルタ33と、前記硫酸溶液を冷却する冷却器34が順次介設されている。その下流側で還流ライン30の他端側は前記貯留槽50に接続されている。 The single-wafer cleaning apparatus 100 is connected to one end of a reflux line 30 that collects the sulfuric acid drainage discharged by cleaning the object to be cleaned and returns it to the storage tank 50. Is provided with a decomposition tank 31 corresponding to the decomposition portion of the present invention. On the downstream side of the decomposition tank 31, a liquid feed pump 32 for feeding the sulfuric acid drainage stored in the decomposition tank 31 to the reflux line 30 and an SS contained in the sulfuric acid drainage are captured. A filter 33 for removing the sulfuric acid waste liquid and a cooler 34 for cooling the sulfuric acid solution are sequentially provided. On the downstream side, the other end side of the reflux line 30 is connected to the storage tank 50.
 次に、上記構成からなる機能性溶液供給システムの動作(供給方法)について説明する。
 貯留槽50には、硫酸濃度75~96質量%の硫酸溶液が、循環ライン11を通して電解装置1に供給できるように貯留されている。前記硫酸溶液は、循環ポンプ12により送液され、冷却器13で電解に好適な温度に調整されて電解装置1の入液側に導入され、電解装置1内に導入された硫酸溶液が電解される。なお、該電解によって電解装置1では、陽極側で過硫酸を含む酸化性物質が生成されるとともに酸素ガスが発生し、陰極側では水素ガスが発生する。これらの酸化性物質とガスは、前記硫酸溶液と混在した状態で還流ライン11を通して気液分離槽40に送られ、前記ガスが分離される。なお、前記ガスは本システム系外に排出されて触媒装置(図示しない)などにより安全に処理される。
Next, the operation (supply method) of the functional solution supply system configured as described above will be described.
In the storage tank 50, a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 1 through the circulation line 11. The sulfuric acid solution is fed by the circulation pump 12, adjusted to a temperature suitable for electrolysis by the cooler 13, introduced to the liquid inlet side of the electrolysis apparatus 1, and the sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed. The The electrolysis apparatus 1 generates an oxidizing substance containing persulfuric acid on the anode side, generates oxygen gas, and generates hydrogen gas on the cathode side. These oxidizing substances and gases are sent to the gas-liquid separation tank 40 through the reflux line 11 in a mixed state with the sulfuric acid solution, and the gases are separated. The gas is discharged out of the system and safely processed by a catalyst device (not shown).
 気液分離槽40でガスが分離された前記硫酸溶液は、過硫酸を含んでおり、さらに循環ライン11を通じて、貯留槽50に送られる。貯留槽50内の硫酸溶液は、繰り返し電解装置1に送られ、電解により過硫酸の濃度が高められる。過硫酸濃度が適度になると、貯留槽50内の硫酸溶液の一部は供給ライン20を通して供給ポンプ21によって加熱部22に送液される。
 加熱部22では、過硫酸を含む硫酸溶液が流路22aを通過しながら近赤外線ヒーター22bによって120℃~190℃の範囲に加熱され、機能性溶液となる。そして、該機能性溶液は、供給ライン20を通して枚葉式洗浄装置100に供給され、薬液として洗浄に使用される。このとき前記機能性溶液は、加熱部22の入口から枚葉式洗浄装置100で使用されるまでの通液時間が1分未満となるように、流量が調整されている。
The sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 40 contains persulfuric acid, and is further sent to the storage tank 50 through the circulation line 11. The sulfuric acid solution in the storage tank 50 is repeatedly sent to the electrolysis apparatus 1, and the concentration of persulfuric acid is increased by electrolysis. When the persulfuric acid concentration becomes moderate, a part of the sulfuric acid solution in the storage tank 50 is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
In the heating unit 22, a sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near-infrared heater 22b while passing through the flow path 22a to become a functional solution. The functional solution is supplied to the single wafer cleaning device 100 through the supply line 20 and used as a chemical solution for cleaning. At this time, the flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
 枚葉式洗浄装置100では、前記したようにシリコンウェハ101などが洗浄対象になり該シリコンウェハ101を回転台102上で回転させつつ前記した機能性溶液を接触させることでレジストを効果的に剥離除去する。
 洗浄に使用された機能性溶液は、硫酸排液として枚葉式洗浄装置100から排出され、還流ライン30を通して分解槽31に貯留される。分解槽31に貯留されている間に、残留有機物が硫酸排液に含まれる酸化性物質によって酸化分解される。なお、分解槽31における前記硫酸排液の貯留時間は、残留有機物などの含有量などによって、任意に調整することができる。この際に、分解槽31を保温可能にすることで、硫酸排液の余熱を利用した酸化分解を確実なものにすることができる。また、所望により分解槽31に加熱装置を設けることも可能である。
In the single wafer cleaning apparatus 100, as described above, the silicon wafer 101 or the like becomes an object to be cleaned, and the resist is effectively removed by contacting the functional solution while rotating the silicon wafer 101 on the turntable 102. Remove.
The functional solution used for cleaning is discharged from the single wafer cleaning apparatus 100 as sulfuric acid drainage and is stored in the decomposition tank 31 through the reflux line 30. While being stored in the decomposition tank 31, residual organic matter is oxidatively decomposed by an oxidizing substance contained in the sulfuric acid drainage. In addition, the storage time of the said sulfuric acid drainage in the decomposition tank 31 can be arbitrarily adjusted with content, such as a residual organic substance. At this time, by allowing the decomposition tank 31 to be kept warm, it is possible to ensure oxidative decomposition utilizing the residual heat of the sulfuric acid waste solution. Moreover, it is also possible to provide a heating device in the decomposition tank 31 as desired.
 分解槽31において含有する酸化性物質が酸化分解された硫酸排液は、送液ポンプ32により還流ライン30に介設されたフィルタ33および冷却器34を通して貯留槽50に還流される。このとき、フィルタ33によって分解槽31で処理しきれなかったSSが捕捉除去される。また、高温の硫酸排液が貯留槽50に還流されると、貯留槽50に貯留されている硫酸溶液中の過硫酸の分解が促進されてしまうため、前記硫酸排液は冷却器34により冷却された後、貯留槽50内に導入される。貯留槽50内に導入された硫酸排液は、硫酸溶液として前記循環ライン11によって電解装置1に送液されて電解により過硫酸が生成され、循環ライン11により再度気液分離槽40を通して貯留槽50に還流される。
 上記本システムの動作によって、使用側である枚葉式洗浄装置100に高濃度の過硫酸を含む高温の機能性溶液を連続して供給することが可能になる。
The sulfuric acid effluent obtained by oxidizing and decomposing the oxidizing substance contained in the decomposition tank 31 is returned to the storage tank 50 by the liquid feed pump 32 through the filter 33 and the cooler 34 provided in the reflux line 30. At this time, SS that could not be processed in the decomposition tank 31 is captured and removed by the filter 33. In addition, when the high-temperature sulfuric acid drainage is refluxed to the storage tank 50, decomposition of persulfuric acid in the sulfuric acid solution stored in the storage tank 50 is promoted, so that the sulfuric acid drainage is cooled by the cooler 34. After being introduced, it is introduced into the storage tank 50. The sulfuric acid effluent introduced into the storage tank 50 is sent as a sulfuric acid solution to the electrolysis apparatus 1 by the circulation line 11 to generate persulfuric acid by electrolysis, and the storage tank again passes through the gas-liquid separation tank 40 by the circulation line 11. Reflux to 50.
By the operation of the present system, a high-temperature functional solution containing a high concentration of persulfuric acid can be continuously supplied to the single-wafer cleaning apparatus 100 on the use side.
(実施形態5)
 上記実施形態4では、無隔膜型の電解装置と貯留槽を備えるものについて説明をしたが、隔膜型の電解装置に接続するように気液分離槽と貯留槽とを備えるものとしてもよい。
 以下に、係る構成の実施形態5を図6に基づいて説明する。
 この実施形態5において前記各実施形態と同様の構成については同一の符号を付して、その説明を省略または簡略にする。
 電解装置2は隔膜型の構成を有しており、ダイヤモンド電極によって構成された陽極と陰極(図示しない)とを備え、これら陽極と陰極との間が隔膜2aによって仕切られている。前記陽極側は、循環ライン11aを介して本発明の気液分離部に相当する気液分離槽40aおよび本発明の貯留部に相当する貯留槽50aと循環可能に通液接続されている。貯留槽50aは、循環ライン11aを介して気液分離槽40aの排液側に接続されており、気液分離槽40aで気液分離された硫酸溶液が貯留槽50aに送液されて貯留される。
 また、電解装置2の陰極側は、循環ライン11bを介して本発明の陰極側気液分離部に相当する気液分離槽40bおよび貯留槽50bと循環可能に通液接続されている。貯留槽50bは、循環ライン11bを介して気液分離槽40bの排液側に接続されており、気液分離槽40bで気液分離された硫酸溶液が貯留槽50bに送液されて貯留される。
 循環ライン11aおよび循環ライン11bには、それぞれ貯留槽50a、貯留槽50b内の硫酸溶液を電解装置2の入液側に送液する循環ポンプ12a、12bがそれぞれ介設されている。また、陽極側の循環ライン11aには、循環ポンプ12aの下流側であって電解装置2の入液側の上流側に、硫酸溶液を冷却する冷却器13aが本発明の冷却部に相当するものとして介設されている。これにより電解時に昇温する陽極側の硫酸溶液を冷却して電解に適した温度に調整することができる。
(Embodiment 5)
Although Embodiment 4 has been described with respect to a device including a diaphragm-type electrolysis device and a storage tank, it may include a gas-liquid separation tank and a storage tank so as to be connected to the diaphragm-type electrolysis device.
Hereinafter, Embodiment 5 having such a configuration will be described with reference to FIG.
In the fifth embodiment, the same reference numerals are given to the same configurations as those of the respective embodiments, and the description thereof is omitted or simplified.
The electrolysis apparatus 2 has a diaphragm type configuration, and includes an anode and a cathode (not shown) formed of diamond electrodes, and the anode and the cathode are partitioned by a diaphragm 2a. Via the circulation line 11a, the anode side is circulated and connected to a gas-liquid separation tank 40a corresponding to the gas-liquid separation part of the present invention and a storage tank 50a corresponding to the storage part of the present invention. The storage tank 50a is connected to the drain side of the gas-liquid separation tank 40a via the circulation line 11a, and the sulfuric acid solution separated in the gas-liquid separation tank 40a is sent to the storage tank 50a and stored. The
In addition, the cathode side of the electrolysis apparatus 2 is circulated and connected to a gas-liquid separation tank 40b and a storage tank 50b corresponding to the cathode-side gas-liquid separation unit of the present invention through a circulation line 11b. The storage tank 50b is connected to the drain side of the gas-liquid separation tank 40b via the circulation line 11b, and the sulfuric acid solution separated in the gas-liquid separation tank 40b is sent to the storage tank 50b and stored. The
Circulation pumps 12a and 12b for feeding the sulfuric acid solution in the storage tank 50a and the storage tank 50b to the liquid inlet side of the electrolysis device 2 are interposed in the circulation line 11a and the circulation line 11b, respectively. Further, in the circulation line 11a on the anode side, a cooler 13a for cooling the sulfuric acid solution on the downstream side of the circulation pump 12a and on the upstream side of the liquid inlet side of the electrolysis apparatus 2 corresponds to the cooling unit of the present invention. It is installed as. Thus, the sulfuric acid solution on the anode side that is heated during electrolysis can be cooled and adjusted to a temperature suitable for electrolysis.
 なお、貯留槽50aには、濃硫酸供給ライン15と純水供給ライン16が通液可能に接続されており、濃硫酸および純水を貯留槽50a内へ適宜に供給することが可能になっている。
 また、貯留槽50aには槽内の硫酸溶液を取り出し可能な供給ライン20が接続されており、該供給ライン20の供給先には本発明の使用側に相当する枚葉式洗浄装置100が設けられている。該供給ライン20には、枚葉式洗浄装置100の上流側で、気液分離槽10内の硫酸溶液を送液する送液ポンプ21と、送液ポンプ21で送られる硫酸溶液を加熱する加熱部22が順次介設されている。 
Note that the concentrated sulfuric acid supply line 15 and the pure water supply line 16 are connected to the storage tank 50a so as to allow liquid to pass therethrough, so that concentrated sulfuric acid and pure water can be appropriately supplied into the storage tank 50a. Yes.
Further, a supply line 20 capable of taking out the sulfuric acid solution in the tank is connected to the storage tank 50a, and a single wafer cleaning device 100 corresponding to the use side of the present invention is provided at the supply destination of the supply line 20. It has been. In the supply line 20, on the upstream side of the single wafer cleaning device 100, a liquid feed pump 21 that feeds the sulfuric acid solution in the gas-liquid separation tank 10, and heating that heats the sulfuric acid solution sent by the liquid feed pump 21. Units 22 are sequentially provided.
 加熱部22は、前記各実施形態と同様に、石英製で厚さ(t)10mm以下の通液空間を有する流路22aと、該流路22aに対し前記厚さ方向に近赤外線を照射するよう配置された近赤外線ヒーター22bとを有している。
 枚葉式洗浄装置100には、還流ライン30の一端が接続され、該還流ライン30に、分解槽31、送液ポンプ32、フィルタ33、冷却器34が順次介設されている。その下流側で還流ライン30の他端側は前記貯留槽50aに接続されている。
The heating part 22 irradiates near-infrared rays in the thickness direction with respect to the flow path 22a having a liquid passage space made of quartz and having a thickness (t) of 10 mm or less, as in the above embodiments. And a near-infrared heater 22b arranged as described above.
One end of a reflux line 30 is connected to the single wafer cleaning apparatus 100, and a decomposition tank 31, a liquid feed pump 32, a filter 33, and a cooler 34 are sequentially interposed in the reflux line 30. On the downstream side, the other end side of the reflux line 30 is connected to the storage tank 50a.
 次に、上記構成からなる機能性溶液供給システムの動作(供給方法)について説明する。
 貯留槽50a、50bには、硫酸濃度75~96質量%の硫酸溶液が、循環ライン11a、11bを通して電解装置2に供給できるように貯留されている。前記硫酸溶液は、循環ポンプ12a、12bにより送液され、循環ライン11a、11bを通して電解装置2の陽極および陰極の入液側に導入される。なお、循環ライン11aでは冷却器13で硫酸溶液が電解に好適な温度に調整された後、電解装置2の陽極入液側に導入される。電解装置2では、図示しない直流電源によって陽極、陰極間に通電され、電解装置2内に導入された硫酸溶液が電解される。なお、該電解によって電解装置2では、陽極側で過硫酸を含む酸化性物質と酸素ガスが生成し、陰極側では水素ガスが発生する。酸化性物質と酸素ガスは、前記硫酸溶液と混在した状態で循環ライン11aを通して気液分離槽40aに送られ、酸素ガスが分離される。酸素ガスが分離された硫酸溶液は、循環ライン11aを通して貯留槽50aに送液されて貯留される。一方、電解装置2の陰極側で生成された水素ガスは硫酸溶液と混在した状態で循環ライン11bを通じて気液分離槽40bに送られ、水素ガスが分離される。水素ガスが分離された硫酸溶液は、循環ライン11bを通して貯留槽50bに送液されて貯留される。なお、各ガスは本システム系外に排出されて触媒装置(図示しない)などにより安全に処理される。
Next, the operation (supply method) of the functional solution supply system configured as described above will be described.
In the storage tanks 50a and 50b, a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass is stored so that it can be supplied to the electrolysis apparatus 2 through the circulation lines 11a and 11b. The sulfuric acid solution is fed by circulation pumps 12a and 12b, and is introduced to the liquid inlet side of the anode and cathode of the electrolysis apparatus 2 through the circulation lines 11a and 11b. In the circulation line 11a, the sulfuric acid solution is adjusted to a temperature suitable for electrolysis by the cooler 13, and then introduced into the anode inlet side of the electrolysis apparatus 2. In the electrolysis apparatus 2, a direct current power source (not shown) is energized between the anode and the cathode, and the sulfuric acid solution introduced into the electrolysis apparatus 2 is electrolyzed. The electrolysis apparatus 2 generates an oxidizing substance containing persulfuric acid and oxygen gas on the anode side, and generates hydrogen gas on the cathode side. The oxidizing substance and the oxygen gas are mixed with the sulfuric acid solution and sent to the gas-liquid separation tank 40a through the circulation line 11a to separate the oxygen gas. The sulfuric acid solution from which oxygen gas has been separated is sent to the storage tank 50a through the circulation line 11a and stored. On the other hand, the hydrogen gas generated on the cathode side of the electrolysis apparatus 2 is sent to the gas-liquid separation tank 40b through the circulation line 11b in a state of being mixed with the sulfuric acid solution, and the hydrogen gas is separated. The sulfuric acid solution from which the hydrogen gas has been separated is sent to the storage tank 50b through the circulation line 11b and stored. Each gas is discharged out of the system and safely processed by a catalyst device (not shown).
 気液分離槽40aで酸素ガスが分離されて貯留槽50aに貯留された前記硫酸溶液は、過硫酸を含んでおり、さらに循環ライン11aを通して、繰り返し電解装置2の陽極側に送られ電解により過硫酸の濃度が高められる。また、気液分離槽40bで水素ガスが分離されて貯留槽50bに貯留された硫酸溶液は、循環ライン11bを通して、繰り返し電解装置2の陰極側に送られ電解に供される。
 上記電解によって陽極側硫酸溶液の過硫酸濃度が適度になると、貯留槽50a内の硫酸溶液の一部は供給ライン20を通して供給ポンプ21によって加熱部22に送液される。
 加熱部22では、前記過硫酸を含む硫酸溶液は、流路22aを通過しながら、近赤外線ヒーター22bによって120℃~190℃の範囲に加熱されて機能性溶液となる。該機能性溶液は、加熱部22から供給ライン20を通して枚葉式洗浄装置100に供給される。機能性溶液は、加熱部22の入口から枚葉式洗浄装置100で使用されるまでの通液時間が1分未満となるように流量が調整されている。
The sulfuric acid solution in which the oxygen gas is separated in the gas-liquid separation tank 40a and stored in the storage tank 50a contains persulfuric acid, and is further sent to the anode side of the electrolyzer 2 through the circulation line 11a and passed through electrolysis. The concentration of sulfuric acid is increased. The sulfuric acid solution separated from the hydrogen gas in the gas-liquid separation tank 40b and stored in the storage tank 50b is repeatedly sent to the cathode side of the electrolysis apparatus 2 through the circulation line 11b and used for electrolysis.
When the persulfuric acid concentration of the anode-side sulfuric acid solution is moderated by the electrolysis, a part of the sulfuric acid solution in the storage tank 50 a is sent to the heating unit 22 through the supply line 20 by the supply pump 21.
In the heating unit 22, the sulfuric acid solution containing persulfuric acid is heated to a range of 120 ° C. to 190 ° C. by the near infrared heater 22b while passing through the flow path 22a to become a functional solution. The functional solution is supplied from the heating unit 22 to the single wafer cleaning device 100 through the supply line 20. The flow rate of the functional solution is adjusted so that the liquid passing time from the entrance of the heating unit 22 to the use of the single wafer cleaning apparatus 100 is less than 1 minute.
 枚葉式洗浄装置100では、前記したようにシリコンウェハ101などを洗浄対象として、回転台102上で回転される前記シリコンウェハ101に前記した機能性溶液を接触させることでレジストを効果的に剥離除去する。
 洗浄に使用された機能性溶液は、硫酸排液として還流ライン30を通して分解槽31に貯留され、分解槽31で残留有機物が酸化分解される。
In the single wafer cleaning apparatus 100, as described above, the resist is effectively removed by bringing the functional solution into contact with the silicon wafer 101 rotated on the turntable 102 with the silicon wafer 101 or the like as an object to be cleaned. Remove.
The functional solution used for the washing is stored in the decomposition tank 31 through the reflux line 30 as sulfuric acid drainage, and the residual organic matter is oxidatively decomposed in the decomposition tank 31.
 分解槽31において残留有機物が酸化分解された硫酸排液は、送液ポンプ32によりフィルタ33および冷却器34を通して貯留槽50aに還流される。このとき、硫酸排液は、フィルタ33によってSSが捕捉除去され、冷却器34により冷却された後、貯留槽50a内に導入される。
 このシステムの動作によっても、使用側である枚葉式洗浄装置100に高濃度の過硫酸を含む高温の機能性溶液を連続して供給することが可能になる。
The sulfuric acid effluent obtained by oxidizing and decomposing residual organic matter in the decomposition tank 31 is returned to the storage tank 50 a through the filter 33 and the cooler 34 by the liquid feed pump 32. At this time, the sulfuric acid drainage is introduced into the storage tank 50a after SS is captured and removed by the filter 33 and cooled by the cooler 34.
Also by the operation of this system, it becomes possible to continuously supply a high-temperature functional solution containing a high concentration of persulfuric acid to the single wafer cleaning apparatus 100 on the use side.
 以上本発明について上記各実施形態に基づいて説明を行ったが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the contents of the above embodiments, and appropriate modifications can be made without departing from the scope of the present invention.
(実施例1)
 図3に示す機能性溶液供給システムを用いて、レジスト剥離試験を行った。
 被洗浄材料として、KrF用0.8μm厚のレジストに、Asイオンを40keVの強度で1×1016atoms/cmドーズしたイオン注入されたパターンが形成された口径6インチのシリコンウエハを用いた。
 枚葉式洗浄装置の回転台上に前記シリコンウエハを設置し、前記回転台を500rpmの速度で回転させた。
 電解条件は、電解装置入口の液温度を50℃とし、投入電気量は280A、電流密度は0.5A/cmで一定とした。
 分解槽での貯留液容量は約3L、気液分離槽での液容量は約6Lで、枚葉式洗浄装置で排出された硫酸排液は分解槽でほぼ3分滞留させた後、冷却器を通して気液分離槽へ還流して、硫酸排液を再利用した。気液分離槽の硫酸溶液温度は60~70℃程度であった。気液分離槽から枚葉洗浄機へ供給される機能性溶液の供給量は1000mL/min.とした。
Example 1
A resist peeling test was performed using the functional solution supply system shown in FIG.
As a material to be cleaned, a silicon wafer having a diameter of 6 inches, in which an ion-implanted pattern of As ions with an intensity of 40 keV and a dose of 1 × 10 16 atoms / cm 2 was formed in a 0.8 μm thick resist for KrF, was used. .
The silicon wafer was placed on a turntable of a single wafer cleaning apparatus, and the turntable was rotated at a speed of 500 rpm.
The electrolysis conditions were such that the liquid temperature at the electrolyzer inlet was 50 ° C., the amount of electricity charged was 280 A, and the current density was constant at 0.5 A / cm 2 .
The liquid storage capacity in the decomposition tank is about 3L, the liquid volume in the gas-liquid separation tank is about 6L, and the sulfuric acid drainage discharged by the single wafer cleaning device is retained in the decomposition tank for about 3 minutes, and then the cooler Then, the mixture was refluxed to the gas-liquid separation tank, and the sulfuric acid effluent was reused. The sulfuric acid solution temperature in the gas-liquid separation tank was about 60 to 70 ° C. The supply amount of the functional solution supplied from the gas-liquid separation tank to the single wafer cleaning machine is 1000 mL / min. It was.
 9kWの近赤外線ヒーターを厚さ10mmの石英製流路に厚さ方向に赤外線照射するよう配置し、加熱部を構成した。加熱部入口から枚葉式洗浄装置で使用されるまでの液容量は約300mLで、本実施例での通液時間はおよそ18秒である。枚葉洗浄装置のノズル出口から配管長で約1mのところに加熱器を設置し、ノズル出口の液温度を測定して、所定温度になるように加熱部の近赤外線ヒーター出力を制御した。硫酸濃度を50、75、80、85、92、96wt.%とし、枚葉洗浄装置のノズル出口温度を100、130、160、180、190、200℃としたときの、気液分離槽内での酸化性物質濃度、ノズル出口での酸化性物質濃度、シリコンウェハからレジストを完全に剥離除去し、洗浄が完了する時間を測定した。なお処理が完了したウエハは、目視観察によってレジスト残渣の有無を判断した後、電子顕微鏡でレジスト残渣がないことを確認した。 A 9 kW near-infrared heater was placed on a quartz channel having a thickness of 10 mm so as to irradiate with infrared rays in the thickness direction to constitute a heating unit. The liquid volume from the entrance of the heating unit to the use in the single wafer cleaning apparatus is about 300 mL, and the liquid passing time in this example is about 18 seconds. A heater was installed at a pipe length of about 1 m from the nozzle outlet of the single wafer cleaning device, the liquid temperature at the nozzle outlet was measured, and the near-infrared heater output of the heating unit was controlled to reach a predetermined temperature. The sulfuric acid concentration was 50, 75, 80, 85, 92, 96 wt. %, The oxidizing substance concentration in the gas-liquid separation tank when the nozzle outlet temperature of the single wafer cleaning device is 100, 130, 160, 180, 190, 200 ° C., the oxidizing substance concentration at the nozzle outlet, The resist was completely peeled and removed from the silicon wafer, and the time for completing the cleaning was measured. In addition, after the wafer which completed the process judged the presence or absence of the resist residue by visual observation, it confirmed that there was no resist residue with an electron microscope.
 表1は本装置を数時間連続運転し、安定稼働しているときの気液分離槽内での酸化性物質濃度を示している。これより、硫酸濃度が高くなるほど電解で生成する酸化性物質が少なくなっていることがわかる。これは硫酸濃度が50wt.%以上の場合、硫酸濃度が高くなるほど過硫酸の生成効率が低下するためである。表2は各条件におけるノズル出口での過硫酸を含む酸化性物質濃度を示している。硫酸濃度が高くなると、沸点が上昇するためノズル出口の液温度を高くすることができる。しかし、硫酸濃度が高いと電解で生成する酸化性物質濃度が低いため、ノズル出口での濃度も低くなる。よって硫酸濃度及びノズル出口の液温度を高くし過ぎると、電解液中の過硫酸を主体とする酸化性物質がほとんど熱分解で消失する。 Table 1 shows the concentration of oxidizing substances in the gas-liquid separation tank when this apparatus is operated continuously for several hours and is operating stably. From this, it can be seen that the higher the concentration of sulfuric acid, the less the oxidizing substance produced by electrolysis. This is a sulfuric acid concentration of 50 wt. In the case of% or more, the production efficiency of persulfuric acid decreases as the sulfuric acid concentration increases. Table 2 shows the concentration of the oxidizing substance containing persulfuric acid at the nozzle outlet in each condition. As the sulfuric acid concentration increases, the boiling point increases, so that the liquid temperature at the nozzle outlet can be increased. However, when the sulfuric acid concentration is high, the concentration at the nozzle outlet is low because the concentration of the oxidizing substance produced by electrolysis is low. Therefore, if the sulfuric acid concentration and the liquid temperature at the nozzle outlet are too high, the oxidizing substance mainly composed of persulfuric acid in the electrolytic solution disappears by thermal decomposition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3にレジストを完全に剥離するために要した時間を示す。硫酸濃度50wt.%では酸化性物質濃度が高くても剥離できなかった。また、硫酸濃度が高く、酸化性物質が存在してもノズル出口温度が100℃では剥離できなかった。硫酸濃度96wt.%ではノズル出口で過硫酸がほとんど消失しているため、剥離洗浄効果が悪くなった。
 したがって、本発明のシステムで、高濃度のイオン注入したレジストを剥離する場合には、硫酸濃度を75~96wt.%、好ましくは85~92wt.%とし、電子材料を洗う液温度を120~190℃、より好ましくは130~180℃とすることによって、アッシングを行うことなく短時間で剥離洗浄処理が可能になる
Table 3 shows the time required to completely remove the resist. Sulfuric acid concentration 50 wt. % Did not peel even when the oxidizing substance concentration was high. Moreover, even if there was a high sulfuric acid concentration and an oxidizing substance was present, peeling was not possible at a nozzle outlet temperature of 100 ° C. Sulfuric acid concentration 96 wt. %, The persulfuric acid almost disappeared at the nozzle outlet, so the peeling and cleaning effect deteriorated.
Therefore, in the system of the present invention, when stripping a resist implanted with a high concentration, the sulfuric acid concentration is 75 to 96 wt. %, Preferably 85-92 wt. %, And the liquid temperature for washing the electronic material is set to 120 to 190 ° C., more preferably 130 to 180 ° C., thereby enabling peeling cleaning treatment in a short time without ashing.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[参考例1]
 実施例1に示す洗浄システムを用い、硫酸濃度85wt.%、枚葉洗浄機のノズル出口温度を160℃とし、その他は同様の条件で実験を行った。気液分離槽から枚葉洗浄機へ供給される硫酸溶液の流量を350、500、2000、2500mL/min.と変えて剥離洗浄が完了するまでにかかる時間を1分刻みで確認して完了時間を比較した。なお、流量2000、2500mL/min.のときは別途、近赤外線ヒーター18kWの加熱器を設置し、加熱器入口からノズル出口までの液容量約600mLとして温度調整した。表4に、各流量条件におけるノズル出口の過硫酸濃度と剥離洗浄の完了時間を示す。
 これより、被洗浄材に供給する液量が500mL/min.より少なくなると剥離洗浄が完了するまでにより時間がかかってしまうことがわかる。
[Reference Example 1]
Using the cleaning system shown in Example 1, the sulfuric acid concentration was 85 wt. %, The nozzle outlet temperature of the single wafer washer was 160 ° C., and the other conditions were the same. The flow rate of the sulfuric acid solution supplied from the gas-liquid separation tank to the single wafer washer was 350, 500, 2000, 2500 mL / min. The time required to complete the peeling cleaning was confirmed in 1 minute increments, and the completion times were compared. The flow rate was 2000, 2500 mL / min. In that case, a heater of a near infrared heater 18 kW was separately installed, and the temperature was adjusted so that the liquid volume from the heater inlet to the nozzle outlet was about 600 mL. Table 4 shows the concentration of persulfuric acid at the nozzle outlet and the completion time of peeling cleaning under each flow rate condition.
Thus, the amount of liquid supplied to the material to be cleaned is 500 mL / min. It can be seen that when the amount is smaller, it takes more time to complete the peeling cleaning.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実施例2]
 参考例1と同様に、硫酸濃度80、85、92wt.%の3条件について、気液分離槽から枚葉洗浄機へ供給される硫酸溶液の流量を600mL/min.として、加熱器入口からノズル出口までの液容量300mLと600mLとして、ノズル出口温度が160℃になるように加熱し、剥離洗浄が完了するまでにかかる時間を1分刻みで確認して完了時間をそれぞれ比較した。
[Example 2]
As in Reference Example 1, sulfuric acid concentrations of 80, 85, and 92 wt. %, The flow rate of the sulfuric acid solution supplied from the gas-liquid separation tank to the single wafer washer was 600 mL / min. Assuming that the liquid volume from the heater inlet to the nozzle outlet is 300 mL and 600 mL, the nozzle outlet temperature is heated to 160 ° C., and the time it takes to complete the peeling cleaning is confirmed in 1 minute increments. Each was compared.
 図7に、実施例2に使用した加熱器とノズル出口までの概略図を示す。加熱器を出てから洗浄部までチューブで供給される。本発明では加熱器を排出してから洗浄部まで数十秒程度(1分未満)で到達するように設計される。
 昇温後の温度は加熱器内や加熱器の後段のチューブ内で硫酸が沸騰しない温度であればよいので、加熱温度の上限値は沸点未満とする。
 よってチューブの材質としては高い耐熱性、耐食性を持つものを使用する必要があり、例えばPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)などを好ましく用いることができる。
 なお、ここで使用した装置は加熱器からノズル出口までを示す一例であり、加熱器入口から被洗浄材に使用されるまでの滞留時間が40秒以内(好ましくは20秒以内)であれば必要な洗浄性能は維持されるので、加熱器の形状やチューブのサイズおよび全長などは限定されるものではない。
FIG. 7 shows a schematic view of the heater used in Example 2 and the nozzle outlet. After leaving the heater, the tube is supplied to the cleaning section. In the present invention, the heater is designed to reach the cleaning section in about several tens of seconds (less than 1 minute).
Since the temperature after the temperature rise may be a temperature at which sulfuric acid does not boil in the heater or the tube at the rear stage of the heater, the upper limit value of the heating temperature is less than the boiling point.
Therefore, it is necessary to use a material having high heat resistance and corrosion resistance as a material of the tube. For example, PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) can be preferably used.
The apparatus used here is an example showing from the heater to the nozzle outlet, and it is necessary if the residence time from the heater inlet to use for the material to be cleaned is within 40 seconds (preferably within 20 seconds). Since the cleaning performance is maintained, the shape of the heater, the size and the total length of the tube are not limited.
 図7の装置においては、加熱器出口からノズル出口に至るまで、チューブT1、T2、T3で構成されているとすると、加熱器の容量、加熱器に導入する硫酸溶液の流量、各チューブT1、T2、T3の内径、長さによって、加熱器入口からノズル出口、つまり洗浄部までの滞留時間を算出することができる。なお、図中23は、温度センサである。
 以下に、その例を説明する。
例1)図7(a)
  硫酸溶液流量 600mL/min
  加熱器容量    250mL
  T1 内径3/8インチ、全長300mm
  T2 内径1/4インチ、全長700mm
  T3 内径1/4インチ、全長200mm
 滞留時間:30秒
例2)図7(b)
  硫酸溶液流量 600mL/min
  加熱器容量    500mL
  T1 内径3/8インチ、全長1000mm
  T2 内径1/4インチ、全長700mm
  T3 内径1/4インチ、全長200mm
 滞留時間:1分
In the apparatus of FIG. 7, assuming that the tubes T1, T2, and T3 are configured from the heater outlet to the nozzle outlet, the capacity of the heater, the flow rate of the sulfuric acid solution introduced into the heater, each tube T1, The residence time from the heater inlet to the nozzle outlet, that is, the cleaning section can be calculated by the inner diameters and lengths of T2 and T3. In the figure, reference numeral 23 denotes a temperature sensor.
An example will be described below.
Example 1) FIG. 7 (a)
Sulfuric acid solution flow rate 600mL / min
Heater capacity 250mL
T1 inside diameter 3/8 inch, total length 300mm
T2 inner diameter 1/4 inch, total length 700mm
T3 inner diameter 1/4 inch, total length 200mm
Residence time: 30 seconds Example 2) Fig. 7 (b)
Sulfuric acid solution flow rate 600mL / min
Heater capacity 500mL
T1 inside diameter 3/8 inch, total length 1000mm
T2 inner diameter 1/4 inch, total length 700mm
T3 inner diameter 1/4 inch, total length 200mm
Residence time: 1 minute
 表5に、各硫酸濃度条件における加熱器滞留時間、ノズル出口の過硫酸濃度、および剥離洗浄の完了時間を示す。
 加熱器入口からノズル出口、つまり洗浄部までの滞留時間が1分の場合はどの条件でも過硫酸が消失し、20分以内で剥離が完了しなかった。従って加熱器での滞留時間や加熱器出口からノズル出口つまり洗浄部に送液されるまでの時間をできるだけ短くして過硫酸が必要量残留している間に洗浄することが必要である。
Table 5 shows the heater residence time, the persulfuric acid concentration at the nozzle outlet, and the completion time of the peeling cleaning in each sulfuric acid concentration condition.
When the residence time from the heater inlet to the nozzle outlet, that is, the washing section was 1 minute, the persulfuric acid disappeared under any condition, and the peeling was not completed within 20 minutes. Therefore, it is necessary to perform cleaning while the persulfuric acid remains in a necessary amount by shortening the residence time in the heater and the time from the heater outlet to the nozzle outlet, that is, the liquid feeding to the cleaning section.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1  電解装置
 2  電解装置
10  気液分離槽
10a 気液分離槽
10b 気液分離槽
11  循環ライン
11a 循環ライン
11b 循環ライン
11c 送液ライン
11d 返流ライン
12  循環ポンプ
12a 循環ポンプ
12b 循環ポンプ
13  冷却器
13a 冷却器
20  供給ライン
21  供給ポンプ
22  加熱器
22a 流路
22b 近赤外線ヒーター
30  還流ライン
31  分解槽
32  送液ポンプ
33  フィルタ
34  冷却器
40  気液分離槽
40a 気液分離槽
40b 気液分離槽
50  貯留槽
50a 貯留槽
50b 貯留槽
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrolyzer 10 Gas-liquid separation tank 10a Gas-liquid separation tank 10b Gas-liquid separation tank 11 Circulation line 11a Circulation line 11b Circulation line 11c Liquid feeding line 11d Return line 12 Circulation pump 12a Circulation pump 12b Circulation pump 13 Cooler 13a cooler 20 supply line 21 supply pump 22 heater 22a flow path 22b near infrared heater 30 reflux line 31 decomposition tank 32 liquid feed pump 33 filter 34 cooler 40 gas-liquid separation tank 40a gas-liquid separation tank 40b gas-liquid separation tank 50 Reservoir 50a Reservoir 50b Reservoir

Claims (13)

  1.  硫酸濃度75~96質量%の硫酸溶液を電解して過硫酸を生成する電解部と、電解された硫酸溶液を気液分離する気液分離部と、前記気液分離部で気液分離された硫酸溶液の一部を前記電解部を介して前記気液分離部に循環させる循環ラインと、前記気液分離部で気液分離された硫酸溶液の一部を使用側に供給する供給ラインと、前記供給ラインに介設され、前記硫酸溶液を120~190℃に加熱して機能性溶液とする加熱部とを備え、前記硫酸溶液が該加熱部の入口に導入されて前記使用側で使用に至るまでの通液時間が1分未満となるように設定されていることを特徴とする機能性溶液供給システム。 An electrolysis unit for electrolyzing a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass to generate persulfuric acid, a gas-liquid separation unit for gas-liquid separation of the electrolyzed sulfuric acid solution, and gas-liquid separation by the gas-liquid separation unit A circulation line for circulating a part of the sulfuric acid solution to the gas-liquid separation part via the electrolysis part, a supply line for supplying a part of the sulfuric acid solution separated by the gas-liquid separation part to the use side, A heating unit interposed in the supply line to heat the sulfuric acid solution to 120 to 190 ° C. to form a functional solution, and the sulfuric acid solution is introduced into the inlet of the heating unit and used on the use side A functional solution supply system, characterized in that it is set so that the liquid passing time is less than 1 minute.
  2.  前記電解部は、無隔膜型で構成されてことを特徴とする請求項1記載の機能性溶液供給システム。 2. The functional solution supply system according to claim 1, wherein the electrolysis unit is configured as a non-diaphragm type.
  3.  前記電解部は、隔膜型で構成されており、該電解部の陽極側に前記気液分離部が接続されているとともに、前記電解部の陰極側に陰極側気液分離部が接続されていることを特徴とする請求項1記載の機能性溶液供給システム。 The electrolysis unit is configured as a diaphragm type, and the gas-liquid separation unit is connected to the anode side of the electrolysis unit, and the cathode-side gas-liquid separation unit is connected to the cathode side of the electrolysis unit. The functional solution supply system according to claim 1.
  4.  前記気液分離部は、硫酸溶液を貯留する貯留部を兼ねているものであることを特徴とする請求項1~3のいずれかに記載の機能性溶液供給システム。 4. The functional solution supply system according to claim 1, wherein the gas-liquid separation unit also serves as a storage unit for storing a sulfuric acid solution.
  5.  前記気液分離部で気液分離された前記硫酸溶液を貯留する貯留部を備えており、前記循環ラインは、該貯留部に貯留された前記硫酸溶液の前記循環を行うものであることを特徴とする請求項1~3のいずれかに記載の機能性溶液供給システム。 A storage unit that stores the sulfuric acid solution that has been gas-liquid separated by the gas-liquid separation unit is provided, and the circulation line performs the circulation of the sulfuric acid solution stored in the storage unit. The functional solution supply system according to any one of claims 1 to 3.
  6.  前記供給ラインは、前記貯留部に貯留された前記硫酸溶液の前記供給を行うものであることを特徴とする請求項5記載の機能性溶液供給システム。 The functional solution supply system according to claim 5, wherein the supply line is configured to supply the sulfuric acid solution stored in the storage unit.
  7.  前記使用側において使用後、排出される硫酸排液を前記気液分離部および前記電解部のいずれか一方または両方に還流させる還流ラインと、該還流ラインに介設されて前記硫酸排液を冷却する冷却部と、を備えることを特徴とする請求項1~4のいずれかに記載の機能性溶液供給システム。 After use on the use side, the sulfuric acid drainage discharged after the use is refluxed to one or both of the gas-liquid separation unit and the electrolysis unit, and the sulfuric acid drainage is cooled by being interposed in the reflux line. The functional solution supply system according to any one of claims 1 to 4, further comprising:
  8.  前記使用側において使用後、排出される硫酸排液を前記貯留部および前記電解部のいずれか一方または両方に還流させる還流ラインと、該還流ラインに介設されて前記硫酸排液を冷却する冷却部と、を備えることを特徴とする請求項5または6に記載の機能性溶液供給システム。 After use on the usage side, a reflux line for refluxing the discharged sulfuric acid drainage to one or both of the storage unit and the electrolysis unit, and cooling for interposing the cooling line to cool the sulfuric acid drainage A functional solution supply system according to claim 5 or 6.
  9.  前記還流ラインの前記冷却部上流側に、前記硫酸排液を滞留させて、前記硫酸排液に含まれる残留有機物の分解を図る分解部が介設されていることを特徴とする請求項7または8に記載の機能性溶液供給システム。 The decomposition part which makes the said sulfuric acid drainage stay and the decomposition | disassembly of the residual organic substance contained in the said sulfuric acid drainage is interposed in the said cooling part upstream of the said reflux line, or characterized by the above-mentioned. 9. The functional solution supply system according to 8.
  10.  前記加熱部の熱源が近赤外線ヒーターであることを特徴とする請求項1~9のいずれかに記載の機能性溶液供給システム。 10. The functional solution supply system according to claim 1, wherein a heat source of the heating unit is a near infrared heater.
  11.  前記近赤外線ヒーターは、前記硫酸溶液を通液する厚さ10mm以下の流路に対して厚さ方向に近赤外線を照射して輻射熱により前記硫酸溶液を加熱するように配置されることを特徴とする請求項10記載の機能性溶液供給システム。 The near-infrared heater is disposed so as to irradiate near-infrared rays in a thickness direction to a flow path having a thickness of 10 mm or less through which the sulfuric acid solution is passed and to heat the sulfuric acid solution by radiant heat. The functional solution supply system according to claim 10.
  12.  前記使用側が枚葉式洗浄システムであることを特徴とする請求項1~11のいずれかに記載の機能性溶液供給システム。 12. The functional solution supply system according to claim 1, wherein the use side is a single wafer cleaning system.
  13.  硫酸濃度75~96質量%の硫酸溶液を気液分離しつつ循環させながら電解を行い、電解された硫酸溶液の一部を取り出して、120~190℃の温度に加熱した後、該加熱の開始後、使用に至るまでの時間が1分未満となるように、使用側に供給することを特徴とする機能性溶液供給方法。 Electrolysis is carried out while circulating a sulfuric acid solution having a sulfuric acid concentration of 75 to 96% by mass while being separated into gas and liquid. A part of the electrolyzed sulfuric acid solution is taken out and heated to a temperature of 120 to 190 ° C., and then the heating is started. Thereafter, the functional solution supply method is characterized in that it is supplied to the use side so that the time until use is less than 1 minute.
PCT/JP2010/054440 2009-03-24 2010-03-16 Supply system and supply method for functional solution WO2010110125A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117024202A KR101323193B1 (en) 2009-03-24 2010-03-16 Supply system and supply method for functional soulution
US13/259,848 US20130092553A1 (en) 2009-03-24 2010-03-16 Supply system and supply method for functional solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-071718 2009-03-24
JP2009071718 2009-03-24
JP2010040905A JP5660279B2 (en) 2009-03-24 2010-02-25 Functional solution supply system and supply method
JP2010-040905 2010-02-25

Publications (1)

Publication Number Publication Date
WO2010110125A1 true WO2010110125A1 (en) 2010-09-30

Family

ID=42780817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054440 WO2010110125A1 (en) 2009-03-24 2010-03-16 Supply system and supply method for functional solution

Country Status (5)

Country Link
US (1) US20130092553A1 (en)
JP (1) JP5660279B2 (en)
KR (1) KR101323193B1 (en)
TW (1) TWI438305B (en)
WO (1) WO2010110125A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319875A1 (en) * 2011-02-28 2013-12-05 Kurita Water Industries Ltd. Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
US20150262811A1 (en) * 2012-08-22 2015-09-17 Kurita Water Industries Ltd. Method and system for cleaning semiconductor substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850320B2 (en) * 2011-12-26 2016-02-03 株式会社豊田中央研究所 Surface-coated metal nanoparticles and method for producing the same
JP5792094B2 (en) * 2012-02-24 2015-10-07 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and recording medium on which computer program for executing liquid processing method is recorded
KR102614888B1 (en) * 2018-06-13 2023-12-19 도쿄엘렉트론가부시키가이샤 Substrate processing method and substrate processing device
JP7473401B2 (en) * 2020-06-03 2024-04-23 株式会社ディスコ Processing water supply system
KR102657673B1 (en) * 2021-12-27 2024-04-17 세메스 주식회사 Apparatus and method for treating a substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2006150320A (en) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd System for thermally decomposing drainage
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2006291330A (en) * 2005-04-14 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Hydrogen production method and apparatus
JP2007262532A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Electrolytic gas processing apparatus and sulfuric acid recycle type cleaning system
JP2008019507A (en) * 2006-06-16 2008-01-31 Toshiba Corp Cleaning system and cleaning method
JP2008095144A (en) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd Method and apparatus for forming high-temperature high concentration persulfuric acid solution
JP2008111184A (en) * 2006-10-04 2008-05-15 Kurita Water Ind Ltd Persulfuric acid supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198080A (en) * 1990-06-08 1993-03-30 Tenneco Canada Inc. Electrochemical processing of aqueous solutions
JP2914094B2 (en) * 1993-05-19 1999-06-28 住友化学工業株式会社 How to heat sulfuric acid
JP4462146B2 (en) * 2004-09-17 2010-05-12 栗田工業株式会社 Sulfuric acid recycling type cleaning system and sulfuric acid recycling type persulfuric acid supply device
JP2007059603A (en) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP4412301B2 (en) * 2006-03-29 2010-02-10 栗田工業株式会社 Cleaning system
TWI351446B (en) * 2006-06-16 2011-11-01 Toshiba Kk Cleaning system and cleaning method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2006150320A (en) * 2004-12-01 2006-06-15 Kurita Water Ind Ltd System for thermally decomposing drainage
JP2006278915A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Sulfuric acid recycling type cleaning system
JP2006291330A (en) * 2005-04-14 2006-10-26 Nippon Telegr & Teleph Corp <Ntt> Hydrogen production method and apparatus
JP2007262532A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Electrolytic gas processing apparatus and sulfuric acid recycle type cleaning system
JP2008019507A (en) * 2006-06-16 2008-01-31 Toshiba Corp Cleaning system and cleaning method
JP2008111184A (en) * 2006-10-04 2008-05-15 Kurita Water Ind Ltd Persulfuric acid supply system
JP2008095144A (en) * 2006-10-11 2008-04-24 Kurita Water Ind Ltd Method and apparatus for forming high-temperature high concentration persulfuric acid solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319875A1 (en) * 2011-02-28 2013-12-05 Kurita Water Industries Ltd. Sulfuric acid electrolysis method and sulfuric acid electrolysis apparatus
US20150262811A1 (en) * 2012-08-22 2015-09-17 Kurita Water Industries Ltd. Method and system for cleaning semiconductor substrate
US10032623B2 (en) * 2012-08-22 2018-07-24 Kurita Water Industries Ltd. Method and system for cleaning semiconductor substrate

Also Published As

Publication number Publication date
KR101323193B1 (en) 2013-10-30
KR20120001761A (en) 2012-01-04
US20130092553A1 (en) 2013-04-18
TW201043734A (en) 2010-12-16
JP5660279B2 (en) 2015-01-28
TWI438305B (en) 2014-05-21
JP2010248618A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5660279B2 (en) Functional solution supply system and supply method
WO2011114885A1 (en) Method of cleaning electronic material and cleaning system
JP5668914B2 (en) Cleaning method and cleaning system
JP5761521B2 (en) Cleaning system and cleaning method
JP5729571B2 (en) Metal gate semiconductor cleaning method
WO2014046229A1 (en) Cleaning method and cleaning device
JP5939373B2 (en) Electronic material cleaning method and cleaning apparatus
JP2007059603A (en) Sulfuric acid recycling type cleaning system
JP2012195524A (en) Electronic material cleaning method and electronic material cleaning device
JP4600666B2 (en) Sulfuric acid recycle type single wafer cleaning system
KR101676693B1 (en) Washing system and washing method
JP2007266477A (en) Semiconductor substrate cleaning system
JP5024521B2 (en) Method and apparatus for producing high-temperature and high-concentration persulfuric acid solution
JP5126478B2 (en) Cleaning liquid manufacturing method, cleaning liquid supply apparatus and cleaning system
JP2016167560A (en) Production method of electrolytic sulfuric acid solution and production apparatus of electrolytic sulfuric acid solution
JP2007103518A (en) Cleaning equipment and method
JP2005013854A (en) Removing/washing method, and removing/washing device
JP4557167B2 (en) Sulfuric acid recycling cleaning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024202

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13259848

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10755923

Country of ref document: EP

Kind code of ref document: A1