WO2010109029A1 - Escáner biométrico tridimensional - Google Patents

Escáner biométrico tridimensional Download PDF

Info

Publication number
WO2010109029A1
WO2010109029A1 PCT/ES2009/070360 ES2009070360W WO2010109029A1 WO 2010109029 A1 WO2010109029 A1 WO 2010109029A1 ES 2009070360 W ES2009070360 W ES 2009070360W WO 2010109029 A1 WO2010109029 A1 WO 2010109029A1
Authority
WO
WIPO (PCT)
Prior art keywords
biometric
image
map
depth
dimensional
Prior art date
Application number
PCT/ES2009/070360
Other languages
English (en)
French (fr)
Inventor
Nicolás ANTEQUERA DIAZ
José SANCHEZ DEL RIO SAEZ
Original Assignee
Hanscan Ip B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanscan Ip B.V. filed Critical Hanscan Ip B.V.
Priority to EP09842118A priority Critical patent/EP2413263A4/en
Publication of WO2010109029A1 publication Critical patent/WO2010109029A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/23Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation

Definitions

  • the present invention is related to a three-dimensional biometric scanner and its method of operation, where it is possible to obtain the structure of veins in a three-dimensional way by means of stereoscopic images of any of the fingers of the hand, of the palm of the hand or of the wrist , in such a way as to ensure that the user is a living being and identify him.
  • Biometric scanners are known that are based on the acquisition of a vein pattern (the biometric element) of a biometric receiver (palm of the hand, some of the fingers or wrist of the person), using as fundamental elements the emitters of near-infrared radiation, such as light-emitting diodes with emission wavelengths belonging to the near-infrared of the electromagnetic spectrum), near-infrared radiation receiving elements that allow detecting said radiation or obtaining the image corresponding to the baseline map of said receiver biometric, also with absorption bands centered on the near infrared, and the biological and biometric receiver (palm, finger or wrist) that interacts with the infrared radiation emitted by the light emitting source.
  • the emitters of near-infrared radiation such as light-emitting diodes with emission wavelengths belonging to the near-infrared of the electromagnetic spectrum
  • near-infrared radiation receiving elements that allow detecting said radiation or obtaining the image corresponding to the baseline map of said receiver biometric, also with absorption bands centered
  • the near infrared radiation emitted by the light sources is, in part, reflected and scattered by the biometric receiver and, in part, absorbed by the hemoglobin.
  • This radiation, reflected and scattered carries the information of the 2D vascular map corresponding to the vein structure of the user's biological receptor and is detected, in turn, by a detection system with an absorption band similar to that of the source light emitting, allowing to obtain an image of said vein pattern.
  • the use of near infrared radiation as a personal identification mechanism for the detection of the blood capillary map of the palm of the hand, finger or wrist is a general characteristic of biometrics based on the spectroscopic interaction of electromagnetic radiation with the epidermis of The hand, finger or wrist and which allows the user in question to be recognized through said biometric element.
  • Obtaining the map of 3D veins through this mechanism is a global property that allows information much greater than that of 2D, since it refers to the arrangement also in depth of the veins of the biometric element in question, which is its Once a biometric data.
  • the present invention aims to have a compact and low-cost stereoscopic optical biometric scanner, usable in biometric sensors of blood capillaries, such as those in the palm of the hand, wrist or finger of the user in question , both reflection (palm of the hand and wrist) and transmission (finger and wrist).
  • a biometric scanner has been developed that considerably increases the amount of information to be processed, and with it, the reliability in the identification, by obtaining a plurality of two-dimensional vascular maps of a Biometric receiver, such as the palm of the hand, the wrist or the fingers, of different depths and the same subject, forming a three-dimensional image from the conjunction of said planes, thanks to means suitable for it.
  • the basis of the present invention resides in the fact that the biometric receptor veins are located in the space within the tissue, with a characteristic 3D distribution and branching within it. Since the penetration distance of the electromagnetic radiation in the human body depends on the wavelength of the incident radiation, light emitting sources of different wavelengths centered on the near IR are used to obtain the depth of the different planes Image depending on the type of emission spectrum of the source. The depth of the pixels of each image plane are obtained by means of stereoscopic vision techniques, by means of two cameras positioned at the same height and with a fixed distance between them. The final result is the image of a three-dimensional map, in the means configured for the three-dimensional reconstruction of the image, of the vascular map of the biological receptor, joining the different image planes (each with its characteristic depth) that have been obtained for each wavelength used
  • the proposed objectives are simultaneously achieved in terms of improving the reliability in the identification and detection of life for a specific person.
  • emitting elements based on LEDs or low-power semiconductor lasers, photodiodes such as receivers and CCD cameras or CMOS sensors with spectrum of absorption centered on the near IR. All these elements are easily available at a relatively low cost.
  • the operation of the three-dimensional biometric scanner is as follows: Because the vein maps obtained with a CCD or CMOS type camera with an absorption spectrum centered on the near IR are two-dimensional flat images and have a risk, although not high, of power be falsified, two cameras with a high absorption efficiency in the near IR will be placed that allow to obtain said 3D vein maps, by means of the reconstruction of the image planes obtained for each wavelength used. These cameras receive the near IR radiation, emitted by the light sources (LED or low power lasers) that is reflected or transmitted by the biological receiver and are separated at a fixed distance. Each image plane received depends on the wavelength used in the emission for each set of LEDs and has a certain depth.
  • This depth can be known from this distance, so that, if the global coordinate system is matched with the camera's coordinate system, the XY plane of the image is aligned with the XY plane of the coordinate system global, so that the Z coordinate of a three-dimensional point is the same for both coordinate systems. It is precisely this coordinate Z Ia of interest for each image plane obtained for each emission wavelength of the light sources. In this calculation it is also necessary to know the distance of the baseline and the focal length. The correction of the aberration by means of a matrix of retro-projection (calibration of the cameras) is necessary so as not to make mistakes in the calculation of the depth.
  • both cameras receive a nearby IR radiation emitted by the light sources that are transmitted through the finger, or that are reflects in the palm of the user's hand or wrist. Therefore, its position depends on whether the image sensor (the camera) is reflection or transmission, although the distance between them must be kept constant.
  • the two cameras must be located just below it, at the same level of the light sources.
  • the two cameras must be placed opposite to the light sources, with the biometric receiver between said sources and cameras.
  • the two cameras must be placed at the same height than light sources. The 3D image is reconstructed from the planes with different depths obtained.
  • each of the image planes is practically the same for the pixels of each plane.
  • the radiation emission sources are LED, there is no longer an emission peak but an absorption band, so that for each image plane, the pixels have different depths.
  • Each group of radiation sources of a determined wavelength emits strobe, with a period of emission.
  • the pixels of each of the planes are combined with the same depth, forming a stereoscopic view of the blood capillary map.
  • the device thus described solves the technical problems raised in the state of the art.
  • the vein map is hidden and belongs to each user. It is only possible forgery due to theft or theft of the device.
  • the fact of obtaining a Z coordinate that indicates the depth at which the blood capillaries are located raises the safety of the vein sensors to a high level, very difficult to be falsified by any "hacker".
  • FIG. 1 shows a schematic view of the three-dimensional biometric scanner object of the present invention, applied on the palm of the hand, including an enlarged image of the lighting plate where the cameras are located.
  • FIG. 2 shows a schematic view of the three-dimensional biometric scanner object of the present invention, applied on a single finger.
  • FIG. 3 shows a schematic view of the three-dimensional biometric scanner object of the present invention, applied on the wrist of the hand.
  • FIG. 4 graphically shows the obtaining of the stereoscopic image to form the map of veins, the main objective of the scanner of the present invention.
  • the three-dimensional biometric scanner (1) for the capillary map of the palm of the hand (2) comprises two image sensors (5,6) configured to obtain a stereoscopic view of a vascular map and where For each image, corresponding to each wavelength, the depth of each point is known for said plane.
  • a 3D map of the veins of the palm of the hand is achieved.
  • a fixed distance (d) between the image sensors (5,6) is necessary in order to calculate the depth component Z of the biometric recognition element.
  • the image sensors (5,6) are integrated in a lighting plate (3) comprising a plurality of radiation emitting means in the near IR (7) in order to thus be able to extract the vein pattern by reflection of said radiation in the characteristic biometric element.
  • the homogeneous illumination pattern in the biometric element is easier to correct, since the quasi-chromatic beam has an angular aperture between 20 Q and 80 Q , much larger than in the case of lasers .
  • the depth of the pixels of each quasi-monochromatic image varies (z, ⁇ ⁇ z,) due to the emission band of the LEDs ( ⁇ , ⁇ ⁇ ,) with respect to the monochromatic line of the lasers.
  • diffusers are needed that open the beam to correct the homogeneous illumination and the monochromatic image patterns that have pixels with a similar depth (A 1 Z 1 ).
  • Figure 2 shows the present invention for the case where the measurement is on the finger (8).
  • two image sensors (9,10) placed at a fixed distance between them are necessary to obtain a 3D image of the capillary map (1 1) of the finger (8).
  • the near infrared radiation emitted by LED (or lasers where appropriate) (12) with emission band centered on the near IR is detected by these image sensors (9,10) that have an absorption band that influences to the emission of light sources (12).
  • These sources can also be used as presence and / or life detectors, depending on the reflection and transmission pattern of the nearby IR radiation that interacts with the finger (8) and which in turn is detected by the photo receivers (120) that are positioned next to them.
  • the nearby IR radiation is absorbed by the hemoglobin of the blood and transmitted through the finger (8), so that a 3D image of the capillary map thereof is obtained by means of the two image sensors (9,10) a from the composition of the different images obtained for each emission wavelength of the light source groups (12).
  • Figure 3 shows a view of the scanner object of the invention in an embodiment for reading the capillary map (17) of the user's wrist (13).
  • An array of light sources (14) that can be LEDs or low power lasers; emits radiation in the near IR and interacts with the biometric element (13), in this case
  • Ia doll reflecting or transmitting through it.
  • two image sensors (15,16) are positioned that absorb the IR radiation and that allows composing the three-dimensional capillary map (17) of the wrist (13) by means of image comparison.
  • the stereoscopic image implies obtaining two separate images of the same object (20,21) corresponding to a single point w (23) of the three-dimensional space.
  • the distance (d) between the centers of the two lenses (22) is the so-called baseline and must be constant.
  • the coordinates (X, Y, Z) of point w (23) that have the coordinates (xi, yi) and (x 2 , y 2 ) must be found in the two images (20,21).
  • f is the center of the lens with the center of the plane of the image at the origin.
  • the intensity I 0 and ⁇ is the wavelength of the incident radiation
  • C HB ( ⁇ ) and S HB (A) is the absorption coefficient of the wavelength depending on each derivative of Hb (or biological components of the material with which the electromagnetic radiation interacts)
  • Z describes the depth of penetration. Therefore, this penetration depth shows a logarithmic variation with the quotient of input and output intensities, being directly proportional to the wavelength of the interaction radiation.
  • the penetration depth (z,) is similar for all points of the hand (depends on the emission band) and is reflected carrying the information of the existing vein pattern to where it has penetrated.
  • This penetration depth has been calculated using the vision algorithm already mentioned, thanks to the two cameras that allow stereoscopic vision.
  • other groups of wavelengths other images with different depths are obtained, which are composed in the media for this purpose, forming the 3D image of the required vein pattern.
  • the light sources begin to emit electromagnetic radiation in a strobe and sequential way, first a group with a certain wavelength and then others with different ones.
  • the two cameras positioned as human eyes to achieve the steroscopic vision, capture the map corresponding to the interaction radiation (reflection or transmission, along with spreading).
  • a processing unit extracts the map of veins and their depth, labeling them with their corresponding emission wavelength. The process is repeated as many times as emission wavelengths are in the lighting system.
  • the vein maps are combined according to the depth of each of the veins extracted from the different maps, thus obtaining a three-dimensional capillary map. Based on the identification process, it is generally tried to be fast and always safe, so that the random number of emission wavelengths are the ones that work and not all, therefore, the comparison process is performed only with those maps of labeled veins
  • UV-A emission radiation In the case of radiation sources of different wavelengths, quasi-monochromatic (LED), it is possible to use UV-A emission radiation without overheating the biometric system. In this way, biological properties of human epithelial tissue are studied, it is enough that the image reception system (CCD or CMOS sensor) is sensitive to UV-A of the electromagnetic spectrum.
  • CCD or CMOS sensor CCD or CMOS sensor
  • the procedure is similar to that described in the previous paragraph, except that the wavelengths used are shorter than the previous ones (300-400 nm) and the more they are used, the more biological information (reflection, absorption, transmission of human tissue and of the blood components) depending on the depth of penetration are obtained.
  • biometric sensors also have additional safety features.
  • two crossed linear polarizing sheets can be used in the visible range (or in the near IR, although the system becomes more expensive), and that they place, like the optical filters, on the objective of the camera. If the polarizers are also placed on the light sources, with the polarization axes crossed to those of the previous ones, the receiver only captures the radiation that is reflected or transmitted, has varied its initial polarization state when interacting with the biometric element.
  • pulse oximeters based on measuring the time and amplitude in which the intensity of the light passes through the tissue as, for example, through the tip of the finger, using red wavelengths (630nm) and near IR (940nm) and the Bert-Lambert law already commented.
  • the lighting control process for the subsequent capture of the vein maps of the palm of the user's hand the pulse oximeter detects the concentration of oxygen saturated in blood and the rhythm of the blood pulse. If the values detected they are outside the human characteristic threshold, the sensor will not proceed to capture the vein maps of the biometric receiver in question and will indicate to the user to place the hand correctly on the sensor.
  • electrical properties can be measured, such as the impedance and capacitance of the hand tissue by means of electrodes, with an alternating current of 800 ⁇ A and 5OkHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Input (AREA)
  • Collating Specific Patterns (AREA)

Abstract

Escáner biométrico tridimensional (1) para el mapa capilar de la palma de la mano (2) comprende dos sensores de imagen (5,6) configurados para obtener una visión estereoscópica de un mapa vascular y donde, por cada imagen, correspondiente a cada longitud de onda, se conocen para dicho plano la profundidad de cada punto. Conjuntando las N imágenes correspondientes a las N longitudes de onda de emisión, se consigue un mapa 3D de las venas de la palma de la mano. Para conseguir una imagen estereoscópica es necesaria una distancia fija (d) entre los sensores de imagen (5,6) para poder calcular la componente Z de profundidad del elemento biométrico de reconocimiento.

Description

ESCÁNER BIOMÉTRICO TRIDIMENSIONAL
La presente invención está referida a un escáner biométrico tridimensional y a su método de operación, en donde se permite obtener Ia estructura de venas de forma tridimensional mediante imágenes estereoscópicas de cualquiera de los dedos de Ia mano, de Ia palma de Ia mano o de Ia muñeca, de tal forma que se consiga asegurar que el usuario es un ser vivo e identificarlo.
Su uso está indicado en el control de accesos, Ia seguridad de los medios de pago, el control de tiempo de presencia de empleados y, en general, en todo aquel campo que requiera una identificación biométrica de personas.
ANTECEDENTES DE LA INVENCIÓN
Son conocidos los escáneres biométricos que se basan en Ia adquisición de un patrón de venas (el elemento biométrico) de un receptor biométrico (palma de Ia mano, alguno de los dedos o Ia muñeca de Ia persona), utilizando como elementos fundamentales los emisores de radiación en el infrarrojo cercano, como los diodos emisores de luz con longitud de onda de emisión perteneciente al infrarrojo cercano del espectro electromagnético), elementos receptores de radiación cercana al infrarrojo que permiten detectar dicha radiación u obtener Ia imagen correspondiente al mapa bascular de dicho receptor biométrico, también con bandas de absorción centradas en el infrarrojo cercano, y el receptor biológico y biométrico (palma, dedo o muñeca) que interacciona con Ia radiación infrarroja emitida por Ia fuente emisora de luz. Así pues, Ia radiación infrarroja cercana emitida por las fuentes de luz es, en parte, reflejada y esparcida por el receptor biométrico y, en parte, absorbida por Ia hemoglobina. Esta radiación, reflejada y esparcida, porta Ia información del mapa vascular en 2D correspondiente a Ia estructura de venas del receptor biológico del usuario y es detectada, a su vez, por un sistema de detección con una banda de absorción similar a Ia de Ia fuente emisora de luz, permitiendo obtener una imagen de dicho patrón de venas.
Ejemplo de ello encontramos en el documento US20070098223 que describe un escáner para Ia identificación biométrica basada en Ia lectura del patrón de venas de Ia palma de Ia mano utilizando Ia radiación cercana al infrarrojo. Otro documento es el US6813010 que muestra como innovación un detector de proximidad del dedo para optimizar Ia intensidad de Ia luz que llega al dedo, de tal forma que se obtenga un patrón de venas más claro. Otro caso es el mostrado en US200701 16330 donde además del identificador de venas, permite adicionalmente detectar Ia presencia de tejido vivo mediante el patrón captado de Ia rugosidad de las capas internas de Ia piel que están recubiertas de tejido epidérmico.
En ninguno de los casos anteriormente mencionados se describen dispositivos y/o métodos que permitan establecer un mapa tridimensional del patrón de venas.
El uso de Ia radiación infrarroja cercana como mecanismo de identificación personal para Ia detección del mapa de capilares sanguíneos de Ia palma de Ia mano, dedo o muñeca es una característica general de Ia biometría basada en Ia interacción espectroscópica de Ia radiación electromagnética con Ia epidermis de Ia mano, dedo o muñeca y que permite reconocer al usuario en cuestión a través de dicho elemento biométrico. La obtención del mapa de venas 3D mediante este mecanismo se trata de una propiedad global que permite una información mucho mayor que Ia de 2D, ya que se refiere a Ia disposición también en profundidad de las venas del elemento biométrico en cuestión, que es a su vez un dato biométrico.
Actualmente son contados los sistemas presentes en el mercado que fabriquen sensores similares a los anteriormente descritos de lectura bidimensional de los mapas capilares de los elementos biométricos correspondientes, ya que los problemas planteados son muy serios. Entre los mismos es posible citar el coste elevado, que Io hace inviable en determinados entornos (control de accesos, por ejemplo), una posibilidad de que el patrón de venas 2D sea falsificado y una integración muy difícil con microcontroladores de alta gama.
Hay sistemas que solucionan estos problemas y captan mapas tridimensionales de los capilares sanguíneos, son también muy pocos los que se presentan en el mercado y ninguno de ellos se utilizan como identificadores biométricos, sino fines médicos, donde el coste y el tamaño tienen una importancia relativa. Así tenemos el documento
US2001 /027273 que describe un aparato para detectar Ia reflexión de radiación electromagnética incidente en un tejido biológico que permite visualizar los vasos sanguíneos. Del mismo modo, en el estado de Ia técnica se describe un método y sistema para adquirir y procesar datos biométricos como el US2005/271258. No obstante, en ambos casos, los problemas que presentan radican en el alto coste y Ia escasa información sobre Ia profundidad de los patrones de venas, ya que no emplea una visión estereoscópica en sentido estricto, sino diferentes imágenes de iluminación recogidas con una misma cámara que se sitúa de forma fija y no dos separadas a Ia distancia característica necesaria para obtener una imagen tridimensional.
Como es conocido, las tasas de error en Ia identificación de personas son desfavorables en comparación con otros sistemas biométrico, como los basados en el examen del iris. Las mejoras que se han ido sucediendo en los sensores biométricos que obtienen un mapa de venas se han conseguido básicamente por una sofistificación creciente de los algoritmos de reconocimiento de patrones, sin una mejora paralela en Ia concepción física de los propios sensores del sistema biométrico. Pero, tal vez, el problema mayor de los sensores de venas utilizados hasta el presente reside en que pueden ser "engañados", haciendo pasar patrones falsos al sistema, sin presencia del usuario.
En consecuencia, es un objetivo de Ia presente invención el disponer de un escáner biométrico óptico estereoscópico con una elevada fiabilidad en Ia identificación de personas que emplee un procedimiento de operación único basado en Ia detección de los niveles de profundidad de los distintos planos monocromáticos de iluminación para cada longitud de onda usada.
Es otro objeto de Ia presente invención el disponer de un escáner biométrico óptico estereoscópico que no pueda ser engañado por el suministro al sistema de patrones de venas reproducidos en soportes no vivos.
Finalmente, Ia presente invención tiene por objeto el disponer de un escáner biométrico óptico estereoscópico compacto y de bajo coste, utilizable en sensores biométricos de capilares sanguíneos, como son los de Ia palma de Ia mano, de Ia muñeca o del dedo del usuario en cuestión, tanto de reflexión (palma de Ia mano y muñeca) como de transmisión (dedo y muñeca). DESCRIPCIÓN DE LA INVENCIÓN
Para solucionar los problemas encontrados en el actual estado de Ia técnica se ha desarrollado un escáner biométrico que incrementa considerablemente Ia cantidad de información a procesar, y con ello, Ia fiabilidad en Ia identificación, mediante Ia obtención de una pluralidad de mapas vasculares bidimensionales de un receptor biométrico, como Ia palma de Ia mano, Ia muñeca o los dedos, de distinta profundidad y un mismo sujeto, formando una imagen tridimensional a partir de Ia conjunción de dichos planos, gracias a unos medios aptos para ello.
El fundamento de Ia presente invención reside en el hecho de que las venas del receptor biométrico están situadas en el espacio dentro del tejido, con una distribución y ramificación 3D característica dentro del mismo. Como Ia distancia de penetración de Ia radiación electromagnética en el cuerpo humano depende de Ia longitud de onda de Ia radiación incidente, se emplean fuentes emisoras de Ia luz de distintas longitudes de onda centradas en el IR cercano para poder obtener Ia profundidad de los distintos planos de imagen en función del tipo de espectro de emisión de Ia fuente. La profundidad de los píxeles de cada plano de imagen, se obtienen por medio de técnicas estereoscópicas de visión, mediante dos cámaras posicionadas a Ia misma altura y con una distancia fija entre ellas. El resultado final es Ia imagen de un mapa tridimensional, en los medios configurados para Ia reconstrucción tridimensional de Ia imagen, del mapa vascular del receptor biológico, juntando los distintos planos de imagen (cada uno con su profundidad característica) que se han obtenido para cada longitud de onda usada.
Gracias al dispositivo así descrito se alcanzan simultáneamente los objetivos propuestos en cuanto a Ia mejora de Ia fiabilidad en Ia identificación y Ia detección de vida para una persona concreta.
En cuanto al objetivo referido a Ia obtención de un dispositivo compacto y de bajo coste, éste se alcanza empleando unos elementos emisores (fuentes de luz) basados en LED o láseres semiconductores de baja potencia, fotodiodos como receptores y cámaras CCD o sensores CMOS con espectro de absorción centrado en el IR cercano. Todos estos elementos son fácilmente adquiribles a un coste relativamente bajo. El funcionamiento del escáner biométrico tridimensional es el siguiente: Debido a que los mapas de venas obtenidos con una cámara tipo CCD o CMOS con un espectro de absorción centrado en el IR cercano son imágenes planas bidimensionales y tienen un riesgo, aunque no elevado, de poder ser falsificados, se situarán dos cámaras con una alta eficiencia de absorción en el IR cercano que permitan obtener dichos mapas de venas en 3D, mediante Ia reconstrucción de los planos de imágenes obtenidos para cada longitud de onda usada. Estas cámaras reciben Ia radiación IR cercana, emitida por las fuentes de luz (LED o láseres de baja potencia) que es reflejada o transmitida por el receptor biológico y están separadas a una distancia fija. Cada plano de imagen recibido depende de Ia longitud de onda empleada en Ia emisión para cada conjunto de LED y tiene una profundidad determinada. Esta profundidad se puede conocer a partir de esta distancia, de tal forma que, si se hace coincidir el sistema de coordenadas global con el sistema de coordenadas de Ia cámara, el plano XY de Ia imagen está alineado con el plano XY del sistema de coordenadas global, por Io que Ia coordenada Z de un punto tridimensional es igual para ambos sistemas de coordenadas. Es precisamente esta coordenada Z Ia de interés para cada plano de imagen obtenido para cada longitud de onda de emisión de las fuentes de luz. En este cálculo es necesario conocer también Ia distancia de Ia línea base y Ia distancia focal. La corrección de Ia aberración mediante una matriz de retro-proyección (calibración de las cámaras) es necesaria para no cometer errores en el cálculo de Ia profundidad.
Dependiendo de si se quiere obtener información biométrica estereoscópica de un dedo, de Ia muñeca o de Ia palma de Ia mano del usuario, ambas cámaras reciben una radiación IR cercana emitida por las fuentes de luz que se transmite a través del dedo, o que se refleja en Ia palma de Ia mano o de Ia muñeca del usuario. Por tanto, su posición depende de si el sensor de imagen (Ia cámara) es de reflexión o de transmisión, aunque Ia distancia entre ellas ha de mantenerse constante.
Así pues, en el caso del sensor biométrico de reflexión de Ia palma de Ia mano, las dos cámaras han de situarse justo debajo del mismo, al mismo nivel de las fuentes de luz. No obstante, para el sensor biométrico de transmisión del dedo de Ia mano del usuario, las dos cámaras han de colocarse opuestas a las fuentes de luz, con el receptor biométrico entre dichas fuentes y cámaras. Por último, en el caso del sensor biométrico de reflexión de Ia muñeca, las dos cámaras han de colocarse a Ia misma altura que las fuentes de luz. La imagen 3D se reconstruye a partir de los planos con diferentes profundidades obtenidos.
En el caso de las fuentes de emisión de radiación láser, debido a que Ia longitud de emisión tiene un pico muy estrecho, Ia profundidad de cada uno de los planos imagen es prácticamente Ia misma para los píxeles de cada plano. En este caso, es necesario emplear un difusor de radiación para que Ia iluminación del elemento biométrico sea homogénea y no spots de luz. Sin embargo, si las fuentes de emisión de radiación son LED, ya no hay un pico de emisión sino una banda de absorción, por Io que para cada plano imagen, los píxeles tienen distinta profundidad. Cada grupo de fuentes de radiación de longitud de onda determinada emite de forma estroboscópica, con un periodo de emisión. En Ia fase de reconstrucción de Ia imagen tridimensional, se conjuntan los píxeles de cada uno de los planos con Ia misma profundidad, formando una visión estereoscópica del mapa capilar sanguíneo.
El dispositivo así descrito soluciona los problemas técnicos planteados en el estado de Ia técnica. El mapa de venas se encuentra oculto y es propio de cada usuario. Sólo es posible su falsificación por robo o hurto del dispositivo. El hecho de obtener una coordenada Z que indica Ia profundidad a al que se encuentran los capilares sanguíneos eleva Ia seguridad de los sensores de venas a un alto nivel, muy difícil de poder ser falseado por cualquier "hacker". Cuantas más longitudes de onda se empleen en Ia iluminación, de mayor información tridimensional dispondremos.
BREVE DESCRIPCIÓN DE LAS FIGURAS
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor Ia invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
FIG. 1 muestra una vista esquematizada del escáner biométrico tridimensional objeto de Ia presente invención, aplicado sobre Ia palma de Ia mano, incluyendo una imagen ampliada de Ia placa de iluminación donde se sitúan las cámaras.
FIG. 2 muestra una vista esquematizada del escáner biométrico tridimensional objeto de Ia presente invención, aplicado sobre un solo dedo. FIG. 3 muestra una vista esquematizada del escáner biométrico tridimensional objeto de Ia presente invención, aplicado sobre Ia muñeca de Ia mano.
FIG. 4 muestra gráficamente Ia obtención de Ia imagen estereoscópica para conformar el mapa de venas, objetivo principal del escáner de Ia presente invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Como puede apreciarse en Ia figura 1 , el escáner biométrico tridimensional (1 ) para el mapa capilar de Ia palma de Ia mano (2) comprende dos sensores de imagen (5,6) configurados para obtener una visión estereoscópica de un mapa vascular y donde, por cada imagen, correspondiente a cada longitud de onda, se conocen para dicho plano Ia profundidad de cada punto. Conjuntando las N imágenes correspondientes a las N longitudes de onda de emisión, se consigue un mapa 3D de las venas de Ia palma de Ia mano. Para conseguir una imagen estereoscópica es necesaria una distancia fija (d) entre los sensores de imagen (5,6) para poder calcular Ia componente Z de profundidad del elemento biométrico de reconocimiento.
Los sensores de imagen (5,6) se encuentran integrados en una placa de iluminación (3) que comprende una pluralidad de medios emisores de radiación en el IR cercano (7) para poder así extraer el patrón de venas por reflexión de dicha radiación en el elemento biométrico característico. En el caso que fuesen LED, el patrón de iluminación homogéneo en el elemento biométrico es más sencillo de corregir, ya que el haz cuasi-cromático tiene una apertura angular comprendida entre 20Q y 80Q, mucho mayor que en el caso de los láseres. En esta situación, Ia profundidad de los píxeles de cada imagen cuasi-monocromática varía (z,±Δz,) debido a Ia banda de emisión que presentan los LED (λ,±Δλ,) respecto a Ia línea monocromática de los láseres. En el caso de emplear estos últimos, se necesitan difusores que abran el haz para corregir Ia iluminación homogénea y los patrones de imagen monocromáticos que tienen píxeles con una profundidad parecida (A1 Z1).
En Ia figura 2 se muestra Ia presente invención para el caso en que Ia medición sea sobre el dedo (8). De nuevo son necesarios dos sensores de imagen (9,10) colocados a una distancia fija entre ellos para poder obtener una imagen 3D del mapa capilar (1 1 ) del dedo (8). En este caso, Ia radiación infrarroja cercana emitida por LED (o láseres en su caso) (12) con banda de emisión centrada en el IR cercano es detectada por estos sensores de imagen (9,10) que tienen una banda de absorción que influye a Ia de emisión de las fuentes de luz (12). Estas fuentes pueden utilizarse igualmente como detectores de presencia y/o vida, en función del patrón de reflexión y transmisión de Ia radiación IR cercana que interacciona con el dedo (8) y que a su vez es detectada por los foto rrecepto res (120) que se posicionan junto a ellas. La radiación IR cercana es absorbida por Ia hemoglobina de Ia sangre y transmitida a través del dedo (8), de tal forma que se obtiene una imagen 3D del mapa capilar del mismo por medio de los dos sensores de imagen (9,10) a partir de Ia composición de las distintas imágenes obtenidas para cada longitud de onda de emisión de los grupos de fuente de luz (12).
En Ia figura 3 se muestra una vista del escáner objeto de Ia invención en una realización para Ia lectura del mapa capilar (17) de Ia muñeca (13) del usuario. Una matriz de fuentes de luz (14) que pueden ser LED o láseres de baja potencia; emite radiación en el IR cercano e interacciona con el elemento biométrico (13), en este caso
Ia muñeca, reflejándose o transmitiéndose a través de ella. Junto a esta matriz de fuentes de luz (14), y a una distancia fija, se posicionan dos sensores de imagen (15,16) que absorben Ia radiación IR y que permite componer el mapa capilar (17) tridimensional de Ia muñeca (13) mediante los medios de comparación de imágenes.
Para las tres realizaciones mencionadas, tal y como se puede observar en Ia figura 4, Ia imagen estereoscópica implica Ia obtención de dos imágenes separadas del mismo objeto (20,21 ) correspondiente con un único punto w (23) del espacio tridimensional. La distancia (d) entre los centros de las dos lentes (22) es Ia llamada línea base y ha de ser constante. Se han de hallar las coordenadas (X, Y, Z) del punto w (23) que tiene las coordenadas (xi, yi) y (x2, y2) en las dos imágenes (20,21 ). En esta figura se supone que los sensores de imagen son idénticos y que sus respectivos sistemas de coordenadas difieren exclusivamente en Ia posición de sus orígenes. La coordenada Z de w es Ia misma para los sistemas de coordenadas de ambas cámaras y es el parámetro a determinar en cada píxel de Ia imagen del mapa de venas. Queda determinado por Ia ecuación [1]: z = f - X2 -X1 [1 ]
siendo f el centro de Ia lente con el centro del plano de Ia imagen en el origen.
El mecanismo de interacción de Ia radiación electromagnética con el tejido epitelial humano está basado en Ia profundidad de penetración de dicha radiación varía según Ia Ley de Lambert, definida en Ia ecuación [2]:
Figure imgf000011_0001
donde Ia intensidad I0 y λ es Ia longitud de onda de Ia radiación incidente, CHB(λ) y SHB(A) es el coeficiente de absorción de Ia longitud de onda dependiendo de cada derivado de Hb (o componentes biológicos del material con el que Ia radiación electromagnética interacciona), Z describe Ia profundidad de penetración. Por tanto, esta profundidad de penetración muestra una variación logarítmica con el cociente de intensidades de entrada y salida, siendo directamente proporcional a Ia longitud de onda de Ia radiación de interacción. Así, para cada grupo de fuentes de radiación de Ia misma longitud de onda de emisión (A1), Ia profundidad de penetración (z,) es parecida para todos los puntos de Ia mano (depende de Ia banda de emisión) y es reflejada portando Ia información del patrón de venas existente hasta donde ha penetrado. Esta profundidad de penetración ha sido calculada mediante el algoritmo de visión ya comentado, gracias a las dos cámaras que permiten Ia visión estereoscópica. Utilizando los otros grupos de longitudes de onda, se consiguen otras imágenes con distinta profundidad, que se componen en los medios a tal efecto, formando Ia imagen 3D del patrón de venas requerido.
El usuario coloca el elemento biométrico en cuestión sobre el sensor biométrico. En esta situación, las fuentes de luz comienzan a emitir radiación electromagnética de forma estroboscópica y secuencial, primero un grupo con una longitud de onda determinada y luego otros con otras distintas. Para cada grupo de fuentes de emisión, las dos cámaras posicionadas a modo de ojos humanos para conseguir Ia visión esteroscópica, capturan el mapa correspondiente a Ia radiación de interacción (reflexión o transmisión, junto con esparcimiento). Una unidad de procesamiento extrae el mapa de venas y Ia profundidad de las mismas, etiquetándolas con su correspondiente longitud de onda de emisión. El proceso se repite tantas veces como longitudes de onda de emisión haya en el sistema de iluminación. Ya etiquetados, los mapas de venas se conjuntan en función de Ia profundidad de cada una de las venas extraídas de los distintos mapas, obteniendo así un mapa capilar tridimensional. Atendiendo al proceso de identificación, generalmente se intenta que sea rápido y siempre seguro, por Io que el número aleatorio de longitudes de onda de emisión son las que funcionan y no todas, por tanto, el proceso de comparación se realiza sólo con esos mapas de venas etiquetados.
En el caso de fuentes de radiación de distintas longitudes de onda, cuasi- monocromáticas (LED), es posible emplear radiación UV-A de emisión sin encarecer excesivamente el sistema biométrico. De esta forma se estudian propiedades biológicas del tejido epitelial humano, basta con que el sistema de recepción de imagen (CCD o sensor CMOS) sea sensible al UV-A del espectro electromagnético. El procedimiento es similar al descrito en el párrafo anterior, salvo que las longitudes de onda que se emplean son más bajas que las anteriores (300-400 nm) y cuantas más se usen, más información biológica (reflexión, absorción, transmisión del tejido humano y de los componentes sanguíneos) en función de Ia profundidad de penetración son obtenidos.
Por Io general, los sensores biométricos presentan también elementos de seguridad adicionales. Por ejemplo, como opción alternativa a los filtros ópticos de infrarrojo cercano y como medida a tomar de menor coste se pueden utilizar dos láminas polarizantes lineales cruzadas en el rango visible (o en el IR cercano, aunque el sistema se encarece), y que se sitúan, al igual que los filtros ópticos, sobre el objetivo de Ia cámara. Si además los polarizadores se colocan sobre las fuentes de luz, con los ejes de polarización cruzados al de los anteriores, el receptor sólo capta Ia radiación que reflejada o transmitida, ha variado su estado de polarización inicial al interaccionar con el elemento biométrico. Otra opción es utilizar pulsioxímetros, basados en medir el tiempo y amplitud en que Ia intensidad de Ia luz pasa a través del tejido fino como, por ejemplo, a través de Ia extremidad del dedo, utilizando longitudes de onda roja (630nm) e IR cercana (940nm) y Ia ley de Bert-Lambert ya comentada. Previamente, el proceso de control de Ia iluminación para Ia posterior captura de los mapas de venas de Ia palma de Ia mano del usuario, el pulsioxímetro detecta Ia concentración de oxígeno saturado en sangre y el ritmo del pulso sanguíneo. Si los valores detectados se encuentran fuera del umbral característico humano, el sensor no procederá a capturar los mapas de venas del receptor biométrico en cuestión e indicará al usuario que sitúe Ia mano correctamente sobre el sensor. También, como medida de seguridad, se pueden medir las propiedades eléctricas, como Ia impedancia y Ia capacitancia del tejido de Ia mano mediante electrodos, con una corriente alterna de 800μA y 5OkHz.

Claims

REIVINDICACIONES
1.- Escáner biométrico tridimensional del tipo de los que obtienen el mapa vascular de Ia palma de Ia mano, muñeca o dedos del usuario caracterizado porque comprende una pluralidad de fuentes de luz que se encuentran dentro de Ia banda de absorción del infrarrojo cercano; y al menos dos sensores de imagen sensibles a dicha banda de infrarrojo cercano, con una distancia fija entre ellas y situadas a Ia misma altura; en donde, en función de cada longitud de onda de emisión se obtiene una imagen etiquetada y registrada en un elemento de procesamiento para una profundidad determinada; y en donde dicho elemento de procesamiento, a su vez, comprende medios de reconstrucción tridimensional de un mapa, dichos medios estando configurados para reconstruir tridimensionalmente las distintas imágenes obtenidas mediante Ia conjunción de unos puntos de éstas imágenes con una profundidad determinada, para cada longitud de onda de emisión.
2.- Escáner según reivindicación 1 en donde los sensores de imágenes son sensibles al UV-A del espectro electromagnético de tal forma que se obtengan las propiedades ópticas tisulares y de las componentes de Ia sangre.
3.- Escáner según reivindicación 1 y 2 en donde comprende elementos de seguridad adicionales (4) ante un posible fraude, en donde dichos elementos son al menos uno seleccionado entre: un detector de pulso sanguíneo y concentración de Ia saturación de oxígeno en sangre; medidores de bioimpedancia; sensores de temperatura; y polarizadores lineales visibles e IR cercanos posicionados con los ejes de polarización cruzados sobre las fuentes de luz y los objetivos de los sensores de imagen configurados para detectar el cambio en Ia polarización de Ia luz que interacciona con el elemento biométrico.
4.- Sistema de identificación biométrica caracterizado porque comprende el escáner biométrico de las reivindicaciones 1 a 3.
PCT/ES2009/070360 2009-03-24 2009-08-31 Escáner biométrico tridimensional WO2010109029A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09842118A EP2413263A4 (en) 2009-03-24 2009-08-31 3D BIOMETRIC SCANNER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930006A ES2345598B8 (es) 2009-03-24 2009-03-24 Escaner biometrico tridimensional
ESP200930006 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109029A1 true WO2010109029A1 (es) 2010-09-30

Family

ID=42727329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070360 WO2010109029A1 (es) 2009-03-24 2009-08-31 Escáner biométrico tridimensional

Country Status (7)

Country Link
EP (1) EP2413263A4 (es)
AR (1) AR074005A1 (es)
CL (1) CL2009002020A1 (es)
ES (1) ES2345598B8 (es)
TW (1) TW201035882A (es)
UY (1) UY32086A (es)
WO (1) WO2010109029A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073861A (zh) * 2011-01-05 2011-05-25 哈尔滨工程大学 一种非接触式在线手掌掌纹和三维手形的图像采集装置
WO2016070619A1 (zh) * 2014-11-05 2016-05-12 亿百葩鲜数据科技(上海)有限公司 手掌静脉图像获取装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493474B (zh) * 2013-11-29 2015-07-21 Nat Applied Res Laboratories Fingerprint and palm print device and method thereof
WO2015081321A1 (en) * 2013-11-29 2015-06-04 Mechio Inc. Wearable computing device
TWI548401B (zh) * 2014-01-27 2016-09-11 國立台灣大學 血管三維結構重建方法
PL407047A1 (pl) * 2014-02-05 2015-08-17 Michał Waluś Sposób akwizycji cech osobniczych zwłaszcza do systemów autoryzacji biometrycznej oraz układ decyzyjnej akwizycji
EP3023908B1 (en) 2014-11-21 2020-10-21 Nokia Technologies Oy An apparatus, method and computer program for identifying biometric features
EP3118762B1 (en) * 2015-07-15 2020-03-11 Biowatch SA Method, device and computer program for authenticating a user
CN111160247B (zh) * 2019-12-28 2023-05-12 智冠一掌通科技(深圳)有限公司 一种扫描掌静脉进行立体三维建模、识别的方法
CN113273961B (zh) * 2020-02-19 2024-05-24 钜怡智慧股份有限公司 活体检测装置及方法
TWI772751B (zh) * 2020-02-19 2022-08-01 鉅怡智慧股份有限公司 活體偵測裝置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719950A (en) * 1994-03-24 1998-02-17 Minnesota Mining And Manufacturing Company Biometric, personal authentication system
US20010027273A1 (en) 1995-06-07 2001-10-04 University Of Arkansas Method and apparatus for detecting electro-magnetic reflection from biological tissue
US6813010B2 (en) 2000-09-20 2004-11-02 Hitachi, Ltd Personal identification system
US20050271258A1 (en) 2004-06-01 2005-12-08 Lumidigm, Inc. Multispectral imaging biometrics
US20070098223A1 (en) 2005-10-27 2007-05-03 Fujitsu Limited Biometrics system and biometrics method
US20070116330A1 (en) 2002-05-09 2007-05-24 Sony Corporation Living-tissue pattern detecting method, living-tissue pattern detecting device, biometric authentication method, and biometric authentication device
US20070206098A1 (en) * 2006-03-03 2007-09-06 Fujitsu Limited Image capturing apparatus
US20080285812A1 (en) * 2004-05-12 2008-11-20 Koninklijke Philips Electronics, N.V. Personal Identification Method and Apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719950A (en) * 1994-03-24 1998-02-17 Minnesota Mining And Manufacturing Company Biometric, personal authentication system
US20010027273A1 (en) 1995-06-07 2001-10-04 University Of Arkansas Method and apparatus for detecting electro-magnetic reflection from biological tissue
US6813010B2 (en) 2000-09-20 2004-11-02 Hitachi, Ltd Personal identification system
US20070116330A1 (en) 2002-05-09 2007-05-24 Sony Corporation Living-tissue pattern detecting method, living-tissue pattern detecting device, biometric authentication method, and biometric authentication device
US20080285812A1 (en) * 2004-05-12 2008-11-20 Koninklijke Philips Electronics, N.V. Personal Identification Method and Apparatus
US20050271258A1 (en) 2004-06-01 2005-12-08 Lumidigm, Inc. Multispectral imaging biometrics
US20070098223A1 (en) 2005-10-27 2007-05-03 Fujitsu Limited Biometrics system and biometrics method
US20070206098A1 (en) * 2006-03-03 2007-09-06 Fujitsu Limited Image capturing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413263A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073861A (zh) * 2011-01-05 2011-05-25 哈尔滨工程大学 一种非接触式在线手掌掌纹和三维手形的图像采集装置
WO2016070619A1 (zh) * 2014-11-05 2016-05-12 亿百葩鲜数据科技(上海)有限公司 手掌静脉图像获取装置

Also Published As

Publication number Publication date
UY32086A (es) 2010-10-29
AR074005A1 (es) 2010-12-15
ES2345598B1 (es) 2011-07-11
TW201035882A (en) 2010-10-01
ES2345598B8 (es) 2013-02-12
CL2009002020A1 (es) 2011-03-11
ES2345598A1 (es) 2010-09-27
EP2413263A1 (en) 2012-02-01
EP2413263A4 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
ES2345598B1 (es) Escaner biometrico tridimensional.
ES2891558T3 (es) Flujometría de tejido profundo usando análisis de contraste de moteado difuso
ES2336577T3 (es) Formacion de imagenes de estructuras ocultas.
ES2335565B1 (es) Sistema optico, procedimiento y programa de ordenador para detectar la presencia de un elemento biologico vivo.
KR102570637B1 (ko) 지정맥 인식 장치 및 지정맥 인식 방법
CN103209632B (zh) 用于执行光谱分析的体内成像装置和方法
ES2329328B1 (es) Procedimiento y escaner biometrico para identificar a una persona.
KR20050096142A (ko) 인체 인식 방법 및 장치
US20100148068A1 (en) Apparatus for authenticating a person of at least one biometric parameter
CN102665559A (zh) 用于可视化目标癌组织的激发、检测和投射***
US9320437B2 (en) Intravital observation device
US9619690B2 (en) Authentication apparatus, prism member for authentication and authentication method
US9971948B1 (en) Vein imaging using detection of pulsed radiation
ES2295599T3 (es) Procedimiento y dispositivo para reconocer datos biometricos despues de su registro desde al menos dos direcciones.
KR101710902B1 (ko) 근적외선 형광 진단용 무영 조명등 및 무영 조명 시스템
CN112153940A (zh) 血管检测装置及其方法
KR20160117863A (ko) 지문 인식 장치 및 지문 인식 방법
CN216014317U (zh) 透射式静脉采集模块及静脉识别***
KR20160117864A (ko) 지문 인식 장치 및 지문 인식 방법
KR20160117860A (ko) 지문 인식 장치 및 지문 인식 방법
KR20160117861A (ko) 지문 인식 장치 및 지문 인식 방법
KR101816581B1 (ko) 측정장치
US10159434B1 (en) Systems and methods for optode imaging
CN114821664A (zh) 静脉图像采集设备及生物识别装置
KR20220010367A (ko) 바늘의 위치 및 자세 추적 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009842118

Country of ref document: EP