WO2010104784A1 - Brûleur pour réduire l'usure des parois dans un pot de fusion - Google Patents

Brûleur pour réduire l'usure des parois dans un pot de fusion Download PDF

Info

Publication number
WO2010104784A1
WO2010104784A1 PCT/US2010/026512 US2010026512W WO2010104784A1 WO 2010104784 A1 WO2010104784 A1 WO 2010104784A1 US 2010026512 W US2010026512 W US 2010026512W WO 2010104784 A1 WO2010104784 A1 WO 2010104784A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow
velocity
fuel
stream
Prior art date
Application number
PCT/US2010/026512
Other languages
English (en)
Inventor
Andrew P. Richardson
Original Assignee
Linde Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Aktiengesellschaft filed Critical Linde Aktiengesellschaft
Publication of WO2010104784A1 publication Critical patent/WO2010104784A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07022Delaying secondary air introduction into the flame by using a shield or gas curtain

Definitions

  • the embodiments relate to the entrainment of the atmosphere in a melter by jets.
  • FIG. 1 shows a burner embodiment for use in a melter.
  • FIG. 2 shows a table of the burner embodiment characteristics.
  • the burner 10 generates a central higher velocity jet type flame 14 surrounded by a low velocity shroud 16.
  • the central higher velocity flame jet 14 comprises a combusting flow or flame formed by the combination of a natural gas stream 30 and an oxygen stream 32.
  • the natural gas stream 30 is delivered through a pipe 25 that terminates within a cavity 34 of the burner 10.
  • the oxygen stream 32 is delivered though a passage 31 formed between the pipe 25 and a wall of the cavity 34 of the burner 10.
  • the burner 10 introduces a low velocity shroud stream 12 of oxygen through conduit 27 to form a surrounding or outer low velocity shroud 16 around the central higher velocity flame jet 14, wherein the high velocity flame jet 14 entrains the surrounding or outer low veiocity shroud 16 near a wall 18 of a furnace or melter, while the low velocity shroud 16 entrains material 20 from the immediate surrounding atmosphere 22 at a substantially lower rate than the high velocity flame jet 14 entrains material 28 from the surrounding atmosphere 22 distant from wall 18.
  • the shroud 16 - traveling at a lesser velocity than the velocity flame jet 14 - is entrained into said flame jet 14. In this manner, velocities of surrounding atmosphere currents 26 near the wall 18 in the vicinity of the jet-shroud 14,16 combination are reduced. Currents 28 in the atmosphere 22 are of a higher velocity further away from the wall 18.
  • the burner 10 reduces chemical wear of refractories surrounding for example oxy-fuel burners - in particular silica attack in soda-lime furnaces. Reducing the velocity of the furnace atmosphere near silica walls, such as the wall 18, of a melter will reduce the attack by chemical species contained in the furnace atmosphere, such as alkali vapors, on the walls.
  • the embodiments reduce the velocity of the corrosive furnace atmosphere near burners in glass furnaces or other types of melters. That is, condensable vapors in the furnace atmosphere 22 which would otherwise degrade the furnace wall 18 or crown are limited in their ability to do so, as the reduced velocity shroud 16 entrains said condensable vapors contained within material 20 at a reduced rate. This reduces the rate of chemical attack of, for example, silica by sodium hydroxide or sulphate species transported to the wall surface by the furnace atmosphere currents. This will result in longer furnace life before repair.
  • the outer shroud 16 has a composition similar to an external portion of the central flame jet 14. With a pipe-in-pipe burner with a center natural gas stream 30 and an outer oxygen stream 32, the outer shroud 16 is also comprised of oxygen and such would be introduced external to the cavity 34 that confines the initial flame jet 14.
  • Velocities of the central natural gas stream 30 and oxygen stream 32 are approximately equal (within 10% of each other).
  • the outer shroud 16 includes approximately 10-50% of the total oxygen supplied and at an initial velocity is approximately equal to 10-50% of that of the oxygen stream 32 supplied through the central cavity 34 of the burner.
  • Suitable fuels for combustion may be gaseous, atomized liquid or a suspended particulate solid.
  • Suitable gaseous fuels include, but are not limited to methane, natural gas, liquefied natural gas, propane, liquefied propane gas, butane, low BTU gases, town gas, producer gas or mixtures thereof.
  • Suitable liquid fuels include, but are not limited to heavy fuel oil, medium fuel oil, light fuel oil, kerosene, diesel or mixtures thereof.
  • Suitable suspended particulate solid fuels include, but are not limited to coal, coke, petroleum coke, rubber, woodchips, sawdust, straw, biomass fuels or mixtures thereof suspended in a carrier gas selected from air, nitrogen, carbon dioxide or a gaseous fuel, the gaseous fuel selected from methane, natural gas, liquefied natural gas, propane, liquefied propane gas, butane, low BTU gases, town gas, producer gas or mixtures thereof.
  • Preferred oxidants for use with the embodiments include oxygen- enriched air, containing greater than 20.9 volume percent oxygen to about 80 volume percent, preferably greater than 50 volume percent, such as produced by filtration, absorption, membrane separation, or the like; non-pure oxygen such as that produced by, for example, a vacuum swing adsorption process and containing about 80 volume percent to 95 volume percent oxygen; and "industrially" pure oxygen containing about 90 volume percent to about 100 volume percent oxygen, such as produced by a cryogenic air separation unit (ASU) or plant.
  • ASU cryogenic air separation unit
  • Methane volumetric flow rate(stream 30) 184Nm 3 /hr.
  • External diameter of pipe 25 carrying the fuel 54.31mm.
  • FIG. 2 shows in a table 40 the volume of gases that are entrained near the wall 18. This is determined by the volume of gases flowing across a hypothetical cylindrical boundary of radius 154.2mm co-axial with burner 10 and extending 152,4mm from the wait 18.
  • the design of the shroud 16 has a significant effect on the volume of gases entrained across the cylindrical boundary and drawn along the wall 18 and into the flame jet 14. As a result, local velocities in the vicinity of the wall 18 and the burner 10 are accordingly reduced.
  • Example 1 represents a base case for the burner 10 without the shroud 16 to which later Examples 2-9 are compared.
  • Columns El and IIE show, for Example #1 , that no oxygen is diverted to the annular shroud 16.
  • Column IV is the diameter, of the burner block cavity 34 into which issues the fuel stream 30 and oxygen stream 32. This is obtained by determining the annular flow passage area 31 required between the outside of the fuel feed pipe 25 and the inside of the burner block cavity 34 so that an oxygen stream 32 velocity of 30.48m/s is obtained. !n this example, as all the oxygen flows through the annular region 31 the area is such that a burner block cavity 34 diameter of 87.5mm is required.
  • Columns V, Vl and VIM are blank as there is no shroud 16.
  • Column VII shows that in this case with all of the oxygen issuing at high velocity through stream 32 that a volume of 0.123m 3 /h is entrained into the initial region of the burner 10 near the wall 18.
  • Column IV represents the reduced diameter of the burner block cavity 34 to accommodate the smaller flow area required for the smaller volume of oxygen (stream 32) issuing into the central burner block cavity 34.
  • a further benefit is obtained in reducing the transport of condensable species within the furnace atmosphere to the outer edge of high velocity oxy-fuel burners.
  • the rate of transport of condensable species to the oxy-fuel burner is reduced and the rates of condensation and deposition of material is reduced.
  • Such species can condense and produce a build up of material around the burner that can deflect the flame and cause refractory damage.
  • burner maintenance needs are reduced and the risk of damage through flame deflection is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

Un flux de gaz de combustion pour l'atmosphère d'un pot de fusion comprend un premier flux de gaz à une première vitesse introduit dans l'atmosphère, et un second flux de gaz à une seconde vitesse inférieure à la première vitesse introduit dans l'atmosphère pour entraîner les vapeurs corrosives ou condensables dans l'atmosphère et pour filtrer et empêcher le premier flux de gaz d'entraîner les vapeurs condensables ou corrosives à une vitesse supérieure au second flux de gaz.
PCT/US2010/026512 2009-03-11 2010-03-08 Brûleur pour réduire l'usure des parois dans un pot de fusion WO2010104784A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/401,705 2009-03-11
US12/401,705 US20100233639A1 (en) 2009-03-11 2009-03-11 Burner for reducing wall wear in a melter

Publications (1)

Publication Number Publication Date
WO2010104784A1 true WO2010104784A1 (fr) 2010-09-16

Family

ID=42728685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/026512 WO2010104784A1 (fr) 2009-03-11 2010-03-08 Brûleur pour réduire l'usure des parois dans un pot de fusion

Country Status (2)

Country Link
US (1) US20100233639A1 (fr)
WO (1) WO2010104784A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677760B2 (en) * 2011-01-28 2017-06-13 Osaka Gas Co., Ltd. Furnace heating combustion apparatus
US11377612B2 (en) * 2016-10-13 2022-07-05 Omnis Advanced Technologies, LLC Gaseous combustible fuel containing suspended solid fuel particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295816A (en) * 1991-08-29 1994-03-22 Praxair Technology, Inc. Method for high velocity gas injection
US5878676A (en) * 1996-02-29 1999-03-09 L. & C. Steinmuller Gmbh Burner and furnace operated with at least one burner
US6190158B1 (en) * 1998-12-30 2001-02-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process and its uses for the production of glass and metal
US6254379B1 (en) * 2000-09-27 2001-07-03 Praxair Technology, Inc. Reagent delivery system
US6705117B2 (en) * 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458542A (en) * 1944-11-16 1949-01-11 Comb Processes Company Low velocity oil and gas burner
US3576384A (en) * 1968-11-29 1971-04-27 British American Oil Co Multinozzle system for vortex burners
CA1066608A (fr) * 1974-11-18 1979-11-20 Akito Komori Dispositif de combustion de carburant
DE2517756A1 (de) * 1975-04-22 1976-11-04 Christian Coulon Verfahren und einrichtung zum zerstaeuben und verbrennen von fluessigen brennstoffen
US4023921A (en) * 1975-11-24 1977-05-17 Electric Power Research Institute Oil burner for NOx emission control
JPS5414028A (en) * 1977-07-01 1979-02-01 Chugai Ro Kogyo Kaisha Ltd Low nox burner
US4395223A (en) * 1978-06-09 1983-07-26 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4378205A (en) * 1980-04-10 1983-03-29 Union Carbide Corporation Oxygen aspirator burner and process for firing a furnace
US4326700A (en) * 1980-07-30 1982-04-27 Southware Company Dual fuel burner for metal melting furnaces
US4431403A (en) * 1981-04-23 1984-02-14 Hauck Manufacturing Company Burner and method
FR2532405A1 (fr) * 1982-08-25 1984-03-02 Air Liquide Procede et dispositif d'allumage electrique d'un bruleur oxycombustible
EP0124146A1 (fr) * 1983-03-30 1984-11-07 Shell Internationale Researchmaatschappij B.V. Procédé et appareil pour la combustion du combustible avec émission à faible teneur en NOx, de suie et de particules
US4541798A (en) * 1983-11-07 1985-09-17 Union Carbide Corporation Post-mixed spark-ignited burner
US4629413A (en) * 1984-09-10 1986-12-16 Exxon Research & Engineering Co. Low NOx premix burner
CN1007920B (zh) * 1985-07-15 1990-05-09 美国氧化公司 烃类流体燃料燃烧、控制方法及装置
US4693680A (en) * 1986-08-14 1987-09-15 Union Carbide Corporation Flame stabilized post-mixed burner
JP2683545B2 (ja) * 1988-05-25 1997-12-03 東京瓦斯 株式会社 炉内燃焼方法
GB2262981B (en) * 1991-12-30 1995-08-09 Ind Tech Res Inst Dual fuel low nox burner
FR2706985B1 (fr) * 1993-06-22 1995-08-25 Pillard Ent Gle Chauffage Indl
USRE39425E1 (en) * 1993-07-15 2006-12-12 Maxon Corporation Oxygen-fuel burner with integral staged oxygen supply
JP3638170B2 (ja) * 1996-02-20 2005-04-13 大阪瓦斯株式会社 高温炉用酸素ガスバーナ
US5762486A (en) * 1996-02-21 1998-06-09 Praxair Technology, Inc. Toroidal vortex combustion for low heating value liquid
US5904475A (en) * 1997-05-08 1999-05-18 Praxair Technology, Inc. Dual oxidant combustion system
US5871343A (en) * 1998-05-21 1999-02-16 Air Products And Chemicals, Inc. Method and apparatus for reducing NOx production during air-oxygen-fuel combustion
PL344624A1 (en) * 1999-12-16 2001-06-18 Bloom Eng Co Inc Burner being feed with an air-fuel mixture
US6843185B1 (en) * 2003-06-27 2005-01-18 Maxon Corporation Burner with oxygen and fuel mixing apparatus
US7549858B2 (en) * 2006-12-04 2009-06-23 Praxair Technology, Inc. Combustion with variable oxidant low NOx burner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5295816A (en) * 1991-08-29 1994-03-22 Praxair Technology, Inc. Method for high velocity gas injection
US5878676A (en) * 1996-02-29 1999-03-09 L. & C. Steinmuller Gmbh Burner and furnace operated with at least one burner
US6190158B1 (en) * 1998-12-30 2001-02-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process and its uses for the production of glass and metal
US6705117B2 (en) * 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner
US6254379B1 (en) * 2000-09-27 2001-07-03 Praxair Technology, Inc. Reagent delivery system

Also Published As

Publication number Publication date
US20100233639A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US9533906B2 (en) Burner apparatus, submerged combustion melters including the burner, and methods of use
US7581948B2 (en) Burner apparatus and methods for making inorganic fibers
CN1153921C (zh) 用空气-燃料燃烧代替氧气-燃料燃烧的方法和装置
US9815726B2 (en) Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US20080145804A1 (en) Immersed Burner with Regulated Flame
CN102459850A (zh) 燃烧器***和使用燃烧器***的方法
CA2371620A1 (fr) Methode de chauffage d'un four de fusion du verre a l'aide d'un bruleur a combustible-oxygene monte sur le toit
CN101255362A (zh) 用于气化固态和液态载能体的飞流反应器
CN103937555B (zh) 单喷嘴水煤浆气流床气化炉及其气化方法
CN109489038B (zh) 一种可调节多种燃料进料比例的燃烧器
WO2013148831A2 (fr) Combustion de biomasse
CN102012024A (zh) 一种活性石灰回转窑发生炉的煤气燃烧器
WO2012170277A2 (fr) Combustible solide et combustion par l'oxygène à brûlage à faible émission de nox et efficace
WO2010104784A1 (fr) Brûleur pour réduire l'usure des parois dans un pot de fusion
CN102459102B (zh) 通过小炉的氧气燃料燃烧器
US20100104990A1 (en) Wide flame burner
US8500440B2 (en) Burner block for producing flat flame
CN103740410A (zh) 生物质两段式气流床气化装置及气化方法
EP1531303B1 (fr) Alimentation en carburant étagée pour utilisations à faibles émissions de NOx
CN101868672A (zh) 燃烧方法和***
WO2002027236A2 (fr) Technique et installation de combustion pour environnements hautement volatiles
CN219933968U (zh) 一种易冷却的燃烧器
CN219933969U (zh) 一种带有点火***的分级燃烧器
CN103215075A (zh) 碎煤熔渣气化炉的燃烧器
CN203346344U (zh) 碎煤熔渣气化炉的燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751236

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10751236

Country of ref document: EP

Kind code of ref document: A1