WO2010104328A2 - 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법 - Google Patents

정보 저장 매체, 기록 재생 장치 및 기록 재생 방법 Download PDF

Info

Publication number
WO2010104328A2
WO2010104328A2 PCT/KR2010/001501 KR2010001501W WO2010104328A2 WO 2010104328 A2 WO2010104328 A2 WO 2010104328A2 KR 2010001501 W KR2010001501 W KR 2010001501W WO 2010104328 A2 WO2010104328 A2 WO 2010104328A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
address
pickup
odd
information storage
Prior art date
Application number
PCT/KR2010/001501
Other languages
English (en)
French (fr)
Other versions
WO2010104328A3 (ko
Inventor
황성희
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP10751019A priority Critical patent/EP2407968A4/en
Priority to CN201080011818.3A priority patent/CN102349104B/zh
Priority to JP2011553950A priority patent/JP5555267B2/ja
Publication of WO2010104328A2 publication Critical patent/WO2010104328A2/ko
Publication of WO2010104328A3 publication Critical patent/WO2010104328A3/ko
Priority to US13/227,536 priority patent/US8488420B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B2020/10916Seeking data on the record carrier for preparing an access to a specific address
    • G11B2020/10925Seeking data on the record carrier for preparing an access to a specific address involving an inter-layer jump, i.e. changing from one recording layer to another
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B2020/1264Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
    • G11B2020/1265Control data, system data or management information, i.e. data used to access or process user data
    • G11B2020/1267Address data
    • G11B2020/1268Address in pregroove [ADIP] information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side

Definitions

  • the present invention relates to an information storage medium, and more particularly, to a multi-layered information storage medium having a plurality of recording layers, a recording / reproducing apparatus, and a recording / reproducing method.
  • high density and multilayer have been devised for high capacity (mass) of information storage media (or information transmission through wired and wireless networks).
  • high capacity is achieved by combining both high density and multilayer per layer.
  • FIG. 1 shows an example of a three-layered information storage medium.
  • the three-layered information storage medium 100 includes a first recording layer 110, a second recording layer 120, and a third recording layer 130.
  • pickups record or reproduce data in each recording layer along the tracking direction. Then, when moving from the current recording layer to another recording layer, the interlayer movement is performed. As shown in Fig. 1, the pickup 140 moves layers at the same radius of each recording layer when moving between layers. That is, it moves from the first recording layer to the second recording layer, or moves from the first recording layer to the third recording layer. In this way, when the pickup is moved between floors, theoretically, only the floors are moved in the same radius, and the actual address must be the same radius, but in reality, various errors, for example, mechanical errors or media eccentricity, may occur when the pickup is moved. The moved address may be inaccurate, and the address needs to be confirmed. In particular, when the information storage medium is composed of multiple layers for high capacity, it is more necessary to efficiently check the address during the inter-layer movement caused by the multiple layers.
  • PAA physical ADIP address
  • An information storage medium An information storage medium, a recording and reproducing apparatus, and a recording and reproducing method are provided.
  • FIG. 1 shows an example of a three-layered information storage medium.
  • FIG. 8 is a reference diagram for explaining a method of verifying an address when moving a layer according to the present invention.
  • FIG. 9 shows a PAA when the PAA is composed of a 3-bit layer number field 910, an 19-bit address sequence field 920, and a 2-bit repeating sequence field 930, and is repeated three times.
  • FIG. 10 shows the DAU in each layer when the DAU configuration is composed of 28 bits such as a 4-bit layer number field 1010, an 23-bit address sequence field 1020, and a 1-bit unit size field 1030. Indicates.
  • FIG. 11 shows a case in which the PAA is composed of 25 bits and repeated three times, such as a 3-bit layer number field 1110, a 20-bit address sequence sequence field 1120, and a 2-bit repeat sequence field 1130. PAA in each layer is shown.
  • FIG. 12A illustrates an address relationship when moving from an even layer to an odd layer or from an odd layer to an even layer in the form shown in FIG. 11.
  • 12B illustrates an address relationship when moving from an even layer to an even layer or moving from an odd layer to an odd layer.
  • Fig. 14 shows the address relationship when moving from the Even layer to the odd layer (or from the odd layer to the even layer).
  • FIG. 15 shows a case in which the DAU is composed of 28 bits such as a 3-bit layer number field 1510, a 24-bit address sequence field 1520, and a 1-bit unit size field 1530.
  • FIG. 16A illustrates an address relationship when moving from an even layer to an odd layer and from an odd layer to an even layer.
  • FIG. 16B illustrates an address relationship when moving from an even layer to an even layer (or moving from an odd layer to an odd layer).
  • FIG. 18 is a schematic block diagram of a recording and reproducing apparatus according to the present invention.
  • FIG. 19 is a block diagram of a drive in which the recording and reproducing apparatus according to the present invention shown in FIG. 18 is implemented.
  • 21 is an example of a playback method according to the present invention.
  • One feature of the present invention for solving the above problems is, in an information storage medium having a plurality of recording layers, having a physical ADIP address (PAA) which is an address recorded on the information storage medium,
  • PAA physical ADIP address
  • a further aspect of the present invention is an apparatus for reproducing data from an information storage medium having a plurality of recording layers, wherein the apparatus has a physical ADIP address (PAA) which is an address recorded on the information storage medium.
  • the control unit determines that the address of the layer i to which the pickup is to be moved is PAAi, the address of the layer j to which the pickup is currently located is PAAj, and when n is the number of recording layers, the pickup is from an even layer to an odd layer, or an odd layer.
  • the relationship is:
  • Another feature of the present invention is a method of recording data in an information storage medium having a plurality of recording layers and having a physical ADIP address (PAA), which is an address recorded on the information storage medium. And identifying the address to which the pickup will move when moving between floors, and recording the data, wherein the identifying step includes: the address of the layer i to which the pickup is to be moved is PAAi, and the address of the layer j to which the pickup is currently PAAj, where n represents the number of recording layers, when the pickup moves from an even layer to an odd layer, or from an odd layer to an even layer,
  • a method for reproducing data from an information storage medium having a plurality of recording layers and having a physical ADIP address (PAA) which is an address recorded on the information storage medium Identifying an address to which the pickup will move when moving between layers for reproduction, and reproducing data, wherein the identifying step includes: the address of the layer i to which the pickup is to be moved is PAAi and the address of the layer j to which the pickup is currently located. Is PAAj, where n represents the number of recording layers, and when the pickup moves from an even layer to an odd layer, or from an odd layer to an even layer,
  • PAA Physical ADIP Address is an address recorded on an information storage medium.
  • FAA First ADIP Address is the first address in the PAA
  • FAU First Address Unit is the first address among the DAUs.
  • the recording / reproducing apparatus finds a physical address on an information storage medium corresponding to the logical address through a PAA, and The DAU is stored in the recording / reproducing unit block to record at the physical address.
  • the logical address for the data to be reproduced is received from the host, and the physical address corresponding to the logical address is found through the DAU in the recording / reproducing unit block to reproduce the corresponding data.
  • the PAA 200 includes a layer number field 210, an address sequence field 220, and a repetition sequence field 230. .
  • the DAU 300 includes a layer number field 310, an address sequence field 320, and a unit size field 330.
  • Address sequence fields 220 and 320 indicate addresses in layers corresponding to layer number fields.
  • the unit may be a sector, a recording / reproducing unit block, a multiple of a sector, or the like.
  • Repetition sequence field 230 To indicate PAAs that are repeated when individual PAAs are repeated. For example, when a PAA is repeated three times, 2 bits may be allocated and represented as 00,01,10 to indicate a sequence of repeated PAAs. If the PAA is recorded / stored only once and not repeated, no bit is assigned to this field.
  • Unit size field 330 A field for defining a unit size of an address sequence field when a basic unit for indicating an address of an information storage medium is determined. For example, if the basic unit for indicating the address of the information storage medium is a sector, and wants to represent an address sequence in units of two sectors, one bit may be allocated to this field and the value thereof may be fixed to zero. If the unit of the address sequence is the same as the basic unit, no bit is assigned to this field.
  • PTP refers to the case where the tracking directions are the same in all layers of the information storage medium as shown in FIGS. 4 and 5
  • OTP refers to the case where the tracking directions are opposite to the adjacent layers as shown in FIGS. 6 and 7.
  • FIG. 4 shows an address unit number in PTP
  • FIG. 5 shows a physical ADIP address in PTP
  • FIG. 6 shows an address unit number in OTP
  • FIG. 7 shows a physical ADIP address in OTP.
  • the address sequence increases or decreases by a certain unit.
  • the tracking directions of the adjacent layers are opposite to each other, for example, when the address sequences increase by a certain unit in the odd layer when viewed from the inner circumferential direction, the address sequence decreases by a certain unit in the even layer. Therefore, in the case of OTP, a method for confirming an address when a pickup moves to an adjacent layer is required, and the address verification method for moving a layer according to the present invention is as follows.
  • FIG. 8 is a reference diagram for explaining a method of verifying an address when moving a layer according to the present invention.
  • the HC BD (820) is as follows.
  • PAAi refers to the payoff to "PAAj + (7- (i + j)) * 40 00 00h + 00 00 01h".
  • the address relation 830 of the address of the current layer and the moving layer is as follows.
  • the method of confirming the address PAAi after the pickup is moved to the i floor is based on the above equation from the address PAAj of the j floor. You can see if it has been done.
  • the number of bits allocated for PAA is "s + t".
  • r number of bits allocated for the DAU's address sequence field and unit size field
  • the number of bits allocated for the DAU is "q + r".
  • pow (2, x) 2 means x power.
  • FIG. 9 shows that the PAA is composed of a 3-bit layer number field 910, a 19-bit address sequence field 920, and a 2-bit repetition sequence field 930. PAA.
  • the value of the layer number field 910 increases by 1 from L0 to L3.
  • the values of the address sequence field 920 are complementary to each other in adjacent layers.
  • the values of the repeating sequence field 930 are the same in L0 and L2, the same in L1 and L3, and the arrangement of the adjacent layers is opposite to each other.
  • PAA2 indicates that 40 00 00h should be added to PAA0.
  • PAA0 and PAA2 are as follows.
  • PAA0 000 AA20..AA2 00 01 10
  • PAA2 010 AA20..AA2 00 01 10
  • PAA2 Comparing PAA0 and PAA2, the address sequence number and repetition sequence number of PAA2 are the same as that of PAA0 and only the layer number is different. Accordingly, it can be seen that PAA2 only needs to add a bit value corresponding to the layer number to PAA0.
  • PAA0 consists of a 3-bit layer number (000), an 19-bit address sequence number, and a 2-bit repetition sequence number
  • PAA2 consists of a 3-bit layer number (010) and a 19-bit address sequence number. It consists of a 2-bit repetition sequence number.
  • PAA0 is 000AAAAAAAAAAAAAAAAAAAAARR
  • PAA2 becomes 010AAAAAAAAAAAAAAAAAAARR.
  • A represents an 19-bit address sequence number
  • R represents a 2-bit repetition sequence number.
  • PAA1 indicates that we need to add C0 00 01h to PAA0 and take the complement.
  • the layer number 910 of PAA1 is equal to the layer number of PAA0 plus 1, and the address sequence number 920 of PAA1 is complemented to the address sequence number value of PAA0.
  • the repetition sequence number 930 of PAA1 is different from the repetition sequence number value of PAA0. That is, the repetition sequence number of PAA0 is 00 01 10, and the repetition sequence number of PAA1 is 10 01 00 because the order is different.
  • C0 00 01h is obtained by adding C0 00 01h to PAA0 and taking the complement to find PAA1. This value takes into account the difference in sequence numbers.
  • FIG. 10 shows the DAU in each layer when the DAU configuration is composed of 28 bits such as a 4-bit layer number field 1010, a 23-bit address sequence field 1020, and a 1-bit unit size field 1030. Indicates.
  • FIG. 11 shows a case in which the PAA is composed of 25 bits and repeated three times, such as a 3-bit layer number field 1110, a 20-bit address sequence sequence field 1120, and a 2-bit repeat sequence field 1130. PAA in each layer is shown.
  • the example of FIG. 11 is a form applied to HC BD-RE & R TL / QL (High Capacity Blu-ray Disc Rewritable & Recordable Triple layer / Quadruple layer).
  • FIG. 12A illustrates an address relationship when moving from an even layer to an odd layer or from an odd layer to an even layer in the form shown in FIG. 11.
  • 12B illustrates an address relationship when moving from an even layer to an even layer or moving from an odd layer to an odd layer.
  • FAA0, FAA1, FAA2, FAA3, LAA0, LAA1, LAA2, and LAA3 are also PAAs, so the same equation applies.
  • Fig. 14 shows the address relationship when moving from the Even layer to the odd layer (or from the odd layer to the even layer).
  • FIG. 15 shows a case in which the DAU is composed of 28 bits such as a 3-bit layer number field 1510, a 24-bit address sequence field 1520, and a 1-bit unit size field 1530.
  • the value of the layer number field 1510 increases by 1 from L0 to L3.
  • the values of the address sequence field 1520 are complementary to each other in adjacent layers.
  • all values of the unit size field 1530 are equal to zero.
  • FIG. 16A illustrates an address relationship when moving from an even layer to an odd layer and from an odd layer to an even layer.
  • FIG. 16B illustrates an address relationship when moving from an even layer to an even layer (or moving from an odd layer to an odd layer).
  • Fig. 17 shows the address relationship when moving from the Even layer to the odd layer (or from the odd layer to the even layer).
  • FIG. 18 is a schematic block diagram of a recording and reproducing apparatus according to the present invention.
  • the apparatus includes a recording / reading unit 1810 and a controller 1820.
  • the record / read unit 1810 records data in the information storage medium 1800 according to the present embodiment under the control of the controller 1820, and reads the recorded data.
  • the controller 1820 controls the recording / reading unit 1810 to record or read data on the recording medium 1800.
  • the address verification method described in accordance with the present invention is applied both when recording data and when reproducing data. That is, when data is to be recorded, when an address to be recorded is found and an interlayer movement is required, the address is confirmed using the address verification method according to the present invention, and the data is recorded when the address is confirmed.
  • reproducing data when moving between layers while searching for an address to be reproduced, the address is confirmed using the address verification method according to the present invention, and when the address is confirmed, the data is reproduced.
  • the information storage medium 1800 includes the information storage medium as described above, has a plurality of recording layers, and is a physical ADIP address, which is an address recorded in the information storage medium. Has: PAA).
  • FIG. 19 is a block diagram of a drive in which the recording and reproducing apparatus according to the present invention shown in FIG. 18 is implemented.
  • the drive includes a pickup as the recording / reading unit 1810.
  • the information storage medium 1800 is mounted to the pickup.
  • the drive also includes a host I / F 1, a DSP 2, an RF AMP 3, a SERVO 4, and a SYSTEM CONTROLLER 5 as the controller 1820.
  • the host I / F receives a recording command with data to be recorded from the host (not shown).
  • the system controller 5 performs initialization necessary for recording.
  • the digital signal processor DSP (2) performs ECC encoding by adding additional data such as parity for error correction of data to be recorded received by the PC I / F (1), and then predetermines the ECC encoded data. Modulate in such a way.
  • RF Frequency Amplifier The RF AMP 3 converts data output from the DSP 2 into an RF signal.
  • the pickup 2610 records the RF signal output from the RF AMP 3 to the recording medium 100 once.
  • the servo 4 receives a command necessary for servo control from the system controller 5 and performs servo control of the pickup 2610.
  • the system controller 5 selects the pickup from the even layer to the odd layer, or from the odd layer to the even layer, when the PAA of the layer i to which the pickup is to move is PAAi and the PAA of the layer j to which the pickup is currently is PAAj.
  • C1 a constant for matching the complement relationship of the repetition sequence field.
  • pow (2, x) 2 means x power.
  • the system controller 5 has the following relationship when the pickup moves from an even layer to an odd layer or from an odd layer to an even layer:
  • the system controller 5 selects the pick-up from an even layer to an odd layer or an odd layer to an even layer.
  • r number of bits allocated for the DAU's address sequence field and unit size field
  • pow (2, x) 2 means x power.
  • the system controller 5 has the following relationship when the pickup moves from an even layer to an odd layer or from an odd layer to an even layer:
  • the host PC I / F 1 receives a reproduction command from a host (not shown).
  • the system controller 5 performs initialization necessary for reproduction.
  • the pickup 1810 outputs an optical signal obtained by irradiating a laser beam to the information storage medium 1800 and receiving a laser beam reflected from the information storage medium 1800.
  • the RF AMP 3 converts the optical signal output from the pickup 1810 into an RF signal and provides modulated data obtained from the RF signal to the DSP 2, while providing a servo signal for control obtained from the RF signal.
  • the DSP 2 demodulates the modulated data and outputs the data obtained through ECC error correction.
  • the SERVO 4 receives the servo signal received from the RF AMP 3 and the command necessary for the servo control received from the SYSTEM CONTROLLER 5 to perform servo control on the pickup 1810.
  • the host I / F 1 sends data received from the DSP 2 to the host.
  • 21 is an example of a playback method according to the present invention.
  • the method as described above can also be embodied as computer readable code on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like, and may also be implemented in the form of a carrier wave (for example, transmission over the Internet). Include.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the recording / reproducing method can be easily inferred by programmers in the art to which the present invention belongs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

본 발명에 따라 정보 저장 매체의 다층으로 인해 발생하는 층간 이동 시 효율적으로 주소 확인이 용이하게 되는 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법 제공된다. 본 발명에 따라 복수의 기록층을 가지는 정보 저장 매체는, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지며, 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 소정의 주소 관계를 가지고, 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때도 소정의 주소 관계를 가진다.

Description

정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
본 발명은 정보 저장 매체에 관한 것으로, 특히 복수의 기록층을 가지는 다층 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법에 관한 것이다.
정보 저장 매체(또는 유무선 네트웍을 통한 정보 전송)의 고용량화(대량화)를 위해 고밀도, 다층 등과 같은 다양한 방법들이 고안되고 있다. 일반적으로 층당 고밀도와 다층 두 가지를 병행하여 고용량을 달성한다.
도 1은 3층 정보 저장 매체의 일 예를 도시한다.
도 1을 참조하면, 3층 정보 저장 매체(100)는 제1기록층(110), 제2기록층(120), 제3 기록층(130)를 포함한다.
일반적으로, 픽업은 트랙킹 방향을 따라 각 기록층에서 데이터를 기록하거나 재생한다. 그리고, 현재 기록층에서 다른 기록층으로 이동할 때는 층간 이동을 한다. 도 1에 도시된 바와 같이 픽업(140)은 층간 이동시, 각 기록층의 동일 반경에서 층을 이동한다. 즉, 제1기록층에서 제2기록층으로 이동하거나, 제1기록층에서 제3기록층으로 이동하거나 한다. 이와 같이 픽업이 층간 이동시 이론적으로는 동일한 반경에서 층만 이동한 것으로, 실제 이동한 주소가 동일 반경의 주소이어야 하겠지만, 현실적으로 여러가지 원인, 예를 들어, 픽업의 이동시 발생할 수 있는 기계적인 오차나 매체의 편심 등에 의해 이동한 주소가 정확하지 않을 수 있어서 주소의 확인이 필요하다. 특히, 정보 저장매체가 고용량을 위해 다층으로 구성되는 경우 다층으로 인해 발생하는 층간 이동 시 효율적으로 주소 확인을 하는 것이 더욱 필요하다.
본 발명은 정보 저장 매체의 다층으로 인해 발생하는 층간 이동 시 효율적으로 주소 확인을 용이하게 하는 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법을 제공하는 것을 목적으로 한다.
위와 같은 과제를 해결하기 위해, 복수의 기록층을 가지는 정보 저장 매체에 있어서, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지며, 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000001
를 가지고, 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000002
를 가지는 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법을 제공한다.
위와 같은 본 발명에 의하면, 다층 정보 저장 매체에서 층간 이동시 효율적으로 주소 확인이 가능하다.
도 1은 3층 정보 저장 매체의 일 예를 도시한다.
도 2는 PAA의 구성을 나타낸다.
도 3은 DAU의 구성을 나타낸다.
도 4는 PTP 에서의 어드레스 유닛 넘버를 나타낸다.
도 5는 PTP에서의 물리적 ADIP 어드레스를 나타낸다.
도 6은 OTP에서의 어드레스 유닛 넘버를 나타낸다.
도 7은 OTP에서의 물리적 ADIP 어드레스를 나타낸다.
도 8은 본 발명에 따라 레이어 이동시 주소 확인 방법을 설명하기 위한 참고도이다.
도 9는 PAA의 구성이 3비트의 레이어 넘버 필드(910), 19비트의 어드레스시퀀스 필드(920), 2 비트의 반복 시퀀스 필드(930)로 구성되고, 3번 반복되는 경우의 PAA를 나타낸다.
도 10은 DAU의 구성이 4비트의 레이어 넘버 필드(1010), 23비트의 어드레스 시퀀스 필드(1020), 1비트의 유닛 사이즈 필드(1030)와 같이 28bits로 구성되는 경우의 각 층에서의 DAU를 나타낸다.
도 11은 PAA의 구성이 3비트의 레이어 넘버 필드(1110), 20비트의 어드레스 스 시퀀스 필드(1120), 2 비트의 반복 시퀀스 필드(1130)와 같이 25 bits로 구성되고 3번 반복되는 경우의 각 층에서의 PAA를 나타낸다.
도 12의 (a)는 도 11에 도시된 형태에서의 짝수층에서 홀수층으로 이동시 또는 홀수층에서 짝수층으로 이동시의 주소 관계를 나타낸다.
도 12의 (b)는 짝수 층에서 짝수층으로 이동시 또는 홀수 층에서 홀수 층으로 이동시의 주소 관계를 나타낸다.
도 13은 도 11에 도시된 HC BD=RE & R TL/QL 포맷에서의 FAA, LAA 관계를 나타낸다.
도 14는 Even층에서 odd층으로 (또는 odd층에서 even층으로) 이동시의 주소 관계를 나타낸다.
도 15는 DAU의 구성이 3비트의 레이어 넘버 필드(1510), 24비트의 어드레스 시퀀스 필드(1520), 1 비트의 유닛 사이즈 필드(1530)와 같이 28bits로 구성되는 경우를 나타낸다.
도 16의 (a)는 짝수층에서 홀수층으로, 홀수층에서 짝수층으로 이동시의 주소 관계를 나타낸다.
도 16의 (b)는 짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시)의 주소 관계를 나타낸다.
도 17은 Even층에서 odd층으로 (또는 odd층에서 even층으로) 이동시의 주소 관계를 나타낸다.
도 18은 본 발명에 따른 기록 재생 장치의 개략적인 블록도이다.
도 19는 도 18에 도시된 본 발명에 따른 기록 재생 장치가 구현된 드라이브의 블럭도이다.
도 20은 본 발명에 따른 기록 방법의 일 예이다.
도 21은 본 발명에 따른 재생 방법의 일 예이다.
위와 같은 과제를 해결하기 위한 본 발명의 하나의 특징은, 복수의 기록층을 가지는 정보 저장 매체에 있어서, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지며, 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때,
픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000003
를 가지고,
픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000004
를 가지는 것이다.
본 발명의 다른 특징은, 복수의 기록층을 가지는 정보 저장 매체에 데이터를 기록하는 장치에 있어서, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는, 상기 정보 저장 매체에 데이터를 전달하기 위해 광을 조사하거나 광을 수신하는 픽업과, 데이터 기록을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 데이터를 기록하도록 상기 픽업을 제어하는 제어부를 포함하며, 상기 제어부는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000005
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000006
를 가지는지를 확인하는 것이다.
본 발명의 또 다른 특징은, 복수의 기록층을 가지는 정보 저장 매체로부터 데이터를 재생하는 장치에 있어서, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는, 상기 정보 저장 매체에 데이터를 전달하기 위해 광을 조사하거나 광을 수신하는 픽업과, 데이터 재생을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 데이터를 독출하도록 상기 픽업을 제어하는 제어부를 포함하며, 상기 제어부는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000007
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000008
를 가지는지를 확인하는 것이다.
본 발명의 또 다른 특징은, 복수의 기록층을 가지며, 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는 정보 저장 매체에 데이터를 기록하는 방법에 있어서, 데이터 기록을 위해 픽업이 층간 이동시 이동할 주소를 확인하는 단계와, 데이터를 기록하는 단계를 포함하며, 상기 확인하는 단계는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000009
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000010
를 가지는지를 확인하는 단계를 포함하는 것이다.
본 발명의 또 다른 특징인, 복수의 기록층을 가지며, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는 정보 저장 매체로부터 데이터를 재생하는 방법에 있어서, 데이터 재생을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하는 단계와, 데이터를 재생하는 단계를 포함하며, 상기 확인 단계는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000011
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000012
를 가지는지를 확인하는 단계를 포함하는 것이다. .
먼저, 용어를 정의한다.
PAA: Physical ADIP Address는 정보 저장 매체상에 기록되어 있는 주소를 말한다.
FAA: First ADIP Address는 PAA 중에서 첫번째 주소를 말한다
LAA: Last ADIP Address는 PAA 중에서 마지막 주소를 말한다. FAA, LAA 역시 PAA이다.
DAU: 데이터 어드레스 유닛(Data Address Unit)는 기록/재생 단위 블록 내에 저장되는 주소를 말한다.
FAU: First Address Unit은 DAU 중에서 첫번째 주소를 말한다.
LAU: Last Address Unit 는 DAU 중에서 마지막 주소를 말하며, FAU, LAU 역시 DAU이다.
일반적으로 호스트(Host)가 데이터와 함께 기록할 논리 주소를 기록/재생 장치에 전송하면, 기록/재생 장치는 상기 논리 주소에 해당하는 정보 저장 매체상의 물리 주소를 PAA를 통해 찾고, 상기 데이터를 위한 기록/재생 단위 블록 내에 DAU를 저장하여 상기 물리 주소에 기록을 한다. 재생 시는 재생할 데이터에 대한 논리 주소를 호스트로부터 전송받아 상기 논리 주소에 해당하는 물리주소를 기록/재생 단위 블록 내의 DAU를 통해 찾고 해당 데이터를 재생한다.  
도 2는 PAA의 구성을 나타낸다.
도 2를 참조하면, PAA(200)는 레이어 넘버 필드(Layer number field)(210)와 어드레스 시퀀스 필드(Address sequence field)(220)와, 반복 시퀀스 필드(Repetition sequence field)(230)를 포함한다.
도 3은 DAU의 구성을 나타낸다.
도 3을 참조하면, DAU(300)는 레이어 넘버 필드(Layer number field)(310), 어드레스 시퀀스 필드(Address sequence field)(320), 유닛 사이즈 필드(Unit size field)(330)를 포함한다.  
레이어 넘버 필드(Layer number field)(210,310)는 해당 주소가 해당하는 층을 나타낸다. 예를 들어 n 층(L0~Ln-1)의 정보 저장 매체인 경우 이 필드의 값이 k이면 Lk를 층을 나타낸다(k=0,1,2,...,n-1).
어드레스 시퀀스 필드(Address sequence field)(220,320)는 레이어 넘버 필드(Layer number field)에 해당하는 층에서의 어드레스를 나타내다. 그 단위는 섹터(sector), 기록/재생 단위 블록, 또는 섹터(sector)의 배수 등일 수 있다.
리피티션 시퀀스 필드(Repetition sequence field)(230): 개개의 PAA가 반복될 때 반복되는 PAA들을 나타내기 위한 것이다. 예를 들어 PAA가 3번 반복된다고 했을 때 2bit를 할당하여 00,01,10으로 나타내어, 반복되는 PAA들의 시퀀스(sequence)를 나타낼 수 있다. 만일 PAA가 반복되지 않고 한 번만 기록/저장 되어 있다면 이 필드에는 어떤 bit도 할당되지 않는다.
유닛 사이즈 필드(Unit size field)(330): 정보 저장 매체의 어드레스를 나타내기 위한 기본 단위가 정해져 있을 때 어드레스 시퀀스 필드의 유닛 사이즈(Unit size)를 정의하기 위한 필드이다. 예를 들어 정보 저장 매체의 어드레스를 나타내기 위한 기본 단위가 섹터라 했을 때 어드레스 시퀀스(Address sequence)를 2 섹터 단위로 나타내고 싶다고 한다면 이 필드에 1 bit를 할당하고 그 값을 0으로 고정하면 된다. 만일 어드레스 시퀀스의 단위가 기본 단위와 동일하다면 이 필드에는 어떤 bit도 할당되지 않는다. 
n층(n=3 이상)의 디스크형 정보 저장 매체에 있어서 물리주소를 나타내기 위한 PAA/DAU를 구성하는 레이어 넘버 필드(Layer number field)는 정보 저장 매체의 레이어(layer) 번호 증가에 따라 순차적을 증가 또는 감소하고 어드레스 시퀀스 필드(Address sequence field)는 트랙킹 방향에 따라 일정 단위로 순차적으로 증가 또는 감소하며, 상기 어드레스 시퀀스는 인접층의 PAA/DAU의 어드레스 시퀀스와 보수(Complement)관계를 나타낸다.
다층 디스크에 주소를 배열하는 방법은 패럴랠 트랙 패스(Parallel Track Path(PTP)), 오포짓 트랙 패스(Opposite Track Path(OTP)) 두 가지 종류로 나눌 수 있다.
PTP는 도 4,5에 도시된 바와 같이 정보 저장 매체의 모든 층에서 트랙킹(Tracking) 방향이 같은 경우를 말하고 OTP는 도 6,7와 같이 그 트랙킹 방향이 인접층과 서로 반대인 경우를 말한다.
도 4는 PTP 에서의 어드레스 유닛 넘버, 도 5는 PTP에서의 물리적 ADIP 어드레스, 도 6은 OTP에서의 어드레스 유닛 넘버, 도 7은 OTP에서의 물리적 ADIP 어드레스를 나타낸다.
OTP 나 PTP 모두 트래킹 방향에 따라 어드레스 시퀀스는 일정단위로 증가하거나 일정단위로 감소한다. 다만, OTP에서는 인접층에서 트랙킹 방향이 서로 반대이기 때문에 예를 들어, 내주에서 외주 방향으로 보았을 때 홀수 층에서 어드레스 시퀀스가 일정단위로 증가한다면 짝수 층에서는 어드레스 시퀀스가 일정단위로 감소한다. 따라서, OTP의 경우에는 인접층으로 픽업이 이동시 주소를 확인할 수 있는 방법이 필요하며, 본 발명에 따른 레이어 이동시 주소 확인 방법은 다음과 같다.
도 8은 본 발명에 따라 레이어 이동시 주소 확인 방법을 설명하기 위한 참고도이다.
도 8을 참조하면, 짝수(Even)층에서 홀수(odd)층으로 이동 시 (또는 홀수(odd)층에서 짝수(even)층으로 이동 시), 현재 층의 주소와 이동할 층의 주소 관계(810)는 일반적으로 나타내면, 다음과 같다.
Figure PCTKR2010001501-appb-I000013
그리고, 짝수(Even)층에서 홀수(odd)층으로 이동 시 (또는 홀수(odd)층에서 짝수(even)층으로 이동 시), HC BD의 경우(820)는 다음과 같다.
Figure PCTKR2010001501-appb-I000014
여기서, 수식 위의 바(bar)는 수식이 되는 값의 보수를 취한 것을 말한다. 즉, 예를 들어 하나만 살펴보면, PAAi는 "PAAj + (7-(i+j))*40 00 00h + 00 00 01h"에 보수를 취한 것을 말한다.
짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시), 현재 층의 주소와 이동할 층의 주소 관계 (830)는 다음과 같다.
Figure PCTKR2010001501-appb-I000015
짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시), HC-BD의 경우(840)는 다음과 같다.
Figure PCTKR2010001501-appb-I000016
여기서, j가 현재 픽업이 있는 층이고 i가 픽업이 이동할 층일 때, 픽업이 i층으로 이동 후 주소(PAAi)의 확인 방법은 j층의 주소 PAAj로부터 상기 식들에 의해 i 층에 제대로 층 이동을 해 왔는지를 알 수 있다.
 위의 식들에서,
s = PAA의 레이어 넘버 필드를 위해 할당된 bit 수
t = PAA의 어드레스 시퀀스 필드와 반복 시퀀스 필드를 위해 할당된 bit 수
즉, PAA를 위해 할당된 bit 수는 "s+t" 인 셈이다.
q = DAU의 레이어 넘버 필드를 위해 할당된 bit 수
r = DAU의 어드레스 시퀀스 필드와 유닛 사이즈 필드를 위해 할당된 bit 수
즉, DAU를 위해 할당된 bit 수는 "q+r" 인 셈이다.
C1 = 반복 시퀀스 필드(Repetition sequence field)의 보수(Complement) 관계를 맞추기 위한 상수
C2 = 유닛 사이즈 필드(Unit size field)의 보수(Complement) 관계를 맞추기 위한 상수
pow(2,x) = 2의 x승을 의미한다. 
도 8에 도시된 주소 관계가 도출되는 구체적인 예로써 도 5, 6의 OTP의 4층의 디스크형 정보 저장 매체를 고려하여 이하에서 상세히 설명한다.
도 9는 PAA의 구성이 3비트의 레이어 넘버 필드(910), 19비트의 어드레스시퀀스 필드(920), 2 비트의 반복 시퀀스 필드(930)로 구성되고, 3번 반복되는 경우의 각 층에서의 PAA를 나타낸다.
도 9를 참조하면, 레이어 넘버 필드(910)의 값은 L0에서 L3로 갈수록 1씩 증가한다. 어드레스 시퀀스 필드(920)의 값은 인접층에서 서로 보수관계이다. 그리고, 반복 시퀀스 필드(930)의 값은 L0와 L2에서의 배열이 동일하고, 또 L1과 L3에서의 배열이 동일하며, 인접층에서는 서로 배열이 반대이다.
도 9의 PAA 들에서, 구체적으로, 짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시)는 다음과 같다.
Figure PCTKR2010001501-appb-I000017
위 식에서 PAA2는 PAA0에 40 00 00h를 더하면 됨을 나타낸다. 도 9를 참조하면, PAA0와 PAA2는 다음과 같다.
PAA0= 000 AA20..AA2 00 01 10 이 되고,
PAA2= 010 AA20..AA2 00 01 10 이 된다.
PAA0와 PAA2를 비교하면, PAA2의 어드레스 시퀀스 넘버와 반복 시퀀스 넘버는 PAA0의 그것과 동일하고 단지 레이어 넘버만이 다르다. 따라서, PAA2는 PAA0에다가 레이어 넘버에 해당하는 비트값만 더하면 됨을 알 수 있다.
즉, PAA0는 3비트의 레이어 넘버(000), 19비트의 어드레스 시퀀스 넘버, 2비트의 리피티션 시퀀스 넘버로 구성되고, PAA2은 3비트의 레이어 넘버(010), 19비트의 어드레스 시퀀스넘버와 2비트의 리피티션 시퀀스 넘버로 구성된다.
즉, PAA0는 000AAAAAAAAAAAAAAAAAAARR,
PAA2는 010AAAAAAAAAAAAAAAAAAARR 이 된다.
여기서, A는 19비트의 어드레스 시퀀스 넘버를 나타내고, R은 2비트의 리피티션 시퀀스 넘버를 나타낸다. 앞서 말한 바와 같이 PAA2의 어드레스 시퀀스 넘버와 반복 시퀀스 넘버는 PAA0의 그것과 동일하므로, PAA2는 PAA0에 "01000000 00000000 00000000"만을 더해주면 되며, 이는 16진수로 나타내면 40 00 00h가 된다.
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000018
도 9의 PAA 들에서, 짝수(Even)층에서 홀수(odd)층으로 이동 시 (또는 홀수(odd)층에서 짝수(even)층으로 이동 시)는 다음과 같다.
Figure PCTKR2010001501-appb-I000019
위 식에서 PAA1은 PAA0에 C0 00 01h를 더하고 보수를 취하면 됨을 나타낸다. 도 9를 참조하면, PAA0와 PAA1을 보면, PAA1의 레이어 넘버(910)는 PAA0의 레이어 넘버에 1을 더한 값이고, PAA1의 어드레스 시퀀스 넘버(920)는 PAA0의 어드레스 시퀀스 넘버 값에 보수를 취한 값이고, PAA1의 반복 시퀀스 넘버(930)는 PAA0의 반복 시퀀스 넘버값과 순서가 다르다. 즉, PAA0의 반복 시퀀스 넘버는 00 01 10이며, PAA1의 반복 시퀀스 넘버는 순서가 다르기 때문에 10 01 00 이 된다. PAA0에 C0 00 01h를 더하고 보수를 취하여 PAA1을 구하는 식의, "C0 00 01h"에서 C에 관한 부분은 PAA0와 PAA1의 레이어 넘버의 차이를 고려한 값이고, 1에 관한 부분은 PAA0와 PAA1의 반복 시퀀스 넘버의 차이를 고려한 값이다.
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000020
위 식에서도 (7-(i+j))*20 00 00h에 관한 부분은 레이어 넘버를 고려한 부분이고, 00 00 01h는 반복 시퀀스 넘버를 고려한 부분이다.
도 10은 DAU의 구성이 4비트의 레이어 넘버 필드(1010), 23비트의 어드레스 시퀀스 필드(1020), 1비트의 유닛 사이즈 필드(1030)와 같이 28bits로 구성되는 경우의 각 층에서의 DAU를 나타낸다.
도 10을 참조하면, 레이어 넘버 필드(1010)의 값은 L0에서 L3로 갈수록 1씩 증가한다. 어드레스 시퀀스 필드(1020)의 값은 인접층에서 서로 보수관계이다. 그리고, 유닛 사이즈 필드(1030)의 값은 모두 0으로 동일하다.
짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시)는 구체적으로 다음과 같다.
Figure PCTKR2010001501-appb-I000021
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000022
짝수(Even)층에서 홀수(odd)층으로 이동 시 (또는 홀수(odd)층에서 짝수(even)층으로 이동 시)는 구체적으로 다음과 같다.
Figure PCTKR2010001501-appb-I000023
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000024
도 11은 PAA의 구성이 3비트의 레이어 넘버 필드(1110), 20비트의 어드레스 스 시퀀스 필드(1120), 2 비트의 반복 시퀀스 필드(1130)와 같이 25 bits로 구성되고 3번 반복되는 경우의 각 층에서의 PAA를 나타낸다. 도 11의 예가 HC BD-RE & R TL/QL(High Capacity Blu-ray Disc Rewritable & Recordable Triple layer/Quadruple layer)에 적용되는 형태이다.
도 12의 (a)는 도 11에 도시된 형태에서의 짝수층에서 홀수층으로 이동시 또는 홀수층에서 짝수층으로 이동시의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000025
개별적으로는 위와 같이 나타나고 이를 일반화된 식으로 나타내면 다음과 같다.
Figure PCTKR2010001501-appb-I000026
도 12의 (b)는 짝수 층에서 짝수층으로 이동시 또는 홀수 층에서 홀수 층으로 이동시의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000027
개별적으로는 상기와 같이 나타내고, 이를 일반화된 식으로 나타내면 다음과 같다.
Figure PCTKR2010001501-appb-I000028
도 13은 도 11에 도시된 HC BD=RE & R TL/QL 포맷에서의 FAA, LAA 관계를 나타낸다.
FAA0,FAA1,FAA2,FAA3,LAA0,LAA1,LAA2,LAA3도 PAA이므로 동일한 수식이 적용된다.
도 14는 Even층에서 odd층으로 (또는 odd층에서 even층으로) 이동시의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000029
도 15는 DAU의 구성이 3비트의 레이어 넘버 필드(1510), 24비트의 어드레스 시퀀스 필드(1520), 1 비트의 유닛 사이즈 필드(1530)와 같이 28bits로 구성되는 경우를 나타낸다.
도 15를 참조하면, 레이어 넘버 필드(1510)의 값은 L0에서 L3로 갈수록 1씩 증가한다. 어드레스 시퀀스 필드(1520)의 값은 인접층에서 서로 보수관계이다. 그리고, 유닛 사이즈 필드(1530)의 값은 모두 0으로 동일하다.
도 16의 (a)는 짝수층에서 홀수층으로, 홀수층에서 짝수층으로 이동시의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000030
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000031
도 16의 (b)는 짝수(Even)층에서 짝수(even)층으로 이동 시 (또는 홀수(odd)층에서 홀수(odd)층으로 이동 시)의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000032
개별적으로는 상기와 같이 나타나고 이를 일반화된 식으로 나타내면 아래와 같다.
Figure PCTKR2010001501-appb-I000033
FAU0,FAU1,FAU2,FAU3,LAU0,LAU1,LAU2,LAU3도 PAA의 특수한 경우들이므로 동일한 수식이 적용된다.
도 17은 Even층에서 odd층으로 (또는 odd층에서 even층으로) 이동시의 주소 관계를 나타낸다.
Figure PCTKR2010001501-appb-I000034
도 18은 본 발명에 따른 기록 재생 장치의 개략적인 블록도이다.
도 18을 참조하면, 본 실시예에 따른 장치는 기록/독출부(1810), 제어부(1820)를 포함한다.
기록/독출부(1810)는 제어부(1820)의 제어에 따라 본 실시예에 따른 정보저장매체(1800)에 데이터를 기록하고, 기록된 데이터를 독출한다.
제어부(1820)는 기록 매체(1800)에 데이터를 기록하거나 독출하도록 기록/독출부(1810)를 제어한다. 사실상 본 발명에 따라 설명한 주소 확인 방법은 데이터를 기록할 때나 데이터를 재생할 때 모두 적용된다. 즉, 데이터 기록시, 기록하려는 주소를 찾다가 층간 이동이 필요한 경우 본 발명에 따른 주소 확인 방법을 이용하여 주소를 확인하고 주소가 확인되면 데이터를 기록한다. 또한, 데이터 재생시, 재생하려는 주소를 찾다가 층간 이동이 필요한 경우 본 발명에 따른 주소 확인 방법을 이용하여 주소를 확인하고, 주소가 확인되면 데이터를 재생한다.
기록측면의 장치와 재생 측면의 장치는 별개의 장치로 구현될 수도 있고, 도 18에 도시된 바와 같이 하나의 시스템으로 구현될 수도 있다.
정보 저장 매체(1800)는 이상에서 설명한 바와 같은 정보 저장 매체를 포함하며, 복수의 기록층을 가지고, 또한 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP(ADdress In Pre-groove) Address:PAA)를 가진다.
도 19는 도 18에 도시된 본 발명에 따른 기록 재생 장치가 구현된 드라이브의 블럭도이다.
도 19를 참조하면, 드라이브는 기록/독출부(1810)로서 픽업을 구비한다. 정보 저장 매체(1800)는 픽업에 장착되어 있다. 또한, 드라이브는 제어부(1820)로서 호스트 I/F(1), DSP(2), RF AMP(3), SERVO(4) 및 SYSTEM CONTROLLER(5)를 구비한다.
기록시, 호스트 I/F(1) 즉, 호스트 인터페이스는 호스트(도시되지 않음)로부터 기록할 데이터와 함께 기록 명령을 받는다. 시스템 콘트롤러(SYSTEM CONTROLLER)(5)는 기록에 필요한 초기화를 수행한다. 디지털 신호 처리기(Digital signal Processor)DSP(2)는 PC I/F(1)로 받은 기록할 데이터를 에러 정정을 위해 패리티 등 부가 데이터를 첨가하여 ECC 인코딩을 수행한 다음 ECC 인코딩된 데이터를 미리 정해진 방식으로 변조한다. RF 증폭기(Radio Frequency Amplifier)RF AMP(3)는 DSP(2)로부터 출력된 데이터를 RF 신호로 바꾼다. 픽업(2610)은 RF AMP(3)로부터 출력된 RF 신호를 한번 기록 매체(100)에 기록한다. 서보(SERVO)(4)는 시스템 콘트롤러(5)로부터 서보 제어에 필요한 명령을 입력받아 픽업(2610)을 서보 제어한다.
특히, 본 발명에 따른 시스템 콘트롤러(5)는 데이터 기록을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 확인된 주소에 데이터를 기록하도록 상기 픽업을 제어한다.
상기 시스템 콘트롤러(5)는, 상기 픽업이 이동할 층 i의 PAA는 PAAi이고, 현재 픽업이 있는 층 j의 PAA는 PAAj 일 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000035
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000036
를 가지는지를 확인한다.  위의 식들에서,
s = PAA의 레이어 넘버 필드를 위해 할당된 bit 수
t = PAA의 어드레스 시퀀스 필드와 반복 시퀀스 필드를 위해 할당된 bit 수
C1 = 반복 시퀀스 필드(Repetition sequence field)의 보수(Complement) 관계를 맞추기 위한 상수를 말한다.
pow(2,x) = 2의 x승을 의미한다. 
특히, 정보 저장매체가 HC BD 인 경우, 상기 시스템 콘트롤러(5)는, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000037
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000038
를 가지는지를 확인한다.
DAU에 대해서도 마찬가지로 적용된다.
즉, 상기 시스템 콘트롤러(5)는, 상기 픽업이 이동할 층 i의 DAU는 DAUi이고, 현재 픽업이 있는 층 j의 DAU는 DAUj 일 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000039
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000040
를 가지는지를 확인한다.
위 식에서, q = DAU의 레이어 넘버 필드를 위해 할당된 bit 수
r = DAU의 어드레스 시퀀스 필드와 유닛 사이즈 필드를 위해 할당된 bit 수
C2 = 유닛 사이즈 필드(Unit size field)의 보수(Complement) 관계를 맞추기 위한 상수
pow(2,x) = 2의 x승을 의미한다. 
또한, DAU에 대해서는, 상기 시스템 콘트롤러(5)는, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000041
를 가지고,
상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
Figure PCTKR2010001501-appb-I000042
를 가지는지를 확인한다.
재생시, 호스트 PC I/F(1)는 호스트(도시되지 않음)로부터 재생 명령을 받는다. 시스템 콘트롤러(5)는 재생에 필요한 초기화를 수행한다. 픽업(1810)은 정보 저장 매체 (1800)에 레이저 빔을 조사하고 정보 저장 매체(1800)로부터 반사된 레이저 빔을 수광하여 얻어진 광 신호를 출력한다. RF AMP(3)는 픽업(1810)으로부터 출력된 광 신호를 RF 신호로 바꾸고 RF 신호로부터 얻어진 변조된 데이터를 DSP(2)로 제공하는 한편, RF 신호로부터 얻어진 제어를 위한 서보 신호를 SERVO(4)로 제공한다. DSP(2)는 변조된 데이터를 복조하고 ECC 에러 정정을 거쳐 얻어진 데이터를 출력한다. 한편, SERVO(4)는 RF AMP(3)로부터 받은 서보 신호와 SYSTEM CONTROLLER(5)로부터 받은 서보 제어에 필요한 명령을 받아 픽업(1810)에 대한 서보 제어를 수행한다. 호스트 I/F(1)는 DSP(2)로부터 받은 데이터를 호스트로 보낸다.
특히, 본 발명에 따른 시스템 콘트롤러(5)는 특히 데이터 재생을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 확인된 주소에서 데이터를 독출하도록 상기 픽업을 제어한다.
재생할 때도 기록할 때와 마찬가지로 위와 같은 주소 관계에 의해 주소를 확인한다.
도 20은 본 발명에 따른 기록 방법의 일 예이다.
도 20을 참조하면, 데이터 기록 명령을 수신하면(2010), 데이터 기록 명령에 따르는 주소를 찾는다. 이때 데이터를 기록할 주소를 찾기 위해 픽업의 층간 이동이 발생한 경우 주소를 확인한다(2020). 이때 주소 확인시, 앞서 도 19를 참조하여 설명한 바와 같이 시스템 콘트롤러(5)는 앞서 설명한 바와 같은 주소 확인 방법에 의해 주소 관계를 확인한다.
주소가 확인되면 확인된 주소에 데이터를 기록한다(2030).
도 21은 본 발명에 따른 재생 방법의 일 예이다.
도 21을 참조하면, 데이터 재생 명령을 수신하면(2110), 데이터 기록 명령에 따르는 주소를 찾는다. 이때 데이터를 재생할 주소를 찾기 위해 픽업의 층간 이동이 발생한 경우 주소를 확인한다(2120). 이때 주소 확인시, 앞서 도 19를 참조하여 설명한 바와 같이 시스템 콘트롤러(5)는 앞서 설명한 바와 같은 주소 확인 방법에 의해 주소 관계를 확인한다.
주소가 확인되면 확인된 주소로부터 데이터를 재생한다(2130).
이상 설명한 바와 같은 방법은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 기록 재생 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (5)

  1. 복수의 기록층을 가지는 정보 저장 매체에 있어서,
    상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지며,
    픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때,
    픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000043
    를 가지고,
    픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000044
    를 가지는 것을 특징으로 하는 정보 저장 매체.
  2. 복수의 기록층을 가지는 정보 저장 매체에 데이터를 기록하는 장치에 있어서,
    상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는, 상기 정보 저장 매체에 데이터를 전달하기 위해 광을 조사하거나 광을 수신하는 픽업과,
    데이터 기록을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 데이터를 기록하도록 상기 픽업을 제어하는 제어부를 포함하며,
    상기 제어부는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000045
    를 가지고,
    상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000046
    를 가지는지를 확인하는 것을 특징으로 하는 기록 장치.
  3. 복수의 기록층을 가지는 정보 저장 매체로부터 데이터를 재생하는 장치에 있어서,
    상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는, 상기 정보 저장 매체에 데이터를 전달하기 위해 광을 조사하거나 광을 수신하는 픽업과,
    데이터 재생을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하고, 데이터를 독출하도록 상기 픽업을 제어하는 제어부를 포함하며,
    상기 제어부는, 상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000047
    를 가지고,
    상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000048
    를 가지는지를 확인하는 것을 특징으로 하는 재생 장치.
  4. 복수의 기록층을 가지며, 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는 정보 저장 매체에 데이터를 기록하는 방법에 있어서,
    데이터 기록을 위해 픽업이 층간 이동시 이동할 주소를 확인하는 단계와,
    데이터를 기록하는 단계를 포함하며,
    상기 확인하는 단계는,
    상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000049
    를 가지고,
    상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000050
    를 가지는지를 확인하는 단계를 포함하는 것을 특징으로 하는 기록 방법.
  5. 복수의 기록층을 가지며, 상기 정보 저장 매체에 기록되어 있는 주소인 물리적 ADIP 어드레스(Physical ADIP Address:PAA)를 가지는 정보 저장 매체로부터 데이터를 재생하는 방법에 있어서,
    데이터 재생을 위해 상기 픽업이 층간 이동시 이동할 주소를 확인하는 단계와,
    데이터를 재생하는 단계를 포함하며,
    상기 확인 단계는,
    상기 픽업이 이동할 층 i의 어드레스는 PAAi이고, 현재 픽업이 있는 층 j의 어드레스는 PAAj 이며, n은 기록층의 수를 나타낼 때, 상기 픽업이 짝수층에서 홀수층으로, 또는 홀수층에서 짝수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000051
    를 가지고,
    상기 픽업이 짝수층에서 짝수층으로, 또는 홀수층에서 홀수층으로 이동할 때는 다음과 같은 관계:
    Figure PCTKR2010001501-appb-I000052
    를 가지는지를 확인하는 단계를 포함하는 것을 특징으로 하는 재생 방법.
PCT/KR2010/001501 2009-03-10 2010-03-10 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법 WO2010104328A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10751019A EP2407968A4 (en) 2009-03-10 2010-03-10 INFORMATION MEMORY MEDIA, RECORD PLAYER, AND RECORD PLAYER PROCESS
CN201080011818.3A CN102349104B (zh) 2009-03-10 2010-03-10 信息存储介质、用于再现记录的设备和用于再现记录的方法
JP2011553950A JP5555267B2 (ja) 2009-03-10 2010-03-10 情報記録媒体、記録再生装置及び記録再生方法
US13/227,536 US8488420B2 (en) 2009-03-10 2011-09-08 Information storage medium, apparatus for reproducing recordings, and method for reproducing recordings

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20090020407 2009-03-10
KR10-2009-0020407 2009-03-10
KR10-2009-0026957 2009-03-30
KR20090026957 2009-03-30
KR1020100021331A KR101683791B1 (ko) 2009-03-10 2010-03-10 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
KR10-2010-0021331 2010-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/227,536 Continuation US8488420B2 (en) 2009-03-10 2011-09-08 Information storage medium, apparatus for reproducing recordings, and method for reproducing recordings

Publications (2)

Publication Number Publication Date
WO2010104328A2 true WO2010104328A2 (ko) 2010-09-16
WO2010104328A3 WO2010104328A3 (ko) 2010-12-09

Family

ID=43007341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001501 WO2010104328A2 (ko) 2009-03-10 2010-03-10 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법

Country Status (6)

Country Link
US (1) US8488420B2 (ko)
EP (1) EP2407968A4 (ko)
JP (1) JP5555267B2 (ko)
KR (1) KR101683791B1 (ko)
CN (1) CN102349104B (ko)
WO (1) WO2010104328A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9430366B2 (en) * 2014-08-14 2016-08-30 Oracle International Corporation Distributed logical track layout in optical storage tape

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303225A (en) * 1989-10-30 1994-04-12 Matsushita Electrical Industrial Co., Ltd. Multi-layered optical disk with track and layer identification
JP3995659B2 (ja) * 1995-10-19 2007-10-24 松下電器産業株式会社 光ディスク再生方法および光ディスク再生装置
KR100305562B1 (ko) * 1995-10-19 2001-10-29 모리시타 요이찌 정보저장매체,정보재생방법및정보재생장치
JP3898430B2 (ja) * 2000-09-18 2007-03-28 株式会社日立製作所 光記録装置およびそれに用いる光ディスク
JP4101666B2 (ja) * 2002-01-22 2008-06-18 松下電器産業株式会社 情報記録媒体、記録装置、再生装置、記録方法、再生方法
JP4295474B2 (ja) * 2002-05-24 2009-07-15 ソニー株式会社 ディスク記録媒体、ディスクドライブ装置、ディスク製造方法
EP1530791B1 (en) * 2002-08-22 2010-10-20 LG Electronics, Inc. High-density optical disc and recording/reproducing method thereof
JP2005025821A (ja) * 2003-06-30 2005-01-27 Sony Corp 記録媒体、記録再生装置、記録再生方法
JP4713839B2 (ja) * 2004-03-17 2011-06-29 株式会社日立エルジーデータストレージ 光ディスク装置及びそのフォーカスジャンプ制御方法
KR20060007143A (ko) * 2004-07-19 2006-01-24 삼성전자주식회사 기록 매체를 포맷하기 위한 방법, 호스트 장치 및기록/재생 장치
EP1834332A1 (en) * 2004-12-08 2007-09-19 Koninklijke Philips Electronics N.V. Extending the addressing space of record carriers
JP4604806B2 (ja) * 2005-04-12 2011-01-05 ソニー株式会社 記録装置
JP4830426B2 (ja) * 2005-09-28 2011-12-07 ソニー株式会社 光記録媒体、記録装置、記録又は再生装置、記録方法、記録又は再生方法
WO2008015974A1 (fr) * 2006-08-01 2008-02-07 Panasonic Corporation Support d'enregistrement optique et dispositif de reproduction
KR101292728B1 (ko) * 2006-11-17 2013-08-01 삼성전자주식회사 광 기록 매체, 광 기록 매체 성형 장치 및 방법, 기록 재생장치 및 방법
KR20080051461A (ko) * 2006-12-05 2008-06-11 삼성전자주식회사 다층 광 기록 매체 및 다층 광 기록 매체의 어드레스 할당방법, 재생 장치, 재생 방법, 기록 방법
KR101453296B1 (ko) * 2008-01-10 2014-10-21 삼성전자주식회사 정보 저장 매체, 기록/재생 장치 및 기록/재생 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2407968A4

Also Published As

Publication number Publication date
KR101683791B1 (ko) 2016-12-20
US20110317529A1 (en) 2011-12-29
EP2407968A4 (en) 2012-08-15
EP2407968A2 (en) 2012-01-18
US8488420B2 (en) 2013-07-16
JP5555267B2 (ja) 2014-07-23
CN102349104B (zh) 2015-03-11
CN102349104A (zh) 2012-02-08
WO2010104328A3 (ko) 2010-12-09
JP2012520536A (ja) 2012-09-06
KR20100102071A (ko) 2010-09-20

Similar Documents

Publication Publication Date Title
KR200141095Y1 (ko) 디스크 기록장치
ATE98803T1 (de) Plattenaufzeichnungsgeraet.
CN1930612B (zh) 信息记录装置和方法以及用于记录控制的计算机程序
KR100531559B1 (ko) 정보기록재생장치및방법
WO2010104328A2 (ko) 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
WO2010098592A2 (ko) 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
JPH0528572A (ja) 光磁気デイスク記録再生装置
WO2010093212A2 (ko) 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
KR100886964B1 (ko) 광신호기록/재생장치, 기록보상방법 및 재생처리방법
KR100601637B1 (ko) 트랙 횡단 신호로부터 노이즈를 제거하는 방법, 이에기초한 광 디스크 드라이브 제어 방법, 노이즈 제거 장치,광 디스크 드라이브, 및 재생 장치
KR100220703B1 (ko) 디브이디알 시스템의 트래킹 서보 장치
KR20010087922A (ko) 광디스크의 트래킹 에러를 검출하기 위한 서보장치
JP2841753B2 (ja) 光磁気記録再生装置
DK548288D0 (da) Apparat til gengivelse af data
JPS59178629A (ja) デイスク再生装置のサ−ボ回路
KR100220702B1 (ko) 디브이디알 시스템의 포커싱 서보 장치
SU1571664A1 (ru) Устройство дл оптической записи и воспроизведени информации на дисковый носитель
KR100272096B1 (ko) 광디스크 재생장치의 탐색동작시 포커스 구동수단의 방열 방지장치
KR970004971Y1 (ko) 광디스크 장치
KR19990033795A (ko) 디스크의 데이터 재생방법
JPS5938980A (ja) 情報再生装置のサ−ボコントロ−ル回路
KR100243211B1 (ko) 오디오동기신호처리방법
KR100268471B1 (ko) 광디스크 재생기기의 위상보상회로
JPS6289238A (ja) フオ−カスサ−ボ回路
JPH01144274A (ja) 情報記録再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011818.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751019

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2010751019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010751019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011553950

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE