WO2010104074A1 - Composition for forming resist underlayer film which comprises polymer having acetal structure in side chain thereof, and method for forming resist pattern - Google Patents

Composition for forming resist underlayer film which comprises polymer having acetal structure in side chain thereof, and method for forming resist pattern Download PDF

Info

Publication number
WO2010104074A1
WO2010104074A1 PCT/JP2010/053885 JP2010053885W WO2010104074A1 WO 2010104074 A1 WO2010104074 A1 WO 2010104074A1 JP 2010053885 W JP2010053885 W JP 2010053885W WO 2010104074 A1 WO2010104074 A1 WO 2010104074A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist underlayer
underlayer film
component
polymer
Prior art date
Application number
PCT/JP2010/053885
Other languages
French (fr)
Japanese (ja)
Inventor
高広 岸岡
貴広 浜田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011503825A priority Critical patent/JPWO2010104074A1/en
Publication of WO2010104074A1 publication Critical patent/WO2010104074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Definitions

  • the present invention relates to a resist underlayer film forming composition and a method for forming a resist pattern using a resist underlayer film formed from the composition, and more specifically, a resist capable of further reducing development residue when an alkaline developer is used.
  • the present invention relates to an underlayer film forming composition and a resist pattern forming method using a resist underlayer film formed from the composition.
  • the antireflection film used in this method is required to be a film that can be dissolved in an alkaline developer used for developing a photoresist and developed and removed simultaneously with the photoresist.
  • an antireflection film that can be developed and removed simultaneously with the photoresist see Patent Documents 2 to 6).
  • This type of antireflection film is typically composed of a polymer having a hydroxy group and / or a carboxyl group in the side chain, a vinyl ether crosslinking agent, and a photoacid generator.
  • a chromophore that absorbs light at an exposure wavelength such as KrF is incorporated into the film-forming polymer.
  • a polymer comprising at least one repeating unit having a hydroxyl group and / or at least one repeating unit having a carboxyl group, a crosslinking agent having a terminal vinyl ether group, and in some cases, a photoacid generator and / or an acid and / or Alternatively, an antireflection film-forming composition containing a thermal acid generator has been proposed (see Patent Document 7).
  • the polymer of this antireflection film-forming composition reacts with a crosslinking agent having a vinyl ether group and is crosslinked by an acetal bond. Thereafter, an acid is generated during exposure from the photoacid generator contained in the obtained antireflective film and resist, and the acetal bond is removed and decrosslinked by the acid to dissolve in an alkali developer.
  • the polymer after being decrosslinked has a low alkali solubility and easily causes a residue.
  • One of the reasons why the polymer is difficult to dissolve in an alkaline developer is largely due to the hydrophobicity of the chromophore contained in the polymer.
  • This invention is made
  • the subject is by making a polymer contain the highly hydrophobic chromophore by the acetal bond represented by following formula (I) or formula (II). Solved. Due to the acid generated during exposure, not only the acetal cross-linking structure with the cross-linking agent, but also the bond represented by the following formula (I) or formula (II) is cleaved, and as a result, the chromophore part is detached from the polymer. Resist underlayer film forming composition that improves alkali solubility and can reduce generation of residue even if resist underlayer film is developed using alkaline developer, and resist pattern using resist underlayer film formed from the composition It is to provide a forming method.
  • the present invention also provides a resist underlayer film forming composition for forming a resist underlayer film having strong absorption against short-wavelength light such as ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm). There is to do. Furthermore, the present invention effectively absorbs the reflected light from the semiconductor substrate when using the irradiation light of the ArF excimer laser and the KrF excimer laser for fine processing in the lithography process, and intermixing with the photoresist film. It is providing the resist underlayer film forming composition for forming the resist underlayer film which does not raise
  • the first aspect of the present invention is: It is a resist underlayer film forming composition containing (A) component, (B) component, and a solvent.
  • (A) Component Polymer (B) component having a weight average molecular weight of 1,000 to 200,000 having a structural unit represented by the following formula (1): Crosslinkable compound ⁇ Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and P represents a divalent organic compound.
  • Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group), a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, or 1 to 10 carbon atoms.
  • a naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group) having at least one substituent selected from the group consisting of alkyl groups and aryl groups.
  • the second aspect of the present invention is: It is a resist underlayer film forming composition containing (A ') component, (B) component, and a solvent.
  • Component Crosslinkable compound ⁇ In the formula, R 1 represents a hydrogen atom or a methyl group, R 6 represents a benzene ring or a direct bond, P represents a divalent organic group, Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene At least one substituent selected from the group consisting of a ring (anthracenyl group) or a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms,
  • a third aspect of the present invention includes a step of applying the resist underlayer film forming composition of the present invention on a semiconductor substrate and baking to form a resist underlayer film, a step of forming a photoresist film on the resist underlayer film, A method of forming a photoresist pattern for use in manufacturing a semiconductor device, comprising: exposing a semiconductor substrate coated with a resist underlayer film and the photoresist film; and developing the photoresist film and the resist underlayer film after exposure It is.
  • a chromophore (a naphthalene ring, an anthracene ring chromophore) that absorbs light at an exposure wavelength such as KrF is bonded via a bond represented by the following formula (I) or formula (II).
  • a chromophore a naphthalene ring, an anthracene ring chromophore
  • the acid generated from the photoacid generator contained in the upper resist and the resist lower layer film causes not only the acetal cross-linking structure of the resist lower layer film but also the above formula (I) or formula (II). ) Is also broken.
  • the resist underlayer film forming composition of the present invention can be applied to short wavelength light such as ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm) by introducing the chromophore (chromophore). It is possible to form a resist underlayer film having strong absorption.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention is effective for reflecting light from a semiconductor substrate when using irradiation light of ArF excimer laser or KrF excimer laser for fine processing in a lithography process. It is possible to absorb light and not cause intermixing with the photoresist film.
  • the polymer of the component (A) or the polymer of the component (A ′) and the basic compound of the component (D) are carboxyl groups.
  • FIG. 1 shows a cross-sectional SEM image of a resist pattern obtained after development when the resist underlayer film forming composition (solution) prepared in Example 4 was used.
  • the total solid content excluding the solvent from the resist underlayer film forming composition of the present invention is 0.1 to 70% by mass, preferably 1 to 60% by mass.
  • the polymer of component (A) is a polymer having a unit structure represented by the following formula (1) and having a weight average molecular weight of 1,000 to 200,000. ⁇ Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and P represents a divalent organic compound.
  • Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group), a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, or 1 to 10 carbon atoms.
  • a naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group) having at least one substituent selected from the group consisting of alkyl groups and aryl groups.
  • polymers having structures represented by the following formulas (a) to (e) can be used.
  • the polymer of the component (A ′) is a polymer having a weight average molecular weight of 1,000 to 200,000 having a structural unit represented by the following formula (6) ⁇ In the formula, R 1 represents a hydrogen atom or a methyl group, R 6 represents a benzene ring or a direct bond, P represents a divalent organic group, Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene At least one substituent selected from the group consisting of a ring (anthracenyl group) or a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or an aryl group Represents a naphthalene ring (naphthyl group) or anthracene
  • the divalent organic group P is, for example, a group represented by the following formula (2) or formula (3), or an alkylene group having 1 to 10 carbon atoms.
  • m and n each independently represent an integer of 1 to 10.
  • the polymer of the said (A) component may have a structural unit represented by following formula (4) as structural units other than the structural unit represented by said Formula (1).
  • R 4 represents a hydrogen atom or a methyl group.
  • the polymer of the component (A ′) may have a structural unit represented by the following formula (7) as a structural unit other than the structural unit represented by the above formula (6).
  • R 7 represents a hydrogen atom or a methyl group
  • j represents 0 or 1;
  • A represents a —C ( ⁇ O) —NH— group or a —C ( ⁇ O) —O— group.
  • the polymer of the component (A) is a structural unit other than the structural unit represented by the above formula (1), instead of the structural unit represented by the above formula (4), or in the above formula (4).
  • the component polymer (A ′) is also a structural unit other than the structural unit represented by the above formula (6), instead of the structural unit represented by the above formula (7), or represented by the above formula (7).
  • a structural unit represented by the above formula (5) may be included together with the structural unit.
  • the formula (1) and the formula (4) or the formula (5) are used.
  • the molar ratio is 100: 1 to 10,000, preferably 100: 10 to 1,000.
  • the polymer of the component (A ′) also has a structural unit represented by the formula (5) or the formula (7), the above formula (6) and the formula (5) or the formula (7) ) Is 100: 1 to 10,000, preferably 100: 10 to 1000.
  • the polymer of the component (A) in the resist underlayer film forming composition of the present invention is 10% by mass or more based on the solid content of the resist underlayer film forming composition, for example, 30 to 99% by mass, Or 49 to 90% by mass, preferably 59 to 80% by mass. Further, the polymer of the component (A ′) in the resist underlayer film forming composition of the present invention is 1 to 99% by mass, preferably 10 based on the content in the solid content of the resist underlayer film forming composition. It is thru
  • the polymer (A) has a weight average molecular weight of, for example, 1,000 to 200,000, preferably 3,000 to 20,000.
  • the weight average molecular weight of the polymer as the component (A ′) is preferably 1,000 to 200,000, more preferably 3,000 to 100,000. This is because if the weight average molecular weight of this polymer is less than 3000, the solvent resistance may be insufficient, while if the weight average molecular weight is too large, there may be a problem in resolution.
  • the weight average molecular weight is a value obtained by using gel as a standard sample by gel permeation chromatography (GPC).
  • crosslinkable compound (B) examples include compounds having at least two vinyl ether groups.
  • the compound having at least two vinyl ether groups is a compound having 2 to 20, preferably 3 to 10, more preferably 3 to 6 vinyl ether groups.
  • crosslinkable compound examples include bis (4- (vinyloxymethyl) cyclohexylmethyl) glutarate, tri (ethylene glycol) divinyl ether, adipic acid divinyl ester, diethylene glycol divinyl ether, and tris (4-vinyloxy) butyl trimellitate.
  • the content of the crosslinkable compound (B) used together with the polymer of the component (A) is 0.01 to 60% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. It is 0.1 to 50% by mass, or 0.1 to 40% by mass.
  • the content of the crosslinkable compound (B) used together with the polymer of the component (A ′) is 1 to 70% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Yes, preferably 3 to 60% by mass, more preferably 5 to 50% by mass. This is because when this ratio is too small or too large, it is difficult to obtain solvent resistance.
  • the resist underlayer film forming composition of the present invention can contain a photoacid generator as the component (C).
  • the photoacid generator include compounds that generate an acid upon irradiation with light used for exposure, such as diazomethane compounds, onium salt compounds, sulfonimide compounds, nitrobenzyl compounds, benzoin tosylate compounds, halogen-containing triazines. Compounds, cyano group-containing oxime sulfonate compounds, and the like. Of these, onium salt compounds are preferred.
  • onium salt compound examples include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium camphorsulfonate, bis (4- iodonium salt compounds such as tert-butylphenyl) iodonium camphorsulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, or triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenyl Sulfonium camphorsulfonate, trife Le sulfonium trifluoromethan
  • sulfonimide compound examples include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoro-n-butanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, and N- (trifluoromethanesulfonyloxy). And naphthalimide.
  • the content of the photoacid generator (C) used together with the polymer of the component (A) is 0.01 to 15% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Or it is 0.1 to 10 mass%.
  • the use ratio of the photoacid generator (C) is less than 0.01% by mass, the ratio of the generated acid is reduced, and as a result, the solubility in the alkaline developer in the exposed area is lowered, and the residue after development May exist.
  • it exceeds 15 mass% the storage stability of the resist underlayer film forming composition may be lowered, and as a result, the pattern shape of the photoresist may be affected.
  • the content of the photoacid generator (C) used together with the polymer of the component (A ′) is 0 to 10% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Preferably, it is 0% to 5% by mass. When this ratio is 10% by mass or more, the storage stability of the resist underlayer film forming composition may be lowered, which may affect the pattern shape of the photoresist.
  • the resist underlayer film forming composition of the present invention can contain a basic compound as the component (D).
  • a basic compound By adding a basic compound, it is possible to adjust the sensitivity during exposure of the resist underlayer film. Therefore, it is possible for the basic compound to react with the acid generated by the photoacid generator at the time of exposure, and to reduce the sensitivity of the resist underlayer film. Moreover, the diffusion of the acid generated from the photoacid generator in the resist underlayer film in the exposed portion to the resist underlayer film in the unexposed portion can be suppressed.
  • Examples of the basic compound include amines and ammonium hydroxides.
  • the amines are not particularly limited, and examples thereof include triethanolamine, tributanolamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, triethylamine, and the like.
  • tertiary amines such as -n-octylamine, triisopropanolamine, phenyldiethanolamine, stearyldiethanolamine and diazabicyclooctane
  • aromatic amines such as pyridine and 4-dimethylaminopyridine.
  • primary amines such as benzylamine and n-butylamine
  • secondary amines such as diethylamine and di-n-butylamine.
  • the amines have the function of suppressing the diffusion of the acid generated by the photoacid generator into the resist underlayer film of the unexposed portion, and at the same time, the polymer of the component (A) or the polymer of the component (A ′) and the component (B).
  • the basic compound as the component (D) preferably has a hydroxy group, and triethanolamine and tributanolamine are particularly preferable.
  • the said basic compound can be used individually or in combination of 2 or more types.
  • Content of the said basic compound (D) used with the polymer of said (A) component is 0.001 thru
  • content of the said basic compound (D) used with the polymer of the said (A ') component is 0-10 mass% based on content in solid content of the resist lower layer film forming composition of this invention. Yes, preferably 0 to 5 mass%, more preferably 0 to 1 mass%. This is because the sensitivity decreases when this ratio is larger than the above value.
  • the resist underlayer film forming composition of this invention can also contain surfactant.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ethers such as nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene Noni
  • Content of surfactant used with the polymer of the said (A) component is 0.2 mass% or less normally in all the components of the resist underlayer film forming composition of this invention, Preferably it is 0.1 mass% or less.
  • the content of the surfactant used together with the polymer of the component (A ′) is 3% by mass or less, preferably 1 based on the content in the solid content of the resist underlayer film forming composition of the present invention. It is not more than mass%, more preferably not more than 0.5 mass%.
  • the resist underlayer film composition of the present invention may contain a rheology adjuster, an adhesion aid, and the like as necessary.
  • the resist underlayer film forming composition of the present invention can be prepared by dissolving each of the above components in a suitable solvent, and can be obtained in a uniform solution state.
  • suitable solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate.
  • the prepared resist underlayer film forming composition (solution) is preferably used after being filtered using a filter having a pore size of, for example, about 0.2 ⁇ m.
  • the resist underlayer film forming composition thus prepared is also excellent in long-term storage stability at room temperature.
  • Substrate for example, a semiconductor substrate such as silicon covered with a silicon oxide film, a semiconductor substrate such as silicon covered with a silicon nitride film or a silicon oxynitride film, a silicon nitride substrate, a quartz substrate, a glass substrate (non-alkali glass, low (Including alkali glass, crystallized glass), glass substrate on which an ITO film is formed, etc. ⁇ , the resist underlayer film forming composition of the present invention is applied by an appropriate application method such as a spinner or coater, and then hot plate A resist underlayer film is formed by baking using a heating means such as the above.
  • a heating means such as the above.
  • Baking conditions are appropriately selected from baking temperatures of 80 ° C. to 250 ° C. and baking times of 0.3 minutes to 60 minutes.
  • the baking temperature is 130 ° C. to 250 ° C.
  • the baking time is 0.5 minutes to 5 minutes.
  • the baking temperature is lower than the above range, crosslinking in the resist underlayer film becomes insufficient, and the resist underlayer film may cause intermixing with the photoresist.
  • the baking temperature is too high, the crosslinking in the resist underlayer film is cut, and the resist underlayer film may cause intermixing with the photoresist.
  • the film thickness of the resist underlayer film of the present invention is 0.001 ⁇ m to 3.0 ⁇ m, for example 0.01 ⁇ m to 1.0 ⁇ m, or 0.03 ⁇ m to 0.5 ⁇ m.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention becomes a strong film when the vinyl ether compound is cross-linked under the baking conditions at the time of formation. For this reason, the resist underlayer film formed from the resist underlayer film forming composition of the present invention does not cause intermixing with the photoresist.
  • the organic solvent generally used as the photoresist solution applied on the film is, for example, ethylene glycol monomethyl ether, ethylene cellosolve acetate, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol.
  • a photoresist film is formed on the resist underlayer film.
  • the formation of the photoresist film can be performed by a general method, that is, by applying and baking a photoresist solution on the resist underlayer film.
  • the photoresist formed on the resist underlayer film obtained by the resist underlayer film forming composition of the present invention is not particularly limited as long as it is sensitive to exposure light and exhibits a positive behavior.
  • the photoresist include a positive photoresist composed of a novolak resin and 1,2-naphthoquinonediazide sulfonate, a binder having a group that decomposes with an acid to increase the alkali dissolution rate, and a photoacid generator.
  • Chemically amplified photoresist a chemically amplified photoresist consisting of a low molecular weight compound that decomposes with acid to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, an alkali dissolution rate that decomposes with acid
  • chemically amplified photoresists composed of a low molecular weight compound that decomposes with a binder having a group that raises the acid and an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator.
  • product name APEX-X (Rohm and Haas Electronic Materials (formerly Shipley)
  • product name PAR710 (Sumitomo Chemical Co., Ltd.)
  • a method for forming a photoresist pattern used for manufacturing a semiconductor manufacturing apparatus exposure is performed through a mask (reticle) for forming a predetermined pattern.
  • a mask for forming a predetermined pattern.
  • a KrF excimer laser, an ArF excimer laser, or the like can be used for the exposure.
  • post-exposure heating Post Exposure Bake
  • the post-exposure heating conditions are appropriately selected from heating temperatures of 80 ° C. to 150 ° C. and heating times of 0.3 minutes to 60 minutes.
  • a semiconductor device is manufactured by a process in which a semiconductor substrate coated with a resist underlayer film and a photoresist film is exposed using a photomask and then developed.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention becomes soluble in an alkaline developer by the action of an acid generated from a photoacid generator contained in the resist film during exposure. After the exposure, when both the photoresist film and the resist underlayer film are collectively developed with an alkaline developer, the exposed portions of the photoresist film and the resist underlayer film are removed because they exhibit alkali solubility. .
  • alkaline developer examples include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, and ethanolamine. And alkaline aqueous solutions such as amine aqueous solutions such as propylamine and ethylenediamine. Further, a surfactant or the like can be added to these developers.
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide
  • quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline
  • alkaline aqueous solutions such as amine aqueous solutions such as propylamine and ethylenediamine.
  • a surfactant or the like can be added to these developers.
  • the development conditions are appropriately selected from a development temperature of 5 ° C. to 50 ° C. and a development time of 10 seconds to 300 seconds.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention is easily developed at room temperature using a 2.38 mass% tetramethylammonium hydroxide aqueous solution that is widely used for developing photoresists. be able to.
  • the resist underlayer film formed from the resist underlayer film forming composition of the present invention is formed upon exposure to a layer for preventing interaction between the substrate and the photoresist film, a material used for the photoresist film, or the photoresist.
  • a layer for preventing the adverse effect of the substance on the semiconductor substrate, a layer for preventing diffusion of the substance generated from the semiconductor substrate upon baking into the upper photoresist film, and a barrier for reducing the poisoning effect of the photoresist by the dielectric layer It can also be used as a layer or the like.
  • Examples 1 to 5 are examples corresponding to the first aspect of the present invention, and Comparative Example 1 is a comparative example for the first aspect of the present invention.
  • Example 6 is an example corresponding to the second aspect of the present invention, and Comparative Example 2 is a comparative example for the second aspect of the present invention.
  • Example 2 to Example 5 As in Example 1, 0.2 g of the polymer obtained in Synthesis Examples 6 to 9 was added to 0.04 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid and triphenylsulfonium p-toluene. 0.004 g of sulfonate was mixed and dissolved in 10 g of propylene glycol monomethyl ether to obtain a solution. Then, it filtered using the polyethylene micro filter with the hole diameter of 0.10 micrometer, and also filtered using the polyethylene micro filter with the hole diameter of 0.05 micrometer, and prepared the resist lower layer film forming composition (solution).
  • the resist underlayer film forming composition (solution) prepared using the polymer obtained in Synthesis Example 6 corresponds to Example 2
  • the resist underlayer film forming composition prepared using the polymer obtained in Synthesis Example 7 ( Solution) corresponds to Example 3
  • the resist underlayer film forming composition (solution) prepared using the polymer obtained in Synthesis Example 8 corresponds to Example 4 and the polymer obtained in Synthesis Example 9 is used.
  • the prepared resist underlayer film forming composition (solution) corresponds to Example 5.
  • Each resist underlayer film forming composition (solution) prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 160 degreeC hotplate for 1 minute, and formed the resist underlayer film [film thickness 0.06 micrometer (in Example 6 and the comparative example 2, film thickness 0.05 micrometer)].
  • These resist underlayer films were subjected to a refractive index (n value) and attenuation coefficient (k value) at wavelengths of 248 nm and 193 nm using an optical ellipsometer (manufactured by JA Woollam, VUV-VASE VU-302). It was measured. The results are shown in Table 1.
  • the resist underlayer film obtained from the resist underlayer film forming composition of the present invention has a sufficiently effective refractive index and attenuation coefficient for 248 nm and 193 nm light. .
  • Each resist underlayer film forming composition (solution) prepared in Example 4 and Comparative Example 1 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 200 degreeC hotplate for 1 minute, and formed the resist lower layer film (film thickness of 0.05 micrometer).
  • a commercially available photoresist solution (trade name: V146G, manufactured by JSR Corporation) was applied with a spinner and heated on a hot plate at 110 ° C. for 60 seconds to form a photoresist film (thickness 0). 425 ⁇ m).
  • Each resist underlayer film forming composition (solution) prepared in Example 6 and Comparative Example 2 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 160 degreeC hotplate for 1 minute, and formed the resist underlayer film (film thickness of 0.05 micrometer). Next, the entire surface was exposed by an exposure machine (wavelength 248 nm), exposed for 60 seconds, and then heated on a 110 ° C. hot plate for 60 seconds. After cooling, development was performed using a 0.26N tetramethylammonium hydroxide aqueous solution as a developer.

Abstract

Disclosed is a composition for forming a resist underlayer film, which contains a polymer having an acetal structure in a side chain thereof. Also disclosed is a method for forming a resist pattern. Specifically disclosed is a composition for forming a resist underlayer film, which comprises a component (A), a component (B) and a solvent. The component (A): a polymer having a constituent unit represented by formula (1) and having a weight average molecular weight of 1,000 to 200,000. The component (B): a crosslinkable compound. [In the formula, R1 represents a hydrogen atom or a methyl group; R2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms; R3 represents a hydrogen atom or a methyl group; P represents a bivalent organic group; and Q represents an unsubstituted naphthalene ring (a naphthyl group) or anthracene ring (an anthracenyl group), or a naphthalene ring (a naphthyl group) or anthracene ring (an anthracenyl group) having at least one substituent selected from a group consisting of a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atom and an aryl group.]

Description

側鎖にアセタール構造を有するポリマーを含むレジスト下層膜形成組成物及びレジストパターンの形成方法Resist underlayer film forming composition containing polymer having acetal structure in side chain and method for forming resist pattern
 本発明は、レジスト下層膜形成組成物及び該組成物から形成されるレジスト下層膜を用いたレジストパターンの形成方法に関し、より詳細には、アルカリ性現像液を用いたとき現像残渣をより低減できるレジスト下層膜形成組成物及び該組成物から形成されるレジスト下層膜を用いたレジストパターンの形成方法に関する。 The present invention relates to a resist underlayer film forming composition and a method for forming a resist pattern using a resist underlayer film formed from the composition, and more specifically, a resist capable of further reducing development residue when an alkaline developer is used. The present invention relates to an underlayer film forming composition and a resist pattern forming method using a resist underlayer film formed from the composition.
 リソグラフィー工程では基板からの露光光の反射による定在波の影響や基板段差による露光光の乱反射の影響によりフォトレジストパターンの寸法精度が低下するという問題が生じる。そこで、露光・現像後のパターンの精度を向上させるために、フォトレジストと基板の間に反射防止膜(Bottom Anti-Reflective Coating)を設ける方法が広く検討されている。これらの反射防止膜は、その上に塗布されるフォトレジストとのインターミキシングを防ぐため、熱架橋性組成物を使用して形成されることが多い。その結果、形成された反射防止膜はフォトレジストの現像に使用されるアルカリ性現像液に不溶となる。そのため、半導体基板加工に先立つ反射防止膜の除去は、ドライエッチングによって行なうことが必要である(例えば、特許文献1参照)。しかし、反射防止膜のドライエッチングによる除去と同時に、フォトレジストもドライエッチングされる。そのため、基板加工に必要なフォトレジストの膜厚の確保が難しくなるという問題が生じる。特に解像性の向上を目的として、薄膜のフォトレジストが使用されるような場合に、重大な問題となる。そこで、この問題を解決すべく、露光部分をフォトレジストと共にアルカリ現像液により除去され得るようにした反射防止膜であるDBARC(Developable Bottom Anti-Reflective Coating)を設ける方法が従来提案されている。 In the lithography process, there arises a problem that the dimensional accuracy of the photoresist pattern is lowered due to the influence of standing wave due to reflection of exposure light from the substrate and the influence of diffuse reflection of exposure light due to the step of the substrate. Therefore, in order to improve the accuracy of the pattern after exposure and development, a method of providing an antireflection film (Bottom Anti-Reflective Coating) between the photoresist and the substrate has been widely studied. These antireflection films are often formed using a heat crosslinkable composition in order to prevent intermixing with the photoresist applied thereon. As a result, the formed antireflection film becomes insoluble in an alkaline developer used for developing the photoresist. Therefore, the removal of the antireflection film prior to the processing of the semiconductor substrate needs to be performed by dry etching (see, for example, Patent Document 1). However, simultaneously with the removal of the antireflection film by dry etching, the photoresist is also dry etched. Therefore, there arises a problem that it is difficult to ensure the film thickness of the photoresist necessary for substrate processing. Particularly when a thin film photoresist is used for the purpose of improving the resolution, it becomes a serious problem. In order to solve this problem, a method of providing DBARC (Developable Bottom Anti-Reflective Coating), which is an antireflection film in which an exposed portion can be removed together with a photoresist by an alkali developer, has been proposed.
 この方法に用いる反射防止膜は、フォトレジストの現像に使用されるアルカリ性現像液に溶解し、フォトレジストと同時に現像除去することが可能な膜であることが求められる。そして、これまでに、フォトレジストと同時に現像除去することができる反射防止膜についての様々な検討がなされている(特許文献2~6参照)。この種の反射防止膜は、典型的にはヒドロキシ基及び/又はカルボキシル基を側鎖に持つポリマーと、ビニルエーテル架橋剤と、光酸発生剤より構成される。そして、この種の反射防止膜の反射防止機能をより向上させるために、KrF等の露光波長で光吸収をなす発色団(クロモフォア)を膜形成ポリマーに取り入れた、例えば、このような発色団基を有する少なくとも一種の繰り返し単位と、ヒドロキシ及び/またはカルボキシル基を有する少なくとも一種の繰り返し単位とを含んでなるポリマー、末端ビニルエーテル基を有する架橋剤、場合によっては光酸発生剤及び/または酸及び/または熱酸発生剤を含む、反射防止膜形成組成物が提案されている(特許文献7参照)。 The antireflection film used in this method is required to be a film that can be dissolved in an alkaline developer used for developing a photoresist and developed and removed simultaneously with the photoresist. Until now, various studies have been made on an antireflection film that can be developed and removed simultaneously with the photoresist (see Patent Documents 2 to 6). This type of antireflection film is typically composed of a polymer having a hydroxy group and / or a carboxyl group in the side chain, a vinyl ether crosslinking agent, and a photoacid generator. In order to further improve the antireflection function of this type of antireflection film, a chromophore that absorbs light at an exposure wavelength such as KrF is incorporated into the film-forming polymer. A polymer comprising at least one repeating unit having a hydroxyl group and / or at least one repeating unit having a carboxyl group, a crosslinking agent having a terminal vinyl ether group, and in some cases, a photoacid generator and / or an acid and / or Alternatively, an antireflection film-forming composition containing a thermal acid generator has been proposed (see Patent Document 7).
 この反射防止膜形成組成物のポリマーは、ビニルエーテル基を有する架橋剤と反応し、アセタール結合にて架橋される。その後、得られた反射防止膜及びレジストに含まれる光酸発生剤から、露光時に酸が発生し、その酸により、アセタール結合が外れ脱架橋され、アルカリ現像液に溶解する仕組みとなっている。しかし、この反射防止膜は、脱架橋された後のポリマーが、アルカリ溶解性が低く、残渣を生じる原因となりやすかった。そのポリマーがアルカリ現像液に溶解しにくい原因として、ポリマーに含有するクロモフォアの疎水性によるものが大きい。 The polymer of this antireflection film-forming composition reacts with a crosslinking agent having a vinyl ether group and is crosslinked by an acetal bond. Thereafter, an acid is generated during exposure from the photoacid generator contained in the obtained antireflective film and resist, and the acetal bond is removed and decrosslinked by the acid to dissolve in an alkali developer. However, in this antireflection film, the polymer after being decrosslinked has a low alkali solubility and easily causes a residue. One of the reasons why the polymer is difficult to dissolve in an alkaline developer is largely due to the hydrophobicity of the chromophore contained in the polymer.
米国特許第6156479号明細書US Pat. No. 6,156,479 特開2004-54286号公報JP 2004-54286 A 特開2005-70154号公報JP-A-2005-70154 国際公開第05/093513号International Publication No. 05/093513 国際公開第05/111719号International Publication No. 05/117719 国際公開第05/111724号International Publication No. 05/111724 特表2008-501985号公報Special table 2008-501985 gazette
 本発明は、上記の事情に基づきなされたものであり、その課題は、疎水性の高いクロモフォアを、下記式(I)又は式(II)で表されるアセタール結合にてポリマーに含有させることによって解決される。露光時に発生する酸により、架橋剤とのアセタール架橋構造だけでなく、下記式(I)又は式(II)で表される結合が切断され、その結果クロモフォア部がポリマーから外れるため、ポリマー自身のアルカリ溶解性が向上し、アルカリ性現像液を用いてレジスト下層膜を現像しても残渣の発生を低減できるレジスト下層膜形成組成物及び該組成物から形成されるレジスト下層膜を用いたレジストパターンの形成方法を提供することである。
 また、本発明は、短波長の光、例えばArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)に対して強い吸収を持つレジスト下層膜を形成するためのレジスト下層膜形成組成物を提供することにある。
 さらに、本発明は、ArFエキシマレーザー及びKrFエキシマレーザーの照射光をリソグラフィー工程の微細加工に使用する際に、半導体基板からの反射光を効果的に吸収し、そして、フォトレジスト膜とのインターミキシングを起こさないレジスト下層膜を形成するためのレジスト下層膜形成組成物を提供することである。
Figure JPOXMLDOC01-appb-C000008
(式中、R2は水素原子又は炭素原子数1乃至3のアルキル基を表し、R3は水素原子又はメチル基を表す。)
This invention is made | formed based on said situation, The subject is by making a polymer contain the highly hydrophobic chromophore by the acetal bond represented by following formula (I) or formula (II). Solved. Due to the acid generated during exposure, not only the acetal cross-linking structure with the cross-linking agent, but also the bond represented by the following formula (I) or formula (II) is cleaved, and as a result, the chromophore part is detached from the polymer. Resist underlayer film forming composition that improves alkali solubility and can reduce generation of residue even if resist underlayer film is developed using alkaline developer, and resist pattern using resist underlayer film formed from the composition It is to provide a forming method.
The present invention also provides a resist underlayer film forming composition for forming a resist underlayer film having strong absorption against short-wavelength light such as ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm). There is to do.
Furthermore, the present invention effectively absorbs the reflected light from the semiconductor substrate when using the irradiation light of the ArF excimer laser and the KrF excimer laser for fine processing in the lithography process, and intermixing with the photoresist film. It is providing the resist underlayer film forming composition for forming the resist underlayer film which does not raise | generate.
Figure JPOXMLDOC01-appb-C000008
(Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 3 represents a hydrogen atom or a methyl group.)
 本発明者らは、上記の課題を解決するべく鋭意研究を行った結果、前記式(I)又は式(II)で表される結合を介して、ポリマー側鎖に光吸収部位のクロモフォア(発色団)を導入することで、ポリマーのアルカリ溶解性が向上することを見出し、本発明を完成するに至った。
 すなわち、本発明の第1態様は、
 (A)成分、(B)成分、及び溶剤を含有するレジスト下層膜形成組成物である。
(A)成分:下記式(1)で表される構造単位を有する重量平均分子量1,000乃至200,000のポリマー
(B)成分:架橋性化合物
Figure JPOXMLDOC01-appb-C000009
{式中、R1は水素原子又はメチル基を表し、R2は水素原子又は炭素原子数1乃至3のアルキル基を表し、R3は水素原子又はメチル基を表し、Pは2価の有機基を表し、Qは未置換のナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)を表す。}
As a result of intensive studies to solve the above problems, the present inventors have found that the chromophore (color development) of the light absorption site is attached to the polymer side chain via the bond represented by the formula (I) or (II). It was found that the alkali solubility of the polymer was improved by introducing the group, and the present invention was completed.
That is, the first aspect of the present invention is:
It is a resist underlayer film forming composition containing (A) component, (B) component, and a solvent.
(A) Component: Polymer (B) component having a weight average molecular weight of 1,000 to 200,000 having a structural unit represented by the following formula (1): Crosslinkable compound
Figure JPOXMLDOC01-appb-C000009
{Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and P represents a divalent organic compound. Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group), a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, or 1 to 10 carbon atoms. A naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group) having at least one substituent selected from the group consisting of alkyl groups and aryl groups. }
 本発明の第2態様は、
 (A’)成分、(B)成分、及び溶剤を含有するレジスト下層膜形成組成物である。
(A’)成分:下記式(6)で表される構造単位を有する重量平均分子量1,000乃至200,000のポリマー
(B)成分:架橋性化合物
Figure JPOXMLDOC01-appb-C000010
{式中、Rは水素原子又はメチル基を表し、Rはベンゼン環又は直接結合を表し、またPは2価の有機基を表し、Qは未置換のナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)を表す。}
The second aspect of the present invention is:
It is a resist underlayer film forming composition containing (A ') component, (B) component, and a solvent.
Component (A ′): Polymer having a structural unit represented by the following formula (6) and having a weight average molecular weight of 1,000 to 200,000 (B) Component: Crosslinkable compound
Figure JPOXMLDOC01-appb-C000010
{In the formula, R 1 represents a hydrogen atom or a methyl group, R 6 represents a benzene ring or a direct bond, P represents a divalent organic group, Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene At least one substituent selected from the group consisting of a ring (anthracenyl group) or a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or an aryl group Represents a naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group). }
 本発明の第3態様は、本発明のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、該レジスト下層膜上にフォトレジスト膜を形成する工程、該レジスト下層膜と該フォトレジスト膜で被覆された半導体基板を露光する工程、及び露光後に該フォトレジスト膜と該レジスト下層膜を現像する工程を含む、半導体装置の製造に用いるフォトレジストパターンの形成方法である。 A third aspect of the present invention includes a step of applying the resist underlayer film forming composition of the present invention on a semiconductor substrate and baking to form a resist underlayer film, a step of forming a photoresist film on the resist underlayer film, A method of forming a photoresist pattern for use in manufacturing a semiconductor device, comprising: exposing a semiconductor substrate coated with a resist underlayer film and the photoresist film; and developing the photoresist film and the resist underlayer film after exposure It is.
 本発明のレジスト下層膜形成組成物は、KrF等の露光波長に光吸収するクロモフォア(ナフタレン環、アントラセン環の発色団)を下記式(I)又は式(II)で表される結合を介して、ポリマー主鎖に結合させた。そのため、露光時に、上層のレジスト及びレジスト下層膜中に含まれる光酸発生剤から発生する酸により、レジスト下層膜の、架橋剤によるアセタール架橋構造だけでなく、上記式(I)又は式(II)で表される結合も切断される。そして、上記クロモフォア(発色団)からなる光吸収部位も脱保護され、ポリマー自身のアルカリ溶解性が高まる。したがって、当該組成物をベークして形成されるレジスト下層膜のアルカリ溶解性が向上するため、アルカリ性現像液を用いてレジスト下層膜を現像しても残渣の発生を著しく低減させることが可能である。
 また、本発明のレジスト下層膜形成組成物は、上記クロモフォア(発色団)の導入により、例えば、ArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)のような短波長の光に対して強い吸収を持つレジスト下層膜を形成することが可能である。
 さらに、本発明のレジスト下層膜形成組成物から形成されたレジスト下層膜は、ArFエキシマレーザーやKrFエキシマレーザーの照射光をリソグラフィー工程の微細加工に使用する際に、半導体基板からの反射光を効果的に吸収し、そして、フォトレジスト膜とのインターミキシングを起こさせないことが可能である。
 また、本発明のレジスト下層膜形成組成物を用いてレジスト下層膜を形成する際、(A)成分のポリマー又は(A’)成分のポリマーと、(D)成分である塩基性化合物がカルボキシル基又はヒドロキシ基を有する場合当該基と、(C)成分である光酸発生剤がカルボキシル基又はヒドロキシ基を有する場合当該基と、(B)成分の架橋性化合物との間で、熱架橋により、アセタール結合がレジスト下層膜中にいくつも生成しているため、露光後、現像したときに、結合が切断される箇所が多くあり、アルカリ現像性が良好なため、微細なパターンが作製でき解像度の向上が達成される。
Figure JPOXMLDOC01-appb-C000011
(式中、R2は水素原子又は炭素原子数1乃至3のアルキル基を表し、R3は水素原子又はメチル基を表す。)
In the resist underlayer film forming composition of the present invention, a chromophore (a naphthalene ring, an anthracene ring chromophore) that absorbs light at an exposure wavelength such as KrF is bonded via a bond represented by the following formula (I) or formula (II). To the polymer main chain. Therefore, at the time of exposure, the acid generated from the photoacid generator contained in the upper resist and the resist lower layer film causes not only the acetal cross-linking structure of the resist lower layer film but also the above formula (I) or formula (II). ) Is also broken. And the light absorption part which consists of the said chromophore (chromophore) is also deprotected, and the alkali solubility of polymer itself increases. Therefore, since the alkali solubility of the resist underlayer film formed by baking the composition is improved, even if the resist underlayer film is developed using an alkaline developer, the generation of residues can be significantly reduced. .
In addition, the resist underlayer film forming composition of the present invention can be applied to short wavelength light such as ArF excimer laser (wavelength 193 nm) and KrF excimer laser (wavelength 248 nm) by introducing the chromophore (chromophore). It is possible to form a resist underlayer film having strong absorption.
Furthermore, the resist underlayer film formed from the resist underlayer film forming composition of the present invention is effective for reflecting light from a semiconductor substrate when using irradiation light of ArF excimer laser or KrF excimer laser for fine processing in a lithography process. It is possible to absorb light and not cause intermixing with the photoresist film.
Moreover, when forming a resist underlayer film using the resist underlayer film forming composition of the present invention, the polymer of the component (A) or the polymer of the component (A ′) and the basic compound of the component (D) are carboxyl groups. Alternatively, when the group has a hydroxy group, and when the photoacid generator which is the component (C) has a carboxyl group or a hydroxy group, the group and the crosslinkable compound of the component (B) are thermally crosslinked, Since a number of acetal bonds are formed in the resist underlayer film, there are many places where the bonds are broken when developed after exposure, and since the alkali developability is good, a fine pattern can be produced and the resolution can be reduced. Improvement is achieved.
Figure JPOXMLDOC01-appb-C000011
(Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 3 represents a hydrogen atom or a methyl group.)
図1は、実施例4で調製されたレジスト下層膜形成組成物(溶液)を用いた場合、現像後に得られたレジストパターンの断面SEM像を示す。FIG. 1 shows a cross-sectional SEM image of a resist pattern obtained after development when the resist underlayer film forming composition (solution) prepared in Example 4 was used.
 以下、各成分の詳細を説明する。
 本発明のレジスト下層膜形成組成物から溶剤を除いた全固形分は、0.1乃至70質量%、好ましくは1乃至60質量%である。
Hereinafter, details of each component will be described.
The total solid content excluding the solvent from the resist underlayer film forming composition of the present invention is 0.1 to 70% by mass, preferably 1 to 60% by mass.
<(A)成分>
 (A)成分のポリマーは、下記式(1)で表される単位構造を有する重量平均分子量が1,000乃至200,000のポリマーである。
Figure JPOXMLDOC01-appb-C000012
{式中、R1は水素原子又はメチル基を表し、R2は水素原子又は炭素原子数1乃至3のアルキル基を表し、R3は水素原子又はメチル基を表し、Pは2価の有機基を表し、Qは未置換のナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)を表す。}
<(A) component>
The polymer of component (A) is a polymer having a unit structure represented by the following formula (1) and having a weight average molecular weight of 1,000 to 200,000.
Figure JPOXMLDOC01-appb-C000012
{Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and P represents a divalent organic compound. Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group), a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, or 1 to 10 carbon atoms. A naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group) having at least one substituent selected from the group consisting of alkyl groups and aryl groups. }
 前記(A)成分のポリマーとして、例えば下記式(a)~式(e)で表される構造のポリマーを用いることができる。
Figure JPOXMLDOC01-appb-C000013
As the polymer of the component (A), for example, polymers having structures represented by the following formulas (a) to (e) can be used.
Figure JPOXMLDOC01-appb-C000013
<(A’)成分>
 (A’)成分のポリマーは、下記式(6)で表される構造単位を有する重量平均分子量1,000乃至200,000のポリマー
Figure JPOXMLDOC01-appb-C000014
{式中、Rは水素原子又はメチル基を表し、Rはベンゼン環又は直接結合を表し、またPは2価の有機基を表し、Qは未置換のナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環(ナフチル基)若しくはアントラセン環(アントラセニル基)を表す。}
<(A ') component>
The polymer of the component (A ′) is a polymer having a weight average molecular weight of 1,000 to 200,000 having a structural unit represented by the following formula (6)
Figure JPOXMLDOC01-appb-C000014
{In the formula, R 1 represents a hydrogen atom or a methyl group, R 6 represents a benzene ring or a direct bond, P represents a divalent organic group, Q represents an unsubstituted naphthalene ring (naphthyl group) or anthracene At least one substituent selected from the group consisting of a ring (anthracenyl group) or a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or an aryl group Represents a naphthalene ring (naphthyl group) or anthracene ring (anthracenyl group). }
 前記式(1)又は式(6)において、前記2価の有機基Pは、例えば、下記式(2)若しくは式(3)で表される基、又は炭素原子数1乃至10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000015
{式(2)及び(3)中、m及びnは、それぞれ独立して1乃至10の整数を表す。}
In the formula (1) or formula (6), the divalent organic group P is, for example, a group represented by the following formula (2) or formula (3), or an alkylene group having 1 to 10 carbon atoms. To express.
Figure JPOXMLDOC01-appb-C000015
{In Formulas (2) and (3), m and n each independently represent an integer of 1 to 10. }
 また、前記(A)成分のポリマーは、前記式(1)で表される構造単位以外の構造単位として、下記式(4)で表される構造単位を有していても良い。
Figure JPOXMLDOC01-appb-C000016
      (式中、R4は水素原子又はメチル基を示す。)
Moreover, the polymer of the said (A) component may have a structural unit represented by following formula (4) as structural units other than the structural unit represented by said Formula (1).
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 4 represents a hydrogen atom or a methyl group.)
 一方、前記(A’)成分のポリマーは、上記式(6)で表される構造単位以外の構造単位として、下記式(7)で表される構造単位を有していても良い。
Figure JPOXMLDOC01-appb-C000017
{式中、Rは水素原子又はメチル基を表し、jは0又は1を表す。jが0の場合は、ヒドロキシル基を置換基として有するフェニル基が主鎖に直接結合する。一方、jが1の場合は、Aは-C(=O)-NH-基又は-C(=O)-O-基を表す。}
On the other hand, the polymer of the component (A ′) may have a structural unit represented by the following formula (7) as a structural unit other than the structural unit represented by the above formula (6).
Figure JPOXMLDOC01-appb-C000017
{In the formula, R 7 represents a hydrogen atom or a methyl group; j represents 0 or 1; When j is 0, a phenyl group having a hydroxyl group as a substituent is directly bonded to the main chain. On the other hand, when j is 1, A represents a —C (═O) —NH— group or a —C (═O) —O— group. }
 さらに、前記(A)成分のポリマーは、上記式(1)で表される構造単位以外の構造単位として、上記式(4)で表される構造単位に代えて、又は上記式(4)で表される構造単位と共に、下記式(5)で表される構造単位を有していても良い。
Figure JPOXMLDOC01-appb-C000018
(式中、R5は水素原子又はメチル基を表し、Xは炭素原子数1乃至10のアルキレン基又はフェニレン基を表し、kはXで表される基の数を表し、kは0又は1である。但し、kが0の場合は、カルボキシル基が主鎖に直接結合する。)
Furthermore, the polymer of the component (A) is a structural unit other than the structural unit represented by the above formula (1), instead of the structural unit represented by the above formula (4), or in the above formula (4). You may have the structural unit represented by following formula (5) with the structural unit represented.
Figure JPOXMLDOC01-appb-C000018
(Wherein R 5 represents a hydrogen atom or a methyl group, X represents an alkylene group having 1 to 10 carbon atoms or a phenylene group, k represents the number of groups represented by X, and k represents 0 or 1) (However, when k is 0, the carboxyl group is directly bonded to the main chain.)
 前記(A’)成分ポリマーについても、上記式(6)で表される構造単位以外の構造単位として、上記式(7)で表される構造単位に代えて、又は上記式(7)で表される構造単位と共に、上記式(5)で表される構造単位を有していても良い。
 上記アルキレン基、及び本明細書において以下に記載のアルキレン基の炭素原子数が3以上の場合、該アルキレン基は直鎖状に限らず分岐状でもよい。
The component polymer (A ′) is also a structural unit other than the structural unit represented by the above formula (6), instead of the structural unit represented by the above formula (7), or represented by the above formula (7). A structural unit represented by the above formula (5) may be included together with the structural unit.
  When the alkylene group described above and the alkylene group described below in this specification have 3 or more carbon atoms, the alkylene group is not limited to a straight chain and may be branched.
 ここで、前記(A)成分のポリマーが、前記式(4)又は式(5)で表される構造単位も有する場合は、上記式(1)と前記式(4)又は前記式(5)のモル比は、100:1乃至10000であり、好ましくは100:10乃至1000である。
 同様に、前記(A’)成分のポリマーが、前記式(5)又は式(7)で表される構造単位も有する場合は、上記式(6)と前記式(5)又は前記式(7)のモル比は、100:1乃至10000であり、好ましくは100:10乃至1000である。
Here, when the polymer of the component (A) also has a structural unit represented by the formula (4) or the formula (5), the formula (1) and the formula (4) or the formula (5) are used. The molar ratio is 100: 1 to 10,000, preferably 100: 10 to 1,000.
Similarly, when the polymer of the component (A ′) also has a structural unit represented by the formula (5) or the formula (7), the above formula (6) and the formula (5) or the formula (7) ) Is 100: 1 to 10,000, preferably 100: 10 to 1000.
 本発明のレジスト下層膜形成組成物における(A)成分のポリマーは、当該レジスト下層膜形成組成物の固形分中の含有量に基づいて、10質量%以上であり、例えば30乃至99質量%、又は49乃至90質量%、好ましくは59乃至80質量%である。
 また、本発明のレジスト下層膜形成組成物における(A’)成分のポリマーは、当該レジスト下層膜形成組成物の固形分中の含有量に基づいて、1乃至99質量%であり、好ましくは10乃至95質量%であり、より好ましくは50乃至90質量%である。
 この割合が過小である場合及び過大である場合には、溶剤耐性が得られにくくなることがあるからである。
The polymer of the component (A) in the resist underlayer film forming composition of the present invention is 10% by mass or more based on the solid content of the resist underlayer film forming composition, for example, 30 to 99% by mass, Or 49 to 90% by mass, preferably 59 to 80% by mass.
Further, the polymer of the component (A ′) in the resist underlayer film forming composition of the present invention is 1 to 99% by mass, preferably 10 based on the content in the solid content of the resist underlayer film forming composition. It is thru | or 95 mass%, More preferably, it is 50 to 90 mass%.
This is because when this ratio is too small or too large, solvent resistance may be difficult to obtain.
 前記(A)成分のポリマーの重量平均分子量は、例えば1,000乃至200,000、好ましくは3,000乃至20,000である。
 また、前記(A’)成分のポリマーの重量平均分子量は、好ましくは1,000乃至200,000であり、より好ましくは3,000乃至100,000である。
 このポリマーの重量平均分子量が3000より小さいと、溶剤耐性が不十分になる場合があるからであり、一方、重量平均分子量が大きすぎると解像性に問題が生じる場合があるからである。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。
The polymer (A) has a weight average molecular weight of, for example, 1,000 to 200,000, preferably 3,000 to 20,000.
The weight average molecular weight of the polymer as the component (A ′) is preferably 1,000 to 200,000, more preferably 3,000 to 100,000.
This is because if the weight average molecular weight of this polymer is less than 3000, the solvent resistance may be insufficient, while if the weight average molecular weight is too large, there may be a problem in resolution. The weight average molecular weight is a value obtained by using gel as a standard sample by gel permeation chromatography (GPC).
<(B)成分>
 (B)成分である架橋性化合物としては、例えば、少なくとも2つのビニルエーテル基を有する化合物が挙げられる。そして、当該少なくとも2つのビニルエーテル基を有する化合物とは、2乃至20個、好ましくは3乃至10個、より好ましくは3乃至6個のビニルエーテル基を有する化合物である。
<(B) component>
Examples of the crosslinkable compound (B) include compounds having at least two vinyl ether groups. The compound having at least two vinyl ether groups is a compound having 2 to 20, preferably 3 to 10, more preferably 3 to 6 vinyl ether groups.
 前記架橋性化合物としては、例えば、ビス(4-(ビニロキシメチル)シクロヘキシルメチル)グルタレート、トリ(エチレングリコール)ジビニルエーテル、アジピン酸ジビニルエステル、ジエチレングリコールジビニルエーテル、トリス(4-ビニロキシ)ブチルトリメリテート、ビス(4-(ビニロキシ)ブチル)テレフタレート、ビス(4-(ビニロキシ)ブチル)イソフタレート、シクロヘキサンジメタノールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、ジエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、及びペンタエリスリトールテトラビニルエーテル等を挙げることができる。これらの化合物は、単独又は2種以上の組み合わせで使用することができる。 Examples of the crosslinkable compound include bis (4- (vinyloxymethyl) cyclohexylmethyl) glutarate, tri (ethylene glycol) divinyl ether, adipic acid divinyl ester, diethylene glycol divinyl ether, and tris (4-vinyloxy) butyl trimellitate. Bis (4- (vinyloxy) butyl) terephthalate, bis (4- (vinyloxy) butyl) isophthalate, cyclohexanedimethanol divinyl ether, 1,4-butanediol divinyl ether, diethylene glycol divinyl ether, dipropylene glycol divinyl ether, tri Examples include methylolpropane trivinyl ether and pentaerythritol tetravinyl ether. These compounds can be used individually or in combination of 2 or more types.
 また、前記架橋性化合物(B)として、下記式(8)又は式(9)で表される化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000019
        (式中、qは1乃至10の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
        (式中、rは1乃至10の整数を表す。)
Moreover, it is preferable to use the compound represented by following formula (8) or formula (9) as said crosslinkable compound (B).
Figure JPOXMLDOC01-appb-C000019
(Wherein q represents an integer of 1 to 10)
Figure JPOXMLDOC01-appb-C000020
(Wherein r represents an integer of 1 to 10)
 上記(A)成分のポリマーと共に用いる前記架橋性化合物(B)の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、0.01乃至60質量%、例えば0.1乃至50質量%、又は0.1乃至40質量%である。
 また、上記(A’)成分のポリマーと共に用いる前記架橋性化合物(B)の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、1乃至70質量%であり、好ましくは3乃至60質量%であり、より好ましくは5乃至50質量%である。
 この割合が過小である場合や過大である場合には、溶剤耐性が得られにくくなるからである。
The content of the crosslinkable compound (B) used together with the polymer of the component (A) is 0.01 to 60% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. It is 0.1 to 50% by mass, or 0.1 to 40% by mass.
The content of the crosslinkable compound (B) used together with the polymer of the component (A ′) is 1 to 70% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Yes, preferably 3 to 60% by mass, more preferably 5 to 50% by mass.
This is because when this ratio is too small or too large, it is difficult to obtain solvent resistance.
<(C)成分>
 本発明のレジスト下層膜形成組成物は、(C)成分として光酸発生剤を含有することができる。光酸発生剤としては、露光に使用される光の照射によって酸を発生する化合物が挙げられ、例えば、ジアゾメタン化合物、オニウム塩化合物、スルホンイミド化合物、ニトロベンジル化合物、ベンゾイントシレート化合物、ハロゲン含有トリアジン化合物、及びシアノ基含有オキシムスルホネート化合物等が挙げられる。これらの中で、好ましくは、オニウム塩化合物である。
<(C) component>
The resist underlayer film forming composition of the present invention can contain a photoacid generator as the component (C). Examples of the photoacid generator include compounds that generate an acid upon irradiation with light used for exposure, such as diazomethane compounds, onium salt compounds, sulfonimide compounds, nitrobenzyl compounds, benzoin tosylate compounds, halogen-containing triazines. Compounds, cyano group-containing oxime sulfonate compounds, and the like. Of these, onium salt compounds are preferred.
 前記オニウム塩化合物としては、例えば、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムカンファースルホネート及びビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等のヨードニウム塩化合物、又はトリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムカンファースルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、及びトリフェニルスルホニウムp-トルエンスルホネート等のスルホニウム塩化合物等が挙げられる。 Examples of the onium salt compound include diphenyliodonium hexafluorophosphate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium camphorsulfonate, bis (4- iodonium salt compounds such as tert-butylphenyl) iodonium camphorsulfonate and bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, or triphenylsulfonium hexafluoroantimonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenyl Sulfonium camphorsulfonate, trife Le sulfonium trifluoromethanesulfonate, and sulfonium salt compounds such as triphenylsulfonium p- toluenesulfonate and the like.
 前記スルホンイミド化合物としては、例えば、N-(トリフルオロメタンスルホニルオキシ)スクシンイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)スクシンイミド、N-(カンファースルホニルオキシ)スクシンイミド、及びN-(トリフルオロメタンスルホニルオキシ)ナフタルイミド等が挙げられる。 Examples of the sulfonimide compound include N- (trifluoromethanesulfonyloxy) succinimide, N- (nonafluoro-n-butanesulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, and N- (trifluoromethanesulfonyloxy). And naphthalimide.
 上記(A)成分のポリマーと共に用いる前記光酸発生剤(C)の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、0.01乃至15質量%、又は0.1乃至10質量%である。光酸発生剤(C)の使用割合が0.01質量%未満の場合には、発生する酸の割合が少なくなり、その結果、露光部のアルカリ性現像液に対する溶解性が低下し、現像後に残渣が存在することがある。15質量%を超える場合にはレジスト下層膜形成組成物の保存安定性が低下することがあり、その結果、フォトレジストのパターン形状に影響を与えることがある。
 また、上記(A’)成分のポリマーと共に用いる前記光酸発生剤(C)の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、0乃至10質量%であり、好ましくは0%乃至5質量%である。この割合が10質量%以上である場合にはレジスト下層膜形成組成物の保存安定性が低下することがあるため、フォトレジストのパターン形状に影響を与えることがある。
The content of the photoacid generator (C) used together with the polymer of the component (A) is 0.01 to 15% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Or it is 0.1 to 10 mass%. When the use ratio of the photoacid generator (C) is less than 0.01% by mass, the ratio of the generated acid is reduced, and as a result, the solubility in the alkaline developer in the exposed area is lowered, and the residue after development May exist. When it exceeds 15 mass%, the storage stability of the resist underlayer film forming composition may be lowered, and as a result, the pattern shape of the photoresist may be affected.
The content of the photoacid generator (C) used together with the polymer of the component (A ′) is 0 to 10% by mass based on the content in the solid content of the resist underlayer film forming composition of the present invention. Preferably, it is 0% to 5% by mass. When this ratio is 10% by mass or more, the storage stability of the resist underlayer film forming composition may be lowered, which may affect the pattern shape of the photoresist.
<(D)成分>
 本発明のレジスト下層膜形成組成物は、(D)成分として塩基性化合物を含有することができる。塩基性化合物は、添加することにより、レジスト下層膜の露光時の感度調節を行うことができる。したがって、塩基性化合物が露光時に光酸発生剤により発生した酸と反応し、レジスト下層膜の感度を低下させることが可能である。また、露光部のレジスト下層膜中の光酸発生剤より生じた酸の未露光部のレジスト下層膜への拡散を抑えることができる。
<(D) component>
The resist underlayer film forming composition of the present invention can contain a basic compound as the component (D). By adding a basic compound, it is possible to adjust the sensitivity during exposure of the resist underlayer film. Therefore, it is possible for the basic compound to react with the acid generated by the photoacid generator at the time of exposure, and to reduce the sensitivity of the resist underlayer film. Moreover, the diffusion of the acid generated from the photoacid generator in the resist underlayer film in the exposed portion to the resist underlayer film in the unexposed portion can be suppressed.
 前記塩基性化合物としては、例えば、アミン類、水酸化アンモニウム類等を挙げることができる。
 前記アミン類としては、特に制限はないが、例えば、トリエタノールアミン、トリブタノールアミン、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-tert-ブチルアミン、トリ-n-オクチルアミン、トリイソプロパノールアミン、フェニルジエタノールアミン、ステアリルジエタノールアミン、及びジアザビシクロオクタン等の第3級アミンや、ピリジン及び4-ジメチルアミノピリジン等の芳香族アミンを挙げることができる。また、ベンジルアミン及びn-ブチルアミン等の第1級アミン、ジエチルアミン及びジ-n-ブチルアミン等の第2級アミンも挙げることができる。
Examples of the basic compound include amines and ammonium hydroxides.
The amines are not particularly limited, and examples thereof include triethanolamine, tributanolamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, triethylamine, and the like. There can be mentioned tertiary amines such as -n-octylamine, triisopropanolamine, phenyldiethanolamine, stearyldiethanolamine and diazabicyclooctane, and aromatic amines such as pyridine and 4-dimethylaminopyridine. There may also be mentioned primary amines such as benzylamine and n-butylamine, and secondary amines such as diethylamine and di-n-butylamine.
 前記アミン類は、上記光酸発生剤により生じた酸の未露光部のレジスト下層膜への拡散を抑える働きと同時に、(A)成分のポリマー又は(A’)成分のポリマーと(B)成分の架橋性化合物により熱架橋時に形成された架橋ポリマーに取り込まれ、そして露光部において(C)成分の光酸発生剤により発生した酸により架橋が切断されるため、ヒドロキシ基を生成しアルカリ現像液に溶解性を示すことが可能となる。したがって、(D)成分である塩基性化合物は、ヒドロキシ基を有することが好ましく、トリエタノールアミン、トリブタノールアミンが特に好ましい。前記塩基性化合物は、単独又は2種以上の組み合わせで使用することができる。 The amines have the function of suppressing the diffusion of the acid generated by the photoacid generator into the resist underlayer film of the unexposed portion, and at the same time, the polymer of the component (A) or the polymer of the component (A ′) and the component (B). Is incorporated into the crosslinked polymer formed during thermal crosslinking by the crosslinkable compound of (C), and the crosslinking is cleaved by the acid generated by the photoacid generator of component (C) in the exposed portion, so that a hydroxy group is generated and an alkaline developer. It is possible to show solubility. Therefore, the basic compound as the component (D) preferably has a hydroxy group, and triethanolamine and tributanolamine are particularly preferable. The said basic compound can be used individually or in combination of 2 or more types.
 上記(A)成分のポリマーと共に用いる前記塩基性化合物(D)の含有量は、(A)成分のポリマー100質量部に対して、0.001乃至5質量部、例えば0.01乃至1質量部、又は、0.1乃至0.5質量部である。
 また、上記(A’)成分のポリマーと共に用いる前記塩基性化合物(D)の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、0乃至10質量%であり、好ましくは0乃至5質量%であり、より好ましくは0乃至1質量%である。
 この割合が前記値より大きい場合には、感度が低下するからである。
Content of the said basic compound (D) used with the polymer of said (A) component is 0.001 thru | or 5 mass parts with respect to 100 mass parts of polymers of (A) component, for example 0.01 thru | or 1 mass part Or 0.1 to 0.5 parts by mass.
Moreover, content of the said basic compound (D) used with the polymer of the said (A ') component is 0-10 mass% based on content in solid content of the resist lower layer film forming composition of this invention. Yes, preferably 0 to 5 mass%, more preferably 0 to 1 mass%.
This is because the sensitivity decreases when this ratio is larger than the above value.
 また、本発明のレジスト下層膜形成組成物は、界面活性剤を含有することもできる。
 当該界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップEF301、EF303、EF352(三菱マテリアル電子化成株式会社(旧(株)ジェムコ)製)、メガファックF171、F173、R30(DIC株式会社(旧大日本インキ化学工業(株))製)、フロラードFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤は、単独又は2種以上の組み合わせで使用することができる。
Moreover, the resist underlayer film forming composition of this invention can also contain surfactant.
Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ethers such as nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, F-top EF301, EF303, EF352 (Mitsubishi Materials Electronics Kasei Co., Ltd. (formerly Gemco)), MegaFuck F171, F173, R30 (DIC Corporation (formerly Dainippon Ink and Chemicals)), Florard FC430, FC431 (Sumitomo 3M) Manufactured by Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.), etc., organosiloxane polymer K P341 (Shin-Etsu Chemical Co., Ltd.) etc. can be mentioned. These surfactants can be used alone or in combination of two or more.
 上記(A)成分のポリマーと共に用いる界面活性剤の含有量は、本発明のレジスト下層膜形成組成物の全成分中、通常0.2質量%以下、好ましくは0.1質量%以下である。
 また、上記(A’)成分のポリマーと共に用いる界面活性剤の含有量は、本発明のレジスト下層膜形成組成物の固形分中の含有量に基づいて、3質量%以下であり、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。
Content of surfactant used with the polymer of the said (A) component is 0.2 mass% or less normally in all the components of the resist underlayer film forming composition of this invention, Preferably it is 0.1 mass% or less.
The content of the surfactant used together with the polymer of the component (A ′) is 3% by mass or less, preferably 1 based on the content in the solid content of the resist underlayer film forming composition of the present invention. It is not more than mass%, more preferably not more than 0.5 mass%.
 さらに、本発明のレジスト下層膜組成物は、その他必要に応じてレオロジー調整剤、接着補助剤等を含有していても良い。 Furthermore, the resist underlayer film composition of the present invention may contain a rheology adjuster, an adhesion aid, and the like as necessary.
 本発明のレジスト下層膜形成組成物は、上記の各成分を適当な溶剤に溶解させることによって調製でき、均一な溶液状態で得られる。
 そのような溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドン等を用いることができる。また、プロピレングリコールモノブチルエーテル及びプロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することもできる。これらの溶剤は、単独又は2種以上の組み合わせで使用することができる。
The resist underlayer film forming composition of the present invention can be prepared by dissolving each of the above components in a suitable solvent, and can be obtained in a uniform solution state.
Examples of such solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate. , Propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxy acetate, ethyl hydroxyacetate, 2-hydroxy-3 -Methyl methylbutanoate, 3-methoxypropion Methyl, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, and the like can be used. Further, a high boiling point solvent such as propylene glycol monobutyl ether and propylene glycol monobutyl ether acetate can be mixed and used. These solvents can be used alone or in combination of two or more.
 調製されたレジスト下層膜形成組成物(溶液)は、孔径が例えば0.2μm程度のフィルタなどを用いてろ過した後、使用することが好ましい。このように調製されたレジスト下層膜形成組成物は、室温で長期間の貯蔵安定性にも優れる。 The prepared resist underlayer film forming composition (solution) is preferably used after being filtered using a filter having a pore size of, for example, about 0.2 μm. The resist underlayer film forming composition thus prepared is also excellent in long-term storage stability at room temperature.
 以下、本発明のレジスト下層膜形成組成物の使用について説明する。 Hereinafter, the use of the resist underlayer film forming composition of the present invention will be described.
 基板{例えば、酸化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素膜又は酸化窒化珪素膜で被覆されたシリコン等の半導体基板、窒化珪素基板、石英基板、ガラス基板(無アルカリガラス、低アルカリガラス、結晶化ガラスを含む)、ITO膜が形成されたガラス基板等}上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物が塗布され、その後、ホットプレート等の加熱手段を用いてベークすることにより、レジスト下層膜が形成される。 Substrate {for example, a semiconductor substrate such as silicon covered with a silicon oxide film, a semiconductor substrate such as silicon covered with a silicon nitride film or a silicon oxynitride film, a silicon nitride substrate, a quartz substrate, a glass substrate (non-alkali glass, low (Including alkali glass, crystallized glass), glass substrate on which an ITO film is formed, etc.}, the resist underlayer film forming composition of the present invention is applied by an appropriate application method such as a spinner or coater, and then hot plate A resist underlayer film is formed by baking using a heating means such as the above.
 ベーク条件としては、ベーク温度80℃乃至250℃、ベーク時間0.3分乃至60分間の中から適宜選択される。好ましくは、ベーク温度130℃乃至250℃、ベーク時間0.5分乃至5分間である。ベーク温度が、上記範囲より低い場合にはレジスト下層膜における架橋が不十分となり、レジスト下層膜がフォトレジストとインターミキシングを起こすことがある。他方、ベーク温度が、高すぎる場合もレジスト下層膜における架橋が切断され、レジスト下層膜がフォトレジストとインターミキシングを起こすことがある。 Baking conditions are appropriately selected from baking temperatures of 80 ° C. to 250 ° C. and baking times of 0.3 minutes to 60 minutes. Preferably, the baking temperature is 130 ° C. to 250 ° C., and the baking time is 0.5 minutes to 5 minutes. When the baking temperature is lower than the above range, crosslinking in the resist underlayer film becomes insufficient, and the resist underlayer film may cause intermixing with the photoresist. On the other hand, when the baking temperature is too high, the crosslinking in the resist underlayer film is cut, and the resist underlayer film may cause intermixing with the photoresist.
 また、本発明のレジスト下層膜の膜厚としては、0.001μm乃至3.0μm、例えば0.01μm乃至1.0μm、又は0.03μm乃至0.5μmである。 The film thickness of the resist underlayer film of the present invention is 0.001 μm to 3.0 μm, for example 0.01 μm to 1.0 μm, or 0.03 μm to 0.5 μm.
 本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、形成時のベーク条件によりビニルエーテル化合物が架橋することによって強固な膜となる。このため、本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、フォトレジストとのインターミキシングを起こさないものとなる。
 そして、該膜上に塗布されるフォトレジスト溶液として、一般的に使用される有機溶剤は、例えば、エチレングリコールモノメチルエーテル、エチレンセロソルブアセテート、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、メチルエチルケトン、シクロヘキサノン、γ-ブチロラクトン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ピルビン酸メチル、乳酸エチル、及び乳酸ブチル等である。
The resist underlayer film formed from the resist underlayer film forming composition of the present invention becomes a strong film when the vinyl ether compound is cross-linked under the baking conditions at the time of formation. For this reason, the resist underlayer film formed from the resist underlayer film forming composition of the present invention does not cause intermixing with the photoresist.
The organic solvent generally used as the photoresist solution applied on the film is, for example, ethylene glycol monomethyl ether, ethylene cellosolve acetate, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol. Monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, methyl ethyl ketone, cyclohexanone, γ-butyrolactone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, methyl pyruvate, ethyl lactate, and Butyl lactate and the like.
 次にレジスト下層膜上にフォトレジスト膜が形成される。フォトレジスト膜の形成は一般的な方法、すなわち、フォトレジスト溶液のレジスト下層膜上への塗布及びベークによって行うことができる。 Next, a photoresist film is formed on the resist underlayer film. The formation of the photoresist film can be performed by a general method, that is, by applying and baking a photoresist solution on the resist underlayer film.
 本発明のレジスト下層膜形成組成物により得られたレジスト下層膜上に形成されるフォトレジストとしては、露光光に感光し、ポジ型の挙動を示すものであれば、特に限定はない。当該フォトレジストとしては、例えば、ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤とからなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤とからなる化学増幅型フォトレジスト等がある。
 具体的には、商品名:APEX-X(ローム・アンド・ハース・エレクトロニック・マテリアルズ社(旧シプレイ社)製)、商品名:PAR710(住友化学(株)製)、商品名:SEPR430(信越化学工業(株)製)等が挙げられる。
The photoresist formed on the resist underlayer film obtained by the resist underlayer film forming composition of the present invention is not particularly limited as long as it is sensitive to exposure light and exhibits a positive behavior. Examples of the photoresist include a positive photoresist composed of a novolak resin and 1,2-naphthoquinonediazide sulfonate, a binder having a group that decomposes with an acid to increase the alkali dissolution rate, and a photoacid generator. Chemically amplified photoresist, a chemically amplified photoresist consisting of a low molecular weight compound that decomposes with acid to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, an alkali dissolution rate that decomposes with acid There are chemically amplified photoresists composed of a low molecular weight compound that decomposes with a binder having a group that raises the acid and an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator.
Specifically, product name: APEX-X (Rohm and Haas Electronic Materials (formerly Shipley)), product name: PAR710 (Sumitomo Chemical Co., Ltd.), product name: SEPR430 (Shin-Etsu) Chemical Industry Co., Ltd.).
 本発明では、半導体製造装置の製造に用いるフォトレジストパターンの形成方法において、露光は所定のパターンを形成するためのマスク(レチクル)を通して露光が行われる。露光には、KrFエキシマレーザー、ArFエキシマレーザー等を使用することができる。露光後、必要に応じて露光後加熱(Post Exposure Bake)が行われる。露光後加熱の条件としては、加熱温度80℃乃至150℃、加熱時間0.3分乃至60分間の中から適宜選択される。レジスト下層膜とフォトレジスト膜で被膜された半導体基板を、フォトマスクを用いて露光を行い、その後に現像する工程により半導体装置を製造する。本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、露光時にレジスト膜に含まれている光酸発生剤から発生する酸の作用によって、アルカリ性現像液に可溶となる。露光を行った後、アルカリ性現像液でフォトレジスト膜及びレジスト下層膜両層の一括現像を行うと、そのフォトレジスト膜及びレジスト下層膜の露光された部分はアルカリ溶解性を示すため、除去される。 In the present invention, in a method for forming a photoresist pattern used for manufacturing a semiconductor manufacturing apparatus, exposure is performed through a mask (reticle) for forming a predetermined pattern. For the exposure, a KrF excimer laser, an ArF excimer laser, or the like can be used. After exposure, post-exposure heating (Post Exposure Bake) is performed as necessary. The post-exposure heating conditions are appropriately selected from heating temperatures of 80 ° C. to 150 ° C. and heating times of 0.3 minutes to 60 minutes. A semiconductor device is manufactured by a process in which a semiconductor substrate coated with a resist underlayer film and a photoresist film is exposed using a photomask and then developed. The resist underlayer film formed from the resist underlayer film forming composition of the present invention becomes soluble in an alkaline developer by the action of an acid generated from a photoacid generator contained in the resist film during exposure. After the exposure, when both the photoresist film and the resist underlayer film are collectively developed with an alkaline developer, the exposed portions of the photoresist film and the resist underlayer film are removed because they exhibit alkali solubility. .
 前記アルカリ性現像液としては、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリン等の水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミン等のアミン水溶液等のアルカリ性水溶液等が挙げることができる。
 さらに、これらの現像液に界面活性剤等を加えることもできる。
Examples of the alkaline developer include aqueous solutions of alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline, and ethanolamine. And alkaline aqueous solutions such as amine aqueous solutions such as propylamine and ethylenediamine.
Further, a surfactant or the like can be added to these developers.
 現像の条件としては、現像温度5℃乃至50℃、現像時間10秒乃至300秒から適宜選択される。本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、フォトレジストの現像に汎用されている2.38質量%の水酸化テトラメチルアンモニウム水溶液を用いて、室温で容易に現像を行うことができる。 The development conditions are appropriately selected from a development temperature of 5 ° C. to 50 ° C. and a development time of 10 seconds to 300 seconds. The resist underlayer film formed from the resist underlayer film forming composition of the present invention is easily developed at room temperature using a 2.38 mass% tetramethylammonium hydroxide aqueous solution that is widely used for developing photoresists. be able to.
 本発明のレジスト下層膜形成組成物から形成されるレジスト下層膜は、基板とフォトレジスト膜との相互作用を防止するための層、フォトレジスト膜に用いられる材料又はフォトレジストへの露光時に生成する物質の半導体基板への悪影響を防ぐ層、ベーク時に半導体基板から生成する物質の上層フォトレジスト膜への拡散を防ぐ機能を有する層、及び誘電体層によるフォトレジストのポイズニング効果を減少させるためのバリア層等として使用することも可能である。 The resist underlayer film formed from the resist underlayer film forming composition of the present invention is formed upon exposure to a layer for preventing interaction between the substrate and the photoresist film, a material used for the photoresist film, or the photoresist. A layer for preventing the adverse effect of the substance on the semiconductor substrate, a layer for preventing diffusion of the substance generated from the semiconductor substrate upon baking into the upper photoresist film, and a barrier for reducing the poisoning effect of the photoresist by the dielectric layer It can also be used as a layer or the like.
 以下、実施例及び比較例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものでない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[モノマーの合成]
<合成例1>
 9-アントラセンカルボン酸(東京化成工業(株))40gと塩化チオニル214gを、加熱還流させながら5時間反応させた。その後、この反応物を濃縮しトルエンで共沸させ、そして減圧下で乾燥させて、9-アントラセンカルボン酸クロリド41gを得た。
 次に、窒素雰囲気下、エチレングリコール12.5g及びトリエチルアミン21.6gを塩化メチレン128gに溶解させた。その後、前記9-アントラセンカルボン酸クロリド38gを塩化メチレン68gに溶解させたものを滴下した。そして、加熱還流させながら3時間反応させた。その後、濃縮及び抽出し、ヘキサン/酢酸エチル混合溶媒を用いて再結晶させることで、下記式(10)で表される2-ビニルオキシ-1-(9-アントラセンカルボニルオキシ)エチレン44gを得た。
Figure JPOXMLDOC01-appb-C000021
[Monomer synthesis]
<Synthesis Example 1>
40 g of 9-anthracenecarboxylic acid (Tokyo Chemical Industry Co., Ltd.) and 214 g of thionyl chloride were reacted for 5 hours while heating to reflux. The reaction was then concentrated, azeotroped with toluene, and dried under reduced pressure to give 41 g of 9-anthracenecarboxylic acid chloride.
Next, 12.5 g of ethylene glycol and 21.6 g of triethylamine were dissolved in 128 g of methylene chloride under a nitrogen atmosphere. Thereafter, 38 g of 9-anthracenecarboxylic acid chloride dissolved in 68 g of methylene chloride was added dropwise. And it was made to react for 3 hours, heating and refluxing. Then, it was concentrated and extracted, and recrystallized using a mixed solvent of hexane / ethyl acetate to obtain 44 g of 2-vinyloxy-1- (9-anthracenecarbonyloxy) ethylene represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000021
<合成例2>
 9-ヒドロキシメチルアントラセン150g、炭酸ナトリウム42g、クロロ(1,5-シクロオクタジエン)イリジウム(I)ダイマー(東京化成工業(株))6g及びトルエン1.2Lを100℃で加熱し、酢酸ビニル155gを滴下した。1時間後室温に戻し、酢酸エチルで抽出を行い、ヘキサン/酢酸エチル混合溶剤を用いて再結晶することで、下記式(11)で表される9-アントラセンメチルビニルエーテル112gを得た。
Figure JPOXMLDOC01-appb-C000022
<Synthesis Example 2>
150 g of 9-hydroxymethylanthracene, 42 g of sodium carbonate, 6 g of chloro (1,5-cyclooctadiene) iridium (I) dimer (Tokyo Chemical Industry Co., Ltd.) and 1.2 L of toluene were heated at 100 ° C., and 155 g of vinyl acetate Was dripped. After 1 hour, the temperature was returned to room temperature, extracted with ethyl acetate, and recrystallized using a mixed solvent of hexane / ethyl acetate to obtain 112 g of 9-anthracene methyl vinyl ether represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000022
<合成例3>
 2-ナフタレンカルボン酸(東京化成工業(株))50gと塩化チオニル207gを、50℃に加熱し1.5時間反応させた。その後、この反応物を濃縮しトルエンで共沸させ、そして減圧下で乾燥させて、2-ナフタレンカルボン酸クロリドを55gを得た。
 次に、窒素雰囲気下、エチレングリコールモノビニルエーテル43g及びトリエチルアミン81gを塩化メチレン402gに溶解させた。その後、前記2-ナフタレンカルボン酸クロリド55gを塩化メチレン200gに溶解させたものを滴下した。そして、加熱還流させながら3時間反応させた。その後、濃縮及び抽出し、ヘキサン/酢酸エチル混合溶媒を用いて再結晶させることで、下記式(12)で表される2-ビニルオキシ-1-(2-ナフタレンカルボニルオキシ)エチレン56gを得た。
Figure JPOXMLDOC01-appb-C000023
<Synthesis Example 3>
50 g of 2-naphthalenecarboxylic acid (Tokyo Chemical Industry Co., Ltd.) and 207 g of thionyl chloride were heated to 50 ° C. and reacted for 1.5 hours. The reaction was then concentrated, azeotroped with toluene, and dried under reduced pressure to give 55 g of 2-naphthalenecarboxylic acid chloride.
Next, 43 g of ethylene glycol monovinyl ether and 81 g of triethylamine were dissolved in 402 g of methylene chloride under a nitrogen atmosphere. Thereafter, a solution prepared by dissolving 55 g of the 2-naphthalenecarboxylic acid chloride in 200 g of methylene chloride was dropped. And it was made to react for 3 hours, heating and refluxing. Thereafter, the mixture was concentrated and extracted, and recrystallized using a hexane / ethyl acetate mixed solvent to obtain 56 g of 2-vinyloxy-1- (2-naphthalenecarbonyloxy) ethylene represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000023
<合成例4>
 メタクリル酸36.8g、合成例2で得られた9-アントラセンメチルビニルエーテル20g、4-メトキシフェノール0.06g及びトルエン85.1gの溶液にピリジニウムp-トルエンスルホネート0.15gを加え、室温で12時間反応させた。その後、炭酸ナトリウム水溶液、飽和塩化ナトリウム水溶液で抽出を行い、無水硫酸ナトリウムで乾燥させた。その後、溶剤を減圧留去することで、下記式(13)で表されるメタクリレートモノマーを27.3g得た。
Figure JPOXMLDOC01-appb-C000024
<Synthesis Example 4>
0.15 g of pyridinium p-toluenesulfonate was added to a solution of 36.8 g of methacrylic acid, 20 g of 9-anthracene methyl vinyl ether obtained in Synthesis Example 2, 0.06 g of 4-methoxyphenol and 85.1 g of toluene, and at room temperature for 12 hours. Reacted. Then, extraction was performed with an aqueous sodium carbonate solution and a saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. Then, 27.3g of methacrylate monomers represented by following formula (13) were obtained by depressurizingly distilling a solvent.
Figure JPOXMLDOC01-appb-C000024
[ポリマーの合成]
<合成例5>
 ポリ(4-ビニルフェノール)10.0g(重量平均分子量Mw=15000)(東ソー(株))及びテトラヒドロフラン79gの溶液に、合成例1で得られた2-ビニルオキシ-1-(9-アントラセンカルボニルオキシ)エチレン20g、36質量%塩酸0.1gを加えて、室温で16時間撹拌して反応させた。その後、この反応溶液に28質量%アンモニア水1.0gを加えた後、水を加え、ポリマーを沈殿させた。得られたポリマーをアセトンへ再溶解させた後、トルエンを用いてポリマーを沈殿させた。そして、このポリマーを減圧下で乾燥させ、下記式(14)で表されるポリマー23gを得た。
 得られたポリマーについて1H-NMR分析より、ポリ(4-ビニルフェノール)中のフェノール性ヒドロキシ基の36%がアセタール化(アセタール保護)されていることが確認された。
Figure JPOXMLDOC01-appb-C000025
[Polymer synthesis]
<Synthesis Example 5>
To a solution of 10.0 g of poly (4-vinylphenol) (weight average molecular weight Mw = 15000) (Tosoh Corporation) and 79 g of tetrahydrofuran, 2-vinyloxy-1- (9-anthracenecarbonyloxy) obtained in Synthesis Example 1 was added. ) Ethylene (20 g) and 36 mass% hydrochloric acid (0.1 g) were added, and the mixture was reacted at room temperature for 16 hours. Then, after adding 1.0 g of 28 mass% ammonia water to this reaction solution, water was added and the polymer was precipitated. After the obtained polymer was redissolved in acetone, the polymer was precipitated using toluene. And this polymer was dried under reduced pressure and the polymer 23g represented by following formula (14) was obtained.
From the 1 H-NMR analysis of the obtained polymer, it was confirmed that 36% of the phenolic hydroxy groups in poly (4-vinylphenol) were acetalized (acetal protected).
Figure JPOXMLDOC01-appb-C000025
<合成例6>
 ポリ(4-ビニルフェノール)3.1g(重量平均分子量Mw=15000)(東ソー(株))及びテトラヒドロフラン16gの溶液に、合成例2で得られた9-アントラセンメチルビニルエーテル3.8g及び36質量%塩酸0.01gを加えて、室温で16時間撹拌して反応させた。その後、この反応溶液に28質量%アンモニア水0.6gを加えた後、水を加え、ポリマーを沈殿させた。得られたポリマーをアセトンへ再溶解させた後、トルエンを用いてポリマーを沈殿させた。そして、このポリマーを減圧下で乾燥させ、下記式(15)で表されるポリマー6.4gを得た。
 得られたポリマーについて1H-NMR分析より、ポリ(4-ビニルフェノール)中のフェノール性ヒドロキシ基の28%がアセタール化(アセタール保護)されていることが確認された。
Figure JPOXMLDOC01-appb-C000026
<Synthesis Example 6>
To a solution of 3.1 g of poly (4-vinylphenol) (weight average molecular weight Mw = 15000) (Tosoh Corp.) and 16 g of tetrahydrofuran, 3.8 g of 9-anthracene methyl vinyl ether obtained in Synthesis Example 2 and 36% by mass were obtained. Hydrochloric acid 0.01 g was added and the reaction was allowed to stir at room temperature for 16 hours. Then, after adding 0.6 g of 28 mass% ammonia water to this reaction solution, water was added and the polymer was precipitated. After the obtained polymer was redissolved in acetone, the polymer was precipitated using toluene. And this polymer was dried under reduced pressure and the polymer 6.4g represented by following formula (15) was obtained.
From the 1 H-NMR analysis of the obtained polymer, it was confirmed that 28% of the phenolic hydroxy groups in the poly (4-vinylphenol) were acetalized (acetal protected).
Figure JPOXMLDOC01-appb-C000026
<合成例7>
 ポリ(4-ビニルフェノール)3.1g(重量平均分子量Mw=15000)(東ソー(株))及びテトラヒドロフラン19gの溶液に、合成例3で得られた2-ビニルオキシ-1-(2-ナフタレンカルボニルオキシ)エチレン4.9g及び36質量%塩酸0.01gを加えて、室温で47時間撹拌して反応させた。その後、この反応混合液に28質量%アンモニア水0.6gを加えた後、水を加え、ポリマーを沈殿させた。得られたポリマーをアセトンへ再溶解させた後、トルエンを用いてポリマーを沈殿させた。そして、このポリマーを減圧下で乾燥させ、下記式(16)で表されるポリマー4.0gを得た。
 得られたポリマーについて、1H-NMR分析より、ポリ(4-ビニルフェノール)中のフェノール性ヒドロキシ基の40%がアセタール化(アセタール保護)されていることが確認された。
Figure JPOXMLDOC01-appb-C000027
<Synthesis Example 7>
2-vinyloxy-1- (2-naphthalenecarbonyloxy) obtained in Synthesis Example 3 was added to a solution of 3.1 g of poly (4-vinylphenol) (weight average molecular weight Mw = 15000) (Tosoh Corporation) and 19 g of tetrahydrofuran. ) Ethylene (4.9 g) and 36 mass% hydrochloric acid (0.01 g) were added, and the mixture was stirred at room temperature for 47 hours to be reacted. Then, after adding 0.6 g of 28 mass% ammonia water to this reaction liquid mixture, water was added and the polymer was precipitated. After the obtained polymer was redissolved in acetone, the polymer was precipitated using toluene. And this polymer was dried under reduced pressure and 4.0g of polymers represented by following formula (16) were obtained.
1 H-NMR analysis of the obtained polymer confirmed that 40% of the phenolic hydroxy groups in poly (4-vinylphenol) were acetalized (acetal protected).
Figure JPOXMLDOC01-appb-C000027
<合成例8>
 ポリ(4-ビニルフェノール)3.1g(重量平均分子量Mw=15000)(東ソー(株))及びテトラヒドロフラン20gの溶液に、合成例3で得られた2-ビニルオキシ-1-(2-ナフタレンカルボニルオキシ)エチレン1.5g、合成例1で得られた2-ビニルオキシ-1-(9-アントラセンカルボニルオキシ)エチレン4.4g及び36質量%塩酸0.01gを加えて、室温で36時間撹拌して反応させた。その後、この反応混合液に28質量%アンモニア水0.6gを加えた後、水を加え、ポリマーを沈殿させた。得られたポリマーをアセトンへ再溶解させた後、トルエンを用いてポリマーを沈殿させた。そして、このポリマーを減圧下で乾燥させ、下記式(17)で表されるポリマー5.8gを得た。
 得られたポリマーについて、1H-NMR分析より、ポリ(4-ビニルフェノール)中のフェノール性ヒドロキシ基の34%がアセタール化(アセタール保護)されていることが確認された。なお、アセタール保護された中での、保護基の修飾割合は、ナフタレン誘導体/アントラセン誘導体=24/76(モル比)であった。
Figure JPOXMLDOC01-appb-C000028
<Synthesis Example 8>
2-vinyloxy-1- (2-naphthalenecarbonyloxy) obtained in Synthesis Example 3 was added to a solution of 3.1 g of poly (4-vinylphenol) (weight average molecular weight Mw = 15000) (Tosoh Corp.) and 20 g of tetrahydrofuran. ) 1.5 g of ethylene, 4.4 g of 2-vinyloxy-1- (9-anthracenecarbonyloxy) ethylene obtained in Synthesis Example 1 and 0.01 g of 36% by mass hydrochloric acid were added and stirred at room temperature for 36 hours to react. I let you. Then, after adding 0.6 g of 28 mass% ammonia water to this reaction liquid mixture, water was added and the polymer was precipitated. After the obtained polymer was redissolved in acetone, the polymer was precipitated using toluene. And this polymer was dried under reduced pressure and the polymer 5.8g represented by following formula (17) was obtained.
From the 1 H-NMR analysis of the obtained polymer, it was confirmed that 34% of the phenolic hydroxy groups in poly (4-vinylphenol) were acetalized (acetal protected). In addition, the modification ratio of the protecting group in the acetal protected was naphthalene derivative / anthracene derivative = 24/76 (molar ratio).
Figure JPOXMLDOC01-appb-C000028
<合成例9>
 ポリ(4-ビニルフェノール/メタクリル酸=73.9/26.1コポリマー)3.1g(重量平均分子量Mw=15000)(丸善石油化学(株))及びテトラヒドロフラン20gの溶液に、合成例1で得られた2-ビニルオキシ-1-(9-アントラセンカルボニルオキシ)エチレン6.2g及び36質量%塩酸0.01gを加えて、室温で22時間撹拌して反応させた。その後、この反応混合液に28質量%アンモニア水0.6gを加えた後、水に加えて、ポリマー沈殿させた。得られたポリマーをアセトンへ再溶解させた後、トルエンを用いてポリマーを沈殿させた。そして、このポリマーを減圧下で乾燥させ、下記式(18)で表されるポリマー4.1gを得た。
 得られたポリマーについて、13C-NMR分析より、フェノール性ヒドロキシ基の23%、カルボキシル基の19%がアセタール化(アセタール保護)されていることが確認された。
Figure JPOXMLDOC01-appb-C000029
<Synthesis Example 9>
Obtained in Synthesis Example 1 in a solution of 3.1 g of poly (4-vinylphenol / methacrylic acid = 73.9 / 26.1 copolymer) (weight average molecular weight Mw = 15000) (Maruzen Petrochemical Co., Ltd.) and 20 g of tetrahydrofuran. 6.2 g of the obtained 2-vinyloxy-1- (9-anthracenecarbonyloxy) ethylene and 0.01 g of 36% by mass hydrochloric acid were added, and the reaction was stirred at room temperature for 22 hours. Then, after adding 0.6 g of 28 mass% ammonia water to this reaction liquid mixture, it added to water and polymer-precipitated. After the obtained polymer was redissolved in acetone, the polymer was precipitated using toluene. And this polymer was dried under reduced pressure and 4.1g of polymers represented by following formula (18) were obtained.
From the 13 C-NMR analysis of the obtained polymer, it was confirmed that 23% of the phenolic hydroxy group and 19% of the carboxyl group were acetalized (acetal protected).
Figure JPOXMLDOC01-appb-C000029
<合成例10>
 9-アントラセンメチルメタクリレート4.5g、4-アセトキシスチレン15g及び2,2’-アゾビス(イソ酪酸)ジメチル1.2gを、2-ブタノン31gに溶解させた後、この溶液を2-ブタノン52gが加熱還流されているフラスコ中に2時間かけて滴下した。その後12時間加熱還流した後、室温に戻し、得られた溶液をヘキサンに加えることにより、下記式(19)で表されるポリマー10.5gを白色粉末として得た。
Figure JPOXMLDOC01-appb-C000030
 次に、上記式(19)で表されるポリマー10g及びトリエチルアミン10gを、水5g、メタノール30g及びテトラヒドロフラン30gに溶解させた。その後、5時間加熱還流を行った後、室温に戻し、得られた溶液を水に加えた。その後、テトラヒドロフランに再溶解させた後、ジエチルエーテルに加えることにより、下記式(20)で表されるポリマー1.1gを淡褐色粉末として得た。
Figure JPOXMLDOC01-appb-C000031
<Synthesis Example 10>
After 4.5 g of 9-anthracenemethyl methacrylate, 15 g of 4-acetoxystyrene and 1.2 g of 2,2′-azobis (isobutyric acid) dimethyl were dissolved in 31 g of 2-butanone, 52 g of 2-butanone was heated to 52 g of 2-butanone. The solution was added dropwise to the refluxed flask over 2 hours. Thereafter, the mixture was heated to reflux for 12 hours, then returned to room temperature, and the obtained solution was added to hexane to obtain 10.5 g of a polymer represented by the following formula (19) as a white powder.
Figure JPOXMLDOC01-appb-C000030
Next, 10 g of the polymer represented by the above formula (19) and 10 g of triethylamine were dissolved in 5 g of water, 30 g of methanol and 30 g of tetrahydrofuran. Then, after heating and refluxing for 5 hours, it returned to room temperature and added the obtained solution to water. Then, after redissolving in tetrahydrofuran, 1.1 g of a polymer represented by the following formula (20) was obtained as a light brown powder by adding to diethyl ether.
Figure JPOXMLDOC01-appb-C000031
<合成例11>
 4-ヒドロキシフェニルメタクリルアミド5.17g、合成例4で得られた式(13)で表されるアセタールモノマー4g、2,2’-アゾビス(イソ酪酸)ジメチル0.55g及びテトラヒドロフラン43.9gの溶液を加熱還流させて17時間反応させた。その後、アセトニトリルを用いてポリマーを沈殿させ、ポリマーを減圧下で乾燥させ、下記式(21)で表されるポリマーを7.0g得た。
 得られたポリマーの重量平均分子量は標準ポリスチレン換算で16,200であった。
Figure JPOXMLDOC01-appb-C000032
<Synthesis Example 11>
4.17 g of 4-hydroxyphenylmethacrylamide, 4 g of the acetal monomer represented by the formula (13) obtained in Synthesis Example 4, 0.55 g of 2,2′-azobis (isobutyric acid) dimethyl and 43.9 g of tetrahydrofuran Was heated to reflux and reacted for 17 hours. Thereafter, the polymer was precipitated using acetonitrile, and the polymer was dried under reduced pressure to obtain 7.0 g of a polymer represented by the following formula (21).
The weight average molecular weight of the obtained polymer was 16,200 in terms of standard polystyrene.
Figure JPOXMLDOC01-appb-C000032
<合成例12>
 4-ヒドロキシフェニルメタクリルアミド5.99g、9-アントラセンメチルメタクリレート4g、2,2’-アゾビス(イソ酪酸)ジメチル0.60g及びテトラヒドロフラン47.35gの溶液を加熱還流させて17時間反応させた。その後、アセトニトリルを用いてポリマーを沈殿させ、ポリマーを減圧下で乾燥させ、下記式(22)で表されるポリマーを8.2g得た。
 得られたポリマーの重量平均分子量は標準ポリスチレン換算で13000であった。
Figure JPOXMLDOC01-appb-C000033
<Synthesis Example 12>
A solution of 5.99 g of 4-hydroxyphenylmethacrylamide, 4 g of 9-anthracenemethyl methacrylate, 0.60 g of 2,2′-azobis (isobutyric acid) dimethyl and 47.35 g of tetrahydrofuran was heated to reflux and reacted for 17 hours. Thereafter, the polymer was precipitated using acetonitrile, and the polymer was dried under reduced pressure to obtain 8.2 g of a polymer represented by the following formula (22).
The weight average molecular weight of the obtained polymer was 13000 in terms of standard polystyrene.
Figure JPOXMLDOC01-appb-C000033
 実施例1乃至5は、本発明の第1態様に対応する実施例であり、比較例1は本発明の第1態様に対する比較例である。また、実施例6は、本発明の第2態様に対応する実施例であり、比較例2は本発明の第2態様に対する比較例である。 Examples 1 to 5 are examples corresponding to the first aspect of the present invention, and Comparative Example 1 is a comparative example for the first aspect of the present invention. In addition, Example 6 is an example corresponding to the second aspect of the present invention, and Comparative Example 2 is a comparative example for the second aspect of the present invention.
<実施例1>
 合成例5で得たポリマー0.2gに、上記式(8)においてq=4で表される1,3,5-トリス(4-ビニルオキシブチル)トリメリット酸0.04g及びトリフェニルスルホニウムp-トルエンスルホネート0.004gを混合し、プロピレングリコールモノメチルエーテル10gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、レジスト下層膜形成組成物(溶液)を調製した。
<Example 1>
To 0.2 g of the polymer obtained in Synthesis Example 5, 0.04 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid represented by q = 4 in the above formula (8) and triphenylsulfonium p -0.004 g of toluene sulfonate was mixed and dissolved in 10 g of propylene glycol monomethyl ether to obtain a solution. Then, it filtered using the polyethylene micro filter with the hole diameter of 0.10 micrometer, and also filtered using the polyethylene micro filter with the hole diameter of 0.05 micrometer, and prepared the resist lower layer film forming composition (solution).
<実施例2乃至実施例5>
 実施例1と同様に、合成例6乃至合成例9で得たポリマー0.2gに、1,3,5-トリス(4-ビニルオキシブチル)トリメリット酸0.04g及びトリフェニルスルホニウムp-トルエンスルホネート0.004gを混合し、プロピレングリコールモノメチルエーテル10gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、レジスト下層膜形成組成物(溶液)を調製した。
 合成例6で得たポリマーを用いて調製されたレジスト下層膜形成組成物(溶液)が実施例2に対応し、合成例7で得たポリマーを用いて調製されたレジスト下層膜形成組成物(溶液)が実施例3に対応し、合成例8で得たポリマーを用いて調製されたレジスト下層膜形成組成物(溶液)が実施例4に対応し、合成例9で得たポリマーを用いて調製されたレジスト下層膜形成組成物(溶液)が実施例5に対応する。
<Example 2 to Example 5>
As in Example 1, 0.2 g of the polymer obtained in Synthesis Examples 6 to 9 was added to 0.04 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid and triphenylsulfonium p-toluene. 0.004 g of sulfonate was mixed and dissolved in 10 g of propylene glycol monomethyl ether to obtain a solution. Then, it filtered using the polyethylene micro filter with the hole diameter of 0.10 micrometer, and also filtered using the polyethylene micro filter with the hole diameter of 0.05 micrometer, and prepared the resist lower layer film forming composition (solution).
The resist underlayer film forming composition (solution) prepared using the polymer obtained in Synthesis Example 6 corresponds to Example 2, and the resist underlayer film forming composition prepared using the polymer obtained in Synthesis Example 7 ( Solution) corresponds to Example 3, and the resist underlayer film forming composition (solution) prepared using the polymer obtained in Synthesis Example 8 corresponds to Example 4 and the polymer obtained in Synthesis Example 9 is used. The prepared resist underlayer film forming composition (solution) corresponds to Example 5.
<実施例6>
 合成例11で得られたポリマー0.4gに、1,3,5-トリス(4-ビニルオキシブチル)トリメリット酸0.08g及びp-トルエンスルホネート0.02gを混合し、これをプロピレングリコールモノメチルエーテル18gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過し、さらに孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、レジスト下層膜形成組成物(溶液)を調製した。
<Example 6>
0.48 g of the polymer obtained in Synthesis Example 11 was mixed with 0.08 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid and 0.02 g of p-toluenesulfonate, and this was mixed with propylene glycol monomethyl. A solution was prepared by dissolving in 18 g of ether. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and also filtered using the polyethylene micro filter with a hole diameter of 0.05 micrometer, and prepared the resist lower layer film forming composition (solution).
<比較例1>
 実施例1と同様に、合成例10で得たポリマー0.2gに、1,3,5-トリス(4-ビニルオキシブチル)トリメリット酸0.04g及びトリフェニルスルホニウムp-トルエンスルホネート0.004gを混合し、プロピレングリコールモノメチルエーテル10gに溶解させ溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過し、更に、孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過してレジスト下層膜形成組成物(溶液)を調製した。
<Comparative Example 1>
In the same manner as in Example 1, 0.24 g of the polymer obtained in Synthesis Example 10 was added to 0.04 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid and 0.004 g of triphenylsulfonium p-toluenesulfonate. Were mixed and dissolved in 10 g of propylene glycol monomethyl ether to prepare a solution. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.10 μm, and further filtered using a polyethylene microfilter having a pore size of 0.05 μm to prepare a resist underlayer film forming composition (solution).
<比較例2>
 合成例12で得られたポリマー0.4gに、1,3,5-トリス(4-ビニルオキシブチル)トリメリット酸0.08g及びp-トルエンスルホネート0.02gを混合し、これをプロピレングリコールモノメチルエーテル18gに溶解させて溶液とした。その後、孔径0.10μmのポリエチレン製ミクロフィルターを用いてろ過し、さらに孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過し、レジスト下層膜形成組成物(溶液)を調製した。
<Comparative example 2>
0.48 g of the polymer obtained in Synthesis Example 12 was mixed with 0.08 g of 1,3,5-tris (4-vinyloxybutyl) trimellitic acid and 0.02 g of p-toluenesulfonate, and this was mixed with propylene glycol monomethyl. A solution was prepared by dissolving in 18 g of ether. Then, it filtered using the polyethylene micro filter with a hole diameter of 0.10 micrometer, and also filtered using the polyethylene micro filter with a hole diameter of 0.05 micrometer, and prepared the resist lower layer film forming composition (solution).
[フォトレジスト溶剤への溶出試験]
 実施例1乃至実施例6、並びに比較例1及び比較例2で調製された各レジスト下層膜形成組成物(溶液)をスピナーにより、半導体基板(シリコンウェハー)上に塗布した。その後、160℃のホットプレート上で1分間ベークし、レジスト下層膜[膜厚0.06μm(実施例6及び比較例2については膜厚0.05μm)]を形成した。このレジスト下層膜をフォトレジストに使用する溶剤、例えばプロピレングリコールモノメチルエーテルに浸漬した。その結果、この溶剤に難溶である事を確認した。
[Elution test into photoresist solvent]
Each resist underlayer film forming composition (solution) prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 160 degreeC hotplate for 1 minute, and formed the resist underlayer film [film thickness 0.06 micrometer (in Example 6 and the comparative example 2, film thickness 0.05 micrometer)]. This resist underlayer film was immersed in a solvent used for a photoresist, for example, propylene glycol monomethyl ether. As a result, it was confirmed that it was hardly soluble in this solvent.
[光学パラメーターの試験]
 実施例1乃至実施例6、並びに比較例1及び比較例2で調製された各レジスト下層膜形成組成物(溶液)をスピナーにより、半導体基板(シリコンウェハー)上に塗布した。その後、160℃のホットプレート上で1分間ベークし、レジスト下層膜[膜厚0.06μm(実施例6及び比較例2については膜厚0.05μm)]を形成した。そして、これらのレジスト下層膜を光エリプソメーター(J.A.Woollam社製、VUV-VASE VU-302)を用い、波長248nm及び193nmでの屈折率(n値)及び減衰係数(k値)を測定した。その結果を表1に示す。
[Optical parameter test]
Each resist underlayer film forming composition (solution) prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 160 degreeC hotplate for 1 minute, and formed the resist underlayer film [film thickness 0.06 micrometer (in Example 6 and the comparative example 2, film thickness 0.05 micrometer)]. These resist underlayer films were subjected to a refractive index (n value) and attenuation coefficient (k value) at wavelengths of 248 nm and 193 nm using an optical ellipsometer (manufactured by JA Woollam, VUV-VASE VU-302). It was measured. The results are shown in Table 1.
 表1に示す結果から、本発明のレジスト下層膜形成組成物より得られたレジスト下層膜は、248nm及び193nmの光に対して十分に有効な屈折率と減衰係数を有していることが判る。 From the results shown in Table 1, it can be seen that the resist underlayer film obtained from the resist underlayer film forming composition of the present invention has a sufficiently effective refractive index and attenuation coefficient for 248 nm and 193 nm light. .
[パターン形状の評価]
 実施例4及び比較例1で調製された各レジスト下層膜形成組成物(溶液)をスピナーにより、半導体基板(シリコンウェハー)上に塗布した。その後、200℃のホットプレート上で1分間ベークし、レジスト下層膜(膜厚0.05μm)を形成した。このレジスト下層膜の上に、市販のフォトレジスト溶液(JSR(株)製、商品名:V146G)をスピナーにより塗布し、110℃のホットプレート上で60秒間加熱してフォトレジスト膜(膜厚0.425μm)を形成した。そして、次いで、ASML社製ASM750スキャナー(波長248nm、NA:0.70、σ:0.875/0.575(ANNULAR))を用い、現像後にフォトレジストパターンのライン幅及びそのライン間の幅が0.18μmになるよう設定されたマスクを通して、露光を行った。その後、110℃のホットプレート上で60秒間“露光後加熱”を行った。冷却後、現像液として0.26規定のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像した。
[Evaluation of pattern shape]
Each resist underlayer film forming composition (solution) prepared in Example 4 and Comparative Example 1 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 200 degreeC hotplate for 1 minute, and formed the resist lower layer film (film thickness of 0.05 micrometer). On this resist underlayer film, a commercially available photoresist solution (trade name: V146G, manufactured by JSR Corporation) was applied with a spinner and heated on a hot plate at 110 ° C. for 60 seconds to form a photoresist film (thickness 0). 425 μm). And then, using an ASM750 ASM750 scanner (wavelength 248 nm, NA: 0.70, σ: 0.875 / 0.575 (ANNNULAR)), after development, the line width of the photoresist pattern and the width between the lines are Exposure was performed through a mask set to 0.18 μm. Thereafter, “post-exposure heating” was performed on a 110 ° C. hot plate for 60 seconds. After cooling, development was performed using a 0.26N tetramethylammonium hydroxide aqueous solution as a developer.
 現像後、得られた各フォトレジストパターンの断面を走査型電子顕微鏡(SEM)で観察した。その結果、実施例4で調製されたレジスト下層膜形成組成物(溶液)を用いた場合、得られたフォトレジストパターンの形状は、図1に示すように良好なストレートの裾形状を有していることが観察され、残渣は観察されなかった。一方、比較例1で調製されたレジスト下層膜形成組成物(溶液)を用いた場合、レジスト下層膜の一部が現像されず残渣が残っていた。 After development, the cross section of each obtained photoresist pattern was observed with a scanning electron microscope (SEM). As a result, when the resist underlayer film forming composition (solution) prepared in Example 4 was used, the shape of the obtained photoresist pattern had a good straight skirt shape as shown in FIG. And no residue was observed. On the other hand, when the resist underlayer film forming composition (solution) prepared in Comparative Example 1 was used, a part of the resist underlayer film was not developed and a residue remained.
[現像性の評価]
 実施例6及び比較例2で調製された各レジスト下層膜形成組成物(溶液)をスピナーにより、半導体基板(シリコンウェハー)上に塗布した。その後、160℃のホットプレート上で1分間ベークし、レジスト下層膜(膜厚0.05μm)を形成した。次に露光機(波長248nm)により全面露光し、60秒間露光を行った後、110℃のホットプレート上で60秒間加熱した。冷却後、現像液として0.26規定のテトラメチルアンモニウムヒドロキシド水溶液を用いて現像した。
[Evaluation of developability]
Each resist underlayer film forming composition (solution) prepared in Example 6 and Comparative Example 2 was applied onto a semiconductor substrate (silicon wafer) by a spinner. Then, it baked on a 160 degreeC hotplate for 1 minute, and formed the resist underlayer film (film thickness of 0.05 micrometer). Next, the entire surface was exposed by an exposure machine (wavelength 248 nm), exposed for 60 seconds, and then heated on a 110 ° C. hot plate for 60 seconds. After cooling, development was performed using a 0.26N tetramethylammonium hydroxide aqueous solution as a developer.
 その結果、実施例6で調製されたレジスト下層膜形成組成物(溶液)を用いた場合は、すべて現像液に溶解した。一方、比較例2では現像後に0.02μm残膜が残っていた。 As a result, when the resist underlayer film forming composition (solution) prepared in Example 6 was used, it was completely dissolved in the developer. On the other hand, in Comparative Example 2, a 0.02 μm residual film remained after development.

Claims (13)

  1.  (A)成分、(B)成分、及び溶剤を含有するレジスト下層膜形成組成物。
    (A)成分:下記式(1)で表される構造単位を有する重量平均分子量1,000乃至200,000のポリマー
    (B)成分:架橋性化合物
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子又はメチル基を表し、R2は水素原子又は炭素原子数1乃至3のアルキル基を表し、R3は水素原子又はメチル基を表し、Pは2価の有機基を表し、Qは未置換のナフタレン環若しくはアントラセン環又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環若しくはアントラセン環を表す。)
    A resist underlayer film forming composition containing the component (A), the component (B), and a solvent.
    (A) Component: Polymer (B) component having a weight average molecular weight of 1,000 to 200,000 having a structural unit represented by the following formula (1): Crosslinkable compound
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 3 represents a hydrogen atom or a methyl group, and P represents a divalent organic compound. Q represents an unsubstituted naphthalene ring or anthracene ring or a hydroxy group, a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or an aryl group. Represents a naphthalene ring or anthracene ring having at least one substituent selected from the group.
  2.  前記2価の有機基Pは、下記式(2)若しくは式(3)で表される基、又は炭素原子数1乃至10のアルキレン基を表す、請求項1に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000002
    {式(2)及び(3)中、m及びnは、それぞれ独立して1乃至10の整数を表す。}
    2. The resist underlayer film forming composition according to claim 1, wherein the divalent organic group P represents a group represented by the following formula (2) or formula (3) or an alkylene group having 1 to 10 carbon atoms. .
    Figure JPOXMLDOC01-appb-C000002
    {In Formulas (2) and (3), m and n each independently represent an integer of 1 to 10. }
  3.  前記(A)成分のポリマーは、前記式(1)で表される構造単位以外の構造単位として、下記式(4)で表される構造単位を有する、請求項1又は請求項2に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000003
          (式中、R4は水素原子又はメチル基を示す。)
    The polymer of the (A) component has a structural unit represented by the following formula (4) as a structural unit other than the structural unit represented by the formula (1). Resist underlayer film forming composition.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 4 represents a hydrogen atom or a methyl group.)
  4.  前記(A)成分のポリマーは、さらに下記式(5)で表される構造単位を有する、請求項1乃至請求項3のいずれか一項に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R5は水素原子又はメチル基を表し、Xは炭素原子数1乃至10のアルキレン基又はフェニレン基を表し、kはXで表される基の数を表し、kは0又は1である。但し、kが0の場合は、カルボキシル基が主鎖に直接結合する。)
    The resist underlayer film forming composition according to any one of claims 1 to 3, wherein the polymer of the component (A) further has a structural unit represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 5 represents a hydrogen atom or a methyl group, X represents an alkylene group having 1 to 10 carbon atoms or a phenylene group, k represents the number of groups represented by X, and k represents 0 or 1) (However, when k is 0, the carboxyl group is directly bonded to the main chain.)
  5.  さらに光酸発生剤を含む、請求項1乃至請求項4のいずれか一項に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to any one of claims 1 to 4, further comprising a photoacid generator.
  6.  さらに塩基性化合物を含む、請求項5に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to claim 5, further comprising a basic compound.
  7.  (A’)成分、(B)成分、及び溶剤を含有するレジスト下層膜形成組成物。
    (A’)成分:下記式(6)で表される構造単位を有する重量平均分子量1,000乃至200,000のポリマー
    (B)成分:架橋性化合物
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1は水素原子又はメチル基を表し、Rはベンゼン環又は直接結合を表し、またPは2価の有機基を表し、Qは未置換のナフタレン環若しくはアントラセン環又はヒドロキシ基、カルボキシル基、ハロゲン原子、スルホニル基、アミノ基、シアノ基、ニトロ基、炭素原子数1乃至10のアルキル基又はアリール基からなる群から選ばれる少なくとも1つの置換基を有するナフタレン環若しくはアントラセン環を表す。)
    A resist underlayer film forming composition containing a component (A ′), a component (B), and a solvent.
    Component (A ′): Polymer having a structural unit represented by the following formula (6) and having a weight average molecular weight of 1,000 to 200,000 (B) Component: Crosslinkable compound
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 represents a hydrogen atom or a methyl group, R 6 represents a benzene ring or a direct bond, P represents a divalent organic group, Q represents an unsubstituted naphthalene ring, anthracene ring, or a hydroxy group. A naphthalene ring or anthracene ring having at least one substituent selected from the group consisting of a carboxyl group, a halogen atom, a sulfonyl group, an amino group, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, or an aryl group To express.)
  8.  前記2価の有機基Pは、炭素原子数1乃至10のアルキレン基を表す、請求項7に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to claim 7, wherein the divalent organic group P represents an alkylene group having 1 to 10 carbon atoms.
  9.  前記(A’)成分のポリマーは、上記式(6)で表される構造単位以外の構造単位として、下記式(7)で表される構造単位を有する、請求項7又は請求項8に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000006
    {式中、Rは水素原子又はメチル基を表し、jは0又は1を表す。jが0の場合は、ヒドロキシル基を置換基として有するフェニル基が主鎖に直接結合する。一方、jが1の場合は、Aは-C(=O)-NH-基又は-C(=O)-O-基を表す。}
    The polymer of the component (A ′) has a structural unit represented by the following formula (7) as a structural unit other than the structural unit represented by the formula (6). Resist underlayer film forming composition.
    Figure JPOXMLDOC01-appb-C000006
    {In the formula, R 7 represents a hydrogen atom or a methyl group; j represents 0 or 1; When j is 0, a phenyl group having a hydroxyl group as a substituent is directly bonded to the main chain. On the other hand, when j is 1, A represents a —C (═O) —NH— group or a —C (═O) —O— group. }
  10.  前記(A’)成分のポリマーは、さらに下記式(5)で表される構造単位を有する、請求項7乃至請求項9のいずれか一項に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R5は水素原子又はメチル基を表し、Xは炭素原子数1乃至10のアルキレン基又はフェニレン基を表し、kはXで表される基の数を表し、kは0又は1である。但し、kが0の場合は、カルボキシル基が主鎖に直接結合する。)
    The resist underlayer film forming composition according to any one of claims 7 to 9, wherein the polymer of the component (A ') further has a structural unit represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 5 represents a hydrogen atom or a methyl group, X represents an alkylene group having 1 to 10 carbon atoms or a phenylene group, k represents the number of groups represented by X, and k represents 0 or 1) (However, when k is 0, the carboxyl group is directly bonded to the main chain.)
  11.  さらに光酸発生剤を含む、請求項7乃至請求項10のいずれか一項に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to any one of claims 7 to 10, further comprising a photoacid generator.
  12.  さらに塩基性化合物を含む、請求項11に記載のレジスト下層膜形成組成物。 The resist underlayer film forming composition according to claim 11, further comprising a basic compound.
  13.  請求項1乃至請求項12のいずれか一項に記載のレジスト下層膜形成組成物を半導体基板上に塗布しベークしてレジスト下層膜を形成する工程、
     該レジスト下層膜上にフォトレジスト膜を形成する工程、
     該レジスト下層膜と該フォトレジスト膜で被覆された半導体基板を露光する工程、及び
     露光後に該フォトレジスト膜と該レジスト下層膜を現像する工程
    を含む、半導体装置の製造に用いるフォトレジストパターンの形成方法。
    Applying the resist underlayer film forming composition according to any one of claims 1 to 12 onto a semiconductor substrate and baking the composition to form a resist underlayer film;
    Forming a photoresist film on the resist underlayer film,
    Forming a photoresist pattern for use in manufacturing a semiconductor device, comprising: exposing a semiconductor substrate coated with the resist underlayer film and the photoresist film; and developing the photoresist film and the resist underlayer film after exposure Method.
PCT/JP2010/053885 2009-03-10 2010-03-09 Composition for forming resist underlayer film which comprises polymer having acetal structure in side chain thereof, and method for forming resist pattern WO2010104074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503825A JPWO2010104074A1 (en) 2009-03-10 2010-03-09 Resist underlayer film forming composition containing polymer having acetal structure in side chain and method for forming resist pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-056434 2009-03-10
JP2009056434 2009-03-10
JP2009166893 2009-07-15
JP2009-166893 2009-07-15

Publications (1)

Publication Number Publication Date
WO2010104074A1 true WO2010104074A1 (en) 2010-09-16

Family

ID=42728363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053885 WO2010104074A1 (en) 2009-03-10 2010-03-09 Composition for forming resist underlayer film which comprises polymer having acetal structure in side chain thereof, and method for forming resist pattern

Country Status (3)

Country Link
JP (1) JPWO2010104074A1 (en)
TW (1) TW201100968A (en)
WO (1) WO2010104074A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057049A (en) * 2011-03-07 2013-03-28 Sanyo Chem Ind Ltd Photosensitive composition
WO2013141395A1 (en) * 2012-03-21 2013-09-26 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive composition, resist film using the same, pattern forming method, method for manufacturing electronic device, and electronic device
JP2018203715A (en) * 2017-06-06 2018-12-27 住友化学株式会社 Compound, resin, resist composition and method for producing resist pattern
WO2020153278A1 (en) * 2019-01-21 2020-07-30 日産化学株式会社 Protective film-forming composition having acetal structure and amide structure
US10732506B2 (en) 2017-09-26 2020-08-04 Samsung Electronics Co., Ltd. Method of fabricating integrated circuit devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492311A (en) * 2017-12-22 2020-08-04 日产化学株式会社 Protective film-forming composition having acetal structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172925A (en) * 1997-07-03 1999-03-16 Toshiba Corp Undercoat layer composition and pattern forming method using the same
JPH11305443A (en) * 1998-04-24 1999-11-05 Fuji Photo Film Co Ltd Positive type photoresist composition
WO2005013601A1 (en) * 2003-07-30 2005-02-10 Nissan Chemical Industries, Ltd. Composition for forming lower layer film for lithography comprising compound having protected carboxyl group
WO2005111724A1 (en) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. Antireflective film-forming composition containing vinyl ether compound
JP2007140525A (en) * 2005-11-17 2007-06-07 Samsung Electronics Co Ltd Composition for forming photosensitive organic antireflection film and pattern forming method using the same
JP2008501985A (en) * 2004-03-25 2008-01-24 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Photoimaging positive bottom antireflection film
JP2009003242A (en) * 2007-06-22 2009-01-08 Sumitomo Chemical Co Ltd Chemically-amplified positive resist composition and hydroxystyrene derivative

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172925A (en) * 1997-07-03 1999-03-16 Toshiba Corp Undercoat layer composition and pattern forming method using the same
JPH11305443A (en) * 1998-04-24 1999-11-05 Fuji Photo Film Co Ltd Positive type photoresist composition
WO2005013601A1 (en) * 2003-07-30 2005-02-10 Nissan Chemical Industries, Ltd. Composition for forming lower layer film for lithography comprising compound having protected carboxyl group
JP2008501985A (en) * 2004-03-25 2008-01-24 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Photoimaging positive bottom antireflection film
WO2005111724A1 (en) * 2004-05-14 2005-11-24 Nissan Chemical Industries, Ltd. Antireflective film-forming composition containing vinyl ether compound
JP2007140525A (en) * 2005-11-17 2007-06-07 Samsung Electronics Co Ltd Composition for forming photosensitive organic antireflection film and pattern forming method using the same
JP2009003242A (en) * 2007-06-22 2009-01-08 Sumitomo Chemical Co Ltd Chemically-amplified positive resist composition and hydroxystyrene derivative

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057049A (en) * 2011-03-07 2013-03-28 Sanyo Chem Ind Ltd Photosensitive composition
WO2013141395A1 (en) * 2012-03-21 2013-09-26 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive composition, resist film using the same, pattern forming method, method for manufacturing electronic device, and electronic device
JP2013195844A (en) * 2012-03-21 2013-09-30 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive composition, resist film using the same, pattern forming method, method for manufacturing electronic device, and electronic device
US9188865B2 (en) 2012-03-21 2015-11-17 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive composition, resist film using the same, pattern forming method, method for manufacturing electronic device, and electronic device
US9500951B2 (en) 2012-03-21 2016-11-22 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive composition, resist film using the same, pattern forming method, method for manufacturing electronic device, and electronic device
JP2018203715A (en) * 2017-06-06 2018-12-27 住友化学株式会社 Compound, resin, resist composition and method for producing resist pattern
JP7057207B2 (en) 2017-06-06 2022-04-19 住友化学株式会社 Methods for Producing Compounds, Resins, Resist Compositions and Resist Patterns
US10732506B2 (en) 2017-09-26 2020-08-04 Samsung Electronics Co., Ltd. Method of fabricating integrated circuit devices
WO2020153278A1 (en) * 2019-01-21 2020-07-30 日産化学株式会社 Protective film-forming composition having acetal structure and amide structure
CN113316595A (en) * 2019-01-21 2021-08-27 日产化学株式会社 Composition for forming protective film having acetal structure and amide structure
US20220026806A1 (en) * 2019-01-21 2022-01-27 Nissan Chemical Corporation Protective film-forming composition having acetal structure and amide structure
JP7447813B2 (en) 2019-01-21 2024-03-12 日産化学株式会社 Protective film forming composition having an acetal structure and an amide structure

Also Published As

Publication number Publication date
JPWO2010104074A1 (en) 2012-09-13
TW201100968A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
JP4509106B2 (en) Antireflection film-forming composition containing vinyl ether compound
JP6050810B2 (en) Bottom anti-reflective coating composition and method thereof
JP4038688B2 (en) Anti-reflective film forming composition
JP5708938B2 (en) Photosensitive resist underlayer film forming composition and resist pattern forming method
JP5582316B2 (en) Resist underlayer film forming composition containing polymer-type photoacid generator and method for forming resist pattern using the same
KR20000023107A (en) Bottom anti-reflective coating material composition for photoresist and method of forming resist pattern using the same
JP4697464B2 (en) Anti-reflective film forming composition for lithography containing nitrogen-containing aromatic ring structure
JP4687910B2 (en) Antireflective film forming composition for lithography containing sulfur atom
JP5382321B2 (en) Resist underlayer film forming composition and resist pattern forming method using the same
JP5418906B2 (en) Anti-reflective coating composition
WO2010104074A1 (en) Composition for forming resist underlayer film which comprises polymer having acetal structure in side chain thereof, and method for forming resist pattern
JP2010285403A (en) Crosslinking agent and crosslinking agent-containing composition for forming lower layer of resist film
JP5737526B2 (en) Resist underlayer film forming composition and resist pattern forming method using the same
KR100574482B1 (en) Organic polymer for anti-reflective coating layer and preparation thereof
JP2023100689A (en) Resist underlayer film forming composition and resist pattern forming method using the same
JPWO2012081619A1 (en) Resist underlayer film forming composition and resist pattern forming method using the same
JP4207115B2 (en) Anti-reflective film-forming composition containing phosphorus organic group-containing polymer
JP5534205B2 (en) Photosensitive resist underlayer film forming composition and resist pattern forming method
JP5884961B2 (en) Photosensitive resist underlayer film forming composition containing photo radical polymerization initiator
JP4753018B2 (en) Anti-reflective film forming composition for lithography comprising addition polymerizable resin
JP3617878B2 (en) Composition for antireflection film material
JP4952933B2 (en) Low-sensitivity photosensitive resist underlayer film forming composition
JP4164638B2 (en) Anti-reflective film forming composition
JP3707632B2 (en) Anti-reflective coating composition
JPH0594018A (en) Radiation sensitive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750827

Country of ref document: EP

Kind code of ref document: A1