WO2010103879A1 - METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM - Google Patents

METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM Download PDF

Info

Publication number
WO2010103879A1
WO2010103879A1 PCT/JP2010/051585 JP2010051585W WO2010103879A1 WO 2010103879 A1 WO2010103879 A1 WO 2010103879A1 JP 2010051585 W JP2010051585 W JP 2010051585W WO 2010103879 A1 WO2010103879 A1 WO 2010103879A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming
treatment
substrate
atmosphere
Prior art date
Application number
PCT/JP2010/051585
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 桧皮
康彦 小島
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2010103879A1 publication Critical patent/WO2010103879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76862Bombardment with particles, e.g. treatment in noble gas plasmas; UV irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a Cu film forming method and a storage medium for forming a Cu film on a substrate such as a semiconductor substrate by CVD.
  • PVD physical vapor deposition
  • a method for forming a Cu film there is a chemical vapor deposition (CVD) method in which Cu is formed on a substrate by a thermal decomposition reaction of a source gas containing Cu or a reduction reaction of the source gas with a reducing gas. It is being used.
  • a Cu film (CVD-Cu film) formed by such a CVD method has a high step coverage (step coverage) and excellent film formability in a long and narrow pattern. The followability is high, and it is suitable for forming a wiring, a Cu plating seed layer, and a contact plug.
  • a technology for thermally decomposing Cu films such as hexafluoroacetylacetonate and trimethylvinylsilane copper (Cu (hfac) TMVS) as a film forming material (precursor) is known for forming a Cu film by this CVD method.
  • Cu (hfac) TMVS trimethylvinylsilane copper
  • a CVD-Ru film is used as a base of the CVD-Cu film, for example, Ru 3 (CO) 12 or the like is used as a film forming raw material, so that impurities such as CO are included in the CVD-Ru film. Become. If impurities such as CO are present on the surface of the CVD-Ru film, the adsorption of the raw material for film formation is inhibited by this impurity and the wettability of Cu is deteriorated, so the density of the initial nucleus of Cu is lowered and Cu is agglomerated. As a result, the surface properties of the Cu film deteriorate.
  • Ru 3 (CO) 12 or the like is used as a film forming raw material, so that impurities such as CO are included in the CVD-Ru film. Become. If impurities such as CO are present on the surface of the CVD-Ru film, the adsorption of the raw material for film formation is inhibited by this impurity and the wettability of Cu is deteriorated
  • the base film is formed by ex-situ, since the base film is first exposed to the atmosphere and then Cu is formed, the oxidation of the base surface is performed regardless of the type of the base film.
  • organic matter in the atmosphere adheres to the underlying surface, adsorption of the film forming raw material is also inhibited, Cu wettability deteriorates, and the surface properties of the Cu film deteriorate.
  • An object of the present invention is to provide a Cu film forming method capable of forming a CVD-Cu film having good surface properties. Another object is to provide a storage medium storing a program for executing such a film forming method.
  • a Cu film forming method for forming a Cu film on a substrate by a CVD method comprising: a step of cleaning a substrate surface portion; and a Cu substrate on a cleaned substrate.
  • a method for forming a Cu film which includes a step of supplying a film forming material comprising a complex to form a Cu film on a substrate.
  • a Cu film forming method for forming a Cu film on a substrate by a CVD method wherein a film forming raw material made of a Cu complex is supplied to the substrate and the Cu film is formed on the substrate.
  • a method for forming a Cu film which includes a step of forming a film and a step of cleaning a Cu film formed on a substrate.
  • a storage medium that operates on a computer and stores a program for controlling a film forming apparatus, and the program cleans a substrate surface portion at the time of execution.
  • the film formation method is performed on a computer so as to perform a Cu film formation method comprising: a step of supplying a film formation material comprising a Cu complex to a cleaned substrate and forming a Cu film on the substrate.
  • a storage medium for controlling the device is provided.
  • a storage medium that operates on a computer and stores a program for controlling a film forming apparatus, and the program is composed of a Cu complex on a substrate at the time of execution.
  • the film formation is performed on a computer so as to perform a Cu film formation method including a step of supplying a film raw material to form a Cu film on the substrate and a step of cleaning the Cu film formed on the substrate.
  • a storage medium for controlling the device is provided.
  • FIG. 6 is a schematic diagram showing a state in which a Cu film is formed while CO, C, etc. are contained as impurities in a CVD-Ru film that is a base film. It is a schematic diagram showing a state in which a Cu film is formed on the CVD-Ru film cleaned by the cleaning process. It is a schematic diagram showing a state in which impurities in the CVD-Ru film are removed by the cleaning process. It is a schematic diagram which shows an example of the processing apparatus for enforcing the film-forming method of the 1st Embodiment of this invention. It is a schematic sectional drawing which shows an example of a reduction process unit.
  • FIG. 6 is a schematic diagram showing a state in which a Cu film is formed as it is on a base film formed by Ex-situ. It is a schematic diagram which shows the state which formed Cu film
  • FIG. 1 It is a schematic diagram which shows the state from which the impurity of a base film and an initial nucleus escapes by cleaning process.
  • a scanning electron microscope photograph showing a state in which only the Been reduction treatment (H 2 plasma process) as a cleaning process after forming the Cu initial nucleus.
  • H 2 gas After the initial nucleation at the plasma of H 2 gas is a scanning electron micrograph showing a state in which the plasma treatment is performed.
  • After the initial nucleation with H 2 gas + Ar gas plasma is a scanning electron micrograph showing a state in which the plasma treatment is performed.
  • It is a flowchart which shows the method of the 4th Embodiment of this invention.
  • a semiconductor wafer having a CVD-Ru film formed by CVD using ruthenium carbonyl (Ru 3 (CO) 12 ) as a film forming material (Hereinafter simply referred to as a wafer) is prepared (step 1), the CVD-Ru film is cleaned (step 2), and then a CVD-Cu film is formed by CVD using the Cu complex as a film forming material (step 3) is performed.
  • ruthenium carbonyl Ru 3 (CO) 12
  • the cleaning process in Step 2 is a process performed to remove impurities from the CVD-Ru film.
  • a CVD-Ru film is formed using Ru 3 (CO) 12 as a film forming material, CO, C, etc. generated by decomposition of Ru 3 (CO) 12 are contained as impurities in the Ru film. .
  • the film-forming raw material is in a state where CO and C are present on the surface of the CVD-Ru film 201. Since the Cu complex is supplied, the CO and C inhibit the adsorption of the Cu complex, and the initial nuclear density is lowered. If the Cu film is continuously formed in this state, Cu aggregates and the surface properties of the Cu film deteriorate.
  • impurities such as CO and C in the Ru film 201 are removed by the cleaning process in Step 2.
  • impurities on the surface of the CVD-Ru film 201 are reduced, the inhibition of adsorption of the Cu complex to the CVD-Ru film 201 is eliminated, and the initial nuclear density can be increased. Therefore, aggregation of Cu is suppressed and the surface property of the Cu film can be improved.
  • This cleaning process can be performed by a reduction process using a reducing gas.
  • a reduction process using a reducing gas As a result, as shown in FIG. 4, in the process in which oxygen contained in the CVD-Ru film 201 is released, it reacts with CO and C in the film and on the surface and is removed as CO 2 .
  • the temperature at this time is preferably in the range of 250 to 350 ° C.
  • the amount of oxygen in the CVD-Ru film 201 is increased by oxidizing the CVD-Ru film 201 by the oxidation process, and the amount of oxygen that escapes from the film is increased by the subsequent reduction process. C can be more easily removed, and the effect of increasing the initial nucleus density can be further increased.
  • the reducing treatment can be performed by a plasma treatment including a heat treatment in an atmosphere containing H 2 gas, or H 2 gas.
  • Specific conditions include wafer temperature: 250 to 350 ° C., chamber pressure: 133 to 1333 Pa (1 to 10 Torr), and H 2 gas flow rate: 50 to 500 mL / min (sccm).
  • H 2 gas alone or H 2 gas and inert gas are introduced into the chamber at a predetermined flow rate, the pressure in the chamber and the wafer temperature are set to predetermined values, and the gas Is reduced to plasma.
  • the plasma at this time is not particularly limited, and various plasmas such as capacitively coupled plasma, inductively coupled plasma, and microwave plasma can be adopted.
  • Wave plasma is preferred. Specific conditions are: wafer temperature: 250 to 350 ° C., chamber pressure: 133 to 399 Pa (1 to 3 Torr), H 2 gas flow rate: 250 mL / min (sccm), and Ar gas flow rate: 250 mL / min (sccm). Can be mentioned.
  • the above-described oxidation treatment may be performed by oxidizing the CVD-Ru film 201 to some extent.
  • the oxidation treatment include treatment exposed to an oxygen-containing atmosphere, heat treatment in an oxygen-containing atmosphere, and plasma treatment containing oxygen gas. If it is sufficient to slightly oxidize the CVD-Ru film 201, it is sufficient to expose the CVD-Ru film 201 to an oxygen-containing atmosphere.
  • Air exposure is the simplest treatment for exposure to an oxygen-containing atmosphere.
  • heat treatment in an oxygen-containing atmosphere or plasma treatment containing oxygen gas is adopted, the heating temperature, the pressure in the chamber, the oxygen concentration of the gas to be supplied, the flow rate, etc. should be determined according to the degree of oxidation required. Good.
  • the CVD-Cu film is formed by using a Cu complex, for example, Cu (hfac) TMVS, as a film-forming raw material, supplying this to a heated wafer, and Cu on the CVD-Ru film on the wafer surface.
  • a Cu film is formed by thermal decomposition.
  • Cu nuclei are formed on the film formation surface, which grows into a Cu film. Therefore, as described above, the CVD- Since the surface of the Ru film is cleaned, initial nucleation is performed uniformly and at a high density on the entire surface, Cu aggregation hardly occurs, and a Cu film having a good surface property can be obtained.
  • the surface of the wafer as a substrate is subjected to a cleaning process to remove impurities on the wafer surface, and then a Cu film is formed by a CVD method using a Cu complex as a film forming material. Therefore, even when a wafer having a film with impurities such as a CVD-Ru film on the surface is used as a substrate, the adsorption of the film forming material is not hindered by the impurities, and the initial nucleus of Cu is not disturbed. A Cu film having a high density and good surface properties can be obtained.
  • FIG. 5 is a schematic view showing an example of a processing apparatus for carrying out the film forming method of the first embodiment.
  • This processing apparatus is a multi-chamber type processing apparatus capable of continuously performing in-situ deposition of a CVD-Ru film, cleaning processing, and deposition of a CVD-Cu film without breaking the vacuum. .
  • This processing apparatus includes a Ru film forming unit 1 held in vacuum, a reduction processing unit 2 for performing a cleaning process, and a Cu film forming unit 3. These units 1 to 3 are placed in a transfer chamber 5. They are connected via a gate valve G. In addition, load lock chambers 6 and 7 are connected to the transfer chamber 5 through gate valves G. The transfer chamber 5 is kept in a vacuum. A loading / unloading chamber 8 in the atmosphere is provided on the opposite side of the load lock chambers 6 and 7 from the transfer chamber 5, and a wafer W is placed on the opposite side of the loading / unloading chamber 8 from the connecting portion of the load lock chambers 6 and 7. Three carrier attachment ports 9, 10, 11 for attaching the accommodable carrier C are provided.
  • a transfer device 12 that loads and unloads the wafer W with respect to the Ru film forming unit 1, the reduction processing unit 2, the Cu film forming unit 3, and the load lock chambers 6 and 7 is provided. Yes.
  • the transfer device 12 is provided at substantially the center of the transfer chamber 5, and has two support arms 14 a and 14 b that support the semiconductor wafer W at the tip of the rotatable / extensible / retractable portion 13. These two support arms 14a and 14b are attached to the rotation / extension / contraction section 13 so as to face in opposite directions.
  • the transfer chamber 5 is connected to an air intake pipe 15 for taking in air, and the air intake pipe 15 is provided with an opening / closing valve 15a.
  • a transfer device 16 for loading / unloading the wafer W into / from the carrier C and loading / unloading the wafer W into / from the load lock chambers 6 and 7 is provided.
  • the transfer device 16 has an articulated arm structure and can run on the rail 18 along the arrangement direction of the carrier C.
  • the wafer W is placed on the support arm 17 at the tip thereof and transferred. I do.
  • This processing apparatus has a control unit 20 that controls each component.
  • the control unit 20 includes a process controller 21 having a microprocessor (computer), a user interface 22, and a storage unit 23.
  • Each component of the processing apparatus is electrically connected to the process controller 21 and controlled.
  • the user interface 22 is connected to the process controller 21 and visualizes the operation status of each component of the processing device and the keyboard on which the operator performs command input operations in order to manage each component of the processing device. It consists of a display to display.
  • the storage unit 23 is also connected to the process controller 21, and the storage unit 23 performs processing according to a control program for realizing various processes executed by the processing device under the control of the process controller 21 and processing conditions.
  • a control program for causing each component of the apparatus to execute a predetermined process that is, a process recipe, various databases, and the like are stored.
  • the processing recipe is stored in a storage medium (not shown) in the storage unit 23.
  • the storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory.
  • a predetermined processing recipe is called from the storage unit 23 according to an instruction from the user interface 22 and is executed by the process controller 21, so that a desired processing in the processing apparatus can be performed under the control of the process controller 21. Processing is performed.
  • the wafer W is transferred from the carrier C to one of the load lock chambers 6 and 7 by the transfer device 16 of the loading / unloading chamber 8, and the load lock chamber is evacuated and then transferred to the transfer chamber 5.
  • the wafer W is taken out by the transfer device 12 and is first transferred to the Ru film forming unit 1 to form a CVD-Ru film on the wafer W.
  • the wafer W on which the Ru film is formed is returned to the transfer chamber 5 by the transfer device 12, and in that state, the open / close valve 15 a is opened to introduce the atmosphere from the air intake pipe 15 (exposure to the atmosphere), and the wafer W is oxidized.
  • the wafer W oxidized by the transfer device 12 is transferred to the reduction processing unit 2 where reduction processing is performed.
  • the cleaning process including an oxidation process and a reduction process is performed.
  • the oxidation treatment for introducing the atmosphere is unnecessary.
  • the wafer W in the reduction processing unit 2 is taken out by the transfer device 12 and transferred to the Cu film forming unit 3 to form a Cu film on the cleaned Ru film.
  • a unit for performing the oxidation treatment may be connected to an empty port of the transfer chamber 5 and oxidation treatment such as heat treatment or plasma treatment in an oxygen-containing atmosphere may be performed in the unit.
  • the Ru film forming unit 1 basically has the same structure as the Cu film forming unit 3 described later, except that solid Ru 3 (CO) 12 is used as a film forming raw material and is sublimated by heating. Can be used.
  • FIG. 6 is a schematic sectional view showing an example of the reduction processing unit 2.
  • the reduction processing unit 2 shown in FIG. 6 is configured as an RLSA (Radial Line Slot Antenna) microwave plasma type plasma processing apparatus.
  • the reduction processing unit 2 includes a substantially cylindrical chamber 31 as an airtight processing container, a susceptor 32 on which the wafer W is placed, and a gas provided on the side wall of the chamber 31.
  • a heater 32 a is embedded in the susceptor 32.
  • an H 2 gas supply source 41 and an Ar gas supply source 42 are connected to the gas introduction part 33 via a pipe 43.
  • a microwave transmitting plate 37 made of a dielectric is provided below the planar antenna 34, and a shield member 38 is provided on the planar antenna 34. Further, a slow wave material 39 made of a dielectric is provided between the shield member 38 and the planar antenna 34.
  • the microwave transmission mechanism 36 includes a waveguide 45 extending in the horizontal direction for guiding microwaves from the microwave generator 35, a coaxial waveguide 46 including an inner conductor 47 and an outer conductor 48 extending upward from the planar antenna 34, A mode conversion mechanism 49 provided between the waveguide 45 and the coaxial waveguide 46 is provided.
  • Reference numeral 44 denotes an exhaust pipe connected to an exhaust device (not shown) provided with a vacuum pump or the like.
  • the microwave generated by the microwave generator 35 is guided to the planar antenna 34 in a predetermined mode via the microwave transmission mechanism 36, and the microwave transmission hole of the planar antenna 34 is guided.
  • 34a and the microwave transmission plate 37 are uniformly supplied into the chamber 1 and supplied by the microwave from the H 2 gas supply source 41 and the Ar gas supply source 42 through the gas introduction part 33 at a predetermined flow rate.
  • H 2 gas and Ar gas are turned into plasma, and the CVD-Ru film formed on the surface of the wafer W by the plasma is subjected to reduction treatment.
  • the wafer W is heated to, for example, 250 to 350 ° C. by the heater 32a.
  • this microwave plasma has a high plasma density and a low electron temperature, it can be reduced with high efficiency without damaging the CVD-Ru film.
  • the reduction processing unit 2 has a chamber 51 as an airtight processing container without a plasma generation source, and a susceptor 52 provided in the chamber 51 and embedded with a heater 52a. And an exhaust pipe connected to an exhaust system (not shown) provided with a gas introduction unit 55 to which an H 2 gas supply source 54 for supplying H 2 gas as a reducing gas is connected via a pipe 53 and a vacuum pump or the like. 56 may be included.
  • an H 2 gas supply source 54 for supplying H 2 gas as a reducing gas is connected via a pipe 53 and a vacuum pump or the like. 56 may be included.
  • FIG. 8 is a schematic cross section showing an example of the configuration of the Cu film forming unit 3.
  • the Cu film forming unit 3 has a substantially cylindrical chamber 61 as a processing container configured in an airtight manner, and a susceptor 62 for horizontally supporting a semiconductor wafer W as a substrate to be processed therein. Is arranged in a state of being supported by a cylindrical support member 63 provided at the lower center portion thereof.
  • the susceptor 62 is made of a ceramic such as AlN.
  • a heater 65 is embedded in the susceptor 62, and a heater power source 66 is connected to the heater 65.
  • thermocouple 67 is provided in the vicinity of the upper surface of the susceptor 62, and a signal of the thermocouple 67 is transmitted to the heater controller 68.
  • the heater controller 68 transmits a command to the heater power supply 66 in accordance with a signal from the thermocouple 67, and controls the heating of the heater 65 to control the wafer W to a predetermined temperature.
  • a circular hole 61 b is formed in the top wall 61 a of the chamber 61, and a shower head 70 is fitted so as to protrude into the chamber 61 from there.
  • the shower head 70 is for discharging a film forming gas supplied from a gas supply mechanism 90 to be described later into the chamber 61, and a Cu complex, for example, hexafluoroacetyl, as a film forming raw material gas, is formed above the shower head 70. It has a first introduction path 71 through which acetonato-trimethylvinylsilane copper (Cu (hfac) TMVS) is introduced, and a second introduction path 72 through which dilution gas is introduced into the chamber 61. Ar gas or H 2 gas is used as the dilution gas.
  • a first introduction path 71 is connected to the upper space 73, and a first gas discharge path 75 extends from the space 73 to the bottom surface of the shower head 70.
  • a second introduction path 72 is connected to the lower space 74, and a second gas discharge path 76 extends from the space 74 to the bottom surface of the shower head 70. That is, the shower head 70 is configured so that the Cu complex gas and the dilution gas as film forming materials are independently discharged from the discharge passages 75 and 76, respectively.
  • An exhaust chamber 81 that protrudes downward is provided on the bottom wall of the chamber 61.
  • An exhaust pipe 82 is connected to a side surface of the exhaust chamber 81, and an exhaust apparatus 83 having a vacuum pump, a pressure control valve, and the like is connected to the exhaust pipe 82.
  • an exhaust apparatus 83 having a vacuum pump, a pressure control valve, and the like is connected to the exhaust pipe 82.
  • a loading / unloading port 85 for loading / unloading the wafer W to / from a wafer transfer chamber (not shown) and a gate valve G for opening / closing the loading / unloading port 85 are provided on the side wall of the chamber 61. Further, a heater 86 is provided on the wall portion of the chamber 61 so that the temperature of the inner wall of the chamber 61 can be controlled during the film forming process.
  • the gas supply mechanism 90 has a film forming material tank 91 for storing a Cu complex, for example, Cu (hfac) TMVS as a film forming material.
  • a Cu complex for example, Cu (hfac) TMVS as a film forming material.
  • Cu (hfac) ATMS, Cu (hfac) DMDVS, Cu (hfac) TMOVS, or the like can be used as the Cu complex constituting the film forming raw material.
  • the Cu complex to be used is solid at room temperature, it can be stored in the film forming raw material tank 91 in a state dissolved in a solvent.
  • a pressure-feed gas pipe 92 for supplying a pressure-feed gas such as He gas is inserted into the film forming material tank 91 from above, and a valve 93 is interposed in the pressure-feed gas pipe 92. Further, a raw material delivery pipe 94 is inserted from above into the deposition raw material in the deposition raw material tank 91, and a vaporizer 97 is connected to the other end of the raw material delivery pipe 94. A valve 95 and a liquid mass flow controller 96 are interposed in the raw material delivery pipe 94.
  • the Cu complex in the film forming raw material tank 91 for example, Cu (hfac) TMVS is supplied to the vaporizer 97 in the liquid state.
  • the liquid supply amount at this time is controlled by the liquid mass flow controller 96.
  • the vaporizer 97 is connected to a carrier gas pipe 98 for supplying Ar or H 2 or the like as a carrier gas.
  • the carrier gas pipe 98 is provided with two valves 100 sandwiching the mass flow controller 99 and the mass flow controller 99.
  • the vaporizer 97 is connected to a film forming material gas supply pipe 101 that supplies the vaporized Cu complex toward the shower head 70.
  • a valve 102 is interposed in the film forming source gas supply pipe 101, and the other end is connected to the first introduction path 71 of the shower head 70. Then, the Cu complex vaporized by the vaporizer 97 is carried by the carrier gas, sent out to the film forming raw material gas supply pipe 101, and supplied from the first introduction path 71 into the shower head 70.
  • a heater 103 for preventing the condensation of the film forming raw material gas is provided in a portion of the vaporizer 97, the film forming raw material gas supply pipe 101 and the carrier gas pipe to the downstream side valve 100. The heater 103 is supplied with power from a heater power source (not shown), and the temperature is controlled by a controller (not shown).
  • a dilution gas supply pipe 104 that supplies dilution gas is connected to the second introduction path 72 of the shower head 70.
  • a valve 105 is interposed in the dilution gas supply pipe 104. Then, Ar gas or H 2 gas is supplied as a dilution gas from the second introduction path 72 through the dilution gas supply pipe 104 into the shower head.
  • the gate valve G is opened, and the wafer W after the cleaning process is performed by the transfer device 12 is loaded into the chamber 61 and mounted on the susceptor 62. Put. Next, the inside of the chamber 61 is evacuated by the exhaust device 83 so that the pressure in the chamber 1 is 1.33 to 266.6 Pa (10 mTorr to 2 Torr), the susceptor 62 is heated to about 150 ° C.
  • the carrier gas is supplied at a flow rate of 100 to 1500 mL / min (sccm) into the chamber 61 through the vaporizer 97, the film forming raw material gas pipe 101, and the shower head 70, and further, about 0 to 1500 mL / min (sccm).
  • Dilution gas is introduced into the chamber 61 through the dilution gas supply pipe 104 and the shower head 70, and stabilization is performed.
  • the liquid Cu (hfac) TMVS is vaporized by the vaporizer 97 at 50 to 70 ° C. in the chamber 61 while the carrier gas and the dilution gas are supplied. Then, Cu film formation is started.
  • the flow rate at this time is about 100 to 500 mg / min as a liquid.
  • the pressure in the chamber 61 is about 1.33 to 266.6 Pa (10 mTorr to 2 Torr).
  • Cu (hfac) TMVS which is a film forming material, is decomposed by the reaction shown in the following formula (1) on the wafer W, which is a substrate to be processed, heated by the heater 65 of the susceptor 62.
  • a CVD-Ru film is formed.
  • Cu initial nuclei are formed on the top. 2Cu (hfac) TMVS ⁇ Cu + Cu (hfac) 2 + 2TMVS (1)
  • the supply of Cu (hfac) TMVS is stopped, the vacuum pump of the exhaust device 83 is turned off, and the carrier gas and the dilution gas are flowed into the chamber 61 as the purge gas.
  • the carrier gas and the dilution gas are flowed into the chamber 61 as the purge gas.
  • FIGS. 9A, 9B, and 9C Scanning electron microscope (SEM) photographs of the surface state during the initial nucleation of (1) to (3) are shown in FIGS. 9A, 9B, and 9C.
  • SEM scanning electron microscope
  • a wafer having a base film formed by ex-situ is prepared (step 11), and the base film is cleaned (step 11). 12), and then a CVD-Cu film is formed by CVD using the Cu complex as a film forming material (step 13).
  • the cleaning process in step 12 is a process performed to remove oxides formed on the base film and organic substances from the atmosphere.
  • a base film of a Cu film for example, a Ru film is formed by Ex-situ
  • the wafer W is once exposed to the atmosphere after the base film is formed, so that an oxide is formed on the surface of the base film, Organic substances in the atmosphere may adhere.
  • the Cu complex as a film forming raw material is formed with the oxide or organic substance existing on the surface of the base film 211. Since these oxides and organic substances are supplied, the adsorption of the Cu complex is inhibited, and the initial nuclear density is lowered. If the Cu film is continuously formed in this state, Cu aggregates and the surface properties of the Cu film deteriorate.
  • the oxide and organic matter of the base film 211 are removed by the cleaning process in step 12. Thereby, as shown in FIG. 12, the oxides and organic substances on the surface of the base film 211 are reduced, the inhibition of adsorption of the Cu complex to the base film 211 is eliminated, and the initial nuclear density can be increased. Therefore, aggregation of Cu is suppressed and the surface property of the Cu film can be improved.
  • the base film is not particularly limited.
  • This cleaning process can be performed by a reduction process using a reducing gas, as in step 2 of the first embodiment.
  • a reduction process using a reducing gas as in step 2 of the first embodiment.
  • the oxygen in the film of the base film 211 and the oxygen contained in the oxide in the surface part react with the organic substance on the surface and are removed as CO 2 or the like.
  • C and CO contained in the surface and the CVD-Ru film can also be removed.
  • the oxide is present on the surface while passing through the atmosphere, the oxidation treatment performed prior to the reduction treatment as in the first embodiment is unnecessary.
  • a Cu film is formed by CVD using a Cu complex as a film forming material after impurities on the wafer surface are removed by a cleaning process. Even when a wafer having an impurity-existing film such as a Ru film is used, the adsorption of the film-forming raw material is not hindered by the impurity, the initial nucleus density of Cu is high, and good surface properties are obtained. Cu film
  • FIG. 14 is a schematic view showing an example of a processing apparatus for carrying out the film forming method of the first embodiment.
  • This processing apparatus is a multi-chamber capable of continuously performing in-situ cleaning processing and CVD-Cu film forming on a wafer having a base film formed in Ex-situ without breaking the vacuum.
  • Type of processing equipment This processing apparatus does not have the Ru film forming unit 1 and the air intake pipe 15, and is completely different from the film forming apparatus of FIG. 5 except that the connection positions of the reduction processing unit 2 and the Cu film forming unit 3 are different. It is constituted similarly. Further, as the reduction processing unit 2 and the Cu film forming unit 3, those shown in FIGS. 6 to 8 can be used.
  • a wafer having a base film formed thereon is prepared (step 21), and a Cu complex is used as a film forming raw material on the base film. Then, initial nucleation of the Cu film is performed (step 22), and then a cleaning process (step 23) is performed, and then a CVD-Cu film is formed (step 24), and further a cleaning process (step 25) is performed.
  • the CVD-Cu film formation in step 24 and the cleaning process in step 25 are alternately repeated.
  • the base film is not particularly limited.
  • the initial nucleation in step 22 is an important process for determining the surface properties of the Cu film.
  • high-density and uniform nucleation is performed, so that the adhesion with the base film is improved, the aggregation of Cu is suppressed, the grains grow uniformly, and the surface property is good (smoothness) High) Cu film can be obtained.
  • the cleaning process in step 23 can also be performed by a reduction process using a reducing gas, similarly to the cleaning process in step 2 described above.
  • oxygen reacts with impurities in the base film 221 and the initial nucleus 222 in the process of releasing oxygen contained in the base film 221 and is removed as CO 2 or the like.
  • the cleaning process in step 23 is also performed after the oxidation process and then the reduction process. That is, the amount of oxygen is increased by oxidizing the initial nucleus 222 and the base film 221 by the oxidation treatment, and the amount of oxygen that escapes from the film is increased by the subsequent reduction treatment, so that it adheres to the base film 221 and the initial nucleus 222. Impurities can be more easily removed, and wettability can be improved.
  • the reduction treatment H 2 plasma treatment
  • the oxidation treatment air exposure
  • the reduction treatment H 2 plasma treatment
  • the oxidation treatment (atmospheric exposure) and reduction treatment (H 2 plasma treatment) in FIG. 20B are performed rather than the reduction treatment (H 2 plasma treatment) only as the cleaning treatment in FIG. 20A. It is confirmed that the wetness of the initial nuclei is improved and the surface is smoother.
  • Reduction treatment in this case can be performed heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas.
  • the plasma processing that can be processed with higher energy has a higher effect of removing impurities in the Cu film.
  • the temperature at this time is too high, Cu agglomeration may occur. Therefore, the temperature is preferably 100 to 200 ° C.
  • Specific conditions include wafer temperature: 100 to 200 ° C. (for example, 150 ° C.), chamber pressure: 133 to 399 Pa (1 to 3 Torr), and H 2 gas flow rate: 50 to 500 mL / min (sccm). it can.
  • H 2 gas alone or H 2 gas and inert gas are introduced into the chamber at a predetermined flow rate, the pressure in the chamber and the wafer temperature are set to predetermined values, and the gas Is reduced to plasma.
  • the plasma at this time is not particularly limited, and various plasmas such as capacitively coupled plasma, inductively coupled plasma, and microwave plasma can be adopted.
  • plasma with high density and low electron temperature can be formed, Wave plasma is preferred.
  • the energy of Ar + ions is added to the plasma of H 2 gas and Ar gas rather than the plasma of H 2 gas alone, impurities in the Cu film can be easily removed.
  • Plasma treatment was performed and a cross-sectional SEM photograph was taken. The results are shown in FIGS. 21A and 21B. As shown in these photographs, it is understood that the wettability of Cu is improved in FIG. 21B in which Ar gas is added than in FIG. 21A in which only H 2 gas is used.
  • H 2 gas Specific conditions for the plasma processing including H 2 gas include: wafer temperature: 100 to 200 ° C. (eg, 150 ° C.), chamber pressure: 133 to 399 Pa (1 to 3 Torr), H 2 gas flow rate: 50 to 500 mL / Examples include min (sccm) and Ar gas flow rate of 50 to 500 mL / min (sccm).
  • the CVD-Ru film which is the base film, and the initial nucleus of Cu may be oxidized to some extent, regardless of the method, exposure to an oxygen-containing atmosphere, heat treatment in an oxygen-containing atmosphere, and plasma containing oxygen gas. And the like. If it is sufficient to oxidize slightly, it is sufficient to expose the CVD-Ru film to an oxygen-containing atmosphere.
  • Air exposure is the simplest treatment for exposure to an oxygen-containing atmosphere.
  • heat treatment in an oxygen-containing atmosphere or plasma treatment containing oxygen gas is adopted, the heating temperature, the pressure in the chamber, the oxygen concentration of the gas to be supplied, the flow rate, etc. should be determined according to the degree of oxidation required. Good.
  • the Cu film forming process in step 24 is continued.
  • a Cu complex such as Cu (hfac) TMVS, is used as a film forming material, and this is supplied onto the initial nuclei to grow a Cu film.
  • the Cu complex as a film forming raw material is decomposed and a by-product such as Cu (hfac) 2 is generated as an impurity and contained in the Cu film. If it does so, aggregation of Cu will be accelerated
  • step 24 the cleaning process in step 25 is performed.
  • the cleaning process at this time can be performed in the same manner as in step 23.
  • the Cu film is formed by supplying the film forming raw material made of the Cu complex to the wafer as the substrate, the Cu film is subjected to the cleaning treatment, so that the presence of the impurity is present even when the Cu film has an impurity. Aggregation of Cu due to can be suppressed, and a Cu film having good surface properties can be obtained.
  • Step 24 it is preferable to repeat the Cu film formation in Step 24 and the cleaning treatment in Step 25 a plurality of times. Thereby, the effect of removing impurities in the Cu film can be increased, and the aggregation of Cu can be more effectively suppressed.
  • the Cu film formation and the cleaning process can be performed in different ways.
  • the initial Cu film formation step when it is repeated a plurality of times as the initial nucleus formation step, it is possible to prevent impurities from the film formation raw material from adsorbing to the substrate surface at the initial stage of film formation. Inhibition of the adsorption of the film-forming raw material by impurities from the substrate can be effectively prevented, and the aggregation of Cu can be further effectively suppressed.
  • the cleaning process in step 25 may be performed after the initial nucleation in step 22 and the Cu film formation in step 24 are continuously performed without performing the cleaning process in step 23.
  • the film formation apparatus similar to that of FIG. 5 of the first embodiment is used to perform under-situ film formation, cleaning treatment, initial nucleation, and Cu film formation without breaking the vacuum. It carries out continuously in.
  • the base film is formed by the same base film forming unit as the Ru film forming unit 1, the initial nucleation of step 22 is performed by the Cu film forming unit 3, and the cleaning of step 23 is performed by the reduction processing unit 2. Then, the Cu film forming unit 3 performs the Cu film formation in Step 24, and the reduction processing unit 2 performs the cleaning process in Step 25. In the cleaning process of step 23 and step 25, you may perform an oxidation process by taking in air
  • a semiconductor wafer having a CVD-Ru film (hereinafter referred to as a CVD-Ru film) formed by a CVD method using ruthenium carbonyl (Ru 3 (CO) 12 ) as a film forming material.
  • a CVD-Ru film formed by a CVD method using ruthenium carbonyl (Ru 3 (CO) 12 ) as a film forming material.
  • the CVD-Ru film is cleaned (step 32), and then the initial nucleus of the Cu film of the CVD-Cu film is formed by the CVD method using the Cu complex as a film forming material.
  • Formation step 33
  • a cleaning process step 34
  • a CVD-Cu film formation step 35
  • a cleaning process step 36
  • impurities such as CO and C in the Ru film are removed by the cleaning process in Step 32.
  • impurities on the surface of the CVD-Ru film are reduced, the inhibition of adsorption of the Cu complex to the CVD-Ru film is eliminated, and the initial nuclear density can be increased.
  • This cleaning process can be performed in the same manner as the cleaning process in step 2 in the first embodiment. That is, a reduction treatment using a reducing gas or an oxidation treatment may be performed before the reduction treatment.
  • the temperature for the reduction treatment is preferably 250 to 350 ° C.
  • Reduction treatment can be carried out in the same manner as in the first embodiment, heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas.
  • the initial nucleation in step 33 is an important process for determining the surface properties of the Cu film.
  • high-density and uniform nucleation is performed, so that the adhesion with the base film is improved, the aggregation of Cu is suppressed, the grains grow uniformly, and the surface property is good (smoothness)
  • Cu complex such as Cu (hfac) TMVS as a raw material
  • By-products generated by the decomposition of the Cu complex, such as Cu (hfac) 2 adhere as impurities to the surface of the CVD-Ru film and the initial nucleus. For this reason, the wettability with respect to the foundation
  • the surface of the CVD-Ru film, which is the base film, and impurities attached to the initial nucleus are removed, and the wettability with respect to the base of Cu is improved.
  • the cleaning process in step 34 can also be performed by a reduction process using a reducing gas, similarly to the cleaning process in step 2 described above.
  • a reduction process using a reducing gas similarly to the cleaning process in step 2 described above.
  • the cleaning treatment in step 34 is also performed after the oxidation treatment and then the reduction treatment. That is, the amount of oxygen increases by oxidizing the initial nucleus and the CVD-Ru film, which is the base film, by the oxidation treatment, and the amount of oxygen that escapes from the film is increased by the subsequent reduction treatment. Impurities attached to the Ru film and the initial nucleus can be more easily removed, and wettability can be improved.
  • Reduction treatment in this case can be performed heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas.
  • the temperature is preferably 100 to 200 ° C. so as not to cause aggregation of Cu.
  • the oxidation treatment is performed in the same manner as in the third embodiment, as in the third embodiment, as long as the CVD-Ru film and the initial nucleus, which are the underlying films, are somewhat oxidized.
  • the Cu film forming process in step 35 is continued.
  • a Cu complex for example, Cu (hfac) TMVS is used as a film forming material, and this is supplied onto the initial nucleus to grow a Cu film.
  • the Cu complex as a film forming raw material is decomposed and a by-product such as Cu (hfac) 2 is generated as an impurity and contained in the Cu film. If it does so, aggregation of Cu will be accelerated
  • the cleaning process in step 36 is performed.
  • the cleaning process at this time can be performed in the same manner as in step 23 of the third embodiment. Thereby, aggregation of Cu is suppressed and the surface property of the Cu film is improved.
  • step 35 it is preferable to repeat the Cu film formation in step 35 and the cleaning process in step 36 a plurality of times as in the third embodiment.
  • the cleaning process in step 36 may be performed after the initial nucleation in step 33 and the Cu film formation in step 35 are continuously performed without the cleaning process in step 34.
  • a processing apparatus for carrying out the film forming method of the fourth embodiment will be described.
  • a film-forming apparatus similar to that of FIG. 5 of the first embodiment is used to form a CVD-Ru film as a base film, cleaning treatment, initial nucleation, and Cu film formation using a vacuum. Conduct continuously in-situ without breaking.
  • a CVD-Ru film is formed by the Ru film forming unit 1
  • the cleaning process of Step 32 is performed by the reduction processing unit 2
  • the initial nucleation of Step 33 is performed by the Cu film forming unit 3
  • the reduction process is performed.
  • the unit 2 performs the cleaning process in step 34
  • the Cu film deposition unit 3 performs the Cu film deposition in step 35
  • the reduction process unit 2 performs the cleaning process in step 35.
  • another reduction processing unit may be provided in an empty port of the transfer chamber.
  • the present invention can be variously modified without being limited to the above embodiment.
  • the case where Cu (hfac) TMVS is used as the Cu complex has been described, but the present invention is not limited to this.
  • the liquid Cu complex is pumped and supplied to the vaporizer and vaporized by the vaporizer.
  • the present invention is not limited to this, and other methods such as vaporizing by bubbling or the like are provided. You may vaporize with.
  • the film forming apparatus is not limited to the one in the above embodiment, and various apparatuses such as, for example, a mechanism that forms a plasma for promoting the decomposition of the film forming source gas can be used. .

Abstract

A wafer having a CVD-Ru film formed on the surface thereof is provided. The surface of the wafer to be used as a substrate is cleaned. A film-forming raw material comprising a Cu complex is supplied to the cleaned wafer to form a Cu film on the wafer.

Description

Cu膜の成膜方法および記憶媒体Cu film forming method and storage medium
 本発明は、半導体基板等の基板にCVDによりCu膜を成膜するCu膜の成膜方法および記憶媒体に関する。 The present invention relates to a Cu film forming method and a storage medium for forming a Cu film on a substrate such as a semiconductor substrate by CVD.
 近時、半導体デバイスの高速化、配線パターンの微細化等に呼応して、Alよりも導電性が高く、かつエレクトロマイグレーション耐性等も良好なCuが配線、Cuメッキのシード層、コンタクトプラグの材料として注目されている。 Recently, Cu has higher conductivity than Al and better electromigration resistance in response to higher speeds of semiconductor devices, finer wiring patterns, etc. Materials for wiring, Cu plating seed layers, and contact plugs It is attracting attention as.
 このCuの成膜方法としては、スパッタリングに代表される物理蒸着(PVD)法が多用されていたが、半導体デバイスの微細化にともなってステップカバレッジが悪いという欠点が顕在化している。 As the Cu film forming method, a physical vapor deposition (PVD) method typified by sputtering has been frequently used. However, a defect that the step coverage is poor with the miniaturization of a semiconductor device has become apparent.
そこで、Cu膜の成膜方法として、Cuを含む原料ガスの熱分解反応や、当該原料ガスの還元性ガスによる還元反応にて基板上にCuを成膜する化学気相成長(CVD)法が用いられつつある。このようなCVD法により成膜されたCu膜(CVD-Cu膜)は、ステップカバレッジ(段差被覆性)が高く、細長く深いパターン内への成膜性に優れているため、微細なパターンへの追従性が高く、配線、Cuメッキのシード層、コンタクトプラグの形成には好適である。 Therefore, as a method for forming a Cu film, there is a chemical vapor deposition (CVD) method in which Cu is formed on a substrate by a thermal decomposition reaction of a source gas containing Cu or a reduction reaction of the source gas with a reducing gas. It is being used. A Cu film (CVD-Cu film) formed by such a CVD method has a high step coverage (step coverage) and excellent film formability in a long and narrow pattern. The followability is high, and it is suitable for forming a wiring, a Cu plating seed layer, and a contact plug.
 このCVD法によりCu膜を成膜するにあたり、成膜原料(プリカーサー)にヘキサフルオロアセチルアセトナート・トリメチルビニルシラン銅(Cu(hfac)TMVS)等のCu錯体を用い、これを熱分解する技術が知られている(例えば特開2000-282242号公報)。 A technology for thermally decomposing Cu films such as hexafluoroacetylacetonate and trimethylvinylsilane copper (Cu (hfac) TMVS) as a film forming material (precursor) is known for forming a Cu film by this CVD method. (For example, JP-A-2000-282242).
 一方、Cuの密着層やバリアメタルとして、CVD法によるRu膜(CVD-Ru膜)を用いる技術が知られている(特開平10-229084号公報)。RuはCuとの整合性が高いため、Cu膜を密着性よく成膜することができ、また、CVD-Ru膜は、ステップカバレッジが高いため、Cuの密着層やバリアメタルに適している。 On the other hand, a technique using a Ru film (CVD-Ru film) by a CVD method as a Cu adhesion layer or a barrier metal is known (Japanese Patent Laid-Open No. 10-229084). Since Ru is highly compatible with Cu, a Cu film can be formed with good adhesion, and a CVD-Ru film is suitable for a Cu adhesion layer and a barrier metal because of high step coverage.
 しかしながら、CVD-Cu膜の下地としてCVD-Ru膜を用いる場合には、例えばRu(CO)12等を成膜原料として用いるため、CVD-Ru膜中にCO等の不純物が含まれることとなる。このCO等の不純物がCVD-Ru膜の表面に存在すると、この不純物によって成膜原料の吸着が阻害されてCuの濡れ性が悪化するため、Cuの初期核の密度が低くなり、Cuが凝集して粗大化し、Cu膜の表面性状が悪化してしまう。 However, when a CVD-Ru film is used as a base of the CVD-Cu film, for example, Ru 3 (CO) 12 or the like is used as a film forming raw material, so that impurities such as CO are included in the CVD-Ru film. Become. If impurities such as CO are present on the surface of the CVD-Ru film, the adsorption of the raw material for film formation is inhibited by this impurity and the wettability of Cu is deteriorated, so the density of the initial nucleus of Cu is lowered and Cu is agglomerated. As a result, the surface properties of the Cu film deteriorate.
 また、下地の成膜をEx-situで行う場合には、下地を形成してから一旦大気暴露し、その後にCuを成膜することとなるため、下地の種類にかかわらず、下地表面の酸化が生じたり、大気中の有機物が下地表面に付着することにより、やはり成膜原料の吸着が阻害されてCuの濡れ性が悪化し、Cu膜の表面性状が悪化してしまう。 In addition, when the base film is formed by ex-situ, since the base film is first exposed to the atmosphere and then Cu is formed, the oxidation of the base surface is performed regardless of the type of the base film. When organic matter in the atmosphere adheres to the underlying surface, adsorption of the film forming raw material is also inhibited, Cu wettability deteriorates, and the surface properties of the Cu film deteriorate.
 さらに、CVD-Cu膜を成膜する際には、成膜原料であるCu錯体が分解して生じる副生成物等の不純物が生じるが、下地の材料にかかわらず、初期には、このような不純物が下地の表面に吸着し、成膜原料の吸着が阻害されてCuの濡れ性が悪化し、成膜中には、このような不純物の存在によりCuの凝集が生じて、やはりCu膜の表面性状が悪化してしまう。 Further, when a CVD-Cu film is formed, impurities such as by-products generated by decomposition of a Cu complex as a film forming raw material are generated. Impurities are adsorbed on the surface of the base, and the adsorption of the film forming raw material is hindered to deteriorate the wettability of Cu. During the film formation, Cu agglomerates due to the presence of such impurities. Surface properties will deteriorate.
 本発明の目的は、表面性状が良好なCVD-Cu膜を成膜することができるCu膜の成膜方法を提供することにある。
 また、他の目的は、そのような成膜方法を実行するためのプログラムを記憶した記憶媒体を提供することにある。
An object of the present invention is to provide a Cu film forming method capable of forming a CVD-Cu film having good surface properties.
Another object is to provide a storage medium storing a program for executing such a film forming method.
 本発明の第1の観点によれば、基板上にCVD法によりCu膜を成膜するCu膜の成膜方法であって、基板表面部分を清浄化する工程と、清浄化された基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程とを有するCu膜の成膜方法が提供される。 According to a first aspect of the present invention, there is provided a Cu film forming method for forming a Cu film on a substrate by a CVD method, comprising: a step of cleaning a substrate surface portion; and a Cu substrate on a cleaned substrate. There is provided a method for forming a Cu film, which includes a step of supplying a film forming material comprising a complex to form a Cu film on a substrate.
 本発明の第2の観点によれば、基板上にCVD法によりCu膜を成膜するCu膜の成膜方法であって、基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程と、基板に形成されたCu膜を清浄化する工程とを有するCu膜の成膜方法が提供される。 According to a second aspect of the present invention, there is provided a Cu film forming method for forming a Cu film on a substrate by a CVD method, wherein a film forming raw material made of a Cu complex is supplied to the substrate and the Cu film is formed on the substrate. There is provided a method for forming a Cu film, which includes a step of forming a film and a step of cleaning a Cu film formed on a substrate.
 本発明の第3の観点によれば、コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、基板表面部分を清浄化する工程と、清浄化された基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程とを有するCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させる記憶媒体が提供される。 According to a third aspect of the present invention, there is provided a storage medium that operates on a computer and stores a program for controlling a film forming apparatus, and the program cleans a substrate surface portion at the time of execution. The film formation method is performed on a computer so as to perform a Cu film formation method comprising: a step of supplying a film formation material comprising a Cu complex to a cleaned substrate and forming a Cu film on the substrate. A storage medium for controlling the device is provided.
 本発明の第4の観点によれば、コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程と、基板に形成されたCu膜を清浄化する工程とを有するCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させる記憶媒体が提供される。 According to a fourth aspect of the present invention, there is provided a storage medium that operates on a computer and stores a program for controlling a film forming apparatus, and the program is composed of a Cu complex on a substrate at the time of execution. The film formation is performed on a computer so as to perform a Cu film formation method including a step of supplying a film raw material to form a Cu film on the substrate and a step of cleaning the Cu film formed on the substrate. A storage medium for controlling the device is provided.
本発明の第1の実施形態の方法を示すフローチャートである。It is a flowchart which shows the method of the 1st Embodiment of this invention. 下地膜であるCVD-Ru膜に不純物としてCOやC等が含まれたままCu膜を成膜した状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which a Cu film is formed while CO, C, etc. are contained as impurities in a CVD-Ru film that is a base film. 清浄化処理により清浄化されたCVD-Ru膜上にCu膜を成膜した状態を示す模式図である。It is a schematic diagram showing a state in which a Cu film is formed on the CVD-Ru film cleaned by the cleaning process. 清浄化処理によりCVD-Ru膜の不純物が抜けていく状態を示す模式図である。It is a schematic diagram showing a state in which impurities in the CVD-Ru film are removed by the cleaning process. 本発明の第1の実施形態の成膜方法を実施するための処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the processing apparatus for enforcing the film-forming method of the 1st Embodiment of this invention. 還元処理ユニットの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a reduction process unit. 還元処理ユニットの他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of a reduction process unit. Cu膜成膜ユニットの構成の一例を示す概略断面である。It is a schematic cross section which shows an example of a structure of Cu film | membrane film-forming unit. ウエハ上にRu膜を成膜した後、そのままCVDでCu膜を成膜した場合における初期核生成時の表面状態の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface state at the time of initial nucleation in the case where a Cu film is directly formed by CVD after forming a Ru film on a wafer. ウエハ上にRu膜を成膜した後、Hガス雰囲気における熱処理を行い、その後CVDでCu膜を成膜した場合における初期核生成時の表面状態の走査型電子顕微鏡写真である。After forming the Ru film on the wafer was heat-treated in an atmosphere of H 2 gas is a scanning electron micrograph of the subsequent surface state during the initial nucleation in case of forming a Cu film by CVD. ウエハ上にRu膜を成膜した後、大気暴露を行い、次いでH雰囲気における熱処理を行い、その後CVDでCu膜を成膜した場合における初期核生成時の表面状態の走査型電子顕微鏡写真である。A scanning electron micrograph of the surface state at the time of initial nucleation when a Ru film is formed on a wafer, exposed to air, then heat-treated in an H 2 atmosphere, and then a Cu film is formed by CVD. is there. 本発明の第2の実施形態の方法を示すフローチャートである。It is a flowchart which shows the method of the 2nd Embodiment of this invention. Ex-situで成膜した下地膜上にそのままCu膜を成膜した状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which a Cu film is formed as it is on a base film formed by Ex-situ. 清浄化処理により清浄化された下地膜上にCu膜を成膜した状態を示す模式図である。It is a schematic diagram which shows the state which formed Cu film | membrane on the base film cleaned by the cleaning process. 清浄化処理により下地膜の不純物が抜けていく状態を示す模式図である。It is a schematic diagram which shows the state from which the impurity of a base film escapes by the cleaning process. 本発明の第2の実施形態の成膜方法を実施するための処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the processing apparatus for enforcing the film-forming method of the 2nd Embodiment of this invention. 本発明の第3の実施形態の方法を示すフローチャートである。It is a flowchart which shows the method of the 3rd Embodiment of this invention. 下地膜上にCu膜の初期核生成を行った場合に副生成物等の不純物が付着した状態を示す模式図である。It is a schematic diagram which shows the state which impurities, such as a by-product, adhered when the initial nucleation of Cu film | membrane was performed on the base film. 清浄化処理により初期核生成後に不純物を除去した状態を示す模式図である。It is a schematic diagram which shows the state which removed the impurity after the initial stage nucleation by the cleaning process. Cu初期核が形成されたままの状態を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the state with Cu initial nucleus formed. Cu初期核が形成された後清浄化処理(Hプラズマ処理)を行った状態を示す走査型電子顕微鏡写真である。Cu cleaning process after the initial nuclei are formed (H 2 plasma treatment) is a scanning electron micrograph showing the state of performing the. 清浄化処理により下地膜や初期核の不純物が抜けていく状態を示す模式図である。It is a schematic diagram which shows the state from which the impurity of a base film and an initial nucleus escapes by cleaning process. Cu初期核を形成した後に清浄化処理として還元処理(Hプラズマ処理)のみを行った状態を示す走査型電子顕微鏡写真。A scanning electron microscope photograph showing a state in which only the Been reduction treatment (H 2 plasma process) as a cleaning process after forming the Cu initial nucleus. Cu初期核を形成した後に清浄化処理として酸化処理(大気暴露)と還元処理(Hプラズマ処理)とを行った状態を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph showing the state of performing the oxidation treatment (atmospheric exposure) reduction treatment and (H 2 plasma process) as a cleaning process after forming the Cu initial nucleus. 初期核生成を行った後にHガスのプラズマでプラズマ処理を行った状態を示す走査型電子顕微鏡写真である。After the initial nucleation at the plasma of H 2 gas is a scanning electron micrograph showing a state in which the plasma treatment is performed. 初期核生成を行った後にHガス+Arガスプラズマでプラズマ処理を行った状態を示す走査型電子顕微鏡写真である。After the initial nucleation with H 2 gas + Ar gas plasma is a scanning electron micrograph showing a state in which the plasma treatment is performed. 本発明の第4の実施形態の方法を示すフローチャートである。It is a flowchart which shows the method of the 4th Embodiment of this invention.
 以下、添付図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 <第1の実施形態>
 (第1の実施形態の方法)
 本発明の第1の実施形態においては、図1のフローチャートに示すように、ルテニウムカルボニル(Ru(CO)12)を成膜原料としてCVD法により成膜したCVD-Ru膜を有する半導体ウエハ(以下単にウエハと記す)を準備し(ステップ1)、そのCVD-Ru膜の清浄化処理(ステップ2)を行い、その後Cu錯体を成膜原料としてCVD法によりCVD-Cu膜の成膜(ステップ3)を行う。
<First Embodiment>
(Method of the first embodiment)
In the first embodiment of the present invention, as shown in the flowchart of FIG. 1, a semiconductor wafer having a CVD-Ru film formed by CVD using ruthenium carbonyl (Ru 3 (CO) 12 ) as a film forming material ( (Hereinafter simply referred to as a wafer) is prepared (step 1), the CVD-Ru film is cleaned (step 2), and then a CVD-Cu film is formed by CVD using the Cu complex as a film forming material (step 3) is performed.
 ステップ2の清浄化処理は、CVD-Ru膜の不純物を除去するために行う処理である。
 成膜原料としてRu(CO)12を用いてCVD-Ru膜を成膜する場合には、Ru(CO)12が分解して生成するCOやC等がRu膜中に不純物として含まれる。このCOやCのような不純物が含まれたままCu膜を成膜する場合には、図2に示すように、CVD-Ru膜201表面にCOやCが存在した状態で成膜原料であるCu錯体が供給されることとなるので、このCOやCがCu錯体の吸着を阻害し、初期核密度が低くなる。この状態でCu膜の成膜を続けるとCuが凝集してCu膜の表面性状が悪化する。
The cleaning process in Step 2 is a process performed to remove impurities from the CVD-Ru film.
When a CVD-Ru film is formed using Ru 3 (CO) 12 as a film forming material, CO, C, etc. generated by decomposition of Ru 3 (CO) 12 are contained as impurities in the Ru film. . In the case where a Cu film is formed while impurities such as CO and C are included, as shown in FIG. 2, the film-forming raw material is in a state where CO and C are present on the surface of the CVD-Ru film 201. Since the Cu complex is supplied, the CO and C inhibit the adsorption of the Cu complex, and the initial nuclear density is lowered. If the Cu film is continuously formed in this state, Cu aggregates and the surface properties of the Cu film deteriorate.
 そこで、ステップ2の清浄化処理によりRu膜201のCOやC等の不純物を除去する。これにより、図3に示すように、CVD-Ru膜201の表面の不純物が減少し、CVD-Ru膜201へのCu錯体の吸着阻害が解消され、初期核密度を高くすることができる。したがって、Cuの凝集が抑制されてCu膜の表面性状を良好にすることができる。 Therefore, impurities such as CO and C in the Ru film 201 are removed by the cleaning process in Step 2. Thereby, as shown in FIG. 3, impurities on the surface of the CVD-Ru film 201 are reduced, the inhibition of adsorption of the Cu complex to the CVD-Ru film 201 is eliminated, and the initial nuclear density can be increased. Therefore, aggregation of Cu is suppressed and the surface property of the Cu film can be improved.
 この清浄化処理は、還元性ガスを用いた還元処理により行うことができる。これにより、図4に示すように、CVD-Ru膜201中に含まれた酸素が抜けていく過程で膜中および表面のCOおよびCと反応し、COとして除去される。この際の温度は250~350℃の範囲とすることが好ましい。 This cleaning process can be performed by a reduction process using a reducing gas. As a result, as shown in FIG. 4, in the process in which oxygen contained in the CVD-Ru film 201 is released, it reacts with CO and C in the film and on the surface and is removed as CO 2 . The temperature at this time is preferably in the range of 250 to 350 ° C.
 この清浄化処理は、CVD-Ru膜201の酸化処理を行ってから、上記還元処理を行うことが好ましい。すなわち、酸化処理によりCVD-Ru膜201を酸化させることによりCVD-Ru膜201の酸素量が増加し、その後の還元処理により膜から抜ける酸素の量が増加するため、膜中および表面のCOおよびCをより除去しやすくすることができ、初期核密度を高める効果をより大きくすることができる。 In this cleaning treatment, it is preferable to perform the reduction treatment after the oxidation treatment of the CVD-Ru film 201. That is, the amount of oxygen in the CVD-Ru film 201 is increased by oxidizing the CVD-Ru film 201 by the oxidation process, and the amount of oxygen that escapes from the film is increased by the subsequent reduction process. C can be more easily removed, and the effect of increasing the initial nucleus density can be further increased.
 上記還元処理は、Hガスを含む雰囲気での熱処理、またはHガスを含むプラズマ処理により行うことができる。 The reducing treatment can be performed by a plasma treatment including a heat treatment in an atmosphere containing H 2 gas, or H 2 gas.
 Hガスを含む雰囲気での熱処理は、Hガス単独、またはHガスと不活性ガスを所定の流量でチャンバー内に導入し、チャンバー内の圧力およびウエハ温度を所定の値に設定して行う。具体的条件としては、ウエハ温度:250~350℃、チャンバー内圧力:133~1333Pa(1~10Torr)、Hガス流量:50~500mL/min(sccm)を挙げることができる。 Heat treatment in an atmosphere containing H 2 gas, H 2 gas alone, or H 2 gas and an inert gas into the chamber at a predetermined flow rate, by setting the pressure in the chamber and the wafer temperature at a predetermined value Do. Specific conditions include wafer temperature: 250 to 350 ° C., chamber pressure: 133 to 1333 Pa (1 to 10 Torr), and H 2 gas flow rate: 50 to 500 mL / min (sccm).
 Hガスを含むプラズマ処理は、Hガス単独、またはHガスと不活性ガスを所定の流量でチャンバー内に導入し、チャンバー内の圧力およびウエハ温度を所定の値に設定し、上記ガスをプラズマ化して還元処理を行う。この際のプラズマとしては、特に限定されず、容量結合プラズマ、誘導結合プラズマ、マイクロ波プラズマ等、種々のプラズマを採用することができるが、高密度で低電子温度のプラズマを形成できることから、マイクロ波プラズマが好ましい。具体的条件としては、ウエハ温度:250~350℃、チャンバー内圧力:133~399Pa(1~3Torr)、Hガス流量:250mL/min(sccm)およびArガス流量:250mL/min(sccm)を挙げることができる。 In the plasma processing including H 2 gas, H 2 gas alone or H 2 gas and inert gas are introduced into the chamber at a predetermined flow rate, the pressure in the chamber and the wafer temperature are set to predetermined values, and the gas Is reduced to plasma. The plasma at this time is not particularly limited, and various plasmas such as capacitively coupled plasma, inductively coupled plasma, and microwave plasma can be adopted. However, since plasma with high density and low electron temperature can be formed, Wave plasma is preferred. Specific conditions are: wafer temperature: 250 to 350 ° C., chamber pressure: 133 to 399 Pa (1 to 3 Torr), H 2 gas flow rate: 250 mL / min (sccm), and Ar gas flow rate: 250 mL / min (sccm). Can be mentioned.
 上記酸化処理は、CVD-Ru膜201が多少酸化すればよく、その手法は問わず、酸素含有雰囲気に曝す処理、酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理等を挙げることができる。CVD-Ru膜201をわずかに酸化するだけで十分な場合にはCVD-Ru膜201を酸素含有雰囲気に曝すだけで十分である。酸素含有雰囲気に曝す処理としては大気暴露が最も簡便である。酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理を採用する場合には、必要とされる酸化の度合いに応じて加熱温度、チャンバー内圧力、供給するガスの酸素濃度、流量等を決定すればよい。 The above-described oxidation treatment may be performed by oxidizing the CVD-Ru film 201 to some extent. Examples of the oxidation treatment include treatment exposed to an oxygen-containing atmosphere, heat treatment in an oxygen-containing atmosphere, and plasma treatment containing oxygen gas. If it is sufficient to slightly oxidize the CVD-Ru film 201, it is sufficient to expose the CVD-Ru film 201 to an oxygen-containing atmosphere. Air exposure is the simplest treatment for exposure to an oxygen-containing atmosphere. When heat treatment in an oxygen-containing atmosphere or plasma treatment containing oxygen gas is adopted, the heating temperature, the pressure in the chamber, the oxygen concentration of the gas to be supplied, the flow rate, etc. should be determined according to the degree of oxidation required. Good.
 ステップ3のCVD-Cu膜の成膜は、成膜原料として、Cu錯体、例えばCu(hfac)TMVSを用い、これを加熱したウエハ上に供給し、ウエハ表面のCVD-Ru膜上でCuを熱分解させてCu膜を成膜する。Cu膜の成膜においては、最初に成膜面にCuの核が生成し、それが成長してCu膜となるので、上述したようにステップ1の清浄化処理により成膜面であるCVD-Ru膜の表面が清浄化されていることにより、全面に均一に高密度で初期核生成が行われ、Cuの凝集が起こり難く、良好な表面性状のCu膜を得ることができる。 In step 3, the CVD-Cu film is formed by using a Cu complex, for example, Cu (hfac) TMVS, as a film-forming raw material, supplying this to a heated wafer, and Cu on the CVD-Ru film on the wafer surface. A Cu film is formed by thermal decomposition. In the formation of the Cu film, first, Cu nuclei are formed on the film formation surface, which grows into a Cu film. Therefore, as described above, the CVD- Since the surface of the Ru film is cleaned, initial nucleation is performed uniformly and at a high density on the entire surface, Cu aggregation hardly occurs, and a Cu film having a good surface property can be obtained.
 このように、本実施形態によれば、基板であるウエハの表面に清浄化処理を施してウエハ表面の不純物を除去してからCu錯体を成膜原料としたCVD法によりCu膜を成膜するので、基板として表面にCVD-Ru膜のような不純物が存在する膜を有するウエハを用いた場合であっても、不純物により成膜原料の吸着が阻害されることはなく、Cuの初期核の密度が高く、良好な表面性状を有するCu膜を得ることができる。 As described above, according to this embodiment, the surface of the wafer as a substrate is subjected to a cleaning process to remove impurities on the wafer surface, and then a Cu film is formed by a CVD method using a Cu complex as a film forming material. Therefore, even when a wafer having a film with impurities such as a CVD-Ru film on the surface is used as a substrate, the adsorption of the film forming material is not hindered by the impurities, and the initial nucleus of Cu is not disturbed. A Cu film having a high density and good surface properties can be obtained.
 (第1の実施形態の成膜方法を実施するための装置の構成)
 次に、第1の実施形態の成膜方法を実施するための処理装置について説明する。図5は第1の実施形態の成膜方法を実施するための処理装置の一例を示す模式図である。この処理装置はCVD-Ru膜の成膜、清浄化処理、およびCVD-Cu膜の成膜を真空を破ることなくin-situで連続して実施することができるマルチチャンバタイプの処理装置である。
(Configuration of an apparatus for carrying out the film forming method of the first embodiment)
Next, a processing apparatus for carrying out the film forming method of the first embodiment will be described. FIG. 5 is a schematic view showing an example of a processing apparatus for carrying out the film forming method of the first embodiment. This processing apparatus is a multi-chamber type processing apparatus capable of continuously performing in-situ deposition of a CVD-Ru film, cleaning processing, and deposition of a CVD-Cu film without breaking the vacuum. .
この処理装置は、真空に保持されているRu膜成膜ユニット1、清浄化処理を行う還元処理ユニット2、Cu膜成膜ユニット3を備えており、これらのユニット1~3は搬送室5にゲートバルブGを介して接続されている。また、搬送室5にはロードロック室6、7がゲートバルブGを介して接続されている。搬送室5は真空に保持されている。ロードロック室6、7の搬送室5と反対側には大気雰囲気の搬入出室8が設けられており、搬入出室8のロードロック室6、7の接続部分と反対側にはウエハWを収容可能なキャリアCを取り付ける3つのキャリア取り付けポート9、10、11が設けられている。 This processing apparatus includes a Ru film forming unit 1 held in vacuum, a reduction processing unit 2 for performing a cleaning process, and a Cu film forming unit 3. These units 1 to 3 are placed in a transfer chamber 5. They are connected via a gate valve G. In addition, load lock chambers 6 and 7 are connected to the transfer chamber 5 through gate valves G. The transfer chamber 5 is kept in a vacuum. A loading / unloading chamber 8 in the atmosphere is provided on the opposite side of the load lock chambers 6 and 7 from the transfer chamber 5, and a wafer W is placed on the opposite side of the loading / unloading chamber 8 from the connecting portion of the load lock chambers 6 and 7. Three carrier attachment ports 9, 10, 11 for attaching the accommodable carrier C are provided.
 搬送室5内には、Ru膜成膜ユニット1、還元処理ユニット2、Cu膜成膜ユニット3、ロードロック室6,7に対して、ウエハWの搬入出を行う搬送装置12が設けられている。この搬送装置12は、搬送室5の略中央に設けられており、回転および伸縮可能な回転・伸縮部13の先端に半導体ウエハWを支持する2つの支持アーム14a,14bを有しており、これら2つの支持アーム14a,14bは互いに反対方向を向くように回転・伸縮部13に取り付けられている。また、搬送室5には、空気を取り入れる空気取り入れ配管15が接続されており、空気取り入れ配管15には開閉バルブ15aが設けられている。 In the transfer chamber 5, a transfer device 12 that loads and unloads the wafer W with respect to the Ru film forming unit 1, the reduction processing unit 2, the Cu film forming unit 3, and the load lock chambers 6 and 7 is provided. Yes. The transfer device 12 is provided at substantially the center of the transfer chamber 5, and has two support arms 14 a and 14 b that support the semiconductor wafer W at the tip of the rotatable / extensible / retractable portion 13. These two support arms 14a and 14b are attached to the rotation / extension / contraction section 13 so as to face in opposite directions. The transfer chamber 5 is connected to an air intake pipe 15 for taking in air, and the air intake pipe 15 is provided with an opening / closing valve 15a.
 搬入出室8内には、キャリアCに対するウエハWの搬入出およびロードロック室6,7に対するウエハWの搬入出を行う搬送装置16が設けられている。この搬送装置16は、多関節アーム構造を有しており、キャリアCの配列方向に沿ってレール18上を走行可能となっていて、その先端の支持アーム17上にウエハWを載せてその搬送を行う。 In the loading / unloading chamber 8, a transfer device 16 for loading / unloading the wafer W into / from the carrier C and loading / unloading the wafer W into / from the load lock chambers 6 and 7 is provided. The transfer device 16 has an articulated arm structure and can run on the rail 18 along the arrangement direction of the carrier C. The wafer W is placed on the support arm 17 at the tip thereof and transferred. I do.
 この処理装置は、各構成部を制御する制御部20を有している。この制御部20は、マイクロプロセッサ(コンピュータ)を備えたプロセスコントローラ21と、ユーザーインターフェース22と、記憶部23とを有している。プロセスコントローラ21には処理装置の各構成部が電気的に接続されて制御される構成となっている。ユーザーインターフェース22は、プロセスコントローラ21に接続されており、オペレータが処理装置の各構成部を管理するためにコマンドの入力操作などを行うキーボードや、処理装置の各構成部の稼働状況を可視化して表示するディスプレイ等からなっている。記憶部23もプロセスコントローラ21に接続されており、この記憶部23には、処理装置で実行される各種処理をプロセスコントローラ21の制御にて実現するための制御プログラムや、処理条件に応じて処理装置の各構成部に所定の処理を実行させるための制御プログラムすなわち処理レシピや、各種データベース等が格納されている。処理レシピは記憶部23の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスク等の固定的に設けられているものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。 This processing apparatus has a control unit 20 that controls each component. The control unit 20 includes a process controller 21 having a microprocessor (computer), a user interface 22, and a storage unit 23. Each component of the processing apparatus is electrically connected to the process controller 21 and controlled. The user interface 22 is connected to the process controller 21 and visualizes the operation status of each component of the processing device and the keyboard on which the operator performs command input operations in order to manage each component of the processing device. It consists of a display to display. The storage unit 23 is also connected to the process controller 21, and the storage unit 23 performs processing according to a control program for realizing various processes executed by the processing device under the control of the process controller 21 and processing conditions. A control program for causing each component of the apparatus to execute a predetermined process, that is, a process recipe, various databases, and the like are stored. The processing recipe is stored in a storage medium (not shown) in the storage unit 23. The storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example.
 そして、必要に応じて、ユーザーインターフェース22からの指示等にて所定の処理レシピを記憶部23から呼び出してプロセスコントローラ21に実行させることで、プロセスコントローラ21の制御下で、処理装置での所望の処理が行われる。 Then, if necessary, a predetermined processing recipe is called from the storage unit 23 according to an instruction from the user interface 22 and is executed by the process controller 21, so that a desired processing in the processing apparatus can be performed under the control of the process controller 21. Processing is performed.
 このような処理装置においては、キャリアCから搬入出室8の搬送装置16によりロードロック室6,7のいずれかにウエハWを搬送し、そのロードロック室を真空排気した後、搬送室5の搬送装置12により、そのウエハWを取り出し、まずRu成膜ユニット1に搬送してウエハWにCVD-Ru膜を成膜する。その後、Ru膜を成膜したウエハWを搬送装置12により搬送室5に戻し、その状態で開閉バルブ15aを開けて空気取り入れ配管15から大気を導入(大気暴露)してウエハWに酸化処理を施し、その後、搬送装置12により酸化処理したウエハWを還元処理ユニット2に搬送し、そこで還元処理を行う。これにより、酸化処理と還元処理を含む清浄化処理がなされる。なお、還元処理のみで清浄化を行うことができる場合には、大気を導入する酸化処理は不要である。その後、搬送装置12により還元処理ユニット2内のウエハWを取り出して、Cu膜成膜ユニット3に搬送して清浄化処理後のRu膜上にCu膜を成膜する。なお、酸化処理を行うためのユニットを搬送室5の空きポートに接続し、そのユニットで酸素含有雰囲気での熱処理やプラズマ処理等の酸化処理を行うようにしてもよい。 In such a processing apparatus, the wafer W is transferred from the carrier C to one of the load lock chambers 6 and 7 by the transfer device 16 of the loading / unloading chamber 8, and the load lock chamber is evacuated and then transferred to the transfer chamber 5. The wafer W is taken out by the transfer device 12 and is first transferred to the Ru film forming unit 1 to form a CVD-Ru film on the wafer W. Thereafter, the wafer W on which the Ru film is formed is returned to the transfer chamber 5 by the transfer device 12, and in that state, the open / close valve 15 a is opened to introduce the atmosphere from the air intake pipe 15 (exposure to the atmosphere), and the wafer W is oxidized. After that, the wafer W oxidized by the transfer device 12 is transferred to the reduction processing unit 2 where reduction processing is performed. Thereby, the cleaning process including an oxidation process and a reduction process is performed. Note that in the case where the cleaning can be performed only by the reduction treatment, the oxidation treatment for introducing the atmosphere is unnecessary. Thereafter, the wafer W in the reduction processing unit 2 is taken out by the transfer device 12 and transferred to the Cu film forming unit 3 to form a Cu film on the cleaned Ru film. Note that a unit for performing the oxidation treatment may be connected to an empty port of the transfer chamber 5 and oxidation treatment such as heat treatment or plasma treatment in an oxygen-containing atmosphere may be performed in the unit.
 次に、各ユニットについて説明する。
 上記Ru膜成膜ユニット1は、成膜原料として固体のRu(CO)12を用い、これを加熱により昇華させて用いる他は、基本的に後述するCu膜成膜ユニット3と同様の構造のものを用いることができる。
Next, each unit will be described.
The Ru film forming unit 1 basically has the same structure as the Cu film forming unit 3 described later, except that solid Ru 3 (CO) 12 is used as a film forming raw material and is sublimated by heating. Can be used.
 次に、清浄化処理を行う還元処理ユニット2について説明する。
図6は還元処理ユニット2の一例を示す概略断面図である。図6に示す還元処理ユニット2は、RLSA(Radial Line Slot Antenna)マイクロ波プラズマ方式のプラズマ処理装置として構成されている。
Next, the reduction processing unit 2 that performs the cleaning process will be described.
FIG. 6 is a schematic sectional view showing an example of the reduction processing unit 2. The reduction processing unit 2 shown in FIG. 6 is configured as an RLSA (Radial Line Slot Antenna) microwave plasma type plasma processing apparatus.
 この還元処理ユニット2は、気密に構成された処理容器としての略円筒状のチャンバー31と、チャンバー31内に設けられ、ウエハWを載置するサセプタ32と、チャンバー31の側壁に設けられたガス導入部33と、チャンバー31の上部の開口部に臨むように設けられ、多数のマイクロ波透過孔34aが形成された平面アンテナ34と、マイクロを発生させるマイクロ波発生部35と、マイクロ波発生部35を平面アンテナ34に導くマイクロ波伝送機構36とを有している。サセプタ32には、ヒーター32aが埋設されている。また、ガス導入部33には、Hガス供給源41およびArガス供給源42が配管43を介して接続されている。平面アンテナ34の下方には誘電体からなるマイクロ波透過板37が設けられ、平面アンテナ34の上にはシールド部材38が設けられている。さらに、シールド部材38と平面アンテナ34との間には、誘電体からなる遅波材39が設けられている。マイクロ波伝送機構36は、マイクロ波発生部35からマイクロ波を導く水平方向に伸びる導波管45と、平面アンテナ34から上方に伸びる内導体47および外導体48からなる同軸導波管46と、導波管45と同軸導波管46との間に設けられたモード変換機構49とを有している。なお、符号44は真空ポンプ等を備えた排気装置(図示せず)につながる排気管である。 The reduction processing unit 2 includes a substantially cylindrical chamber 31 as an airtight processing container, a susceptor 32 on which the wafer W is placed, and a gas provided on the side wall of the chamber 31. An introduction portion 33, a planar antenna 34 provided to face the opening at the top of the chamber 31, and formed with a number of microwave transmission holes 34a, a microwave generation portion 35 for generating a micro, and a microwave generation portion And a microwave transmission mechanism 36 for guiding 35 to the planar antenna 34. A heater 32 a is embedded in the susceptor 32. In addition, an H 2 gas supply source 41 and an Ar gas supply source 42 are connected to the gas introduction part 33 via a pipe 43. A microwave transmitting plate 37 made of a dielectric is provided below the planar antenna 34, and a shield member 38 is provided on the planar antenna 34. Further, a slow wave material 39 made of a dielectric is provided between the shield member 38 and the planar antenna 34. The microwave transmission mechanism 36 includes a waveguide 45 extending in the horizontal direction for guiding microwaves from the microwave generator 35, a coaxial waveguide 46 including an inner conductor 47 and an outer conductor 48 extending upward from the planar antenna 34, A mode conversion mechanism 49 provided between the waveguide 45 and the coaxial waveguide 46 is provided. Reference numeral 44 denotes an exhaust pipe connected to an exhaust device (not shown) provided with a vacuum pump or the like.
 このように構成される還元処理ユニット2においては、マイクロ波発生部35で発生したマイクロ波をマイクロ波伝送機構36を介して所定のモードで平面アンテナ34に導き、平面アンテナ34のマイクロ波透過孔34aおよびマイクロ波透過板37を通ってチャンバー1内に均一に供給し、そのマイクロ波により、Hガス供給源41およびArガス供給源42からガス導入部33を介して所定流量で供給されたHガスおよびArガスをプラズマ化してそのプラズマによりウエハWの表面に形成されたCVD-Ru膜に還元処理を施す。このとき、ウエハWは、ヒーター32aにより、例えば250~350℃に加熱される。 In the reduction processing unit 2 configured as described above, the microwave generated by the microwave generator 35 is guided to the planar antenna 34 in a predetermined mode via the microwave transmission mechanism 36, and the microwave transmission hole of the planar antenna 34 is guided. 34a and the microwave transmission plate 37 are uniformly supplied into the chamber 1 and supplied by the microwave from the H 2 gas supply source 41 and the Ar gas supply source 42 through the gas introduction part 33 at a predetermined flow rate. H 2 gas and Ar gas are turned into plasma, and the CVD-Ru film formed on the surface of the wafer W by the plasma is subjected to reduction treatment. At this time, the wafer W is heated to, for example, 250 to 350 ° C. by the heater 32a.
 このマイクロ波プラズマは、プラズマ密度が高く電子温度が低いので、CVD-Ru膜にダメージを与えることなく高効率で還元処理を行うことができる。 Since this microwave plasma has a high plasma density and a low electron temperature, it can be reduced with high efficiency without damaging the CVD-Ru film.
 還元処理ユニット2としては、図7に示すように、プラズマ発生源を持たずに、気密に構成された処理容器としてのチャンバー51と、チャンバー51内に設けられ、ヒーター52aが埋設されたサセプタ52と、還元ガスであるHガスを供給するHガス供給源54が配管53を介して接続されたガス導入部55と、真空ポンプ等を備えた排気装置(図示せず)につながる排気管56とを有するものであってもよい。このような構成により、ヒーター52aによりウエハWを例えば250~350℃に加熱しながら、還元ガスであるHガスをチャンバー51内に導入して、ウエハW表面のCVD-Ru膜に還元処理を施す。 As shown in FIG. 7, the reduction processing unit 2 has a chamber 51 as an airtight processing container without a plasma generation source, and a susceptor 52 provided in the chamber 51 and embedded with a heater 52a. And an exhaust pipe connected to an exhaust system (not shown) provided with a gas introduction unit 55 to which an H 2 gas supply source 54 for supplying H 2 gas as a reducing gas is connected via a pipe 53 and a vacuum pump or the like. 56 may be included. With this configuration, while heating the wafer W, for example, in 250 ~ 350 ° C. by the heater 52a, the H 2 gas as the reducing gas is introduced into the chamber 51, the reduction treatment CVD-Ru film on the surface of the wafer W Apply.
 次に、Cu膜成膜ユニット3について説明する。
 図8は、Cu膜成膜ユニット3の構成の一例を示す概略断面である。Cu膜成膜ユニット3は、気密に構成された処理容器としての略円筒状のチャンバー61を有しており、その中には被処理基板である半導体ウエハWを水平に支持するためのサセプタ62がその中央下部に設けられた円筒状の支持部材63により支持された状態で配置されている。このサセプタ62はAlN等のセラミックスからなっている。また、サセプタ62にはヒーター65が埋め込まれており、このヒーター65にはヒーター電源66が接続されている。一方、サセプタ62の上面近傍には熱電対67が設けられており、熱電対67の信号はヒーターコントローラ68に伝送されるようになっている。そして、ヒーターコントローラ68は熱電対67の信号に応じてヒーター電源66に指令を送信し、ヒーター65の加熱を制御してウエハWを所定の温度に制御するようになっている。
Next, the Cu film forming unit 3 will be described.
FIG. 8 is a schematic cross section showing an example of the configuration of the Cu film forming unit 3. The Cu film forming unit 3 has a substantially cylindrical chamber 61 as a processing container configured in an airtight manner, and a susceptor 62 for horizontally supporting a semiconductor wafer W as a substrate to be processed therein. Is arranged in a state of being supported by a cylindrical support member 63 provided at the lower center portion thereof. The susceptor 62 is made of a ceramic such as AlN. A heater 65 is embedded in the susceptor 62, and a heater power source 66 is connected to the heater 65. On the other hand, a thermocouple 67 is provided in the vicinity of the upper surface of the susceptor 62, and a signal of the thermocouple 67 is transmitted to the heater controller 68. The heater controller 68 transmits a command to the heater power supply 66 in accordance with a signal from the thermocouple 67, and controls the heating of the heater 65 to control the wafer W to a predetermined temperature.
 チャンバー61の天壁61aには、円形の孔61bが形成されており、そこからチャンバー61内へ突出するようにシャワーヘッド70が嵌め込まれている。シャワーヘッド70は、後述するガス供給機構90から供給された成膜用のガスをチャンバー61内に吐出するためのものであり、その上部には、成膜原料ガスとしてCu錯体、例えばヘキサフルオロアセチルアセトナート・トリメチルビニルシラン銅(Cu(hfac)TMVS)が導入される第1の導入路71と、チャンバー61内に希釈ガスが導入される第2の導入路72とを有している。この希釈ガスとしては、ArガスまたはHガスが用いられる。 A circular hole 61 b is formed in the top wall 61 a of the chamber 61, and a shower head 70 is fitted so as to protrude into the chamber 61 from there. The shower head 70 is for discharging a film forming gas supplied from a gas supply mechanism 90 to be described later into the chamber 61, and a Cu complex, for example, hexafluoroacetyl, as a film forming raw material gas, is formed above the shower head 70. It has a first introduction path 71 through which acetonato-trimethylvinylsilane copper (Cu (hfac) TMVS) is introduced, and a second introduction path 72 through which dilution gas is introduced into the chamber 61. Ar gas or H 2 gas is used as the dilution gas.
シャワーヘッド70の内部には上下2段に空間73、74が設けられている。上側の空間73には第1の導入路71が繋がっており、この空間73から第1のガス吐出路75がシャワーヘッド70の底面まで延びている。下側の空間74には第2の導入路72が繋がっており、この空間74から第2のガス吐出路76がシャワーヘッド70の底面まで延びている。すなわち、シャワーヘッド70は、成膜原料としてのCu錯体ガスと希釈ガスとがそれぞれ独立して吐出路75および76から吐出するようになっている。 Inside the shower head 70, spaces 73 and 74 are provided in two upper and lower stages. A first introduction path 71 is connected to the upper space 73, and a first gas discharge path 75 extends from the space 73 to the bottom surface of the shower head 70. A second introduction path 72 is connected to the lower space 74, and a second gas discharge path 76 extends from the space 74 to the bottom surface of the shower head 70. That is, the shower head 70 is configured so that the Cu complex gas and the dilution gas as film forming materials are independently discharged from the discharge passages 75 and 76, respectively.
 チャンバー61の底壁には、下方に向けて突出する排気室81が設けられている。排気室81の側面には排気管82が接続されており、この排気管82には真空ポンプや圧力制御バルブ等を有する排気装置83が接続されている。そしてこの排気装置83を作動させることによりチャンバー61内を所定の減圧状態とすることが可能となっている。 An exhaust chamber 81 that protrudes downward is provided on the bottom wall of the chamber 61. An exhaust pipe 82 is connected to a side surface of the exhaust chamber 81, and an exhaust apparatus 83 having a vacuum pump, a pressure control valve, and the like is connected to the exhaust pipe 82. By operating the exhaust device 83, the inside of the chamber 61 can be brought into a predetermined reduced pressure state.
 チャンバー61の側壁には、ウエハ搬送室(図示せず)との間でウエハWの搬入出を行うための搬入出口85と、この搬入出口85を開閉するゲートバルブGとが設けられている。また、チャンバー61の壁部には、ヒーター86が設けられており、成膜処理の際にチャンバー61の内壁の温度を制御可能となっている。 On the side wall of the chamber 61, a loading / unloading port 85 for loading / unloading the wafer W to / from a wafer transfer chamber (not shown) and a gate valve G for opening / closing the loading / unloading port 85 are provided. Further, a heater 86 is provided on the wall portion of the chamber 61 so that the temperature of the inner wall of the chamber 61 can be controlled during the film forming process.
 ガス供給機構90は、Cu錯体、例えばCu(hfac)TMVSを成膜原料として貯留する成膜原料タンク91を有している。成膜原料を構成するCu錯体としては、Cu(hfac)ATMS、Cu(hfac)DMDVS、Cu(hfac)TMOVS等を用いることができる。用いるCu錯体が常温で固体である場合には、溶媒に溶かした状態で成膜原料タンク91に貯留することができる。 The gas supply mechanism 90 has a film forming material tank 91 for storing a Cu complex, for example, Cu (hfac) TMVS as a film forming material. Cu (hfac) ATMS, Cu (hfac) DMDVS, Cu (hfac) TMOVS, or the like can be used as the Cu complex constituting the film forming raw material. When the Cu complex to be used is solid at room temperature, it can be stored in the film forming raw material tank 91 in a state dissolved in a solvent.
 成膜原料タンク91には、上方からHeガス等の圧送ガスを供給するための圧送ガス配管92が挿入されており、圧送ガス配管92はバルブ93が介装されている。また、成膜原料タンク91内の成膜原料には原料送出配管94が上方から挿入されており、この原料送出配管94の他端には気化器97が接続されている。原料送出配管94にはバルブ95および液体マスフローコントローラ96が介装されている。そして、圧送ガス配管92を介して成膜原料タンク91内に圧送ガスを導入することで、成膜原料タンク91内のCu錯体、例えばCu(hfac)TMVSが液体のまま気化器97に供給される。このときの液体供給量は液体マスフローコントローラ96により制御される。気化器97には、キャリアガスとしてArまたはH等を供給するキャリアガス配管98が接続されている。キャリアガス配管98には、マスフローコントローラ99およびマスフローコントローラ99を挟んで2つのバルブ100が設けられている。また、気化器97には、気化されたCu錯体をシャワーヘッド70に向けて供給する成膜原料ガス供給配管101が接続されている。成膜原料ガス供給配管101にはバルブ102が介装されており、その他端はシャワーヘッド70の第1の導入路71に接続されている。そして、気化器97で気化したCu錯体がキャリアガスにキャリアされて成膜原料ガス供給配管101に送出され、第1の導入路71からシャワーヘッド70内に供給される。気化器97および成膜原料ガス供給配管101およびキャリアガス配管の下流側のバルブ100までの部分には、成膜原料ガスの凝縮防止のためのヒーター103が設けられている。ヒーター103にはヒーター電源(図示せず)から給電され、コントローラ(図示せず)により温度制御されるようになっている。 A pressure-feed gas pipe 92 for supplying a pressure-feed gas such as He gas is inserted into the film forming material tank 91 from above, and a valve 93 is interposed in the pressure-feed gas pipe 92. Further, a raw material delivery pipe 94 is inserted from above into the deposition raw material in the deposition raw material tank 91, and a vaporizer 97 is connected to the other end of the raw material delivery pipe 94. A valve 95 and a liquid mass flow controller 96 are interposed in the raw material delivery pipe 94. Then, by introducing the pressurized gas into the film forming raw material tank 91 through the pressure supplying gas pipe 92, the Cu complex in the film forming raw material tank 91, for example, Cu (hfac) TMVS is supplied to the vaporizer 97 in the liquid state. The The liquid supply amount at this time is controlled by the liquid mass flow controller 96. The vaporizer 97 is connected to a carrier gas pipe 98 for supplying Ar or H 2 or the like as a carrier gas. The carrier gas pipe 98 is provided with two valves 100 sandwiching the mass flow controller 99 and the mass flow controller 99. The vaporizer 97 is connected to a film forming material gas supply pipe 101 that supplies the vaporized Cu complex toward the shower head 70. A valve 102 is interposed in the film forming source gas supply pipe 101, and the other end is connected to the first introduction path 71 of the shower head 70. Then, the Cu complex vaporized by the vaporizer 97 is carried by the carrier gas, sent out to the film forming raw material gas supply pipe 101, and supplied from the first introduction path 71 into the shower head 70. A heater 103 for preventing the condensation of the film forming raw material gas is provided in a portion of the vaporizer 97, the film forming raw material gas supply pipe 101 and the carrier gas pipe to the downstream side valve 100. The heater 103 is supplied with power from a heater power source (not shown), and the temperature is controlled by a controller (not shown).
 シャワーヘッド70の第2の導入路72には、希釈ガスを供給する希釈ガス供給配管104が接続されている。この希釈ガス供給配管104にはバルブ105が介装されている。そして、この希釈ガス供給配管104を介して第2の導入路72からシャワーヘッド内に、希釈ガスとしてArガスまたはHガスが供給される。 A dilution gas supply pipe 104 that supplies dilution gas is connected to the second introduction path 72 of the shower head 70. A valve 105 is interposed in the dilution gas supply pipe 104. Then, Ar gas or H 2 gas is supplied as a dilution gas from the second introduction path 72 through the dilution gas supply pipe 104 into the shower head.
 このように構成されたCu膜成膜ユニット3においては、まず、ゲートバルブGを開け、搬送装置12により清浄化処理を行った後のウエハWをチャンバー61内に搬入し、サセプタ62上に載置する。次いで、チャンバー61内を排気装置83により排気してチャンバー1内の圧力を1.33~266.6Pa(10mTorr~2Torr)とし、ヒーター65によりサセプタ62を150℃程度に加熱し、キャリアガス配管98、気化器97、成膜原料ガス配管101、シャワーヘッド70を介してチャンバー61内に100~1500mL/min(sccm)の流量でキャリアガスを供給し、さらに0~1500mL/min(sccm)程度の希釈ガスを希釈ガス供給配管104、シャワーヘッド70を介してチャンバー61内に導入して安定化を行う。 In the Cu film forming unit 3 configured as described above, first, the gate valve G is opened, and the wafer W after the cleaning process is performed by the transfer device 12 is loaded into the chamber 61 and mounted on the susceptor 62. Put. Next, the inside of the chamber 61 is evacuated by the exhaust device 83 so that the pressure in the chamber 1 is 1.33 to 266.6 Pa (10 mTorr to 2 Torr), the susceptor 62 is heated to about 150 ° C. by the heater 65, and the carrier gas pipe 98 The carrier gas is supplied at a flow rate of 100 to 1500 mL / min (sccm) into the chamber 61 through the vaporizer 97, the film forming raw material gas pipe 101, and the shower head 70, and further, about 0 to 1500 mL / min (sccm). Dilution gas is introduced into the chamber 61 through the dilution gas supply pipe 104 and the shower head 70, and stabilization is performed.
 安定化を所定時間行って条件が安定した時点で、キャリアガスおよび希釈ガスを供給した状態のまま、液体のCu(hfac)TMVSを50~70℃の気化器97で気化させてチャンバー61内に導入しCu膜の成膜を開始する。このときの流量は、液体として100~500mg/min程度とする。このときのチャンバー61内の圧力は1.33~266.6Pa(10mTorr~2Torr)程度とする。 When stabilization is performed for a predetermined time and the conditions are stabilized, the liquid Cu (hfac) TMVS is vaporized by the vaporizer 97 at 50 to 70 ° C. in the chamber 61 while the carrier gas and the dilution gas are supplied. Then, Cu film formation is started. The flow rate at this time is about 100 to 500 mg / min as a liquid. At this time, the pressure in the chamber 61 is about 1.33 to 266.6 Pa (10 mTorr to 2 Torr).
 成膜原料であるCu(hfac)TMVSは、サセプタ62のヒーター65により加熱された被処理基板であるウエハW上で以下の(1)式に示す反応により分解し、まず、CVD-Ru膜の上にCuの初期核が形成される。
2Cu(hfac)TMVS→Cu+Cu(hfac)+2TMVS…(1)
Cu (hfac) TMVS, which is a film forming material, is decomposed by the reaction shown in the following formula (1) on the wafer W, which is a substrate to be processed, heated by the heater 65 of the susceptor 62. First, a CVD-Ru film is formed. Cu initial nuclei are formed on the top.
2Cu (hfac) TMVS → Cu + Cu (hfac) 2 + 2TMVS (1)
 このとき、上述したようにCVD-Ru膜表面は清浄化されているので、高密度で均一にCuの初期核が形成される。この後、Cu膜の成膜を続行し、所定時間経過することにより、表面性状の良好なCu膜が得られる。 At this time, since the CVD-Ru film surface is cleaned as described above, Cu initial nuclei are uniformly formed at high density. Thereafter, the film formation of the Cu film is continued, and after a predetermined time has elapsed, a Cu film having a good surface property can be obtained.
 そして、このようにしてCu膜を成膜した後、Cu(hfac)TMVSの供給を停止し、排気装置83の真空ポンプを引き切り状態とし、キャリアガスおよび希釈ガスをパージガスとしてチャンバー61内に流してチャンバー61内をパージする。この際に、できる限り迅速にチャンバー61内をパージする観点から、キャリアガスの供給は断続的に行うことが好ましい。 Then, after the Cu film is formed in this way, the supply of Cu (hfac) TMVS is stopped, the vacuum pump of the exhaust device 83 is turned off, and the carrier gas and the dilution gas are flowed into the chamber 61 as the purge gas. To purge the inside of the chamber 61. At this time, it is preferable to intermittently supply the carrier gas from the viewpoint of purging the chamber 61 as quickly as possible.
 次に、第1の実施形態の効果を確認した実験について説明する。
 Siウエハ上にRu(CO)12を原料としてCVD-Ru膜を2nmの厚さで成膜した後、(1)そのまま成膜原料としてCu(hfac)TMVSを用いたCVDでCu膜を成膜、(2)Hガス雰囲気における熱処理を行い、その後成膜原料としてCu(hfac)TMVSを用いたCVDでCu膜を成膜、(3)大気暴露を行い、次いでHガス雰囲気における熱処理を行い、その後成膜原料としてCu(hfac)TMVSを用いたCVDでCu膜を成膜、の3種類の試験を行った。ここで、Hガス雰囲気における熱処理の際の条件は、ウエハ温度:350℃、チャンバー内圧力:266Pa(2Torr)、H流量:250mL/min(sccm)とした。これら(1)~(3)の初期核生成時の表面状態の走査型電子顕微鏡(SEM)写真を、図9A、9B、9Cに示す。これらの図に示すように、Hガス雰囲気における熱処理を行うことにより、初期核密度が上昇し、さらに上記熱Hガス雰囲気における熱処理処理に先立って酸化処理を行うことにより、初期核密度が一層上昇することがわかる。
Next, an experiment for confirming the effect of the first embodiment will be described.
After forming a CVD-Ru film with a thickness of 2 nm on a Si wafer using Ru 3 (CO) 12 as a raw material, (1) forming a Cu film by CVD using Cu (hfac) TMVS as a raw material as it is. Film, (2) heat treatment in H 2 gas atmosphere, and then a Cu film is formed by CVD using Cu (hfac) TMVS as a film forming material, (3) air exposure, and then heat treatment in H 2 gas atmosphere Then, three types of tests were performed, in which a Cu film was formed by CVD using Cu (hfac) TMVS as a film forming raw material. Here, the conditions for the heat treatment in the H 2 gas atmosphere were as follows: wafer temperature: 350 ° C., chamber pressure: 266 Pa (2 Torr), and H 2 flow rate: 250 mL / min (sccm). Scanning electron microscope (SEM) photographs of the surface state during the initial nucleation of (1) to (3) are shown in FIGS. 9A, 9B, and 9C. As shown in these figures, the initial nucleus density is increased by performing the heat treatment in the H 2 gas atmosphere, and the initial nucleus density is increased by performing the oxidation treatment prior to the heat treatment in the hot H 2 gas atmosphere. It turns out that it rises further.
<第2の実施形態>
 (第2の実施形態の方法)
 本発明の第2の実施形態においては、図10のフローチャートに示すように、Ex-situで成膜された下地膜を有するウエハを準備し(ステップ11)、その下地膜の清浄化処理(ステップ12)を行い、その後Cu錯体を成膜原料としてCVD法によりCVD-Cu膜の成膜(ステップ13)を行う。
<Second Embodiment>
(Method of Second Embodiment)
In the second embodiment of the present invention, as shown in the flowchart of FIG. 10, a wafer having a base film formed by ex-situ is prepared (step 11), and the base film is cleaned (step 11). 12), and then a CVD-Cu film is formed by CVD using the Cu complex as a film forming material (step 13).
 ステップ12の清浄化処理は、下地膜に形成された酸化物や大気中からの有機物を除去するために行う処理である。
 Cu膜の下地膜、例えばRu膜をEx-situで成膜する場合には、下地膜成膜後、ウエハWは一旦大気中に出されるため、下地膜表面には酸化物が形成されたり、大気中の有機物が付着したりする。このような酸化物や有機物が存在したままCu膜を成膜する場合には、図11に示すように、下地膜211表面に酸化物や有機物が存在した状態で成膜原料であるCu錯体が供給されることとなるので、この酸化物や有機物がCu錯体の吸着を阻害し、初期核密度が低くなる。この状態でCu膜の成膜を続けるとCuが凝集してCu膜の表面性状が悪化する。
The cleaning process in step 12 is a process performed to remove oxides formed on the base film and organic substances from the atmosphere.
When a base film of a Cu film, for example, a Ru film is formed by Ex-situ, the wafer W is once exposed to the atmosphere after the base film is formed, so that an oxide is formed on the surface of the base film, Organic substances in the atmosphere may adhere. In the case where a Cu film is formed with such an oxide or organic substance present, as shown in FIG. 11, the Cu complex as a film forming raw material is formed with the oxide or organic substance existing on the surface of the base film 211. Since these oxides and organic substances are supplied, the adsorption of the Cu complex is inhibited, and the initial nuclear density is lowered. If the Cu film is continuously formed in this state, Cu aggregates and the surface properties of the Cu film deteriorate.
 そこで、ステップ12の清浄化処理により下地膜211の酸化物や有機物を除去する。これにより、図12に示すように、下地膜211の表面の酸化物や有機物が減少し、下地膜211へのCu錯体の吸着阻害が解消され、初期核密度を高くすることができる。したがって、Cuの凝集が抑制されてCu膜の表面性状を良好にすることができる。なお、この実施形態においては下地膜は特に限定されない。 Therefore, the oxide and organic matter of the base film 211 are removed by the cleaning process in step 12. Thereby, as shown in FIG. 12, the oxides and organic substances on the surface of the base film 211 are reduced, the inhibition of adsorption of the Cu complex to the base film 211 is eliminated, and the initial nuclear density can be increased. Therefore, aggregation of Cu is suppressed and the surface property of the Cu film can be improved. In this embodiment, the base film is not particularly limited.
 この清浄化処理は、上記第1の実施形態のステップ2と同様、還元性ガスを用いた還元処理により行うことができる。これにより、図13に示すように、下地膜211の膜中の酸素および表面部分の酸化物に含まれた酸素が抜けていく過程で表面の有機物と反応し、CO等となって除去される。また、下地膜211として第1の実施形態と同様のCVD-Ru膜を用いた場合には、表面やCVD-Ru膜中に含まれるCやCOも除去することができる。 This cleaning process can be performed by a reduction process using a reducing gas, as in step 2 of the first embodiment. As a result, as shown in FIG. 13, the oxygen in the film of the base film 211 and the oxygen contained in the oxide in the surface part react with the organic substance on the surface and are removed as CO 2 or the like. The Further, when the same CVD-Ru film as that of the first embodiment is used as the base film 211, C and CO contained in the surface and the CVD-Ru film can also be removed.
 本実施形態では、大気中を通る間に表面に酸化物が存在した状態となっているから、第1の実施形態のような還元処理に先だって行う酸化処理は不要である。 In the present embodiment, since the oxide is present on the surface while passing through the atmosphere, the oxidation treatment performed prior to the reduction treatment as in the first embodiment is unnecessary.
 本実施形態でも第1の実施形態と同様、清浄化処理によりウエハ表面の不純物を除去してからCu錯体を成膜原料としたCVD法によりCu膜を成膜するので、基板として表面にCVD-Ru膜のような不純物が存在する膜を有するウエハを用いた場合であっても、不純物により成膜原料の吸着が阻害されることはなく、Cuの初期核の密度が高く、良好な表面性状を有するCu膜を得ることができる。 In this embodiment as well, as in the first embodiment, a Cu film is formed by CVD using a Cu complex as a film forming material after impurities on the wafer surface are removed by a cleaning process. Even when a wafer having an impurity-existing film such as a Ru film is used, the adsorption of the film-forming raw material is not hindered by the impurity, the initial nucleus density of Cu is high, and good surface properties are obtained. Cu film | membrane which has can be obtained.
 (第2の実施形態の成膜方法を実施するための装置の構成)
 次に、第2の実施形態の成膜方法を実施するための処理装置について説明する。図14は第1の実施形態の成膜方法を実施するための処理装置の一例を示す模式図である。この処理装置は下地膜をEx-situで成膜したウエハに対し、清浄化処理、およびCVD-Cu膜の成膜を真空を破ることなくin-situで連続して実施することができるマルチチャンバタイプの処理装置である。この処理装置は、Ru膜成膜ユニット1および空気取り入れ配管15を有しておらず、還元処理ユニット2およびCu膜成膜ユニット3の接続位置が異なる以外は、図5の成膜装置と全く同様に構成されている。また、還元処理ユニット2およびCu膜成膜ユニット3として、図6~8のものを用いることができる。
(Configuration of an apparatus for carrying out the film forming method of the second embodiment)
Next, a processing apparatus for carrying out the film forming method of the second embodiment will be described. FIG. 14 is a schematic view showing an example of a processing apparatus for carrying out the film forming method of the first embodiment. This processing apparatus is a multi-chamber capable of continuously performing in-situ cleaning processing and CVD-Cu film forming on a wafer having a base film formed in Ex-situ without breaking the vacuum. Type of processing equipment. This processing apparatus does not have the Ru film forming unit 1 and the air intake pipe 15, and is completely different from the film forming apparatus of FIG. 5 except that the connection positions of the reduction processing unit 2 and the Cu film forming unit 3 are different. It is constituted similarly. Further, as the reduction processing unit 2 and the Cu film forming unit 3, those shown in FIGS. 6 to 8 can be used.
<第3の実施形態>
 (第3の実施形態の方法)
 本発明の第3の実施形態においては、図15のフローチャートに示すように、下地膜を成膜したウエハを準備し(ステップ21)、その下地膜の上にCu錯体を成膜原料としてCVD法によりCu膜の初期核形成を行い(ステップ22)、次いで、清浄化処理(ステップ23)を行い、その後CVD-Cu膜の成膜(ステップ24)を行い、さらに清浄化処理(ステップ25)を行い、好ましくはステップ24のCVD-Cu膜の成膜とステップ25の清浄化処理とを交互に繰り返す。なお、この実施形態においては下地膜は特に限定されない。
<Third Embodiment>
(Method of the third embodiment)
In the third embodiment of the present invention, as shown in the flowchart of FIG. 15, a wafer having a base film formed thereon is prepared (step 21), and a Cu complex is used as a film forming raw material on the base film. Then, initial nucleation of the Cu film is performed (step 22), and then a cleaning process (step 23) is performed, and then a CVD-Cu film is formed (step 24), and further a cleaning process (step 25) is performed. Preferably, the CVD-Cu film formation in step 24 and the cleaning process in step 25 are alternately repeated. In this embodiment, the base film is not particularly limited.
 ステップ22の初期核生成は、Cu膜の表面性状を決定する重要なプロセスである。このプロセスにおいて、高密度で均一な核生成が行われることにより、下地膜との密着性が良好になるとともに、Cuの凝集が抑制されて均一に粒成長し、表面性状が良好な(平滑性の高い)Cu膜を得ることができる。 The initial nucleation in step 22 is an important process for determining the surface properties of the Cu film. In this process, high-density and uniform nucleation is performed, so that the adhesion with the base film is improved, the aggregation of Cu is suppressed, the grains grow uniformly, and the surface property is good (smoothness) High) Cu film can be obtained.
 しかしながら、Cu錯体、例えばCu(hfac)TMVSを原料とするCVDの場合には、成膜の際に、図16に示すように、成膜原料であるCu錯体が分解して生成される副生成物、例えばCu(hfac)が不純物として下地膜221の表面や、初期核222に付着する。このため、Cuの下地に対する濡れ性が悪化し、Cuが凝集して粗大化し、Cu膜の表面性状が悪化してしまう。 However, in the case of CVD using a Cu complex, for example, Cu (hfac) TMVS as a raw material, as shown in FIG. An object such as Cu (hfac) 2 adheres to the surface of the base film 221 or the initial nucleus 222 as an impurity. For this reason, the wettability with respect to the foundation | substrate of Cu deteriorates, Cu aggregates and coarsens, and the surface property of Cu film | membrane will deteriorate.
 そこで、ステップ23の清浄化処理により、初期核生成後に不純物を除去する。これにより、図17に示すように、下地膜221の表面や、初期核222に付着した不純物が除去され、Cuの下地に対する濡れ性が良好なものとなる。実際に、Cu初期核が形成されたままの状態とその後清浄化処理(Hプラズマ処理)を行った状態とを比較した結果を図18A、18BのSEM写真に示す。これら写真に示すように、図18AのCu初期核が形成されたままの状態よりも、図18Bの清浄化処理を行った状態のほうが初期核の濡れ性が向上しているのが確認される。 Therefore, impurities are removed after the initial nucleation by the cleaning process in step 23. Thereby, as shown in FIG. 17, impurities attached to the surface of the base film 221 and the initial nucleus 222 are removed, and the wettability of the Cu base to the base is improved. Actually, the result of comparing the state in which the Cu initial nucleus is formed and the state after the cleaning process (H 2 plasma process) is shown in the SEM photographs of FIGS. 18A and 18B. As shown in these photographs, it is confirmed that the wettability of the initial nuclei is improved in the state where the cleaning treatment in FIG. 18B is performed than in the state where the Cu initial nuclei in FIG. 18A are still formed. .
 このステップ23の清浄化処理も上記ステップ2の清浄化処理と同様、還元性ガスを用いた還元処理により行うことができる。これにより、図19に示すように、下地膜221中に含まれた酸素が抜けていく過程で酸素が下地膜221や初期核222の不純物と反応し、CO等として除去される。 The cleaning process in step 23 can also be performed by a reduction process using a reducing gas, similarly to the cleaning process in step 2 described above. As a result, as shown in FIG. 19, oxygen reacts with impurities in the base film 221 and the initial nucleus 222 in the process of releasing oxygen contained in the base film 221 and is removed as CO 2 or the like.
 このステップ23の清浄化処理も、酸化処理行ってから、上記還元処理を行うことが好ましい。すなわち、酸化処理により初期核222と下地膜221とを酸化させることにより酸素量が増加し、その後の還元処理により膜から抜ける酸素の量が増加するため、下地膜221および初期核222に付着した不純物をより除去しやすくすることができ、濡れ性を向上させることができる。実際に、Cu初期核を形成した後に清浄化処理として還元処理(Hプラズマ処理)のみを行ったものと、酸化処理(大気暴露)と還元処理(Hプラズマ処理)とを行ったものとを比較した結果を図20A、20BのSEM写真に示す。これら写真に示すように、図20Aの清浄化処理として還元処理(Hプラズマ処理)のみを行ったものよりも、図20Bの酸化処理(大気暴露)と還元処理(Hプラズマ処理)とを行ったもののほうが初期核の濡れ性が向上し、表面がなめらかになっているのが確認される。 It is preferable that the cleaning process in step 23 is also performed after the oxidation process and then the reduction process. That is, the amount of oxygen is increased by oxidizing the initial nucleus 222 and the base film 221 by the oxidation treatment, and the amount of oxygen that escapes from the film is increased by the subsequent reduction treatment, so that it adheres to the base film 221 and the initial nucleus 222. Impurities can be more easily removed, and wettability can be improved. Actually, after the Cu initial nucleus was formed, only the reduction treatment (H 2 plasma treatment) was performed as a cleaning treatment, and the oxidation treatment (air exposure) and the reduction treatment (H 2 plasma treatment) were performed. The results of the comparison are shown in the SEM photographs of FIGS. 20A and 20B. As shown in these photographs, the oxidation treatment (atmospheric exposure) and reduction treatment (H 2 plasma treatment) in FIG. 20B are performed rather than the reduction treatment (H 2 plasma treatment) only as the cleaning treatment in FIG. 20A. It is confirmed that the wetness of the initial nuclei is improved and the surface is smoother.
 この場合の還元処理も、Hガスを含む雰囲気での熱処理、またはHガスを含むプラズマ処理により行うことができる。これらの中では、より高エネルギーで処理可能なプラズマ処理のほうがCu膜中の不純物を除去する効果が高い。ただし、この際の温度が高すぎると、Cuの凝集が生じる可能性があるため、100~200℃とすることが好ましい。 Reduction treatment in this case can be performed heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas. Among these, the plasma processing that can be processed with higher energy has a higher effect of removing impurities in the Cu film. However, if the temperature at this time is too high, Cu agglomeration may occur. Therefore, the temperature is preferably 100 to 200 ° C.
 Hガスを含む雰囲気での熱処理は、Hガス単独、またはHガスと不活性ガスを所定の流量でチャンバー内に導入し、チャンバー内の圧力およびウエハ温度を所定の値に設定して行う。具体的な条件としては、ウエハ温度:100~200℃(例えば150℃)、チャンバー内圧力:133~399Pa(1~3Torr)、Hガス流量:50~500mL/min(sccm)を挙げることができる。 Heat treatment in the atmosphere containing H 2 gas, the H 2 gas alone, or H 2 gas and an inert gas into the chamber at a predetermined flow rate, by setting the pressure in the chamber and the wafer temperature at a predetermined value Do. Specific conditions include wafer temperature: 100 to 200 ° C. (for example, 150 ° C.), chamber pressure: 133 to 399 Pa (1 to 3 Torr), and H 2 gas flow rate: 50 to 500 mL / min (sccm). it can.
 Hガスを含むプラズマ処理は、Hガス単独、またはHガスと不活性ガスを所定の流量でチャンバー内に導入し、チャンバー内の圧力およびウエハ温度を所定の値に設定し、上記ガスをプラズマ化して還元処理を行う。この際のプラズマとしては、特に限定されず、容量結合プラズマ、誘導結合プラズマ、マイクロ波プラズマ等、種々のプラズマを採用することができるが、高密度で低電子温度のプラズマを形成できることから、マイクロ波プラズマが好ましい。また、Hガス単独によるプラズマよりもHガスとArガスによるプラズマのほうが、Arイオンによるエネルギーが付加されるので、Cu膜中の不純物を抜けやすくすることができる。このことを確認するために、Cuの初期核生成を行った後に、Hガス=250mL/min(sccm)とHガス/Arガス=250/250mL/min(sccm)とでマイクロ波プラズマによるプラズマ処理を行い、断面のSEM写真を撮影した。その結果を図21A、21Bに示す。これら写真に示すように、Hガスのみの図21AよりもArガスを添加した図21BのほうがCuの濡れ性が向上することがわかる。 In the plasma processing including H 2 gas, H 2 gas alone or H 2 gas and inert gas are introduced into the chamber at a predetermined flow rate, the pressure in the chamber and the wafer temperature are set to predetermined values, and the gas Is reduced to plasma. The plasma at this time is not particularly limited, and various plasmas such as capacitively coupled plasma, inductively coupled plasma, and microwave plasma can be adopted. However, since plasma with high density and low electron temperature can be formed, Wave plasma is preferred. Further, since the energy of Ar + ions is added to the plasma of H 2 gas and Ar gas rather than the plasma of H 2 gas alone, impurities in the Cu film can be easily removed. In order to confirm this, after performing the initial nucleation of Cu, H 2 gas = 250 mL / min (sccm) and H 2 gas / Ar gas = 250/250 mL / min (sccm). Plasma treatment was performed and a cross-sectional SEM photograph was taken. The results are shown in FIGS. 21A and 21B. As shown in these photographs, it is understood that the wettability of Cu is improved in FIG. 21B in which Ar gas is added than in FIG. 21A in which only H 2 gas is used.
ガスを含むプラズマ処理の具体的な条件としては、ウエハ温度:100~200℃(例えば150℃)、チャンバー内圧力:133~399Pa(1~3Torr)、Hガス流量:50~500mL/min(sccm)、Arガス流量50~500mL/min(sccm)を挙げることができる。 Specific conditions for the plasma processing including H 2 gas include: wafer temperature: 100 to 200 ° C. (eg, 150 ° C.), chamber pressure: 133 to 399 Pa (1 to 3 Torr), H 2 gas flow rate: 50 to 500 mL / Examples include min (sccm) and Ar gas flow rate of 50 to 500 mL / min (sccm).
 上記酸化処理は、下地膜であるCVD-Ru膜およびCuの初期核が多少酸化すればよく、その手法は問わず、酸素含有雰囲気に曝す処理、酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理等を挙げることができる。わずかに酸化するだけで十分な場合にはCVD-Ru膜を酸素含有雰囲気に曝すだけで十分である。酸素含有雰囲気に曝す処理としては大気暴露が最も簡便である。酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理を採用する場合には、必要とされる酸化の度合いに応じて加熱温度、チャンバー内圧力、供給するガスの酸素濃度、流量等を決定すればよい。 In the oxidation treatment, the CVD-Ru film, which is the base film, and the initial nucleus of Cu may be oxidized to some extent, regardless of the method, exposure to an oxygen-containing atmosphere, heat treatment in an oxygen-containing atmosphere, and plasma containing oxygen gas. And the like. If it is sufficient to oxidize slightly, it is sufficient to expose the CVD-Ru film to an oxygen-containing atmosphere. Air exposure is the simplest treatment for exposure to an oxygen-containing atmosphere. When heat treatment in an oxygen-containing atmosphere or plasma treatment containing oxygen gas is adopted, the heating temperature, the pressure in the chamber, the oxygen concentration of the gas to be supplied, the flow rate, etc. should be determined according to the degree of oxidation required. Good.
 初期核生成後のステップ23の清浄化処理を行った後、ステップ24のCu膜成膜処理が続行される。この際には、初期核生成の場合と同様、成膜原料として、Cu錯体、例えばCu(hfac)TMVSを用い、これを初期核の上に供給してCu膜を成長させる。 After performing the cleaning process in step 23 after the initial nucleation, the Cu film forming process in step 24 is continued. At this time, as in the case of initial nucleation, a Cu complex, such as Cu (hfac) TMVS, is used as a film forming material, and this is supplied onto the initial nuclei to grow a Cu film.
 このとき、初期核生成の時と同様、成膜原料であるCu錯体が分解して副生成物、例えばCu(hfac)が不純物として生成し、Cu膜中に含有される。そうすると、不純物の存在によりCuの凝集が促進され、Cu膜の表面性状が悪くなる。 At this time, as in the case of the initial nucleation, the Cu complex as a film forming raw material is decomposed and a by-product such as Cu (hfac) 2 is generated as an impurity and contained in the Cu film. If it does so, aggregation of Cu will be accelerated | stimulated by presence of an impurity and the surface property of Cu film | membrane will worsen.
 そこで、ステップ24の成膜後、ステップ25の清浄化処理を行う。この際の清浄化処理は、ステップ23と同様に行うことができる。 Therefore, after the film formation in step 24, the cleaning process in step 25 is performed. The cleaning process at this time can be performed in the same manner as in step 23.
 このように、基板であるウエハにCu錯体からなる成膜原料を供給してCu膜を成膜した後に、Cu膜に清浄化処理を施すので、Cu膜に不純物が存在する場合でも不純物の存在によるCuの凝集を抑制することができ、良好な表面性状を有するCu膜を得ることができる。 As described above, since the Cu film is formed by supplying the film forming raw material made of the Cu complex to the wafer as the substrate, the Cu film is subjected to the cleaning treatment, so that the presence of the impurity is present even when the Cu film has an impurity. Aggregation of Cu due to can be suppressed, and a Cu film having good surface properties can be obtained.
 Cuの凝集を有効に防止する観点からは、ステップ24のCu膜成膜とステップ25の清浄化処理とを複数回繰り返すことが好ましい。これにより、Cu膜中の不純物を除去する効果を大きくすることができ、Cuの凝集を一層有効に抑制することができる。 From the viewpoint of effectively preventing Cu aggregation, it is preferable to repeat the Cu film formation in Step 24 and the cleaning treatment in Step 25 a plurality of times. Thereby, the effect of removing impurities in the Cu film can be increased, and the aggregation of Cu can be more effectively suppressed.
 また、Cuの初期核を形成した後に、清浄化処理を行った後、Cu膜成膜と清浄化処理とを複数回繰り返すことにより、見方を変えれば、Cu膜成膜と清浄化処理とを複数回繰り返す際の最初のCu膜成膜工程を初期核の形成工程とすることにより、成膜初期に成膜原料からの不純物が基板表面に吸着することを防止することができ、成膜原料からの不純物による成膜原料の吸着阻害をも有効に防止することができ、Cuの凝集をさらに有効に抑制することができる。 In addition, after forming the initial nucleus of Cu, after performing the cleaning process, by repeating the Cu film formation and the cleaning process a plurality of times, the Cu film formation and the cleaning process can be performed in different ways. By forming the initial Cu film formation step when it is repeated a plurality of times as the initial nucleus formation step, it is possible to prevent impurities from the film formation raw material from adsorbing to the substrate surface at the initial stage of film formation. Inhibition of the adsorption of the film-forming raw material by impurities from the substrate can be effectively prevented, and the aggregation of Cu can be further effectively suppressed.
 ただし、成膜しようとするCu膜が薄い等、Cu凝集のおそれが小さい場合には、Cu膜成膜と清浄化処理とを繰り返さなくてもよい。また、場合によっては、ステップ23の清浄化処理を経ずに、ステップ22の初期核生成およびステップ24のCu膜成膜を連続で行った後に、ステップ25の清浄化処理を行ってもよい。 However, if the Cu film to be formed is thin, such as when the risk of Cu aggregation is small, the Cu film formation and the cleaning process need not be repeated. In some cases, the cleaning process in step 25 may be performed after the initial nucleation in step 22 and the Cu film formation in step 24 are continuously performed without performing the cleaning process in step 23.
 (第3の実施形態の方法を実施するための装置の構成)
 次に、第3の実施形態の成膜方法を実施するための処理装置について説明する。この実施形態においては、第1の実施形態の図5と同様の成膜装置を用いて下地膜の成膜、清浄化処理、初期核生成、Cu膜成膜を真空を破ることなくin-situで連続して実施する。
(Configuration of apparatus for carrying out the method of the third embodiment)
Next, a processing apparatus for carrying out the film forming method of the third embodiment will be described. In this embodiment, the film formation apparatus similar to that of FIG. 5 of the first embodiment is used to perform under-situ film formation, cleaning treatment, initial nucleation, and Cu film formation without breaking the vacuum. It carries out continuously in.
 すなわち、Ru膜成膜ユニット1と同様の下地膜成膜ユニットにより下地膜を成膜し、Cu膜成膜ユニット3でステップ22の初期核生成を行い、還元処理ユニット2でステップ23の清浄化処理を行い、Cu膜成膜ユニット3でステップ24のCu膜成膜を行い、還元処理ユニット2でステップ25の清浄化処理を行う。ステップ23およびステップ25の清浄化処理においては、必要に応じて空気取り入れ配管15から大気を取り入れて酸化処理を行ってもよい。 That is, the base film is formed by the same base film forming unit as the Ru film forming unit 1, the initial nucleation of step 22 is performed by the Cu film forming unit 3, and the cleaning of step 23 is performed by the reduction processing unit 2. Then, the Cu film forming unit 3 performs the Cu film formation in Step 24, and the reduction processing unit 2 performs the cleaning process in Step 25. In the cleaning process of step 23 and step 25, you may perform an oxidation process by taking in air | atmosphere from the air intake piping 15 as needed.
 なお、還元処理ユニット2およびCu膜成膜ユニット3として、図6~8のものを用いることができる。 6 to 8 can be used as the reduction processing unit 2 and the Cu film forming unit 3.
<第4の実施形態>
(第4の実施形態の方法)
 本発明の第4実施形態においては、図22のフローチャートに示すように、ルテニウムカルボニル(Ru(CO)12)を成膜原料としてCVD法により成膜したCVD-Ru膜を有する半導体ウエハ(以下単にウエハと記す)を準備し(ステップ31)、そのCVD-Ru膜の清浄化処理(ステップ32)を行い、その後Cu錯体を成膜原料としてCVD法によりCVD-Cu膜のCu膜の初期核形成を行い(ステップ33)、次いで、清浄化処理(ステップ34)を行い、その後CVD-Cu膜の成膜(ステップ35)を行い、さらに清浄化処理(ステップ36)を行い、好ましくはステップ35のCVD-Cu膜の成膜とステップ36の清浄化処理とを交互に繰り返す。
<Fourth Embodiment>
(Method of Fourth Embodiment)
In the fourth embodiment of the present invention, as shown in the flowchart of FIG. 22, a semiconductor wafer having a CVD-Ru film (hereinafter referred to as a CVD-Ru film) formed by a CVD method using ruthenium carbonyl (Ru 3 (CO) 12 ) as a film forming material. (Referred to simply as a wafer) is prepared (step 31), the CVD-Ru film is cleaned (step 32), and then the initial nucleus of the Cu film of the CVD-Cu film is formed by the CVD method using the Cu complex as a film forming material. Formation (step 33), followed by a cleaning process (step 34), followed by a CVD-Cu film formation (step 35) and further a cleaning process (step 36), preferably step 35 The CVD-Cu film formation and the cleaning process in step 36 are repeated alternately.
 成膜原料としてRu(CO)12を用いてCVD-Ru膜を成膜する場合には、Ru(CO)12が分解して生成するCOやC等がRu膜中に不純物として含まれる。このCOやCのような不純物が含まれたままCu膜を成膜する場合には、第1の実施形態と同様、Ru膜表面にCOやCが存在した状態で成膜原料であるCu錯体が供給されることとなるので、このCOやCがCu錯体の吸着を阻害し、初期核密度が低くなる。この状態でCu膜の成膜を続けるとCuが凝集してCu膜の表面性状が悪化する。 When a CVD-Ru film is formed using Ru 3 (CO) 12 as a film forming material, CO, C, etc. generated by decomposition of Ru 3 (CO) 12 are contained as impurities in the Ru film. . When a Cu film is formed while impurities such as CO and C are contained, as in the first embodiment, a Cu complex that is a film forming raw material with CO and C present on the Ru film surface. Therefore, this CO or C inhibits the adsorption of the Cu complex, and the initial nuclear density is lowered. If the Cu film is continuously formed in this state, Cu aggregates and the surface properties of the Cu film deteriorate.
 そこで、ステップ32の清浄化処理によりRu膜のCOやC等の不純物を除去する。これにより、第1の実施形態と同様、CVD-Ru膜の表面の不純物が減少し、CVD-Ru膜へのCu錯体の吸着阻害が解消され、初期核密度を高くすることができる。 Therefore, impurities such as CO and C in the Ru film are removed by the cleaning process in Step 32. Thereby, as in the first embodiment, impurities on the surface of the CVD-Ru film are reduced, the inhibition of adsorption of the Cu complex to the CVD-Ru film is eliminated, and the initial nuclear density can be increased.
 この清浄化処理は、第1の実施形態におけるステップ2の清浄化処理と同様に行うことができる。すなわち還元ガスを用いた還元処理、または酸化処理を行ってから還元処理を行うことを挙げることができる。還元処理の温度は、250~350℃が好ましい。還元処理は、第1の実施形態と同様にして、Hガスを含む雰囲気での熱処理、またはHガスを含むプラズマ処理により行うことができる。 This cleaning process can be performed in the same manner as the cleaning process in step 2 in the first embodiment. That is, a reduction treatment using a reducing gas or an oxidation treatment may be performed before the reduction treatment. The temperature for the reduction treatment is preferably 250 to 350 ° C. Reduction treatment can be carried out in the same manner as in the first embodiment, heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas.
 ステップ33の初期核生成は、Cu膜の表面性状を決定する重要なプロセスである。このプロセスにおいて、高密度で均一な核生成が行われることにより、下地膜との密着性が良好になるとともに、Cuの凝集が抑制されて均一に粒成長し、表面性状が良好な(平滑性の高い)Cu膜を得ることができるが、第3の実施形態と同様、Cu錯体、例えばCu(hfac)TMVSを原料とするCVDの場合には、成膜の際に、成膜原料であるCu錯体が分解して生成される副生成物、例えばCu(hfac)が不純物としてCVD-Ru膜の表面や、初期核に付着する。このため、Cuの下地に対する濡れ性が悪化し、Cuが凝集して粗大化し、Cu膜の表面性状が悪化してしまう。 The initial nucleation in step 33 is an important process for determining the surface properties of the Cu film. In this process, high-density and uniform nucleation is performed, so that the adhesion with the base film is improved, the aggregation of Cu is suppressed, the grains grow uniformly, and the surface property is good (smoothness) In the case of CVD using a Cu complex such as Cu (hfac) TMVS as a raw material, it is a film forming raw material at the time of film formation, as in the third embodiment. By-products generated by the decomposition of the Cu complex, such as Cu (hfac) 2 , adhere as impurities to the surface of the CVD-Ru film and the initial nucleus. For this reason, the wettability with respect to the foundation | substrate of Cu deteriorates, Cu aggregates and coarsens, and the surface property of Cu film | membrane will deteriorate.
 そこで、ステップ34の清浄化処理により、初期核形成後に不純物を除去する。これにより、第3の実施形態の図17と同様、下地膜であるCVD-Ru膜の表面や、初期核に付着した不純物が除去され、Cuの下地に対する濡れ性が良好なものとなる。 Therefore, impurities are removed after the initial nucleation by the cleaning process in step 34. Thus, as in FIG. 17 of the third embodiment, the surface of the CVD-Ru film, which is the base film, and impurities attached to the initial nucleus are removed, and the wettability with respect to the base of Cu is improved.
 このステップ34の清浄化処理も上記ステップ2の清浄化処理と同様、還元性ガスを用いた還元処理により行うことができる。これにより、下地膜であるCVD-Ru膜中に含まれた酸素が抜けていく過程で酸素が下地膜であるCVD-Ru膜や初期核の不純物と反応し、CO等として除去される。 The cleaning process in step 34 can also be performed by a reduction process using a reducing gas, similarly to the cleaning process in step 2 described above. As a result, in the process in which oxygen contained in the CVD-Ru film as the base film is released, oxygen reacts with the CVD-Ru film as the base film and impurities in the initial nucleus, and is removed as CO 2 or the like.
 このステップ34の清浄化処理も、酸化処理行ってから、上記還元処理を行うことが好ましい。すなわち、酸化処理により初期核と下地膜であるCVD-Ru膜とを酸化させることにより酸素量が増加し、その後の還元処理により膜から抜ける酸素の量が増加するため、下地膜であるCVD-Ru膜および初期核に付着した不純物をより除去しやすくすることができ、濡れ性を向上させることができる。 It is preferable that the cleaning treatment in step 34 is also performed after the oxidation treatment and then the reduction treatment. That is, the amount of oxygen increases by oxidizing the initial nucleus and the CVD-Ru film, which is the base film, by the oxidation treatment, and the amount of oxygen that escapes from the film is increased by the subsequent reduction treatment. Impurities attached to the Ru film and the initial nucleus can be more easily removed, and wettability can be improved.
 この場合の還元処理も、Hガスを含む雰囲気での熱処理、またはHガスを含むプラズマ処理により行うことができる。また、この場合の温度も、Cuの凝集が生じないように100~200℃とすることが好ましい。これらの具体的な条件も、第3の実施形態のステップ23と同様である。 Reduction treatment in this case can be performed heat treatment in an atmosphere containing H 2 gas, or by a plasma treatment containing H 2 gas. In this case, the temperature is preferably 100 to 200 ° C. so as not to cause aggregation of Cu. These specific conditions are also the same as in step 23 of the third embodiment.
 また、上記酸化処理についても第3の実施形態と同様、下地膜であるCVD-Ru膜および初期核が多少酸化すればよく、第3の実施形態と同様にして行われる。 Also, the oxidation treatment is performed in the same manner as in the third embodiment, as in the third embodiment, as long as the CVD-Ru film and the initial nucleus, which are the underlying films, are somewhat oxidized.
 初期核生成後のステップ34の清浄化処理を行った後、ステップ35のCu膜成膜処理が続行される。この際には、ステップ24と同様、成膜原料として、Cu錯体、例えばCu(hfac)TMVSを用い、これを初期核の上に供給してCu膜を成長させる。 After performing the cleaning process in step 34 after the initial nucleation, the Cu film forming process in step 35 is continued. At this time, as in step 24, a Cu complex, for example, Cu (hfac) TMVS is used as a film forming material, and this is supplied onto the initial nucleus to grow a Cu film.
 このとき、初期核生成の時と同様、成膜原料であるCu錯体が分解して副生成物、例えばCu(hfac)が不純物として生成し、Cu膜中に含有される。そうすると、不純物の存在によりCuの凝集が促進され、Cu膜の表面性状が悪くなる。 At this time, as in the case of the initial nucleation, the Cu complex as a film forming raw material is decomposed and a by-product such as Cu (hfac) 2 is generated as an impurity and contained in the Cu film. If it does so, aggregation of Cu will be accelerated | stimulated by presence of an impurity and the surface property of Cu film | membrane will worsen.
 そこで、ステップ35の成膜後、ステップ36の清浄化処理を行う。この際の清浄化処理は、第3の実施形態のステップ23と同様に行うことができる。これにより、Cuの凝集が抑制されてCu膜の表面性状が良好なものとなる。 Therefore, after the film formation in step 35, the cleaning process in step 36 is performed. The cleaning process at this time can be performed in the same manner as in step 23 of the third embodiment. Thereby, aggregation of Cu is suppressed and the surface property of the Cu film is improved.
 Cuの凝集を有効に防止する観点からは、第3の実施形態と同様、ステップ35のCu膜成膜とステップ36の清浄化処理とを複数回繰り返すことが好ましい。 From the viewpoint of effectively preventing the aggregation of Cu, it is preferable to repeat the Cu film formation in step 35 and the cleaning process in step 36 a plurality of times as in the third embodiment.
 ただし、成膜しようとするCu膜が薄い等、Cu凝集のおそれが小さい場合には繰り返さなくてもよい。また、場合によっては、ステップ34の清浄化処理を経ずに、ステップ33の初期核生成およびステップ35のCu膜成膜を連続で行った後に、ステップ36の清浄化処理を行ってもよい。 However, if the Cu film to be formed is thin or the like and the risk of Cu aggregation is small, it may not be repeated. In some cases, the cleaning process in step 36 may be performed after the initial nucleation in step 33 and the Cu film formation in step 35 are continuously performed without the cleaning process in step 34.
(第4の実施形態の方法を実施するための装置の構成)
 次に、第4の実施形態の成膜方法を実施するための処理装置について説明する。この実施形態においては、第1の実施形態の図5と同様の成膜装置を用いて下地膜であるCVD-Ru膜の成膜、清浄化処理、初期核生成、Cu膜成膜を真空を破ることなくin-situで連続して実施する。
(Configuration of apparatus for carrying out the method of the fourth embodiment)
Next, a processing apparatus for carrying out the film forming method of the fourth embodiment will be described. In this embodiment, a film-forming apparatus similar to that of FIG. 5 of the first embodiment is used to form a CVD-Ru film as a base film, cleaning treatment, initial nucleation, and Cu film formation using a vacuum. Conduct continuously in-situ without breaking.
 すなわち、Ru膜成膜ユニット1によりCVD-Ru膜を成膜し、還元処理ユニット2でステップ32の清浄化処理を行い、Cu膜成膜ユニット3でステップ33の初期核生成を行い、還元処理ユニット2でステップ34の清浄化処理を行い、Cu膜成膜ユニット3でステップ35のCu膜成膜を行い、還元処理ユニット2でステップ35の清浄化処理を行う。ステップ32、ステップ34およびステップ36の清浄化処理においては、必要に応じて空気取り入れ配管15から大気を取り入れて酸化処理を行ってもよい。また、ステップ32の清浄化処理とステップ34およびステップ36の清浄化処理とは温度が異なることから、搬送室の空いているポートにもう一つ還元処理ユニットを設けてもよい。 That is, a CVD-Ru film is formed by the Ru film forming unit 1, the cleaning process of Step 32 is performed by the reduction processing unit 2, the initial nucleation of Step 33 is performed by the Cu film forming unit 3, and the reduction process is performed. The unit 2 performs the cleaning process in step 34, the Cu film deposition unit 3 performs the Cu film deposition in step 35, and the reduction process unit 2 performs the cleaning process in step 35. In the cleaning process of step 32, step 34, and step 36, you may perform an oxidation process by taking in air | atmosphere from the air intake piping 15 as needed. In addition, since the cleaning process in step 32 and the cleaning processes in step 34 and step 36 have different temperatures, another reduction processing unit may be provided in an empty port of the transfer chamber.
 なお、還元処理ユニット2およびCu膜成膜ユニット3として、図6~8のものを用いることができる。 6 to 8 can be used as the reduction processing unit 2 and the Cu film forming unit 3.
<本発明の他の適用>
 なお、本発明は、上記実施の形態に限定されることなく種々変形可能である。例えば、上記実施形態においては、Cu錯体としてCu(hfac)TMVSを用いた場合について示したが、これに限るものではない。
<Other applications of the present invention>
The present invention can be variously modified without being limited to the above embodiment. For example, in the above embodiment, the case where Cu (hfac) TMVS is used as the Cu complex has been described, but the present invention is not limited to this.
 さらに、上記実施の形態では、液体状のCu錯体を圧送して気化器に供給し、気化器で気化させたが、これに限らず、例えばバブリング等により気化させて供給する等、他の手法で気化させてもよい。 Furthermore, in the above-described embodiment, the liquid Cu complex is pumped and supplied to the vaporizer and vaporized by the vaporizer. However, the present invention is not limited to this, and other methods such as vaporizing by bubbling or the like are provided. You may vaporize with.
 さらにまた、成膜装置についても上記実施の形態のものに限らず、例えば、成膜原料ガスの分解を促進するためにプラズマを形成する機構を設けたもの等、種々の装置を用いることができる。 Furthermore, the film forming apparatus is not limited to the one in the above embodiment, and various apparatuses such as, for example, a mechanism that forms a plasma for promoting the decomposition of the film forming source gas can be used. .
さらにまた、被処理基板として半導体ウエハを用いた場合を説明したが、これに限らず、フラットパネルディスプレイ(FPD)基板等の他の基板であってもよい。
 
Furthermore, although the case where the semiconductor wafer was used as a to-be-processed substrate was demonstrated, not only this but another board | substrates, such as a flat panel display (FPD) board | substrate, may be sufficient.

Claims (33)

  1.  基板上にCVD法によりCu膜を成膜するCu膜の成膜方法であって、
     基板表面部分を清浄化する工程と、
     清浄化された基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程と
     を有するCu膜の成膜方法。
    A Cu film forming method for forming a Cu film on a substrate by a CVD method,
    Cleaning the substrate surface portion;
    Forming a Cu film on the substrate by supplying a film forming material comprising a Cu complex to the cleaned substrate.
  2.  基板として表面にルテニウムカルボニルを成膜原料としてCVD法によりRu膜を形成したものを用いる請求項1に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 1, wherein a Ru film is formed on the surface by using a ruthenium carbonyl film forming raw material as a Ru film by a CVD method.
  3.  Cu膜の成膜に先立って大気暴露された基板を用いる請求項1に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 1, wherein a substrate exposed to the atmosphere prior to the formation of the Cu film is used.
  4.  前記表面部分の清浄化は、基板表面部分の還元処理を含む請求項1に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 1, wherein the cleaning of the surface portion includes a reduction treatment of the substrate surface portion.
  5.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項4に記載のCu膜の成膜方法。 The method of forming a Cu film according to claim 4, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  6.  前記表面部分の清浄化は、基板表面部分の酸化処理と、その後の基板表面部分の還元処理を含む請求項1に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 1, wherein the cleaning of the surface portion includes an oxidation treatment of the substrate surface portion and a subsequent reduction treatment of the substrate surface portion.
  7.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項6に記載のCu膜の成膜方法。 The method of forming a Cu film according to claim 6, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  8.  前記水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理は250~350℃の範囲内の温度で行われる請求項7に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 7, wherein the plasma treatment containing hydrogen gas or the heat treatment in an atmosphere containing hydrogen gas is performed at a temperature in the range of 250 to 350 ° C.
  9.  前記酸化処理は、酸素含有雰囲気に曝す処理、酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理のいずれかである請求項6に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 6, wherein the oxidation treatment is any one of a treatment exposed to an oxygen-containing atmosphere, a heat treatment in an oxygen-containing atmosphere, and a plasma treatment containing oxygen gas.
  10.  前記酸素含有雰囲気に曝す処理は、大気暴露により行う請求項9に記載のCu膜の成膜方法。 10. The method for forming a Cu film according to claim 9, wherein the exposure to the oxygen-containing atmosphere is performed by air exposure.
  11.  基板上にCVD法によりCu膜を成膜するCu膜の成膜方法であって、
     基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程と、
     基板に形成されたCu膜を清浄化する工程と
    を有するCu膜の成膜方法。
    A Cu film forming method for forming a Cu film on a substrate by a CVD method,
    Supplying a film forming raw material comprising a Cu complex to the substrate to form a Cu film on the substrate;
    And a step of cleaning the Cu film formed on the substrate.
  12.  前記Cu膜を成膜する工程と、前記清浄化する工程とを複数回繰り返す請求項11に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 11, wherein the step of forming the Cu film and the step of cleaning are repeated a plurality of times.
  13.  最初のCu膜を成膜する工程は、Cuの初期核を形成する工程である請求項12に記載のCu膜の成膜方法。 13. The method for forming a Cu film according to claim 12, wherein the step of forming the first Cu film is a step of forming an initial nucleus of Cu.
  14.  前記Cu膜の清浄化は、Cu膜の還元処理を含む請求項11に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 11, wherein the cleaning of the Cu film includes a reduction treatment of the Cu film.
  15.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項14に記載のCu膜の成膜方法。 15. The Cu film forming method according to claim 14, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  16.  前記Cu膜の清浄化は、Cu膜の酸化処理と、その後のCu膜の還元処理を含む請求項11に記載のCu膜の成膜方法。 The method of forming a Cu film according to claim 11, wherein the cleaning of the Cu film includes an oxidation process of the Cu film and a subsequent reduction process of the Cu film.
  17.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項16に記載のCu膜の成膜方法。 The Cu film forming method according to claim 16, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  18.  前記水素ガスを含むプラズマ処理は、水素ガスとアルゴンガスを含むプラズマによる処理である請求項17に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 17, wherein the plasma treatment containing hydrogen gas is treatment with plasma containing hydrogen gas and argon gas.
  19.  前記水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理は100~200℃の範囲内の温度で行われる請求項17に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 17, wherein the plasma treatment containing hydrogen gas or the heat treatment in an atmosphere containing hydrogen gas is performed at a temperature in the range of 100 to 200 ° C.
  20.  前記酸化処理は、酸素含有雰囲気に曝す処理、酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理のいずれかである請求項16に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 16, wherein the oxidation treatment is any one of a treatment exposed to an oxygen-containing atmosphere, a heat treatment in an oxygen-containing atmosphere, and a plasma treatment containing oxygen gas.
  21.  前記酸素含有雰囲気に曝す処理は、大気暴露により行う請求項20に記載のCu膜の成膜方法。 21. The Cu film forming method according to claim 20, wherein the exposure to the oxygen-containing atmosphere is performed by air exposure.
  22.  Cu膜の成膜に先立って、基板表面部分を清浄化する工程をさらに有する請求項11に記載のCu膜の成膜方法。 The method of forming a Cu film according to claim 11, further comprising a step of cleaning the substrate surface portion prior to the formation of the Cu film.
  23.  基板として表面にルテニウムカルボニルを成膜原料としてCVD法によりRu膜を形成したものを用いる請求項22に記載のCu膜の成膜方法。 23. The method for forming a Cu film according to claim 22, wherein a Ru film is formed on the surface by using a ruthenium carbonyl film forming raw material as a Ru film by a CVD method.
  24.  Cu膜の成膜に先立って大気暴露された基板を用いる請求項22に記載のCu膜の成膜方法。 23. The method for forming a Cu film according to claim 22, wherein a substrate exposed to the atmosphere prior to the formation of the Cu film is used.
  25.  前記表面部分の清浄化は、基板表面部分の還元処理を含む請求項22に記載のCu膜の成膜方法。 23. The Cu film forming method according to claim 22, wherein the cleaning of the surface portion includes a reduction treatment of the substrate surface portion.
  26.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項25に記載のCu膜の成膜方法。 26. The method of forming a Cu film according to claim 25, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  27.  前記表面部分を清浄化する処理は、基板表面部分の酸化処理と、その後の基板表面部分の還元処理を含む請求項22に記載のCu膜の成膜方法。 23. The Cu film forming method according to claim 22, wherein the process of cleaning the surface part includes an oxidation process of the substrate surface part and a subsequent reduction process of the substrate surface part.
  28.  前記還元処理は、水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理である請求項27に記載のCu膜の成膜方法。 28. The Cu film forming method according to claim 27, wherein the reduction treatment is a plasma treatment containing hydrogen gas or a heat treatment in an atmosphere containing hydrogen gas.
  29.  前記水素ガスを含むプラズマ処理または水素ガスを含む雰囲気での熱処理は350~380℃の範囲内の温度で行われる請求項28に記載のCu膜の成膜方法。 The method for forming a Cu film according to claim 28, wherein the plasma treatment containing hydrogen gas or the heat treatment in an atmosphere containing hydrogen gas is performed at a temperature within a range of 350 to 380 ° C.
  30.  前記酸化処理は、酸素含有雰囲気に曝す処理、酸素含有雰囲気での熱処理、酸素ガスを含むプラズマ処理のいずれかである請求項27に記載のCu膜の成膜方法。 28. The method for forming a Cu film according to claim 27, wherein the oxidation treatment is any one of a treatment exposed to an oxygen-containing atmosphere, a heat treatment in an oxygen-containing atmosphere, and a plasma treatment containing oxygen gas.
  31.  前記酸素含有雰囲気に曝す処理は、大気暴露により行う請求項30に記載のCu膜の成膜方法。 The Cu film forming method according to claim 30, wherein the exposure to the oxygen-containing atmosphere is performed by air exposure.
  32.  コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、基板表面部分を清浄化する工程と、清浄化された基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程とを有するCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させる記憶媒体。 A storage medium that operates on a computer and stores a program for controlling a film forming apparatus, wherein the program includes a step of cleaning a surface portion of a substrate at the time of execution, and a Cu complex on the cleaned substrate. A storage medium that causes a computer to control the film forming apparatus so as to perform a Cu film forming method including a step of supplying a film forming raw material comprising: forming a Cu film on a substrate.
  33.  コンピュータ上で動作し、成膜装置を制御するためのプログラムが記憶された記憶媒体であって、前記プログラムは、実行時に、基板にCu錯体からなる成膜原料を供給して基板上にCu膜を成膜する工程と、基板に形成されたCu膜を清浄化する工程とを有するCu膜の成膜方法が行われるように、コンピュータに前記成膜装置を制御させる記憶媒体。 A storage medium that operates on a computer and stores a program for controlling a film forming apparatus, the program supplying a film forming raw material made of a Cu complex to a substrate at the time of execution, and a Cu film on the substrate A storage medium that causes a computer to control the film forming apparatus so as to perform a Cu film forming method including a step of forming a film and a step of cleaning a Cu film formed on a substrate.
PCT/JP2010/051585 2009-03-10 2010-02-04 METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM WO2010103879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056865A JP2010212452A (en) 2009-03-10 2009-03-10 METHOD FOR DEPOSITING Cu FILM AND STORAGE MEDIUM
JP2009-056865 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103879A1 true WO2010103879A1 (en) 2010-09-16

Family

ID=42728174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051585 WO2010103879A1 (en) 2009-03-10 2010-02-04 METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM

Country Status (2)

Country Link
JP (1) JP2010212452A (en)
WO (1) WO2010103879A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699946B2 (en) 2013-09-27 2020-06-30 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859885B2 (en) * 2012-03-15 2016-02-16 大陽日酸株式会社 Metal multilayer film forming method and metal multilayer film forming apparatus
US9330939B2 (en) 2012-03-28 2016-05-03 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill
JP6056403B2 (en) * 2012-11-15 2017-01-11 東京エレクトロン株式会社 Deposition equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298028A (en) * 2000-04-17 2001-10-26 Tokyo Electron Ltd Manufacturing method of semiconductor device
JP2003109914A (en) * 2001-10-01 2003-04-11 Fujitsu Ltd Method of forming metallic layer and method of manufacturing semiconductor device
JP2003163174A (en) * 2001-08-27 2003-06-06 Sharp Corp Method for thermal densification for depositing high quality copper film having good adhesion and trench filling characteristics in early stage of copper cvd
JP2008028059A (en) * 2006-07-20 2008-02-07 Tokyo Electron Ltd Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298028A (en) * 2000-04-17 2001-10-26 Tokyo Electron Ltd Manufacturing method of semiconductor device
JP2003163174A (en) * 2001-08-27 2003-06-06 Sharp Corp Method for thermal densification for depositing high quality copper film having good adhesion and trench filling characteristics in early stage of copper cvd
JP2003109914A (en) * 2001-10-01 2003-04-11 Fujitsu Ltd Method of forming metallic layer and method of manufacturing semiconductor device
JP2008028059A (en) * 2006-07-20 2008-02-07 Tokyo Electron Ltd Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699946B2 (en) 2013-09-27 2020-06-30 Applied Materials, Inc. Method of enabling seamless cobalt gap-fill

Also Published As

Publication number Publication date
JP2010212452A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4936928B2 (en) Film forming method, film forming apparatus, and storage medium
WO2010103930A1 (en) Method for forming cvd-ru film and method for manufacturing semiconductor devices
JP2007154297A (en) Film deposition method and film deposition system
KR101334946B1 (en) Method for formation of metal silicide film
JP4294696B2 (en) Semiconductor device manufacturing method, manufacturing apparatus, and storage medium
JP2009016520A (en) Method and apparatus for manufacturing semiconductor apparatus
JP2018041898A (en) Film formation method and film formation system
WO2011033918A1 (en) Film forming device, film forming method and storage medium
KR100966928B1 (en) Film forming apparatus and film forming method
WO2010103879A1 (en) METHOD FOR FORMING Cu FILM, AND STORAGE MEDIUM
JP2006299407A (en) Film-deposition method, film-deposition apparatus and computer readable storage medium
JP6584326B2 (en) Manufacturing method of Cu wiring
WO2010095498A1 (en) Method for forming cu film and storage medium
WO2010103881A1 (en) Method for forming cu film and storage medium
US8551565B2 (en) Film forming method and film forming apparatus
KR101349423B1 (en) METHOD FOR FORMING Cu FILM
WO2010095497A1 (en) Method for forming cu film and storage medium
JP5436589B2 (en) Deposition equipment
JP5659040B2 (en) Film formation method and storage medium
JP4964097B2 (en) Film forming method, film forming apparatus, and storage medium
KR20160083872A (en) Process for producing carbon nanotubes and method for forming wiring
JP5659041B2 (en) Film formation method and storage medium
JP2010212323A (en) METHOD OF FORMING Cu FILM, AND STORAGE MEDIUM
JP2012175073A (en) Deposition method and storage medium
JP2010189727A (en) FILM DEPOSITION METHOD FOR Cu FILM AND STORAGE MEDIUM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750635

Country of ref document: EP

Kind code of ref document: A1