WO2010101137A1 - Method for producing glass flake - Google Patents

Method for producing glass flake Download PDF

Info

Publication number
WO2010101137A1
WO2010101137A1 PCT/JP2010/053316 JP2010053316W WO2010101137A1 WO 2010101137 A1 WO2010101137 A1 WO 2010101137A1 JP 2010053316 W JP2010053316 W JP 2010053316W WO 2010101137 A1 WO2010101137 A1 WO 2010101137A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
glass
nozzle
liquid surface
flaky
Prior art date
Application number
PCT/JP2010/053316
Other languages
French (fr)
Japanese (ja)
Inventor
信之 中井
貴久 木田
幸宏 扇谷
教和 藤浦
敬介 村田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2010101137A1 publication Critical patent/WO2010101137A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes

Definitions

  • the present invention relates to a method for producing a flaky glass body.
  • the flaky glass body controlled to an appropriate thickness is contained as particles in paints, inks, cosmetics, plastics, films and the like. Since the surface of the flaky glass body is flat, in an article in which particles made of the flaky glass body are dispersed, light is incident on the flat portion of the flaky glass body or light is reflected by the flat portion. In this way, it gives unique sensitivity such as glitter.
  • the flaky glass body draws molten glass from the bottom of the tank and blows air into the drawn molten glass to form a hollow glass thin film body, which is crushed with a roller, or roller It is formed by crushing after thinning.
  • Japanese Utility Model Publication No. 63-48674 Japanese Utility Model Publication 3-39466 Japanese Utility Model Publication No. 3-39467 JP-A-6-329429 JP 2001-220163 A
  • the molten glass is drawn from the bottom of the tank, and blown into the drawn molten glass to form a hollow glass thin film, which is crushed with a roller, or crushed after being thinned with a roller, and the process is complicated It is.
  • a thin flaky glass body having a thickness of less than 4 ⁇ m is produced, it is necessary to form a thin glass glass body with a roller having a controlled outer surface temperature.
  • the structure is complicated such as incorporating a stirrer for homogenizing the molten glass, there is a problem that the equipment cost is high and it is difficult to change the glass substrate.
  • the roller is brought into contact with the hollow glass thin film body, there is a possibility that the contamination and the unevenness of the roller surface are transferred to the surface of the flake glass body.
  • An object of the present invention is to provide a method for producing a flaky glass body having a smooth surface with a desired thickness by simple means as compared with the prior art.
  • the method for producing the flaky glass body of the present invention comprises: Step A: A gas is introduced into the molten glass from a nozzle provided in the molten glass, and bubbles attached to the nozzle tip are formed in the molten glass; Process B: By continuing to introduce gas from the nozzle into the bubbles formed in the molten glass, the volume of the bubbles is increased and the bubbles reach the liquid level, and the part of the bubbles that have reached the liquid level is the liquid surface portion.
  • Step C crushing the dome-like body to form a flaky glass body
  • Step D sucking and collecting the flaky glass body.
  • the viscosity of the molten glass is preferably 20 to 2000 dPa ⁇ s. It is more preferably 30 to 1500 dPa ⁇ s, and further preferably 45 to 1000 dPa ⁇ s. If it is less than 20 dPa ⁇ s, the dome-shaped body tends to be difficult to grow. If it exceeds 2000 dPa ⁇ s, the flake-shaped glass body tends to be difficult to be thinned.
  • the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 2000 dPa ⁇ s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
  • the viscosity of the molten glass is preferably 20 to 10000 dPa ⁇ s. More preferably, it is 30 to 5000 dPa ⁇ s, and further preferably 40 to 3000 dPa ⁇ s. If it is less than 20 dPa ⁇ s, the dome-shaped body tends to be difficult to grow. If it exceeds 10000 dPa ⁇ s, the flake-like glass body tends not to be thinned and tends to be devitrified.
  • the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 10000 dPa ⁇ s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
  • the thickness is preferably 0.5 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, more preferably 0.5 to 1 ⁇ m.
  • the surface is smooth in electron microscope observation.
  • a flaky glass body having a smooth surface is produced with a desired thickness by a simpler means than in the prior art. Furthermore, in the prior art, the flaked glass body after crushing cannot be completely recovered, which may cause a decrease in yield. In the manufacturing method of the present invention, flakes that are not collected by suction after crushing are melted again in a melting furnace. As a result, the productivity is superior to that of the conventional manufacturing method.
  • FIG.1 and FIG.2 represents the principal part of the schematic diagram of the manufacturing apparatus of the flaky glass body used suitably for the manufacturing method of this invention.
  • FIG. 1 shows a state where bubbles 6 are formed at the tip of the nozzle 3, that is, a state where all of the bubbles 6 are in the molten glass 1
  • FIG. 2 shows a part of the bubbles above the liquid level of the molten glass 1. The state where the dome-like body 7 is formed is shown.
  • a glass or glass raw material or a mixture thereof is melted in a melting furnace 2 formed of platinum, carbon, quartz, refractory brick or the like to form a molten glass 1, and a gas is introduced into the molten glass 1 from a nozzle 3. Then, bubbles 6 adhering to the nozzle tip are formed in the molten glass. By continuing to introduce gas into the bubbles from the nozzle 3, the volume of the bubbles is increased and the bubbles reach the liquid level. Further, by increasing the volume of the bubbles, the dome-shaped body 7 including the bubbles 6 'inside the molten glass is formed.
  • the dome-shaped body 7 is formed from a molten glass in the liquid surface portion of the molten glass 1, and a flaky glass body is obtained by crushing and collecting the dome-shaped body.
  • a method of crushing a method of crushing a compressed gas against the dome-shaped body 7 can be cited.
  • the method for recovery include a method in which the flaky glass body is sucked out of the furnace and recovered together with the gas in the furnace.
  • gas is applied to the dome 7 from the nozzle 4 provided on the ceiling of the furnace, and the dome is crushed. Thereafter, the flaky glass body is recovered by suction from the duct 5.
  • the nozzle 3 is connected to a gas supply device (not shown) such as a gas cylinder, a compressor, a liquid gas vaporization supply device, and a hot gas supply device outside the melting furnace 2.
  • a gas supply device such as a gas cylinder, a compressor, a liquid gas vaporization supply device, and a hot gas supply device outside the melting furnace 2.
  • Active gas or the like is introduced into the molten glass 1 from the nozzle 3.
  • Gas may be introduced continuously, or gas may be introduced at regular intervals. Further, the introduced gas may be preheated.
  • the installation location of the nozzle 3 is not particularly limited, it is preferably installed at the bottom of the furnace, and may be installed at one location or a plurality of locations.
  • the nozzles be sufficiently spaced so that the formed bubbles or bubbles do not contact the inner wall of the melting furnace.
  • the material of the nozzle 3 is not specifically limited, Platinum, carbon, quartz, etc. are mentioned.
  • the inner diameter of the nozzle 3 is preferably 1 mm or more. If the inner diameter is less than 1 mm, it is not preferable because it is difficult to control the pressure when introducing the gas.
  • the inner diameter is more preferably 1.1 mm or more, and further preferably 1.2 mm or more.
  • the ratio of the inner diameter of the nozzle 3 to the inner diameter of the melting furnace is preferably 0.25 or less. If the ratio is more than 0.25, it is not preferable because it is difficult to control the pressure when introducing the gas.
  • the ratio is more preferably 0.20 or less, and further preferably 0.15 or less.
  • the pressure of the gas introduced from the nozzle 3 is preferably 0.015 to 0.5 MPa.
  • the pressure is more preferably 0.020 to 0.45 MPa, and further preferably 0.025 to 0.40 MPa.
  • the gas may be introduced by increasing the pressure in multiple steps or continuously within the above pressure range.
  • the nozzle 4 is connected to a gas supply device such as a gas cylinder, a compressor, a liquid gas vaporization supply device, and a hot gas supply device (not shown) outside the melting furnace 2 and the like. Active gas or the like is applied from the nozzle 4 to the dome-shaped body. Moreover, a gas may be continuously applied or a gas may be applied at regular intervals. Furthermore, the gas to be introduced may be preheated.
  • the nozzle 4 may be installed on the ceiling of the furnace, or may be installed on the wall surface above the molten glass liquid surface. Further, the direction of the gas applied to the dome-shaped body may be adjusted by changing the angle of the nozzle tip. Furthermore, you may install in one place and may install in several places.
  • the material of the nozzle 4 is not specifically limited, Platinum, carbon, quartz, etc. are mentioned.
  • the sectional area of the opening of the nozzle 4 is preferably 0.75 to 2500 mm 2 . If the cross-sectional area is out of the above range, it is not preferable because it is difficult to control the pressure when the gas is applied to the dome-shaped body.
  • the cross area is more preferably 0.75 ⁇ 2250 mm 2, more preferably 0.75 ⁇ 2000mm 2.
  • the pressure of the gas applied to the dome from the nozzle 4 is preferably 0.03 to 5 MPa. If the pressure is less than 0.03 MPa, it is difficult to break the glass dome, and if it exceeds 5 MPa, the liquid surface temperature of the molten glass tends to decrease, which is not preferable.
  • the pressure is more preferably 0.04 to 3 MPa, further preferably 0.05 to 1 MPa.
  • the duct 5 is connected to a suction device (not shown) such as a dust collector, a fan, a blower, and a suction type air transport device outside the melting furnace 2.
  • the duct 5 may be installed on the ceiling of the furnace, or may be installed on the wall surface above the molten glass liquid level. Moreover, you may install in one place and may install in several places. Furthermore, a filter for collecting the flaky glass body may be provided in the duct, and a crushing and classification device may be provided if necessary.
  • the material of the duct 5 is not specifically limited, Stainless steel, a galvanized iron plate, etc. are mentioned.
  • the inner diameter of the duct 5 is preferably 1 cm or more.
  • the air volume when suctioning and collecting the flaky glass body from the duct 5 is preferably 5 to 500 m 3 / min. If the air volume is less than 5 m 3 / min, the flaky glass body tends to be unable to be efficiently sucked and collected. If it exceeds 500 m 3 / min, the temperature of the liquid surface of the molten glass tends to decrease, such being undesirable.
  • the air volume is more preferably 6 to 400 m 3 / min, and even more preferably 7 to 300 m 3 / min.
  • the glass type contains silicon dioxide as a main component and a metal oxide such as aluminum oxide or calcium oxide.
  • the glass type include E glass, C glass, and soda lime glass.
  • the salt glass has a low melting temperature and is excellent in melt moldability, and is therefore suitable as a raw glass for a flaky glass body.
  • the molten glass 1 is preferably formed by melting a glass seed as described above, a glass raw material such as silica sand or feldspar that forms the glass seed, or a mixture of the glass seed and the glass raw material.
  • a glass raw material such as silica sand or feldspar that forms the glass seed
  • the glass raw material may be charged as a cullet previously melted and homogenized, or the cullet may be charged as a pulverized powder. Since it is vitrified and homogenized in advance, it can be replenished by additional charging when the liquid surface level of the molten glass decreases with the production of the flaky glass body.
  • the heating of the melting furnace 2 is preferably performed by an electric furnace, a high frequency induction heating device, an electromagnetic induction heating device or the like.
  • the formation of the dome-shaped body is preferably performed at a devitrification temperature or higher.
  • the maximum temperature in the molten glass at the time of forming the dome-shaped body varies depending on the glass type, but is preferably 1000 to 1600 ° C, more preferably 1050 to 1500 ° C, and further preferably 1100 to 1450 ° C.
  • the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is preferably 500 ° C. or less, and more preferably 350 ° C. or less.
  • the viscosity of the molten glass is preferably 20 to 2000 dPa ⁇ s. It is more preferably 30 to 1500 dPa ⁇ s, and further preferably 45 to 1000 dPa ⁇ s.
  • the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 2000 dPa ⁇ s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
  • the viscosity of the molten glass is preferably 20 to 10000 dPa ⁇ s. More preferably, it is 30 to 5000 dPa ⁇ s, and further preferably 40 to 3000 dPa ⁇ s.
  • the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 10000 dPa ⁇ s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
  • thermocouple model: T-type Komaru-180-0.5 ⁇ -R92S-8 ⁇ -PT012 ⁇ 30
  • Thermo Sensor Co., Ltd. was installed in a crucible in an electric furnace. The maximum temperature was measured.
  • the flaky glass body was sucked and collected from the duct 5 with an air volume of 15 m 3 / min.
  • the average thickness of the obtained flaky glass body was 1.3 ⁇ m.
  • the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
  • the average thickness of the obtained flaky glass body was 0.9 ⁇ m.
  • the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
  • the average thickness of the obtained flaky glass body was 1.2 ⁇ m.
  • the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
  • a flaky glass body was produced under the same conditions as in Example 1 except that the sectional area of the part was 1.8 mm 2 .
  • the average thickness of the obtained flaky glass body was 0.5 ⁇ m.
  • the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
  • Example 6 A flaky glass body was produced under the same conditions as in Example 5 except that the pressure of the gas introduced from the nozzle 3 was 0.07 MPa. The average thickness of the obtained flaky glass body was 0.8 ⁇ m. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Provided is a method for producing a glass flake having a smooth surface and the desired thickness by a simple means in comparison to the prior art. The method for producing a glass flake comprises a step A for introducing gas from a nozzle disposed in molten glass to the molten glass so that a bubble that has adhered the nozzle tip will form inside the molten glass; a step B for continuing to introduce gas from the nozzle to the bubble formed inside the molten glass in order to increase the volume of the bubble until the bubble is brought to the liquid surface such that the portion of the bubble that has reached the liquid surface forces the molten glass at the liquid surface above the liquid surface level of the molten glass and a dome-shaped body wherein a portion of the bubble is contained inside the molten glass is formed on the liquid surface of the molten glass; a step C for bursting the dome-shaped body to form a glass flake; and a step D for suctioning and recovering the glass flake.

Description

フレーク状ガラス体の製造方法Method for producing flaky glass body
本発明は、フレーク状ガラス体の製造方法に関する。 The present invention relates to a method for producing a flaky glass body.
 適切な厚さに制御されたフレーク状ガラス体は、塗料、インキ、化粧料、プラスチック、フィルム等に粒子として含有される。当該フレーク状ガラス体は、表面が平坦性を有することから、フレーク状ガラス体からなる粒子を分散してなる物品では、フレーク状ガラス体の平面部に光が入射又は平面部で光が反射することで、光輝感等の独特の感応性を付与する。 The flaky glass body controlled to an appropriate thickness is contained as particles in paints, inks, cosmetics, plastics, films and the like. Since the surface of the flaky glass body is flat, in an article in which particles made of the flaky glass body are dispersed, light is incident on the flat portion of the flaky glass body or light is reflected by the flat portion. In this way, it gives unique sensitivity such as glitter.
 フレーク状ガラス体は、特許文献1乃至5にあるように槽底部から溶融ガラスを引き出し、引き出された溶融ガラス内に送風をして中空状ガラス薄膜体を形成、これをローラーで破砕、またはローラーで薄肉化した後に破砕することにより形成される。
実公昭63-48674号公報 実公平3-39466号公報 実公平3-39467号公報 特開平6-329429号公報 特開2001-220163号公報
As described in Patent Documents 1 to 5, the flaky glass body draws molten glass from the bottom of the tank and blows air into the drawn molten glass to form a hollow glass thin film body, which is crushed with a roller, or roller It is formed by crushing after thinning.
Japanese Utility Model Publication No. 63-48674 Japanese Utility Model Publication 3-39466 Japanese Utility Model Publication No. 3-39467 JP-A-6-329429 JP 2001-220163 A
 従来技術では、槽底部から溶融ガラスを引き出し、引き出された溶融ガラス内に送風をして中空状ガラス薄膜体を形成、これをローラーで破砕、またはローラーで薄肉化した後に破砕するため工程が煩雑である。特に、4μm未満の薄いフレーク状ガラス体を作製する場合、中空状ガラス薄膜体を形成した後に、外面の温度を制御したローラーにより薄くする必要がある。さらに、溶融ガラスの均一化のためにスターラーを組み込むなど構造が複雑であるため、設備コストが高く、ガラス素地替えをしにくいという問題があった。また、中空状ガラス薄膜体にローラーを接触させるため、コンタミネーションやローラー表面の凹凸をフレーク状ガラス体表面に転写してしまう可能性があった。 In the prior art, the molten glass is drawn from the bottom of the tank, and blown into the drawn molten glass to form a hollow glass thin film, which is crushed with a roller, or crushed after being thinned with a roller, and the process is complicated It is. In particular, when a thin flaky glass body having a thickness of less than 4 μm is produced, it is necessary to form a thin glass glass body with a roller having a controlled outer surface temperature. Furthermore, since the structure is complicated such as incorporating a stirrer for homogenizing the molten glass, there is a problem that the equipment cost is high and it is difficult to change the glass substrate. Further, since the roller is brought into contact with the hollow glass thin film body, there is a possibility that the contamination and the unevenness of the roller surface are transferred to the surface of the flake glass body.
 本発明は、従来技術と比べて簡便な手段で、表面が平滑なフレーク状ガラス体を所望の厚さで製造する方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a flaky glass body having a smooth surface with a desired thickness by simple means as compared with the prior art.
 本発明のフレーク状ガラス体の製造方法は、
  工程A:溶融ガラス中に設けたノズルから該溶融ガラス中に気体を導入し、ノズル先端に付着した気泡を溶融ガラス内に形成する;
  工程B:溶融ガラス内に形成された気泡にノズルから気体を導入し続けることで、気泡の体積を増加させて該気泡を液面に到達せしめ、液面に到達した気泡の部位が液面部にある溶融ガラスを溶融ガラスの液面レベルより上方に押し出して、該気泡の一部を溶融ガラス内部に含んでなるドーム状体を溶融ガラスの液面上に形成する;
  工程C:ドーム状体を破砕してフレーク状ガラス体を形成する; および
  工程D:フレーク状ガラス体を吸引して回収する、
を有する。
The method for producing the flaky glass body of the present invention comprises:
Step A: A gas is introduced into the molten glass from a nozzle provided in the molten glass, and bubbles attached to the nozzle tip are formed in the molten glass;
Process B: By continuing to introduce gas from the nozzle into the bubbles formed in the molten glass, the volume of the bubbles is increased and the bubbles reach the liquid level, and the part of the bubbles that have reached the liquid level is the liquid surface portion. And extruding the molten glass at a level above the liquid surface level of the molten glass to form a dome-like body comprising a part of the bubbles inside the molten glass on the liquid surface of the molten glass;
Step C: crushing the dome-like body to form a flaky glass body; and Step D: sucking and collecting the flaky glass body.
Have
 前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50℃未満の場合、該溶融ガラスの粘度が20~2000dPa・sであることが好ましい。30~1500dPa・sであるとより好ましく、45~1000dPa・sであるとさらに好ましい。20dPa・s未満では、ドーム状体を成長させにくい傾向がある。2000dPa・s超では、フレーク状ガラス体を薄肉化しにくい傾向がある。特に、前記溶融ガラス全量の深さLに対し、溶融ガラスの液面から深さL/2に相当する深さまでの層における粘度が、20~2000dPa・sであると、形成するドーム状体の大きさが安定するとともにフレーク状ガラス体を薄肉化しやすいため好ましい。 When the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is less than 50 ° C., the viscosity of the molten glass is preferably 20 to 2000 dPa · s. It is more preferably 30 to 1500 dPa · s, and further preferably 45 to 1000 dPa · s. If it is less than 20 dPa · s, the dome-shaped body tends to be difficult to grow. If it exceeds 2000 dPa · s, the flake-shaped glass body tends to be difficult to be thinned. In particular, when the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 2000 dPa · s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
 また、前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50~500℃の場合、該溶融ガラスの粘度が20~10000dPa・sであることが好ましい。30~5000dPa・sであるとより好ましく、40~3000dPa・sであるとさらに好ましい。20dPa・s未満では、ドーム状体を成長させにくい傾向がある。10000dPa・s超では、フレーク状ガラス体を薄肉化しにくい、また、失透しやすい傾向がある。特に、前記溶融ガラス全量の深さLに対し、溶融ガラスの液面から深さL/2に相当する深さまでの層における粘度が、20~10000dPa・sであると、形成するドーム状体の大きさが安定するとともにフレーク状ガラス体を薄肉化しやすいため好ましい。 Further, when the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is 50 to 500 ° C., the viscosity of the molten glass is preferably 20 to 10000 dPa · s. More preferably, it is 30 to 5000 dPa · s, and further preferably 40 to 3000 dPa · s. If it is less than 20 dPa · s, the dome-shaped body tends to be difficult to grow. If it exceeds 10000 dPa · s, the flake-like glass body tends not to be thinned and tends to be devitrified. In particular, when the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 10000 dPa · s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
また、塗料用などにフレーク状ガラス体を使用する場合、厚さが0.5~5μm、好ましくは0.5~3μm、より好ましくは0.5~1μmであることが好ましい。また、電子顕微鏡観察において表面は平滑であることが好ましい。 Further, when a flaky glass body is used for coating or the like, the thickness is preferably 0.5 to 5 μm, preferably 0.5 to 3 μm, more preferably 0.5 to 1 μm. Moreover, it is preferable that the surface is smooth in electron microscope observation.
 本発明の好適な態様によれば、従来技術と比べて簡便な手段で、表面が平滑なフレーク状ガラス体を所望の厚さで製造する効果を奏す。さらに、従来技術では破砕後のフレーク状ガラス体を完全に回収できないため歩留まり低下の要因となる可能性があったが、本発明の製造方法では破砕後に吸引回収されないフレークは再び溶融炉中で溶融されるため、従来の製造方法に比べ生産性に優れる効果を奏す。 According to a preferred aspect of the present invention, there is an effect that a flaky glass body having a smooth surface is produced with a desired thickness by a simpler means than in the prior art. Furthermore, in the prior art, the flaked glass body after crushing cannot be completely recovered, which may cause a decrease in yield. In the manufacturing method of the present invention, flakes that are not collected by suction after crushing are melted again in a melting furnace. As a result, the productivity is superior to that of the conventional manufacturing method.
 本発明のフレーク状ガラス体の製造方法の一例を図面を用いて説明する。図1及び図2は、本発明の製造方法に好適に用いられるフレーク状ガラス体の製造装置の模式図の要部を表したものである。図1は、ノズル3の先端に気泡6が形成した状態、すなわち気泡6の全てが溶融ガラス1中にある状態を示し、図2は気泡の一部が溶融ガラス1の液面レベルより上方にあることでドーム状体7を形成している状態を示している。 An example of a method for producing a flaky glass body of the present invention will be described with reference to the drawings. FIG.1 and FIG.2 represents the principal part of the schematic diagram of the manufacturing apparatus of the flaky glass body used suitably for the manufacturing method of this invention. FIG. 1 shows a state where bubbles 6 are formed at the tip of the nozzle 3, that is, a state where all of the bubbles 6 are in the molten glass 1, and FIG. 2 shows a part of the bubbles above the liquid level of the molten glass 1. The state where the dome-like body 7 is formed is shown.
 白金、カーボン、石英または耐火レンガ等によって形成された溶融炉2中でガラスまたはガラス原料物またはそれらの混合物を溶融して溶融ガラス1を形成し、ノズル3から溶融ガラス1中に気体を導入し、該ノズル先端に付着した気泡6を溶融ガラス内に形成する。該気泡にノズル3から気体を導入し続けることで、気泡の体積を増加させて該気泡を液面に到達させる。さらに気泡の体積を増加させることで、該気泡の一部6’を溶融ガラス内部に含んでなるドーム状体7が形成される。 A glass or glass raw material or a mixture thereof is melted in a melting furnace 2 formed of platinum, carbon, quartz, refractory brick or the like to form a molten glass 1, and a gas is introduced into the molten glass 1 from a nozzle 3. Then, bubbles 6 adhering to the nozzle tip are formed in the molten glass. By continuing to introduce gas into the bubbles from the nozzle 3, the volume of the bubbles is increased and the bubbles reach the liquid level. Further, by increasing the volume of the bubbles, the dome-shaped body 7 including the bubbles 6 'inside the molten glass is formed.
 ドーム状体7は、溶融ガラス1の液面部にあった溶融ガラスから形成され、該ドーム状体を破砕及び回収することでフレーク状ガラス体が得られる。破砕する方法としては、圧縮した気体をドーム状体7にあてて破砕する方法が挙げられる。回収する方法としては、炉内の気体とともにフレーク状ガラス体を炉外へ吸引して回収する方法が挙げられる。例えば、図1及び図2で示された装置の場合、炉の天井部に設けたノズル4から気体をドーム状体7にあてて、該ドーム状体を破砕する。その後、ダクト5から吸引することで、フレーク状ガラス体を回収する。 The dome-shaped body 7 is formed from a molten glass in the liquid surface portion of the molten glass 1, and a flaky glass body is obtained by crushing and collecting the dome-shaped body. As a method of crushing, a method of crushing a compressed gas against the dome-shaped body 7 can be cited. Examples of the method for recovery include a method in which the flaky glass body is sucked out of the furnace and recovered together with the gas in the furnace. For example, in the case of the apparatus shown in FIGS. 1 and 2, gas is applied to the dome 7 from the nozzle 4 provided on the ceiling of the furnace, and the dome is crushed. Thereafter, the flaky glass body is recovered by suction from the duct 5.
 ノズル3は、図示しないガスボンベ、コンプレッサー、液体ガス気化供給装置、ホットガス供給装置などのガス供給装置に溶融炉2外で連結されるなどしており、空気、窒素、酸素、及びヘリウムなどの不活性ガス等がノズル3から溶融ガラス1中へ導入される。連続的に気体を導入してもよいし、一定間隔で気体を導入してもよい。また、導入する気体を予め加温してもよい。ノズル3の設置箇所は特に限定されないが、炉の底部に設置することが好ましく、1箇所設置してもよいし、複数箇所設置してもよい。 The nozzle 3 is connected to a gas supply device (not shown) such as a gas cylinder, a compressor, a liquid gas vaporization supply device, and a hot gas supply device outside the melting furnace 2. Active gas or the like is introduced into the molten glass 1 from the nozzle 3. Gas may be introduced continuously, or gas may be introduced at regular intervals. Further, the introduced gas may be preheated. Although the installation location of the nozzle 3 is not particularly limited, it is preferably installed at the bottom of the furnace, and may be installed at one location or a plurality of locations.
 ただし、形成させた気泡同士または、気泡と溶融炉の内壁が接触しないようにノズルの間隔を十分あけることが好ましい。上述のように炉の下部(底部)から気体を導入し泡が上へ(液面方向へ)移動することにより、溶融ガラスを均一化させる効果も付与することができる。ノズル3の材質は特に限定されないが、白金、カーボンまたは石英等が挙げられる。 However, it is preferable that the nozzles be sufficiently spaced so that the formed bubbles or bubbles do not contact the inner wall of the melting furnace. As described above, by introducing gas from the lower part (bottom part) of the furnace and moving the bubbles upward (in the liquid surface direction), the effect of homogenizing the molten glass can also be imparted. Although the material of the nozzle 3 is not specifically limited, Platinum, carbon, quartz, etc. are mentioned.
ノズル3の内径は1mm以上であることが好ましい。該内径が1mm未満であると、気体を導入する際に圧力の制御が困難であるため好ましくない。該内径は1.1mm以上であるとより好ましく、1.2mm以上であるとさらに好ましい。また、溶融炉の内径に対するノズル3の内径の比(ノズル3の内径/溶融炉の内径)は0.25以下が好ましい。該比が0.25超であると、気体を導入する際に圧力の制御が困難であるため好ましくない。該比は0.20以下がより好ましく、0.15以下がさらに好ましい。 The inner diameter of the nozzle 3 is preferably 1 mm or more. If the inner diameter is less than 1 mm, it is not preferable because it is difficult to control the pressure when introducing the gas. The inner diameter is more preferably 1.1 mm or more, and further preferably 1.2 mm or more. The ratio of the inner diameter of the nozzle 3 to the inner diameter of the melting furnace (the inner diameter of the nozzle 3 / the inner diameter of the melting furnace) is preferably 0.25 or less. If the ratio is more than 0.25, it is not preferable because it is difficult to control the pressure when introducing the gas. The ratio is more preferably 0.20 or less, and further preferably 0.15 or less.
ノズル3から導入する気体の圧力は0.015~0.5MPaが好ましい。該圧力が前記範囲から外れると、形成するドーム状体の大きさが安定しないため好ましくない。該圧力は0.020~0.45MPaがより好ましく、0.025~0.40MPaがさらに好ましい。さらに上記圧力範囲内で、多段階でもしくは連続的に圧力を増大させて気体を導入しても良い。 The pressure of the gas introduced from the nozzle 3 is preferably 0.015 to 0.5 MPa. When the pressure is out of the range, the size of the dome-shaped body to be formed is not stable, which is not preferable. The pressure is more preferably 0.020 to 0.45 MPa, and further preferably 0.025 to 0.40 MPa. Further, the gas may be introduced by increasing the pressure in multiple steps or continuously within the above pressure range.
 ノズル4は、図示しないガスボンベ、コンプレッサー、液体ガス気化供給装置、ホットガス供給装置などのガス供給装置に溶融炉2外で連結されるなどしており、空気、窒素、酸素、及びヘリウムなどの不活性ガス等がノズル4からドーム状体にあてられる。また、連続的に気体をあててもよいし、一定間隔で気体をあててもよい。さらに、導入する気体を予め加温してもよい。ノズル4は炉の天井部に設置してもよいし、溶融ガラス液面より上の壁面に設置してもよい。また、ノズル先端の角度を変えてドーム状体にあてる気体の方向を調整してもよい。さらに、1箇所に設置してもよいし、複数箇所に設置してもよい。ノズル4の材質は特に限定されないが、白金、カーボンまたは石英等が挙げられる。 The nozzle 4 is connected to a gas supply device such as a gas cylinder, a compressor, a liquid gas vaporization supply device, and a hot gas supply device (not shown) outside the melting furnace 2 and the like. Active gas or the like is applied from the nozzle 4 to the dome-shaped body. Moreover, a gas may be continuously applied or a gas may be applied at regular intervals. Furthermore, the gas to be introduced may be preheated. The nozzle 4 may be installed on the ceiling of the furnace, or may be installed on the wall surface above the molten glass liquid surface. Further, the direction of the gas applied to the dome-shaped body may be adjusted by changing the angle of the nozzle tip. Furthermore, you may install in one place and may install in several places. Although the material of the nozzle 4 is not specifically limited, Platinum, carbon, quartz, etc. are mentioned.
ノズル4の開口部の断面積は0.75~2500mm2であることが好ましい。該断面積が前記範囲から外れると、気体をドーム状体にあてる際に圧力の制御が困難であるため好ましくない。該断面積は0.75~2250mm2がより好ましく、0.75~2000mm2がさらに好ましい。 The sectional area of the opening of the nozzle 4 is preferably 0.75 to 2500 mm 2 . If the cross-sectional area is out of the above range, it is not preferable because it is difficult to control the pressure when the gas is applied to the dome-shaped body. The cross area is more preferably 0.75 ~ 2250 mm 2, more preferably 0.75 ~ 2000mm 2.
ノズル4からドーム状体にあてられる気体の圧力は0.03~5MPaが好ましい。該圧力が0.03MPa未満であるとガラスドームを破砕しにくく、5MPa超であると溶融ガラスの液面の温度が低下しやすくなるため好ましくない。該圧力は0.04~3MPaがより好ましく、0.05~1MPaがさらに好ましい。 The pressure of the gas applied to the dome from the nozzle 4 is preferably 0.03 to 5 MPa. If the pressure is less than 0.03 MPa, it is difficult to break the glass dome, and if it exceeds 5 MPa, the liquid surface temperature of the molten glass tends to decrease, which is not preferable. The pressure is more preferably 0.04 to 3 MPa, further preferably 0.05 to 1 MPa.
 ダクト5は、図示しない集塵機、ファン、送風機、吸引式空気輸送装置などの吸引装置に溶融炉2外で連結されるなどしている。ダクト5は炉の天井部に設置してもよいし、溶融ガラス液面より上の壁面に設置してもよい。また、1箇所に設置してもよいし、複数箇所に設置してもよい。さらに、ダクトにフレーク状ガラス体を回収するフィルターを設けてもよいし、必要であれば粉砕及び分級装置を設けてもよい。ダクト5の材質は特に限定されないが、ステンレス鋼、亜鉛めっき鉄板等が挙げられる。ダクト5の内径は1cm以上が好ましい。 The duct 5 is connected to a suction device (not shown) such as a dust collector, a fan, a blower, and a suction type air transport device outside the melting furnace 2. The duct 5 may be installed on the ceiling of the furnace, or may be installed on the wall surface above the molten glass liquid level. Moreover, you may install in one place and may install in several places. Furthermore, a filter for collecting the flaky glass body may be provided in the duct, and a crushing and classification device may be provided if necessary. Although the material of the duct 5 is not specifically limited, Stainless steel, a galvanized iron plate, etc. are mentioned. The inner diameter of the duct 5 is preferably 1 cm or more.
ダクト5からフレーク状ガラス体を吸引回収する際の風量は5~500m3/minが好ましい。該風量が5m3/min未満であるとフレーク状ガラス体を効率的に吸引回収できない傾向にあり、500m3/min超であると溶融ガラスの液面の温度が低下しやすくなるため好ましくない。該風量は6~400m3/minがより好ましく、7~300m3/minがさらに好ましい。 The air volume when suctioning and collecting the flaky glass body from the duct 5 is preferably 5 to 500 m 3 / min. If the air volume is less than 5 m 3 / min, the flaky glass body tends to be unable to be efficiently sucked and collected. If it exceeds 500 m 3 / min, the temperature of the liquid surface of the molten glass tends to decrease, such being undesirable. The air volume is more preferably 6 to 400 m 3 / min, and even more preferably 7 to 300 m 3 / min.
 本発明の製造方法で作製されるフレーク状ガラス体は、そのガラス種は、二酸化珪素を主成分とし、酸化アルミニウム、酸化カルシウム等の金属酸化物を含有するものとすることが好ましい。ガラス種としては、Eガラス、Cガラス、ソーダライムガラス等が挙げられる。特に、SiO2-B23-ZnO-Al23-CaO系の硼ケイ酸塩ガラスまたは、SiO2-B23-ZnO-Al23-CaO-MnO2系の硼ケイ酸塩ガラスは、低い溶融温度を有し、溶融成形性に優れるため、フレーク状ガラス体の原料ガラスとして好適である。 In the flaky glass body produced by the production method of the present invention, it is preferable that the glass type contains silicon dioxide as a main component and a metal oxide such as aluminum oxide or calcium oxide. Examples of the glass type include E glass, C glass, and soda lime glass. In particular, SiO 2 —B 2 O 3 —ZnO—Al 2 O 3 —CaO based borosilicate glass or SiO 2 —B 2 O 3 —ZnO—Al 2 O 3 —CaO—MnO 2 based borosilicate. The salt glass has a low melting temperature and is excellent in melt moldability, and is therefore suitable as a raw glass for a flaky glass body.
 溶融ガラス1は、前記したようなガラス種、該ガラス種を形成するケイ砂、長石等のガラス原料物、又はガラス種とガラス原料物との混合物を溶融することで形成することが好ましい。ガラス種を溶融炉2へ投入する場合、ガラス原料物を予め溶融し均質化したカレットとして投入してもよいし、該カレットを粉砕した粉末として投入してもよい。予めガラス化して均質化しているため、フレーク状ガラス体の製造に伴い溶融ガラスの液面レベルが低下した際に追加投入して補充することができる。ガラス原料物、又はガラス種とガラス原料物との混合物を溶融炉2へ投入する場合、フレーク状ガラス体の製造前に溶融炉2中で十分に均質化させる必要がある。また、ガラス原料物又はガラス種とガラス原料物との混合物は追加投入することができない。 The molten glass 1 is preferably formed by melting a glass seed as described above, a glass raw material such as silica sand or feldspar that forms the glass seed, or a mixture of the glass seed and the glass raw material. When the glass seed is charged into the melting furnace 2, the glass raw material may be charged as a cullet previously melted and homogenized, or the cullet may be charged as a pulverized powder. Since it is vitrified and homogenized in advance, it can be replenished by additional charging when the liquid surface level of the molten glass decreases with the production of the flaky glass body. When a glass raw material or a mixture of a glass seed and a glass raw material is charged into the melting furnace 2, it is necessary to homogenize sufficiently in the melting furnace 2 before producing the flaky glass body. Further, a glass raw material or a mixture of a glass seed and a glass raw material cannot be additionally charged.
 溶融炉2の加熱は、電気炉、高周波誘導加熱装置、電磁誘導加熱装置等によって行われることが好ましい。また、ドーム状体の形成は失透温度以上で行うことが好ましい。ドーム状体を形成する際の溶融ガラス中の最高温度はガラス種によって異なるが、1000~1600℃が好ましく、1050~1500℃がより好ましく、1100~1450℃がさらに好ましい。さらに、溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差は500℃以下であることが好ましく、さらに、350℃以下であることがより好ましい。 The heating of the melting furnace 2 is preferably performed by an electric furnace, a high frequency induction heating device, an electromagnetic induction heating device or the like. The formation of the dome-shaped body is preferably performed at a devitrification temperature or higher. The maximum temperature in the molten glass at the time of forming the dome-shaped body varies depending on the glass type, but is preferably 1000 to 1600 ° C, more preferably 1050 to 1500 ° C, and further preferably 1100 to 1450 ° C. Furthermore, the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is preferably 500 ° C. or less, and more preferably 350 ° C. or less.
 前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50℃未満の場合、該溶融ガラスの粘度が20~2000dPa・sであることが好ましい。30~1500dPa・sであるとより好ましく、45~1000dPa・sであるとさらに好ましい。特に、前記溶融ガラス全量の深さLに対し、溶融ガラスの液面から深さL/2に相当する深さまでの層における粘度が、20~2000dPa・sであると、形成するドーム状体の大きさが安定するとともにフレーク状ガラス体を薄肉化しやすいため好ましい。 When the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is less than 50 ° C., the viscosity of the molten glass is preferably 20 to 2000 dPa · s. It is more preferably 30 to 1500 dPa · s, and further preferably 45 to 1000 dPa · s. In particular, when the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 2000 dPa · s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
 また、前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50~500℃の場合、該溶融ガラスの粘度が20~10000dPa・sであることが好ましい。30~5000dPa・sであるとより好ましく、40~3000dPa・sであるとさらに好ましい。特に、前記溶融ガラス全量の深さLに対し、溶融ガラスの液面から深さL/2に相当する深さまでの層における粘度が、20~10000dPa・sであると、形成するドーム状体の大きさが安定するとともにフレーク状ガラス体を薄肉化しやすいため好ましい。 Further, when the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is 50 to 500 ° C., the viscosity of the molten glass is preferably 20 to 10000 dPa · s. More preferably, it is 30 to 5000 dPa · s, and further preferably 40 to 3000 dPa · s. In particular, when the viscosity of the layer from the liquid surface of the molten glass to the depth corresponding to the depth L / 2 is 20 to 10000 dPa · s with respect to the depth L of the total amount of the molten glass, This is preferable because the size is stable and the flaky glass body is easily thinned.
 次に、実施例によって本発明をさらに具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
[溶融ガラス中の最高温度の測定]
株式会社タカハシサーモセンサー(Kabushiki Kaisha Takahashi Thermo Sensor)製の熱電対(型式:T型小丸-180-0.5φ-R92S-8φ-PT012φ30)を電気炉内のルツボ中に設置し、溶融ガラス中の最高温度を測定した。
[Measurement of maximum temperature in molten glass]
A thermocouple (model: T-type Komaru-180-0.5φ-R92S-8φ-PT012φ30) manufactured by Kabushiki Kaisha Takahashi Thermo Sensor Co., Ltd. was installed in a crucible in an electric furnace. The maximum temperature was measured.
[溶融ガラスの液面の温度の測定]
株式会社キーエンス(Keyence Corporation)製のデジタル放射温度計センサ(型式:FT-H50K)を用いて、溶融ガラスの液面から約2m上方の位置から溶融ガラスの液面の温度を測定した。
[Measurement of liquid surface temperature of molten glass]
Using a digital radiation thermometer sensor (model: FT-H50K) manufactured by Keyence Corporation, the liquid surface temperature of the molten glass was measured from a position approximately 2 m above the liquid surface of the molten glass.
[溶融ガラスの粘度の測定]
球引上げ粘度計BVB-13LH(有限会社オプト企業(OPT Corp.)製)を用いて白金球引上げ法により溶融ガラスの粘度を測定し、温度-粘度曲線を作成した。該温度-粘度曲線において、各実施例の溶融ガラスの最高温度と液面の温度の中間の温度に相当する温度での粘度を、溶融ガラス全量の深さ(L)に対し、溶融ガラスの液面から深さ(L/2)に相当する深さまでの層における粘度とした。
[Measurement of viscosity of molten glass]
The viscosity of the molten glass was measured by a platinum ball pulling method using a ball pulling viscometer BVB-13LH (manufactured by OPT Corp.), and a temperature-viscosity curve was prepared. In the temperature-viscosity curve, the viscosity at a temperature corresponding to an intermediate temperature between the maximum temperature of the molten glass and the temperature of the liquid surface in each example is represented by the liquid of the molten glass with respect to the total molten glass depth (L). It was set as the viscosity in the layer from the surface to the depth corresponding to the depth (L / 2).
実施例1
 フレーク状ガラス体を形成するために図1(図2)に示すような装置を準備した。1400℃の溶融炉2(内径200mm、深さ360mmの白金ルツボを電気炉内で加熱)中で16.5kgのEガラスを溶融させた。このとき、溶融ガラス中の最高温度は1400℃、液面の温度は1220℃であった。また、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度は200dPa・sであった。炉の底中央部に設けた内径5mmの白金製ノズル3から溶融ガラス1中に0.03MPaの圧力で予め300℃に加温した空気を導入し、該ノズル先端に付着した気泡6を溶融ガラス内に形成した。該気泡に連続的にノズル3から空気を導入し続けて、該気泡の一部6’を溶融ガラス内部に含んでなるドーム状体7を溶融ガラスの液面レベルより上方に形成した。溶融炉天井部に設けた開口部の断面積が7.1mm2の白金製ノズル4から0.15MPaの圧力で予め50℃に加温した空気をドーム状体にあてて、該ドーム状体を破砕してフレーク状ガラス体を作製した。ダクト5からフレーク状ガラス体を15m3/minの風量で吸引して回収した。得られたフレーク状ガラス体の平均厚さは1.3μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 1
In order to form a flaky glass body, an apparatus as shown in FIG. 1 (FIG. 2) was prepared. In a melting furnace 2 at 1400 ° C. (a platinum crucible having an inner diameter of 200 mm and a depth of 360 mm was heated in an electric furnace), 16.5 kg of E glass was melted. At this time, the maximum temperature in the molten glass was 1400 ° C., and the liquid surface temperature was 1220 ° C. Moreover, the viscosity in the layer from the liquid surface of a molten glass to the depth (L / 2 = 100mm) with respect to the depth (L = 200mm) of molten glass whole quantity was 200dPa * s. Air preheated to 300 ° C. at a pressure of 0.03 MPa is introduced into the molten glass 1 from a platinum nozzle 3 having an inner diameter of 5 mm provided at the center of the bottom of the furnace, and bubbles 6 adhering to the tip of the nozzle are molten glass. Formed inside. Air was continuously introduced into the bubbles from the nozzle 3, and a dome-like body 7 including a part 6 'of the bubbles inside the molten glass was formed above the liquid level of the molten glass. Air that has been preheated to 50 ° C. at a pressure of 0.15 MPa from a platinum nozzle 4 having a cross-sectional area of 7.1 mm 2 in the opening provided in the melting furnace ceiling is applied to the dome. By crushing, a flaky glass body was produced. The flaky glass body was sucked and collected from the duct 5 with an air volume of 15 m 3 / min. The average thickness of the obtained flaky glass body was 1.3 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例2
 溶融炉の設定温度を1500℃とし、溶融ガラス中の最高温度が1500℃、液面の温度が1300℃、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度が70dPa・sとなるようにしたこと以外は実施例1と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは0.9μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 2
The set temperature of the melting furnace is 1500 ° C., the maximum temperature in the molten glass is 1500 ° C., the temperature of the liquid surface is 1300 ° C., and the depth of the total amount of molten glass (L = 200 mm). A flaky glass body was produced under the same conditions as in Example 1 except that the viscosity of the layer up to a depth corresponding to (L / 2 = 100 mm) was 70 dPa · s. The average thickness of the obtained flaky glass body was 0.9 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例3
 溶融炉の設定温度を1450℃とし、溶融ガラス中の最高温度が1450℃、液面の温度が1250℃、溶融ガラス全量の深さ(L=220mm)に対し、溶融ガラスの液面から深さ(L/2=110mm)に相当する深さまでの層における粘度が110dPa・sとなるようにしたこと以外は実施例1と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは1.2μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 3
The set temperature of the melting furnace is 1450 ° C., the maximum temperature in the molten glass is 1450 ° C., the temperature of the liquid surface is 1250 ° C., and the depth of the entire molten glass (L = 220 mm). A flaky glass body was produced under the same conditions as in Example 1 except that the viscosity of the layer up to a depth corresponding to (L / 2 = 110 mm) was 110 dPa · s. The average thickness of the obtained flaky glass body was 1.2 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例4
 溶融炉の設定温度を1300℃とし、溶融ガラス中の最高温度が1300℃、液面の温度が1150℃、溶融ガラス全量の深さ(L=220mm)に対し、溶融ガラスの液面から深さ(L/2=110mm)に相当する深さまでの層における粘度が630dPa・sとなるようにし、ノズル3の内径を6mm、ノズル3から導入する気体の圧力を0.06MPaとし、ノズル4の開口部の断面積を1.8mm2としたこと以外は実施例1と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは0.5μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 4
The set temperature of the melting furnace is 1300 ° C., the maximum temperature in the molten glass is 1300 ° C., the liquid surface temperature is 1150 ° C., and the depth of the entire molten glass (L = 220 mm). The viscosity of the layer up to a depth corresponding to (L / 2 = 110 mm) is 630 dPa · s, the inner diameter of the nozzle 3 is 6 mm, the pressure of the gas introduced from the nozzle 3 is 0.06 MPa, and the opening of the nozzle 4 A flaky glass body was produced under the same conditions as in Example 1 except that the sectional area of the part was 1.8 mm 2 . The average thickness of the obtained flaky glass body was 0.5 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例5
 溶融炉の設定温度を1315℃とし、溶融ガラス中の最高温度が1315℃、液面の温度が1180℃、溶融ガラス全量の深さ(L=190mm)に対し、溶融ガラスの液面から深さ(L/2=95mm)に相当する深さまでの層における粘度が450dPa・sとなるようにし、ノズル3から導入する気体の圧力を0.065MPaとしたこと以外は実施例4と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは0.7μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 5
The set temperature of the melting furnace is 1315 ° C., the maximum temperature in the molten glass is 1315 ° C., the temperature of the liquid surface is 1180 ° C., and the depth of the total amount of the molten glass (L = 190 mm). Under the same conditions as in Example 4 except that the viscosity in the layer up to a depth corresponding to (L / 2 = 95 mm) is 450 dPa · s, and the pressure of the gas introduced from the nozzle 3 is 0.065 MPa. A flaky glass body was produced. The average thickness of the obtained flaky glass body was 0.7 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例6
 ノズル3から導入する気体の圧力を0.07MPaとしたこと以外は実施例5と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは0.8μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 6
A flaky glass body was produced under the same conditions as in Example 5 except that the pressure of the gas introduced from the nozzle 3 was 0.07 MPa. The average thickness of the obtained flaky glass body was 0.8 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例7
 溶融炉の設定温度を1325℃とし、溶融ガラス中の最高温度が1325℃、液面の温度が1200℃、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度が370dPa・sとなるようにし、ノズル3から導入する気体の圧力を0.08MPaとしたこと以外は実施例4と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは1μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 7
The set temperature of the melting furnace is 1325 ° C., the maximum temperature in the molten glass is 1325 ° C., the temperature of the liquid surface is 1200 ° C., and the depth of the total amount of molten glass (L = 200 mm). Under the same conditions as in Example 4 except that the viscosity of the layer up to a depth corresponding to (L / 2 = 100 mm) is 370 dPa · s, and the pressure of the gas introduced from the nozzle 3 is 0.08 MPa. A flaky glass body was produced. The average thickness of the obtained flaky glass body was 1 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例8
 溶融炉の設定温度を1500℃とし、溶融ガラス中の最高温度が1500℃、液面の温度が1460℃、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度が35dPa・sとなるようにし、ノズル3から導入する気体の圧力を0.05MPaとしたこと以外は実施例4と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは1μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 8
The set temperature of the melting furnace is 1500 ° C., the maximum temperature in the molten glass is 1500 ° C., the temperature of the liquid surface is 1460 ° C., and the depth of the total amount of the molten glass (L = 200 mm). Under the same conditions as in Example 4 except that the viscosity of the layer up to a depth corresponding to (L / 2 = 100 mm) is 35 dPa · s, and the pressure of the gas introduced from the nozzle 3 is 0.05 MPa. A flaky glass body was produced. The average thickness of the obtained flaky glass body was 1 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
実施例9
 溶融炉の設定温度を1200℃とし、溶融ガラス中の最高温度が1200℃、液面の温度が1160℃、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度が1500dPa・sとなるようにし、ノズル3から導入する気体の圧力を0.065MPaとしたこと以外は実施例4と同様の条件でフレーク状ガラス体を作製した。得られたフレーク状ガラス体の平均厚さは3.5μmであった。また、電子顕微鏡観察において表面が平滑であり、市販のフレーク状ガラス体と同等の品質であった。
Example 9
The set temperature of the melting furnace is 1200 ° C., the maximum temperature in the molten glass is 1200 ° C., the temperature of the liquid surface is 1160 ° C., and the depth of the entire molten glass (L = 200 mm). Under the same conditions as in Example 4 except that the viscosity in the layer up to a depth corresponding to (L / 2 = 100 mm) is 1500 dPa · s, and the pressure of the gas introduced from the nozzle 3 is 0.065 MPa. A flaky glass body was produced. The average thickness of the obtained flaky glass body was 3.5 μm. Moreover, the surface was smooth in electron microscope observation, and it was the quality equivalent to a commercially available flaky glass body.
  比較例1
溶融炉の設定温度を1650℃とし、溶融ガラス中の最高温度が1650℃、液面の温度が1610℃、溶融ガラス全量の深さ(L=200mm)に対し、溶融ガラスの液面から深さ(L/2=100mm)に相当する深さまでの層における粘度が12dPa・sとなるようにし、ノズル3から導入する気体の圧力を0.065MPaとしたところ、ドーム状体は成長せず、すぐに破裂したため、フレーク状ガラス体を得ることができなかった。
Comparative Example 1
The set temperature of the melting furnace is 1650 ° C., the maximum temperature in the molten glass is 1650 ° C., the temperature of the liquid surface is 1610 ° C., and the depth of the molten glass is the depth (L = 200 mm). When the viscosity of the layer up to a depth corresponding to (L / 2 = 100 mm) is 12 dPa · s and the pressure of the gas introduced from the nozzle 3 is 0.065 MPa, the dome does not grow and immediately The flake-shaped glass body could not be obtained.
本発明の実施例で用いたフレーク状ガラス体の製造装置の概略断面図(ドーム状体形成前)である。It is a schematic sectional drawing (before dome shape body formation) of the manufacturing apparatus of the flaky glass body used in the Example of this invention. 本発明の実施例で用いたフレーク状ガラス体の製造装置の概略断面図(ドーム状体形成時)である。It is a schematic sectional drawing (at the time of dome shape body formation) of the manufacturing apparatus of the flaky glass body used in the Example of this invention.
1 溶融ガラス
2 溶融炉
3 気泡(ドーム状体)形成用ノズル
4 ドーム状体破砕用ノズル
5 フレーク状ガラス体回収用ダクト
6 ノズル3の先端に形成させた成長前の気泡
6’溶融ガラス内部に含まれた気泡の一部
7 ドーム状体
DESCRIPTION OF SYMBOLS 1 Molten glass 2 Melting furnace 3 Bubble (dome-shaped body) formation nozzle 4 Dome-shaped body crushing nozzle 5 Flakes-shaped glass body recovery duct 6 Inside the bubble 6 ′ before growth formed at the tip of the nozzle 3 Part of contained bubbles 7 Dome

Claims (3)

  1. 溶融ガラス中に設けたノズルから該溶融ガラス中に気体を導入し、ノズル先端に付着した気泡を溶融ガラス内に形成する工程A;溶融ガラス内に形成された気泡にノズルから気体を導入し続けることで、気泡の体積を増加させて該気泡を液面に到達せしめ、液面に到達した気泡の部位が液面部にある溶融ガラスを溶融ガラスの液面レベルより上方に押し出して、該気泡の一部を溶融ガラス内部に含んでなるドーム状体を溶融ガラスの液面上に形成する工程B;ドーム状体を破砕してフレーク状ガラス体を形成する工程C;およびフレーク状ガラス体を吸引して回収する工程Dを有する、フレーク状ガラス体の製造方法。 Step A of introducing gas into the molten glass from a nozzle provided in the molten glass and forming bubbles adhering to the nozzle tip in the molten glass; continuing to introduce gas from the nozzle into the bubbles formed in the molten glass Thus, the volume of the bubbles is increased to allow the bubbles to reach the liquid level, and the portion of the bubbles that have reached the liquid level is pushed out above the liquid level of the molten glass by pushing out the molten glass at the liquid level. Forming a dome-shaped body comprising a part of the molten glass inside the molten glass on the liquid surface of the molten glass; c) forming a flaky glass body by crushing the dome-shaped body; and A method for producing a flaky glass body, comprising a step D of sucking and collecting.
  2. 前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50℃未満の場合、該溶融ガラスの粘度が20~2000dPa・sである、請求項1に記載のフレーク状ガラス体の製造方法。 The flaky glass according to claim 1, wherein when the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is less than 50 ° C, the viscosity of the molten glass is 20 to 2000 dPa · s. Body manufacturing method.
  3. 前記溶融ガラス中の最高温度と、該溶融ガラスの液面の温度との差が50~500℃の場合、該溶融ガラスの粘度が、20~10000dPa・sである、請求項1に記載のフレーク状ガラス体の製造方法。 The flake according to claim 1, wherein when the difference between the maximum temperature in the molten glass and the liquid surface temperature of the molten glass is 50 to 500 ° C, the viscosity of the molten glass is 20 to 10000 dPa · s. Method of glassy glass body.
PCT/JP2010/053316 2009-03-06 2010-03-02 Method for producing glass flake WO2010101137A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009053094 2009-03-06
JP2009-053094 2009-03-06
JP2010-036575 2010-02-22
JP2010036575A JP2010229019A (en) 2009-03-06 2010-02-22 Method for producing glass flake

Publications (1)

Publication Number Publication Date
WO2010101137A1 true WO2010101137A1 (en) 2010-09-10

Family

ID=42709694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053316 WO2010101137A1 (en) 2009-03-06 2010-03-02 Method for producing glass flake

Country Status (2)

Country Link
JP (1) JP2010229019A (en)
WO (1) WO2010101137A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319128A (en) * 1995-05-24 1996-12-03 Nippon Electric Glass Co Ltd Device for producing flaky glass
WO2003055812A1 (en) * 2001-12-26 2003-07-10 Matsushita Electric Industrial Co., Ltd. Process and apparatus for producing spherical glass
WO2007111221A1 (en) * 2006-03-24 2007-10-04 Nippon Sheet Glass Company, Limited Flake glass filler and resin composition containing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319128A (en) * 1995-05-24 1996-12-03 Nippon Electric Glass Co Ltd Device for producing flaky glass
WO2003055812A1 (en) * 2001-12-26 2003-07-10 Matsushita Electric Industrial Co., Ltd. Process and apparatus for producing spherical glass
WO2007111221A1 (en) * 2006-03-24 2007-10-04 Nippon Sheet Glass Company, Limited Flake glass filler and resin composition containing same

Also Published As

Publication number Publication date
JP2010229019A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5541165B2 (en) Electronic device substrate manufacturing method, electronic device manufacturing method, electronic device substrate, and electronic device
CN102471134B (en) Alkali-free glass and method for producing same
TWI486317B (en) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
US20080075949A1 (en) Coated Component Consisting of Quartz Glass, and Method for Producing Said Component
TWI423937B (en) Composite crucible, method of manufacturing the same, and method of manufacturing silicon crystal
JP5614407B2 (en) Molten glass manufacturing method, glass melting furnace, glass product manufacturing method, and glass product manufacturing apparatus
CN102485971B (en) Vitreous silica crucible
US20120247156A1 (en) Method of producing biosoluble inorganic fiber
JP5679591B2 (en) Method for producing a coated component made of quartz glass
CN101023036A (en) Method and device for manufacturing glass and products obtained with the aid of said method
JP5920218B2 (en) Method for melting glass raw material, method for producing molten glass, and method for producing glass product
TW200936820A (en) Quartz glass crucible, method for manufacturing the same and single crystal pulling method
US7299657B2 (en) Method of making high strain point glass
TW201006773A (en) Method of producing a quartz glass crucible
WO2010101137A1 (en) Method for producing glass flake
Koo et al. PbO–B2O3–SiO2 glass powders with spherical shape prepared by spray pyrolysis
JP7127587B2 (en) Alkali-free glass substrate
JP2010248012A (en) Method for producing flaky glass body
CN105906192A (en) Tin liquid bubbling production process and tin liquid bubbling production apparatus for hollow glass spheres
CN101767928A (en) Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
CN103534214A (en) Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article
CN105517963A (en) Manufacturing method for molten glass and manufacturing method for sheet glass using same
TW202033464A (en) Method for producing opaque quartz glass
CN205710405U (en) The tin liquor bubbling process units of hollow glass ball
JP2012036057A (en) Method for producing flake-shaped glass object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748732

Country of ref document: EP

Kind code of ref document: A1