WO2010101092A1 - Optical fiber cable having single tube - Google Patents

Optical fiber cable having single tube Download PDF

Info

Publication number
WO2010101092A1
WO2010101092A1 PCT/JP2010/053127 JP2010053127W WO2010101092A1 WO 2010101092 A1 WO2010101092 A1 WO 2010101092A1 JP 2010053127 W JP2010053127 W JP 2010053127W WO 2010101092 A1 WO2010101092 A1 WO 2010101092A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
fiber cable
single tube
tube
Prior art date
Application number
PCT/JP2010/053127
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 小木
健 大里
直樹 岡田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2010101092A1 publication Critical patent/WO2010101092A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Definitions

  • the present invention relates to an optical fiber cable for laying in a micro duct, and more particularly, to an optical fiber cable with a single tube with improved transmission characteristics in a low temperature environment and pneumatic feeding characteristics to the micro duct.
  • micro duct system method The method of feeding an optical fiber cable into an existing micro duct (small tubular duct) by pneumatic feeding is called a micro duct system method. This construction method is being introduced in a mainstream area where an optical fiber cable is wired in a duct.
  • micro duct system construction method can be used to quickly add necessary optical fibers as the optical network expands, and is considered an effective means for realizing FTTH. Therefore, many studies have been made and reported on this construction method from the viewpoint of cable structure and laying construction method.
  • Patent Document 1 JP-A-4-212907 discloses an optical fiber cable 11 with a single tube shown in FIG.
  • the optical fiber cable 11 includes a single buffer tube 13 having a plurality of optical fibers 12 therein, a jacket 15 made of a plastic material, and the center of the optical fiber cable 11 (or buffer tube 13).
  • Two strength members (strength members) 14 embedded in the jacket 15 and in the vicinity of the inner surface thereof are provided at intervals of 180 degrees around the shaft.
  • the two strength members 14 are arranged in parallel along the optical fiber cable (so-called vertical attachment).
  • 16 is a strength yarn wound in a reverse spiral shape on the buffer tube 13
  • 17 is a steel sheath.
  • the fiber optic cable 11 is said to have the following effects: (a) allows it to be used for a wide variety of installations, including all types of outdoor installations, (b) many conventional cables and In comparison, allows cable designs that reduce overall diameter and weight to facilitate duct installation, (c) can be easily and economically manufactured and has a long operational life, etc. There is an effect.
  • an optical fiber cable 21 with a single tube shown in FIG.
  • an optical fiber cable 21 includes a single buffer tube 23 having a plurality of optical fibers 22 therein, and a strength member layer comprising a plurality of strength members 24 twisted around the buffer tube 23. And an outermost jacket 25.
  • the strength member 24 is made of glass yarn or glass fiber, and is bonded to each other and covered with a thin adhesive layer 26.
  • the optical fiber cable 11 of Patent Document 1 two strength members (strength members) 14 embedded in the jacket 15 limit the bending direction of the optical fiber cable. That is, the optical fiber cable 11 bends only in a direction perpendicular to the line AA in FIG. Therefore, it may be difficult to improve the laying characteristics of the micro duct using pneumatic feeding.
  • glass yarn or glass fiber is used as the strength member 24. Therefore, in order to maintain good transmission characteristics at an operating temperature of ⁇ 30 ° C., a large amount of glass yarn or glass fiber that can withstand compression in the longitudinal direction of the optical fiber cable 21 may be required. .
  • the micro duct system construction method is a very effective means for realizing FTTH because it is possible to quickly add necessary optical fibers as the optical network expands as described above. Therefore, there is a need for an optical fiber cable suitable for applying the microduct system method especially in the access / drop area.
  • the present invention has been made in view of the above circumstances, and can achieve a good pumping characteristic to a micro duct while reducing the diameter and weight and maintaining a good transmission characteristic even in a low temperature environment.
  • An object is to provide an optical fiber cable with a single tube.
  • One aspect of the present invention is an optical fiber cable, in which at least one optical fiber, a single tube containing the at least one optical fiber, and a single tube filled in the single tube. Covering the periphery of the single tube, a filler for preventing the intrusion of fluid into the three tubes, three or four strength members provided to be twisted around the single tube, A cable jacket having three or four strength members embedded therein, and each of the three or four strength members is formed into a rod shape by fiber reinforced plastic, and the cable jacket is made of resin. Formed with.
  • the at least one optical fiber may include 24 optical fibers or less.
  • a high-rigidity tensile body formed into a rod shape by FRP is used.
  • This strength member can withstand the longitudinal compression of the optical fiber cable caused by the shrinkage of the cable jacket at low temperatures. Therefore, the meandering of the optical fiber due to the extra length of the optical fiber in the tube can be suppressed by contraction of the cable jacket at a low temperature.
  • FIG. 3 is a cross-sectional view of the optical fiber cable 1 according to an embodiment of the present invention.
  • the optical fiber cable 1 is mainly used for laying a micro duct.
  • the optical fiber cable 1 includes at least one optical fiber 2 (12 optical fibers in the illustrated example) and a single tube (hereinafter simply referred to as a tube) made of a thermoplastic resin that protects the optical fiber 2. 3).
  • An optical fiber 2 in FIG. 3 is an optical fiber having a diameter of 250 ⁇ m obtained by applying a UV coating to a bare fiber having a diameter of 125 ⁇ m.
  • a filler 6 is provided that prevents the movement of the optical fiber 2 and prevents intrusion of fluid such as water into the tube 3.
  • the strength member 4 is formed in a rod shape from fiber reinforced plastic (FRP: Fiber Reinforced Plastic) and has high rigidity.
  • FRP Fiber Reinforced Plastic
  • the reinforcing fibers in the FRP are, for example, carbon fibers and glass fibers, and may be other various fibers.
  • FRP matrix resin various general resins can be used.
  • the cable jacket 5 covers the periphery of the tube 3.
  • the material of the cable jacket 5 is a resin such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, or linear low-density polyethylene.
  • the strength member 4 is embedded in the cable jacket 5.
  • optical fiber cable 1 of the present embodiment good optical fiber transmission characteristics can be ensured even at low temperatures for the following reasons.
  • a strength member 4 made of FRP formed in a rod shape is used. Since this strength member has high rigidity, the extra length of the optical fiber 2 hardly occurs at a low temperature, and it can be reduced that the radius of curvature becomes extremely small. Accordingly, it is possible to ensure good optical fiber transmission characteristics even at low temperatures. Further, the number of strength members for ensuring the transmission characteristics may be about several (in this embodiment, three or four).
  • Table 1 shows the test results of the transmission characteristics and the pumping characteristics in the optical fiber cable 1 of the present embodiment and another optical fiber cable as a comparative control.
  • Cables (optical fiber cables) D and E in Table 1 are the optical fiber cables 1 according to the present embodiment.
  • the cable D three strength members are layer-twisted.
  • the cable E four strength members are layer-twisted.
  • Cables (optical fiber cables) A, B, and C in Table 1 are other optical fiber cables as comparative controls.
  • In cable A six aramid fibers are layer-twisted.
  • In the cable B six glass yarns are layer-twisted.
  • two strength members are vertically attached.
  • the material of the cable jacket is high-density polyethylene, and the outer diameter thereof is 4.0 mm.
  • the microduct used in this test has an outer diameter of 10 mm and an inner diameter of 8 mm.
  • Table 1 shows the result of measuring the temperature loss characteristic as an evaluation of the transmission characteristic (* 1) for each of the cables A to E as a pass “o” or a fail “x”.
  • This measurement method is based on IEC 79460794-1-2 F1 Temperature cycling. That is, assuming that the temperature change of the optical fiber cable from ⁇ 30 ° C. to + 70 ° C. is one cycle, this cycle is performed twice. During these two cycles, a cable having a maximum loss fluctuation value of light having a measurement wavelength of 1550 nm of 0.15 dB / km or less was accepted and a cable exceeding 0.15 dB / km was rejected.
  • the evaluation results shown in Table 1 indicate that the optical fiber cable according to the present embodiment has good transmission characteristics.
  • Table 1 shows the evaluation results of the pumping characteristics (* 2) for each of the cables A to E with a pass “ ⁇ ” or a fail “ ⁇ ”.
  • a 72-fiber loose-tube optical fiber cable (Y.Hashimoto et al, “Development and Challenge to Realize Ultra High Density Loose tube Cable Optimized for Microduct Use”, Proceedings of 55th IWCS / Focus 2006, p.415- No. 418 (Nov, 2006).), Ie, a cable having a pumping distance of 90% or more passed, and a cable having a pumping distance of less than 90% was rejected.
  • “ ⁇ ” is shown for unrated cables. As shown in this evaluation result, good pumping characteristics have been confirmed in the optical fiber cable according to the present embodiment.
  • the optical fiber cable (that is, cables D and E) according to the present embodiment has a transmission characteristic under a low temperature environment and a pumping characteristic to a micro duct as compared with the other optical fiber cables described above. Is also good.
  • the optical fiber cable When the optical fiber cable according to the present embodiment is configured as an optical fiber cable installed in the micro duct, the optical fiber cable accommodates a small number of optical fibers (for example, optical fibers having 24 or less cores). Is preferred.
  • Table 2 shows a comparison between the optical fiber cable 1 of the present embodiment and a loose tube type optical fiber cable that is currently widely used as an optical fiber cable installed in a micro duct.
  • the cable F is the optical fiber cable 1 according to the present embodiment. In this comparison, the number of optical fibers mounted on the cable F is 12.
  • the outer diameter of the cable F is 4.0 mm.
  • the current loose tube type optical fiber cable is 6.0 mm. Accordingly, the cable F is 33% smaller in diameter than the current loose tube type optical fiber cable.
  • the weight of the cable F is 10 kg / km.
  • the weight of the current loose tube type optical fiber cable is 27 kg / km. Therefore, a weight reduction of 63% is achieved compared with the current loose tube type optical fiber cable.
  • the cable F is thinner than the loose tube type optical fiber cable, it can be sent to a micro duct having an inner diameter of 8 mm.
  • Measured cable F based on IEC 60794-1-2 F1 Temperature cycling and evaluated temperature loss characteristics. In this evaluation, the amount of loss fluctuation at the measurement wavelength of 1.55 ⁇ m was 0.1 dB / km or less in the range of ⁇ 40 ° C. to + 80 ° C. That is, the cable F, like the cables D and E, satisfies the evaluation criteria regarding the transmission characteristics.
  • Fig. 4 shows the test results for the pneumatic feeding performance of cable F.
  • the optical fiber cable 1 is fed into a micro duct having an inner diameter of 8 mm by pneumatic feeding, and the speed (pressure feeding speed) of the optical fiber cable 1 with respect to the length of the optical fiber cable 1 fed into the micro duct is measured.
  • the pneumatic feeding performance that is, the maximum length (pumping distance) of the optical fiber cable 1 that can be pumped is evaluated.
  • the microduct used for this test was formed in an 8-letter shape, and its circumference was about 125 m.
  • the pumping distance of the optical fiber cable 1 was 2500 m. This value is equivalent to the pumping distance (2600 m) of the loose tube type optical fiber cable that accommodates the current 72 fibers shown in the figure, and indicates that the optical fiber cable 1 has good pneumatic feeding performance. ing.
  • optical fiber cable 1 has sufficient mechanical strength to withstand installation by pneumatic supply to the microduct.
  • the bending direction of the cable is limited to the direction toward the portion where there is no strength member.
  • Cheap the drag generated when the optical fiber cable 1 is bent. That is, the optical fiber cable 1 can be bent in an arbitrary direction.
  • the tensile body 4 formed by FRP has flexibility.
  • the strength members 4 are provided in a minimum number of three or four so that this flexibility is not impaired. Also from this point, the optical fiber cable 1 of this embodiment can be bent in an arbitrary direction.
  • the strength members 4 are twisted together, it is possible to obtain a mechanical strength that can withstand the laying of the microduct using pneumatic feeding in addition to the above-described flexibility. Therefore, the pneumatic feeding characteristic necessary for laying the micro duct is improved (for example, the pneumatic pressure can be increased), and the pneumatic feeding to a long distance is possible, so that the workability when laying the optical fiber cable is enabled. Will improve.
  • the optical fiber cable of this embodiment is lighter than a conventional optical fiber cable that uses a metal material as a strength member.
  • the pneumatic feeding characteristics are improved, pneumatic feeding at a long distance is possible, the workability of cable laying is improved, and an efficient and economical FTTH network can be constructed.
  • an optical fiber cable that accommodates a small number of optical fibers (for example, 24 cores or less). Since the optical fiber cable according to the present embodiment is compact and does not occupy the laying area, it can meet such a demand, for example, as an optical fiber cable laid in a duct having an inner diameter of 5.5 mm. Applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

An optical fiber cable comprises an optical fiber (2) having at least one core, a single tube (3) which receives therein the optical fiber (2) having at least one core, a filler (6) which is filled in the single tube (3) and prevents a fluid from entering the tube (3), three or four stranded tensile strength bodies (4) provided around the single tube (3), and a cable sheath (5) which covers the periphery of the single tube and in which the three or four tensile strength bodies are embedded. The tensile strength bodies (4) are made of fiber reinforced plastics in the form of rods. The cable sheath (5) is made of a resin.

Description

単一チューブを伴う光ファイバケーブルFiber optic cable with single tube
 本発明は、マイクロダクトに布設するための光ファイバケーブルに関し、特に低温環境での伝送特性、マイクロダクトへの空気圧送特性を向上させた、単一チューブを伴う光ファイバケーブルに関する。 The present invention relates to an optical fiber cable for laying in a micro duct, and more particularly, to an optical fiber cable with a single tube with improved transmission characteristics in a low temperature environment and pneumatic feeding characteristics to the micro duct.
 既設のマイクロダクト(細径の管状ダクト)に光ファイバケーブルを空気圧送により送り込む工法は、マイクロダクトシステム工法と称される。この工法は、ダクトに光ファイバケーブルを配線することが主流のエリアで導入されつつある。 The method of feeding an optical fiber cable into an existing micro duct (small tubular duct) by pneumatic feeding is called a micro duct system method. This construction method is being introduced in a mainstream area where an optical fiber cable is wired in a duct.
 マイクロダクトシステム工法は、光ネットワークの拡大にあわせて、必要な光ファイバをすばやく増設することが可能であり、FTTHの実現に有効な手段と考えられる。従って、この工法については、ケーブル構造・敷設工法の観点から多くの研究がなされ、報告されている。 The micro duct system construction method can be used to quickly add necessary optical fibers as the optical network expands, and is considered an effective means for realizing FTTH. Therefore, many studies have been made and reported on this construction method from the viewpoint of cable structure and laying construction method.
 特開平4-212907(特許文献1)は、図1に示す、単一チューブを伴う光ファイバケーブル11を開示している。この図に示すように、光ファイバケーブル11は、複数の光ファイバ12を内部に有する単一のバッファチューブ13と、プラスチック材料からなるジャケット15と、光ファイバケーブル11(又はバッファチューブ13)の中心軸の周りに180度の間隔で、ジャケット15内で且つその内面付近に埋設された2本の強度部材(抗張力体)14とを備える。 JP-A-4-212907 (Patent Document 1) discloses an optical fiber cable 11 with a single tube shown in FIG. As shown in this figure, the optical fiber cable 11 includes a single buffer tube 13 having a plurality of optical fibers 12 therein, a jacket 15 made of a plastic material, and the center of the optical fiber cable 11 (or buffer tube 13). Two strength members (strength members) 14 embedded in the jacket 15 and in the vicinity of the inner surface thereof are provided at intervals of 180 degrees around the shaft.
 2本の強度部材14は、光ファイバケーブルに沿って並行に配置(所謂、縦添え)されている。同図において、16はバッファチューブ13上に逆螺旋状に巻かれた強度糸、17は鋼製外装である。 The two strength members 14 are arranged in parallel along the optical fiber cable (so-called vertical attachment). In the figure, 16 is a strength yarn wound in a reverse spiral shape on the buffer tube 13, and 17 is a steel sheath.
 光ファイバケーブル11は、次の効果を奏するとされている:(a)全ての型の戸外の取付けを含む多種の取付けに使用されることを可能にする、(b)多くの従来のケーブルと比較して、ダクトの取付けを容易にするために全体の直径および重量を減少させるケーブル設計を可能にする、(c)容易に経済的に製造されることが可能であり動作寿命が長い等の効果を奏する。 The fiber optic cable 11 is said to have the following effects: (a) allows it to be used for a wide variety of installations, including all types of outdoor installations, (b) many conventional cables and In comparison, allows cable designs that reduce overall diameter and weight to facilitate duct installation, (c) can be easily and economically manufactured and has a long operational life, etc. There is an effect.
 また、US 2004/0240811(特許文献2)は、図2に示す、単一チューブを伴う光ファイバケーブル21を開示している。この図に示すように、光ファイバケーブル21は、複数の光ファイバ22を内部に有する単一のバッファチューブ23と、バッファチューブ23の周囲に撚り合わせた多数本の強度部材24からなる強度部材層と、最外層のジャケット25とを備える。強度部材24はガラス糸(glass yarn)若しくはガラス繊維(glass fibers)であり、互いに接合され、且つ、薄い接着剤層26で覆われている。 Also, US Pat. No. 2004/0240811 (Patent Document 2) discloses an optical fiber cable 21 with a single tube shown in FIG. As shown in this figure, an optical fiber cable 21 includes a single buffer tube 23 having a plurality of optical fibers 22 therein, and a strength member layer comprising a plurality of strength members 24 twisted around the buffer tube 23. And an outermost jacket 25. The strength member 24 is made of glass yarn or glass fiber, and is bonded to each other and covered with a thin adhesive layer 26.
特開平4-212907JP-A-4-212907 US 2004/0240811US 2004/0240811
 特許文献1の光ファイバケーブル11では、ジャケット15内に埋設された2個の強度部材(抗張力体)14が、光ファイバケーブルの曲げ方向を限定する。すなわち、光ファイバケーブル11は、図1のA-A線と直角な方向にしか曲がらない。したがって、空気圧送を用いたマイクロダクトへの布設特性を向上させることが困難な可能性がある。 In the optical fiber cable 11 of Patent Document 1, two strength members (strength members) 14 embedded in the jacket 15 limit the bending direction of the optical fiber cable. That is, the optical fiber cable 11 bends only in a direction perpendicular to the line AA in FIG. Therefore, it may be difficult to improve the laying characteristics of the micro duct using pneumatic feeding.
 特許文献2の光ファイバケーブル21では、強度部材24としてガラス糸(glass yarn)若しくはガラス繊維(glass fibers)を用いられている。従って、-30℃の動作温度(operation temperature)で良好な伝送特性を維持するには、光ファイバケーブル21の長手方向の圧縮に耐え得る大量のガラス糸若しくはガラス繊維が必要となる可能性がある。 In the optical fiber cable 21 of Patent Document 2, glass yarn or glass fiber is used as the strength member 24. Therefore, in order to maintain good transmission characteristics at an operating temperature of −30 ° C., a large amount of glass yarn or glass fiber that can withstand compression in the longitudinal direction of the optical fiber cable 21 may be required. .
 マイクロダクトシステム工法は、上記のように光ネットワークの拡大にあわせて、必要な光ファイバをすばやく増設することが可能であり、FTTHの実現に極めて有効な手段である。したがって、特にアクセス/ドロップエリアにおいて、マイクロダクトシステム工法を適用するのに好適な光ファイバケーブルが求められる。 The micro duct system construction method is a very effective means for realizing FTTH because it is possible to quickly add necessary optical fibers as the optical network expands as described above. Therefore, there is a need for an optical fiber cable suitable for applying the microduct system method especially in the access / drop area.
 本発明は上記事情に鑑みてなされたもので、細径化・軽量化を図りながら、マイクロダクトへの良好な圧送特性を実現することができ、かつ低温環境下においても良好な伝送特性を維持できる、単一チューブを伴う光ファイバケーブルの提供を目的とする。 The present invention has been made in view of the above circumstances, and can achieve a good pumping characteristic to a micro duct while reducing the diameter and weight and maintaining a good transmission characteristic even in a low temperature environment. An object is to provide an optical fiber cable with a single tube.
 本発明の一態様は光ファイバケーブルであって、少なくとも1心の光ファイバと、前記少なくとも1心の光ファイバを収容する単一のチューブと、前記単一のチューブ内に充填され、該チューブ内への流体の侵入を防止する充填材と、前記単一のチューブの周囲に、撚り合わされるように設けられる3本又は4本の抗張力体と、前記単一のチューブの周囲を被覆し、前記3本又は4本の抗張力体がその中に埋め込まれるケーブル外被とを備え、前記3本又は4本の抗張力体は、それぞれ、繊維強化プラスチックによってロッド状に形成され、前記ケーブル外被は樹脂で形成される。 One aspect of the present invention is an optical fiber cable, in which at least one optical fiber, a single tube containing the at least one optical fiber, and a single tube filled in the single tube. Covering the periphery of the single tube, a filler for preventing the intrusion of fluid into the three tubes, three or four strength members provided to be twisted around the single tube, A cable jacket having three or four strength members embedded therein, and each of the three or four strength members is formed into a rod shape by fiber reinforced plastic, and the cable jacket is made of resin. Formed with.
 前記少なくとも1心の光ファイバは24心以下の光ファイバを含んでもよい。 The at least one optical fiber may include 24 optical fibers or less.
 上記の光ファイバケーブルでは、FRPによってロッド状に形成される高剛性の抗張力体が用いられる。この抗張力体は、低温時におけるケーブル外被の収縮によって生じる、該光ファイバケーブルの長手方向の圧縮に耐え得る。従って、低温時におけるケーブル外被の収縮によって、チューブ内での光ファイバの余長による当該光ファイバの蛇行抑制できる。 In the above optical fiber cable, a high-rigidity tensile body formed into a rod shape by FRP is used. This strength member can withstand the longitudinal compression of the optical fiber cable caused by the shrinkage of the cable jacket at low temperatures. Therefore, the meandering of the optical fiber due to the extra length of the optical fiber in the tube can be suppressed by contraction of the cable jacket at a low temperature.
 また、この収縮によって光ファイバが蛇行したとしても、その曲率半径が極端に小さくなることを軽減できる。従って、低温時においても良好な光ファイバの伝送特性を確保できる。 Also, even if the optical fiber meanders due to this contraction, it can be reduced that the radius of curvature becomes extremely small. Accordingly, it is possible to ensure good optical fiber transmission characteristics even at low temperatures.
従来の単一チューブ型光ファイバケーブルを示す斜視図である。It is a perspective view which shows the conventional single tube type | mold optical fiber cable. 他の従来の単一チューブ型光ファイバケーブルを示す斜視図である。It is a perspective view which shows the other conventional single tube type | mold optical fiber cable. 本発明の一実施例の単一チューブ型光ファイバケーブルの断面図である。It is sectional drawing of the single tube type optical fiber cable of one Example of this invention. 上記単一チューブ型光ファイバケーブルについてマイクロダクト内への空気圧送試験をした結果を示すグラフである。It is a graph which shows the result of having carried out the pneumatic feeding test into a micro duct about the said single tube type optical fiber cable.
 以下、本発明の実施形態に係る光ファイバケーブルについて、図面を参照して説明する。 Hereinafter, an optical fiber cable according to an embodiment of the present invention will be described with reference to the drawings.
 図3は本発明の一実施形態に係る光ファイバケーブル1の断面図である。光ファイバケーブル1は、主にマイクロダクトに布設するために使用される。光ファイバケーブル1は、少なくとも1心の光ファイバ2(図示例では12心の光ファイバ)と、これらの光ファイバ2を保護し、熱可塑性樹脂からなる単一のチューブ(以下、単にチューブと称する)3とを有する。図3の光ファイバ2は、直径125μmの裸ファイバにUV被覆を施した直径250μmの光ファイバである。チューブ3内には、光ファイバ2の移動を防ぎかつチューブ3内への水等の流体の侵入を防止する充填材6が設けられる。 FIG. 3 is a cross-sectional view of the optical fiber cable 1 according to an embodiment of the present invention. The optical fiber cable 1 is mainly used for laying a micro duct. The optical fiber cable 1 includes at least one optical fiber 2 (12 optical fibers in the illustrated example) and a single tube (hereinafter simply referred to as a tube) made of a thermoplastic resin that protects the optical fiber 2. 3). An optical fiber 2 in FIG. 3 is an optical fiber having a diameter of 250 μm obtained by applying a UV coating to a bare fiber having a diameter of 125 μm. In the tube 3, a filler 6 is provided that prevents the movement of the optical fiber 2 and prevents intrusion of fluid such as water into the tube 3.
 本実施形態では、チューブ3の周囲に3本又は4本の抗張力体4が撚り合わされている(即ち、層撚り)。抗張力体4は、繊維強化プラスチック(FRP:Fiber Reinforced Plastic)によってロッド状に形成され、高剛性を有する。FRP内の強化繊維は、例えばカーボン繊維、ガラス繊維であり、その他の種々の繊維であっても良い。FRPのマトリクス樹脂も一般的な種々の樹脂を用いることができる。 In this embodiment, three or four strength members 4 are twisted around the tube 3 (ie, layer twist). The strength member 4 is formed in a rod shape from fiber reinforced plastic (FRP: Fiber Reinforced Plastic) and has high rigidity. The reinforcing fibers in the FRP are, for example, carbon fibers and glass fibers, and may be other various fibers. As the FRP matrix resin, various general resins can be used.
 ケーブル外被5はチューブ3の周囲を被覆する。ケーブル外被5の材質は、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、若しくは直鎖状低密度ポリエチレンなどの樹脂である。抗張力体4はケーブル外被5の中に埋め込まれる。 The cable jacket 5 covers the periphery of the tube 3. The material of the cable jacket 5 is a resin such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, or linear low-density polyethylene. The strength member 4 is embedded in the cable jacket 5.
 本実施形態の光ファイバケーブル1によれば、次の理由によって、低温時においても良好な光ファイバの伝送特性を確保できる。 According to the optical fiber cable 1 of the present embodiment, good optical fiber transmission characteristics can be ensured even at low temperatures for the following reasons.
 従来の光ファイバケーブルが低温に置かれたとき、ケーブル外被の収縮によってチューブ内で光ファイバに余長が生じ、この余長によって光ファイバは蛇行し、この蛇行によって光ファイバの曲率半径が極端に小さくなり、光ファイバの伝送特性が悪化することが考えられる。この光ファイバケーブルに用いられる抗張力体として、ガラス糸、ガラス繊維、若しくはアラミド繊維などの繊維のみが用いられる場合、この現象を防ぐには、チューブ(光ファイバケーブル)の長手方向の圧縮に耐え得る大量の糸(繊維)を使用するか、収縮に強い糸(繊維)を用いる必要がある。 When a conventional optical fiber cable is placed at a low temperature, an extra length is generated in the tube due to the contraction of the cable jacket. The extra length causes the optical fiber to meander, and this meander causes an extreme radius of curvature of the optical fiber. It is conceivable that the transmission characteristic of the optical fiber deteriorates. When only fibers such as glass yarn, glass fiber, or aramid fiber are used as the tensile body used in this optical fiber cable, in order to prevent this phenomenon, the tube (optical fiber cable) can withstand compression in the longitudinal direction. It is necessary to use a large amount of yarn (fiber) or to use a yarn (fiber) that is resistant to shrinkage.
 一方、本実施形態の光ファイバケーブル1では、ロッド状に形成されたFRPによる抗張力体4が用いられる。この抗張力体は高剛性を有するので、低温時における光ファイバ2の余長が生じ難く、その曲率半径が極端に小さくなることが軽減できる。従って、低温時においても良好な光ファイバの伝送特性を確保できる。また、この伝送特性を確保するための抗張力体の本数は、数本程度(本実施形態では3本または4本)で良い。 On the other hand, in the optical fiber cable 1 of the present embodiment, a strength member 4 made of FRP formed in a rod shape is used. Since this strength member has high rigidity, the extra length of the optical fiber 2 hardly occurs at a low temperature, and it can be reduced that the radius of curvature becomes extremely small. Accordingly, it is possible to ensure good optical fiber transmission characteristics even at low temperatures. Further, the number of strength members for ensuring the transmission characteristics may be about several (in this embodiment, three or four).
 表1は、本実施形態の光ファイバケーブル1と、比較対照としての他の光ファイバケーブルにおける、伝送特性及び圧送特性の試験結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the test results of the transmission characteristics and the pumping characteristics in the optical fiber cable 1 of the present embodiment and another optical fiber cable as a comparative control.
Figure JPOXMLDOC01-appb-T000001
 表1のケーブル(光ファイバケーブル)D、Eは、本実施形態に係る光ファイバケーブル1である。ケーブルDでは、3本の抗張力体が層撚りされている。ケーブルEでは、4本の抗張力体が層撚りされている。表1のケーブル(光ファイバケーブル)A、B、Cは比較対照としての他の光ファイバケーブルである。ケーブルAでは、6本のアラミド繊維が層撚りされている。ケーブルBでは、6本のガラス糸が層撚りされている。ケーブルCでは、2本の抗張力体が縦添えされている。ケーブルA~Eの何れにおいても、ケーブル外被の材質は高密度ポリエチレンであり、その外径は4.0mmである。本試験に用いたマイクロダクトは、外径が10mm、内径が8mmである。 Cables (optical fiber cables) D and E in Table 1 are the optical fiber cables 1 according to the present embodiment. In the cable D, three strength members are layer-twisted. In the cable E, four strength members are layer-twisted. Cables (optical fiber cables) A, B, and C in Table 1 are other optical fiber cables as comparative controls. In cable A, six aramid fibers are layer-twisted. In the cable B, six glass yarns are layer-twisted. In the cable C, two strength members are vertically attached. In any of the cables A to E, the material of the cable jacket is high-density polyethylene, and the outer diameter thereof is 4.0 mm. The microduct used in this test has an outer diameter of 10 mm and an inner diameter of 8 mm.
 表1は、各ケーブルA~Eに対する伝送特性(*1)の評価として、温度損失特性を測定した結果を、合格「○」又は不合格「×」で表している。この測定の方法はIEC 60794-1-2 F1 Temperature cyclingに基づいている。即ち、-30℃から+70℃までの光ファイバケーブルの温度変化を1サイクルとして、このサイクルが2回実施される。この2サイクルの間に、測定波長1550nmの光の最大損失変動値が0.15dB/km以下のケーブルを合格、0.15dB/kmを超えるケーブルを不合格とした。表1に示す評価結果は、本実施形態に係る光ファイバケーブルが良好な伝送特性を有することを示している。 Table 1 shows the result of measuring the temperature loss characteristic as an evaluation of the transmission characteristic (* 1) for each of the cables A to E as a pass “o” or a fail “x”. This measurement method is based on IEC 79460794-1-2 F1 Temperature cycling. That is, assuming that the temperature change of the optical fiber cable from −30 ° C. to + 70 ° C. is one cycle, this cycle is performed twice. During these two cycles, a cable having a maximum loss fluctuation value of light having a measurement wavelength of 1550 nm of 0.15 dB / km or less was accepted and a cable exceeding 0.15 dB / km was rejected. The evaluation results shown in Table 1 indicate that the optical fiber cable according to the present embodiment has good transmission characteristics.
 また、表1は、各ケーブルA~Eに対する圧送特性(*2)の評価結果を、合格「○」又は不合格「×」で表している。この評価では、72心のルースチューブ型光ファイバケーブル(Y.Hashimoto et al, “ Development and Challenge to Realize Ultra High Density Loose tube Cable Optimized for Microduct Use”, Proceedings of 55th IWCS / Focus 2006, p.415-418 (Nov, 2006).)と同等の圧送特性、即ち90%以上の圧送距離を有するケーブルを合格、90%未満の圧送距離を有するケーブルを不合格とした。なお、未評価のケーブルに対しては「-」で示した。この評価結果の通り、本実施形態に係る光ファイバケーブルでは良好な圧送特性が確認されている。 Also, Table 1 shows the evaluation results of the pumping characteristics (* 2) for each of the cables A to E with a pass “◯” or a fail “×”. In this evaluation, a 72-fiber loose-tube optical fiber cable (Y.Hashimoto et al, “Development and Challenge to Realize Ultra High Density Loose tube Cable Optimized for Microduct Use”, Proceedings of 55th IWCS / Focus 2006, p.415- No. 418 (Nov, 2006).), Ie, a cable having a pumping distance of 90% or more passed, and a cable having a pumping distance of less than 90% was rejected. In addition, “−” is shown for unrated cables. As shown in this evaluation result, good pumping characteristics have been confirmed in the optical fiber cable according to the present embodiment.
 上述の通り、本実施形態に係る光ファイバケーブル(即ち、ケーブルD、E)は、上述の他の光ファイバケーブルと比べて、低温環境下における伝送特性、及び、マイクロダクトへの圧送特性がいずれも良好である。 As described above, the optical fiber cable (that is, cables D and E) according to the present embodiment has a transmission characteristic under a low temperature environment and a pumping characteristic to a micro duct as compared with the other optical fiber cables described above. Is also good.
 なお、本実施形態に係る光ファイバケーブルをマイクロダクトに布設される光ファイバケーブルとして構成する場合、当該光ファイバケーブルは、少心数の光ファイバ(例えば24心以下の光ファイバ)を収容することが好適である。 When the optical fiber cable according to the present embodiment is configured as an optical fiber cable installed in the micro duct, the optical fiber cable accommodates a small number of optical fibers (for example, optical fibers having 24 or less cores). Is preferred.
 表2は、本実施形態の光ファイバケーブル1と、マイクロダクトに布設される光ファイバケーブルとして現在幅広く用いられているルースチューブ型光ファイバケーブルとの比較を示す。ケーブルFは、本実施形態に係る光ファイバケーブル1である。なお、この比較において、ケーブルFに実装される光ファイバの心数は12とした。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows a comparison between the optical fiber cable 1 of the present embodiment and a loose tube type optical fiber cable that is currently widely used as an optical fiber cable installed in a micro duct. The cable F is the optical fiber cable 1 according to the present embodiment. In this comparison, the number of optical fibers mounted on the cable F is 12.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ケーブルFの外径は4.0mmである。一方、現行のルースチューブ型光ファイバケーブルは6.0mmである。従って、ケーブルFは、現行のルースチューブ型光ファイバケーブルに比べて、33%の細径化が実現されている。 As shown in Table 2, the outer diameter of the cable F is 4.0 mm. On the other hand, the current loose tube type optical fiber cable is 6.0 mm. Accordingly, the cable F is 33% smaller in diameter than the current loose tube type optical fiber cable.
 また、ケーブルFの重量は10kg/kmである。一方、現行のルースチューブ型光ファイバケーブルの重量は27kg/kmである。従って、現行のルースチューブ型光ファイバケーブルに比べて、63%の軽量化が達成されている。 The weight of the cable F is 10 kg / km. On the other hand, the weight of the current loose tube type optical fiber cable is 27 kg / km. Therefore, a weight reduction of 63% is achieved compared with the current loose tube type optical fiber cable.
 またケーブルFはルースチューブ型光ファイバケーブルよりも細いため、内径8mmのマイクロダクトへ送通が可能となっている。 Also, since the cable F is thinner than the loose tube type optical fiber cable, it can be sent to a micro duct having an inner diameter of 8 mm.
 ケーブルFについて、IEC 60794-1-2 F1 Temperature cyclingに基づく測定を行い、温度損失特性を評価した。この評価では、測定波長1.55μmにおける損失変動量が、-40℃~+80℃の範囲で0.1dB/km以下であった。つまり、ケーブルFは、ケーブルD、Eと同じく、伝送特性に関する評価基準を満たしている。 Measured cable F based on IEC 60794-1-2 F1 Temperature cycling and evaluated temperature loss characteristics. In this evaluation, the amount of loss fluctuation at the measurement wavelength of 1.55 μm was 0.1 dB / km or less in the range of −40 ° C. to + 80 ° C. That is, the cable F, like the cables D and E, satisfies the evaluation criteria regarding the transmission characteristics.
 ケーブルFの空気圧送性能についての試験結果を図4に示す。この試験では、空気圧送によって内径8mm のマイクロダクト内へ光ファイバケーブル1を送り込み、マイクロダクト内へ送り込まれた光ファイバケーブル1の長さに対する光ファイバケーブル1の速度(圧送スピード)を測定することで、空気圧送性能、即ち、圧送可能な光ファイバケーブル1の最大長(圧送距離)が評価される。なお、この試験に用いたマイクロダクトは8 字型に形成されており、その周長は約125mであった。 Fig. 4 shows the test results for the pneumatic feeding performance of cable F. In this test, the optical fiber cable 1 is fed into a micro duct having an inner diameter of 8 mm by pneumatic feeding, and the speed (pressure feeding speed) of the optical fiber cable 1 with respect to the length of the optical fiber cable 1 fed into the micro duct is measured. Thus, the pneumatic feeding performance, that is, the maximum length (pumping distance) of the optical fiber cable 1 that can be pumped is evaluated. In addition, the microduct used for this test was formed in an 8-letter shape, and its circumference was about 125 m.
 図4に示すように、光ファイバケーブル1の圧送距離は2500mであった。この値は、同図に示す現行の72心の光ファイバを収容するルースチューブ型光ファイバケーブルの圧送距離(2600m)と同等であり、光ファイバケーブル1が良好な空気圧送性能を有することを示している。 As shown in FIG. 4, the pumping distance of the optical fiber cable 1 was 2500 m. This value is equivalent to the pumping distance (2600 m) of the loose tube type optical fiber cable that accommodates the current 72 fibers shown in the figure, and indicates that the optical fiber cable 1 has good pneumatic feeding performance. ing.
 また、この結果は、光ファイバケーブル1が、マイクロダクトへの空気圧送による布設に耐えうる十分な機械強度を有することも示している。 
 本実施形態の効果を下記に纏める。
This result also shows that the optical fiber cable 1 has sufficient mechanical strength to withstand installation by pneumatic supply to the microduct.
The effects of this embodiment are summarized below.
 抗張力体が光ファイバケーブルの長手方向に沿って平行に配置されている(所謂縦添えされている)従来の光ファイバケーブルでは、ケーブルの曲げ方向は、抗張力体が無い部分に向かう方向に限定されやすい。しかし、本実施形態の光ファイバケーブル1では、複数の抗張力体4がチューブの周囲に撚り合わされているので、光ファイバケーブル1を曲げたときに生じる抗力はその曲げ方向に関わり無く略等しくなる。即ち、光ファイバケーブル1は任意の方向に曲がることが可能になる。 In the conventional optical fiber cable in which the strength members are arranged in parallel along the longitudinal direction of the optical fiber cable (so-called longitudinally attached), the bending direction of the cable is limited to the direction toward the portion where there is no strength member. Cheap. However, in the optical fiber cable 1 of the present embodiment, since the plurality of strength members 4 are twisted around the tube, the drag generated when the optical fiber cable 1 is bent is substantially equal regardless of the bending direction. That is, the optical fiber cable 1 can be bent in an arbitrary direction.
 FRPによって形成された抗張力体4は柔軟性を有する。本実施形態の光ファイバケーブル1では、この柔軟性が損なわれないように抗張力体4が3本又は4本という最小限の本数で設けられる。この点からも、本実施形態の光ファイバケーブル1は任意の方向に曲がることが可能になっている。 The tensile body 4 formed by FRP has flexibility. In the optical fiber cable 1 of this embodiment, the strength members 4 are provided in a minimum number of three or four so that this flexibility is not impaired. Also from this point, the optical fiber cable 1 of this embodiment can be bent in an arbitrary direction.
 また、抗張力体4が撚り合わされていることで、上述の柔軟性に併せて、空気圧送を用いたマイクロダクトへの布設に耐えられる機械的強度を得ることができる。したがって、マイクロダクトへの布設に必要な空気圧送特性が向上し(例えば、空気圧を上昇させることが可能になる)、遠距離への空気圧送が可能となり、光ファイバケーブルを布設する際の作業性が向上する。 In addition, since the strength members 4 are twisted together, it is possible to obtain a mechanical strength that can withstand the laying of the microduct using pneumatic feeding in addition to the above-described flexibility. Therefore, the pneumatic feeding characteristic necessary for laying the micro duct is improved (for example, the pneumatic pressure can be increased), and the pneumatic feeding to a long distance is possible, so that the workability when laying the optical fiber cable is enabled. Will improve.
 また、表2に示すように、抗張力体として金属材料を用いる従来の光ファイバケーブルと比べると、本実施形態の光ファイバケーブルは軽量化する。この点でも、空気圧送特性が向上し、遠距離での空気圧送が可能となり、また、ケーブル布設の作業性が向上し、効率的・経済的なFTTHのネットワーク構築が可能となる。例えば、既にマイクロダクトが張り巡らされているネットワークにおいて新たに光ファイバケーブルを布設する場合、少ない心数(例えば24心以下)の光ファイバを収容した光ファイバケーブルの需要がある。本実施形態に係る光ファイバケーブルはコンパクトなことから、布設エリアを無駄に占めることがないため、このような需要に応えることができ、例えば内径5.5mmのダクト内へ布設する光ファイバケーブルとして適用できる。 Also, as shown in Table 2, the optical fiber cable of this embodiment is lighter than a conventional optical fiber cable that uses a metal material as a strength member. In this respect as well, the pneumatic feeding characteristics are improved, pneumatic feeding at a long distance is possible, the workability of cable laying is improved, and an efficient and economical FTTH network can be constructed. For example, when a new optical fiber cable is laid in a network in which micro ducts are already stretched, there is a demand for an optical fiber cable that accommodates a small number of optical fibers (for example, 24 cores or less). Since the optical fiber cable according to the present embodiment is compact and does not occupy the laying area, it can meet such a demand, for example, as an optical fiber cable laid in a duct having an inner diameter of 5.5 mm. Applicable.

Claims (2)

  1. 光ファイバケーブルであって、
        少なくとも1心の光ファイバと、
        前記少なくとも1心の光ファイバを収容する単一のチューブと、
        前記単一のチューブ内に充填され、該チューブ内への流体の侵入を防止する充填材と、
        前記単一のチューブの周囲に、撚り合わされるように設けられる3本又は4本の抗張力体と、
        前記単一のチューブの周囲を被覆し、前記3本又は4本の抗張力体がその中に埋め込まれるケーブル外被と
    を備え、
     前記3本又は4本の抗張力体は、それぞれ、繊維強化プラスチックによってロッド状に形成され、
     前記ケーブル外被は樹脂で形成される。
    An optical fiber cable,
    At least one optical fiber;
    A single tube containing the at least one optical fiber;
    A filler that fills the single tube and prevents entry of fluid into the tube;
    3 or 4 strength members provided to be twisted around the single tube;
    A cable jacket covering the periphery of the single tube and having the three or four strength members embedded therein;
    Each of the three or four strength members is formed into a rod shape by fiber reinforced plastic,
    The cable jacket is made of resin.
  2. 請求項1記載の光ファイバケーブルであって、
     前記少なくとも1心の光ファイバは24心以下の光ファイバを含む。
    The optical fiber cable according to claim 1,
    The at least one optical fiber includes 24 optical fibers or less.
PCT/JP2010/053127 2009-03-03 2010-02-26 Optical fiber cable having single tube WO2010101092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049527A JP2010204368A (en) 2009-03-03 2009-03-03 Single tube type optical fiber cable
JP2009-049527 2009-03-03

Publications (1)

Publication Number Publication Date
WO2010101092A1 true WO2010101092A1 (en) 2010-09-10

Family

ID=42709649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053127 WO2010101092A1 (en) 2009-03-03 2010-02-26 Optical fiber cable having single tube

Country Status (2)

Country Link
JP (1) JP2010204368A (en)
WO (1) WO2010101092A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353644A (en) * 2013-06-13 2013-10-16 成都亨通光通信有限公司 Easy-to-branch tight-buffered optical cable
JP2015045727A (en) * 2013-08-28 2015-03-12 株式会社フジクラ Optical fiber cable and manufacturing method thereof
CA3045786C (en) * 2016-12-01 2022-07-26 Fujikura Ltd. Optical cable and sheath removing method
JPWO2022018865A1 (en) * 2020-07-22 2022-01-27

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144121A (en) * 1985-12-02 1987-06-27 アメリカン テレフオン アンド テレグラフ カムパニ− Optical fiber communication cable
JPH0413903U (en) * 1990-05-24 1992-02-04
JP2005208430A (en) * 2004-01-23 2005-08-04 Showa Electric Wire & Cable Co Ltd Optical cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144121A (en) * 1985-12-02 1987-06-27 アメリカン テレフオン アンド テレグラフ カムパニ− Optical fiber communication cable
JPH0413903U (en) * 1990-05-24 1992-02-04
JP2005208430A (en) * 2004-01-23 2005-08-04 Showa Electric Wire & Cable Co Ltd Optical cable

Also Published As

Publication number Publication date
JP2010204368A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US6101305A (en) Fiber optic cable
US5109457A (en) All-dielectric optical fiber cable having enhanced fiber access
EP1011000B1 (en) Robust fiber optic cables
EP2820462B1 (en) Aerial optical fiber cables
US20130112342A1 (en) Compact, Hybrid Fiber Reinforced Rods For Optical Cable Reinforcements And Method For Making Same
JP6034344B2 (en) Fiber optic cable
EP3207415B1 (en) Central loose tube optical-fiber cable
US4093342A (en) Optical fiber cable
WO2007091880A1 (en) Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter
US6658187B2 (en) Optical fiber cable assembly with interstitial support members
DK3058406T3 (en) Blown high fiber optical fiber unit and method of manufacture
US6778744B2 (en) Dielectric optical fiber cable having reduced preferential bending
US20200174209A1 (en) Compact indoor optical fiber backbone cable utilizing rollable ribbon
KR100511116B1 (en) Loose tube optical cable having straight aggregation structure
WO2010101092A1 (en) Optical fiber cable having single tube
US20230213716A1 (en) Ribbed and grooved sheath for optical fiber cable
EP3663822A1 (en) Dual layer micro optical fiber cable
US10036863B2 (en) Optical fiber cables with flat ribbon fibers
WO2012036031A1 (en) Plastic optical fiber unit and plastic optical fiber cable using same
JP2006251339A (en) Fiber optic cable and its manufacturing method
KR20110012705A (en) Central loose tube double jacket optical fiber cable
EP1939660A2 (en) Indoor optical fiber cable
KR20210127385A (en) Optic cable
EP3674761A1 (en) Unitube optical fiber cable
EP3226047B1 (en) Single layer optical fiber cable for microduct application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748687

Country of ref document: EP

Kind code of ref document: A1