WO2010098340A1 - Drive device and lens drive device - Google Patents

Drive device and lens drive device Download PDF

Info

Publication number
WO2010098340A1
WO2010098340A1 PCT/JP2010/052827 JP2010052827W WO2010098340A1 WO 2010098340 A1 WO2010098340 A1 WO 2010098340A1 JP 2010052827 W JP2010052827 W JP 2010052827W WO 2010098340 A1 WO2010098340 A1 WO 2010098340A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
driven body
support
lens
driving device
Prior art date
Application number
PCT/JP2010/052827
Other languages
French (fr)
Japanese (ja)
Inventor
篤広 野田
滋 和田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011501612A priority Critical patent/JP5447501B2/en
Publication of WO2010098340A1 publication Critical patent/WO2010098340A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Definitions

  • the present invention relates to a driving device that drives a small and fine driven body, such as a lens of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
  • Small mobile terminals such as mobile phones, personal digital assistants (PDAs), and portable music players are often equipped with digital cameras for taking images.
  • PDAs personal digital assistants
  • digital cameras for taking images.
  • a method for photographing a high-quality image with the digital camera a method of adding an optical function such as a focus function and a zoom function to the digital camera is used.
  • a driving device for driving the lens (and the lens support) provided in the digital camera It is mounted in a limited space of the digital camera, and the driving device mounted on the digital camera needs to be small and light.
  • a drive device including a shape memory alloy (hereinafter referred to as SMA) actuator has been proposed.
  • a driving device that suppresses such inclination
  • a driving device that is arranged in parallel with the moving direction of the driven body and includes a columnar guide pole and a guide shaft that guide the driven body.
  • the driven body moves while being guided by the guide pole and the guide shaft. Therefore, even when the driven body is pressed in a single-pressed state, the driven body is not moved. It is hard to tilt.
  • this driving device as a moving device for a lens support holding a lens, it is possible to prevent the lens support from tilting (hereinafter referred to as tilt) when the lens support moves (for example, Japanese Patent Application Laid-Open No. 2007-2007). No. -58075, JP 2007-58076, JP 2007-60530, etc.).
  • the image is guided by the guide pole and the guide shaft as described above. Further, it was possible to perform photographing with sufficient definition by using the lens driving unit.
  • an image sensor of a digital camera mounted on a small portable terminal has an increased number of pixels, and in order to use an image sensor with a higher pixel, a lens having a high performance is required. Therefore, in the conventional lens driving unit that guides the movement of the lens support by the guide members of the guide pole and the guide shaft, even if the tilt is generated by the play between the guide member and the lens support, the image Cause disturbance.
  • a driving device there is one that holds both sides in the moving direction of a driven body (lens support holding a lens) with parallel leaf springs in order to achieve further miniaturization and weight reduction.
  • a driven body lens support holding a lens
  • parallel leaf springs in order to achieve further miniaturization and weight reduction.
  • it is difficult to suppress the occurrence of tilt.
  • an object of the present invention is to provide a small-sized drive device that drives a driven body and that can accurately move the driven body.
  • the present invention provides a support leg, a lever part rotatably supported by the support leg part, and is connected to the lever part and engaged with a driven body in at least two places.
  • a displacement output portion, and a shape memory alloy actuator that engages with the lever portion and reversibly deforms, and the displacement output portion coupled to the lever portion by deformation of the shape memory alloy actuator includes the driven body And a lever support part that protrudes from one of the support leg part and the lever part and has an engagement part at the tip, and is formed on the other side.
  • the lever portion passes through a contact portion between the engagement portion and the support recess or the vicinity thereof, and a rotation axis that is orthogonal to or intersects with the moving direction of the driven body. Pivotable and Pivotably to the rotating shaft or about the swing axis orthogonal or intersect with the rotation axis line parallel to, and is supported by the support leg.
  • the displacement output portion is attached to be inclined with respect to the lever portion. Even if it is, the lever portion is swung, and a uniform displacement is output from each displacement output portion to the driven body.
  • the lever portion may be supported by the contact portion between the engagement portion of the lever support portion and the support recess.
  • the engagement portion and the support recess may be in contact at one point, may be in contact at least at three points, or may be in contact with a curved surface.
  • Examples of the supporting concave portion include conical shapes such as a cone, a triangular pyramid, and a quadrangular pyramid, a spherical shape, and a smooth curved surface shape.
  • examples of the shape of the engaging portion include a cone shape such as a cone, a triangular pyramid, and a quadrangular pyramid, a spherical shape, and a columnar shape such as a cylinder.
  • the thing which contacts at least 3 or more points is preferable in consideration of stability.
  • it is preferable that at least one of them has a shape based on a circle or a sphere.
  • the lever support portion includes a swing shaft portion that is swingably inserted into a swing hole formed in either the support leg portion or the lever portion, and the engagement portion is An engaging shaft portion extending in a direction perpendicular to or intersecting with the central axis of the swinging shaft portion or a line parallel to the central axis; and the support recess slides the engaging shaft portion around the central axis. It may be a concave groove shape that is movably supported.
  • the present invention provides a support leg, a lever part rotatably supported by the support leg part, and is connected to the lever part and engaged with a driven body in at least two places.
  • the lever portion is swung by deformation of the shape memory alloy actuator, and the displacement output portion is A driving device for moving the driven body in a predetermined direction, wherein the plurality of displacement output portions are moved in the direction along the moving direction of the driven body according to the inclination of the lever, You may provide the displacement adjustment part which balances and engages a displacement output part with this to-be-driven body.
  • the driven body Even when the displacement output part is inclined with respect to the lever part, when the displacement adjustment part adjusts the displacement of each displacement output part and the lever part moves, the driven body It is possible to output displacement in a balanced manner. Thereby, it is possible to suppress the occurrence of problems that the driven body is tilted or the moving direction of the driven body is shifted.
  • the plurality of displacement output units may be attached to the lever unit via an arm unit that surrounds a part of the driven body from the side, and the plurality of displacement output units are connected to the driven unit. It is attached to the lever part via an arm part that surrounds a part of the body from the side, and the displacement adjustment part is formed on at least a part of the arm part, and the arm part is the displacement adjustment part It may be elastically deformable.
  • an urging member that urges the driven body with a force in a direction opposite to the force received by the driven body from the displacement output unit may be provided.
  • the lever portion can be of a shape that is stationary when the driving force from the shape memory alloy actuator balances the drag force that the displacement output portion receives from the driven body.
  • it may include a pair of parallel springs arranged so as to be parallel to each other and holding the driven body from both the front and rear sides in the moving direction, and at least a part of the driven body You may provide the guide part which contacts and is arrange
  • the SMA actuator can be a linear one.
  • a lens driving device that drives a lens unit including a lens as the driven body can be given.
  • the present invention is a small driving device for driving a driven body, and the driven body can be moved with high accuracy.
  • FIG. 2 is a schematic layout diagram when the imaging apparatus shown in FIG. 1 is viewed in the direction of arrow II.
  • FIG. 3 is a schematic layout diagram when the imaging apparatus shown in FIG. 1 is viewed in the direction of arrow III. It is the figure seen from the arrow II side when the actuator used for the imaging device shown in FIG. 1 was operated. It is the figure seen from the arrow III side when the actuator used for the imaging device shown in FIG. 1 was operated. It is a figure of the imaging device provided with the lens drive device in which the arm part inclines. It is a figure in the middle of assembling the actuator of the lens drive device shown in FIG.
  • FIG. 1 is a plan view of an image pickup apparatus in which the drive device according to the present invention is used
  • FIG. 2 is a schematic arrangement view when the image pickup apparatus shown in FIG. 1 is viewed in the direction of arrow II
  • FIG. FIG. 3 is a schematic layout diagram when the imaging device shown in FIG. 1 is viewed in the direction of arrow III.
  • 1 omits the upper surface of the case, the top plate, the leaf spring, and the bias spring for convenience of explanation, and omits the side portions of the case in FIGS. 2 and 3.
  • the upper and lower positional relationships are the positional relationships in the drawings.
  • the imaging apparatus A includes a case Ca that is a box having a square shape in plan view, an image sensor Ims that includes an individual imaging element for capturing an image, and a lens that causes the photoelectric conversion unit of the image sensor Ims to capture a subject image. And a lens driving device La for driving.
  • Case Ca forms the outer shell of the image pickup apparatus A, and suppresses the incidence of light other than the imaging light from the outside, the entry of foreign matter, and the impact and / or vibration on the members disposed inside.
  • Case Ca is formed of a resin or the like, and is a box having a rectangular parallelepiped shape with a rectangular bottom (here, square).
  • An imaging window Cw for allowing imaging light to enter is formed on the upper surface of the case Ca.
  • the imaging window Cw is formed so that the optical axis Ax of the imaging device A passes through the center.
  • the image sensor Ims includes a solid-state image sensor that converts irradiated imaging light into an electrical signal.
  • a sensor using a CMOS type sensor or a CCD imaging sensor is adopted for the photoelectric conversion unit.
  • the image sensor Ims has a rectangular plate shape in plan view.
  • the long side and the short side are parallel to the diagonal lines on the bottom surface of the case Ca, and the center is the optical axis Ax of the imaging apparatus A. They are arranged so as to overlap.
  • the lens driving device La using the driving device which is the main part of the present invention will be described.
  • the lens driving device La is disposed inside the case Ca.
  • the lens driving device La includes a plate-like base portion 1 in which a through hole 10 is formed in the center, a top plate portion 2 in which a through hole 20 having the same size as the base portion 1 is formed in the center, and an image sensor Ims.
  • a lens unit 3 having a lens for picking up a subject image, a driving device 4 for moving the lens unit 3 toward and away from the image sensor Ims, and a base unit 1 and a top plate unit 2 are fixed to the lens unit 3 and held.
  • An upper leaf spring 51, a lower leaf spring 52, and a bias spring 6 that presses the lens unit 3 are provided.
  • the base portion 1 is a flat plate having a square shape in plan view, and is a fixed member that is fixed to the case Ca and forms the bottom portion of the lens driving device La.
  • the top plate portion 2 is a flat plate-like member, and is arranged so as to be parallel to the base portion 1.
  • a through hole 10 and a through hole 20 are formed in the base portion 1 and the top plate portion 2.
  • the through hole 10 is a cylindrical hole having an inner diameter smaller than the outer diameter of the lens unit 3 and larger than an imaging lens 31 (described later) disposed in the lens unit 3. Further, the inner diameter of the through hole 10 is a size that does not prevent the light from entering the image sensor Ims.
  • the through hole 20 is a cylindrical hole having an inner diameter larger than the outer diameter of the lens unit. The central axes of the through hole 10 and the through hole 20 both overlap the optical axis Ax of the imaging device A.
  • a lower leaf spring 52 and an upper leaf spring 51 are respectively attached to the upper surface of the base portion 1 and the lower surface of the top plate portion 2.
  • the upper leaf spring 51 and the lower leaf spring 52 are parallel to each other and sandwich the lens unit 3 from above and below.
  • the upper leaf spring 51 and the lower leaf spring 52 are formed with holes for allowing imaging light to pass therethrough.
  • the lens unit 3 includes an imaging lens 31 and a lens holding frame 32 on which the imaging lens 31 is held.
  • the imaging lens 31 is a lens group including an objective lens, a focus lens, a zoom lens, and the like.
  • An imaging optical system that guides imaging light incident from the imaging window Cw to the image sensor Ims and forms a subject image on the image sensor Ims. It constitutes.
  • the imaging lens 31 is a lens group composed of a plurality of lenses, but may be composed of a single lens.
  • the lens holding frame 32 is a cylindrical frame (so-called ball frame), and holds the imaging lens 31 therein.
  • the upper surface is held by the upper plate spring 51 and the lower surface is held by the lower plate spring 52, and the central axis of the lens holding frame 32 overlaps the optical axis Ax. Further, since the lens holding frame 32 is sandwiched between the upper plate spring 51 and the lower plate spring 52, the degree of freedom of displacement of the lens unit 3 is restricted in the direction along the optical axis Ax. When the lens unit 3 moves in the direction along the axis, the lens unit 3 moves so as to penetrate the through hole 20 of the top plate 2.
  • the lens holding frame 32 includes two convex portions 33 projecting radially outward in the vicinity of the upper surface of the outer peripheral portion.
  • the two convex portions 33 are formed so as to be equidistant from the upper surface, and are formed at symmetrical positions across the central axis.
  • the convex portions 33 are arranged side by side in the diagonal direction of the base portion 1, and the convex portions 33 are arranged in the vicinity of the opposite corner portions of the case Ca.
  • the driving device 4 applies a driving force to the lens unit 3.
  • the drive device 4 is formed of a lever portion 41, a support leg portion 42 that supports the lever portion 41, an arm portion 43 that is fixed to the lever portion 41, and a shape memory alloy (hereinafter referred to as SMA),
  • SMA shape memory alloy
  • An SMA actuator 44 provided on a displacement input portion 412 (described later) formed on the lever portion 41 and electrodes 45 for fixing both ends of the SMA actuator 44 and supplying electricity to the SMA actuator 44 are provided.
  • the lever portion 41 has a rectangular parallelepiped shape, and a support concave portion 411 which is a conical concave portion is formed at the approximate center of one surface in the vertical direction.
  • a displacement input portion 412 in which the SMA actuator 44 is installed on the surface opposite to the support recess 411 is formed at the lower end portion.
  • the portion of the lever portion 41 where the displacement input portion 412 is formed is formed in a curved surface shape so that stress is not concentrated on the SMA actuator 44.
  • the displacement input portion 412 has a V-shaped groove shape along the curved surface so that the SMA actuator 44 does not come off when the lever portion 41 moves.
  • the support leg portion 42 is a quadrangular columnar member fixed to the base portion 1.
  • the support leg portion 42 is disposed close to a corner portion different from the corner portion where the convex portion 33 of the case Ca is close.
  • the support leg portion 42 includes a conical lever support portion 421 that protrudes from a surface opposite to the surface facing the lens unit 3 and is inserted into the support recess 411.
  • the lever support portion 421 is formed such that the central axis (swing axis Bx) is orthogonal to the direction in which the convex portions 33 are arranged or a direction parallel thereto.
  • the lever support portion 421 is disposed so that the tip thereof is in contact with the conical apex portion of the support recess 411.
  • the lever support portion 421 may be formed integrally with the support leg portion 42 or may be fixed to the support leg portion 42 separately from the support leg portion 42.
  • the support concave portion 411 and the lever support portion 421 form a support portion, and the lever support portion 421 supports the lever portion 41 with a point by the engagement portion at the tip thereof contacting the deepest portion of the support concave portion 411. Yes.
  • the lever portion 41 can swing around the swing axis Bx and can also rotate around an axis (rotation axis Cx) intersecting the swing axis Bx (or perpendicular to the displacement direction). Yes.
  • the balance of forces acting on the lever portion 41 will be described later.
  • the arm portion 43 is disposed on both side surfaces adjacent to the surface on which the support concave portion 411 of the lever portion 41 is formed.
  • the arm part 43 is divided into two parts, and each arm part 43 extends in the vicinity of the lens unit 3 evenly.
  • the arm part 43 is bent halfway, and a displacement output part 431 is formed on the tip side.
  • Displacement output portions 431 formed on both the forked arm portions 43 are parallel to each other and are in contact with the lower portion of the convex portion 33.
  • the displacement output part 431 includes a locking part 432 cut out so that the engagement surface with the convex part 33 is a curved surface.
  • the arm part 43 and the lever part 41 may be formed integrally, and may be formed separately.
  • the SMA actuator 44 for example, a Ni-Ti alloy or the like formed in a wire shape can be cited.
  • the SMA actuator is not limited to a wire-like one, and a shape (for example, a belt shape, a plate shape, etc.) that can move the arm portion can be widely used.
  • SMA has a crystalline phase that changes with its own temperature.
  • the SMA actuator 44 is transformed into a martensite phase when in a low temperature state and into an austenite phase when in a high temperature state.
  • the SMA actuator 44 repeats the phase transformation reversibly according to the temperature change.
  • the SMA actuator 44 expands or contracts due to phase transformation.
  • the SMA actuator 44 is a conductor having a predetermined electrical resistance, Joule heat is generated by energizing the SMA actuator from the electrode 45.
  • the SMA actuator 44 becomes a high temperature state due to the Joule heat, and heat is released by reducing the amount of current supplied from the high temperature state or by cutting off the current supply, resulting in a low temperature state.
  • the SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and is arranged in a V shape that is folded back by the lever portion 41. Both end portions of the SMA actuator 44 are fixed by electrodes 45 in the vicinity of the convex portion 33. The electrode 45 is fixed to the base portion 1.
  • the SMA actuator 44 is installed on the displacement input unit 412 so as to be parallel to the base unit 1, and both ends thereof are fixed with electrodes 45.
  • the SMA actuator 44 contracts, the displacement input unit 412 is pulled by the SMA actuator 44.
  • a rotation moment about the support recess 411 acts on the lever portion 41.
  • the arm portion 43 rotates to lift the displacement output portion 431, the displacement output portion 431 pushes the convex portion 33, and the lens unit 3 is displaced.
  • the arm portion 43 and the displacement output portion 431 are formed so as to be symmetrical with respect to the lever portion 41, and the two convex portions 33 are formed symmetrically with respect to the central axis of the lens unit 3. Therefore, an equal force acts on the two convex portions 33. Thereby, the lens unit 3 is displaced so that the optical axis of the imaging lens 31 does not shift.
  • the electrode 45 has the same angle between each attached SMA actuator 44 and the diagonal of the base portion 1. Further, the length from each electrode 45 to the displacement input portion 412 is equal. Since both sides of the SMA actuator 44 sandwiching the displacement input portion 412 are arranged at the same length and at the same angle, the amount of expansion and contraction of the SMA actuator 44 on both sides of the displacement input portion 412 and the force caused by the extension and contraction are equal.
  • the SMA actuator 44 By installing the SMA actuator 44 as described above, it is possible to prevent the expansion / contraction amount of the SMA actuator 44 from being biased to either direction. As a result, the portion of the SMA actuator 44 that is installed on the displacement input portion 412 is less likely to be displaced from the displacement input portion 412. Since the deviation can be suppressed, the friction between the SMA actuator 44 and the displacement input unit 412 can be reduced. Further, the force due to the expansion and contraction of the SMA actuator 44 fixed to both the electrodes 45 acts equally (size and direction) on the displacement input unit 412. Thereby, the displacement direction of the displacement input part 412 becomes a direction orthogonal to the arrangement direction of the convex parts 33, that is, a direction parallel to the swing axis Bx.
  • the bias spring 6 is a compression coil spring having substantially the same diameter as the peripheral size of the lens holding frame 32.
  • the bias spring 6 has a lower end in contact with the upper surface of the lens holding frame 32 and an upper end in contact with the upper side of the case Ca. As a result, the bias spring 6 biases the lens holding frame 32 downward.
  • the bias spring 6 is arranged so as not to prevent the imaging light from entering the image sensor Ims.
  • the compression coil spring is mentioned as the bias spring 6, it is not limited to it, The thing of the shape different from coils, such as a leaf
  • FIG. 4 is a view as seen from the arrow II side when the actuator used in the image pickup apparatus shown in FIG. 1 is operated.
  • FIG. 5 is a view when the actuator used in the image pickup apparatus shown in FIG. 1 is operated. It is the figure seen from the arrow III side.
  • the lens unit 3 When the driving device 4 is not driven, as shown in FIG. 2, the lens unit 3 is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1 and is stationary (base position). At this time, the upper surface of the lens unit 3 in the drawing is pushed downward by the bias spring 6 with the bias force F1. The lower surface of the lens unit 3 in the drawing is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1, and the lens unit 3 receives the drag R 1 from the edge portion 100.
  • an SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and the SMA actuator 44 is fixed to the electrode 45 in a tensioned state.
  • the tensile force F ⁇ b> 2 due to the tension of the SMA actuator 44 acts on the displacement input unit 412.
  • a moment around the third axis Cx (counterclockwise in the figure) by the tensile force F2 acts on the lever portion 41 and the arm portion 43, and the moment causes a force in a direction opposite to the bias force F1 to the convex portion 33. It is working.
  • the lens unit 3 is stationary because the bias force F1, the drag force R1, and the moment force acting on the lens unit 3 are balanced.
  • the magnitude of the tensile force F2 can be set to such a level that the SMA actuator 44 is tensioned without sagging. It is also possible to increase the pulling force F2 so that the lens unit 3 does not come into contact with the edge portion 100 so that the bias force F1 and the force due to the moment are balanced, and the position is set as the base position.
  • the inner diameter of the through hole 10 is smaller than the outer diameter of the lens unit 3 and the edge portion 100 supports the bottom surface of the lens unit 3 in the figure, but the through hole 10 is described as an example.
  • a holding portion for holding the lens unit 3 from the peripheral edge portion 10 toward the center of the through hole 10 may be formed.
  • the holding unit the number that can stably hold the lens unit 3 is used, and a wide variety of holding units that do not hinder the incidence of light on the image sensor Ims can be used.
  • the SMA actuator 44 when the lens unit 3 is stopped at the base position, the SMA actuator 44 is not energized, is in a low temperature state (martensitic phase), and the SMA actuator 44 is in an extended state. Yes.
  • the SMA actuator 44 is energized from the electrode 45. As described above, the SMA actuator 44 is heated by Joule heat when energized. As a result, the SMA actuator 44 undergoes a phase transformation from the martensite phase to the austenite phase, and the SMA actuator 44 contracts.
  • the contraction force F ⁇ b> 3 acts on the displacement input unit 412 due to the contraction of the SMA actuator 44.
  • the contraction force F3 is larger than the tensile force F2, and a counterclockwise moment centering on the rotation axis Cx acting on the lever portion 41 is increased. This moment is transmitted to the arm portion 43 and the displacement output portion 431, the balance of force is lost, and the displacement output portion 431 pushes the convex portion 33 upward.
  • the convex portion 33 is pushed by the displacement output portion 431 and is displaced upward against the pressing force F ⁇ b> 1 applied from the bias spring 6.
  • the bias spring 6 is compressed by the movement of the lens unit 3, and pushes back the lens unit 3 with a repulsive force F4.
  • the lens unit 3 stops at a position where the force that pushes up the lens unit 3 by the contraction force F3 acting on the lever portion 41 and the force that pushes down the lens unit 3 by the repulsive force F4 are balanced.
  • the displacement output part 431 is provided with the latching
  • the bifurcated arm portion 43 is equally displaced on both sides.
  • the convex portions 33 arranged symmetrically with respect to the central axis are evenly pressed by the arm portion 43, so that the lens holding frame 32 is in a state where the central axis overlaps or substantially overlaps the optical axis Ax. Displace. That is, even if the lens unit 3 is displaced, the imaging lens 31 does not shift or tilt its optical axis with respect to the optical axis Ax of the imaging device A, and it is possible to suppress a decrease in imaging accuracy.
  • the driving device 4 can lift the lens unit 3 by energizing the SMA actuator 44 to perform the focus operation or the zoom operation.
  • the SMA actuator 44 can adjust the magnitude of the contraction force F3 by changing the heat generation amount according to the amount of current to be applied. That is, the driving device 4 can adjust the amount of movement of the lens unit 3 by controlling the amount of current to be applied.
  • the bias spring 6 compressed by the contraction force F3 extends. Accordingly, the repulsive force F4 acting on the lens unit 3 is reduced.
  • the bias spring 6 returns to its original length (returns to the state in which the pressing force F1 is applied from the bias spring 6 to the lens unit 3), and the SMA actuator 44 extends to the original length (from the SMA actuator 44 to the lever).
  • the portion 41 returns to the state where the tensile force F2 is applied). Finally, the lens unit 3 and the driving device 4 return to the base position.
  • the driving device 4 can displace the lens unit 3 along the optical axis Ax by turning on and off the SMA actuator 44. Further, by appropriately adjusting the amount of current to be supplied to the SMA actuator 44, it is possible to adjust the contraction force F3, move the lens unit 3 between predetermined positions, and stop at that position. As a result, even when the imaging apparatus A performs a focus operation and a zoom operation, the lens unit 3 can be moved without the optical axis of the imaging lens 31 being shifted or tilted. It is possible to form a subject image with high accuracy (high resolution).
  • the above-described lens driving device has been described with an example in which the bifurcated arm portion 43 is completely uniform.
  • processing errors processing accuracy
  • assembly errors assembly
  • the lens driving device La of the present invention is devised to displace the lens unit 3 with high accuracy even when the bifurcated arm portion 43 is not completely symmetric.
  • FIG. 6 is a diagram of an imaging apparatus provided with a lens driving device having an inclined arm portion
  • FIG. 7 is a diagram in the middle of assembling an actuator of the lens driving device shown in FIG. 6,
  • FIG. 8 is a lens shown in FIG. It is a figure of the state which the drive device lifted the lens unit.
  • symbol is attached
  • the arm portion 43 is formed to be inclined with respect to the lever portion 41.
  • the lens unit 3 is in a base position in which the upper surface in the drawing is pressed by the bias spring 6 and the lower surface in the drawing is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1.
  • the SMA actuator 44 is installed on the displacement input portion 412, and a tensile force is applied to the displacement input portion 412.
  • the arm portion 43 is rotated around the rotation axis Cx, and the right displacement output portion 431R first comes into contact with the convex portion 33.
  • the right displacement output portion 431R is in contact with the convex portion 33, so that the lever portion 41 is centered on the support concave portion 411 and the left displacement output portion 431L is convex. It rotates until it abuts on the portion 33.
  • both the left and right displacement output portions 431L and 431R are in contact with the convex portion 33 and the SMA actuator 44 sags, both ends of the SMA actuator 44 are fixed to the electrode 45. (See FIG. 7).
  • This state is the base position, and in the lens unit 3, the bias force received from the bias spring 6, the drag force received from the edge 100 of the through hole 10, and the force generated by the moment of the SMA actuator 44 are balanced.
  • Unit 3 is stationary.
  • the tensile force from the SMA actuator 44 is increased, and the SMA actuator 44 is formed so that the lens unit 3 is lifted from the edge portion 100 of the through hole 10 formed in the base portion 1 to be the base position. May be.
  • the lens unit 3 is pushed and displaced by the displacement output portions 431L and 431R.
  • the lens unit 3 is stable (the optical axis of the imaging lens 31 overlaps or substantially overlaps the optical axis Ax). (See FIG. 8).
  • the driving of the lens driving device La is the same as described above, and a detailed description thereof is omitted.
  • the lever portion 41 can freely swing and rotate around the swing axis Bx and the rotation axis Cx.
  • the lens driving device La can correct the deviation by the support concave portion 411 and the lever support portion 421 even if the lever portion 41 and / or the arm portion 43 and the like are displaced due to an error during manufacture or assembly. Thereby, it is possible to suppress the occurrence of a problem that the lens unit 3 is displaced in a tilted state.
  • both the support recessed portion 411 and the lever support portion 421 have a conical shape, and the support recessed portion 411 has a conical shape having a larger spread angle. This is to reduce friction by preventing the outer wall surface of the lever support portion 421 from contacting the inner wall surface of the support recess 411 when the lever support portion 421 is inserted into the support recess 411.
  • the lever portion 41 can be rotated around the rotation axis Cx.
  • FIGS. 9 and 10 are enlarged schematic side views of a support recess and a lever support portion of another example of the drive device according to the present invention
  • FIG. 11 is a support recess and lever of another example of the drive device according to the present invention.
  • FIG. 12 is a schematic side view of a state in which the support portion is disassembled
  • FIG. 12 is a schematic side view of the state in which the drive device shown in FIG.
  • FIG. 13 is a side view of another example of the lever support portion shown in FIG. It is. 9 to 13 are enlarged views of the support concave portion of the arm portion, the lever support portion of the support leg portion, and the vicinity thereof.
  • the support concave portion 411 is a spherical concave portion, and the engaging portion 422 at the tip of the lever support portion 421 has a spherical convex shape.
  • the support recess 411 and the engagement portion 422 of the lever support portion 421 are sized to be engaged.
  • the support concave portion 411 and the engaging portion 422 of the lever support portion 421 are in contact with each other on a spherical surface (or a curved surface), they are more stable than in the case of contact with a point.
  • the lever portion 41 can not only swing around the swing axis Bx but also freely rotate around the rotation axis Cx.
  • the engaging portion 422 may be a spherical surface having a slightly small diameter.
  • the shape of the engaging portion 422 is not necessarily spherical, and may be a curved surface in which the cross section passing through the central axis always has the same shape, or a cylindrical shape.
  • the support concave portion 411 and the engaging portion 422 do not contact with each other over the entire surface, and become a circular contact surface.
  • the lever portion 41 can freely swing and rotate around the swing axis Bx and the rotation axis Cx.
  • the support recess 411 is a conical recess
  • the engagement portion 422 at the tip of the lever support portion 421 has a spherical shape.
  • the engaging part 422 of the lever support part 421 is a spherical shape
  • the contact part of the engaging part 422 and the support recessed part 411 becomes circular. Since both areas of the contact portions are larger than in the case of a cone, the lever portion 41 is stably supported. Further, since the engaging portion 422 has a spherical shape, the rotation about the rotation axis Cx is smoothly performed.
  • the shape of the support recess 411 may be a triangular pyramid or a quadrangular pyramid other than the cone. In the case of these pyramids, the contact area with the spherical engaging portion 422 is smaller than that of the cone, but the friction can be reduced accordingly. Further, since the spherical engaging portion 422 is in contact with each of the inclined surfaces forming the pyramid, the lever portion 41 is more stable than in the case of a conical shape. Further, the tip of the engaging portion 422 may be a curved surface in which the cross section passing through the central axis always has the same shape. Moreover, since stable rotation can be performed if the contact is made at least at three points, the support recess 411 is preferably a cone having a polygonal bottom surface that is equal to or greater than a triangle.
  • the lever support part 421 described in each of the above embodiments is integrated with the support leg part 42 or fixed to the support leg part 42, but the lever support part and the support leg part are formed separately. What is being considered is also possible.
  • the thing provided with the lever support part 461 which can be attached or detached may be used.
  • the support leg 46 includes a swing hole 460 into which the lever support 461 is rotatably inserted.
  • the lever support portion 461 has a swing shaft portion 462 inserted into the swing hole 460, and one end portion of the swing shaft portion 462 is orthogonal to the swing shaft portion 462. And an engaging shaft portion 463 that is engaged with a support recessed portion 413 formed in the lever portion 41. As shown in the figure, one end portion of the swing shaft portion 462 is connected to the central portion of the engagement shaft portion 463.
  • the lever support portion 461 is a member produced by integral molding. Since the swing shaft portion 462 of the lever support portion 461 is inserted into the swing hole 460, the lever support portion 461 can swing freely in the direction of the central axis, that is, the swing shaft Bx.
  • the support concave portion 413 is a concave groove having a concave curved inner wall surface whose cross-sectional shape is an arc of equal curvature.
  • the engagement shaft portion 463 is a member having a cylindrical shape, and has a size that can be engaged with the support recess 413.
  • the support recess 413 is engaged with the engagement shaft portion 463 and is engaged and supported by the engagement shaft portion 463, whereby the lever portion 41 rotates around the central axis of the engagement shaft portion 463, that is, the rotation axis Cx. Supported as possible. Since the balance of forces is the same as described above, detailed description thereof is omitted.
  • Assembling is performed by inserting the swing shaft portion 462 of the lever support portion 461 into the swing hole 460 of the support leg portion 46 and engaging the support recess portion 413 of the lever portion 41 with the engagement shaft portion 463 of the lever support portion 461.
  • the engagement shaft portion 463 is orthogonal to the swing shaft portion 462, and the swing shaft portion 462 is engaged with the support recess 413, so that the lever portion 41 can freely move around the swing shaft Bx. And can be rotated about the rotation axis Cx as described above.
  • the lever support portion 461 it is firmly supported by the support leg portion 46, and the lever portion 41 can be stably supported. Therefore, unstable operation such as vibration is difficult to occur during driving.
  • FIG. 14 is a view of still another example of the image pickup apparatus according to the present invention
  • FIG. 15 is a view in the middle of assembling the actuator of the lens driving device used in the image pickup apparatus shown in FIG. 14, and
  • FIG. It is a figure of the state which the lens drive device used with the imaging device shown lifted the lens unit.
  • symbol is attached
  • the arm portion 47 is formed to be inclined with respect to the lever portion 41.
  • a hinge portion 470 is formed in the middle portion of the arm portion 47.
  • the hinge portion 470 is formed thinner than the other portions of the arm portion 47.
  • the hinge portion 470 is elastically deformed by being formed thin in this way.
  • the lens driving device Lb is assembled as follows. First, the lever support portion 421 of the support leg 43 is inserted into the support recess 411 of the lever portion 41, the SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and the SMA actuator 44 is pulled to the displacement input portion 412. Apply tensile force. As a result, the arm portion 47 rotates about the rotation axis Cx, and the right displacement output portion 471R first contacts the convex portion 33 of the lens unit 3. Further, when the SMA actuator 44 is pulled and a tensile force is further applied to the displacement input portion 412, the hinge portion 470 formed on the right side of the arm portion 47 is deformed, and the left displacement output portion 471L is Abut.
  • both ends of the SMA actuator 44 are fixed to the electrode 45 (see FIG. 15).
  • the lens unit 3 has a bias force that the bias spring 6 presses the upper surface in the drawing downward, a drag force that is received from the edge portion 100 of the through hole 10 formed in the base portion 1, and a force that is received from a moment due to a tensile force. Are balanced.
  • the left and right displacement output parts 471L and 471R are driven. At this time, the left and right displacement output portions 471L and 471R apply a force equally to the convex portion 33, and the lens unit 3 is stably displaced (see FIG. 16).
  • the driving of the lens driving device La is the same as described above, and a detailed description thereof is omitted.
  • the tensile force of the SMA actuator 44 can be such that the left and right displacement output portions 471L and 471R are in contact with the convex portion 33 and the SMA actuator 44 does not sag. Furthermore, the tensile force of the SMA actuator 44 can be further increased, and the lens unit 3 can be set as the base position in a state where it floats from the edge portion 100 of the through hole 10 of the base portion 1.
  • the arm portion 47 is formed with the hinge portion 471 that is elastically deformed, even if the lever portion 41 and / or the arm portion 43 or the like is displaced due to an error during manufacturing or assembly, the displacement Thus, it is possible to suppress the occurrence of a problem that the lens unit 3 is inclined and displaced.
  • the lever support portion that is a convex portion is formed on the support leg portion and the support concave portion that is a concave portion is formed on the lever portion is described as an example.
  • the support recess may be formed in the support leg.
  • a SMA actuator using a linear shape memory alloy is described.
  • the SMA actuator is not limited to this, and the lever portion, such as a belt-like one, is stable and accurate. A shape that can be rotated and / or swung can be widely used.
  • the heating method of the SMA actuator includes one that generates Joule heat by energization, but it is not limited to this, and a method that can quickly switch between heating and cooling such as a method using induction heating is widely adopted. Is possible.
  • the SMA actuator not only one that uses a shape memory alloy that shrinks depending on temperature, but also one that can easily and quickly switch expansion and contraction, such as an alloy whose shape changes due to magnetism, can be widely used.
  • the lens holder moves in the optical axis direction of the lens, but is not limited thereto.
  • the present invention can be applied to a drive device that is required to be small and highly accurate, such as a lens drive device of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
  • a Imaging device Ca Case Ims Image sensor 1 Base part 10 Through hole 2 Top plate part 20 Through hole 3 Lens unit 31 Imaging lens 32 Lens holding frame 33 Convex part 4 Actuator 41 Lever part 411 Support concave part 412 Displacement input part 42 Support leg part 421 Lever support portion 43 Arm portion 431 Displacement output portion 44 SMA actuator 45 Electrode 46 Support leg 460 Swing hole 461 Lever support portion 462 Swing shaft portion 463 Engagement shaft portion 47 Arm portion 51 Upper leaf spring 52 Lower leaf spring 6 Bias spring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)

Abstract

Disclosed is a drive device provided with a supporting leg section (42), a lever section (41) turnably supported by the supporting leg section (42), and a shape memory alloy actuator (44) which drives the lever section (41). The drive device is also provided with a lever supporting section (421), which protrudes from either the supporting leg section (42) or the lever section (41) and is provided with an engaging section (422) on the leading edge, and a supporting recessed section (411), which is formed on the other one of the supporting leg section and the lever section and has the engaging section (422) engaged therewith.

Description

駆動装置及びレンズ駆動装置Driving device and lens driving device
 本発明は、例えば携帯電話、携帯情報端末等に搭載されたデジタルカメラのレンズのような、小型で精細な被駆動体の駆動を行う駆動装置に関するものである。 The present invention relates to a driving device that drives a small and fine driven body, such as a lens of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
 携帯電話や携帯情報端末(PDA)、携帯型音楽プレーヤ等の小型携帯端末には、画像を撮影するためのデジタルカメラが搭載されている場合が多い。近年、前記小型携帯端末に搭載されたデジタルカメラは、画像を撮影できることだけでは不十分であり、高品質な画像を撮影できることが要求されている。前記デジタルカメラで高品質な画像を撮影するためのひとつの方法として、前記デジタルカメラへフォーカス機能、ズーム機能等の光学機能を付加する方法が用いられている。 Small mobile terminals such as mobile phones, personal digital assistants (PDAs), and portable music players are often equipped with digital cameras for taking images. In recent years, it is not sufficient for a digital camera mounted on the small portable terminal to be able to capture an image, and it is required to capture a high-quality image. As one method for photographing a high-quality image with the digital camera, a method of adding an optical function such as a focus function and a zoom function to the digital camera is used.
 上述のような光学機能を付加するためには、前記デジタルカメラに備えられたレンズ(及びレンズ支持体)を駆動するための駆動装置を搭載する必要がある。前記デジタルカメラの限られたスペースに搭載されるものであり、そのデジタルカメラに搭載される前記駆動装置は小型及び軽量である必要がある。このような、小型、軽量の条件を満たす駆動装置として、形状記憶合金(Shape Memory Alloy:以下、SMAという)アクチュエータを備えた駆動装置が提案されている。 In order to add the optical function as described above, it is necessary to mount a driving device for driving the lens (and the lens support) provided in the digital camera. It is mounted in a limited space of the digital camera, and the driving device mounted on the digital camera needs to be small and light. As such a drive device that satisfies the requirements of small size and light weight, a drive device including a shape memory alloy (hereinafter referred to as SMA) actuator has been proposed.
 前記SMAアクチュエータを用いた駆動装置として、一端(支持端部)を回動可能に支持された片持ち梁様のレバー部を、SMAアクチュエータの伸縮を利用して他端(自由端部)を持ち上げ、前記他端(自由端部)で被駆動体を動かすものが提案されている。このようなSMAを動力源とするアクチュエータを用いた駆動装置は、回動するレバー部の自由端部の1点で前記レンズ支持体を押し上げて前記被駆動体を動かしている。前記レバー部の自由端部の1点で被駆動体を押す場合、前記レバー部から前記被駆動体にかかる力が前記被駆動体の中心に作用しないと、いわゆる片押し状態となってしまい、前記被駆動体が傾いた状態で移動してしまう。 As a drive unit using the SMA actuator, lift the other end (free end) using the cantilever-like lever part, which is rotatably supported at one end (support end), using the expansion and contraction of the SMA actuator. A device that moves the driven body at the other end (free end) has been proposed. In such a drive device using an actuator using SMA as a power source, the lens support is pushed up at one point of the free end of the rotating lever portion to move the driven body. When pushing the driven body at one point of the free end of the lever portion, if the force applied to the driven body from the lever portion does not act on the center of the driven body, it becomes a so-called one-pressed state, The driven body moves in a tilted state.
 そこで、このような傾きを抑制する駆動装置として、前記被駆動体の移動方向と平行に配置され、前記被駆動体をガイドする柱状のガイドポール及びガイドシャフトを備えた駆動装置がある。この駆動装置では、前記被駆動体が前記ガイドポール及び前記ガイドシャフトでガイドされて移動するので、前記被駆動体が片押し状態で押された場合であっても、前記被駆動体は移動時に傾きにくい。この駆動装置をレンズが保持されたレンズ支持体の移動装置として用いることで、前記レンズ支持体が移動するとき、当該レンズ支持体が傾く(以下チルトという)のを抑制できる(例えば、特開2007-58075号公報、特開2007-58076号公報、特開2007-60530号公報等参照)。 Therefore, as a driving device that suppresses such inclination, there is a driving device that is arranged in parallel with the moving direction of the driven body and includes a columnar guide pole and a guide shaft that guide the driven body. In this drive device, the driven body moves while being guided by the guide pole and the guide shaft. Therefore, even when the driven body is pressed in a single-pressed state, the driven body is not moved. It is hard to tilt. By using this driving device as a moving device for a lens support holding a lens, it is possible to prevent the lens support from tilting (hereinafter referred to as tilt) when the lens support moves (for example, Japanese Patent Application Laid-Open No. 2007-2007). No. -58075, JP 2007-58076, JP 2007-60530, etc.).
特開2007-58075号公報JP 2007-58075 A 特開2007-58076号公報JP 2007-58076 A 特開2007-60530号公報Japanese Unexamined Patent Publication No. 2007-60530
 従来の小型携帯端末に搭載されたデジタルカメラに用いられている撮像素子の画素数及びこの撮像素子で画像を撮影するためのレンズを用いる場合、上述のような、ガイドポール及びガイドシャフトでガイドされたレンズ駆動部を用いることで、十分な精細度の撮影を行うことが可能であった。 When using the number of pixels of an image sensor used in a digital camera mounted on a conventional small portable terminal and a lens for taking an image with the image sensor, the image is guided by the guide pole and the guide shaft as described above. Further, it was possible to perform photographing with sufficient definition by using the lens driving unit.
 しかしながら、近年の小型携帯端末に搭載されるデジタルカメラの撮像素子は高画素化しており、高画素の撮像素子を利用するために、レンズも高性能なものが要求されている。したがって、従来のような、ガイドポール及びガイドシャフトのガイド部材でレンズ支持体の移動をガイドするレンズ駆動部では、前記ガイド部材と前記レンズ支持体との遊びによって発生するチルトであっても、画像乱れの原因となる。 However, in recent years, an image sensor of a digital camera mounted on a small portable terminal has an increased number of pixels, and in order to use an image sensor with a higher pixel, a lens having a high performance is required. Therefore, in the conventional lens driving unit that guides the movement of the lens support by the guide members of the guide pole and the guide shaft, even if the tilt is generated by the play between the guide member and the lens support, the image Cause disturbance.
 そこで、レバー部の自由端部が前記被駆動体(レンズ支持体)を押す点を、ガイドシャフト及びガイドポールの中間点とすることで、前記チルトによる画像乱れを抑制することは可能であるが、その場合、前記被駆動体の大きさを小さくするのが困難であり、撮像装置自体が大きくなってしまう。 Therefore, it is possible to suppress the image disturbance due to the tilt by setting the point where the free end of the lever portion presses the driven body (lens support) as an intermediate point between the guide shaft and the guide pole. In this case, it is difficult to reduce the size of the driven body, and the imaging apparatus itself becomes large.
 また、駆動装置として、さらなる小型化、軽量化を達成するために被駆動体(レンズが保持されたレンズ支持体)の移動方向の両側を平行板ばねで保持するものもあるが、片持ち梁様のレバー部で押す構成の場合、チルトの発生を抑制するのは困難である。 In addition, as a driving device, there is one that holds both sides in the moving direction of a driven body (lens support holding a lens) with parallel leaf springs in order to achieve further miniaturization and weight reduction. In the case of a configuration in which the lever is pushed, it is difficult to suppress the occurrence of tilt.
 そこで本発明は、被駆動体を駆動させる小型の駆動装置であって、前記被駆動体の移動を精度良く行うことができる駆動装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a small-sized drive device that drives a driven body and that can accurately move the driven body.
 上記目的を達成するために本発明は、支持脚部と、前記支持脚部に回動可能に支持されたレバー部と、前記レバー部に連結され被駆動体と少なくとも2箇所で係合された変位出力部と、前記レバー部と係合し、可逆的に変形する形状記憶合金アクチュエータとを備え、前記形状記憶合金アクチュエータの変形により前記レバー部に連結された前記変位出力部が前記被駆動体を所定の方向に移動させる駆動装置であって、前記支持脚部または前記レバー部のいずれか一方から突出し、先端に係合部を具備するレバー支持部と、他方に形成され、前記係合部が係合される支持凹部とを備え、前記レバー部が、前記係合部と前記支持凹部との接触部又はその近傍を通り前記被駆動体の移動方向と直交又は交差する回転軸を中心に回動可能に、且つ、前記回転軸又は前記回転軸と平行な線と直交又は交差する揺動軸を中心に揺動可能に、支持脚部に支持されている。 In order to achieve the above object, the present invention provides a support leg, a lever part rotatably supported by the support leg part, and is connected to the lever part and engaged with a driven body in at least two places. A displacement output portion, and a shape memory alloy actuator that engages with the lever portion and reversibly deforms, and the displacement output portion coupled to the lever portion by deformation of the shape memory alloy actuator includes the driven body And a lever support part that protrudes from one of the support leg part and the lever part and has an engagement part at the tip, and is formed on the other side. And the lever portion passes through a contact portion between the engagement portion and the support recess or the vicinity thereof, and a rotation axis that is orthogonal to or intersects with the moving direction of the driven body. Pivotable and Pivotably to the rotating shaft or about the swing axis orthogonal or intersect with the rotation axis line parallel to, and is supported by the support leg.
 この構成によると、前記レバー部が前記揺動軸を中心に揺動可能となるように前記支持脚部に支持されているので、例えば、前記変位出力部が前記レバー部に対して傾いて取り付けられていたとしても、前記レバー部が揺動され、各変位出力部から前記被駆動体に対して均一な変位が出力される。 According to this configuration, since the lever portion is supported by the support leg portion so as to be able to swing around the swing shaft, for example, the displacement output portion is attached to be inclined with respect to the lever portion. Even if it is, the lever portion is swung, and a uniform displacement is output from each displacement output portion to the driven body.
 これにより、前記被駆動体には均一な変位が加えられるので、移動時に前記被駆動体が姿勢を崩したり、誤った方向に移動したりする不具合の発生を抑えることができる。 Thereby, since a uniform displacement is applied to the driven body, it is possible to suppress the occurrence of problems that the driven body loses its posture or moves in the wrong direction during movement.
 上記構成において、前記レバー部は、前記レバー支持部の係合部と前記支持凹部との前記接触部で支持されていてもよい。前記係合部と前記支持凹部とは1点で接触していてもよく、少なくとも3点で接触していてもよく、曲面で接触していてもよい。 In the above configuration, the lever portion may be supported by the contact portion between the engagement portion of the lever support portion and the support recess. The engagement portion and the support recess may be in contact at one point, may be in contact at least at three points, or may be in contact with a curved surface.
 前記支持凹部としては、円錐、三角錐、四角錐等の錐体形状、球面形状、滑らかな曲面形状のものを挙げることができる。また、前記係合部の形状としては、円錐、三角錐、四角錐等の錐体形状、球面形状、円柱等の柱体形状を挙げることができる。また、前記支持凹部と前記係合部の形状を組み合わせることで、回転しやすさ、安定性を変更することが可能である。なお、異なる形状のものを組み合わせる場合、安定性を考慮して、少なくとも3点以上の点で接触するものが好ましい。また、少なくともどちらか一方は円或いは球形状を基本とする形状であることが好ましい。 Examples of the supporting concave portion include conical shapes such as a cone, a triangular pyramid, and a quadrangular pyramid, a spherical shape, and a smooth curved surface shape. Further, examples of the shape of the engaging portion include a cone shape such as a cone, a triangular pyramid, and a quadrangular pyramid, a spherical shape, and a columnar shape such as a cylinder. Moreover, it is possible to change the ease of rotation and stability by combining the shapes of the support recess and the engagement portion. In addition, when combining the thing of a different shape, the thing which contacts at least 3 or more points is preferable in consideration of stability. Moreover, it is preferable that at least one of them has a shape based on a circle or a sphere.
 上記構成において、前記レバー支持部が前記支持脚部又は前記レバー部のいずれか一方に形成された揺動穴に揺動可能に挿入された揺動軸部を備えており、前記係合部が前記揺動軸部の中心軸又は中心軸と平行な線に対して直交又は交差する方向に延伸する係合軸部を備えており、前記支持凹部は前記係合軸部を中心軸周りに摺動可能に支持する凹溝形状であってもよい。 In the above-described configuration, the lever support portion includes a swing shaft portion that is swingably inserted into a swing hole formed in either the support leg portion or the lever portion, and the engagement portion is An engaging shaft portion extending in a direction perpendicular to or intersecting with the central axis of the swinging shaft portion or a line parallel to the central axis; and the support recess slides the engaging shaft portion around the central axis. It may be a concave groove shape that is movably supported.
 上記目的を達成するために本発明は、支持脚部と、前記支持脚部に回動自在に支持されたレバー部と、前記レバー部に連結され被駆動体と少なくとも2箇所で係合された複数個の変位出力部と、前記レバー部に係合し、可逆的に変形する形状記憶合金アクチュエータとを備え、前記形状記憶合金アクチュエータの変形によって前記レバー部が揺動され、前記変位出力部が前記被駆動体を所定の方向に移動させる駆動装置であって、前記複数個の変位出力部の前記被駆動体の移動方向に沿う方向の位置を前記レバーの傾きに応じて変動させ、すべての変位出力部を該被駆動体とバランスをとって係合させる変位調整部を備えていてもよい。 In order to achieve the above object, the present invention provides a support leg, a lever part rotatably supported by the support leg part, and is connected to the lever part and engaged with a driven body in at least two places. A plurality of displacement output portions; and a shape memory alloy actuator that engages with the lever portion and deforms reversibly. The lever portion is swung by deformation of the shape memory alloy actuator, and the displacement output portion is A driving device for moving the driven body in a predetermined direction, wherein the plurality of displacement output portions are moved in the direction along the moving direction of the driven body according to the inclination of the lever, You may provide the displacement adjustment part which balances and engages a displacement output part with this to-be-driven body.
 この構成によると、前記変位出力部が前記レバー部に傾いて配置されている場合でも、前記変位調整部によって各変位出力部の変位が調整され、前記レバー部が移動するときには、前記被駆動体にバランスよく変位を出力することが可能である。これにより、被駆動体が傾いたり、被駆動体の移動方向がずれてしまったりする不具合が発生するのを抑制することが可能である。 According to this configuration, even when the displacement output part is inclined with respect to the lever part, when the displacement adjustment part adjusts the displacement of each displacement output part and the lever part moves, the driven body It is possible to output displacement in a balanced manner. Thereby, it is possible to suppress the occurrence of problems that the driven body is tilted or the moving direction of the driven body is shifted.
 上記構成において、前記複数の変位出力部は前記被駆動体の一部を側方から包囲するアーム部を介して前記レバー部に取り付けられていてもよく、前記複数の変位出力部は前記被駆動体の一部を側方から包囲するアーム部を介して前記レバー部に取り付けられており、前記変位調整部は前記アーム部の少なくとも一部に形成されており、前記アーム部は前記変位調整部で弾性変形可能であってもよい。 In the above-described configuration, the plurality of displacement output units may be attached to the lever unit via an arm unit that surrounds a part of the driven body from the side, and the plurality of displacement output units are connected to the driven unit. It is attached to the lever part via an arm part that surrounds a part of the body from the side, and the displacement adjustment part is formed on at least a part of the arm part, and the arm part is the displacement adjustment part It may be elastically deformable.
 上記構成において、前記被駆動体が前記変位出力部より受ける力と反対方向の力を前記被駆動体に付勢する付勢部材を備えていてもよい。 In the above-described configuration, an urging member that urges the driven body with a force in a direction opposite to the force received by the driven body from the displacement output unit may be provided.
 上記構成において、前記レバー部は前記形状記憶合金アクチュエータからの駆動力と、前記変位出力部が前記被駆動体から受ける抗力とが釣り合うことで静止する形状のものを挙げることができる。 In the above-described configuration, the lever portion can be of a shape that is stationary when the driving force from the shape memory alloy actuator balances the drag force that the displacement output portion receives from the driven body.
 上記構成において、互いに平行となるように配置され、前記被駆動体を移動方向の前後両側から保持した一対の平行ばねを備えているものであってもよく、前記被駆動体の少なくとも一部と接触し、前記被駆動体の移動方向と平行に配置されたガイド部を備えていてもよい。 In the above-described configuration, it may include a pair of parallel springs arranged so as to be parallel to each other and holding the driven body from both the front and rear sides in the moving direction, and at least a part of the driven body You may provide the guide part which contacts and is arrange | positioned in parallel with the moving direction of the said to-be-driven body.
 上記構成において、前記SMAアクチュエータは線状に形成されているものを挙げることができる。 In the above configuration, the SMA actuator can be a linear one.
 上記構成において、駆動装置の例として、前記被駆動体としてレンズを備えたレンズユニットを駆動するレンズ駆動装置を挙げることができる。 In the above configuration, as an example of the driving device, a lens driving device that drives a lens unit including a lens as the driven body can be given.
 本発明によると、被駆動体を駆動させる小型の駆動装置であって、前記被駆動体の移動を精度良く行うことができる。 According to the present invention, it is a small driving device for driving a driven body, and the driven body can be moved with high accuracy.
本発明にかかる駆動装置が用いられている撮像装置の平面図である。It is a top view of the imaging device with which the drive device concerning this invention is used. 図1に示す撮像装置を矢印II方向に見たときの概略配置図である。FIG. 2 is a schematic layout diagram when the imaging apparatus shown in FIG. 1 is viewed in the direction of arrow II. 図1に示す撮像装置を矢印III方向に見たときの概略配置図である。FIG. 3 is a schematic layout diagram when the imaging apparatus shown in FIG. 1 is viewed in the direction of arrow III. 図1に示す撮像装置に用いられたアクチュエータが作動されたときの矢印II側から見た図である。It is the figure seen from the arrow II side when the actuator used for the imaging device shown in FIG. 1 was operated. 図1に示す撮像装置に用いられたアクチュエータが作動されたときの矢印III側から見た図である。It is the figure seen from the arrow III side when the actuator used for the imaging device shown in FIG. 1 was operated. アーム部が傾いているレンズ駆動装置を備えた撮像装置の図である。It is a figure of the imaging device provided with the lens drive device in which the arm part inclines. 図6に示すレンズ駆動装置のアクチュエータを組み立てる途中の図である。It is a figure in the middle of assembling the actuator of the lens drive device shown in FIG. 図6に示すレンズ駆動装置がレンズユニットを持ち上げた状態の図である。It is a figure of the state which the lens drive device shown in FIG. 6 lifted the lens unit. 本発明にかかる駆動装置の他の例の支持凹部及びレバー支持部を拡大した概略側面図である。It is the schematic side view which expanded the support recessed part and lever support part of the other example of the drive device concerning this invention. 本発明にかかる駆動装置の他の例の支持凹部及びレバー支持部を拡大した概略側面図である。It is the schematic side view which expanded the support recessed part and lever support part of the other example of the drive device concerning this invention. 本発明にかかる駆動装置の他の例の支持凹部及びレバー支持部を分解した状態の概略平面図である。It is a schematic plan view of the state which decomposed | disassembled the support recessed part and lever support part of the other example of the drive device concerning this invention. 図11に示す駆動装置を分解した状態の概略側面図である。It is a schematic side view of the state which decomposed | disassembled the drive device shown in FIG. 図11のレバー支持部の他の例の側面図である。It is a side view of the other example of the lever support part of FIG. 本発明にかかる撮像装置のさらに他の例の図である。It is a figure of the further another example of the imaging device concerning this invention. 図14に示す撮像装置で用いられるレンズ駆動装置のアクチュエータを組み立てる途中の図である。It is a figure in the middle of assembling the actuator of the lens drive device used with the imaging device shown in FIG. 図14に示す撮像装置で用いられるレンズ駆動装置がレンズユニットを持ち上げた状態の図である。It is a figure of the state which the lens drive device used with the imaging device shown in FIG. 14 lifted the lens unit.
 本発明にかかる駆動装置について図面を参照して説明する。図1は本発明にかかる駆動装置が用いられている撮像装置の平面図であり、図2は図1に示す撮像装置を矢印II方向に見たときの概略配置図であり、図3は図1に示す撮像装置を矢印III方向に見たときの概略配置図である。なお、図1で図示された撮像装置は、説明の便宜上、ケースの上面、天板、板ばね、バイアスばねを省略しており、図2及び図3ではケースの側部を省略している。また、以下の説明で上下の位置関係について説明する場合は、図面における位置関係である。 The drive device according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an image pickup apparatus in which the drive device according to the present invention is used, FIG. 2 is a schematic arrangement view when the image pickup apparatus shown in FIG. 1 is viewed in the direction of arrow II, and FIG. FIG. 3 is a schematic layout diagram when the imaging device shown in FIG. 1 is viewed in the direction of arrow III. 1 omits the upper surface of the case, the top plate, the leaf spring, and the bias spring for convenience of explanation, and omits the side portions of the case in FIGS. 2 and 3. In the following description, the upper and lower positional relationships are the positional relationships in the drawings.
 撮像装置Aは、平面視正方形状の箱体であるケースCaと、画像を撮像するための個体撮像素子を具備するイメージセンサImsと、イメージセンサImsの光電変換部に被写体像を撮像させるレンズを駆動するレンズ駆動装置Laとを備えている。 The imaging apparatus A includes a case Ca that is a box having a square shape in plan view, an image sensor Ims that includes an individual imaging element for capturing an image, and a lens that causes the photoelectric conversion unit of the image sensor Ims to capture a subject image. And a lens driving device La for driving.
 ケースCaは撮像装置Aの外殻をなし、外部からの撮像光以外の光の入射、異物の混入、及び内部に配置された部材への衝撃及び(又は)振動を抑制するものである。ケースCaは樹脂等で形成されており、底面が矩形(ここでは正方形)の直方体形状を有する箱体である。ケースCaの上面部には、撮像光を入射させるための撮像窓Cwが形成されている。撮像窓Cwは、撮像装置Aの光軸Axが中心を通るように形成されている。 Case Ca forms the outer shell of the image pickup apparatus A, and suppresses the incidence of light other than the imaging light from the outside, the entry of foreign matter, and the impact and / or vibration on the members disposed inside. Case Ca is formed of a resin or the like, and is a box having a rectangular parallelepiped shape with a rectangular bottom (here, square). An imaging window Cw for allowing imaging light to enter is formed on the upper surface of the case Ca. The imaging window Cw is formed so that the optical axis Ax of the imaging device A passes through the center.
 イメージセンサImsは照射された撮像光を電気信号に変換する個体撮像素子を備えている。個体撮像素子として、光電変換部にCMOS型のセンサまたはCCD撮像センサを用いたものが採用されている。イメージセンサImsは平面視長方形の板状であり、図1に示す撮像装置Aでは、長辺及び短辺がケースCaの底面の対角線のそれぞれと平行で、中心が撮像装置Aの光軸Axと重なるように配置されている。 The image sensor Ims includes a solid-state image sensor that converts irradiated imaging light into an electrical signal. As the individual imaging element, a sensor using a CMOS type sensor or a CCD imaging sensor is adopted for the photoelectric conversion unit. The image sensor Ims has a rectangular plate shape in plan view. In the imaging apparatus A shown in FIG. 1, the long side and the short side are parallel to the diagonal lines on the bottom surface of the case Ca, and the center is the optical axis Ax of the imaging apparatus A. They are arranged so as to overlap.
 本発明の要部である駆動装置を用いたレンズ駆動装置Laについて説明する。レンズ駆動装置Laは、ケースCaの内部に配置されている。レンズ駆動装置Laは、中央に貫通孔10が形成されている板状のベース部1と、中央にベース部1と同じ大きさの貫通孔20が形成された天板部2と、イメージセンサImsに被写体像を撮像させるレンズを備えたレンズユニット3と、レンズユニット3をイメージセンサImsに対して接近離反させる駆動装置4と、ベース部1及び天板部2に固定されレンズユニット3を保持する上板ばね51、下板ばね52と、レンズユニット3を押圧するバイアスばね6とを備えている。 The lens driving device La using the driving device which is the main part of the present invention will be described. The lens driving device La is disposed inside the case Ca. The lens driving device La includes a plate-like base portion 1 in which a through hole 10 is formed in the center, a top plate portion 2 in which a through hole 20 having the same size as the base portion 1 is formed in the center, and an image sensor Ims. A lens unit 3 having a lens for picking up a subject image, a driving device 4 for moving the lens unit 3 toward and away from the image sensor Ims, and a base unit 1 and a top plate unit 2 are fixed to the lens unit 3 and held. An upper leaf spring 51, a lower leaf spring 52, and a bias spring 6 that presses the lens unit 3 are provided.
 ベース部1は平面視正方形状の平板であり、ケースCaに固定され、レンズ駆動装置Laの底部を構成する不動の部材である。また、天板部2は平板状の部材であり、ベース部1と平行となるように配置されている。ベース部1及び天板部2には貫通孔10及び貫通孔20が形成されている。貫通孔10はレンズユニット3の外径よりも小さく、レンズユニット3に配置された撮像レンズ31(後述)よりも大きな内径の円筒形状の孔である。さらに、貫通孔10の内径はイメージセンサImsへの光の入射を妨げない大きさである。一方、貫通孔20はレンズユニットの外径よりも大きな内径の円筒形状の孔である。貫通孔10及び貫通孔20の中心軸は、いずれも、撮像装置Aの光軸Axと重なっている。 The base portion 1 is a flat plate having a square shape in plan view, and is a fixed member that is fixed to the case Ca and forms the bottom portion of the lens driving device La. Further, the top plate portion 2 is a flat plate-like member, and is arranged so as to be parallel to the base portion 1. A through hole 10 and a through hole 20 are formed in the base portion 1 and the top plate portion 2. The through hole 10 is a cylindrical hole having an inner diameter smaller than the outer diameter of the lens unit 3 and larger than an imaging lens 31 (described later) disposed in the lens unit 3. Further, the inner diameter of the through hole 10 is a size that does not prevent the light from entering the image sensor Ims. On the other hand, the through hole 20 is a cylindrical hole having an inner diameter larger than the outer diameter of the lens unit. The central axes of the through hole 10 and the through hole 20 both overlap the optical axis Ax of the imaging device A.
 ベース部1の上面及び天板部2の下面には、下板ばね52、上板ばね51がそれぞれ取り付けられている。なお、上板ばね51と下板ばね52とは平行であり、レンズユニット3を上下から挟持している。上板ばね51及び下板ばね52には、撮像光が透過するための孔が形成されている。 A lower leaf spring 52 and an upper leaf spring 51 are respectively attached to the upper surface of the base portion 1 and the lower surface of the top plate portion 2. The upper leaf spring 51 and the lower leaf spring 52 are parallel to each other and sandwich the lens unit 3 from above and below. The upper leaf spring 51 and the lower leaf spring 52 are formed with holes for allowing imaging light to pass therethrough.
 レンズユニット3は撮像レンズ31と、撮像レンズ31が保持されたレンズ保持枠32とを備えている。撮像レンズ31は、対物レンズ、フォーカスレンズ、ズームレンズ等を含むレンズ群であり、撮像窓Cwより入射した撮像光をイメージセンサImsに導き、イメージセンサImsに被写体像を結像する結像光学系を構成するものである。なお、撮像レンズ31として複数のレンズで構成されるレンズ群としているが、単一のレンズで構成されるものであってもよい。 The lens unit 3 includes an imaging lens 31 and a lens holding frame 32 on which the imaging lens 31 is held. The imaging lens 31 is a lens group including an objective lens, a focus lens, a zoom lens, and the like. An imaging optical system that guides imaging light incident from the imaging window Cw to the image sensor Ims and forms a subject image on the image sensor Ims. It constitutes. The imaging lens 31 is a lens group composed of a plurality of lenses, but may be composed of a single lens.
 レンズ保持枠32は円筒形状の枠体(いわゆる玉枠)であり、内部に撮像レンズ31を保持している。上面が上板ばね51に、下面が下板ばね52に保持されており、レンズ保持枠32の中心軸が光軸Axと重なっている。また、レンズユニット3はレンズ保持枠32が上板ばね51及び下板ばね52で挟持されていることで、その変位自由度が光軸Axに沿った方向に規制されている。なお、レンズユニット3は軸に沿った方向に移動するときは、天板部2の貫通孔20を貫通するように移動する。 The lens holding frame 32 is a cylindrical frame (so-called ball frame), and holds the imaging lens 31 therein. The upper surface is held by the upper plate spring 51 and the lower surface is held by the lower plate spring 52, and the central axis of the lens holding frame 32 overlaps the optical axis Ax. Further, since the lens holding frame 32 is sandwiched between the upper plate spring 51 and the lower plate spring 52, the degree of freedom of displacement of the lens unit 3 is restricted in the direction along the optical axis Ax. When the lens unit 3 moves in the direction along the axis, the lens unit 3 moves so as to penetrate the through hole 20 of the top plate 2.
 レンズ保持枠32は外周部の上面の近傍に、径方向外側に向かって突出した2個の凸部33を備えている。2個の凸部33は上面から等距離となるように形成されているものであり、中心軸を挟んで対称の位置に形成されている。凸部33はベース部1の対角線方向に並んで配置されており、凸部33はケースCaの対向する角部の近傍に配置されている。 The lens holding frame 32 includes two convex portions 33 projecting radially outward in the vicinity of the upper surface of the outer peripheral portion. The two convex portions 33 are formed so as to be equidistant from the upper surface, and are formed at symmetrical positions across the central axis. The convex portions 33 are arranged side by side in the diagonal direction of the base portion 1, and the convex portions 33 are arranged in the vicinity of the opposite corner portions of the case Ca.
 駆動装置4は、レンズユニット3に駆動力を付与するものである。駆動装置4は、レバー部41と、レバー部41を支持する支持脚部42と、レバー部41に固定されたアーム部43と、形状記憶合金(Shape Memory Alloy:以下SMAという)で形成され、レバー部41に形成された後述の変位入力部412に架設されたSMAアクチュエータ44と、SMAアクチュエータ44の両端を固定するとともに、SMAアクチュエータ44に電気を供給する電極45とを備えている。 The driving device 4 applies a driving force to the lens unit 3. The drive device 4 is formed of a lever portion 41, a support leg portion 42 that supports the lever portion 41, an arm portion 43 that is fixed to the lever portion 41, and a shape memory alloy (hereinafter referred to as SMA), An SMA actuator 44 provided on a displacement input portion 412 (described later) formed on the lever portion 41 and electrodes 45 for fixing both ends of the SMA actuator 44 and supplying electricity to the SMA actuator 44 are provided.
 図に示すように、レバー部41は直方体形状を有しており、一面の上下方向の略中央に円錐状の凹部である支持凹部411が形成されている。また、下端部には、支持凹部411と反対側の面側にSMAアクチュエータ44が架設された変位入力部412が形成されている。レバー部41の変位入力部412が形成されている部分はSMAアクチュエータ44に応力が集中しないように湾曲した曲面形状に形成されている。また、変位入力部412はレバー部41が移動したときにSMAアクチュエータ44が外れないように、曲面に沿うV字の溝形状を有している。 As shown in the figure, the lever portion 41 has a rectangular parallelepiped shape, and a support concave portion 411 which is a conical concave portion is formed at the approximate center of one surface in the vertical direction. In addition, a displacement input portion 412 in which the SMA actuator 44 is installed on the surface opposite to the support recess 411 is formed at the lower end portion. The portion of the lever portion 41 where the displacement input portion 412 is formed is formed in a curved surface shape so that stress is not concentrated on the SMA actuator 44. Further, the displacement input portion 412 has a V-shaped groove shape along the curved surface so that the SMA actuator 44 does not come off when the lever portion 41 moves.
 支持脚部42はベース部1に固定された四角柱状の部材である。支持脚部42はケースCaの凸部33が近接している角部とは異なる角部に近接して配置されている。支持脚部42はレンズユニット3と対向する面と反対側の面より突出し、支持凹部411に挿入された円錐形状のレバー支持部421を備えている。レバー支持部421は中心軸(揺動軸Bx)が凸部33の配列方向又はこれに平行な方向と直交するように形成されている。レバー支持部421は先端が支持凹部411の円錐形状の頂点部と接触して配置されている。なお、レバー支持部421は支持脚部42と一体で形成されていても良く、支持脚部42と別体で支持脚部42に固定されたものであってもよい。 The support leg portion 42 is a quadrangular columnar member fixed to the base portion 1. The support leg portion 42 is disposed close to a corner portion different from the corner portion where the convex portion 33 of the case Ca is close. The support leg portion 42 includes a conical lever support portion 421 that protrudes from a surface opposite to the surface facing the lens unit 3 and is inserted into the support recess 411. The lever support portion 421 is formed such that the central axis (swing axis Bx) is orthogonal to the direction in which the convex portions 33 are arranged or a direction parallel thereto. The lever support portion 421 is disposed so that the tip thereof is in contact with the conical apex portion of the support recess 411. The lever support portion 421 may be formed integrally with the support leg portion 42 or may be fixed to the support leg portion 42 separately from the support leg portion 42.
 支持凹部411とレバー支持部421は支持部を形成しており、レバー支持部421はその先端の係合部が支持凹部411の最深部と接触することで、レバー部41を点で支持している。これにより、レバー部41は揺動軸Bx周りに揺動可能であるとともに、揺動軸Bxと交差(変位の方向によっては直交)する軸(回転軸Cx)周りにも回動可能となっている。なお、レバー部41に作用する力のつりあいは後述する。 The support concave portion 411 and the lever support portion 421 form a support portion, and the lever support portion 421 supports the lever portion 41 with a point by the engagement portion at the tip thereof contacting the deepest portion of the support concave portion 411. Yes. As a result, the lever portion 41 can swing around the swing axis Bx and can also rotate around an axis (rotation axis Cx) intersecting the swing axis Bx (or perpendicular to the displacement direction). Yes. The balance of forces acting on the lever portion 41 will be described later.
 アーム部43はレバー部41の支持凹部411が形成されている面と隣り合う両側面に配置されている。アーム部43は二股に分かれており、レンズユニット3に近接してそれぞれ均等に伸びている。アーム部43は途中で屈曲しており、先端側に変位出力部431が形成されている。二股に分かれたアーム部43の両方に形成された変位出力部431は互いに平行となっており、凸部33の下部と接触している。変位出力部431は凸部33との係合面が曲面となるように切り欠かれた係止部432を備えている。なお、アーム部43とレバー部41とは一体で形成されていてもよく、別体で形成されていてもよい。 The arm portion 43 is disposed on both side surfaces adjacent to the surface on which the support concave portion 411 of the lever portion 41 is formed. The arm part 43 is divided into two parts, and each arm part 43 extends in the vicinity of the lens unit 3 evenly. The arm part 43 is bent halfway, and a displacement output part 431 is formed on the tip side. Displacement output portions 431 formed on both the forked arm portions 43 are parallel to each other and are in contact with the lower portion of the convex portion 33. The displacement output part 431 includes a locking part 432 cut out so that the engagement surface with the convex part 33 is a curved surface. In addition, the arm part 43 and the lever part 41 may be formed integrally, and may be formed separately.
 SMAアクチュエータ44として例えばNi-Ti合金等をワイヤー状に形成したものを挙げることができる。また、SMAアクチュエータとして、ワイヤー状のものに限定されるものではなく、アーム部を動かすことのできる形状(例えば、帯状、板状等)のものを広く採用することが可能である。 As the SMA actuator 44, for example, a Ni-Ti alloy or the like formed in a wire shape can be cited. In addition, the SMA actuator is not limited to a wire-like one, and a shape (for example, a belt shape, a plate shape, etc.) that can move the arm portion can be widely used.
 SMAはそれ自体の温度によって結晶相が変化するものである。SMAアクチュエータ44は、低温状態のときはマルテンサイト相に、高温状態のときはオーステナイト相に相変態する。SMAアクチュエータ44は温度変化によって可逆的に相変態を繰り返す。SMAアクチュエータ44は相変態することで伸長又は収縮する。 SMA has a crystalline phase that changes with its own temperature. The SMA actuator 44 is transformed into a martensite phase when in a low temperature state and into an austenite phase when in a high temperature state. The SMA actuator 44 repeats the phase transformation reversibly according to the temperature change. The SMA actuator 44 expands or contracts due to phase transformation.
 SMAアクチュエータ44は所定の電気抵抗を有する導体であるので、電極45よりSMAアクチュエータに通電することでジュール熱が発生する。SMAアクチュエータ44はこのジュール熱によって高温状態になり、高温状態から通電する電流量を減らす或いは通電を遮断することで放熱し、低温状態になる。 Since the SMA actuator 44 is a conductor having a predetermined electrical resistance, Joule heat is generated by energizing the SMA actuator from the electrode 45. The SMA actuator 44 becomes a high temperature state due to the Joule heat, and heat is released by reducing the amount of current supplied from the high temperature state or by cutting off the current supply, resulting in a low temperature state.
 図1、図2に示すように、SMAアクチュエータ44はレバー部41の変位入力部412に架設されており、レバー部41で折り返すV字状に配置されている。SMAアクチュエータ44の両端部は、それぞれ、凸部33の近傍に電極45にて固定されている。電極45はベース部1に固定されている。 As shown in FIGS. 1 and 2, the SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and is arranged in a V shape that is folded back by the lever portion 41. Both end portions of the SMA actuator 44 are fixed by electrodes 45 in the vicinity of the convex portion 33. The electrode 45 is fixed to the base portion 1.
 なお、SMAアクチュエータ44はベース部1と平行となるように変位入力部412に架設され両端部を電極45で固定されている。SMAアクチュエータ44が収縮するとき、変位入力部412がSMAアクチュエータ44に引っ張られる。これにより、レバー部41に支持凹部411を中心とした回転モーメントが作用する。このとき、アーム部43は変位出力部431を持ち上げるように回動し、変位出力部431が凸部33を押し、レンズユニット3が変位される。 The SMA actuator 44 is installed on the displacement input unit 412 so as to be parallel to the base unit 1, and both ends thereof are fixed with electrodes 45. When the SMA actuator 44 contracts, the displacement input unit 412 is pulled by the SMA actuator 44. As a result, a rotation moment about the support recess 411 acts on the lever portion 41. At this time, the arm portion 43 rotates to lift the displacement output portion 431, the displacement output portion 431 pushes the convex portion 33, and the lens unit 3 is displaced.
 このとき、アーム部43及び変位出力部431はレバー部41に対して対称となるように形成されているとともに、2個の凸部33がレンズユニット3の中心軸を挟んで対称に形成されているので、2個の凸部33には均等な力が作用する。これによって、レンズユニット3は撮像レンズ31の光軸がずれないように変位される。 At this time, the arm portion 43 and the displacement output portion 431 are formed so as to be symmetrical with respect to the lever portion 41, and the two convex portions 33 are formed symmetrically with respect to the central axis of the lens unit 3. Therefore, an equal force acts on the two convex portions 33. Thereby, the lens unit 3 is displaced so that the optical axis of the imaging lens 31 does not shift.
 さらに詳しく説明すると、電極45は取り付けられた各SMAアクチュエータ44とベース部1の対角線との角度が同じである。また、各電極45から変位入力部412までの長さが等しい。SMAアクチュエータ44の変位入力部412を挟んだ両側が等長、等角度で配置されていることで、変位入力部412を挟んで両側のSMAアクチュエータ44の伸縮量及び伸縮による力が等しくなる。 More specifically, the electrode 45 has the same angle between each attached SMA actuator 44 and the diagonal of the base portion 1. Further, the length from each electrode 45 to the displacement input portion 412 is equal. Since both sides of the SMA actuator 44 sandwiching the displacement input portion 412 are arranged at the same length and at the same angle, the amount of expansion and contraction of the SMA actuator 44 on both sides of the displacement input portion 412 and the force caused by the extension and contraction are equal.
 以上のようにSMAアクチュエータ44が設置されていることで、SMAアクチュエータ44の伸縮量がどちらかに偏ってしまうのを抑制することできる。これにより、SMAアクチュエータ44の変位入力部412に架設されている部分が変位入力部412からずれにくい。ずれを抑制できるので、SMAアクチュエータ44と変位入力部412との摩擦を低減することができる。さらに、両電極45に固定されたSMAアクチュエータ44の伸縮による力は変位入力部412に均等(大きさ及び方向)に作用する。これにより、変位入力部412の変位方向は凸部33の配列方向と直交する方向、すなわち揺動軸Bxと平行な方向となる。これにより、変位入力部412に変位の入力があった場合、レバー部41には、揺動軸Bxに直交するとともに、ベース部1と平行な軸(回転軸Cxのひとつ)周りのモーメントが発生する。 By installing the SMA actuator 44 as described above, it is possible to prevent the expansion / contraction amount of the SMA actuator 44 from being biased to either direction. As a result, the portion of the SMA actuator 44 that is installed on the displacement input portion 412 is less likely to be displaced from the displacement input portion 412. Since the deviation can be suppressed, the friction between the SMA actuator 44 and the displacement input unit 412 can be reduced. Further, the force due to the expansion and contraction of the SMA actuator 44 fixed to both the electrodes 45 acts equally (size and direction) on the displacement input unit 412. Thereby, the displacement direction of the displacement input part 412 becomes a direction orthogonal to the arrangement direction of the convex parts 33, that is, a direction parallel to the swing axis Bx. As a result, when a displacement is input to the displacement input portion 412, a moment is generated in the lever portion 41 around an axis (one of the rotation axes Cx) that is orthogonal to the swing axis Bx and parallel to the base portion 1. To do.
 バイアスばね6はレンズ保持枠32の周縁サイズと略同じ径の圧縮コイルばねである。バイアスばね6は下端部がレンズ保持枠32の上面と当接しており、上端部がケースCaの上側と当接している。これにより、バイアスばね6はレンズ保持枠32を下方に付勢している。バイアスばね6は撮像光がイメージセンサImsに入射するのを妨げないように配置されている。なお、バイアスばね6として、圧縮コイルばねを挙げているが、それに限定されるものではなく、板ばね等のコイルとは異なる形状のものや、空気圧、磁力、静電力等による力を発生するものであってもよい。 The bias spring 6 is a compression coil spring having substantially the same diameter as the peripheral size of the lens holding frame 32. The bias spring 6 has a lower end in contact with the upper surface of the lens holding frame 32 and an upper end in contact with the upper side of the case Ca. As a result, the bias spring 6 biases the lens holding frame 32 downward. The bias spring 6 is arranged so as not to prevent the imaging light from entering the image sensor Ims. In addition, although the compression coil spring is mentioned as the bias spring 6, it is not limited to it, The thing of the shape different from coils, such as a leaf | plate spring, and the thing which generate | occur | produces the force by an air pressure, magnetic force, electrostatic force, etc. It may be.
 ここで、駆動装置4の力の釣り合い及びアクチュエータの動作について図面を参照して説明する。図4は図1に示す撮像装置に用いられたアクチュエータが作動されたときの矢印II側から見た図であり、図5は図1に示す撮像装置に用いられたアクチュエータが作動されたときの矢印III側から見た図である。 Here, the balance of force of the driving device 4 and the operation of the actuator will be described with reference to the drawings. 4 is a view as seen from the arrow II side when the actuator used in the image pickup apparatus shown in FIG. 1 is operated. FIG. 5 is a view when the actuator used in the image pickup apparatus shown in FIG. 1 is operated. It is the figure seen from the arrow III side.
 まず、駆動装置4が駆動していないときの力の釣り合いについて説明する。駆動装置4が駆動していないとき、図2に示すように、レンズユニット3はベース部1に形成された貫通孔10の辺縁部100と接触して静止している(ベースポジション)。このとき、レンズユニット3の図中上面はバイアスばね6によって下方にバイアス力F1で押されている。そして、レンズユニット3の図中下面は、ベース部1に形成された貫通孔10の辺縁部100と接触しており、レンズユニット3は辺縁部100から抗力R1を受けている。 First, the balance of force when the driving device 4 is not driven will be described. When the driving device 4 is not driven, as shown in FIG. 2, the lens unit 3 is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1 and is stationary (base position). At this time, the upper surface of the lens unit 3 in the drawing is pushed downward by the bias spring 6 with the bias force F1. The lower surface of the lens unit 3 in the drawing is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1, and the lens unit 3 receives the drag R 1 from the edge portion 100.
 また、レバー部41の変位入力部412にはSMAアクチュエータ44が架設されており、SMAアクチュエータ44は緊張した状態で電極45に固定されている。このとき、変位入力部412にはSMAアクチュエータ44の緊張による引張力F2が作用している。この引張力F2による第3軸Cx周りのモーメント(図中反時計回り)が、レバー部41及びアーム部43に作用し、そのモーメントによって凸部33にはバイアス力F1と対向する方向の力が作用している。 Further, an SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and the SMA actuator 44 is fixed to the electrode 45 in a tensioned state. At this time, the tensile force F <b> 2 due to the tension of the SMA actuator 44 acts on the displacement input unit 412. A moment around the third axis Cx (counterclockwise in the figure) by the tensile force F2 acts on the lever portion 41 and the arm portion 43, and the moment causes a force in a direction opposite to the bias force F1 to the convex portion 33. It is working.
 そして、レンズユニット3は、それに作用するバイアス力F1、抗力R1及びモーメントによる力が釣り合っており、静止している。なお、引張力F2の大きさは、SMAアクチュエータ44がたるみなく緊張する程度の力とすることができる。また、引っ張り力F2を強くして、レンズユニット3が辺縁部100と接触せずに、バイアス力F1とモーメントによる力とが釣り合うようにし、その位置をベース位置とすることも可能である。 The lens unit 3 is stationary because the bias force F1, the drag force R1, and the moment force acting on the lens unit 3 are balanced. Note that the magnitude of the tensile force F2 can be set to such a level that the SMA actuator 44 is tensioned without sagging. It is also possible to increase the pulling force F2 so that the lens unit 3 does not come into contact with the edge portion 100 so that the bias force F1 and the force due to the moment are balanced, and the position is set as the base position.
 なお、本実施形態では、貫通孔10の内径がレンズユニット3の外径よりも小さく、辺縁部100でレンズユニット3の図中底面を支持するものを例に説明しているが、貫通孔10の辺縁部より貫通孔10の中心に向かってレンズユニット3を保持するための保持部が形成されているものであってもよい。保持部としては、レンズユニット3を安定して保持することができる個数であり、イメージセンサImsへの光の入射を妨げないものを広く採用することが可能である。 In the present embodiment, the inner diameter of the through hole 10 is smaller than the outer diameter of the lens unit 3 and the edge portion 100 supports the bottom surface of the lens unit 3 in the figure, but the through hole 10 is described as an example. A holding portion for holding the lens unit 3 from the peripheral edge portion 10 toward the center of the through hole 10 may be formed. As the holding unit, the number that can stably hold the lens unit 3 is used, and a wide variety of holding units that do not hinder the incidence of light on the image sensor Ims can be used.
 駆動装置4において、レンズユニット3がベースポジションで停止しているとき、SMAアクチュエータ44には通電されておらず、低温状態(マルテンサイト相)であり、SMAアクチュエータ44が伸長された状態になっている。 In the driving device 4, when the lens unit 3 is stopped at the base position, the SMA actuator 44 is not energized, is in a low temperature state (martensitic phase), and the SMA actuator 44 is in an extended state. Yes.
 次に、レンズユニット3がフォーカス動作、ズーム動作等のためにベースポジションから移動される手順について説明する。まず、電極45よりSMAアクチュエータ44に通電する。上述したとおり、SMAアクチュエータ44は通電されることでジュール熱によって加熱される。これにより、SMAアクチュエータ44はマルテンサイト相からオーステナイト相に相変態を起こし、SMAアクチュエータ44は収縮する。 Next, the procedure for moving the lens unit 3 from the base position for the focus operation, the zoom operation, etc. will be described. First, the SMA actuator 44 is energized from the electrode 45. As described above, the SMA actuator 44 is heated by Joule heat when energized. As a result, the SMA actuator 44 undergoes a phase transformation from the martensite phase to the austenite phase, and the SMA actuator 44 contracts.
 図4に示すように、SMAアクチュエータ44の収縮により変位入力部412には収縮力F3が作用する。このとき、収縮力F3は引張力F2よりも大きな力であり、レバー部41に作用する回転軸Cxを中心とする反時計回りのモーメントが大きくなる。このモーメントがアーム部43及び変位出力部431に伝達され、力の釣り合いが崩れ、変位出力部431が凸部33を上方に押す。レンズユニット3は凸部33を変位出力部431に押され、バイアスばね6から作用されている押圧力F1に抗して上方に変位する。バイアスばね6はレンズユニット3の移動により圧縮され、反発力F4でレンズユニット3を押し返す。レバー部41に作用する収縮力F3によるレンズユニット3を押し上げる力と、と反発力F4によるレンズユニット3を押し下げる力が釣り合った位置で、レンズユニット3は停止する。 As shown in FIG. 4, the contraction force F <b> 3 acts on the displacement input unit 412 due to the contraction of the SMA actuator 44. At this time, the contraction force F3 is larger than the tensile force F2, and a counterclockwise moment centering on the rotation axis Cx acting on the lever portion 41 is increased. This moment is transmitted to the arm portion 43 and the displacement output portion 431, the balance of force is lost, and the displacement output portion 431 pushes the convex portion 33 upward. In the lens unit 3, the convex portion 33 is pushed by the displacement output portion 431 and is displaced upward against the pressing force F <b> 1 applied from the bias spring 6. The bias spring 6 is compressed by the movement of the lens unit 3, and pushes back the lens unit 3 with a repulsive force F4. The lens unit 3 stops at a position where the force that pushes up the lens unit 3 by the contraction force F3 acting on the lever portion 41 and the force that pushes down the lens unit 3 by the repulsive force F4 are balanced.
 なお、変位出力部431は凸部33と係合する曲面を有する係止部432を備えているので、アーム部43が回動し、変位出力部431と凸部33との相対位置が変わっても、凸部33と変位出力部431とは確実に係合する。二股のアーム部43は両側が均等に変位する。そして、レンズユニット3は中心軸を挟んで対称に配置された凸部33がアーム部43に均等に押されるので、レンズ保持枠32は中心軸が光軸Axと重なった或いは略重なった状態で変位する。すなわち、撮像レンズ31はレンズユニット3が変位しても、その光軸が撮像装置Aの光軸Axとずれたり、傾いたりすることがなく、撮像精度の低下を抑制することが可能である。 In addition, since the displacement output part 431 is provided with the latching | locking part 432 which has the curved surface engaged with the convex part 33, the arm part 43 rotates and the relative position of the displacement output part 431 and the convex part 33 changes. Also, the convex portion 33 and the displacement output portion 431 are reliably engaged. The bifurcated arm portion 43 is equally displaced on both sides. In the lens unit 3, the convex portions 33 arranged symmetrically with respect to the central axis are evenly pressed by the arm portion 43, so that the lens holding frame 32 is in a state where the central axis overlaps or substantially overlaps the optical axis Ax. Displace. That is, even if the lens unit 3 is displaced, the imaging lens 31 does not shift or tilt its optical axis with respect to the optical axis Ax of the imaging device A, and it is possible to suppress a decrease in imaging accuracy.
 以上のようにして、駆動装置4はSMAアクチュエータ44に通電することでレンズユニット3を持ち上げ、フォーカス動作或いはズーム動作を行うことができる。そして、SMAアクチュエータ44は通電する電流量によって発熱量を変化させ、収縮力F3の大きさを調整することができる。すなわち、駆動装置4は通電する電流量を制御することで、レンズユニット3の移動量の調整が可能である。 As described above, the driving device 4 can lift the lens unit 3 by energizing the SMA actuator 44 to perform the focus operation or the zoom operation. The SMA actuator 44 can adjust the magnitude of the contraction force F3 by changing the heat generation amount according to the amount of current to be applied. That is, the driving device 4 can adjust the amount of movement of the lens unit 3 by controlling the amount of current to be applied.
 SMAアクチュエータ44は収縮している状態で通電が停止されると、ジュール熱の発生が停止され、SMAアクチュエータ44は冷却される。そして、SMAアクチュエータ44は冷却によってオーステナイト相からマルテンサイト相に相変態し、収縮により発生していた収縮力F3が減少する。収縮力F3が減少することで、レンズユニット3はベースポジションに戻る方向に移動する。 When the energization is stopped while the SMA actuator 44 is contracted, the generation of Joule heat is stopped and the SMA actuator 44 is cooled. The SMA actuator 44 is transformed from the austenite phase to the martensite phase by cooling, and the contraction force F3 generated by the contraction is reduced. As the contraction force F3 decreases, the lens unit 3 moves in a direction to return to the base position.
 このとき、収縮力F3によって圧縮されていたバイアスばね6は伸びる。これに伴い、レンズユニット3に作用していた反発力F4が小さくなる。そして、バイアスばね6は元の長さに戻り(バイアスばね6からレンズユニット3へは押圧力F1が作用している状態に戻り)SMAアクチュエータ44が元の長さまで伸長する(SMAアクチュエータ44からレバー部41へは引張力F2が作用している状態に戻る)。最終的に、レンズユニット3及び駆動装置4はベースポジションに戻る。 At this time, the bias spring 6 compressed by the contraction force F3 extends. Accordingly, the repulsive force F4 acting on the lens unit 3 is reduced. The bias spring 6 returns to its original length (returns to the state in which the pressing force F1 is applied from the bias spring 6 to the lens unit 3), and the SMA actuator 44 extends to the original length (from the SMA actuator 44 to the lever). The portion 41 returns to the state where the tensile force F2 is applied). Finally, the lens unit 3 and the driving device 4 return to the base position.
 以上のように、駆動装置4は、SMAアクチュエータ44への通電ON-OFFによって、レンズユニット3を光軸Axに沿って変位させることができる。また、SMAアクチュエータ44へ通電する電流量を適宜調整することで、収縮力F3を調整し、レンズユニット3を所定の位置間で移動させ、その位置で停止させることも可能である。これにより、撮像装置Aはフォーカス動作、ズーム動作を行う場合であっても、撮像レンズ31の光軸がずれたり、傾いたりすることなくレンズユニット3を移動させることができ、イメージセンサImsに高精度(高解像度)の被写体像を結像することが可能である。 As described above, the driving device 4 can displace the lens unit 3 along the optical axis Ax by turning on and off the SMA actuator 44. Further, by appropriately adjusting the amount of current to be supplied to the SMA actuator 44, it is possible to adjust the contraction force F3, move the lens unit 3 between predetermined positions, and stop at that position. As a result, even when the imaging apparatus A performs a focus operation and a zoom operation, the lens unit 3 can be moved without the optical axis of the imaging lens 31 being shifted or tilted. It is possible to form a subject image with high accuracy (high resolution).
 上述のレンズ駆動装置は、二股のアーム部43が完全に均等であるものを例に説明したが、実際のレンズ駆動装置Laでは加工時の加工誤差(加工精度)や組み立て時の組み立て誤差(組み立て精度)によって二股のアームを完全に均等にすることは困難である。レンズ駆動装置Laにおいてアーム部43の精度が落ちると、撮像レンズ31の光軸と撮像装置Aの光軸Axとがずれたり、傾いたりしてしまい、イメージセンサImsに決像される被写体像の精度が落ちてしまう。そこで、本発明のレンズ駆動装置Laは二股に分かれたアーム部43が完全に対称でない場合でも、精度良くレンズユニット3を変位させる工夫がなされている。 The above-described lens driving device has been described with an example in which the bifurcated arm portion 43 is completely uniform. However, in an actual lens driving device La, processing errors (processing accuracy) during processing and assembly errors (assembly) during assembly It is difficult to make the bifurcated arm completely uniform depending on the accuracy). If the accuracy of the arm portion 43 in the lens driving device La is lowered, the optical axis of the imaging lens 31 and the optical axis Ax of the imaging device A are shifted or tilted, and the object image determined by the image sensor Ims is shifted. The accuracy will drop. Therefore, the lens driving device La of the present invention is devised to displace the lens unit 3 with high accuracy even when the bifurcated arm portion 43 is not completely symmetric.
 以下に、アーム部がずれて形成されているレンズ駆動装置及びレンズ駆動装置の駆動について図面を参照して説明する。図6はアーム部が傾いているレンズ駆動装置を備えた撮像装置の図であり、図7は図6に示すレンズ駆動装置のアクチュエータを組み立てる途中の図であり、図8は図6に示すレンズ駆動装置がレンズユニットを持ち上げた状態の図である。なお、アーム部以外は同じ構成を有しているので、実質上同じ部分には同じ符号が付してあり、同じ部分の詳細な説明は省略する。 Hereinafter, the lens driving device formed by shifting the arm portion and driving of the lens driving device will be described with reference to the drawings. FIG. 6 is a diagram of an imaging apparatus provided with a lens driving device having an inclined arm portion, FIG. 7 is a diagram in the middle of assembling an actuator of the lens driving device shown in FIG. 6, and FIG. 8 is a lens shown in FIG. It is a figure of the state which the drive device lifted the lens unit. In addition, since it has the same structure except an arm part, the same code | symbol is attached | subjected to the substantially same part and the detailed description of the same part is abbreviate | omitted.
 図6に示す撮像装置Aに用いられるレンズ駆動装置Laでは、アーム部43がレバー部41に対して傾いて形成されている。まず、レンズユニット3は、図中上面がバイアスばね6に押されており、図中下面がベース部1に形成された貫通孔10の辺縁部100に接触されたベースポジションにある。 In the lens driving device La used in the imaging device A shown in FIG. 6, the arm portion 43 is formed to be inclined with respect to the lever portion 41. First, the lens unit 3 is in a base position in which the upper surface in the drawing is pressed by the bias spring 6 and the lower surface in the drawing is in contact with the edge portion 100 of the through hole 10 formed in the base portion 1.
 支持脚部43のレバー支持部421がレバー部41の支持凹部411に挿入された状態で、SMAアクチュエータ44を変位入力部412に架設して変位入力部412に引張力を作用させる。このとき、アーム部43は回転軸Cx周りに回転され、右側の変位出力部431Rが最初に凸部33と当接する。さらに、SMAアクチュエータ44に引張力が作用されると、右側の変位出力部431Rが凸部33に接触しているので、レバー部41は支持凹部411を中心に、左側の変位出力部431Lが凸部33と当接するまで回動する。 In a state where the lever support portion 421 of the support leg portion 43 is inserted into the support recess portion 411 of the lever portion 41, the SMA actuator 44 is installed on the displacement input portion 412, and a tensile force is applied to the displacement input portion 412. At this time, the arm portion 43 is rotated around the rotation axis Cx, and the right displacement output portion 431R first comes into contact with the convex portion 33. Further, when a tensile force is applied to the SMA actuator 44, the right displacement output portion 431R is in contact with the convex portion 33, so that the lever portion 41 is centered on the support concave portion 411 and the left displacement output portion 431L is convex. It rotates until it abuts on the portion 33.
 左右両方の変位出力部431L、431Rが凸部33と当接し、SMAアクチュエータ44のたるみがなくなったところで、SMAアクチュエータ44の両端部を電極45に固定する。(図7参照)。この状態がベースポジションであり、レンズユニット3において、バイアスばね6から受けるバイアス力、貫通孔10の辺縁部100から受ける抗力及びSMAアクチュエータ44の緊張によって発生するモーメントによる力が釣り合っており、レンズユニット3は静止している。なお、SMAアクチュエータ44からの引張力を大きくして、レンズユニット3がベース部1に形成された貫通孔10の辺縁部100から浮いた状態がベースポジションとなるようにSMAアクチュエータ44を形成してもよい。 When both the left and right displacement output portions 431L and 431R are in contact with the convex portion 33 and the SMA actuator 44 sags, both ends of the SMA actuator 44 are fixed to the electrode 45. (See FIG. 7). This state is the base position, and in the lens unit 3, the bias force received from the bias spring 6, the drag force received from the edge 100 of the through hole 10, and the force generated by the moment of the SMA actuator 44 are balanced. Unit 3 is stationary. The tensile force from the SMA actuator 44 is increased, and the SMA actuator 44 is formed so that the lens unit 3 is lifted from the edge portion 100 of the through hole 10 formed in the base portion 1 to be the base position. May be.
 この後、SMAアクチュエータ44への通電によって収縮力F3が発生すると、レバー部41が回転軸Cx周りに回動し、アーム部43の左右の変位出力部431L、431Rが上方に移動する。これによって、レンズユニット3が変位出力部431L、431Rに押されて変位する。このとき、左右の変位出力部431L、431Rよりそれぞれの凸部33に均等に力が作用するので、レンズユニット3は安定して(撮像レンズ31の光軸が光軸Axと重なった或いは略重なった状態で)変位される(図8参照)。レンズ駆動装置Laの駆動に関しては、前述のものと同じであり、詳細な説明は省略する。 Thereafter, when the contraction force F3 is generated by energizing the SMA actuator 44, the lever portion 41 rotates around the rotation axis Cx, and the left and right displacement output portions 431L and 431R of the arm portion 43 move upward. As a result, the lens unit 3 is pushed and displaced by the displacement output portions 431L and 431R. At this time, since the force acts equally on the convex portions 33 from the left and right displacement output portions 431L and 431R, the lens unit 3 is stable (the optical axis of the imaging lens 31 overlaps or substantially overlaps the optical axis Ax). (See FIG. 8). The driving of the lens driving device La is the same as described above, and a detailed description thereof is omitted.
 このように、支持凹部411とレバー支持部421とが点で接触していることで、レバー部41は揺動軸Bx及び回転軸Cx周りに自在に揺動及び回動できる。レンズ駆動装置Laはレバー部41及び(又は)アーム部43等に製造或いは組み立て時の誤差によってずれが発生しても、支持凹部411とレバー支持部421によってずれを補正することができる。これにより、レンズユニット3が傾いた状態で変位される不具合が発生するのを抑制することが可能である。 Thus, since the support recess 411 and the lever support portion 421 are in contact with each other at a point, the lever portion 41 can freely swing and rotate around the swing axis Bx and the rotation axis Cx. The lens driving device La can correct the deviation by the support concave portion 411 and the lever support portion 421 even if the lever portion 41 and / or the arm portion 43 and the like are displaced due to an error during manufacture or assembly. Thereby, it is possible to suppress the occurrence of a problem that the lens unit 3 is displaced in a tilted state.
 レンズ駆動装置Laにおいて、支持凹部411とレバー支持部421とはともに円錐形状であり、支持凹部411の方が大きな広がり角を有する円錐形状となっている。これは、レバー支持部421が支持凹部411に挿入されたときに、レバー支持部421の外壁面と支持凹部411の内壁面とが接触しないようにして、摩擦を低減するためである。また、支持凹部411とレバー支持部421との間に間隙があることで、レバー部41の回転軸Cx周りの回動が可能となっている。 In the lens driving device La, both the support recessed portion 411 and the lever support portion 421 have a conical shape, and the support recessed portion 411 has a conical shape having a larger spread angle. This is to reduce friction by preventing the outer wall surface of the lever support portion 421 from contacting the inner wall surface of the support recess 411 when the lever support portion 421 is inserted into the support recess 411. In addition, since there is a gap between the support recess 411 and the lever support portion 421, the lever portion 41 can be rotated around the rotation axis Cx.
 支持凹部とレバー支持部421との形状はこれには限定されない。レバー部41が揺動軸Bx及び回転軸Cx周りに自在に揺動及び回動できる形状であればよい。これらの、支持凹部及びレバー支持部の形状の他の例について図面を参照して説明する。図9、図10は本発明にかかる駆動装置の他の例の支持凹部及びレバー支持部を拡大した概略側面図であり、図11は本発明にかかる駆動装置の他の例の支持凹部及びレバー支持部を分解した状態の概略平面図であり、図12は図11に示す駆動装置を分解した状態の概略側面図であり、図13は図11に示すレバー支持部の他の例の側面図である。なお、図9~図13はアーム部の支持凹部と支持脚部のレバー支持部及びその近傍部を拡大している。 The shape of the support concave portion and the lever support portion 421 is not limited to this. The lever portion 41 may have any shape that can freely swing and rotate around the swing axis Bx and the rotation axis Cx. Other examples of the shapes of the support recess and the lever support will be described with reference to the drawings. FIGS. 9 and 10 are enlarged schematic side views of a support recess and a lever support portion of another example of the drive device according to the present invention, and FIG. 11 is a support recess and lever of another example of the drive device according to the present invention. FIG. 12 is a schematic side view of a state in which the support portion is disassembled, FIG. 12 is a schematic side view of the state in which the drive device shown in FIG. 11 is disassembled, and FIG. 13 is a side view of another example of the lever support portion shown in FIG. It is. 9 to 13 are enlarged views of the support concave portion of the arm portion, the lever support portion of the support leg portion, and the vicinity thereof.
 図9に示す駆動装置4Bは、支持凹部411が球面状の凹部で、レバー支持部421の先端の係合部422が球面状の凸形状を有している。このとき、支持凹部411とレバー支持部421の係合部422とは係合できる大きさである。このように、支持凹部411及びレバー支持部421の係合部422が球面(あるいは曲面)で接触するので、点で接触する場合に比べて安定する。また、球面で接触しているので、レバー部41が揺動軸Bx周りに揺動自在であるだけでなく、回転軸Cx周りにも自在に回動することが可能である。なお、係合部422がわずかに小さな径の球面状となっていてもよい。 In the driving device 4B shown in FIG. 9, the support concave portion 411 is a spherical concave portion, and the engaging portion 422 at the tip of the lever support portion 421 has a spherical convex shape. At this time, the support recess 411 and the engagement portion 422 of the lever support portion 421 are sized to be engaged. As described above, since the support concave portion 411 and the engaging portion 422 of the lever support portion 421 are in contact with each other on a spherical surface (or a curved surface), they are more stable than in the case of contact with a point. In addition, since the contact is made by the spherical surface, the lever portion 41 can not only swing around the swing axis Bx but also freely rotate around the rotation axis Cx. The engaging portion 422 may be a spherical surface having a slightly small diameter.
 また、係合部422の形状は必ずしも球面である必要はなく、中心軸を通る断面が常に同じ形状となるような曲面であってもよく、円柱形状であってもよい。この場合、支持凹部411と係合部422とが面全体で接触せず、円形状の接触面になる。この場合であっても、レバー部41は揺動軸Bx及び回転軸Cx周りに自在に揺動及び回動可能である。 Further, the shape of the engaging portion 422 is not necessarily spherical, and may be a curved surface in which the cross section passing through the central axis always has the same shape, or a cylindrical shape. In this case, the support concave portion 411 and the engaging portion 422 do not contact with each other over the entire surface, and become a circular contact surface. Even in this case, the lever portion 41 can freely swing and rotate around the swing axis Bx and the rotation axis Cx.
 図10に示す駆動装置4Cは、支持凹部411が円錐形の凹部で、レバー支持部421の先端の係合部422が球面形状である。このように、レバー支持部421の係合部422が球面形状であるので、係合部422と支持凹部411との接触部は円形となる。接触部の面積が両方とも円錐の場合に比べて大きくなるので、レバー部41が安定して支持される。また、係合部422が球面形状であるので、回転軸Cx周りの回動も円滑に行われる。 In the driving device 4C shown in FIG. 10, the support recess 411 is a conical recess, and the engagement portion 422 at the tip of the lever support portion 421 has a spherical shape. Thus, since the engaging part 422 of the lever support part 421 is a spherical shape, the contact part of the engaging part 422 and the support recessed part 411 becomes circular. Since both areas of the contact portions are larger than in the case of a cone, the lever portion 41 is stably supported. Further, since the engaging portion 422 has a spherical shape, the rotation about the rotation axis Cx is smoothly performed.
 なお、支持凹部411の形状として、円錐以外にも、三角錐や四角錐であってもよい。これらの、角錐の場合、球面形状の係合部422との接触面積は円錐に比べて小さくなるが、それだけ摩擦を減らすことができる。また、球面形状の係合部422が角錐を形成する傾斜面のそれぞれと接触しているので、互いに円錐の場合に比べてレバー部41は安定する。また、係合部422の先端の形状が中心軸を通る断面が常に同じ形状となるような曲面であってもよい。また、少なくとも3点で接触すれば、安定した回動を行うことができるので、支持凹部411は三角形以上の多角形状の底面を有する錐体であることが好ましい。 It should be noted that the shape of the support recess 411 may be a triangular pyramid or a quadrangular pyramid other than the cone. In the case of these pyramids, the contact area with the spherical engaging portion 422 is smaller than that of the cone, but the friction can be reduced accordingly. Further, since the spherical engaging portion 422 is in contact with each of the inclined surfaces forming the pyramid, the lever portion 41 is more stable than in the case of a conical shape. Further, the tip of the engaging portion 422 may be a curved surface in which the cross section passing through the central axis always has the same shape. Moreover, since stable rotation can be performed if the contact is made at least at three points, the support recess 411 is preferably a cone having a polygonal bottom surface that is equal to or greater than a triangle.
 上述の各実施形態に記載されているレバー支持部421は支持脚部42と一体又は支持脚部42に固定されているものであったが、レバー支持部と支持脚部とが別体で形成されているものも考えられる。図11、12に示す支持脚部46のように、着脱可能なレバー支持部461を備えたものであってもよい。支持脚部46はレバー支持部461が回動可能に挿入される揺動穴460を備えている。 The lever support part 421 described in each of the above embodiments is integrated with the support leg part 42 or fixed to the support leg part 42, but the lever support part and the support leg part are formed separately. What is being considered is also possible. Like the support leg part 46 shown to FIG. 11, 12, the thing provided with the lever support part 461 which can be attached or detached may be used. The support leg 46 includes a swing hole 460 into which the lever support 461 is rotatably inserted.
 図11、12に示す駆動装置4Dは、レバー支持部461は揺動穴460に挿入される揺動軸部462と、揺動軸部462の一方の端部に揺動軸部462と直交するように固定され、レバー部41に形成された支持凹部413に係合される係合軸部463とを備えている。図示するように、揺動軸部462の一方の端部は係合軸部463の中央部と連結されている。なお、ここでは、レバー支持部461は一体成形で作製された部材である。レバー支持部461の揺動軸部462が揺動穴460に挿入されていることで、レバー支持部461は中心軸、すなわち揺動軸Bx方向に自在に揺動可能である。 In the driving device 4D shown in FIGS. 11 and 12, the lever support portion 461 has a swing shaft portion 462 inserted into the swing hole 460, and one end portion of the swing shaft portion 462 is orthogonal to the swing shaft portion 462. And an engaging shaft portion 463 that is engaged with a support recessed portion 413 formed in the lever portion 41. As shown in the figure, one end portion of the swing shaft portion 462 is connected to the central portion of the engagement shaft portion 463. Here, the lever support portion 461 is a member produced by integral molding. Since the swing shaft portion 462 of the lever support portion 461 is inserted into the swing hole 460, the lever support portion 461 can swing freely in the direction of the central axis, that is, the swing shaft Bx.
 支持凹部413は断面形状が等曲率の円弧である凹曲面状の内壁面を有する凹溝である。また、係合軸部463は円柱形状を有する部材であり、支持凹部413に係合可能な大きさを有している。支持凹部413が係合軸部463に係合され、係合軸部463に係合支持されることで、レバー部41は係合軸部463の中心軸、すなわち、回転軸Cx周りに回動可能に支持される。なお、力の釣り合いに関しては、上述と同じであるので詳細な説明は省略する。 The support concave portion 413 is a concave groove having a concave curved inner wall surface whose cross-sectional shape is an arc of equal curvature. Further, the engagement shaft portion 463 is a member having a cylindrical shape, and has a size that can be engaged with the support recess 413. The support recess 413 is engaged with the engagement shaft portion 463 and is engaged and supported by the engagement shaft portion 463, whereby the lever portion 41 rotates around the central axis of the engagement shaft portion 463, that is, the rotation axis Cx. Supported as possible. Since the balance of forces is the same as described above, detailed description thereof is omitted.
 レバー支持部461の揺動軸部462を支持脚部46の揺動穴460に挿入し、レバー支持部461の係合軸部463にレバー部41の支持凹部413を係合させることで組み立てられる。以上のように、係合軸部463は揺動軸部462に直交しており、揺動軸部462が支持凹部413に係合されているので、レバー部41は揺動軸Bx周りに自在に揺動可能であるとともに、上述のとおり、回転軸Cx周りに回動自在である。この、レバー支持部461を用いることで、支持脚部46にしっかり支持されるとともに、レバー部41を安定して支持することができるので、駆動時も振動等の不安定な動作を起こしにくい。 Assembling is performed by inserting the swing shaft portion 462 of the lever support portion 461 into the swing hole 460 of the support leg portion 46 and engaging the support recess portion 413 of the lever portion 41 with the engagement shaft portion 463 of the lever support portion 461. . As described above, the engagement shaft portion 463 is orthogonal to the swing shaft portion 462, and the swing shaft portion 462 is engaged with the support recess 413, so that the lever portion 41 can freely move around the swing shaft Bx. And can be rotated about the rotation axis Cx as described above. By using the lever support portion 461, it is firmly supported by the support leg portion 46, and the lever portion 41 can be stably supported. Therefore, unstable operation such as vibration is difficult to occur during driving.
 図13に示すように、レバー支持部461として揺動軸部462の端部と係合軸部463とを中間部材で連結する構造としてもよい。このように構成することで、揺動穴460のベース部からの高さと、支持凹部413のベース部からの高さをそろえなくてもよく、それだけ、レンズ駆動部の構成の自由度を上げることが可能であり、小型化、特殊形状に対応しやすい。 As shown in FIG. 13, it is good also as a structure which connects the edge part of the rocking | fluctuation shaft part 462, and the engaging shaft part 463 with an intermediate member as the lever support part 461. With this configuration, the height of the swing hole 460 from the base portion and the height of the support recess 413 from the base portion need not be aligned, and the degree of freedom in the configuration of the lens driving portion can be increased accordingly. It is possible, and it is easy to cope with downsizing and special shapes.
 次に本発明にかかる撮像装置のさらに他の例について図面を参照して説明する。図14は本発明にかかる撮像装置のさらに他の例の図であり、図15は図14に示す撮像装置で用いられるレンズ駆動装置のアクチュエータを組み立てる途中の図であり、図16は図14に示す撮像装置で用いられるレンズ駆動装置がレンズユニットを持ち上げた状態の図である。なお、アーム部以外は撮像装置Aと同じ構成を有しているので、実質上同じ部分には同じ符号が付してあり、同じ部分の詳細な説明は省略する。 Next, still another example of the imaging apparatus according to the present invention will be described with reference to the drawings. 14 is a view of still another example of the image pickup apparatus according to the present invention, FIG. 15 is a view in the middle of assembling the actuator of the lens driving device used in the image pickup apparatus shown in FIG. 14, and FIG. It is a figure of the state which the lens drive device used with the imaging device shown lifted the lens unit. In addition, since it has the same structure as the imaging device A except an arm part, the same code | symbol is attached | subjected to the substantially same part, and detailed description of the same part is abbreviate | omitted.
 図14に示す撮像装置Bに用いられているレンズ駆動装置Lbにおいて、アーム部47がレバー部41に対して傾いて形成されている。アーム部47の中間部にはヒンジ部470が形成されている。ヒンジ部470はアーム部47の他の部分に比べて薄肉で形成されている。このように薄肉に形成されていることで、ヒンジ部470は弾性変形する。 In the lens driving device Lb used in the imaging device B shown in FIG. 14, the arm portion 47 is formed to be inclined with respect to the lever portion 41. A hinge portion 470 is formed in the middle portion of the arm portion 47. The hinge portion 470 is formed thinner than the other portions of the arm portion 47. The hinge portion 470 is elastically deformed by being formed thin in this way.
 レンズ駆動装置Lbは次のように組み立てられる。まず、支持脚部43のレバー支持部421がレバー部41の支持凹部411に挿入され、SMAアクチュエータ44をレバー部41の変位入力部412に架設し、SMAアクチュエータ44を引っ張って変位入力部412に引張力を作用させる。これにより、アーム部47が回転軸Cxを中心に回動し、右側の変位出力部471Rが最初にレンズユニット3の凸部33と当接する。さらに、SMAアクチュエータ44を引っ張り、変位入力部412にさらに引張力が作用されると、アーム部47の右側に形成されているヒンジ部470が変形し、左側の変位出力部471Lが凸部33と当接する。 The lens driving device Lb is assembled as follows. First, the lever support portion 421 of the support leg 43 is inserted into the support recess 411 of the lever portion 41, the SMA actuator 44 is installed on the displacement input portion 412 of the lever portion 41, and the SMA actuator 44 is pulled to the displacement input portion 412. Apply tensile force. As a result, the arm portion 47 rotates about the rotation axis Cx, and the right displacement output portion 471R first contacts the convex portion 33 of the lens unit 3. Further, when the SMA actuator 44 is pulled and a tensile force is further applied to the displacement input portion 412, the hinge portion 470 formed on the right side of the arm portion 47 is deformed, and the left displacement output portion 471L is Abut.
 この状態をベースポジションとして、SMAアクチュエータ44の両端部を電極45に固定する(図15参照)。このとき、レンズユニット3は、バイアスばね6が図中上面を下方に押圧するバイアス力、ベース部1に形成された貫通孔10の辺縁部100から受ける抗力及び引張力によるモーメントから受ける力とが釣り合っている。 Using this state as the base position, both ends of the SMA actuator 44 are fixed to the electrode 45 (see FIG. 15). At this time, the lens unit 3 has a bias force that the bias spring 6 presses the upper surface in the drawing downward, a drag force that is received from the edge portion 100 of the through hole 10 formed in the base portion 1, and a force that is received from a moment due to a tensile force. Are balanced.
 ヒンジ部470の右側が変形した状態で、SMAアクチュエータ44が駆動され(収縮され)ると、左右の変位出力部471L、471Rが駆動される。このとき、左右の変位出力部471L、471Rがそれぞれ凸部33に均等に力を作用させ、レンズユニット3は安定して変位される(図16参照)。レンズ駆動装置Laの駆動に関しては、前述のものと同じであり、詳細な説明は省略する。 When the right side of the hinge part 470 is deformed and the SMA actuator 44 is driven (shrinked), the left and right displacement output parts 471L and 471R are driven. At this time, the left and right displacement output portions 471L and 471R apply a force equally to the convex portion 33, and the lens unit 3 is stably displaced (see FIG. 16). The driving of the lens driving device La is the same as described above, and a detailed description thereof is omitted.
 なお、SMAアクチュエータ44の引張力は左右の変位出力部471L、471Rが凸部33と接触し、SMAアクチュエータ44がたるまない程度のものを挙げることができる。さらには、SMAアクチュエータ44の引張力をさらに強くし、レンズユニット3がベース部1の貫通孔10の辺縁部100より浮いた状態をベースポジションとすることも可能である。 The tensile force of the SMA actuator 44 can be such that the left and right displacement output portions 471L and 471R are in contact with the convex portion 33 and the SMA actuator 44 does not sag. Furthermore, the tensile force of the SMA actuator 44 can be further increased, and the lens unit 3 can be set as the base position in a state where it floats from the edge portion 100 of the through hole 10 of the base portion 1.
 このように、アーム部47に弾性変形するヒンジ部471が形成されていることで、レバー部41及び(又は)アーム部43等に製造或いは組み立て時の誤差によってずれが発生しても、そのずれによって、レンズユニット3が傾いて変位される不具合が発生するのを抑制することが可能である。 As described above, since the arm portion 47 is formed with the hinge portion 471 that is elastically deformed, even if the lever portion 41 and / or the arm portion 43 or the like is displaced due to an error during manufacturing or assembly, the displacement Thus, it is possible to suppress the occurrence of a problem that the lens unit 3 is inclined and displaced.
 上記実施形態では、凸部であるレバー支持部が支持脚部に、凹部である支持凹部がレバー部に形成されているものを例に説明しているが、逆にレバー支持部がレバー部に支持凹部が支持脚部に形成されていてもかまわない。 In the above embodiment, the case where the lever support portion that is a convex portion is formed on the support leg portion and the support concave portion that is a concave portion is formed on the lever portion is described as an example. The support recess may be formed in the support leg.
 上述の各実施形態では、SMAアクチュエータとして、線状の形状記憶合金を用いるものが記載されているが、それに限定されるものではなく、ベルト状のものなど、レバー部を安定して、精度良く回動及び(又は)揺動させることができる形状のものを広く採用することが可能である。また、SMAアクチュエータの加熱方法として通電によりジュール熱を発生させるものが挙げられているが、それに限定されるものではなく、誘導加熱を用いる方法等、加熱冷却をすばやく切り替えることができる方法を広く採用することが可能である。また、SMAアクチュエータとして、温度により収縮する形状記憶合金を用いるものだけではなく、たとえば磁性によって形状が変化する合金等、伸縮を容易且つすばやく切り替えることができるものを広く採用することが可能である。 In each of the above-described embodiments, a SMA actuator using a linear shape memory alloy is described. However, the SMA actuator is not limited to this, and the lever portion, such as a belt-like one, is stable and accurate. A shape that can be rotated and / or swung can be widely used. In addition, the heating method of the SMA actuator includes one that generates Joule heat by energization, but it is not limited to this, and a method that can quickly switch between heating and cooling such as a method using induction heating is widely adopted. Is possible. Further, as the SMA actuator, not only one that uses a shape memory alloy that shrinks depending on temperature, but also one that can easily and quickly switch expansion and contraction, such as an alloy whose shape changes due to magnetism, can be widely used.
 また、上述の各実施形態では、レンズホルダがレンズの光軸方向に移動するものが記載されているが、それに限定されるものではない。 In each of the above-described embodiments, the lens holder moves in the optical axis direction of the lens, but is not limited thereto.
 上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。 The description of the above embodiment is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. It is needless to say that each part configuration of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
 本発明は、携帯電話、携帯情報端末等に搭載されたデジタルカメラのレンズ駆動装置のような、小型且つ高精度な駆動が要求される駆動装置に適用することが可能である。 The present invention can be applied to a drive device that is required to be small and highly accurate, such as a lens drive device of a digital camera mounted on a mobile phone, a portable information terminal, or the like.
A 撮像装置
Ca ケース
Ims イメージセンサ
1 ベース部
10 貫通孔
2 天板部
20 貫通孔
3 レンズユニット
31 撮像レンズ
32 レンズ保持枠
33 凸部
4 アクチュエータ
41 レバー部
411 支持凹部
412 変位入力部
42 支持脚部
421 レバー支持部
43 アーム部
431 変位出力部
44 SMAアクチュエータ
45 電極
46 支持脚部
460 揺動穴
461 レバー支持部
462 揺動軸部
463 係合軸部
47 アーム部
51 上板ばね
52 下板ばね
6 バイアスばね
A Imaging device Ca Case Ims Image sensor 1 Base part 10 Through hole 2 Top plate part 20 Through hole 3 Lens unit 31 Imaging lens 32 Lens holding frame 33 Convex part 4 Actuator 41 Lever part 411 Support concave part 412 Displacement input part 42 Support leg part 421 Lever support portion 43 Arm portion 431 Displacement output portion 44 SMA actuator 45 Electrode 46 Support leg 460 Swing hole 461 Lever support portion 462 Swing shaft portion 463 Engagement shaft portion 47 Arm portion 51 Upper leaf spring 52 Lower leaf spring 6 Bias spring

Claims (21)

  1.  支持脚部と、
     前記支持脚部に回動可能に支持されたレバー部と、
     前記レバー部に連結され被駆動体と少なくとも2箇所で係合された変位出力部と、
     前記レバー部と係合し、可逆的に変形する形状記憶合金アクチュエータとを備え、
     前記形状記憶合金アクチュエータの変形により前記レバー部に連結された前記変位出力部が前記被駆動体を所定の方向に移動させる駆動装置であって、
     前記支持脚部または前記レバー部のいずれか一方から突出し、先端に係合部を具備するレバー支持部と、他方に形成され、前記係合部が係合される支持凹部とを備え、
     前記レバー部が、前記係合部と前記支持凹部との接触部又はその近傍を通り前記被駆動体の移動方向と直交又は交差する回転軸を中心に回動可能に、且つ、前記回転軸又は前記回転軸と平行な線と直交又は交差する揺動軸を中心に揺動可能に、支持脚部に支持されていることを特徴とする駆動装置。
    Support legs,
    A lever portion rotatably supported by the support leg portion;
    A displacement output unit connected to the lever unit and engaged with the driven body in at least two places;
    A shape memory alloy actuator that engages with the lever portion and deforms reversibly,
    The displacement output unit coupled to the lever unit by deformation of the shape memory alloy actuator is a driving device that moves the driven body in a predetermined direction,
    A lever support part that protrudes from either the support leg part or the lever part and has an engagement part at the tip, and a support recessed part that is formed on the other side and engages the engagement part;
    The lever portion is rotatable about a rotation axis that passes through or near the contact portion between the engagement portion and the support recess and is orthogonal to or intersects the moving direction of the driven body, and the rotation shaft or A drive device characterized in that it is supported by a support leg so as to be swingable about a swing shaft orthogonal or intersecting with a line parallel to the rotation shaft.
  2.  前記レバー部は、前記係合部と前記支持凹部との接触によって支持されている請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the lever portion is supported by contact between the engagement portion and the support recess.
  3.  前記係合部と前記支持凹部とが1点で接触している請求項2に記載の駆動装置。 The driving device according to claim 2, wherein the engaging portion and the supporting concave portion are in contact at one point.
  4.  前記係合部と前記支持凹部とは、少なくとも3点以上の点で接触している請求項2に記載の駆動装置。 The driving device according to claim 2, wherein the engaging portion and the supporting recess are in contact at least at three or more points.
  5.  前記レバー支持部は前記レバー部又は前記支持脚部に形成された揺動穴に揺動可能に挿入された円柱状の揺動軸部を備えており、
     前記係合部は前記揺動軸部の中心軸又は前記中心軸と平行な線に対して直交又は交差する方向に延伸する係合軸部を備えており、
     前記支持凹部は前記係合軸部を中心軸周りに摺動可能に支持する凹溝形状である請求項2に記載の駆動装置。
    The lever support portion includes a columnar swing shaft portion that is swingably inserted into a swing hole formed in the lever portion or the support leg portion,
    The engaging portion includes an engaging shaft portion extending in a direction orthogonal to or intersecting with a central axis of the swing shaft portion or a line parallel to the central axis,
    The drive device according to claim 2, wherein the support concave portion has a concave groove shape that supports the engagement shaft portion so as to be slidable around a central axis.
  6.  前記変位出力部は前記被駆動体の一部を側方から包囲するアーム部を介して前記レバー部に取り付けられている請求項1に記載の駆動装置。 The driving device according to claim 1, wherein the displacement output unit is attached to the lever unit via an arm unit that surrounds a part of the driven body from the side.
  7.  前記被駆動体が前記変位出力部より受ける力と反対方向の力を前記被駆動体に付勢する付勢部材を備えている請求項1に記載の駆動装置。 The drive device according to claim 1, further comprising a biasing member that biases the driven body with a force in a direction opposite to a force received by the driven body from the displacement output unit.
  8.  前記レバー部は前記形状記憶合金アクチュエータからの駆動力と、前記変位出力部が前記被駆動体から受ける抗力とが釣り合うことで静止する請求項1に記載の駆動装置。 The driving device according to claim 1, wherein the lever portion is stationary by a balance between a driving force from the shape memory alloy actuator and a drag force received by the displacement output portion from the driven body.
  9.  互いに平行となるように配置され、前記被駆動体を移動方向の前後両側から保持した一対の平行ばねを備えている請求項1に記載の駆動装置。 The drive device according to claim 1, further comprising a pair of parallel springs arranged so as to be parallel to each other and holding the driven body from both front and rear sides in the moving direction.
  10.  前記被駆動体の少なくとも一部と接触し、前記被駆動体の移動方向と平行に配置されたガイド部を備えている請求項1に記載の駆動装置。 The driving apparatus according to claim 1, further comprising a guide portion that is in contact with at least a part of the driven body and is arranged in parallel with a moving direction of the driven body.
  11.  前記形状機構合金アクチュエータが線状に形成されている請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the shape mechanism alloy actuator is formed in a linear shape.
  12.  支持脚部と、
     前記支持脚部に回動可能に支持されたレバー部と、
     前記レバー部に連結され被駆動体と少なくとも2箇所で係合された複数個の変位出力部と、
     前記レバー部に係合し、可逆的に変形する形状記憶合金アクチュエータとを備え、
     前記形状記憶合金アクチュエータの変形によって前記レバー部が回動され、前記変位出力部が前記被駆動体を所定の方向に移動させる駆動装置であって、
     前記複数個の変位出力部の前記被駆動体の移動方向に沿う方向の位置を前記レバーの傾きに応じて変動させ、すべての変位出力部を該被駆動体とバランスを取って係合させる変位調整部を備えていることを特徴とする駆動装置。
    Support legs,
    A lever portion rotatably supported by the support leg portion;
    A plurality of displacement output portions connected to the lever portion and engaged with the driven body at at least two locations;
    A shape memory alloy actuator that engages with the lever portion and reversibly deforms,
    The lever unit is rotated by deformation of the shape memory alloy actuator, and the displacement output unit is a driving device that moves the driven body in a predetermined direction,
    Displacement in which the positions of the plurality of displacement output sections in the direction along the moving direction of the driven body are changed according to the inclination of the lever, and all the displacement output sections are engaged with the driven body in a balanced manner. A drive device comprising an adjustment unit.
  13.  前記複数の変位出力部は前記被駆動体の一部を側方から包囲するアーム部を介して前記レバー部に取り付けられている請求項12に記載の駆動装置。 The driving device according to claim 12, wherein the plurality of displacement output units are attached to the lever unit via an arm unit that surrounds a part of the driven body from the side.
  14.  前記複数の変位出力部は前記被駆動体の一部を側方から包囲するアーム部を介して前記レバー部に取り付けられており、
     前記変位調整部は前記アーム部の少なくとも一部に形成されており、
     前記アーム部は前記変位調整部で弾性変形可能である請求項12に記載の駆動装置。
    The plurality of displacement output parts are attached to the lever part via an arm part that surrounds a part of the driven body from the side,
    The displacement adjustment part is formed on at least a part of the arm part,
    The driving device according to claim 12, wherein the arm portion is elastically deformable by the displacement adjusting portion.
  15.  前記被駆動体が前記変位出力部より受ける力と反対方向の力を前記被駆動体に付勢する付勢部材を備えている請求項12に記載の駆動装置。 13. The drive device according to claim 12, further comprising a biasing member that biases the driven body with a force in a direction opposite to a force that the driven body receives from the displacement output unit.
  16.  前記レバー部は前記形状記憶合金アクチュエータからの駆動力と、前記変位出力部が前記被駆動体から受ける抗力とが釣り合うことで静止する請求項12に記載の駆動装置。 The driving device according to claim 12, wherein the lever portion is stationary by a balance between a driving force from the shape memory alloy actuator and a drag force received by the displacement output portion from the driven body.
  17.  互いに平行となるように配置され、前記被駆動体を移動方向の前後両側から保持した一対の平行ばねを備えている請求項12に記載の駆動装置。 13. The drive device according to claim 12, further comprising a pair of parallel springs arranged so as to be parallel to each other and holding the driven body from both the front and rear sides in the moving direction.
  18.  前記被駆動体の少なくとも一部と接触し、前記被駆動体の移動方向と平行に配置されたガイド部を備えている請求項12に記載の駆動装置。 13. The driving apparatus according to claim 12, further comprising a guide portion that is in contact with at least a part of the driven body and is arranged in parallel with a moving direction of the driven body.
  19.  前記形状機構合金アクチュエータは線状に形成されている請求項12に記載の駆動装置。 The drive device according to claim 12, wherein the shape mechanism alloy actuator is formed in a linear shape.
  20.  請求項1に記載の駆動装置を用いて、前記被駆動体としてレンズを備えたレンズユニットを駆動することを特徴とするレンズ駆動装置。 A lens driving device that drives a lens unit including a lens as the driven body using the driving device according to claim 1.
  21.  請求項12に記載の駆動装置を用いて、前記被駆動体としてレンズを備えたレンズユニットを駆動することを特徴とするレンズ駆動装置。 A lens driving device that drives a lens unit having a lens as the driven body using the driving device according to claim 12.
PCT/JP2010/052827 2009-02-27 2010-02-24 Drive device and lens drive device WO2010098340A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501612A JP5447501B2 (en) 2009-02-27 2010-02-24 Driving device and lens driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-046575 2009-02-27
JP2009046575 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098340A1 true WO2010098340A1 (en) 2010-09-02

Family

ID=42665546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052827 WO2010098340A1 (en) 2009-02-27 2010-02-24 Drive device and lens drive device

Country Status (2)

Country Link
JP (1) JP5447501B2 (en)
WO (1) WO2010098340A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505930A (en) * 2017-11-22 2021-02-18 オプトチューン コンシューマー アーゲー Optical devices with autofocus and optical image stabilization, especially cameras
JP2021043319A (en) * 2019-09-11 2021-03-18 新思考電機有限公司 Lens drive device, camera device and electronic equipment
CN114721107A (en) * 2022-05-16 2022-07-08 上海信迈电子科技有限公司 Optical element driving device, image pickup device, and mobile terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343500A (en) * 1999-05-31 2000-12-12 Minolta Co Ltd Oscillation device
JP2006146044A (en) * 2004-11-24 2006-06-08 Konica Minolta Opto Inc Position adjusting unit and method, manufacturing method of optical unit
JP2007058075A (en) * 2005-08-26 2007-03-08 Konica Minolta Opto Inc Photographic lens unit
JP2009037059A (en) * 2007-08-02 2009-02-19 Konica Minolta Opto Inc Driving mechanism, drive device and lens drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000343500A (en) * 1999-05-31 2000-12-12 Minolta Co Ltd Oscillation device
JP2006146044A (en) * 2004-11-24 2006-06-08 Konica Minolta Opto Inc Position adjusting unit and method, manufacturing method of optical unit
JP2007058075A (en) * 2005-08-26 2007-03-08 Konica Minolta Opto Inc Photographic lens unit
JP2009037059A (en) * 2007-08-02 2009-02-19 Konica Minolta Opto Inc Driving mechanism, drive device and lens drive device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505930A (en) * 2017-11-22 2021-02-18 オプトチューン コンシューマー アーゲー Optical devices with autofocus and optical image stabilization, especially cameras
JP7123137B2 (en) 2017-11-22 2022-08-22 オプトチューン コンシューマー アーゲー Optical devices, especially cameras, with autofocus and optical image stabilization
JP2021043319A (en) * 2019-09-11 2021-03-18 新思考電機有限公司 Lens drive device, camera device and electronic equipment
JP7189852B2 (en) 2019-09-11 2022-12-14 新思考電機有限公司 Lens driving device, camera device and electronic device
CN114721107A (en) * 2022-05-16 2022-07-08 上海信迈电子科技有限公司 Optical element driving device, image pickup device, and mobile terminal

Also Published As

Publication number Publication date
JP5447501B2 (en) 2014-03-19
JPWO2010098340A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
US11520160B2 (en) Optical device
JP4771061B2 (en) Drive mechanism
JP6391584B2 (en) Suspension system for camera lens elements
US8731390B2 (en) Electromagnetic actuators for digital cameras
JP2021099417A (en) Camera module
KR101170714B1 (en) Auto focus actuator and camera module containing the same
US20100074607A1 (en) Shape memory alloy actuation apparatus
US20110102917A1 (en) Drive mechanism, drive device, and lens drive device
JP2008287034A (en) Actuator, its manufacture method, imaging equipment and portable electronic equipment
US10852458B2 (en) Camera device
CN113296335B (en) Camera module and electronic device
JP7096484B2 (en) Lens drive device, camera module, and camera mount device
GB2591699A (en) Shape memory alloy actuation apparatus
JP5447501B2 (en) Driving device and lens driving device
CN114236946A (en) Optical element driving device, image pickup device, and mobile terminal
GB2569668A (en) Shape memory alloy actuation apparatus
US20220229266A1 (en) Lens autofocus actuating device
JP2005083332A (en) Driving device
JP5321132B2 (en) Driving device and lens driving device
CN111381344B (en) Actuating device, periscopic camera module and mobile terminal
JP2019079855A (en) Coil unit and method of manufacturing the same, and photographing optical device
WO2019243846A1 (en) Shape memory alloy actuation apparatus
GB2574871A (en) Shape memory alloy actuation apparatus
JP5031621B2 (en) Actuator, image sensor and electronic device
JP2013242426A (en) Drive mechanism and lens moving mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746220

Country of ref document: EP

Kind code of ref document: A1