WO2010098309A1 - 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品 - Google Patents

銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品 Download PDF

Info

Publication number
WO2010098309A1
WO2010098309A1 PCT/JP2010/052735 JP2010052735W WO2010098309A1 WO 2010098309 A1 WO2010098309 A1 WO 2010098309A1 JP 2010052735 W JP2010052735 W JP 2010052735W WO 2010098309 A1 WO2010098309 A1 WO 2010098309A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
synthetic resin
masterbatch
silver nanoparticles
resin
Prior art date
Application number
PCT/JP2010/052735
Other languages
English (en)
French (fr)
Inventor
中島有二
Original Assignee
日本イオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本イオン株式会社 filed Critical 日本イオン株式会社
Priority to JP2011501596A priority Critical patent/JPWO2010098309A1/ja
Publication of WO2010098309A1 publication Critical patent/WO2010098309A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0058Biocides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Definitions

  • the present invention relates to a composition containing antibacterial silver nanoparticles, a synthetic resin masterbatch containing silver nanoparticles, and a molded product thereof.
  • Patent Document 1 aims to “provide a method for producing a masterbatch containing an antibacterial agent that does not inactivate silver ions”, and uses soluble glass as a carrier for silver nanoparticles. Yes. Further, Patent Document 2 states that “thermoplastic capable of exhibiting excellent antibacterial properties even when the resin molded body has a bulky shape by effectively utilizing the original antibacterial properties of the inorganic antibacterial agent.
  • the purpose of the present invention is to provide a resin molded article.
  • inorganic compounds for supporting antibacterial metal ions include inorganic adsorbents such as activated carbon, activated alumina and silica gel, zeolite, hydroxyapatite, phosphorus Inorganic ion exchangers such as zirconium acid, titanium phosphate, potassium titanate, hydrous bismuth, hydrous zirconium, and hydrotalcite are shown.
  • inorganic adsorbents such as activated carbon, activated alumina and silica gel, zeolite, hydroxyapatite, phosphorus Inorganic ion exchangers such as zirconium acid, titanium phosphate, potassium titanate, hydrous bismuth, hydrous zirconium, and hydrotalcite are shown.
  • Patent Document 3 has an object of “providing an antibacterial coating composition containing 30 PPM nanosilver particles on the surface of an injection preformed article and a coating method of the antibacterial coating”, and in the manufacturing process shown as a solution means, , “Nanosilver particles are dispersed in ethanol at a predetermined concentration to obtain a nanosilver ethanol dispersion liquid”.
  • Patent Document 4 discloses a technique for uniformly dispersing silver nanoparticles in a masterbatch without using a dispersant or a carrier.
  • a predetermined amount of an ultrafine particle material is mixed in a molding base material, the molding base material is melted or cured to be molded into a predetermined shape, and the ultrafine particle material is formed on the molding surface or surface layer portion.
  • the mixed ultrafine particle material is passed from the inside to the surface or surface layer of the molded article through a crosslinked network of the molded base material.
  • JP 05-255515 A Japanese Patent Application Laid-Open No. 07-252376 JP 2006-9008 A JP 2007-197707 A
  • Patent Documents 1 to 3 have the following problems in addition to the fact that antibacterial properties are not necessarily at a sufficiently satisfactory level. That is, (1) When a dispersant is used, the components of the dispersant remain in the synthetic resin, which may be harmful depending on the dispersant used, and the silver fine particles are uniform in the synthetic resin. Not distributed. (2) And when using a carrier, (A) Since it is difficult to make the particle size of the inorganic particles themselves carrying silver less than or equal to the wavelength of visible light, transparency, which is a feature of the particles, is impaired when blended with a transparent synthetic resin.
  • the silver itself necessary for the expression of antibacterial properties is uniformly dispersed in the synthetic resin, and when blended with the transparent synthetic resin, the characteristic transparency is not impaired, and the synthetic resin originally possesses. It is an object of the present invention to provide a masterbatch that does not impair the preferred physical properties, is excellent in economic efficiency, and does not pose a safety problem even when it is a molded article such as synthetic resin tableware. .
  • Silver lactate was added to and blended with the pellets of the synthetic resin, kneaded at a temperature at which the synthetic resin melts using a kneading extruder, and extruded into strands to be cut into pellets.
  • this synthetic resin pellet is observed under a transmission microscope, silver is found to be very finely dispersed (average particle diameter is about 1 nm to 80 nm) and uniformly dispersed in the obtained synthetic resin. There was found. If the ultrafine silver particles are dispersed and present in the synthetic resin in such a form, the synthetic resin is expected to have sufficient antibacterial properties.
  • a small plate-shaped molded product generally called a color plate is molded from the obtained synthetic resin pellets by injection molding, and whether or not the plate-shaped molded product has antibacterial properties.
  • antibacterial properties as expected were obtained, and the present invention was achieved.
  • silver lactate is mixed with the synthetic resin and kneaded and extruded at a high temperature.
  • silver lactate decomposes into lactic acid and silver at a high temperature, and silver ions formed by the decomposition aggregate to form ultrafine silver particles in the synthetic resin.
  • the above invention was originally performed using a polypropylene resin as a synthetic resin. However, it is technically expected that the same effect can be sufficiently expected with other thermoplastic resins, and is therefore another general-purpose synthetic resin. Similar investigations were made not only for polyethylene resins, polystyrene resins, ABS resins, etc., but also for polycarbonate resins, polyamide resins, polyethylene terephthalate resins, etc., which are engineering resins. It was found that similar results were obtained.
  • the present invention is as follows. That is, the silver nanoparticle-containing composition according to claim 1 of the present application is produced by mixing a predetermined amount of silver lactate and a thermoplastic resin and kneading the thermoplastic resin at a meltable temperature. .
  • the master batch containing silver nanoparticles according to claim 2 of the present application is prepared by mixing a predetermined amount of silver lactate and a thermoplastic resin, kneading at a meltable temperature of the thermoplastic resin to obtain a mixed melt, and mixing and melting the mixture. It is characterized by being manufactured by extruding, cooling and chopping.
  • the silver nanoparticle-containing masterbatch according to claim 3 of the present application is the silvernanoparticle-containing masterbatch according to claim 2, wherein the silver concentration in the silver lactate with respect to the thermoplastic resin is about 200 ppm to It is characterized by 20,000 ppm.
  • the master batch containing silver nanoparticles according to claim 4 of the present application is the master batch containing silver nanoparticles according to claim 2 or claim 3, wherein the silver nanoparticles have a particle size of about 1 nm to 80 nm. It is characterized by that.
  • a synthetic resin molded product according to claim 5 of the present application is a thermoplastic resin containing the silver nanoparticle-containing masterbatch according to any one of claims 2 to 4 added and mixed to melt the thermoplastic resin. It is characterized by being melted and molded at a possible temperature.
  • the raw material used to make silver exist as ultrafine particles in the synthetic resin is a simple chemical product called silver lactate, and it requires a special process other than mixing and heating with the synthetic resin.
  • a sufficient antibacterial effect can be exhibited even when the amount of silver lactate used is as small as 200 ppm to 20,000 ppm. Therefore, for example, the cost is lower than that of a conventional method in which silver is supported on zeolite or the like described in Patent Document 2 and the amount used is at least 2 to 3% or more.
  • the synthetic resin (master batch containing silver nanoparticle) in which ultrafine particles (so-called nanosize) of silver obtained in the present invention are dispersed may be a transparent synthetic resin such as polystyrene resin or polycarbonate resin.
  • the transparency of the synthetic resin is not impaired because the size of the silver particles is smaller than the wavelength of visible light.
  • the content of silver nanoparticles is 200 ppm to 20,000 ppm, usually about 500 ppm to 5,000 ppm. The physical properties inherent to the synthetic resin are not impaired.
  • FIG. 1 is a photograph of an internal structure observed with a transmission electron microscope of a masterbatch containing silver nanoparticles using polypropylene as a synthetic resin raw material pellet according to the present invention
  • FIG. 1 (B) is a photograph of a PP substrate containing 4,000 ppm of silver nanoparticles according to the present invention
  • FIG. 2 is a production flow diagram of a masterbatch containing silver nanoparticles according to the present invention.
  • reference numeral 1 is a master batch containing silver nanoparticles according to the present invention (hereinafter referred to as “master batch (1) containing silver nanoparticles)”
  • reference numeral 3 is a synthetic resin raw material pellet
  • reference numeral 5 is Silver lactate.
  • the predetermined amount is such that the silver concentration in the silver lactate (5) is about 200 ppm to 20,000 ppm with respect to the synthetic resin raw material pellet (3).
  • the amount of silver lactate (5) added to the synthetic resin raw material pellet (3) is preferably about 200 ppm to 20,000 ppm with respect to the pellet because the obtained pellet is desirably used as a master batch.
  • the concentration of silver becomes too low when used as a master batch, and the antibacterial effect is difficult to be obtained.
  • concentration is 20,000 ppm or more, the cost is increased and the practicality is lost.
  • liquid paraffin or the like it is desirable to add and mix a small amount in advance as a so-called spreading agent.
  • a lubricant such as magnesium stearate so that the silver nanoparticles are more uniformly dispersed in the synthetic resin.
  • preparation of the aqueous solution of silver lactate was based on the following procedures. 1. 30 g of powdered silver lactate silver lactate powder is dissolved in 970 g of distilled water. 2. Insoluble particles are filtered through a glass filter. 2 is a schematic view of granular silver lactate (5) stuck to the surface of granular synthetic resin raw material pellet (3).
  • the set temperature of the cylinder at the time of melting and kneading extrusion by the kneading extruder for masterbatch production is set to a temperature suitable for each synthetic resin, but usually 170 ° C to 290 ° C is used. For example, about 170 ° C. to 180 ° C. is used for polyethylene resin, and about 270 ° C. to 290 ° C. is used for polycarbonate resin.
  • the kneading extruder for producing the master batch is preferably a twin screw extruder, but it has been confirmed that there is no particular problem even with a single screw extruder.
  • [Cooling and shredding step: S4] The extruded molded product is cooled and further cut into a master batch (1) containing silver nanoparticles.
  • the figure described in [Cooling and Shredding Step] in FIG. 2 is a schematic diagram of a master batch (1) containing silver nanoparticles.
  • PP base material a master batch (hereinafter referred to as “PP base material”) containing silver nanoparticles produced through the above process using polypropylene resin pellets as synthetic resin raw material pellets will be described.
  • FIG. 1 is a photograph of an internal structure observed with a transmission electron microscope of a masterbatch containing silver nanoparticles using polypropylene as a synthetic resin raw material pellet according to the present invention
  • FIG. FIG. 1 (B) is a photograph of a PP substrate containing 4,000 ppm of silver nanoparticles according to the present invention.
  • the black dots in the part surrounded by black circles in FIG. 1B are silver nanoparticles, but it can be seen from the photograph that silver nanoparticles having a particle size of less than 10 nm are evenly distributed.
  • Table 1 shows the specifications of the PP base material containing the silver nanoparticles.
  • non-blended PP substrate refers to a PP substrate that does not contain silver nanoparticles
  • silver nanoparticle PP substrate refers to a PP substrate that contains silver nanoparticles.
  • the “antibacterial activity value” in Table 2 is a numerical value representing the antibacterial performance. Therefore, the two samples shown in Table 2 are both “antibacterial performance”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 抗菌性発現に必要な銀そのものは合成樹脂中に配合されておりながら、透明合成樹脂に配合した時にその特長である透明性を損なわず、合成樹脂が本来保有している好ましい物性を損なうことのない、経済性に優れ、かつ、合成樹脂製食器等の成形品とした場合であっても安全上問題となることのないマスターバッチを提供する。 乳酸銀と合成樹脂原料ペレットとを所定量計量して混合し、この混合物を撹拌しながら該合成樹脂原料ペレットが溶解可能な温度で加熱して該合成樹脂原料ペレットを溶解させ、この溶解物を射出して冷却し細断して製造する。

Description

銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品
 本発明は、抗菌性を有する銀ナノ微粒子含有の組成物、銀ナノ微粒子を含む合成樹脂のマスターバッチおよびその成形品に関する。
 銀は抗菌・殺菌効果があることから、抗菌性を付与すべく合成樹脂に銀を添加・配合されることが一般的に行われる。しかし、その添加・配合に際しては、銀そのものの微粉末を製造することは困難であり、かつ、コスト高となるため、一般的には、銀を他の無機の微粒子に担持させて、この微粒子を合成樹脂に混練・配合することにより、結果的に銀が当該合成樹脂中に分散された状態のものを作ることで、抗菌性合成樹脂を得るという方法が使われている(特許文献1および特許文献2)。
 特許文献1は「銀イオンが不活性化されることのない抗菌剤を含むマスターバッチの製造法を提供すること」を目的としていて、銀ナノ微粒子の担持体として、溶解性ガラスを使用している。また、特許文献2は「無機系抗菌剤の本来の抗菌特性を有効に利用して、樹脂成形体が嵩高い形状を有する場合であっても、優れた抗菌性を発揮することができる熱可塑性樹脂成形体を提供する」ことを目的としていて、その明細書中には、抗菌性金属イオンを担持させる無機化合物として、活性炭、活性アルミナ、シリカゲル等の無機系吸着剤、ゼオライト、ハイドロキシアパタイト、リン酸ジルコニウム、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト等の無機イオン交換体が示されている。
 また、銀ナノ微粒子を合成樹脂のマスターバッチ中に均等に分散させるために、分散剤を使用する技術も提案されている(特許文献3)。特許文献3は「射出予備成形品の表面に30PPMのナノシルバー粒子を含有した抗菌塗料組成物及びその抗菌塗料のコーティング方法を提供する」ことを課題としていて、解決手段として示された製造課程では、「所定濃度でナノシルバー粒子をエタノールに分散させてナノシルバーエタノール分散液を得る」こととしている。
 さらに、分散剤や担持体を使用することなく、マスターバッチ中に銀ナノ微粒子を均等に分散させる技術が特許文献4に開示されている。特許文献4ではその解決手段として、「成形基材に超微粒子材を所定量混合し、前記成形基材を溶融ないし硬化して所定形状に成形し、該成形表面または表層部に前記超微粒子材を配置する超微粒子材含有成形品の製造方法において、前記成形基材の溶融ないし硬化時に、前記混合した超微粒子材を成形基材の架橋ネットワ-クを介し、内部から成形品の表面または表層部に移動して分布させる」と記載されているが、「超微粒子材を成形基材の架橋ネットワ-クを介し、内部から成形品の表面または表層部に移動して分布させる」方法については、明細書中に具体的な説明がなく、出願人の知見では、超微粒子材が架橋ネットワ-クを介して成形品の表面に自動的に移動することはあり得ない。
特開平05-255515号公報 特開平07-252376号公報 特開2006-9008号公報 特開2007-197707号公報
 ところで、特許文献1ないし特許文献3に開示の従来技術・方法は、抗菌性が必ずしも十分満足し得る水準にあるとはいい難い上に、以下の課題を有している。すなわち、
(1)分散剤を使用する場合には、合成樹脂中に分散剤の成分が残留するため、使用する分散剤によっては、有害となる場合がある上に、合成樹脂中に銀の微粒子が均一に分散していない。
(2)そして、担持体を介する場合には、
(a)銀が担持された無機の粒子そのものの粒径を可視光線の波長以下にすることが難しいため、透明合成樹脂に配合した時にその特長である透明性を損なってしまう。
(b)無機の粒子に銀を担持させるため、その工程に費用が掛かって銀担持無機粒子のコストが高くなり、結果的にマスターバッチのコスト高を招く。
(c)銀を合成樹脂中に配合するために、抗菌性付与には何ら寄与しない無機粒子を余分に配合することになり、合成樹脂が本来保有している好ましい物性(例えば衝撃強度)を損なう場合がある。
 そこで、本発明は、抗菌性発現に必要な銀そのものは合成樹脂中に均一に分散されており、透明合成樹脂に配合した時にその特長である透明性を損なわず、合成樹脂が本来保有している好ましい物性を損なうことのない、経済性に優れ、かつ、合成樹脂製食器等の成形品とした場合であっても、安全上問題となることのないマスターバッチを提供することを課題とする。
 上記課題を解決すべく、本発明者は様々な角度から鋭意その可能性を検討したが、その中のひとつが「低分子量の有機銀化合物を合成樹脂に混ぜて溶融・混練すれば、この有機銀化合物が混練時に熱分解し、銀の微粒子が合成樹脂中に形成されるのでは」というものであった。そこで、成形後の安全性のことも考慮し、日常良く口にする食品(たとえば、チーズ、ヨーグルト)に含まれる乳酸と銀を反応させて作った乳酸銀(乳酸銀そのものは標準試薬として容易に入手できるものである。)を候補有機銀化合物として実験することとした。乳酸銀を合成樹脂のペレットに添加・配合し、混練押出機を利用して、当該合成樹脂が溶融する温度で混練し、それをストランド状に押出してペレット状に切断した。この合成樹脂ペレットを透過型顕微鏡下で観察すると、得られた合成樹脂中に銀が非常に細かな粒子(平均粒径が略1nm~80nm)となって均一に分散して存在していることが判明した。この様な形で銀の超微粒子が合成樹脂中に分散・存在していれば、その合成樹脂には充分な抗菌性が期待される。
 そこで、これを確認するために、得られた合成樹脂ペレットから射出成形でカラープレートと一般的にいわれる小さい板状の成形品を成形し、この板状成形品に抗菌性があるかどうかを標準的な方法で評価したところ、期待通りの抗菌性が得られることが判明し、本発明に至ったものである。なお、乳酸銀を合成樹脂に混ぜ、高温下で混練押出しをすれば、何故合成樹脂中に銀のナノサイズの超微粒子が存在するようになるのかについては、現在のところ充分に解明をしてはいないが、乳酸銀が高温下で乳酸と銀とに分解し、この分解されてできた銀イオンが凝集して銀の超微粒子を合成樹脂中に形成したものと推定している。
 上記発明は、当初、合成樹脂としてポリプロピレン樹脂を用いて行われたが、技法的には他の熱可塑性樹脂でも同様の効果が充分期待されると予想されたので、他の汎用合成樹脂であるポリエチレン樹脂、ポリスチレン樹脂、ABS樹脂等のみならず、エンジニアリング系樹脂であるポリカーボネ―ト樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂等についても同様の検討を行ったところ、これらの合成樹脂についても、ポリプロピレン樹脂の場合と同様の結果が得られることが判明した。
 本発明をより具体的に述べると以下の通りである。すなわち
 本願請求項1に係る銀ナノ微粒子含有の組成物は、所定量の乳酸銀および熱可塑性樹脂を混合し、該熱可塑性樹脂の溶融可能温度で混練して製造される、ことを特徴としている。
 また、本願請求項2に係る銀ナノ微粒子含有のマスターバッチは、所定量の乳酸銀および熱可塑性樹脂を混合し、該熱可塑性樹脂の溶融可能温度で混練して混合溶融物とし、該混合溶融物を押出して冷却し細断することにより製造される、ことを特徴としている。
 そして、本願請求項3に係る銀ナノ微粒子含有のマスターバッチは、請求項2に記載の銀ナノ微粒子含有のマスターバッチであって、前記熱可塑性樹脂に対する前記乳酸銀中の銀濃度が略200ppmないし20,000ppmである、ことを特徴としている。
 さらに、本願請求項4に係る銀ナノ微粒子含有のマスターバッチは、請求項2または請求項3に記載の銀ナノ微粒子含有のマスターバッチであって、銀ナノ微粒子の粒径は略1nmないし80nmである、ことを特徴としている。
 また、本願請求項5に係る合成樹脂成形品は、熱可塑性樹脂に請求項2ないし請求項4のいずれかに記載の銀ナノ微粒子含有のマスターバッチを加えて混合し、該熱可塑性樹脂の溶融可能温度で溶融せしめて成形した、ことを特徴としている。
 本発明では、合成樹脂中に銀を超微粒子として存在させるために使用する原料は、乳酸銀という単純な化学品であり、また、合成樹脂と混合して加熱する以外に特殊な工程を要することもない。その上、乳酸銀の使用量も銀濃度が200ppmないし20,000ppmという少量で充分な抗菌性の効果が発揮できる。そのため、たとえば、特許文献2に記載されているゼオライト等に銀を担持させるという工程を踏み、かつ、使用量が少なくとも2~3%以上必要な従来の方法に比べて低コストとなる。
 また、本発明で得られる銀の超微粒子(いわゆるナノサイズ)が分散した合成樹脂(銀ナノ微粒子含有のマスターバッチ)は、たとえば、ポリスチレン樹脂、ポリカーボネート樹脂のような透明系の合成樹脂の場合でも、銀の粒子の大きさが可視光線の波長より小さいために、合成樹脂の本来有する透明性を損なわない。
 さらに、本発明による銀ナノ微粒子含有のマスターバッチから得られる合成樹脂成形品の物性は、銀ナノ微粒子の含有量が200ppmないし20,000ppm、通常は500ppmないし5,000ppm程度と極めて少ないために、その合成樹脂が本来有する物性を損なうことがない。
図1は、本発明に係る合成樹脂原料ペレットにポリプロピレンを使用した銀ナノ微粒子含有のマスターバッチの透過電子顕微鏡による内部組織観察写真であり、図1(A)は、銀ナノ微粒子が非配合のPP基材の写真であり、図1(B)は、本発明に係る銀ナノ微粒子を4,000ppm含有するPP基材の写真である。 図2は、本発明に係る銀ナノ微粒子含有のマスターバッチの製造フロー図である。
 まず、本発明に係る銀ナノ微粒子含有のマスターバッチの製造工程を、図2を基に説明する。なお、図2において、符号1は本発明に係る銀ナノ微粒子含有のマスターバッチ(以下、「銀ナノ微粒子含有のマスターバッチ(1)」という。)、符号3は合成樹脂原料ペレット、符号5は乳酸銀、である。
[原料の混合工程:S1]
 粉末状の乳酸銀(5)または乳酸銀(5)の水溶液と合成樹脂原料ペレット(3)とを所定量計量した後、ヘンシェル型ミキサー等で混合し、その原料混合物を2軸押出機等のマスターバッチ製造用混練押出機に送り込む。なお、この所定量は乳酸銀(5)中の銀濃度を合成樹脂原料ペレット(3)に対して略200ppmないし20,000ppmとするものであるが、実施例においては、質量比で乳酸銀「2」に対して合成樹脂原料ペレット「250」としている。
 合成樹脂原料ペレット(3)に添加する乳酸銀(5)の添加量は、得られるペレットをマスターバッチとして使用することが望ましいので、対ペレットで200ppmないし20,000ppm程度が適当である。すなわち、200ppm以下ではマスターバッチとして希釈して使った場合に銀の濃度が低くなり過ぎて抗菌性の効果が出難くなり、20,000ppm以上では結果的に高コストとなり実用性がなくなるからである。
 また、合成樹脂原料ペレット(3)と乳酸銀(5)を混合する際に、乳酸銀(5)の細かい粉末を合成樹脂原料ペレット(3)の表面に均一に付着させるために、流動パラフィン等をいわゆる展着剤として事前に少量添加して混合しておくことが望ましい。また合成樹脂の種類にもよるが、銀ナノ微粒子が合成樹脂中でより均一に分散するように、ステアリン酸マグネシウム等の潤滑剤を添加・使用することも好ましい。
 なお、乳酸銀の水溶液の作成は、以下の手順に拠った。
1.粉末状の乳酸銀乳酸銀粉末30gを蒸留水970gに溶かす。
2.これをガラスフィルターで不溶の粒を濾す。
 なお、図2の[原料の混合工程]に記載の図は、粒状の合成樹脂原料ペレット(3)の表面に張り付いた粒状の乳酸銀(5)の模式図である。
[原料混合物の溶融・混練工程:S2]
 マスターバッチ製造用混練押出機内では、加熱により原料混合物中の合成樹脂原料ペレット(3)が溶融し、乳酸銀(5)は攪拌されて均一に混合されるとともに、乳酸銀(5)中の銀イオンが還元して、ナノサイズの粒径を有する銀ナノ微粒子に変わる。
 なお、銀ナノ微粒子は、加工温度によって乳酸銀中の銀イオンが凝集されて作られるものと推察されるが、銀ナノ微粒子含有のマスターバッチ製造時の熱や温度の加減によって粒径の調節を図ることができる。また、マスターバッチ製造用混練押出機による溶融・混練押出し時のシリンダーの設定温度は、それぞれの合成樹脂に適した温度を設定するが、通常は170℃ないし290℃が使われる。たとえば、ポリエチレン樹脂では170℃ないし180℃程度、ポリカーボネート樹脂では270℃ないし290℃程度が使われる。また、マスターバッチ製造用混練押出機は2軸押出機が望ましいが、単軸の押出機でも特に問題はないことを確認している。
[押出工程:S3]
 再加熱した原料混合物をノズルから押出してストランド状に成形する。
[冷却および細断工程:S4]
 押出した成形物を冷却し、さらに、細断することにより銀ナノ微粒子含有のマスターバッチ(1)とする。
 なお、図2の[冷却および細断工程]に記載の図は、銀ナノ微粒子含有のマスターバッチ(1)の模式図である。
 ここで、合成樹脂原料ペレットにポリプロピレン樹脂のペレットを使用して上記過程を経て製造された銀ナノ微粒子含有のマスターバッチ(以下、「PP基材」という。)の性状等について説明する。
 図1は、本発明に係る合成樹脂原料ペレットにポリプロピレンを使用した銀ナノ微粒子含有のマスターバッチの透過電子顕微鏡による内部組織観察写真であり、図1(A)は、銀ナノ微粒子が非配合のPP基材の写真であり、図1(B)は、本発明に係る銀ナノ微粒子を4,000ppm含有するPP基材の写真である。図1(B)の黒丸で囲った部分の黒い点が銀ナノ微粒子であるが、写真から、粒径が10nmに満たない銀ナノ微粒子が均等に分布している様子が見て取れる。
 この銀ナノ微粒子を含有するPP基材の仕様を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 そして、この銀ナノ微粒子を含有するPP基材に対して抗菌性能の試験をおこなった。
 試験方法は、JIS Z 2801(フィルム密着法)によりおこない、試験菌株は、大腸菌 E. coli NBRC 3972 を使用した。その結果を表2に示す。なお、表中、「非配合PP基材」とは、銀ナノ微粒子を含有しないPP基材をいい、「銀ナノ粒子PP基材」とは、銀ナノ微粒子を含有するPP基材をいう。
Figure JPOXMLDOC01-appb-T000002
 表2の「抗菌活性値」は抗菌性能を表す数値であり、抗菌活性値が2.0以上である場合には、「抗菌性能あり」とされる。したがって、表2で示した2つのサンプルはいずれも「抗菌性能あり」となる。
 成形品の製造に際しては、前述したように、質量比で、一般原料ペレットを90%とし、本発明に係る銀ナノ微粒子含有のマスターバッチを10%とする程度で、十分な抗菌効果が得られる。そのため、射出成型が可能な合成樹脂材料を、銀ナノ微粒子を添加した抗菌プラスチック成形品、たとえば、医療機器、医療用具、介護用品、PETボトル、プラスチック容器、調理器具、食器類、各種車両内装、家具、玩具、筆記具、家電品、口腔衛生用品、生活雑貨等々に加工することができる。
 1  本発明に係る銀ナノ微粒子含有のマスターバッチ
 3  合成樹脂原料ペレット
 5  乳酸銀

Claims (5)

  1.  所定量の乳酸銀および熱可塑性樹脂を混合し、該熱可塑性樹脂の溶融可能温度で混練して製造される、ことを特徴とする銀ナノ微粒子含有の組成物。
  2.  所定量の乳酸銀および熱可塑性樹脂を混合し、該熱可塑性樹脂の溶融可能温度で混練して混合溶融物とし、該混合溶融物を押出して冷却し細断することにより製造される、ことを特徴とする銀ナノ微粒子含有のマスターバッチ。
  3.  前記熱可塑性樹脂に対する前記乳酸銀中の銀濃度が略200ppmないし20,000ppmである、ことを特徴とする請求項2に記載の銀ナノ微粒子含有のマスターバッチ。
  4.  銀ナノ微粒子の粒径は略1nmないし80nmである、ことを特徴とする請求項2または請求項3に記載の銀ナノ微粒子含有のマスターバッチ。
  5.  熱可塑性樹脂に請求項2ないし請求項4のいずれかに記載の銀ナノ微粒子含有のマスターバッチを加えて混合し、該熱可塑性樹脂の溶融可能温度で溶融せしめて成形した、ことを特徴とする合成樹脂成形品。
PCT/JP2010/052735 2009-02-28 2010-02-23 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品 WO2010098309A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501596A JPWO2010098309A1 (ja) 2009-02-28 2010-02-23 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-047455 2009-02-28
JP2009047455 2009-02-28
JP2010021411 2010-02-02
JP2010-021411 2010-02-02

Publications (1)

Publication Number Publication Date
WO2010098309A1 true WO2010098309A1 (ja) 2010-09-02

Family

ID=42665516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052735 WO2010098309A1 (ja) 2009-02-28 2010-02-23 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品

Country Status (2)

Country Link
JP (1) JPWO2010098309A1 (ja)
WO (1) WO2010098309A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199438A (ja) * 2019-06-07 2020-12-17 株式会社アイセル コーティング液貯蔵体の製造方法
CN115521536A (zh) * 2022-10-10 2022-12-27 山东诺森塑胶有限公司 一种抗菌型塑料色母粒配方的制备工艺
JP2023007326A (ja) * 2021-06-30 2023-01-18 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827306A (ja) * 1994-07-15 1996-01-30 Japan Synthetic Rubber Co Ltd 抗菌性樹脂組成物
JPH08208849A (ja) * 1995-02-01 1996-08-13 Tosoh Corp ポリアリーレンスルフィド複合材料およびその製造方法
JPH08268821A (ja) * 1995-04-03 1996-10-15 Sangi Co Ltd 抗菌剤組成物
JP2005248161A (ja) * 2004-03-02 2005-09-15 Taiwan Textile Research Inst 難燃性組成物
JP2006016613A (ja) * 2004-06-29 2006-01-19 Everest Textile Co Ltd 銀微粒子含有ポリエステルの製造方法
JP2007197707A (ja) * 2005-12-26 2007-08-09 Katsuharu Takatsuka 超微粒子材含有成形品およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827306A (ja) * 1994-07-15 1996-01-30 Japan Synthetic Rubber Co Ltd 抗菌性樹脂組成物
JPH08208849A (ja) * 1995-02-01 1996-08-13 Tosoh Corp ポリアリーレンスルフィド複合材料およびその製造方法
JPH08268821A (ja) * 1995-04-03 1996-10-15 Sangi Co Ltd 抗菌剤組成物
JP2005248161A (ja) * 2004-03-02 2005-09-15 Taiwan Textile Research Inst 難燃性組成物
JP2006016613A (ja) * 2004-06-29 2006-01-19 Everest Textile Co Ltd 銀微粒子含有ポリエステルの製造方法
JP2007197707A (ja) * 2005-12-26 2007-08-09 Katsuharu Takatsuka 超微粒子材含有成形品およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199438A (ja) * 2019-06-07 2020-12-17 株式会社アイセル コーティング液貯蔵体の製造方法
JP2023007326A (ja) * 2021-06-30 2023-01-18 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料
JP7414788B2 (ja) 2021-06-30 2024-01-16 南亞塑膠工業股▲分▼有限公司 抗菌・防カビのポリエステル材料
US11968980B2 (en) 2021-06-30 2024-04-30 Nan Ya Plastics Corporation Antibacterial and antifungal polyester material
CN115521536A (zh) * 2022-10-10 2022-12-27 山东诺森塑胶有限公司 一种抗菌型塑料色母粒配方的制备工艺

Also Published As

Publication number Publication date
JPWO2010098309A1 (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
KR100805160B1 (ko) 일라이트가 함유된 마스터배치 칩 및 이를 이용한 기능성필름, 사출물, 섬유 및 보온덮개
CN1183193C (zh) 可光降解抗菌聚烯烃塑料的制造方法
US20050004296A1 (en) Pelletized organopolysiloxane material
JP4948556B2 (ja) マスターバッチ及びその製造方法、並びに成形物の成形方法
KR101610425B1 (ko) 합성 수지 착색용 마스터 배치
WO2010098309A1 (ja) 銀ナノ微粒子含有の組成物、銀ナノ微粒子含有のマスターバッチおよびその成形品
KR101045274B1 (ko) 펠릿형 항균성 마스터배치
KR20110014001A (ko) 항균 및 항곰팡이 특성을 갖는 플라스틱, 이를 이용한 제품 및 이의 제조방법
KR101544259B1 (ko) 은 초미립자 함유 수지 조성물
JP5486736B2 (ja) 熱可塑性樹脂組成物およびそれからなる成型品
CN100424138C (zh) 用于塑料的改性纳米氧化锌复合母粒及其制备方法
CN112480516B (zh) 一种透明防雾树脂、塑料制品及其制备方法
EP2173793B1 (en) Masterbatch preparation process
CN105646984A (zh) 一种抗菌聚乙烯泡沫及其制备方法
KR100622563B1 (ko) 복합기능을 갖는 플라스틱 조성물 및 그 제조방법
JP4528181B2 (ja) 着色樹脂組成物およびその成形体
CN113861545A (zh) 一种功能性复合材料及其制备方法
CN102757586B (zh) 一种中空用抗菌改性高密度聚乙烯组合物及其制备方法
JP7141216B2 (ja) 銅含有マスターバッチ及びその製造方法
CN115521541B (zh) 一种抗菌抗病毒塑料母粒及其加工成型方法和应用
CN114502655B (zh) 石墨烯复合抗菌母粒、石墨烯量子点增强纤维和石墨烯量子点复合薄膜及其制备方法和应用
CN116199937B (zh) 碳纳米管分散体和聚苯乙烯复合材料的制备方法以及应用
CN106188781A (zh) 一种韧性大的抗菌食品包装材料及其制作方法
EP1123346B1 (de) Additive für die verarbeitung von kunststoffen
CN113861544A (zh) 与多种高分子聚合物具有良好相容性的foihcm及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501596

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/11/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 10746190

Country of ref document: EP

Kind code of ref document: A1