WO2010098296A1 - Polyimide resin, process for production of polyimide resin, polyimide resin compositions, and cured products of same - Google Patents

Polyimide resin, process for production of polyimide resin, polyimide resin compositions, and cured products of same Download PDF

Info

Publication number
WO2010098296A1
WO2010098296A1 PCT/JP2010/052669 JP2010052669W WO2010098296A1 WO 2010098296 A1 WO2010098296 A1 WO 2010098296A1 JP 2010052669 W JP2010052669 W JP 2010052669W WO 2010098296 A1 WO2010098296 A1 WO 2010098296A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
general formula
resin
diisocyanate
formula
Prior art date
Application number
PCT/JP2010/052669
Other languages
French (fr)
Japanese (ja)
Inventor
一ノ瀬栄寿
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2011501585A priority Critical patent/JPWO2010098296A1/en
Publication of WO2010098296A1 publication Critical patent/WO2010098296A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/345Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/346Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7685Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing two or more non-condensed aromatic rings directly linked to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N

Definitions

  • the present invention can provide a cured product such as a coating film having excellent heat resistance, flame retardancy, dimensional stability, mechanical properties (toughness, flexibility), and surface smoothness, and can be used as a solvent even after long-term storage.
  • the present invention relates to a polyimide resin excellent in storage stability such as good solubility and excellent compatibility with other resins, a production method thereof, a polyimide resin composition, and a cured product thereof.
  • resins and resin compositions used in the electric industry for example, heat-resistant coating materials, electrical insulating materials such as printed wiring board interlayer insulating materials and semiconductor insulating materials; build-up materials; prepreg resins; heat-resistant adhesives Is required to improve the mechanical properties (toughness, flexibility), heat resistance, and dimensional stability of the cured product obtained with storage stability such as good solubility in solvents even after long-term storage. It is coming. In particular, there is a strong demand for downsizing, such as ultra-thin flexible film substrates and rigid substrates, in the field of electronic equipment such as computers. To meet this demand, the mechanical properties of the protective layer, adhesive layer, and insulating layer of the substrate (toughness) Properties, flexibility), heat resistance, and dimensional stability are necessary.
  • polyimide resin excellent in heat resistance, mechanical properties, and dimensional stability of the obtained cured product for example, by a terminal structure in which a structural residue of a phenolic compound is bonded to a urethane bond, and a reaction between a phenolic hydroxyl group and an isocyanate group
  • generated is disclosed (for example, refer patent document 1).
  • the polyimide resin described in Patent Document 1 is not sufficiently compatible with other resins such as an epoxy resin, and when mixed into a composition, the stability is insufficient and the composition is gelled. There is a problem.
  • the present invention can provide a cured product such as a coating film having excellent heat resistance, flame retardancy, dimensional stability, mechanical properties (toughness, flexibility), and surface smoothness, and can be used as a solvent even after long-term storage.
  • Another object of the present invention is to provide a polyimide resin that has excellent storage stability such as good solubility and good compatibility with other resins such as epoxy resins and a resin composition containing this polyimide resin.
  • a polyimide resin having a terminal structure in which a structural residue of a phenolic compound and a urethane bond are bonded, and a structure in which a cyclohexane ring is directly bonded to an imide ring is cured equivalent to the polyimide resin described in Patent Document 1 Although it has heat resistance, mechanical properties and dimensional stability, it has good solubility in solvents even after long-term storage.
  • the terminal block phenol structure is considered to be dissociated from the main chain skeleton of the resin under the drying conditions at high temperature when forming the coating film, resulting in a decrease in viscosity. For this reason, the surface smoothness of the coating film surface is remarkably reduced. To improve.
  • a polyimide resin having a terminal structure in which a structural residue of the phenolic compound and a urethane bond are bonded and a structure in which a cyclohexane ring is directly bonded to an imide ring is obtained by an isocyanate method in the presence of a phenol compound such as a phenol resin. By using it, it can manufacture stably, without gelatinizing.
  • a polyimide resin having a terminal structure in which a structural residue of the phenolic compound and a urethane bond are bonded and a structure in which a cyclohexane ring is directly bonded to an imide ring has excellent heat resistance, dimensional stability and mechanical properties.
  • the resulting cured product exhibits excellent heat resistance, mechanical properties and dimensional stability.
  • this polyimide resin has good compatibility with various resins, not limited to epoxy resins, and is excellent in long-term storage stability when mixed with various resins to form a composition.
  • the terminal which this polyimide resin has The block phenolic structure is dissociated from the main chain skeleton of the resin to regenerate phenolic hydroxyl groups and isocyanate groups under the drying conditions at high temperature when creating the coating film, and the phenolic hydroxyl groups react with the epoxy resin to form secondary hydroxyl groups. To do.
  • the generated secondary hydroxyl group reacts with the dissociated isocyanate group to newly form a urethane bond, and it is possible to suppress deterioration of dielectric characteristics due to the generation of hydroxyl group usually seen in the curing of the epoxy resin.
  • the cured product of the composition exhibits excellent performance such as durability and mechanical properties by forming a stronger cross-linked body by a double reaction between a phenolic hydroxyl group and an isocyanate group.
  • the present invention provides a polyimide resin characterized by having a structure represented by the general formula (1) and a structure represented by the general formula (3).
  • R 1 represents a residue obtained by removing the NCO group from diisocyanate.
  • X represents a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule.
  • the present invention also provides a cured product obtained by curing the polyimide resin.
  • thermosetting resin composition comprising the polyimide resin and an epoxy resin.
  • the present invention provides a cured product obtained by curing the thermosetting resin composition.
  • the present invention provides a method for producing the polyimide resin, characterized by reacting a compound having a bifunctional or higher functional phenolic hydroxyl group with a diisocyanate compound and cyclohexanetricarboxylic acid anhydride.
  • the polyimide resin of the present invention is excellent in storage stability and has good solubility in general-purpose solvents even after long-term storage.
  • the composition containing the polyimide resin of this invention or this polyimide resin and an epoxy resin is excellent in dimensional stability and mechanical properties (toughness, a softness
  • the polyimide resin of the present invention has good compatibility with various resins as well as epoxy resins and excellent storage stability.
  • the polyimide resin of the present invention has a structure represented by the general formula (1) and a structure represented by the general formula (3).
  • R 1 represents a residue obtained by removing the NCO group from diisocyanate.
  • X represents a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule.
  • the cured product obtained by using the polyimide resin of the present invention by having the structure of the general formula (1) is excellent in the balance of physical properties such as solvent solubility and mechanical properties (toughness, flexibility), heat resistance, dimensional stability and the like. It has a remarkable effect.
  • the ratio of the structures (1) and (2) in the polyimide resin of the present invention is 1:99 to 40:60 in terms of weight ratio, which is excellent in mechanical properties. It is preferable from the viewpoint of good compatibility, and 2:98 to 30:70 is more preferable.
  • R 1 in the general formula (1) represents a residue obtained by removing an NCO group from diisocyanate. More specifically, a polyimide resin in which R 1 has the structure of the following general formula (3), (4) or (5) is a remarkable effect of the present invention, that is, heat resistance, flame retardancy, dimensional stability. Cured resin such as a coating film having excellent mechanical properties (toughness, flexibility) and surface smoothness, and a polyimide resin having excellent storage stability such as good solubility in a solvent even after long-term storage This is preferable.
  • each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 9 carbon atoms. * Represents a bonding point.
  • the polyimide resin having the structure of the general formula (5) as R 1 of the general formula (1) has a low linear expansion coefficient, that is, a cured product having excellent dimensional stability is obtained. This is preferable. It has general formula (5).
  • R 2 is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms, and still more preferably a hydrocarbon group having 1 carbon atom (methyl group).
  • R 2 some or all of the hydroxyl groups may be substituted with halogen or the like.
  • the structure represented by the general formula (2) possessed by the polyimide resin of the present invention as the structure of X, the following formula (2-1), formula (2-2), formula (2-4) or formula (2-
  • the structure of 5) has excellent compatibility with other resins and storage stability, and when it is used as a thermosetting resin composition, it has good curability, heat resistance, mechanical properties, dimensional stability, and pot life. It is preferable because it is an excellent polyimide resin.
  • R 2 represents a single bond or a divalent linking group
  • R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • R 4 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following general formula (2-3).
  • R 5 is a direct bond or a divalent linking group
  • R 6 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • R 2 in the general formula (2-1) a single bond, a carbonyl group, a sulfonyl group, a methylene group, an isopropylidene group, a hexafluoroisopropylidene group, an oxo group, a dimethylsilylene group
  • Examples thereof include a divalent linking group such as a fluorene-9-diyl group and a tricyclo [5.2.1.0 2,8 ] decane-diyl group, and may be a single group or a mixture of plural groups.
  • R 3 examples include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and other alkyl groups having 1 to 5 carbon atoms.
  • excluded two hydroxyl groups from the polyphenol compound for example, the phenol novolak resin, the cresol novolak resin, the polyphenol resin synthesize
  • the structure of X in the general formula (2) is a cured product having excellent heat resistance. Since the polyimide resin from which a product is obtained is obtained, it is preferable. By including a structure derived from a specific phenol having a phosphorus atom as the block phenol structure as in the structure of the formula (2-6), the flame retardance of the obtained polyimide resin is dramatically improved.
  • a polyimide resin having a structure represented by the formula (6) is preferable because a cured product having excellent solvent solubility and excellent mechanical properties and dimensional stability can be obtained.
  • R 1 represents a residue obtained by removing the NCO group from diisocyanate.
  • R 1 in the general formula (6) the structure of the general formula (3), (4) or (5) is the remarkable effect of the present invention, that is, heat resistance, flame retardancy, dimensional stability and mechanical properties. (Toughness, flexibility), a cured product such as a coating film excellent in surface smoothness is obtained, and it becomes a polyimide resin excellent in storage stability such as good solubility in a solvent even after long-term storage. preferable.
  • the polyimide resin having the structure of the general formula (5) as R 1 of the general formula (6) has a low linear expansion coefficient, that is, a cured product having excellent dimensional stability is obtained.
  • R 2 in the general formula (5) is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms, and a hydrocarbon group having 1 carbon atom (methyl Group) is more preferred.
  • R 2 some or all of the hydroxyl groups may be substituted with halogen or the like.
  • the general formula (5) for example, structures represented by the general formulas (5-1) to (5-4) can be exemplified.
  • the structure represented by the general formula (5-1) is more preferable because a polyimide resin can be obtained from which a cured product having excellent dimensional stability can be obtained.
  • polyimide resin of the present invention a polyimide resin from which a cured product having good mechanical strength can be obtained by further having a structure represented by the general formula (7) is preferable.
  • the content of the general formula (7) in the polyimide resin of the present invention is excellent in solvent solubility, and the mechanical properties of the resulting cured product.
  • the content is preferably 1 to 30% by weight, more preferably 2 to 20%.
  • a polyimide resin having a structure represented by the general formula (8-1) and a structure represented by the general formula (8-2) is excellent in solvent solubility, And since the dimensional stability of the hardened
  • the structural units represented by (8-1) and (8-2) may be polymers such as random, block, and alternating in one molecule.
  • the polyimide resin of the present invention is a polyimide resin having the structure represented by the general formula (8-1) and the structure represented by the general formula (8-2), the content thereof is 10 to 90% by weight, respectively.
  • the range is preferably from a polyimide resin having excellent dimensional stability of the resulting cured product, and more preferably 20 to 80% by weight.
  • the weight ratio of the general formula (8-1) to the general formula (8-2) is preferably 5:95 to 95: 5 because a polyimide resin having excellent solvent solubility and solution stability over time is preferable. : 90 to 60:40 is more preferable.
  • polyimide resin of the present invention a polyimide resin having a structure represented by the following general formulas (9-1) to (9-4) becomes a polyimide resin from which a cured product having excellent heat resistance and dimensional stability can be obtained. To preferred.
  • Y represents a structure represented by the following general formula (3) or (4).
  • the structural units of the above formulas (9-1) to (9-4) may be polymers such as random, block, and alternating in one molecule.
  • the structures of the above formulas (9-1) to (9-4) are polyimide resins that give a cured product that is excellent in solvent solubility, dimensional stability, and mechanical properties. Preferably, it exists in the range of 10 to 50% by weight.
  • polyimide resin having the structure represented by the general formulas (9-1) to (9-4) include, for example, a polyimide resin having a structure represented by the following general formula (9).
  • the structural units in parentheses of m, n, p, and q may be polymers such as random, block, and alternating in one molecule.
  • a polyimide resin having a structure represented by the following general formulas (10-1) to (10-6) and having a weight average molecular weight of 1,000 to 100,000 is solvent-soluble. It is preferable because it is a polyimide resin that provides a cured product that is excellent and has excellent heat resistance, mechanical properties, and dimensional stability.
  • a polyimide resin having a biphenyl skeleton with a structure in which a cyclohexane ring is directly linked to an imide ring, such as the structure of the general formula (10-1), is excellent in storage stability and has good solubility in a solvent even after long-term storage.
  • the cured product exhibits excellent mechanical properties, heat resistance and dimensional stability.
  • a1 to a6 are 1 to 10,000, respectively. Moreover, * shows a coupling point.
  • Y in the general formulas (10-4) to (10-6) represents a structure represented by the above formula (3) or (4).
  • the structural units in parentheses in the general formulas (12-1) to (12-6) may be polymers such as random, block, and alternating in one molecule.
  • the structure enclosed in parentheses a1 to a6 is a polyimide resin that is excellent in solvent solubility, and obtains a cured product excellent in dimensional stability and mechanical properties, and therefore exists in a range of 2 to 90% by weight. Preferably, it is present in the range of 5 to 70% by weight.
  • polyimide resin having the structure represented by the general formulas (10-1) to (10-6) and having a weight average molecular weight of 1000 to 100,000 a1 to a6 represent repeating structural units. 10,000.
  • Polyimide resins having structural units represented by general formulas (10-1) to (10-6) are specific structural examples suitable for solving the problems of the present invention, and these structural units are contained in one molecule. It may exist multiple times and may contain other structural units. Specific examples of the polyimide resin having the structure represented by the general formulas (10-1) to (10-6) and having a weight average molecular weight of 1,000 to 100,000 are shown below.
  • R 1 is a residue structure obtained by removing two isocyanate groups from a diisocyanate compound.
  • R 1 is preferably a structure of the above general formula (3), (4) or (5) because a polyimide resin having excellent mechanical properties and dimensional stability can be obtained.
  • a7 represents the number of repetitions and ranges from 1 to 10,000, and the order of the structural units enclosed in parentheses a1 to a6 in parentheses and the number of appearances are not limited.
  • A1 is the structure represented by (10-1)
  • A2 is the structure represented by (10-2)
  • A3 is the structure represented by (10-3)
  • A4 is ( 10-4)
  • A5 represents the structure represented by (10-5)
  • A6 represents the structure represented by (10-6).
  • a polyimide resin having the following structure can be exemplified as a polyimide resin in which the terminal phenolic hydroxyl group of the general formula (10-7) reacts with an isocyanate group to extend the chain.
  • A7 is a structure represented by the following formula.
  • A1 to A6 are the same as A1 to A6 in Formula (10-7).
  • A1 to a6 represent repeating structural units and are 1 to 10,000.
  • the structural units a1 to a6 can be in any order within the parenthesis a7 and the number of appearances.
  • a7 represents repeating structural units and is 1 to 100.
  • a8 represents a repeating structural unit and is 1 to 100.
  • the content of the structural unit is preferably from 5 to 70% by weight, because it is possible to obtain a polyimide resin having excellent solvent solubility and excellent dimensional stability and mechanical properties of the resulting cured product.
  • the range of is more preferable.
  • the structural units represented by the general formulas (10-1) and (10-4) are structural units.
  • the polyimide resin containing 10 to 40% by weight is preferable because it becomes a polyimide resin having excellent solvent solubility and excellent compatibility with other resins.
  • the polyimide resins having the general formulas (10-1) to (10-6) the polyimide resin containing 10 to 60% by weight of the structural units of the general formulas (10-1) to (10-3) is heat resistant. It is preferable because it becomes a polyimide resin from which a cured product having excellent properties and dimensional stability can be obtained.
  • polyimide resin represented by the general formula (10-7) an example of a polyimide resin having a structure in which the structural formula of X is (2-1) is shown below.
  • polyimide resin represented by the general formula (10-8) an example of a polyimide resin having a structure in which the structural formula of X is (2-1) is shown below.
  • polyimide resin represented by the general formula (10-7) examples of the polyimide resin having the structure represented by the structural formula of X (2-2) are shown below.
  • polyimide resin represented by the general formula (10-8) examples of the polyimide resin having the structure represented by the structural formula (2-2) of X are shown below.
  • polyimide resin represented by the general formula (10-7) examples of the polyimide resin having a structure in which the structural formula of X is (2-6) are shown below.
  • polyimide resin represented by the general formula (10-8) an example of a polyimide resin having a structure in which the structural formula of X is (2-6) is shown below.
  • the polyimide resin of the present invention has a structure in which the terminal structure is a residual carboxylic acid derived from a raw acid anhydride compound or a carboxylic acid anhydride in addition to the structure of the general formula (2), so that the effect of the present invention is not impaired. You may have.
  • the acid anhydride is described below.
  • the polyimide resin of the present invention has a property of being easily dissolved in an organic solvent as well as being excellent in storage stability.
  • the polyimide resin of the present invention dissolves in conventionally used polar solvent organic solvents such as N-methylpyrrolidone and dimethylformamide, but it is relatively difficult to use gamma-butyrolactone ( ⁇ -butyrolactone) which has not been used conventionally. It can be dissolved in an organic solvent having a weak dissolving power.
  • whether or not the polyimide resin used in the present invention is dissolved in an organic solvent is determined by adding the polyimide resin concentration of the present invention to 10% by weight in the organic solvent, and allowing to stand at 25 ° C. for 7 days. After placing, the appearance was visually observed.
  • the polyimide resin used in the present invention is preferably a polyimide resin that dissolves in gamma butyrolactone is a polyimide resin that is excellent in storage stability, and a polyimide resin that dissolves in gamma butyrolactone at 25 ° C. so as to be 10% by weight.
  • a polyimide resin that dissolves in gamma butyrolactone it can be obtained, for example, by a method for producing a polyimide resin described later.
  • the polyimide resin used in the present invention may be a polyimide resin having a linear structure or a polyimide resin having a branched structure. Further, the copolymer component may have a polyester-modified polyesterimide or urethane-modified polyurethaneimide structure.
  • the weight average molecular weight of the polyimide resin of the present invention is preferably 1,000 to 200,000 because it becomes a polyimide resin that is tough and easy to handle as a solution after solvent drying or as a cured product, and a film or molded product having excellent mechanical strength and dimensional stability is obtained. 2000 to 100,000 is more preferable.
  • the molecular weight can be measured by gel permeation chromatography (GPC) or quantitative analysis of the terminal functional group amount.
  • the weight average molecular weight was measured using a gel permeation chromatograph (GPC) under the following conditions.
  • Measuring device HLC-8320GPC, UV8320 manufactured by Tosoh Corporation Column: Super AWM-H ⁇ 2 manufactured by Tosoh Corporation Detector: RI (differential refractometer) and UV (254 nm)
  • Data processing Tosoh Co., Ltd.
  • the acid value of the polyimide resin of the present invention is preferably in the range of 1 to 50 mgKOH / g from the viewpoints of compatibility with other resins, solution stability, and curability with epoxy resin, and 1 to 30 mgKOH / g. More preferred.
  • the polyimide resin used in the present invention can be produced, for example, by the following method.
  • Production method 1 Polyphenol compound (A) having two or more phenolic hydroxyl groups in the molecule, polyisocyanate compound (B) containing a diisocyanate compound, and acid anhydride compound (C) containing a cyclohexanetricarboxylic acid anhydride, Direct imidization using
  • Production Method 2 Imidization is directly performed using a polyisocyanate compound (B) containing a diisocyanate compound and an acid anhydride compound (C) containing a cyclohexanetricarboxylic acid anhydride, and then an isocyanate group present at the terminal and 1 A method of reacting a polyphenol compound (A) having two or more phenolic hydroxyl groups in the molecule.
  • Production method 3 Imidization directly using a diamine compound (D) and an acid anhydride compound (C) containing cyclohexanetricarboxylic acid anhydride, followed by addition of a diisocyanate compound to form a terminal isocyanate, two in one molecule A method of reacting the above polyphenol compound (A) having a phenolic hydroxyl group.
  • the above-mentioned production methods 1 to 3 are called isocyanate methods, and a stable resin is produced without gelation by synthesizing an imide resin using the isocyanate method in the presence of the polyphenol compound (A). Can do. This is because the polyphenol compound (A) selectively reacts with an isocyanate group to form a block phenol structure, thereby suppressing side reactions of the isocyanate group, partially dissociating at high temperatures, and efficiently performing an acid anhydride. It is presumed that it reacts with a carboxyl group to form an imide bond or an amide bond. This is particularly effective for aliphatic and alicyclic acid anhydrides such as hydrogenated trimellitic acid, which has a low reactivity.
  • the amount of remaining water can be reduced and the physical properties can be kept good, the reaction can be easily controlled, and the polyimide resin subjected to various modifications can be easily prepared.
  • Production method 1 is preferred. Hereinafter, Production Method 1 will be described in detail.
  • Examples of the polyphenol compound (A) used in the production method 1 include hydroquinone, biphenol, tetramethylbiphenol, ethylidene bisphenol, bisphenol A, bisphenol F, bisphenol S, cyclohexylidene bisphenol (bisphenol Z), dimethylbutylidene bisphenol, 4 4,4 '-(1-methylethylidene) bis [2,6-dimethylphenol], 4,4'-(1-phenylethylidene) bisphenol, 5,5 '-(1-methylethylidene) bis [1,1' -Biphenyl-2-ol], naphthalenediol, dicyclopentadiene-modified bisphenol, reaction products of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone, etc. That.
  • a trifunctional or higher functional phenol compound such as a phenol novolak resin, a cresol novolak resin, or a nonylphenol novolak resin can be used as the polyphenol compound (A).
  • the use of a polyphenol compound having three or more functions as the polyphenol compound (A) results in high viscosity of the resin, generation of gelation, etc. It is preferable to use a polyphenol compound containing a phenolic hydroxyl group (a bifunctional polyphenol compound).
  • bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, and reaction products of 9,10-dihydro-9-oxa-10-phosphenanthrene-10-oxide and hydroquinone are preferred.
  • a monofunctional phenol compound such as phenol or cresol may be used in combination as long as the effect of the present invention is not achieved.
  • the reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is difficult to dissolve in a general solvent.
  • the reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is used as a flame retardant additive, but is generally poorly soluble in solvents and limited in use. there were.
  • the skeleton of the reaction product is taken into the polyimide resin by using as the polyphenol compound (A).
  • the polyimide resin is dissolved in a general-purpose solvent such as ⁇ -butyrolactone, and is excellent in storage stability, but also has improved flame retardancy.
  • the amount of the polyphenol compound (A) used in production method 1 is such that the resulting polyimide resin of the present invention has a structure derived from the polyphenol compound (A) in an amount of 1 to 40% by weight in the curability and storage.
  • the amount is preferably 2 to 30% by weight because it is a polyimide resin having excellent stability.
  • a polyimide resin excellent in dimensional stability and flame retardancy can be obtained, such an amount that the polyimide resin is present in the resin by 2 to 10% by weight of the structure derived from the polyphenol compound (A) is preferable.
  • polyisocyanate compound (B) used in the present invention examples include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds.
  • aromatic polyisocyanate compound examples include diphenylmethane diisocyanate such as 4,4′-diphenylmethane diisocyanate; p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate.
  • each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 9 carbon atoms which may be fluorine-modified.
  • Examples of the diisocyanate represented by the general formula (3-1) include 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl, 4,4′-diisocyanate-3,3 ′. -Diethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-diethyl-1,1'- Biphenyl, 4,4'-diisocyanate-3,3'-ditrifluoromethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-ditrifluoromethyl-1,1'-biphenyl, etc. It is done.
  • aliphatic polyisocyanate compound examples include hexamethylene diisocyanate, lysine diisocyanate, trimethylhexamethylenemethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, and norbornylene diisocyanate.
  • polyisocyanate compound (B) an isocyanate prepolymer obtained by reacting the polyisocyanate compound and various polyol components in advance with an excess of isocyanate groups can be used.
  • the polyimide resin used in the present invention may have a branched structure in order to improve solvent solubility and compatibility with other resins.
  • a branching method for example, a tri- or higher functional polyisocyanate compound having an isocyanurate ring which is an isocyanurate body of the above-mentioned diisocyanate compound, a burette body, an adduct body, an allohanate body of the diisocyanate, or the like may be used.
  • polyisocyanate compound (B) examples include diphenylmethane diisocyanate such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, and the above general formula (3-) because of excellent solvent solubility, compatibility, mechanical properties, dimensional stability, and the like. It is preferable to use a diisocyanate having a biphenyl skeleton represented by 1). These compounds may be used alone or in combination of two or more.
  • a diisocyanate represented by the general formula (3-1) it is preferable to use a diisocyanate represented by the general formula (3-1) to obtain a polyimide resin from which a cured product having improved dimensional stability and mechanical properties can be obtained. Further, diphenylmethane diisocyanate or tolylene diisocyanate is used in combination. The solvent solubility and long-term storage stability are also improved.
  • the use amount of the diisocyanate represented by the general formula (3-1) is preferably 30 to 80% by weight based on the total amount of the polyisocyanate compound (B) to be used because it becomes a polyimide resin having more excellent dimensional stability. .
  • 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl diisocyanate has excellent solvent solubility, heat resistance, and mechanical properties. And it becomes preferable from becoming a polyimide resin from which the hardened
  • the diisocyanate compound represented by the general formula (3-1), 4,4′-diphenylmethane diisocyanate, and toluene diisocyanate may be used alone or in combination, and may be a diisocyanate compound or monoisocyanate compound having another structure. Or a tri- or higher functional polyisocyanate compound may be used in combination.
  • the diisocyanate compound represented by the general formula (3-1), 4,4'-diphenylmethane diisocyanate, and the diisocyanate compound represented by toluene diisocyanate are used in an amount of 10% by weight or more of the total isocyanate compound, so that mechanical strength, elongation at break, etc. It is preferable that a cured product having excellent mechanical properties, dimensional stability, and heat resistance is obtained, and in addition, a polyimide resin having excellent solution stability over time is obtained, so that it is preferable to use 10 to 80% by weight of the total isocyanate compound. . In addition, the flame retardance of the hardened
  • 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl is 30% of all isocyanate compounds. It is preferable to use up to 80% by weight.
  • 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl is used in combination with 4,4'-diphenylmethane diisocyanate or toluene diisocyanate
  • 4,4'-diisocyanate-3,3 ' It is preferable to use such that dimethyl-1,1'-biphenyl is 30 to 90% by weight of the total isocyanate compound and 4,4'-diphenylmethane diisocyanate or toluene diisocyanate is 10 to 70% by weight.
  • '-Diisocyanate-3,3'-dimethyl-1,1'-biphenyl is 40 to 80% by weight of the total isocyanate compound, and 4,4'-diphenylmethane diisocyanate and / or toluene diisocyanate is more preferably 20 to 60% by weight. .
  • the amount of diphenylmethane diisocyanate and toluene diisocyanate when not used together with 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl is the total weight of the polyisocyanate compound (B).
  • each is preferably 10 to 70% by weight, more preferably 10 to 60% by weight, and further preferably 30 to 60% by weight.
  • the acid anhydride compound (C) contains cyclohexanetricarboxylic acid anhydride.
  • cyclohexanetricarboxylic acid anhydride include, for example, cyclohexane-1,3,4-tricarboxylic acid anhydride-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid anhydride-3,5-anhydride, And cyclohexane-1,2,3-tricarboxylic acid anhydride-2,3-anhydride.
  • a cyclohexane-1,3,4-tricarboxylic acid represented by the formula (4-1) is obtained because a cured product having excellent solvent solubility, mechanical properties such as mechanical strength and elongation at break and excellent heat resistance can be obtained.
  • Anhydride-3,4-anhydride is preferred.
  • the cyclohexanetricarboxylic acid anhydride used in the present invention is within a range where impurities such as cyclohexane-1,2,4-tricarboxylic acid used as a raw material for production do not impair the curing of the present invention, for example, 10% by weight or less. If it is 5% by weight or less, it may be mixed.
  • the acid anhydride group refers to a —CO—O—CO— group obtained by intramolecular dehydration condensation of two molecules of carboxylic acid.
  • the cyclohexanetricarboxylic acid anhydride is used in an amount of 5 to 100% by weight in the total acid anhydride compound (C) constituting the polyimide resin, which is a polyimide resin having excellent solvent solubility, and has excellent mechanical properties and heat resistance. It is preferable because an excellent cured product is obtained, and more preferably 10 to 80% by weight.
  • the amount of cyclohexanetricarboxylic acid anhydride used is preferably 2 to 60% by weight, more preferably 5 to 50% by weight, based on the weight of all raw materials constituting the polyimide resin.
  • the acid anhydride compound (C) may contain an acid anhydride other than cyclohexanetricarboxylic acid anhydride as long as the effects of the present invention are not impaired.
  • examples of other acid anhydrides include polycarboxylic acid anhydrides having one acid anhydride group and polycarboxylic acid anhydrides having two acid anhydride groups.
  • examples of the polycarboxylic acid anhydride having one acid anhydride group include aromatic tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride.
  • aromatic tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride react with an isocyanate compound like the above cyclohexanetricarboxylic acid anhydride,
  • the isocyanate group is decarboxylated to form an imide bond
  • the isocyanate group and the carboxylic acid are decarboxylated to form an amide bond.
  • molecules are connected linearly to form molecules.
  • polycarboxylic acid anhydride having two acid anhydride groups examples include pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenyl ether-3, 3 ', 4,4'-tetracarboxylic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, biphenyl-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-2,2 ', 3,3'-tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic acid Dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic dianhydride
  • Ethylene glycol bisanhydro trimellitate, propylene glycol bis anhydro trimellitate, butanediol bis anhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene lenglycol bis Anhydro trimellitate, other alkylene glycol bisan hydroxy trimellitate, etc. are mentioned.
  • trimellitic anhydride trimellitic anhydride, pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenyl ether-3, 3 ', 4,4'-tetracarboxylic dianhydride, biphenyl-3,3', 4,4'-tetracarboxylic dianhydride, biphenyl-2,2 ', 3,3'-tetracarboxylic dianhydride
  • Anhydrides and ethylene glycol bisanhydro trimellitate are preferred, and trimellitic anhydride is more preferred.
  • the amount used when trimellitic anhydride is used in combination with cyclohexanetricarboxylic acid anhydride as the acid anhydride is 5 to 90 mol% of cyclohexanetricarboxylic acid anhydride based on the molar amount of the total acid anhydride compound (C).
  • Mellitic acid is preferably 20 to 90 mol%, more preferably cyclohexanetricarboxylic acid anhydride 10 to 50 mol%, and trimellitic anhydride 40 to 90 mol%.
  • the amount of cyclohexanetricarboxylic acid anhydride and trimellitic anhydride used is preferably 2 to 60 mol% and 2 to 60 mol%, respectively, based on the molar amount of all raw materials constituting the polyimide resin.
  • cyclohexanetricarboxylic anhydride and trimellitic anhydride are used in combination in terms of the balance between solvent solubility, mechanical properties, and heat resistance, and cyclohexanetricarboxylic anhydride and benzophenone-3,3 ', 4,4'- More preferred is the combined use of tetracarboxylic dianhydride, the combined use of cyclohexanetricarboxylic anhydride and pyromellitic dianhydride, and more preferred is cyclohexanetricarboxylic anhydride, trimellitic anhydride, benzophenone-3,3 ', More preferred is a combination of two or more selected from the group consisting of 4,4′-tetracarboxylic dianhydride and pyromellitic dianhydride, and cyclohexanetricarboxylic anhydride, trimellitic anhydride, benzophenone-3,3.
  • trimellitic anhydride and benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride are used in combination with cyclohexanetricarboxylic acid anhydride as acid anhydride
  • all acid anhydrides (C ) Based on the molar amount of cyclohexanetricarboxylic anhydride, 5 to 90 mol%, trimellitic anhydride 2 to 80 mol%, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride 3 to 50 mol %, Preferably 10-80 mol% cyclohexanetricarboxylic anhydride, 10-80 mol% trimellitic anhydride, 5-30 mol% benzophenone-3,3 ′, 4,4′-tetracarboxylic dianhydride preferable.
  • the amount of cyclohexanetricarboxylic acid anhydride, trimellitic anhydride and benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride used is based on the molar amount of all raw materials constituting the polyimide resin. Are preferably 2 to 60 mol%, 2 to 60 mol% and 2 to 60 mol%, respectively.
  • aromatic, aliphatic, and alicyclic dicarboxylic acid compounds, polycarboxylic acid compounds, monoalcohol compounds, diol compounds, and trifunctional or higher functional polyol compounds can be used in combination as long as the effects of the present invention are not impaired. is there.
  • Examples of the aromatic, aliphatic, and alicyclic dicarboxylic acid compounds and polycarboxylic acid compounds include phthalic acid, fumaric acid, adipic acid, sebacic acid, succinic acid, maleic acid, cyclohesisandicarboxylic acid, trimellitic acid, Examples include pyromellitic acid, monoalcohol compounds, diol compounds, trifunctional or higher polyol compounds such as methanol, ethanol, propanol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 3 methyl 1,5-pentanediol, Examples include hexanediol, nonanediol, trimethylolpropane, pentaerythritol, polyether polyol, polyester polyol, polycarbonate polyol, and polydimethylsiloxane polyol.
  • the polyphenol compound (A) having two or more phenolic hydroxyl groups, the polyisocyanate compound (B), and the acid anhydride compound (C) are reacted.
  • the number of moles (mc) of the following (Formula 1) relationship is reproducible and a polyimide resin is obtained that is a cured product with excellent solvent solubility, storage stability, curability, and good mechanical properties. This is preferable. 2 ⁇ [(ma) + (mc)] / (mb) ⁇ 1 (Formula 1)
  • the polyimide resin of the present invention when producing the polyimide resin of the present invention in the production method 1, specifically, for example, a polycarboxylic acid anhydride containing a polyphenol compound (A), a polyisocyanate compound (B), and cyclohexanetricarboxylic acid anhydride in a reaction vessel.
  • the product (C) is charged, and the reaction is allowed to proceed while decarboxylation by raising the temperature while stirring.
  • the reaction temperature can be in the range of 50 ° C. to 250 ° C., and is preferably performed at a temperature of 70 ° C. to 180 ° C. in terms of reaction rate and prevention of side reactions.
  • the reaction is preferable because the stability of the polyimide resin obtained is improved when the reaction is performed until almost all isocyanate groups have reacted. Moreover, you may make it react by adding an alcohol and a phenol compound with respect to the isocyanate group which remains a little.
  • an organic solvent In the method for producing a polyimide resin of the present invention, it is preferable to use an organic solvent because a uniform reaction can proceed.
  • the organic solvent may be present after being present in the system in advance or may be introduced in the middle.
  • the proportion of the organic solvent in the system is preferably 98% by weight or less of the reaction system, and more preferably 10 to 90% by weight.
  • an aprotic polar organic solvent having no active proton such as a hydroxyl group or an amino group is preferable.
  • aprotic polar organic solvent for example, polar organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and ⁇ -butyrolactone can be used.
  • polar organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and ⁇ -butyrolactone
  • ether solvents, ester solvents, ketone solvents, petroleum solvents and the like may be used as long as they are soluble.
  • Various solvents may be mixed and used.
  • ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether
  • Tylene glycol monoalkyl ether acetates polyethylene glycol mono, such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate Alkyl ether acetates;
  • Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether; dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol Polypropylene glycol dialkyl ethers such as propylene glycol dibutyl ether; propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate; Polypropylene glycol monoalkyl ether acetate such as triglycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol
  • ester solvent examples include ethyl acetate and butyl acetate.
  • ketone solvent examples include acetone, methyl ethyl ketone, and cyclohexanone.
  • petroleum solvent it is also possible to use toluene, xylene, other high-boiling aromatic solvents, and aliphatic and alicyclic solvents such as hexane and cyclohexane.
  • the proportion of the organic solvent in the system when the organic solvent is used when producing the polyimide resin of the present invention is preferably 98% by weight or less, more preferably 40 to 90% by weight of the reaction system.
  • the organic solvent used for the production of the polyimide resin of the present invention especially for the reasons of the odor and toxicity of the solvent and the amount of residual solvent during coating film drying and coating film curing, the amount of moisture absorption of the coating film solvent is reduced, etc.
  • the use of ⁇ -butyrolactone is preferred.
  • the resulting polyimide resin preferably has a structure that dissolves in ⁇ -butyrolactone.
  • 4,4′-diisocyanate in the presence of polyphenol compound (A) is used.
  • a diisocyanate compound comprising 3,3'-dimethyl-1,1'-biphenyl diisocyanate and 4,4'-diphenylmethane diisocyanate
  • cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and It can be obtained by reacting with trimellitic anhydride.
  • a part or all of 4,4′-diphenylmethane diisocyanate may be replaced with toluene diisocyanate.
  • Examples of the polyphenol compound (A) that is suitable for producing a polyimide resin that is dissolved in the ⁇ -butyrolactone and has various properties and good properties include bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, and naphthalenediol. And the reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide with hydroquinone, and the like.
  • the polyphenol compound, 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl, and 4 The proportion of 4-diphenylmethane diisocyanate, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and trimellitic anhydride used is based on the molar amount of all raw materials constituting the polyimide resin. 2 to 60 mol% of each is preferred.
  • a polyimide resin which is dissolved in such ⁇ -butyrolactone and has good performance in various physical properties is 4,4'-diisocyanate- in the presence of the polyphenol compound (A).
  • 4,4-diphenylmethane diisocyanate cyclohexane-1,3,5-tricarboxylic acid-3,4-anhydride, trimellitic anhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic
  • the use ratio of the acid dianhydride is preferably 2 to 60 mol% based on the molar amount of all raw materials constituting the polyimide resin.
  • a part or all of 4,4′-diphenylmethane diisocyanate may be replaced with toluene diisocyanate.
  • polyphenol compound (A) used here examples include bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, naphthalenediol, biphenol, tetramethylbiphenol, hydroquinone, and 9,10-dihydro-9-oxa-10-phos.
  • examples thereof include a reaction product of phaphenanthrene-10-oxide and hydroquinone.
  • a reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is preferably used as the polyphenol compound.
  • the cured product and cured product properties described above and below described in the present invention are, in addition to the cured product of the polyimide resin and a component that reacts with the polyimide resin, the polyimide resin alone or other resins that do not react with the polyimide resin, additives, It means a cured film of a coating film or molded body that contains an inorganic material component or the like and is simply solvent-dried, and physical properties thereof.
  • the polyimide resin is mixed with a curing agent that reacts with heat or light and / or does not react with the resin, but the additive component itself is cured by heat or light, and the cured product properties thereof. Contained in
  • the cured product of the present invention is obtained by curing the polyimide resin of the present invention.
  • the polyimide resin of the present invention is applied to a base material or formed into a molded product, and then heated at 100 to 300 ° C. to cause a dry coating film, a dry molded body, or a curing reaction to be cured. It can be set as hardened
  • the base material can be used without limitation.
  • Examples of the substrate include plastic, metal, wood, glass, inorganic material, and composite materials thereof.
  • thermosetting resin components can be added to the polyimide resin of the present invention to obtain a thermosetting resin composition.
  • an epoxy resin, a melamine resin, an isocyanate compound, a silicate, an alkoxysilane compound and the like can be mentioned, and an epoxy resin is preferable as the thermosetting component.
  • the epoxy resin preferably has two or more epoxy groups in the molecule.
  • epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol S type epoxy resin, and bisphenol F type epoxy resin; novolak types such as phenol novolac epoxy resin, cresol novolac type epoxy resin, and bisphenol type novolak.
  • Epoxy resins epoxidized products of various dicyclopentadiene-modified phenol resins obtained by reacting dicyclopentadiene with various phenols; biphenyl type epoxy resins such as epoxidized products of 2,2 ', 6,6'-tetramethylbiphenol; Epoxy resin having naphthalene skeleton; aromatic epoxy resin such as epoxy resin having fluorene skeleton and hydrogenated product of these aromatic epoxy resins; neopentyl glycol diglycidyl Aliphatic epoxy resins such as ether and 1,6-hexanediol diglycidyl ether; fats such as 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate Cyclic epoxy resins; and heterocyclic ring-containing epoxy resins such as triglycidyl isocyanurate.
  • an aromatic epoxy resin is preferable because a thermosetting polyimide resin composition excellent in mechanical properties of a cured coating film can be obtained, and a naphthalene type epoxy resin is more preferable.
  • the naphthalene skeleton epoxy resin has a naphthalene skeleton and two or more glycidyloxy groups in the molecule, and the naphthalene skeleton novolak is also in its category.
  • the blending amount of the polyimide resin and the epoxy resin used in the present invention can be used in a ratio of (polyimide resin) / (epoxy resin) of 1/100 to 50/1 as a weight ratio of the resin, and more preferably Is from 1/10 to 20/1.
  • the melamine resin include alkoxylated melamine resins.
  • the alkoxylated melamine resin it is possible to use an alkoxylated melamine resin obtained by reacting a part or all of the methylolated product obtained by reacting a triazine ring-containing amino compound such as melamine or benzoguanamine with formaldehyde. it can.
  • a lower alcohol having about 1 to 4 carbon atoms can be used.
  • a methoxymethylolated melamine resin, a butylated methylolated melamine resin, or the like can be used.
  • the molecular structure may be completely alkoxylated, a methylol group may remain, or an imino group may remain.
  • the methoxymethylolated melamine resin is preferable because the compatibility with the polyimide resin and the curability at the time of curing are good, and more preferably, the methoxylation rate is 80% or more. More preferred are methoxymethylolated melamine resins.
  • the resin structure of the melamine resin may be a polynuclear body by self-condensation.
  • the degree of polymerization at this time is preferably 1 to 5 and more preferably 1.2 to 3 in terms of compatibility and stability.
  • the number average molecular weight of the alkoxylated melamine resin used in the present invention may be 100 to 10,000.
  • 300 to 2000 is preferable in terms of compatibility with the polyimide resin and curability at the time of curing, and more preferably 400 to 1000.
  • alkoxylated melamine resin used in the present invention even if melamine, benzoguanamine, formalin and alcohol are simultaneously charged and reacted, melamine or benzoguanamine and formalin are reacted in advance to obtain a methylolated melamine compound and then alkoxy with the alcohol compound. You may do.
  • alkoxylated melamine resins used in the present invention include, for example, commercial Cymel 300, 301, 303, 305 and the like manufactured by Nippon Cytec Industries, as methoxymethylolated melamine resins.
  • examples of the methylol group-containing methoxymethylolated melamine resin include product Cymel 370 and 771 manufactured by Nippon Cytec Industries.
  • Examples of the imino group-containing methoxylated melamine resin include product Cymel 325, 327, 701, 703, and 712 manufactured by Mitsui Cytec Co., Ltd.
  • methoxylated butoxylated melamine resin examples include product Cymel 232, 235, 236, 238, 266, 267, 285 manufactured by Nippon Cytec Industries.
  • butoxylated melamine resin examples include product Uban 20SE60 manufactured by Nippon Cytec Industries.
  • the use amount of the alkoxylated melamine resin used in the present invention is a polyimide resin resin because the physical properties of the polyimide resin and the synergistic effect due to the curing of the alkoxylated melamine resin are obtained, and both excellent mechanical properties and high TG can be achieved. It is preferable to mix 1 to 30 parts by weight with respect to 100 parts by weight in terms of solid content, more preferably 1 to 20 parts by weight, still more preferably 1 to 10 parts by weight, and particularly preferably 2 to 7 parts by weight.
  • isocyanate compound for example, an aromatic isocyanate compound, an aliphatic isocyanate compound, an alicyclic isocyanate compound, and the like can be used.
  • a polyisocyanate compound having two or more isocyanate groups in one molecule is preferable.
  • a blocked isocyanate compound can also be used.
  • alkylalkoxysilane examples include alkyltrialkoxysilane and dialkyldialkoxysilane.
  • alkyltrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, Examples thereof include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, and phenyltributoxysilane.
  • dialkyl dialkoxysilane examples include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, diethyldibutoxysilane, and diphenyldimethoxy.
  • condensates of alkylalkoxysilanes may be used, and examples thereof include the above-mentioned alkyltrialkoxysilane condensates and dialkyldialkoxysilane condensates.
  • the resin of the present invention includes polyester, phenoxy resin, PPS resin, PPE resin, polyarylene resin and other binder resins, phenolic resin, melamine resin, alkoxysilane-based curing agent, polybasic acid anhydride, cyanate compound and other curing agents, Reactive compounds, melamine, dicyandiamide, guanamine and derivatives thereof, imidazoles, amines, phenols having one hydroxyl group, organic phosphines, phosphonium salts, quaternary ammonium salts, photocationic catalysts, and other curing catalysts and accelerators
  • a defoaming agent, leveling agent, slip agent, wetting improver, anti-settling agent, flame retardant, antioxidant, ultraviolet absorber, etc. as a filler and other additives to make a polyimide resin composition is there.
  • various fillers, organic pigments, inorganic pigments, extender pigments, rust preventives, and the like can be further added to the polyimide resin of the present invention as necessary to obtain a resin composition. These may be used alone or in combination of two or more.
  • filler examples include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica, and alumina. Is mentioned.
  • the filler those having various particle sizes can be used, and the filler can be added to the extent that the physical properties of the resin and its composition are not impaired. Such an appropriate amount is in the range of about 5 to 80% by weight in terms of solid content, and is preferably used after being uniformly dispersed.
  • a particle system having a sufficiently small particle system relative to its film thickness in order to form the present resin and its composition uniformly in the form of a coating film or a sheet, it is necessary to use a particle system having a sufficiently small particle system relative to its film thickness.
  • a partly large particle type can be used.
  • a method for dispersing the particle-based filler it is possible to carry out dispersion by a known roll such as a two-roll or a three-roll, bead mill, high-speed dispersion, etc. May be.
  • organic pigment examples include azo pigments; copper phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green, and quinacridone pigments.
  • the inorganic pigment examples include chromates such as chrome lead, zinc chromate and molybdate orange; ferrocyanides such as bitumen, titanium oxide, zinc white, bengara, iron oxide; metal oxides such as chromium carbide green, Cadmium yellow, cadmium red; metal sulfides such as mercury sulfide; selenides; sulfates such as lead sulfate; silicates such as ultramarine; carbonates, cobalt biored; phosphates such as manganese purple; aluminum powder, zinc dust Metal powders such as brass powder, magnesium powder, iron powder, copper powder and nickel powder; carbon black and the like.
  • ferrocyanides such as bitumen, titanium oxide, zinc white, bengara, iron oxide
  • metal oxides such as chromium carbide green, Cadmium yellow, cadmium red
  • metal sulfides such as mercury sulfide
  • selenides sulfates
  • silicates such as ultramarine
  • any other coloring, rust prevention and extender pigment can be used. These may be used alone or in combination of two or more.
  • the resin composition such as the polyimide resin of the present invention and the thermosetting resin composition is prepared by preparing the polyimide resin of the present invention or the resin composition to form a coating or molding, and then drying by heating at 100 to 300 ° C. Alternatively, it can be cured.
  • the substrate used in the coating film forming method can be used without any particular limitation.
  • Examples of the substrate include plastic, metal, wood, glass, inorganic material, and composite materials thereof.
  • the polyimide resin of the present invention and the composition thereof are a film (adhesive film) comprising a resin and a composition layer (A layer) and a support film (B layer), which are suitable for production of a flexible circuit board. ).
  • the adhesive film is prepared according to various methods, for example, by preparing a resin varnish obtained by dissolving the polyimide resin of the present invention or a composition thereof in an organic solvent, applying the resin varnish to a support film, and heating or blowing hot air. It can be produced by drying the organic solvent to form a resin layer or a resin composition layer.
  • the support film (B layer) serves as a support when the adhesive film is produced, and is finally peeled off or removed in the production of the flexible circuit board.
  • the support film include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, and release paper and copper foil.
  • PET polyethylene terephthalate
  • polyesters such as polyethylene naphthalate, polycarbonate, and release paper and copper foil.
  • the metal foil etc. can be mentioned.
  • copper foil when using copper foil as a support body film, it can remove by etching with etching liquid, such as ferric chloride and cupric chloride.
  • the support film may be subjected to a release treatment in addition to a mat treatment and a corona treatment, but it is more preferable that the release treatment is performed in consideration of releasability.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, and preferably 25 to 50 ⁇ m.
  • organic solvents for preparing varnish include ketones such as acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolve, butyl
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolve, butyl
  • carbitols such as carbitol
  • aromatic hydrocarbons such as toluene and xylene
  • dimethylformamide dimethylacetamide
  • N-methylpyrrolidone and gamma butyrolactone.
  • Drying conditions are not particularly limited, but drying is performed so that the content ratio of the organic solvent in the resin composition is usually 5% by mass or less, preferably 3% by mass or less.
  • the specific drying conditions vary depending on the curability of the resin composition and the amount of the organic solvent in the varnish. It can be dried to some extent. Those skilled in the art can appropriately set suitable drying conditions by simple experiments.
  • the thickness of the resin and its composition layer (A layer) can usually be in the range of 5 to 500 ⁇ m.
  • the preferred range of the thickness of the A layer varies depending on the use of the adhesive film.
  • the thickness of the conductor layer forming the circuit is usually 5 to 70 ⁇ m.
  • the thickness of the A layer corresponding to the layer is preferably in the range of 10 to 100 ⁇ m.
  • the A layer may be protected with a protective film.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the protective film is peeled off during lamination.
  • the protective film the same material as the support film can be used.
  • the thickness of the protective film is not particularly limited, but is preferably in the range of 1 to 40 ⁇ m.
  • the adhesive film obtained using the polyimide resin or composition of the present invention can be suitably used particularly for the production of multilayer flexible circuit boards.
  • the adhesive film can be suitably laminated on the flexible circuit board by a vacuum laminator.
  • the flexible circuit board used here is mainly composed of a conductive layer (circuit) patterned on one or both sides of a substrate such as a polyester substrate, a polyimide substrate, a polyamideimide substrate, or a liquid crystal polymer substrate, as well as alternating circuits and insulating layers. It is also possible to use a multilayer flexible circuit board that is layered and has a circuit formed on one or both sides for further multilayering.
  • the surface of the circuit is preferably subjected to a roughening treatment in advance with a surface treatment agent such as hydrogen peroxide / sulfuric acid or MEC etch bond (manufactured by MEC Co., Ltd.) from the viewpoint of adhesion of the insulating layer to the circuit board.
  • a surface treatment agent such as hydrogen peroxide / sulfuric acid or MEC etch bond (manufactured by MEC Co., Ltd.) from the viewpoint of adhesion of the insulating layer to the circuit board.
  • vacuum laminators include, for example, Nichigo-Morton Co., Ltd., Sakai Vacuum Applicator, Meiki Seisakusho Co., Ltd., Vacuum Pressurized Laminator, Hitachi Techno Engineering Co., Ltd., Sakai Roll Dry Coater, Hitachi AIC Co., Ltd., Vacuum A laminator etc. can be mentioned.
  • the lamination when the adhesive film has a protective film, the protective film is removed, and then the adhesive film is pressure-bonded to the circuit board while being pressurized and heated.
  • the lamination is performed by preheating the adhesive film and the circuit board as required, laminating at a pressure of preferably 70 to 140 ° C., a pressure of preferably 1 to 11 kgf / cm 2 and laminating under a reduced pressure of air pressure 20 mmHg or less. preferable.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the polyimide resin or composition laminated on the circuit board is heated, and when the composition is a thermosetting resin composition, it is heated and cured.
  • the heating (curing) conditions are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.
  • a support body film can also be peeled after heat-hardening of a thermosetting polyimide resin composition, or heating (hardening) and punching.
  • drilling is performed on the circuit board by a method such as drilling, laser, plasma, or a combination thereof as necessary.
  • a through hole may be formed.
  • drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.
  • the surface treatment of the insulating layer (polyimide resin or a cured product of the polyimide resin composition) is performed.
  • the surface treatment can employ a method used in a desmear process, and can be performed in a form that also serves as a desmear process.
  • an oxidizing agent is generally used.
  • the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, and the like.
  • an alkaline permanganate solution for example, potassium permanganate, sodium hydroxide solution of sodium permanganate
  • oxidizer widely used for roughening an insulating layer in the production of multilayer printed wiring boards by the build-up method.
  • a treatment with a swelling agent can also be performed before the treatment with the oxidizing agent. Further, after the treatment with an oxidizing agent, neutralization treatment with a reducing agent is usually performed.
  • a conductor layer is formed by plating on the surface of the insulating layer.
  • the conductor layer can be formed by a method combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
  • the thickness of the electroless copper plating layer is 0.1 to 3 ⁇ m, preferably 0.3 to 2 ⁇ m.
  • An electroplating layer (panel plating layer) is formed thereon with a thickness of 3 to 35 ⁇ m, preferably 5 to 20 ⁇ m, an etching resist is formed, and etching is performed with an etching solution such as ferric chloride or cupric chloride.
  • the electroless copper plating layer after forming the electroless copper plating layer with an electroless copper plating layer thickness of 0.1 to 3 ⁇ m, preferably 0.3 to 2 ⁇ m, a pattern resist is formed, and then the electrolytic copper A circuit board can be obtained by peeling after plating.
  • a film in which the support film is replaced with a heat-resistant resin layer that is, a film composed of a polyimide resin or a composition layer (A layer) and a heat-resistant resin layer (C layer) is used for a flexible circuit board.
  • a heat-resistant resin film that is, a film composed of a polyimide resin or a composition layer (A layer) and a heat-resistant resin layer (C layer) is used for a flexible circuit board.
  • a film made of a resin and its composition layer (A layer), a heat resistant resin layer (C layer) and a copper foil (D layer) can also be used as a base film of a flexible circuit board.
  • the base film has a layer structure in the order of A layer, C layer, and D layer.
  • the heat-resistant resin layer is not peeled off and constitutes a part of the flexible circuit board.
  • a film in which an insulating layer (A ′ layer) made of a cured product of the polyimide resin or resin composition of the present invention is formed on a heat-resistant resin layer (C layer) can be used as a base film for a single-sided flexible circuit board. It consists of a film having an order of layers of A ′ layer, C layer and A ′ layer, and A ′ layer, C layer and copper foil (D layer). Similarly, a film having a layer structure can be used as a base film for a double-sided flexible circuit board.
  • the heat-resistant resin used in the heat-resistant resin layer examples include polyimide resin, aramid resin, polyamideimide resin, and liquid crystal polymer.
  • a polyimide resin and a polyamideimide resin are preferable.
  • the breaking strength is 100 MPa or more
  • the breaking elongation is 5% or more
  • the thermal expansion coefficient between 20 to 150 ° C. is 40 ppm or less
  • the glass transition temperature is 200 ° C. or more
  • the decomposition temperature is 300 ° C. It is preferable to use the above heat resistant resin.
  • a commercially available heat-resistant resin in the form of a film can be suitably used.
  • a polyimide film “UPI Rex-S” manufactured by Ube Industries, Ltd., manufactured by Toray DuPont Co., Ltd.
  • polyimide film “Apical”, Teijin Advanced Films Ltd. “Aramika”, Kuraray liquid crystal polymer film “Bexter”, Sumitomo Bakelite Co., Ltd. polyetheretherketone film “Sumilite FS-1100C” and the like are known.
  • the thickness of the heat resistant resin layer is usually 2 to 150 ⁇ m, preferably 10 to 50 ⁇ m.
  • a surface-treated layer may be used.
  • the surface treatment include dry treatment such as mat treatment, corona discharge treatment and plasma treatment, chemical treatment such as solvent treatment, acid treatment and alkali treatment, sand blast treatment and mechanical polishing treatment.
  • plasma treatment is performed.
  • a base film for a single-sided flexible circuit board composed of an insulating layer (A ′) and a heat-resistant resin layer (C) can be produced as follows. First, similarly to the adhesive film described above, a resin varnish prepared by dissolving the resin composition of the present invention in an organic solvent is prepared, this resin varnish is applied on a heat-resistant resin film, and the organic solvent is removed by heating or hot air blowing. It is made to dry and a polyimide resin layer or a resin composition layer is formed. Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film.
  • the thickness of the polyimide resin layer or the resin composition layer should preferably be in the range of 5 to 15 ⁇ m.
  • the polyimide resin layer or the resin composition layer is heated and dried to form an insulating layer of the polyimide resin or the polyimide resin composition.
  • the conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.
  • a base film of a double-sided flexible circuit board film consisting of three layers of an insulating layer (A ′ layer), a heat-resistant resin layer (C) layer and a copper foil (D layer) is made of a heat-resistant resin layer (C layer) and a copper foil.
  • a resin composition may be formed on a copper-clad laminated film made of (D layer) and manufactured in the same manner as described above.
  • the copper-clad laminated film include a cast method two-layer CCL (Copper-clad laminate), a sputtering method two-layer CCL, a laminate method two-layer CCL, and a three-layer CCL.
  • the thickness of the copper foil is preferably 12 ⁇ m or 18 ⁇ m.
  • a base film for a double-sided flexible circuit board film comprising three layers of an insulating layer (A ′ layer), a heat-resistant resin layer (C layer) and an insulating layer (A ′ layer) can be carried out as follows.
  • a resin varnish prepared by dissolving the polyimide resin or resin composition of the present invention in an organic solvent is prepared, and this resin varnish is applied on a support film, and then organically heated or sprayed with hot air.
  • the solvent is dried to form a polyimide resin layer or a resin composition layer.
  • Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film.
  • the thickness of the polyimide resin layer or the resin composition layer is preferably in the range of 5 to 15 ⁇ m.
  • this adhesive film is laminated on both sides of the heat resistant resin film.
  • Lamination conditions are the same as described above. Moreover, if the resin composition layer is previously provided on one side of the heat-resistant film, the lamination may be only on one side.
  • the resin composition layer is cured by heating to form an insulating layer that is a polyimide resin layer or a resin composition layer.
  • the conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.
  • a method for manufacturing a flexible circuit board from a base film for a flexible circuit board will be described.
  • a base film comprising an A ′ layer, a C layer, and an A ′ layer
  • a circuit board is drilled by a method such as drilling, laser, or plasma to form a through hole for conduction on both sides.
  • a method such as drilling, laser, or plasma
  • holes are formed by the same method to form via holes.
  • drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.
  • insulating layer polyimide resin layer or resin composition layer
  • surface treatment of the insulating layer is performed.
  • surface treatment it is the same as that of the case of the adhesive film mentioned above.
  • a conductor layer is formed by plating on the surface of the insulating layer.
  • the formation of the conductor layer by plating is the same as in the case of the adhesive film described above.
  • the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
  • the conductor layer is patterned to form a circuit to obtain a flexible circuit board.
  • a circuit is also formed on the copper foil that is the D layer.
  • a circuit formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. Details are the same as in the case of the adhesive film described above.
  • the single-sided or double-sided flexible circuit board obtained in this way can be multilayered using the adhesive film of the present invention, for example, as described above, to produce a multilayer flexible circuit board.
  • the polyimide resin or resin composition of the present invention is also useful as a material for forming a stress relaxation layer between a semiconductor and a substrate substrate.
  • a stress relaxation layer between a semiconductor and a substrate substrate For example, in the same manner as described above, by forming all or part of the uppermost insulating layer of the substrate substrate with the adhesive film obtained by using the polyimide resin or resin composition of the present invention, and connecting the semiconductor A semiconductor device in which a semiconductor and a substrate substrate are bonded through a cured product of the polyimide resin or a cured product of the resin composition can be manufactured.
  • the thickness of the polyimide resin layer or the resin composition layer of the adhesive film is appropriately selected within the range of 10 to 1000 ⁇ m.
  • the polyimide resin or resin composition of the present invention can be used to form a conductor layer by plating, and a conductor pattern can be easily formed on a stress relaxation insulating layer provided on a substrate substrate to produce a circuit pattern. It is also possible to do.
  • Example 1 The raw materials shown in Table 1 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A1) having a resin solid content of 16% with a viscosity of 7 Pa ⁇ s at 25 ° C.
  • MDI Diphenylmethane diisocyanate
  • DMBPDI Dimethylbiphenyl diisocyanate (structure below)
  • TMA trimellitic anhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • TMAH hydrogenated trimellitic anhydride (the following structure)
  • HCAHQ reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone (the following structure)
  • the obtained polyimide resin (A1) solution was coated on a KBr plate and the infrared absorption spectrum (FIG. 1) of the sample in which the solvent was volatilized was measured. As a result, 2270 cm ⁇ 1 , the characteristic absorption of the isocyanate group, completely disappeared. The characteristic absorption of the imide ring was confirmed at 725 cm ⁇ 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 . The amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the flask content weight. From this, it is concluded that the total amount of 1.84 moles, which is the total amount of carboxylic acid and acid anhydride groups, has been converted to imide bonds and amide bonds.
  • a1 to a6 show the molar ratio as the abundance ratio of the structural unit, and are concluded as follows.
  • a7 is a repeating unit, and each structural unit in the parenthesis is not limited in its order and the number of repetitions, and is bonded at random (the same applies hereinafter).
  • a1: a2: a3: a4: a5: a6 24.4: 42.2: 8.1: 8.2: 14.3: 2.7
  • Solvent solubility, storage stability, coating workability, coating film forming property (surface smoothness), heat resistance, mechanical properties, flame retardancy and dimensional stability of the obtained polyimide resin (A) solution are as follows. Evaluated according to. The results are shown in Table 5.
  • solvent solubility and storage stability test were performed by evaluating the solvent solubility of the polyimide resin (A1) immediately after preparation and the solvent solubility after standing for a long time. Immediately after the preparation, the polyimide resin composition was adjusted to a 10% solution with gamma-butyrolactone, put in 25 ml of a glass bottle with a lid, the appearance was observed, and evaluated according to the following evaluation criteria. This was defined as the solvent solubility of the polyimide resin composition immediately after preparation. Thereafter, the glass bottle with the lid containing the polyimide resin composition was allowed to stand at 40 ° C. for 30 days, and then the appearance was observed and evaluated as the solvent solubility with time based on the following evaluation criteria.
  • Transparent, glossy and flat surface.
  • Opaque but flat surface.
  • X Opaque and not a flat surface.
  • the polyimide resin (A1) was applied to a tin plate with an applicator so that the film thickness after drying was 30 ⁇ m, and then dried at 110 ° C. for 30 minutes for testing. Created a piece. This test piece was allowed to stand at 25 ° C. for 24 hours, and the appearance of the coating film was evaluated according to the following evaluation criteria.
  • No abnormalities such as cracks are observed in the coating film. ⁇ : Some cracks are observed in the coating film. X: Cracks occurred on the entire surface of the coating film.
  • Appearance abnormality is not observed in the coating film.
  • Abnormalities such as swelling and peeling are slightly observed in the coating film.
  • X Abnormalities such as swelling and peeling are observed on the entire surface of the coating film.
  • ⁇ Tensile test measurement method Five samples for measurement were prepared and subjected to a tensile test under the following conditions to determine the elastic modulus, breaking strength, and breaking elongation. It represents that it is a coating film which is excellent in a softness
  • ⁇ TG and linear expansion coefficient measurement method> Using a thermal analysis system TMA-SS6000 manufactured by Seiko Electronics Co., Ltd., measurement was performed by the TMA (Thermal Mechanical Analysis) method under the conditions of a sample length of 10 mm, a heating rate of 10 ° C./min, and a load of 30 mN.
  • TMA Thermal Mechanical Analysis
  • the inflection point was obtained from the temperature-dimension change curve in TMA measurement, and the temperature was taken as TG.
  • the temperature range used for the linear expansion coefficient was determined from the sample length displacement at 50 to 220 ° C. The higher the TG, the better the heat resistance, and the smaller the linear expansion coefficient, the better the dimensional stability.
  • a polyimide resin (A1) is coated on a tinplate so that the film thickness after curing is 20 ⁇ m, dried for 20 minutes with a 70 ° C. dryer, and then cured at 200 ° C. for 1 hour. After cooling, the peeled cured coating film was cut into a strip shape having a width of 10 mm and a length of 70 mm to obtain a measurement sample. One end of the strip sample in the longitudinal direction was fixed to the clamp, and the other end was set to be perpendicular to the ground in the downward direction. The lower end was ignited with a lighter and the combustion behavior of the sample was observed. This operation was performed 5 times and evaluated according to the following criteria.
  • A Self-extinguish without igniting the clamp after ignition for all samples in 5 times.
  • Self-extinguish without igniting the clamp after ignition with 2-4 samples out of 5 times.
  • Self-extinguish without igniting to clamp after ignition with 1 sample out of 5 times.
  • X All samples in 5 times burned up to the clamp after ignition.
  • Example 2 The raw materials shown in Table 2 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A2) having a resin solid content of 16% with a viscosity of 7 Pa ⁇ s at 25 ° C.
  • A2 polyimide resin having a resin solid content of 16% with a viscosity of 7 Pa ⁇ s at 25 ° C.
  • the obtained polyimide resin (A2) solution was applied to a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm ⁇ 1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm ⁇ Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
  • Example 3 The raw materials shown in Table 3 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A3) having a resin solid content of 16% with a viscosity of 8 Pa ⁇ s at 25 ° C.
  • A3 polyimide resin having a resin solid content of 16% with a viscosity of 8 Pa ⁇ s at 25 ° C.
  • the obtained polyimide resin (A3) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample obtained by volatilizing the solvent was measured. As a result, 2270 cm ⁇ 1, which is the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm ⁇ Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
  • Example 4 The raw materials shown in Table 4 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A4) having a resin solid content of 16% with a viscosity of 10 Pa ⁇ s at 25 ° C.
  • the obtained polyimide resin (A4) solution was applied to a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm ⁇ 1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm ⁇ Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
  • the structural units of structural units A1, A2 and A3 in the formula are the same as the structural units shown in Example 1, respectively.
  • the structural units A′4, A′5, and A′6 are structural units represented by the following formula.
  • Example 5-7 The compositions shown in Table 6 were prepared to obtain thermosetting resin compositions 1 to 4 of the present invention. The same evaluation as in Example 1 was performed, and the results are shown in Table 7. However, the compounding numerical value in Table 6 shows the resin solid content.
  • the following general formula shows the representative structure.
  • Comparative Example 1 A flask equipped with a stirrer, a thermometer and a condenser was charged with 337.8 g of GBL, 225 g of MDI (0.9 mol) and TMA 192 (1 mol). After heating up to 160 degreeC, it was made to react at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. An attempt was made to measure the viscosity at 25 ° C., but crystallization occurred and the viscosity could not be measured. The resin solid content was 50%. This is abbreviated as polyimide resin (a1) solution. The resin solution acid value [16.6 (KOHmg / g)] concludes that the average molecular weight is 3400.
  • the obtained solution of the polyimide resin (a1) was coated on a KBr plate, a result of measuring the infrared absorption spectrum of the sample after evaporation of the solvent, 2270 cm-1 which is the characteristic absorption of an isocyanate group was disappeared completely, 725 cm - Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 79.2 g (1.8 mol), which was monitored by the change in the weight charged to the flask. From this, it is concluded that the total amount of 1.8 moles, which is the total amount of isocyanate groups, has been converted to imide bonds and amide bonds.
  • the polyimide resin (a1) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a1) solution was used. The results are shown in Table 8.
  • Comparative Example 2 A flask equipped with a stirrer, a thermometer and a condenser was charged with 345.9 g of GBL, 237.5 g (0.95 mol) of MDI and 192 (1 mol) of TMA, and stirred for 2 hours while paying attention to heat generation. The temperature was raised to 160 ° C. over a period of time, and the reaction was carried out at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. An attempt was made to measure the viscosity at 25 ° C., but crystallization occurred and the viscosity could not be measured. The resin solid content was 50%. This is abbreviated as polyimide resin (a2) solution. The resin solution acid value [8.1 (KOHmg / g)] concludes that the average molecular weight is 6900.
  • the obtained polyimide resin (a2) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm ⁇ 1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm ⁇ Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 83.6 g (1.9 mol), which was monitored by the change in the weight charged to the flask. From this, it is concluded that the total amount of 1.9 mol, which is the total amount of isocyanate groups, has been converted to imide bonds and amide bonds.
  • the polyimide resin (a2) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a2) solution was used. The results are shown in Table 8.
  • polyimide resin (a3) resin composition in which polyimide resin was not dissolved in ⁇ -butyrolactone. From the resin solution acid value [7.7 (KOHmg / g)], it is concluded that the average molecular weight is 7300.
  • the obtained solution of the polyimide resin (a3) was coated on a KBr plate, a result of measuring the infrared absorption spectrum of the sample after evaporation of the solvent, 2270 cm-1 which is the characteristic absorption of an isocyanate group was disappeared completely, 725 cm - Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm ⁇ 1 .
  • the amount of carbon dioxide generated was 66.88 g (1.52 mol), which was monitored by the change in the weight of the flask charged. From this, it is concluded that the total amount of 1.52 mol, which is the total amount of isocyanate groups, has been converted into imide bonds and amide bonds.
  • the polyimide resin (a3) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a3) solution was used. The results are shown in Table 8.
  • the obtained polyimide resin (a4) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm ⁇ 1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm ⁇ Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm ⁇ 1 and 1720 cm + . Further, the amount of carbon dioxide generated was 21.1 g (0.48 mol), which was traced by the change in the weight charged to the flask. From this, it is concluded that the total amount of 0.48 mol of TMEG acid anhydride groups has been converted to imide bonds, and the remaining isocyanate groups are linked to the resin by forming urethane bonds with BPS.
  • the polyimide resin (a4) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a4) solution was used. However, the solvent solubility and the solvent solubility over time were evaluated by changing the gamma butyrolactone to DMAC because the synthetic solvent was DMAC. The results are shown in Table 8.
  • the polyimide resin composition (a5) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin composition (a5) was used. However, the solvent solubility and the solvent solubility over time were evaluated by changing the gamma butyrolactone to DMAC because the synthetic solvent was DMAC. The results are shown in Table 8.
  • 2 is an infrared absorption spectrum of the polyimide resin of the present invention obtained in Synthesis Example 1.
  • 2 is a nuclear magnetic resonance absorption spectrum of the polyimide resin of the present invention obtained in Synthesis Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are thermosetting resin compositions which can form coating films exhibiting excellent heat resistance, dimensional stability, and mechanical properties, and which also exhibit excellent storage stability. Disclosed is a polyimide resin characterized by: comprising structures prepared from cyclohexanetricarboxylic acid and 4,4'–diisocyanato-3,3'-dimethyl-1,1'-biphenyl; and having, at the terminal, a residue derived from a phenol compound having multiple phenolic hydroxyl groups in the molecule by removing two phenolic hydroxyl groups. Also disclosed are thermosetting resin compositions containing the polyimide resin, and cured products obtained by curing the polyimide resin or the resin compositions.

Description

ポリイミド樹脂、ポリイミド樹脂の製造方法、ポリイミド樹脂組成物及びその硬化物Polyimide resin, method for producing polyimide resin, polyimide resin composition and cured product thereof
 本発明は、耐熱性、難燃性、寸法安定性及び機械物性(強靭性、柔軟性)、表面平滑性に優れる塗膜等の硬化物が得られ、且つ、長期間の保存後にも溶剤への溶解性が良好等保存安定性に優れ、且つ、他の樹脂との相溶性にも優れるポリイミド樹脂とその製造方法やポリイミド樹脂組成物およびそれらの硬化物に関する。 The present invention can provide a cured product such as a coating film having excellent heat resistance, flame retardancy, dimensional stability, mechanical properties (toughness, flexibility), and surface smoothness, and can be used as a solvent even after long-term storage. The present invention relates to a polyimide resin excellent in storage stability such as good solubility and excellent compatibility with other resins, a production method thereof, a polyimide resin composition, and a cured product thereof.
 近年、電気産業分野で用いる樹脂や樹脂組成物、例えば、耐熱性コーティング材料、プリント配線基板の層間絶縁材料や半導体の絶縁材料等の電気絶縁材料;ビルドアップ材料;プリプレグ用樹脂;耐熱性接着剤等は、長期間の保存後でも溶剤への溶解性が良好等の保存安定性と供に得られる硬化物の機械物性(強靭性、柔軟性)、耐熱性、寸法安定性の向上が要望されてきている。特に、コンピューター等の電子機器産業分野ではフレキシブルフィルム基板やリジット基板の極薄化等のダウンサイジングの要望が強く、この要望に答える為に基板の保護層、接着層、絶縁層の機械物性(強靭性、柔軟性)、耐熱性、寸法安定性の向上は必要である。 In recent years, resins and resin compositions used in the electric industry, for example, heat-resistant coating materials, electrical insulating materials such as printed wiring board interlayer insulating materials and semiconductor insulating materials; build-up materials; prepreg resins; heat-resistant adhesives Is required to improve the mechanical properties (toughness, flexibility), heat resistance, and dimensional stability of the cured product obtained with storage stability such as good solubility in solvents even after long-term storage. It is coming. In particular, there is a strong demand for downsizing, such as ultra-thin flexible film substrates and rigid substrates, in the field of electronic equipment such as computers. To meet this demand, the mechanical properties of the protective layer, adhesive layer, and insulating layer of the substrate (toughness) Properties, flexibility), heat resistance, and dimensional stability are necessary.
 得られる硬化物の耐熱性、機械物性、寸法安定性に優れるポリイミド樹脂として、例えば、フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、フェノール系水酸基とイソシアネート基の反応にて生成されるウレタン結合とを有するポリイミド樹脂が開示されている(例えば、特許文献1参照。)。しかしながら、特許文献1に記載されたポリイミド樹脂はエポキシ樹脂等の他の樹脂との相溶性が十分ではなく、混合して組成物とした場合、安定性が不十分であり、組成物がゲル化してしまう問題がある。 As a polyimide resin excellent in heat resistance, mechanical properties, and dimensional stability of the obtained cured product, for example, by a terminal structure in which a structural residue of a phenolic compound is bonded to a urethane bond, and a reaction between a phenolic hydroxyl group and an isocyanate group The polyimide resin which has the urethane bond produced | generated is disclosed (for example, refer patent document 1). However, the polyimide resin described in Patent Document 1 is not sufficiently compatible with other resins such as an epoxy resin, and when mixed into a composition, the stability is insufficient and the composition is gelled. There is a problem.
特開2007-277518号公報JP 2007-277518 A
 本発明は、耐熱性、難燃性、寸法安定性及び機械物性(強靭性、柔軟性)、表面平滑性に優れる塗膜等の硬化物が得られ、且つ、長期間の保存後にも溶剤への溶解性が良好等保存安定性に優れ、かつエポキシ樹脂等他の樹脂との相溶性も良好なポリイミド樹脂及びこのポリイミド樹脂を含有する樹脂組成物を提供することにある。 The present invention can provide a cured product such as a coating film having excellent heat resistance, flame retardancy, dimensional stability, mechanical properties (toughness, flexibility), and surface smoothness, and can be used as a solvent even after long-term storage. Another object of the present invention is to provide a polyimide resin that has excellent storage stability such as good solubility and good compatibility with other resins such as epoxy resins and a resin composition containing this polyimide resin.
 本発明者らは鋭意検討した結果、下記(1)~(7)の知見を見出した。
 (1)フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、イミド環にシクロヘキサン環が直結した構造を有するポリイミド樹脂は、前記特許文献1に記載されたポリイミド樹脂と同等の硬化物の耐熱性、機械物性、寸法安定性を有しながらも長期間の保存後にも溶剤への溶解性が良好である。
As a result of intensive studies, the present inventors have found the following findings (1) to (7).
(1) A polyimide resin having a terminal structure in which a structural residue of a phenolic compound and a urethane bond are bonded, and a structure in which a cyclohexane ring is directly bonded to an imide ring is cured equivalent to the polyimide resin described in Patent Document 1 Although it has heat resistance, mechanical properties and dimensional stability, it has good solubility in solvents even after long-term storage.
 (2)上記フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、イミド環にシクロヘキサン環が直結した構造を有するポリイミド樹脂は、イミド樹脂末端にウレタン結合を介してブロックフェノール構造を有することになる。これによりエポキシ樹脂等との相溶性がさらに向上し、熱硬化性樹脂組成物として幅広い性能、特性を出すことができる。 (2) A polyimide resin having a terminal structure in which a structural residue of the phenolic compound and a urethane bond are bonded and a structure in which a cyclohexane ring is directly connected to an imide ring has a block phenol structure via a urethane bond at the imide resin terminal. Will have. Thereby, compatibility with an epoxy resin etc. improves further, and a wide performance and characteristic can be taken out as a thermosetting resin composition.
 (3)末端のブロックフェノール構造は、塗膜作成時の高温での乾燥条件下、樹脂の主鎖骨格から解離して粘性が低下すると考えられ、この理由より塗膜表面の表面平滑性が格段に向上する。 (3) The terminal block phenol structure is considered to be dissociated from the main chain skeleton of the resin under the drying conditions at high temperature when forming the coating film, resulting in a decrease in viscosity. For this reason, the surface smoothness of the coating film surface is remarkably reduced. To improve.
 (4)上記フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、イミド環にシクロヘキサン環が直結した構造を有するポリイミド樹脂は、フェノール樹脂等のフェノール化合物の存在下においてイソシアネート法を用いることによりゲル化することなく安定して製造することができる。 (4) A polyimide resin having a terminal structure in which a structural residue of the phenolic compound and a urethane bond are bonded and a structure in which a cyclohexane ring is directly bonded to an imide ring is obtained by an isocyanate method in the presence of a phenol compound such as a phenol resin. By using it, it can manufacture stably, without gelatinizing.
 (5)上記フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、イミド環にシクロヘキサン環が直結した構造を有するポリイミド樹脂は単独で優れた耐熱性、寸法安定性と機械物性を有する塗膜が得られ、さらにこのポリイミド樹脂とエポキシ樹脂とを含有する組成物を用いることにより、得られる硬化物は優れた耐熱性、機械物性、寸法安定性を奏する。しかも、このポリイミド樹脂はエポキシ樹脂に限らず種々の樹脂と相溶性が良好で、種々の樹脂と混合し組成物化した際も長期間の保存安定性に優れる。 (5) A polyimide resin having a terminal structure in which a structural residue of the phenolic compound and a urethane bond are bonded and a structure in which a cyclohexane ring is directly bonded to an imide ring has excellent heat resistance, dimensional stability and mechanical properties. By using a composition containing this polyimide resin and epoxy resin, the resulting cured product exhibits excellent heat resistance, mechanical properties and dimensional stability. Moreover, this polyimide resin has good compatibility with various resins, not limited to epoxy resins, and is excellent in long-term storage stability when mixed with various resins to form a composition.
 (6)上記フェノール系化合物の構造残基とウレタン結合とが結合した末端構造と、イミド環にシクロヘキサン環が直結した構造を有するポリイミド樹脂とエポキシ樹脂との組成物において、該ポリイミド樹脂が有する末端のブロックフェノール構造が塗膜作成時の高温での乾燥条件下、樹脂の主鎖骨格から解離してフェノール性水酸基とイソシアネート基を再生しフェノール性水酸基はエポキシ樹脂と反応して2級水酸基を生成する。この生成した2級水酸基が、解離したイソシアネート基と反応して新たにウレタン結合を形成し、通常エポキシ樹脂の硬化で見られる水酸基の生成による誘電特性の悪化を抑えることが可能となる。加えて、フェノール性水酸基とイソシアネート基との2重の反応によりより強固な架橋体を形成することで上記組成物の硬化物は耐久性や機械物性等の面優れた性能を奏する。
 本発明は上記知見によって完成したものである。
(6) In the composition of the terminal structure which the structural residue and urethane bond of the said phenolic compound couple | bonded, and the polyimide resin and epoxy resin which have the structure where the cyclohexane ring was directly linked to the imide ring, the terminal which this polyimide resin has The block phenolic structure is dissociated from the main chain skeleton of the resin to regenerate phenolic hydroxyl groups and isocyanate groups under the drying conditions at high temperature when creating the coating film, and the phenolic hydroxyl groups react with the epoxy resin to form secondary hydroxyl groups. To do. The generated secondary hydroxyl group reacts with the dissociated isocyanate group to newly form a urethane bond, and it is possible to suppress deterioration of dielectric characteristics due to the generation of hydroxyl group usually seen in the curing of the epoxy resin. In addition, the cured product of the composition exhibits excellent performance such as durability and mechanical properties by forming a stronger cross-linked body by a double reaction between a phenolic hydroxyl group and an isocyanate group.
The present invention has been completed based on the above findings.
 即ち、本発明は、一般式(1)で表される構造と一般式(3)で表される構造とを有することを特徴とするポリイミド樹脂を提供するものである。 That is, the present invention provides a polyimide resin characterized by having a structure represented by the general formula (1) and a structure represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000013
(Rは、ジイソシアネートからNCO基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000013
(R 1 represents a residue obtained by removing the NCO group from diisocyanate.)
Figure JPOXMLDOC01-appb-C000014
(式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, X represents a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule.)
 また、本発明は、前記ポリイミド樹脂を硬化してなることを特徴とする硬化物を提供するものである。 The present invention also provides a cured product obtained by curing the polyimide resin.
 更に、本発明は、前記ポリイミド樹脂とエポキシ樹脂とを含有することを特徴とする熱硬化性樹脂組成物を提供するものである。 Furthermore, the present invention provides a thermosetting resin composition comprising the polyimide resin and an epoxy resin.
 更に、本発明は前記熱硬化性樹脂組成物を硬化してなることを特徴とする硬化物を提供するものである。 Furthermore, the present invention provides a cured product obtained by curing the thermosetting resin composition.
 更に、本発明は2官能以上のフェノール性水酸基を有する化合物と、ジイソシアネート化合物とシクロヘキサントリカルボン酸無水物とを反応させることを特徴とする前記ポリイミド樹脂の製造方法を提供するものである。 Furthermore, the present invention provides a method for producing the polyimide resin, characterized by reacting a compound having a bifunctional or higher functional phenolic hydroxyl group with a diisocyanate compound and cyclohexanetricarboxylic acid anhydride.
 本発明のポリイミド樹脂は保存安定性に優れ、長期間の保存後にも汎用溶剤への溶解性が良好である。しかも、本発明のポリイミド樹脂や該ポリイミド樹脂とエポキシ樹脂とを含有する組成物は、例えば、塗膜化した場合、該塗膜は寸法安定性及び機械物性(強靭性、柔軟性)に優れ、塗装剤、配線層間絶縁膜、接着剤等に有用である。加えて、本発明のポリイミド樹脂はエポキシ樹脂に限らず種々の樹脂との相溶性が良好で保存安定性にも優れる。 The polyimide resin of the present invention is excellent in storage stability and has good solubility in general-purpose solvents even after long-term storage. And the composition containing the polyimide resin of this invention or this polyimide resin and an epoxy resin is excellent in dimensional stability and mechanical properties (toughness, a softness | flexibility), for example, when it forms into a coating film, It is useful for coating agents, wiring interlayer insulation films, adhesives, and the like. In addition, the polyimide resin of the present invention has good compatibility with various resins as well as epoxy resins and excellent storage stability.
 本発明のポリイミド樹脂は、一般式(1)で表される構造と一般式(3)で表される構造とを有する。 The polyimide resin of the present invention has a structure represented by the general formula (1) and a structure represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000015
(Rは、ジイソシアネートからNCO基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000015
(R 1 represents a residue obtained by removing the NCO group from diisocyanate.)
Figure JPOXMLDOC01-appb-C000016
(式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, X represents a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule.)
 上記一般式(1)の構造を有することにより本発明のポリイミド樹脂を用いて得られる硬化物は溶剤溶解性と機械物性(強靭性、柔軟性)、耐熱性、寸法安定性等物性バランスに優れた顕著な効果を有する。 The cured product obtained by using the polyimide resin of the present invention by having the structure of the general formula (1) is excellent in the balance of physical properties such as solvent solubility and mechanical properties (toughness, flexibility), heat resistance, dimensional stability and the like. It has a remarkable effect.
 本発明のポリイミド樹脂中の(1)と(2)の構造の割合は重量比で1:99~40:60が機械物性に優れ、組成物とする際にエポキシ樹脂等の他の成分との相溶性が良好となることから好ましく、2:98~30:70がより好ましい。 The ratio of the structures (1) and (2) in the polyimide resin of the present invention is 1:99 to 40:60 in terms of weight ratio, which is excellent in mechanical properties. It is preferable from the viewpoint of good compatibility, and 2:98 to 30:70 is more preferable.
 前記一般式(1)中のRは、ジイソシアネートからNCO基を除いた残基を示す。より具体的には、Rが以下の一般式(3)、(4)または(5)の構造を有するポリイミド樹脂が本発明の顕著な効果、即ち、耐熱性、難燃性、寸法安定性及び機械物性(強靭性、柔軟性)、表面平滑性に優れる塗膜等の硬化物が得られ、且つ、長期間の保存後にも溶剤への溶解性が良好等保存安定性に優れるポリイミド樹脂となることから好ましい。 R 1 in the general formula (1) represents a residue obtained by removing an NCO group from diisocyanate. More specifically, a polyimide resin in which R 1 has the structure of the following general formula (3), (4) or (5) is a remarkable effect of the present invention, that is, heat resistance, flame retardancy, dimensional stability. Cured resin such as a coating film having excellent mechanical properties (toughness, flexibility) and surface smoothness, and a polyimide resin having excellent storage stability such as good solubility in a solvent even after long-term storage This is preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(式中Rはそれぞれ独立して水素原子、炭素原子数1~9の炭化水素基を示す。*は結合点を示す。)
Figure JPOXMLDOC01-appb-C000019
(In the formula, each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 9 carbon atoms. * Represents a bonding point.)
 本発明のポリイミド樹脂としては、中でも、一般式(1)のRとして前記一般式(5)の構造を有するポリイミド樹脂が、線膨張率が低い、即ち、寸法安定性に優れる硬化物が得られることから好ましい。一般式(5)の有する。Rとしては、炭素原子数1~5の炭化水素基が好ましく、炭素原子数1~3の炭化水素基がより好ましく、炭素原子数が1の炭化水素基(メチル基)が更に好ましい。また、Rとしては、水酸基の一部乃至全部がハロゲン等で置換されていても良い。 As the polyimide resin of the present invention, among them, the polyimide resin having the structure of the general formula (5) as R 1 of the general formula (1) has a low linear expansion coefficient, that is, a cured product having excellent dimensional stability is obtained. This is preferable. It has general formula (5). R 2 is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms, and still more preferably a hydrocarbon group having 1 carbon atom (methyl group). In addition, as R 2 , some or all of the hydroxyl groups may be substituted with halogen or the like.
 前記一般式(5)の具体的な構造としては、例えば、下記一般式(5-1)~(5-4)で表される構造を例示することができる。中でも、一般式(5-1)で表される構造が寸法安定性に優れる硬化物が得られるポリイミド樹脂が得られることからより好ましい。 As specific structures of the general formula (5), for example, structures represented by the following general formulas (5-1) to (5-4) can be exemplified. Among these, the structure represented by the general formula (5-1) is more preferable because a polyimide resin can be obtained from which a cured product having excellent dimensional stability can be obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 〔上記一般式(5-1)から(5-4)において、*は結合点を示す。〕 [In the above general formulas (5-1) to (5-4), * represents a bonding point. ]
 本発明のポリイミド樹脂が有する一般式(2)で表される構造としては、Xの構造として下記式(2-1)、式(2-2)、式(2-4)または式(2-5)の構造が、その他樹脂との相溶性や保存安定性に優れ、熱硬化性樹脂組成物とした際に、硬化性が良好で耐熱性、機械物性、寸法安定性に加え、ポットライフに優れるポリイミド樹脂となることから好ましい。 As the structure represented by the general formula (2) possessed by the polyimide resin of the present invention, as the structure of X, the following formula (2-1), formula (2-2), formula (2-4) or formula (2- The structure of 5) has excellent compatibility with other resins and storage stability, and when it is used as a thermosetting resin composition, it has good curability, heat resistance, mechanical properties, dimensional stability, and pot life. It is preferable because it is an excellent polyimide resin.
Figure JPOXMLDOC01-appb-C000024
(式中Rは、単結合あるいは2価の連結基であり、Rは水素または炭素原子数1~5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000024
(Wherein R 2 represents a single bond or a divalent linking group, and R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms.)
Figure JPOXMLDOC01-appb-C000025
(式中Rは、水素または炭素原子数1~5のアルキル基、または下記一般式(2-3)で示される構造を示す。)
Figure JPOXMLDOC01-appb-C000025
(Wherein R 4 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following general formula (2-3).)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式中Rは、直接結合あるいは2価の連結基であり、Rは同一でも異なっていても良く、水素原子または炭素原子数1~18のアルキル基を示す。aとbとcとの合計は1以上で、*は連結基である。)
Figure JPOXMLDOC01-appb-C000028
(Wherein R 5 is a direct bond or a divalent linking group, and R 6 may be the same or different and each represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms. A, b, c, The total of is 1 or more, and * is a linking group.)
 ここで一般式(2-1)のRのより具体的な構造としては、単結合、カルボニル基、スルホニル基、メチレン基、イソプロピリデン基、ヘキサフルオロイソプロピリデン基、オキソ基、ジメチルシリレン基、フルオレン-9-ジイル基、トリシクロ[5.2.1.02,8]デカン-ジイル基等の2価の結合基等が挙げられ、単一でも複数の混合体であっても良い。また、Rとしては、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等の炭素原子数1~5のアルキル基等が挙げられる。また、ポリフェノール化合物、例えば、フェノールノボラック樹脂やクレゾールノボラック樹脂、ナフトールとアルキルフェノールとホルムアルデヒド縮合物から合成されるポリフェノール樹脂等から2つの水酸基を除いた構造残基等も挙げられる。 Here, as a more specific structure of R 2 in the general formula (2-1), a single bond, a carbonyl group, a sulfonyl group, a methylene group, an isopropylidene group, a hexafluoroisopropylidene group, an oxo group, a dimethylsilylene group, Examples thereof include a divalent linking group such as a fluorene-9-diyl group and a tricyclo [5.2.1.0 2,8 ] decane-diyl group, and may be a single group or a mixture of plural groups. Examples of R 3 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and other alkyl groups having 1 to 5 carbon atoms. Moreover, the structural residue etc. which remove | excluded two hydroxyl groups from the polyphenol compound, for example, the phenol novolak resin, the cresol novolak resin, the polyphenol resin synthesize | combined from a naphthol, alkylphenol, and a formaldehyde condensate, etc. are mentioned.
 更に、一般式(2)のXの構造としては、一般式(2-2)のRが一般式(2-3)である下記式(2-6)の構造が、耐熱性に優れる硬化物が得られるポリイミド樹脂が得られることから好ましい。式(2-6)の構造のようにブロックフェノール構造としてリン原子を有する特定のフェノール由来の構造を含ませることにより、得られるポリイミド樹脂の難燃性が飛躍的に向上する。 Further, as the structure of X in the general formula (2), the structure of the following formula (2-6) in which R 4 in the general formula (2-2) is the general formula (2-3) is a cured product having excellent heat resistance. Since the polyimide resin from which a product is obtained is obtained, it is preferable. By including a structure derived from a specific phenol having a phosphorus atom as the block phenol structure as in the structure of the formula (2-6), the flame retardance of the obtained polyimide resin is dramatically improved.
Figure JPOXMLDOC01-appb-C000029
(*は結合点を示す。)
Figure JPOXMLDOC01-appb-C000029
(* Indicates a bonding point.)
 本発明のポリイミド樹脂としては、溶剤溶解性に優れ、機械物性、寸法安定性に優れた硬化物が得られることから式(6)で表される構造を有するポリイミド樹脂が好ましい。 As the polyimide resin of the present invention, a polyimide resin having a structure represented by the formula (6) is preferable because a cured product having excellent solvent solubility and excellent mechanical properties and dimensional stability can be obtained.
Figure JPOXMLDOC01-appb-C000030
(Rは、ジイソシアネートからNCO基を除いた残基を示す。)
Figure JPOXMLDOC01-appb-C000030
(R 1 represents a residue obtained by removing the NCO group from diisocyanate.)
 一般式(6)においてRとしては、前記一般式(3)、(4)または(5)の構造が本発明の顕著な効果、即ち、耐熱性、難燃性、寸法安定性及び機械物性(強靭性、柔軟性)、表面平滑性に優れる塗膜等の硬化物が得られ、且つ、長期間の保存後にも溶剤への溶解性が良好等保存安定性に優れるポリイミド樹脂となることから好ましい。 As R 1 in the general formula (6), the structure of the general formula (3), (4) or (5) is the remarkable effect of the present invention, that is, heat resistance, flame retardancy, dimensional stability and mechanical properties. (Toughness, flexibility), a cured product such as a coating film excellent in surface smoothness is obtained, and it becomes a polyimide resin excellent in storage stability such as good solubility in a solvent even after long-term storage. preferable.
 本発明のポリイミド樹脂としては、中でも、一般式(6)のRとして前記一般式(5)の構造を有するポリイミド樹脂が、線膨張率が低い、即ち、寸法安定性に優れる硬化物が得られることから好ましい。一般式(5)の有するRとしては、炭素原子数1~5の炭化水素基が好ましく、炭素原子数1~3の炭化水素基がより好ましく、炭素原子数が1の炭化水素基(メチル基)が更に好ましい。また、Rとしては、水酸基の一部乃至全部がハロゲン等で置換されていても良い。 As the polyimide resin of the present invention, among them, the polyimide resin having the structure of the general formula (5) as R 1 of the general formula (6) has a low linear expansion coefficient, that is, a cured product having excellent dimensional stability is obtained. This is preferable. R 2 in the general formula (5) is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms, and a hydrocarbon group having 1 carbon atom (methyl Group) is more preferred. In addition, as R 2 , some or all of the hydroxyl groups may be substituted with halogen or the like.
 前記一般式(5)の具体的な構造としては、例えば、前記一般式(5-1)~(5-4)で表される構造を例示することができる。中でも、一般式(5-1)で表される構造が寸法安定性に優れる硬化物が得られるポリイミド樹脂が得られることからより好ましい。 As a specific structure of the general formula (5), for example, structures represented by the general formulas (5-1) to (5-4) can be exemplified. Among these, the structure represented by the general formula (5-1) is more preferable because a polyimide resin can be obtained from which a cured product having excellent dimensional stability can be obtained.
 前記一般式(1)と一般式(6)が共存する場合、その重量比としては5:95~90:10が溶剤溶解性に優れ、得られる硬化物の機械物性にも優れるポリイミド樹脂が得られることから好ましく、10:90~60:40がより好ましい。 When the general formula (1) and the general formula (6) coexist, a weight ratio of 5:95 to 90:10 is excellent in solvent solubility, and a polyimide resin excellent in mechanical properties of the resulting cured product is obtained. 10:90 to 60:40 is more preferable.
 本発明のポリイミド樹脂としては、更に一般式(7)で表される構造を有することで機械強度が良好な硬化物が得られるポリイミド樹脂が得られることから好ましい。 As the polyimide resin of the present invention, a polyimide resin from which a cured product having good mechanical strength can be obtained by further having a structure represented by the general formula (7) is preferable.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 本発明のポリイミド樹脂が前記一般式(7)の構造を有する場合、本発明のポリイミド樹脂中の一般式(7)の含有率としては、溶剤溶解性に優れ、得られる硬化物の機械物性に優れるポリイミド樹脂となることから、1~30重量%が好ましく、2~20%がより好ましい。 When the polyimide resin of the present invention has the structure of the general formula (7), the content of the general formula (7) in the polyimide resin of the present invention is excellent in solvent solubility, and the mechanical properties of the resulting cured product. In order to obtain an excellent polyimide resin, the content is preferably 1 to 30% by weight, more preferably 2 to 20%.
 本発明のポリイミド樹脂としては、より具体的には一般式(8-1)で表される構造と一般式(8-2)で表される構造を有するポリイミド樹脂が、溶剤溶解性に優れ、且つ、得られる硬化物の寸法安定性も良好となることからより好ましい。 As the polyimide resin of the present invention, more specifically, a polyimide resin having a structure represented by the general formula (8-1) and a structure represented by the general formula (8-2) is excellent in solvent solubility, And since the dimensional stability of the hardened | cured material obtained becomes favorable, it is more preferable.
Figure JPOXMLDOC01-appb-C000032
(式中、m、nは、それぞれ1~100である。)
Figure JPOXMLDOC01-appb-C000032
(Wherein m and n are each 1 to 100)
 ここで(8-1)、(8-2)で示される構造単位は一分子中においてランダム、ブロック、交互等の重合体であってもよい。 Here, the structural units represented by (8-1) and (8-2) may be polymers such as random, block, and alternating in one molecule.
 本発明のポリイミド樹脂が前記一般式(8-1)で表される構造及び一般式(8-2)で表される構造を有するポリイミド樹脂である場合、その含有量は各々10~90重量%の範囲が、得られる硬化物の寸法安定性に優れるポリイミド樹脂となることから好ましく、各々20~80重量%がより好ましい。前記一般式(8-1)と一般式(8-2)の重量比としては、5:95~95:5が、溶剤溶解性と経時溶液安定性に優れるポリイミド樹脂となることから好ましく、10:90~60:40がより好ましい。 When the polyimide resin of the present invention is a polyimide resin having the structure represented by the general formula (8-1) and the structure represented by the general formula (8-2), the content thereof is 10 to 90% by weight, respectively. The range is preferably from a polyimide resin having excellent dimensional stability of the resulting cured product, and more preferably 20 to 80% by weight. The weight ratio of the general formula (8-1) to the general formula (8-2) is preferably 5:95 to 95: 5 because a polyimide resin having excellent solvent solubility and solution stability over time is preferable. : 90 to 60:40 is more preferable.
 以下に本発明のポリイミド樹脂の具体的例示を示す。本発明のポリイミド樹脂としては、下記一般式(9-1)から(9-4)で表される構造を有するポリイミド樹脂が耐熱性、寸法安定性に優れる硬化物が得られるポリイミド樹脂となることから好ましい。 Specific examples of the polyimide resin of the present invention are shown below. As the polyimide resin of the present invention, a polyimide resin having a structure represented by the following general formulas (9-1) to (9-4) becomes a polyimide resin from which a cured product having excellent heat resistance and dimensional stability can be obtained. To preferred.
Figure JPOXMLDOC01-appb-C000033
〔式中、m、n、p、qは、それぞれ1~100である。Yは下記一般式(3)または(4)で表される構造を示す。〕
Figure JPOXMLDOC01-appb-C000033
[Wherein, m, n, p and q are each 1 to 100. Y represents a structure represented by the following general formula (3) or (4). ]
 上記式(9-1)から(9-4)の構造単位は一分子中においてランダム、ブロック、交互等の重合体であってもよい。このとき上記式(9-1)から(9-4)の構造は、溶剤溶解性に優れ、寸法安定性、機械物性に優れる硬化物が得られるポリイミド樹脂となるから、各々5~70重量%の範囲で存在していることが好ましく、10~50重量%の範囲で存在していることがより好ましい。 The structural units of the above formulas (9-1) to (9-4) may be polymers such as random, block, and alternating in one molecule. At this time, the structures of the above formulas (9-1) to (9-4) are polyimide resins that give a cured product that is excellent in solvent solubility, dimensional stability, and mechanical properties. Preferably, it exists in the range of 10 to 50% by weight.
 前記一般式(9-1)から(9-4)で表される構造を有するポリイミド樹脂の具体例としては、例えば、下記一般式(9)に示す構造を有するポリイミド樹脂等が挙げられる。 Specific examples of the polyimide resin having the structure represented by the general formulas (9-1) to (9-4) include, for example, a polyimide resin having a structure represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記一般式(9)において、m、n、p、qの括弧内の構造単位は一分子中においてランダム、ブロック、交互等の重合体であってもよい。 In the above general formula (9), the structural units in parentheses of m, n, p, and q may be polymers such as random, block, and alternating in one molecule.
 また、本発明のポリイミド樹脂としては、下記一般式(10-1)から(10-6)で表される構造を有し、且つ重量平均分子量が1000~100000であるポリイミド樹脂が溶剤溶解性に優れ、且つ、耐熱性、機械物性、寸法安定性に優れる硬化物が得られるポリイミド樹脂となることから好ましい。一般式(10-1)の構造のようにイミド環にシクロヘキサン環が直結した構造に、さらにビフェニル骨格を有するポリイミド樹脂は保存安定性に優れ、長期間の保存後にも溶剤への溶解性が良好でありながら、その硬化物は機械物性、耐熱性及び寸法安定性に優れた特性を示す。 Further, as the polyimide resin of the present invention, a polyimide resin having a structure represented by the following general formulas (10-1) to (10-6) and having a weight average molecular weight of 1,000 to 100,000 is solvent-soluble. It is preferable because it is a polyimide resin that provides a cured product that is excellent and has excellent heat resistance, mechanical properties, and dimensional stability. A polyimide resin having a biphenyl skeleton with a structure in which a cyclohexane ring is directly linked to an imide ring, such as the structure of the general formula (10-1), is excellent in storage stability and has good solubility in a solvent even after long-term storage. However, the cured product exhibits excellent mechanical properties, heat resistance and dimensional stability.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 前記一般式(10-1)~一般式(10-2)中のa1~a6はそれぞれ1~10000である。また、*は結合点を示す。一般式(10-4)~一般式(10-6)中のYは、上記式(3)または式(4)で示される構造を示す。 In the general formulas (10-1) to (10-2), a1 to a6 are 1 to 10,000, respectively. Moreover, * shows a coupling point. Y in the general formulas (10-4) to (10-6) represents a structure represented by the above formula (3) or (4).
 ここで一般式(12-1)から(12-6)の括弧内の構造単位は一分子中においてランダム、ブロック、交互等の重合体であってもよい。このときa1~a6の括弧で括られた構造は、溶剤溶解性に優れ、寸法安定性、機械物性に優れる硬化物が得られるポリイミド樹脂となるから、各々2~90重量%の範囲で存在していることが好ましく、5~70重量%の範囲で存在していることがより好ましい。 Here, the structural units in parentheses in the general formulas (12-1) to (12-6) may be polymers such as random, block, and alternating in one molecule. At this time, the structure enclosed in parentheses a1 to a6 is a polyimide resin that is excellent in solvent solubility, and obtains a cured product excellent in dimensional stability and mechanical properties, and therefore exists in a range of 2 to 90% by weight. Preferably, it is present in the range of 5 to 70% by weight.
 前記一般式(10-1)から(10-6)で表される構造を有し、且つ重量平均分子量が1000~100000であるポリイミド樹脂において、a1~a6は、構造単位の繰り返しを示し1~10000である。一般式(10-1)から(10-6)で表される構造単位を有するポリイミド樹脂が本発明の課題を解決するのに適した具体的な構造例であり、これら構造単位は一分子中複数回存在しても良く、その他の構造単位を含んでいても良い。前記一般式(10-1)から(10-6)で表される構造を有し、且つ重量平均分子量が1000~100000であるポリイミド樹脂の具体例を以下に示す。 In the polyimide resin having the structure represented by the general formulas (10-1) to (10-6) and having a weight average molecular weight of 1000 to 100,000, a1 to a6 represent repeating structural units. 10,000. Polyimide resins having structural units represented by general formulas (10-1) to (10-6) are specific structural examples suitable for solving the problems of the present invention, and these structural units are contained in one molecule. It may exist multiple times and may contain other structural units. Specific examples of the polyimide resin having the structure represented by the general formulas (10-1) to (10-6) and having a weight average molecular weight of 1,000 to 100,000 are shown below.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(10-7)において、Rは、ジイソシアネート化合物から2つのイソシアネート基を除いた残基構造である。Rとしては、機械物性と寸法安定性に優れるポリイミド樹脂が得られることから前記一般式(3)、(4)または(5)の構造が好ましい。a7は繰り返し数を示し1から10000の範囲であり、また括弧内のa1からa6の括弧で括られる構造単位の順序、出現回数は問わない。ここで、A1は上記(10-1)で表される構造を、A2は上記(10-2)で表される構造を、A3は(10-3)で表される構造を、A4は(10-4)で表される構造を、A5は(10-5)で表される構造を、A6は(10-6)で表される構造をそれぞれ示す。 In the general formula (10-7), R 1 is a residue structure obtained by removing two isocyanate groups from a diisocyanate compound. R 1 is preferably a structure of the above general formula (3), (4) or (5) because a polyimide resin having excellent mechanical properties and dimensional stability can be obtained. a7 represents the number of repetitions and ranges from 1 to 10,000, and the order of the structural units enclosed in parentheses a1 to a6 in parentheses and the number of appearances are not limited. Here, A1 is the structure represented by (10-1), A2 is the structure represented by (10-2), A3 is the structure represented by (10-3), and A4 is ( 10-4), A5 represents the structure represented by (10-5), and A6 represents the structure represented by (10-6).
 またさらに上記一般式(10-7)の末端のフェノール性水酸基がイソシアネート基と反応して鎖伸長したポリイミド樹脂として以下の構造を有するポリイミド樹脂を例示することができる。 Furthermore, a polyimide resin having the following structure can be exemplified as a polyimide resin in which the terminal phenolic hydroxyl group of the general formula (10-7) reacts with an isocyanate group to extend the chain.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(10-8)で表される構造を有するポリイミド樹脂において、A7は、以下の式で示される構造である。 In the polyimide resin having the structure represented by the above formula (10-8), A7 is a structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(10-9)において、A1~A6は式(10-7)のA1~A6と同一である。また、a1~a6は、構造単位の繰り返しを示し1~10000である。a1からa6の構造単位はa7括弧内での順序、出現回数は問わない。a7は構造単位の繰り返しを示し、1~100である。また、a8も構造単位の繰り返しを示し、1~100である。 In Formula (10-9), A1 to A6 are the same as A1 to A6 in Formula (10-7). A1 to a6 represent repeating structural units and are 1 to 10,000. The structural units a1 to a6 can be in any order within the parenthesis a7 and the number of appearances. a7 represents repeating structural units and is 1 to 100. Further, a8 represents a repeating structural unit and is 1 to 100.
 上記一般式(10-7)と一般式(10-8)等の一般式(10-1)~一般式(10-6)を有するポリイミド樹脂における一般式(10-1)から(10-6)の構造単位の含有量としては、溶剤溶解性に優れ、得られる硬化物の寸法安定性、機械物性に優れるポリイミド樹脂が得られることから各々5~70重量%が好ましく、10~50重量%の範囲がより好ましい。 From the general formulas (10-1) to (10-6) in the polyimide resins having the general formulas (10-1) to (10-6) such as the general formula (10-7) and the general formula (10-8) The content of the structural unit is preferably from 5 to 70% by weight, because it is possible to obtain a polyimide resin having excellent solvent solubility and excellent dimensional stability and mechanical properties of the resulting cured product. The range of is more preferable.
 一般式(10-1)~一般式(10-6)で表される構造を有するポリイミド樹脂の中でも、構造単位として一般式(10-1)および(10-4)で表される構造単位を10~40重量%含有するポリイミド樹脂は、溶剤溶解性に優れ、その他樹脂との相溶性に優れるポリイミド樹脂となることからこのましい。一般式(10-1)~一般式(10-6)を有するポリイミド樹脂の中でも、一般式(10-1)から(10-3)の構造単位を10~60重量%含有するポリイミド樹脂が耐熱性や寸法安定性に優れる硬化物が得られるポリイミド樹脂となることから好ましい。 Among the polyimide resins having the structures represented by the general formulas (10-1) to (10-6), the structural units represented by the general formulas (10-1) and (10-4) are structural units. The polyimide resin containing 10 to 40% by weight is preferable because it becomes a polyimide resin having excellent solvent solubility and excellent compatibility with other resins. Among the polyimide resins having the general formulas (10-1) to (10-6), the polyimide resin containing 10 to 60% by weight of the structural units of the general formulas (10-1) to (10-3) is heat resistant. It is preferable because it becomes a polyimide resin from which a cured product having excellent properties and dimensional stability can be obtained.
 前記一般式(10-7)で表されるポリイミド樹脂において、Xの構造式が(2-1)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-7), an example of a polyimide resin having a structure in which the structural formula of X is (2-1) is shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 前記一般式(10-8)で表されるポリイミド樹脂において、Xの構造式が(2-1)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-8), an example of a polyimide resin having a structure in which the structural formula of X is (2-1) is shown below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 前記一般式(10-7)で表されるポリイミド樹脂において、Xの構造式が(2-2)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-7), examples of the polyimide resin having the structure represented by the structural formula of X (2-2) are shown below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 前記一般式(10-8)で表されるポリイミド樹脂において、Xの構造式が(2-2)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-8), examples of the polyimide resin having the structure represented by the structural formula (2-2) of X are shown below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 前記一般式(10-7)で表されるポリイミド樹脂において、Xの構造式が(2-6)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-7), examples of the polyimide resin having a structure in which the structural formula of X is (2-6) are shown below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 前記一般式(10-8)で表されるポリイミド樹脂において、Xの構造式が(2-6)の構造を有するポリイミド樹脂の例を下記に示す。 In the polyimide resin represented by the general formula (10-8), an example of a polyimide resin having a structure in which the structural formula of X is (2-6) is shown below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 本発明のポリイミド樹脂は、一般式(2)の構造以外に末端構造が原料の酸無水物化合物由来の残存カルボン酸かまたはカルボン酸の無水物である構造を本発明の効果が損なわれない範囲で有していても良い。尚、酸無水物に関しては下記に記載する。 The polyimide resin of the present invention has a structure in which the terminal structure is a residual carboxylic acid derived from a raw acid anhydride compound or a carboxylic acid anhydride in addition to the structure of the general formula (2), so that the effect of the present invention is not impaired. You may have. The acid anhydride is described below.
 本発明のポリイミド樹脂は保存安定性に優れる樹脂であると供に、有機溶剤に溶解しやすいという特性を有する。本発明のポリイミド樹脂は従来用いられているN-メチルピロリドンやジメチルホルムアミド等の溶解力の大きな極性溶剤有機溶剤にも溶解するが、従来使用できなかったガンマブチロラクトン(γ-ブチロラクトン)等の比較的弱い溶解力の有機溶剤に溶解させることができる。 The polyimide resin of the present invention has a property of being easily dissolved in an organic solvent as well as being excellent in storage stability. The polyimide resin of the present invention dissolves in conventionally used polar solvent organic solvents such as N-methylpyrrolidone and dimethylformamide, but it is relatively difficult to use gamma-butyrolactone (γ-butyrolactone) which has not been used conventionally. It can be dissolved in an organic solvent having a weak dissolving power.
 本発明においては、本発明で用いるポリイミド樹脂が有機溶剤に溶解するか否かの判定は、有機溶剤に本発明のポリイミド樹脂濃度を10重量%となるように加え、25℃で7日間時間静置した後、目視にて外観を観察することによりおこなった。 In the present invention, whether or not the polyimide resin used in the present invention is dissolved in an organic solvent is determined by adding the polyimide resin concentration of the present invention to 10% by weight in the organic solvent, and allowing to stand at 25 ° C. for 7 days. After placing, the appearance was visually observed.
 本発明で用いるポリイミド樹脂はガンマブチロラクトンに溶解するポリイミド樹脂が保存安定性に優れるポリイミド樹脂となることから好ましく、ガンマブチロラクトンに25℃で10重量%となるように溶解するポリイミド樹脂が好ましい。ガンマブチロラクトンに溶解するポリイミド樹脂を得るには、例えば、後述するポリイミド樹脂の製造方法により得る事ができる。 The polyimide resin used in the present invention is preferably a polyimide resin that dissolves in gamma butyrolactone is a polyimide resin that is excellent in storage stability, and a polyimide resin that dissolves in gamma butyrolactone at 25 ° C. so as to be 10% by weight. In order to obtain a polyimide resin that dissolves in gamma butyrolactone, it can be obtained, for example, by a method for producing a polyimide resin described later.
 本発明で用いるポリイミド樹脂は線状の構造を有するポリイミド樹脂でも良いし、分岐状の構造を有するポリイミド樹脂でもよい。また、共重合成分としてポリエステル変性したポリエステルイミドやウレタン変性したポリウレタンイミドの構造を有していても良い。 The polyimide resin used in the present invention may be a polyimide resin having a linear structure or a polyimide resin having a branched structure. Further, the copolymer component may have a polyester-modified polyesterimide or urethane-modified polyurethaneimide structure.
 本発明のポリイミド樹脂の重量平均分子量は、溶剤乾燥後あるいは硬化物として強靭で溶液として取り扱いやすいポリイミド樹脂となり、機械強度と寸法安定性に優れるフィルムや成型品が得られることから1000~200000が好ましく、2000~100000がより好ましい。分子量は、ゲルパーミエーションクロマトグラフィー(GPC)や末端の官能基量の定量分析で測定することが可能である。 The weight average molecular weight of the polyimide resin of the present invention is preferably 1,000 to 200,000 because it becomes a polyimide resin that is tough and easy to handle as a solution after solvent drying or as a cured product, and a film or molded product having excellent mechanical strength and dimensional stability is obtained. 2000 to 100,000 is more preferable. The molecular weight can be measured by gel permeation chromatography (GPC) or quantitative analysis of the terminal functional group amount.
 本発明で重量平均分子量の測定は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により求めた。
 測定装置 : 東ソー株式会社製 HLC-8320GPC、UV8320
 カラム  : 東ソー株式会社製 SuperAWM-H×2本
 検出器  : RI(示差屈折計)及びUV(254nm)
 データ処理:東ソー株式会社製 EcoSEC-WorkStation
 測定条件: カラム温度 40℃
       溶媒    DMF
       流速    0.35ml/分
 標準   :ポリスチレン標準試料にて検量線作成
 試料   :樹脂固形分換算で0.2重量%のDMF溶液をマイクロフィルターでろ過したもの(注入量:10μl)
In the present invention, the weight average molecular weight was measured using a gel permeation chromatograph (GPC) under the following conditions.
Measuring device: HLC-8320GPC, UV8320 manufactured by Tosoh Corporation
Column: Super AWM-H × 2 manufactured by Tosoh Corporation Detector: RI (differential refractometer) and UV (254 nm)
Data processing: Tosoh Co., Ltd. EcoSEC-WorkStation
Measurement conditions: Column temperature 40 ° C
Solvent DMF
Flow rate 0.35 ml / min Standard: Calibration curve prepared with polystyrene standard sample Sample: 0.2% by weight DMF solution in terms of resin solid content filtered through a microfilter (injection volume: 10 μl)
 本発明のポリイミド樹脂の酸価としては、1~50mgKOH/gの範囲であることがその他樹脂との相溶性、溶液安定性やエポキシ樹脂との硬化性の面から好ましく、1~30mgKOH/gがより好ましい。 The acid value of the polyimide resin of the present invention is preferably in the range of 1 to 50 mgKOH / g from the viewpoints of compatibility with other resins, solution stability, and curability with epoxy resin, and 1 to 30 mgKOH / g. More preferred.
 本発明で用いるポリイミド樹脂は、例えば、以下の方法で製造することができる。
 製法1:1分子中に2個以上のフェノール性水酸基を有するポリフェノール化合物(A)とジイソシアネート化合物を含有するポリイソシアネート化合物(B)とシクロヘキサントリカルボン酸無水物を含有する酸無水物化合物(C)とを用いて直接イミド化する方法。
The polyimide resin used in the present invention can be produced, for example, by the following method.
Production method 1: Polyphenol compound (A) having two or more phenolic hydroxyl groups in the molecule, polyisocyanate compound (B) containing a diisocyanate compound, and acid anhydride compound (C) containing a cyclohexanetricarboxylic acid anhydride, Direct imidization using
 製法2:ジイソシアネート化合物を含有するポリイソシアネート化合物(B)とシクロヘキサントリカルボン酸無水物を含有する酸無水物化合物(C)とを用いて直接イミド化を行った後、末端に存在するイソシアネート基と1分子中に2個以上のフェノール性水酸基を有するポリフェノール化合物(A)とを反応する方法。 Production Method 2: Imidization is directly performed using a polyisocyanate compound (B) containing a diisocyanate compound and an acid anhydride compound (C) containing a cyclohexanetricarboxylic acid anhydride, and then an isocyanate group present at the terminal and 1 A method of reacting a polyphenol compound (A) having two or more phenolic hydroxyl groups in the molecule.
 製法3:ジアミン化合物(D)とシクロヘキサントリカルボン酸無水物を含有する酸無水物化合物(C)とを用いて直接イミド化した後、ジイソシアネート化合物を添加して末端イソシアネートとしてから1分子中に2個以上のフェノール性水酸基を有するポリフェノール化合物(A)を反応する方法。 Production method 3: Imidization directly using a diamine compound (D) and an acid anhydride compound (C) containing cyclohexanetricarboxylic acid anhydride, followed by addition of a diisocyanate compound to form a terminal isocyanate, two in one molecule A method of reacting the above polyphenol compound (A) having a phenolic hydroxyl group.
 前記した製法1~製法3の製法はイソシアネート法と呼ばれており、ポリフェノール化合物(A)の存在下においてイソシアネート法を用いてイミド樹脂を合成することでゲル化せず安定した樹脂を供給することができる。これはポリフェノール化合物(A)が選択的にイソシアネート基と反応し、ブロックフェノール構造を形成することでイソシアネート基の副反応を抑制し、高温下においては一部解離を行い、効率的に酸無水物やカルボキシル基と反応を行い、イミド結合やアミド結合を形成する為と推定している。特に反応性の遅い水添トリメリット酸等の脂肪族、脂環族系酸無水物においては効果的である。 The above-mentioned production methods 1 to 3 are called isocyanate methods, and a stable resin is produced without gelation by synthesizing an imide resin using the isocyanate method in the presence of the polyphenol compound (A). Can do. This is because the polyphenol compound (A) selectively reacts with an isocyanate group to form a block phenol structure, thereby suppressing side reactions of the isocyanate group, partially dissociating at high temperatures, and efficiently performing an acid anhydride. It is presumed that it reacts with a carboxyl group to form an imide bond or an amide bond. This is particularly effective for aliphatic and alicyclic acid anhydrides such as hydrogenated trimellitic acid, which has a low reactivity.
 本発明のポリイミド樹脂を製造するには、残存する水分量を減少させ物性を良好に保てる事、反応の制御がしやすい事、各種変性を施したポリイミド樹脂を作成しやすい等の理由から、上記製法1が好ましい。以下、製法1を詳細に説明する。 In order to produce the polyimide resin of the present invention, the amount of remaining water can be reduced and the physical properties can be kept good, the reaction can be easily controlled, and the polyimide resin subjected to various modifications can be easily prepared. Production method 1 is preferred. Hereinafter, Production Method 1 will be described in detail.
 前記製法1で用いるポリフェノール化合物(A)としては、例えば、ハイドロキノン、ビフェノール、テトラメチルビフェノール、エチリデンビスフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、シクロヘキシリデンビスフェノール(ビスフェノールZ)、ジメチルブチリデンビスフェノール、4,4′-(1-メチルエチリデン)ビス〔2,6-ジメチルフェノール〕、4,4′-(1-フェニルエチリデン)ビスフェノール、5,5′-(1-メチルエチリデン)ビス〔1,1′-ビフェニル-2-オール〕、ナフタレンジオール、ジシクロペンタジエン変性ビスフェノール、9,10-ジヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイドとハイドロキノンとの反応生成物等が挙げられる。 Examples of the polyphenol compound (A) used in the production method 1 include hydroquinone, biphenol, tetramethylbiphenol, ethylidene bisphenol, bisphenol A, bisphenol F, bisphenol S, cyclohexylidene bisphenol (bisphenol Z), dimethylbutylidene bisphenol, 4 4,4 '-(1-methylethylidene) bis [2,6-dimethylphenol], 4,4'-(1-phenylethylidene) bisphenol, 5,5 '-(1-methylethylidene) bis [1,1' -Biphenyl-2-ol], naphthalenediol, dicyclopentadiene-modified bisphenol, reaction products of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone, etc. That.
 更にポリフェノール化合物(A)としてフェノールノボラック樹脂、クレゾールノボラック樹脂、ノニルフェノールノボラック樹脂等の3官能以上のフェノール化合物も使用可能である。尚、本発明のポリイミド樹脂の製造方法においては合成上、ポリフェノール化合物(A)として3官能以上のポリフェノール化合物を使用することで樹脂の高粘度化やゲル化の発生等があるため、2個のフェノール性水酸基を含有するポリフェノール化合物(2官能のポリフェノール化合物)を使用することが好ましい。中でも、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール系化合物や9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドとハイドロキノンとの反応生成物等好ましい。また本発明の効果をなわない範囲で一部、フェノールやクレゾール等の一官能性のフェノール化合物を併用しても良い。 Furthermore, a trifunctional or higher functional phenol compound such as a phenol novolak resin, a cresol novolak resin, or a nonylphenol novolak resin can be used as the polyphenol compound (A). In addition, in the production method of the polyimide resin of the present invention, the use of a polyphenol compound having three or more functions as the polyphenol compound (A) results in high viscosity of the resin, generation of gelation, etc. It is preferable to use a polyphenol compound containing a phenolic hydroxyl group (a bifunctional polyphenol compound). Of these, bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, and reaction products of 9,10-dihydro-9-oxa-10-phosphenanthrene-10-oxide and hydroquinone are preferred. In addition, a monofunctional phenol compound such as phenol or cresol may be used in combination as long as the effect of the present invention is not achieved.
 前記9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドとハイドロキノンとの反応生成物は一般溶剤には溶解しにくい。9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドとハイドロキノンとの反応生成物は、難燃性添加剤として使用されるが一般に溶剤に溶解性が悪く使用には制限があった。本発明のポリイミド樹脂の製造方法において、ポリフェノール化合物(A)として用いるにより、該反応生成物の骨格がポリイミド樹脂に取り込まれる。その結果、該ポリイミド樹脂はγ-ブチロラクトン等の汎用溶剤に溶解し、保存安定性にも優れる樹脂でありながら、難燃性も向上する The reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is difficult to dissolve in a general solvent. The reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is used as a flame retardant additive, but is generally poorly soluble in solvents and limited in use. there were. In the method for producing a polyimide resin of the present invention, the skeleton of the reaction product is taken into the polyimide resin by using as the polyphenol compound (A). As a result, the polyimide resin is dissolved in a general-purpose solvent such as γ-butyrolactone, and is excellent in storage stability, but also has improved flame retardancy.
 製法1におけるポリフェノール化合物(A)の使用量としては、得られる本発明のポリイミド樹脂がポリフェノール化合物(A)由来の構造を樹脂中に1~40重量%存在するような量が、硬化性と保存安定性に優れるポリイミド樹脂となることから好ましく、2~30重量%存在するような量がより好ましい。さらに寸法安定性と難燃性に優れるポリイミド樹脂が得られることから、ポリイミド樹脂がポリフェノール化合物(A)由来の構造を樹脂中に2~10重量%存在するような量が好ましい。 The amount of the polyphenol compound (A) used in production method 1 is such that the resulting polyimide resin of the present invention has a structure derived from the polyphenol compound (A) in an amount of 1 to 40% by weight in the curability and storage. The amount is preferably 2 to 30% by weight because it is a polyimide resin having excellent stability. Furthermore, since a polyimide resin excellent in dimensional stability and flame retardancy can be obtained, such an amount that the polyimide resin is present in the resin by 2 to 10% by weight of the structure derived from the polyphenol compound (A) is preferable.
 本発明で用いるポリイソシアネート化合物(B)としては、例えば、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物等が挙げられる。 Examples of the polyisocyanate compound (B) used in the present invention include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds.
 前記芳香族ポリイソシアネート化合物としては、例えば、4,4´-ジフェニルメタンジイソシアネート等のジフェニルメタンジイソシアネート;p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシレンジイソシアネート、m-キシレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、3,3′-ジメチルジフェニル-4,4′-ジイソシアネート、3,3′-ジエチルジフェニル-4,4′-ジイソシアネート、m-キシレンジイソシアネート、p-キシレンジイソシアネート、1,3-ビス(α,α-ジメチルイソシアナートメチル)ベンゼン、テトラメチルキシリレンジイソシアネート、ジフェニレンエーテル-4,4′-ジイソシアネートおよびナフタレンジイソシアネート;2,4-トルエンジイソシアネート、2,4-トルエンジイソシアネート等のトルエンジイソシアネート;下記一般式(3-1)で表されるビフェニル骨格のジイソシアネート等が挙げられる。 Examples of the aromatic polyisocyanate compound include diphenylmethane diisocyanate such as 4,4′-diphenylmethane diisocyanate; p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate. 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, 3,3'-diethyldiphenyl-4,4'-diisocyanate, m-xylene Diisocyanate, p-xylene diisocyanate, 1,3-bis (α, α-dimethyl isocyanate methyl) benzene, tetramethylxylylene diisocyanate, diphenylene ether 4,4'-diisocyanate and naphthalene diisocyanate; 2,4-toluene diisocyanate, toluene diisocyanates such as 2,4-toluene diisocyanate; diisocyanate biphenyl skeleton represented by the following general formula (3-1) can be mentioned.
Figure JPOXMLDOC01-appb-C000045
(式中Rはそれぞれ独立して水素原子、炭素原子数1~9のフッ素変性されてもよい炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000045
(In the formula, each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 9 carbon atoms which may be fluorine-modified.)
 前記一般式(3-1)で表されるジイソシアネートとしては、例えば、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニル、4,4′-ジイソシアネート-3,3′-ジエチル-1,1′-ビフェニル、4,4′-ジイソシアネート-2,2′-ジメチル-1,1′-ビフェニル、4,4′-ジイソシアネート-2,2′-ジエチル-1,1′-ビフェニル、4,4′-ジイソシアネート-3,3′-ジトリフロロメチル-1,1′-ビフェニル、4,4′-ジイソシアネート-2,2′-ジトリフロロメチル-1,1′-ビフェニル等が挙げられる。 Examples of the diisocyanate represented by the general formula (3-1) include 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl, 4,4′-diisocyanate-3,3 ′. -Diethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-diethyl-1,1'- Biphenyl, 4,4'-diisocyanate-3,3'-ditrifluoromethyl-1,1'-biphenyl, 4,4'-diisocyanate-2,2'-ditrifluoromethyl-1,1'-biphenyl, etc. It is done.
 前記脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンメチレンジイソシアネート、イソホロンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、水素添加キシレンジイソシアネートおよびノルボヌレンジイソシアネート等が挙げられる。 Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, lysine diisocyanate, trimethylhexamethylenemethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, and norbornylene diisocyanate.
 また、ポリイソシアネート化合物(B)としては、前記ポリイソシアネート化合物と各種ポリオール成分とをイソシアネート基過剰で予め反応させたイソシアネートプレポリマーを使用することも可能である。 Also, as the polyisocyanate compound (B), an isocyanate prepolymer obtained by reacting the polyisocyanate compound and various polyol components in advance with an excess of isocyanate groups can be used.
 本発明で用いるポリイミド樹脂は、溶剤溶解性や他の樹脂との相溶性を向上させるため分岐構造をとっても良い。かかる分岐の手法としては、例えば、前記式ジイソシアネート化合物のイソシアヌレート体であるイソシアヌレート環を有する3官能以上のポリイソシアネート化合物や前記ジイソシアネートのビュレット体、アダクト体、アロハネート体等を使用すればよい。 The polyimide resin used in the present invention may have a branched structure in order to improve solvent solubility and compatibility with other resins. As such a branching method, for example, a tri- or higher functional polyisocyanate compound having an isocyanurate ring which is an isocyanurate body of the above-mentioned diisocyanate compound, a burette body, an adduct body, an allohanate body of the diisocyanate, or the like may be used.
 前記ポリイソシアネート化合物(B)としては、溶剤溶解性、相溶性、機械物性、寸法安定性等に優れる理由から4,4′-ジフェニルメタンジイソシアネート等のジフェニルメタンジイソシアネート、トリレンジイソシアネート、上記一般式(3-1)で示されるビフェニル骨格のジイソシアネートなどを使用することが好ましい。これらの化合物は単独で使用しても2種以上を併用しても良い。 Examples of the polyisocyanate compound (B) include diphenylmethane diisocyanate such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, and the above general formula (3-) because of excellent solvent solubility, compatibility, mechanical properties, dimensional stability, and the like. It is preferable to use a diisocyanate having a biphenyl skeleton represented by 1). These compounds may be used alone or in combination of two or more.
 特に一般式(3-1)で示されるジイソシアネートを用いることでより寸法安定性や機械物性が向上した硬化物が得られるポリイミド樹脂となることから好ましく、さらにジフェニルメタンジイソシアネートまたはトリレンジイソシアネートを併用することで溶剤溶解性や長期の保存安定性も向上することからより好ましい。 In particular, it is preferable to use a diisocyanate represented by the general formula (3-1) to obtain a polyimide resin from which a cured product having improved dimensional stability and mechanical properties can be obtained. Further, diphenylmethane diisocyanate or tolylene diisocyanate is used in combination. The solvent solubility and long-term storage stability are also improved.
 一般式(3-1)で表されるジイソシアネートの使用量としては、用いるポリイソシアネート化合物(B)の全量を基準として30~80重量%が、より寸法安定性に優れるポリイミド樹脂となることから好ましい。 The use amount of the diisocyanate represented by the general formula (3-1) is preferably 30 to 80% by weight based on the total amount of the polyisocyanate compound (B) to be used because it becomes a polyimide resin having more excellent dimensional stability. .
 前記式(3-1)で表されるジイソシアネートの中でも4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルであるジイソシアネートが溶剤溶解性に優れ、かつ耐熱性、機械物性及び寸法安定性に優れる硬化物が得られるポリイミド樹脂となることから好ましい。 Among the diisocyanates represented by the formula (3-1), 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl diisocyanate has excellent solvent solubility, heat resistance, and mechanical properties. And it becomes preferable from becoming a polyimide resin from which the hardened | cured material excellent in dimensional stability is obtained.
 尚、前記一般式(3-1)で示されるジイソシアネート化合物、4,4′-ジフェニルメタンジイソシアネート、トルエンジイソシアネートは単独で用いても、混合で用いても、さらにその他構造を有するジイソシアネート化合物やモノイソシアネート化合物や3官能以上のポリイソシアネート化合物等との併用で使用しても良い。 The diisocyanate compound represented by the general formula (3-1), 4,4′-diphenylmethane diisocyanate, and toluene diisocyanate may be used alone or in combination, and may be a diisocyanate compound or monoisocyanate compound having another structure. Or a tri- or higher functional polyisocyanate compound may be used in combination.
 一般式(3-1)で示されるジイソシアネート化合物、4,4′-ジフェニルメタンジイソシアネート、トルエンジイソシアネートで示されるジイソシアネート化合物は、全イソシアネート化合物の10重量%以上使用することで、機械強度や破断伸度等の機械物性、寸法安定性、耐熱性に優れる硬化物が得られることから好ましく、加えて経時溶液安定性に優れるポリイミド樹脂が得られることから全イソシアネート化合物の10~80重量%使用することが好ましい。尚、トルエンジイソシアネートを使用することで更に得られる硬化物の難燃性を向上させることができる。 The diisocyanate compound represented by the general formula (3-1), 4,4'-diphenylmethane diisocyanate, and the diisocyanate compound represented by toluene diisocyanate are used in an amount of 10% by weight or more of the total isocyanate compound, so that mechanical strength, elongation at break, etc. It is preferable that a cured product having excellent mechanical properties, dimensional stability, and heat resistance is obtained, and in addition, a polyimide resin having excellent solution stability over time is obtained, so that it is preferable to use 10 to 80% by weight of the total isocyanate compound. . In addition, the flame retardance of the hardened | cured material further obtained by using toluene diisocyanate can be improved.
 また特により低い線膨張率の硬化物(寸法安定性に優れる硬化物)が得られることから4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルは全イソシアネート化合物の30~80重量%使用することが好ましい。4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルと、4,4′-ジフェニルメタンジイソシアネートまたはトルエンジイソシアネートを併用する際には、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルが全イソシアネート化合物中の30~90重量%で4,4′-ジフェニルメタンジイソシアネートまたはトルエンジイソシアネートが10~70重量%となるように使用するのが好ましく、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルが全イソシアネート化合物中の40~80重量%で4,4′-ジフェニルメタンジイソシアネート及び/またはトルエンジイソシアネートが20~60重量%がより好ましい。 Further, since a cured product having a lower linear expansion coefficient (cured product having excellent dimensional stability) can be obtained, 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl is 30% of all isocyanate compounds. It is preferable to use up to 80% by weight. When 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl is used in combination with 4,4'-diphenylmethane diisocyanate or toluene diisocyanate, 4,4'-diisocyanate-3,3 ' It is preferable to use such that dimethyl-1,1'-biphenyl is 30 to 90% by weight of the total isocyanate compound and 4,4'-diphenylmethane diisocyanate or toluene diisocyanate is 10 to 70% by weight. '-Diisocyanate-3,3'-dimethyl-1,1'-biphenyl is 40 to 80% by weight of the total isocyanate compound, and 4,4'-diphenylmethane diisocyanate and / or toluene diisocyanate is more preferably 20 to 60% by weight. .
 尚、ジフェニルメタンジイソシアネート、トルエンジイソシアネートについて、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルと併用しない場合の使用量は、ポリイソシアネート化合物(B)の原料の全重量を基準として表すと、それぞれ10~70重量%が好ましく、10~60重量%がより好ましく、30~60重量%が更に好ましい。 The amount of diphenylmethane diisocyanate and toluene diisocyanate when not used together with 4,4'-diisocyanate-3,3'-dimethyl-1,1'-biphenyl is the total weight of the polyisocyanate compound (B). Expressed as a standard, each is preferably 10 to 70% by weight, more preferably 10 to 60% by weight, and further preferably 30 to 60% by weight.
 前記酸無水物化合物(C)はシクロヘキサントリカルボン酸無水物を含有する。シクロヘキサントリカルボン酸無水物としては、例えば、シクロヘキサン-1,3,4-トリカルボン酸無水物-3,4-無水物、シクロヘキサン-1,3,5-トリカルボン酸無水物-3,5-無水物、シクロヘキサン-1,2,3-トリカルボン酸無水物-2,3-無水物等が挙げられる。中でも、溶剤溶解性に優れ、機械強度や破断伸度等の機械物性と耐熱性に優れる硬化物が得られることから式(4-1)で表されるシクロヘキサン-1,3,4-トリカルボン酸無水物-3,4-無水物が好ましい。 The acid anhydride compound (C) contains cyclohexanetricarboxylic acid anhydride. Examples of the cyclohexanetricarboxylic acid anhydride include, for example, cyclohexane-1,3,4-tricarboxylic acid anhydride-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid anhydride-3,5-anhydride, And cyclohexane-1,2,3-tricarboxylic acid anhydride-2,3-anhydride. Among them, a cyclohexane-1,3,4-tricarboxylic acid represented by the formula (4-1) is obtained because a cured product having excellent solvent solubility, mechanical properties such as mechanical strength and elongation at break and excellent heat resistance can be obtained. Anhydride-3,4-anhydride is preferred.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 尚、本発明で用いるシクロヘキサントリカルボン酸無水物は、製造原料として用いるシクロヘキサン-1,2,4-トリカルボン酸等の不純物が本発明の硬化を損なわない範囲、例えば、10重量%以下、このましくは5重量%以下であれば混入しても良いものである。 The cyclohexanetricarboxylic acid anhydride used in the present invention is within a range where impurities such as cyclohexane-1,2,4-tricarboxylic acid used as a raw material for production do not impair the curing of the present invention, for example, 10% by weight or less. If it is 5% by weight or less, it may be mixed.
 上記本発明で用いるシクロヘキサントリカルボン酸無水物は、イソシアネート化合物と反応する際、酸無水物基とイソシアネート基が脱炭酸反応してイミド結合を形成し、イソシアネート基とカルボン酸が脱炭酸してアミド結合を形成する。このように分子は線状につながって分子を形成する。なお、本発明において酸無水物基とは、カルボン酸2分子が分子内脱水縮合して得られた-CO-O-CO-基を指す。 When the cyclohexanetricarboxylic acid anhydride used in the present invention reacts with an isocyanate compound, the acid anhydride group and the isocyanate group decarboxylate to form an imide bond, and the isocyanate group and the carboxylic acid decarboxylate to form an amide bond. Form. In this way, molecules are connected linearly to form molecules. In the present invention, the acid anhydride group refers to a —CO—O—CO— group obtained by intramolecular dehydration condensation of two molecules of carboxylic acid.
 前記シクロヘキサントリカルボン酸無水物の使用量は、ポリイミド樹脂を構成する全酸無水物化合物(C)中の5~100重量%が溶剤溶解性に優れたポリイミド樹脂となり、かつ、機械物性、耐熱性に優れる硬化物が得られることから好ましく、10~80重量%がより好ましい。また、前記シクロヘキサントリカルボン酸無水物の使用量は、ポリイミド樹脂を構成する全ての原料の重量を基準として2~60重量%が好ましく、5~50重量%がより好ましい。 The cyclohexanetricarboxylic acid anhydride is used in an amount of 5 to 100% by weight in the total acid anhydride compound (C) constituting the polyimide resin, which is a polyimide resin having excellent solvent solubility, and has excellent mechanical properties and heat resistance. It is preferable because an excellent cured product is obtained, and more preferably 10 to 80% by weight. The amount of cyclohexanetricarboxylic acid anhydride used is preferably 2 to 60% by weight, more preferably 5 to 50% by weight, based on the weight of all raw materials constituting the polyimide resin.
 酸無水物化合物(C)はシクロヘキサントリカルボン酸無水物以外の酸無水物を本発明の効果を損なわない範囲で他の酸無水物を含有していても良い。その他の酸無水物としては、例えば、1個の酸無水物基を有するポリカルボン酸無水物や2個の酸無水物基を有するポリカルボン酸無水物等が挙げられる。前記1個の酸無水物基を有するポリカルボン酸無水物としては、例えば、無水トリメリット酸、ナフタレン-1,2,4-トリカルボン酸無水物等の芳香族トリカルボン酸無水物等が挙げられる。こうした無水トリメリット酸、ナフタレン-1,2,4-トリカルボン酸無水物等の芳香族トリカルボン酸無水物等も上記のシクロヘキサントリカルボン酸無水物の様にイソシアネート化合物と反応する際、酸無水物基とイソシアネート基が脱炭酸反応してイミド結合を形成し、イソシアネート基とカルボン酸が脱炭酸してアミド結合を形成する。このように分子は線状につながって分子を形成する。 The acid anhydride compound (C) may contain an acid anhydride other than cyclohexanetricarboxylic acid anhydride as long as the effects of the present invention are not impaired. Examples of other acid anhydrides include polycarboxylic acid anhydrides having one acid anhydride group and polycarboxylic acid anhydrides having two acid anhydride groups. Examples of the polycarboxylic acid anhydride having one acid anhydride group include aromatic tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride. When such aromatic tricarboxylic acid anhydrides such as trimellitic anhydride and naphthalene-1,2,4-tricarboxylic acid anhydride react with an isocyanate compound like the above cyclohexanetricarboxylic acid anhydride, The isocyanate group is decarboxylated to form an imide bond, and the isocyanate group and the carboxylic acid are decarboxylated to form an amide bond. In this way, molecules are connected linearly to form molecules.
 前記2個の酸無水物基を有するポリカルボン酸無水物としては、例えば、ピロメリット酸二無水物、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物、ジフェニルエーテル-3,3′,4,4′-テトラカルボン酸二無水物、ベンゼン-1,2,3,4-テトラカルボン酸二無水物、ビフェニル-3,3′,4,4′-テトラカルボン酸二無水物、ビフェニル-2,2′,3,3′-テトラカルボン酸二無水物、ナフタレン-2,3,6,7-テトラカルボン酸二無水物、ナフタレン-1,2,4,5-テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、デカヒドロナフタレン-1,4,5,8-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、フェナントレン-1,3,9,10-テトラカルボン酸二無水物、ベリレン-3,4,9,10-テトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,3-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、 Examples of the polycarboxylic acid anhydride having two acid anhydride groups include pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenyl ether-3, 3 ', 4,4'-tetracarboxylic dianhydride, benzene-1,2,3,4-tetracarboxylic dianhydride, biphenyl-3,3', 4,4'-tetracarboxylic dianhydride , Biphenyl-2,2 ', 3,3'-tetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic acid Dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, decahydronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 4,8-dimethyl-1,2, 3,5,6,7-hexahydride Naphthalene-1,2,5,6-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4 5,8-tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, phenanthrene-1,3,9,10-tetracarboxylic Acid dianhydride, berylene-3,4,9,10-tetracarboxylic dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2-bis (2,3- Dicarboxyphenyl) propa Dianhydride, 2,3-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether Anhydride,
エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレンレングリコールビスアンヒドロトリメリテートやその他アルキレングリコールビスアンヒドロキシトリメリテート等が挙げられる。 Ethylene glycol bisanhydro trimellitate, propylene glycol bis anhydro trimellitate, butanediol bis anhydro trimellitate, hexamethylene glycol bis anhydro trimellitate, polyethylene glycol bis anhydro trimellitate, polypropylene lenglycol bis Anhydro trimellitate, other alkylene glycol bisan hydroxy trimellitate, etc. are mentioned.
 前記シクロヘキサントリカルボン酸無水物以外の酸無水物のなかでも、無水トリメリット酸、ピロメリット酸二無水物、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物、ジフェニルエーテル-3,3′,4,4′-テトラカルボン酸二無水物、ビフェニル-3,3′,4,4′-テトラカルボン酸二無水物、ビフェニル-2,2′,3,3′-テトラカルボン酸二無水物、およびエチレングリコールビスアンヒドロトリメリテートが好ましく、無水トリメリット酸がより好ましい。 Among acid anhydrides other than the cyclohexanetricarboxylic acid anhydride, trimellitic anhydride, pyromellitic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, diphenyl ether-3, 3 ', 4,4'-tetracarboxylic dianhydride, biphenyl-3,3', 4,4'-tetracarboxylic dianhydride, biphenyl-2,2 ', 3,3'-tetracarboxylic dianhydride Anhydrides and ethylene glycol bisanhydro trimellitate are preferred, and trimellitic anhydride is more preferred.
 シクロヘキサントリカルボン酸無水物と共に酸無水物として無水トリメリット酸を併用する場合の使用量は、全酸無水物化合物(C)のモル量を基準としてシクロヘキサントリカルボン酸無水物5~90モル%、無水トリメリット酸20~90モル%が好ましく、シクロヘキサントリカルボン酸無水物10~50モル%、無水トリメリット酸40~90モル%がより好ましい。また、前記シクロヘキサントリカルボン酸無水物と無水トリメリット酸の使用量は、ポリイミド樹脂を構成する全ての原料のモル量を基準としてそれぞれ2~60モル%、2~60モル%が好ましい。 The amount used when trimellitic anhydride is used in combination with cyclohexanetricarboxylic acid anhydride as the acid anhydride is 5 to 90 mol% of cyclohexanetricarboxylic acid anhydride based on the molar amount of the total acid anhydride compound (C). Mellitic acid is preferably 20 to 90 mol%, more preferably cyclohexanetricarboxylic acid anhydride 10 to 50 mol%, and trimellitic anhydride 40 to 90 mol%. The amount of cyclohexanetricarboxylic acid anhydride and trimellitic anhydride used is preferably 2 to 60 mol% and 2 to 60 mol%, respectively, based on the molar amount of all raw materials constituting the polyimide resin.
 また、溶剤溶解性と機械物性、耐熱物性のバランスの面で上述のシクロヘキサントリカルボン酸無水物と無水トリメリット酸との併用、シクロヘキサントリカルボン酸無水物とベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物との併用、シクロヘキサントリカルボン酸無水物とピロメリット酸二無水物との併用等がより好ましく、さらにシクロヘキサントリカルボン酸無水物と、無水トリメリット酸、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物、ピロメリット酸二無水物からなる群から選ばれる2種以上の併用がより好ましく、さらにシクロヘキサントリカルボン酸無水物、無水トリメリット酸、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物の3種類の併用がより好ましい。 In addition, the above-mentioned cyclohexanetricarboxylic anhydride and trimellitic anhydride are used in combination in terms of the balance between solvent solubility, mechanical properties, and heat resistance, and cyclohexanetricarboxylic anhydride and benzophenone-3,3 ', 4,4'- More preferred is the combined use of tetracarboxylic dianhydride, the combined use of cyclohexanetricarboxylic anhydride and pyromellitic dianhydride, and more preferred is cyclohexanetricarboxylic anhydride, trimellitic anhydride, benzophenone-3,3 ', More preferred is a combination of two or more selected from the group consisting of 4,4′-tetracarboxylic dianhydride and pyromellitic dianhydride, and cyclohexanetricarboxylic anhydride, trimellitic anhydride, benzophenone-3,3. Three types of combination of ', 4,4'-tetracarboxylic dianhydride are more preferable.
 シクロヘキサントリカルボン酸無水物と共に酸無水物として無水トリメリット酸とベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物を併用する場合は、イミド樹脂を構成する全酸無水物(C)のモル量を基準としてシクロヘキサントリカルボン酸無水物5~90モル%、無水トリメリット酸2~80モル%、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物3~50モル%が好ましく、シクロヘキサントリカルボン酸無水物10~80モル%、無水トリメリット酸10~80モル%、ベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物5~30モル%がより好ましい。また、前記シクロヘキサントリカルボン酸無水物と無水トリメリット酸とベンゾフェノン-3,3′,4,4′-テトラカルボン酸二無水物の使用量は、ポリイミド樹脂を構成する全ての原料のモル量を基準としてそれぞれ2~60モル%、2~60モル%及び2~60モル%が好ましい。 When trimellitic anhydride and benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride are used in combination with cyclohexanetricarboxylic acid anhydride as acid anhydride, all acid anhydrides (C ) Based on the molar amount of cyclohexanetricarboxylic anhydride, 5 to 90 mol%, trimellitic anhydride 2 to 80 mol%, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride 3 to 50 mol %, Preferably 10-80 mol% cyclohexanetricarboxylic anhydride, 10-80 mol% trimellitic anhydride, 5-30 mol% benzophenone-3,3 ′, 4,4′-tetracarboxylic dianhydride preferable. The amount of cyclohexanetricarboxylic acid anhydride, trimellitic anhydride and benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride used is based on the molar amount of all raw materials constituting the polyimide resin. Are preferably 2 to 60 mol%, 2 to 60 mol% and 2 to 60 mol%, respectively.
 また、本発明の効果を損ねない範囲において芳香族、脂肪族、脂環族のジカルボン酸化合物、ポリカルボン酸化合物、モノアルコール化合物、ジオール化合物、3官能以上のポリオール化合物を併用することも可能である。かかる芳香族、脂肪族、脂環族のジカルボン酸化合物、ポリカルボン酸化合物としては、フタル酸、フマル酸、アジピン酸、セバシン酸、コハク酸、マレイン酸、シクロヘシサンジカルボン酸、トリメリット酸、ピロメリット酸など例示され、モノアルコール化合物、ジオール化合物、3官能以上のポリオール化合物としては、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、3メチル1,5ペンタンジオール、ヘキサンジオール、ノナンジオール、トリメチロールプロパン、ペンタエリスリトール、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリジメチルシロキサンポリオールなど例示される。 In addition, aromatic, aliphatic, and alicyclic dicarboxylic acid compounds, polycarboxylic acid compounds, monoalcohol compounds, diol compounds, and trifunctional or higher functional polyol compounds can be used in combination as long as the effects of the present invention are not impaired. is there. Examples of the aromatic, aliphatic, and alicyclic dicarboxylic acid compounds and polycarboxylic acid compounds include phthalic acid, fumaric acid, adipic acid, sebacic acid, succinic acid, maleic acid, cyclohesisandicarboxylic acid, trimellitic acid, Examples include pyromellitic acid, monoalcohol compounds, diol compounds, trifunctional or higher polyol compounds such as methanol, ethanol, propanol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 3 methyl 1,5-pentanediol, Examples include hexanediol, nonanediol, trimethylolpropane, pentaerythritol, polyether polyol, polyester polyol, polycarbonate polyol, and polydimethylsiloxane polyol.
 上記ポリイミド樹脂の製造方法では、2個以上のフェノール性水酸基を有するポリフェノール化合物(A)とポリイソシアネート化合物(B)と酸無水物化合物(C)とが反応する。ポリフェノール化合物(A)のフェノール性水酸基のモル数(ma)とポリイソシアネート化合物(B)中のイソシアネート基のモル数(mb)と酸無水物化合物(C)中の無水酸基とカルボキシル基との合計のモル数(mc)は、以下の(式1)の関係であることが再現良く溶剤溶解性、保存安定性、硬化性に優れ、且つ、機械物性も良好な硬化物となるポリイミド樹脂が得られることから好ましい。
 2≧〔(ma)+(mc)〕/(mb)≧1 (式1)
In the method for producing the polyimide resin, the polyphenol compound (A) having two or more phenolic hydroxyl groups, the polyisocyanate compound (B), and the acid anhydride compound (C) are reacted. Sum of the number of moles (ma) of the phenolic hydroxyl group of the polyphenol compound (A), the number of moles of isocyanate group (mb) in the polyisocyanate compound (B), and the hydroxyl group-free and carboxyl group in the acid anhydride compound (C). The number of moles (mc) of the following (Formula 1) relationship is reproducible and a polyimide resin is obtained that is a cured product with excellent solvent solubility, storage stability, curability, and good mechanical properties. This is preferable.
2 ≧ [(ma) + (mc)] / (mb) ≧ 1 (Formula 1)
 更に、上記(式1)とともに以下(式2)の関係にある場合、特に機械物性に優れる硬化物となるポリイミド樹脂が得られることから好ましい
 2≧(ma)/(mc)≧1 (式2)
Further, in the case of the relationship of the following (Formula 2) together with the above (Formula 1), it is preferable because a polyimide resin which is a cured product having excellent mechanical properties is obtained 2 ≧ (ma) / (mc) ≧ 1 (Formula 2) )
 前記製法1において本発明のポリイミド樹脂を製造する際には、具体的には、例えば、反応容器にポリフェノール化合物(A)とポリイソシアネート化合物(B)とシクロヘキサントリカルボン酸無水物を含むポリカルボン酸無水物(C)とを仕込み、攪拌を行いながら昇温することで脱炭酸させながら反応を進行させる。 When producing the polyimide resin of the present invention in the production method 1, specifically, for example, a polycarboxylic acid anhydride containing a polyphenol compound (A), a polyisocyanate compound (B), and cyclohexanetricarboxylic acid anhydride in a reaction vessel. The product (C) is charged, and the reaction is allowed to proceed while decarboxylation by raising the temperature while stirring.
 反応温度としては、50℃から250℃の範囲で行うことが可能であり、反応速度と副反応防止の面から70℃から180℃の温度で行うことが好ましい。 The reaction temperature can be in the range of 50 ° C. to 250 ° C., and is preferably performed at a temperature of 70 ° C. to 180 ° C. in terms of reaction rate and prevention of side reactions.
 反応は、イソシアネート基がほぼ全て反応するまで行った方が得られるポリイミド樹脂の安定性が良好となることから好ましい。また、若干残存するイソシアネート基に対して、アルコールやフェノール化合物を添加し反応させても良い。 The reaction is preferable because the stability of the polyimide resin obtained is improved when the reaction is performed until almost all isocyanate groups have reacted. Moreover, you may make it react by adding an alcohol and a phenol compound with respect to the isocyanate group which remains a little.
 本発明のポリイミド樹脂の製造方法において、有機溶剤を使用すると均一な反応を進行できるため好ましい。ここで有機溶剤は、系中にあらかじめ存在させてから反応を行っても、途中で導入してもよい。また、適切な反応速度を維持するためには、系中の有機溶剤の割合は、反応系の98重量%以下であるが好ましく、10~90重量%であることがより好ましい。かかる有機溶剤としては、原料成分としてイソシアネート基を含有する化合物を使用するため、水酸基やアミノ基等の活性プロトンを有しない非プロトン性極性有機溶剤が好ましい。 In the method for producing a polyimide resin of the present invention, it is preferable to use an organic solvent because a uniform reaction can proceed. Here, the organic solvent may be present after being present in the system in advance or may be introduced in the middle. In order to maintain an appropriate reaction rate, the proportion of the organic solvent in the system is preferably 98% by weight or less of the reaction system, and more preferably 10 to 90% by weight. As such an organic solvent, since a compound containing an isocyanate group is used as a raw material component, an aprotic polar organic solvent having no active proton such as a hydroxyl group or an amino group is preferable.
 前記非プロトン性極性有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルフォキシド、スルホラン、およびγ-ブチロラクトンなどの極性有機溶媒を使用することができる。また、上記溶媒以外に、溶解可能であれば、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、および石油系溶剤等を使用しても良い。また、各種溶剤を混合して使用しても良い。 As the aprotic polar organic solvent, for example, polar organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and γ-butyrolactone can be used. In addition to the above solvents, ether solvents, ester solvents, ketone solvents, petroleum solvents and the like may be used as long as they are soluble. Various solvents may be mixed and used.
 本発明で用いるポリイミド樹脂の製造方法で用いる事ができるエーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類; Examples of ether solvents that can be used in the method for producing a polyimide resin used in the present invention include ethylene glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Polyethylene glycol dialkyl ethers such as diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol dibutyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, etc. Tylene glycol monoalkyl ether acetates; polyethylene glycol mono, such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, triethylene glycol monobutyl ether acetate Alkyl ether acetates;
プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルアセテート類;低分子のエチレン-プロピレン共重合体等の共重合ポリエーテルグリコールのジアルキルエーテル類;共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;共重合ポリエーテルグリコールのアルキルエステル類;および共重合ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類等が挙げられる。 Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether; dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol dibutyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol Polypropylene glycol dialkyl ethers such as propylene glycol dibutyl ether; propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate; Polypropylene glycol monoalkyl ether acetate such as triglycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monobutyl ether acetate, tripropylene glycol monomethyl ether acetate, tripropylene glycol monoethyl ether acetate, tripropylene glycol monobutyl ether acetate Dialkyl ethers of copolymerized polyether glycols such as low molecular weight ethylene-propylene copolymers; monoacetate monoalkyl ethers of copolymerized polyether glycols; alkyl esters of copolymerized polyether glycols; Examples include ether glycol monoalkyl esters and monoalkyl ethers. It is.
 エステル系溶剤としては、例えば、酢酸エチルおよび酢酸ブチル等が挙げられる。ケトン系溶剤としては、アセトン、メチルエチルケトン、およびシクロヘキサノン等が挙げられる。また、石油系溶剤としては、トルエン、キシレンやその他高沸点の芳香族溶剤等や、ヘキサン、シクロヘキサン等の脂肪族および脂環族溶剤を使用することも可能である。 Examples of the ester solvent include ethyl acetate and butyl acetate. Examples of the ketone solvent include acetone, methyl ethyl ketone, and cyclohexanone. In addition, as the petroleum solvent, it is also possible to use toluene, xylene, other high-boiling aromatic solvents, and aliphatic and alicyclic solvents such as hexane and cyclohexane.
 本発明のポリイミド樹脂を製造する際に有機溶剤を用いる場合の系中の有機溶剤の割合は、反応系の98重量%以下であるが好ましく、40~90重量%であることがより好ましい。 The proportion of the organic solvent in the system when the organic solvent is used when producing the polyimide resin of the present invention is preferably 98% by weight or less, more preferably 40 to 90% by weight of the reaction system.
 本発明のポリイミド樹脂の製造に用いる有機溶剤としては、特に溶剤の臭気や毒性の面と塗膜乾燥及び塗膜硬化時の残存溶剤量の低減、塗膜の溶剤の吸湿量低減等の理由からγ-ブチロラクトンの使用が好ましい。また得られるポリイミド樹脂においてもγ-ブチロラクトンに溶解する構造が好ましい。 As the organic solvent used for the production of the polyimide resin of the present invention, especially for the reasons of the odor and toxicity of the solvent and the amount of residual solvent during coating film drying and coating film curing, the amount of moisture absorption of the coating film solvent is reduced, etc. The use of γ-butyrolactone is preferred. Further, the resulting polyimide resin preferably has a structure that dissolves in γ-butyrolactone.
 γ-ブチロラクトンに溶解し、各種物性(耐熱特性、低線膨張率、機械物性)において良好な性能を有するポリイミド樹脂としては、例えば、ポリフェノール化合物(A)の存在下、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルであるジイソシアネートと4,4′-ジフェニルメタンジイソシアネートを含むジイソシアネート化合物を使用し、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物と、無水トリメリット酸とを反応させる事により得られる。またこのとき、4,4′-ジフェニルメタンジイソシアネートの一部または全量をトルエンジイソシアネートで置き換えても良い。 As a polyimide resin which is dissolved in γ-butyrolactone and has good performance in various physical properties (heat resistance, low linear expansion coefficient, mechanical properties), for example, 4,4′-diisocyanate—in the presence of polyphenol compound (A) is used. Using a diisocyanate compound comprising 3,3'-dimethyl-1,1'-biphenyl diisocyanate and 4,4'-diphenylmethane diisocyanate, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and It can be obtained by reacting with trimellitic anhydride. At this time, a part or all of 4,4′-diphenylmethane diisocyanate may be replaced with toluene diisocyanate.
 前記γ-ブチロラクトンに溶解し、各種物性も良好な性能を有するポリイミド樹脂を製造するのに好適なポリフェノール化合物(A)としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール化合物やナフタレンジオールやビフェノール、テトラメチルビフェノールやハイドロキノンや9,10-ジヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイドとハイドロキノンとの反応生成物等が例示される。 Examples of the polyphenol compound (A) that is suitable for producing a polyimide resin that is dissolved in the γ-butyrolactone and has various properties and good properties include bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, and naphthalenediol. And the reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide with hydroquinone, and the like.
 前記γ-ブチロラクトンに溶解し、各種物性も良好な性能を有するポリイミド樹脂を製造する際に、ポリフェノール化合物と4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルと4,4-ジフェニルメタンジイソシアネートと、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物と、無水トリメリット酸の使用割合としては、ポリイミド樹脂を構成する全ての原料のモル量を基準として、それぞれ2~60モル%が好ましい。 In producing a polyimide resin which is dissolved in the γ-butyrolactone and has various properties, the polyphenol compound, 4,4′-diisocyanate-3,3′-dimethyl-1,1′-biphenyl, and 4, The proportion of 4-diphenylmethane diisocyanate, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and trimellitic anhydride used is based on the molar amount of all raw materials constituting the polyimide resin. 2 to 60 mol% of each is preferred.
 更に、かかるγ-ブチロラクトンに溶解し、各種物性(耐熱特性、低線膨張率、機械物性)において良好な性能を有するポリイミド樹脂は、ポリフェノール化合物(A)の存在下、4,4′-ジイソシアネート-3,3′-ジメチル-1,1′-ビフェニルと、4,4-ジフェニルメタンジイソシアネートと、シクロヘキサン-1,3,5-トリカルボン酸-3,4-無水物と、無水トリメリット酸と、ベンゾフェノン-3,3´,4,4´-テトラカルボン酸二無水物とを反応させることにより好ましく得る事ができる。このときの4,4-ジフェニルメタンジイソシアネートと、シクロヘキサン-1,3,5-トリカルボン酸-3,4-無水物と、無水トリメリット酸と、ベンゾフェノン-3,3´,4,4´-テトラカルボン酸二無水物の使用割合としては、ポリイミド樹脂を構成する全ての原料のモル量を基準として、それぞれ2~60モル%が好ましい。またこのとき、4,4′-ジフェニルメタンジイソシアネートの一部または全量をトルエンジイソシアネートで置き換えても良い。 Furthermore, a polyimide resin which is dissolved in such γ-butyrolactone and has good performance in various physical properties (heat resistance, low linear expansion coefficient, mechanical properties) is 4,4'-diisocyanate- in the presence of the polyphenol compound (A). 3,3'-dimethyl-1,1'-biphenyl, 4,4-diphenylmethane diisocyanate, cyclohexane-1,3,5-tricarboxylic acid-3,4-anhydride, trimellitic anhydride, benzophenone- It can be preferably obtained by reacting 3,3 ′, 4,4′-tetracarboxylic dianhydride. 4,4-diphenylmethane diisocyanate, cyclohexane-1,3,5-tricarboxylic acid-3,4-anhydride, trimellitic anhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic The use ratio of the acid dianhydride is preferably 2 to 60 mol% based on the molar amount of all raw materials constituting the polyimide resin. At this time, a part or all of 4,4′-diphenylmethane diisocyanate may be replaced with toluene diisocyanate.
 ここで用いるポリフェノール化合物(A)としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール化合物やナフタレンジオールやビフェノール、テトラメチルビフェノールやハイドロキノンや9,10-ジヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイドとハイドロキノンとの反応生成物等が例示される。特に難燃性を向上させる為には9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドとハイドロキノンとの反応生成物をこのポリフェノール化合物として使用することが好ましい。 Examples of the polyphenol compound (A) used here include bisphenol compounds such as bisphenol A, bisphenol F, and bisphenol S, naphthalenediol, biphenol, tetramethylbiphenol, hydroquinone, and 9,10-dihydro-9-oxa-10-phos. Examples thereof include a reaction product of phaphenanthrene-10-oxide and hydroquinone. In particular, in order to improve flame retardancy, a reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone is preferably used as the polyphenol compound.
 本発明に記載される上記及び後述の硬化物や硬化物性とは、本ポリイミド樹脂とこれと反応する成分との硬化物以外に本ポリイミド樹脂単独あるいは本ポリイミド樹脂と反応しないその他樹脂、添加剤、無機材料成分などを含み単純に溶剤乾燥した塗膜や成型体の硬化物及びその物性を意味する。またさらに本ポリイミド樹脂と加熱や光により反応する硬化剤と混合して及び/または本樹脂と反応しないが添加成分それ自体、熱や光などで硬化せしめた硬化物およびその硬化物性としたものの中に含有される。 The cured product and cured product properties described above and below described in the present invention are, in addition to the cured product of the polyimide resin and a component that reacts with the polyimide resin, the polyimide resin alone or other resins that do not react with the polyimide resin, additives, It means a cured film of a coating film or molded body that contains an inorganic material component or the like and is simply solvent-dried, and physical properties thereof. In addition, the polyimide resin is mixed with a curing agent that reacts with heat or light and / or does not react with the resin, but the additive component itself is cured by heat or light, and the cured product properties thereof. Contained in
 本発明の硬化物は本発明のポリイミド樹脂を硬化させてなる。具体的には、例えば、本発明のポリイミド樹脂を基材に塗工し、または成形物とした後、100~300℃で加熱することで乾燥塗膜、乾燥成型体または硬化反応させ、硬化塗膜、硬化成型体等の硬化物とすることができる。 The cured product of the present invention is obtained by curing the polyimide resin of the present invention. Specifically, for example, the polyimide resin of the present invention is applied to a base material or formed into a molded product, and then heated at 100 to 300 ° C. to cause a dry coating film, a dry molded body, or a curing reaction to be cured. It can be set as hardened | cured material, such as a film | membrane and a hardening molded object.
 前記基材としては制限無く用いることができる。基材としては、例えば、プラスチック、金属、木材、ガラス、無機材、およびこれら複合材料等が挙げられる。 The base material can be used without limitation. Examples of the substrate include plastic, metal, wood, glass, inorganic material, and composite materials thereof.
 本発明のポリイミド樹脂には、更に、その他の熱硬化性樹脂成分を添加し、熱硬化性樹脂組成物とすることができる。具体的には、例えば、エポキシ樹脂、メラミン樹脂、イソシアネート化合物、シリケート、およびアルコキシシラン化合物等が挙げられるが、熱硬化性成分としてはエポキシ樹脂が好ましい。 Further, other thermosetting resin components can be added to the polyimide resin of the present invention to obtain a thermosetting resin composition. Specifically, for example, an epoxy resin, a melamine resin, an isocyanate compound, a silicate, an alkoxysilane compound and the like can be mentioned, and an epoxy resin is preferable as the thermosetting component.
 前記エポキシ樹脂は分子内に2個以上のエポキシ基を有していることが好ましい。こうしたエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型ノボラック等のノボラック型エポキシ樹脂;ジシクロペンタジエンと各種フェノール類と反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物;2,2′,6,6′-テトラメチルビフェノールのエポキシ化物等のビフェニル型エポキシ樹脂;ナフタレン骨格を有するエポキシ樹脂;フルオレン骨格を有するエポキシ樹脂等の芳香族系エポキシ樹脂やこれら芳香族系エポキシ樹脂の水素添加物;ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル等の脂肪族エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス-(3,4-エポキヒシクロヘキシル)アジペート等の脂環式エポキシ樹脂;トリグリシジルイソシアヌレート等のごときヘテロ環含有エポキシ樹脂等が挙げられる。中でも、芳香族系エポキシ樹脂が、硬化塗膜の機械物性に優れる熱硬化性ポリイミド樹脂組成物が得られることから好ましく、中でもナフタレン型エポキシ樹脂がより好ましい。ナフタレン骨格のエポキシ樹脂としては、分子中にナフタレン骨格と2個以上のグリシジルオキシ基を有するものであり、ナフタレン骨格のノボラック体もその範疇である。 The epoxy resin preferably has two or more epoxy groups in the molecule. Examples of such epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol S type epoxy resin, and bisphenol F type epoxy resin; novolak types such as phenol novolac epoxy resin, cresol novolac type epoxy resin, and bisphenol type novolak. Epoxy resins; epoxidized products of various dicyclopentadiene-modified phenol resins obtained by reacting dicyclopentadiene with various phenols; biphenyl type epoxy resins such as epoxidized products of 2,2 ', 6,6'-tetramethylbiphenol; Epoxy resin having naphthalene skeleton; aromatic epoxy resin such as epoxy resin having fluorene skeleton and hydrogenated product of these aromatic epoxy resins; neopentyl glycol diglycidyl Aliphatic epoxy resins such as ether and 1,6-hexanediol diglycidyl ether; fats such as 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate Cyclic epoxy resins; and heterocyclic ring-containing epoxy resins such as triglycidyl isocyanurate. Among these, an aromatic epoxy resin is preferable because a thermosetting polyimide resin composition excellent in mechanical properties of a cured coating film can be obtained, and a naphthalene type epoxy resin is more preferable. The naphthalene skeleton epoxy resin has a naphthalene skeleton and two or more glycidyloxy groups in the molecule, and the naphthalene skeleton novolak is also in its category.
 前記本発明で用いるポリイミド樹脂とエポキシ樹脂との配合量は、樹脂分の重量比として(ポリイミド樹脂)/(エポキシ樹脂)が1/100から50/1の割合で使用することができ、さらに好ましくは、1/10から20/1である。 The blending amount of the polyimide resin and the epoxy resin used in the present invention can be used in a ratio of (polyimide resin) / (epoxy resin) of 1/100 to 50/1 as a weight ratio of the resin, and more preferably Is from 1/10 to 20/1.
 前記メラミン樹脂しては、具体的には、例えば、アルコキシ化メラミン樹脂が挙げられる。アルコキシ化メラミン樹脂は、メラミンやベンゾグアナミン等のトリアジン環含有のアミノ化合物とホルムアルデヒドとの反応により得られるメチロール化物の一部乃至全部をアルコール化合物との反応により得られるアルコキシ化メラミン樹脂を使用することができる。 Specific examples of the melamine resin include alkoxylated melamine resins. As the alkoxylated melamine resin, it is possible to use an alkoxylated melamine resin obtained by reacting a part or all of the methylolated product obtained by reacting a triazine ring-containing amino compound such as melamine or benzoguanamine with formaldehyde. it can.
 ここで用いるアルコール化合物としては、炭素原子数が1~4程度の低級アルコールが使用することができ、具体的には、メトキシメチロール化メラミン樹脂、ブチル化メチロール化メラミン樹脂等使用することができる。分子構造としては、完全にアルコキシ化されても良く、メチロール基が残存していても良く、さらにはイミノ基が残存していても良い。 As the alcohol compound used here, a lower alcohol having about 1 to 4 carbon atoms can be used. Specifically, a methoxymethylolated melamine resin, a butylated methylolated melamine resin, or the like can be used. The molecular structure may be completely alkoxylated, a methylol group may remain, or an imino group may remain.
 本発明で用いるアルコキシ化メラミン樹脂の樹脂構造としては、メトキシメチロール化メラミン樹脂がポリイミド樹脂との相溶性と硬化時の硬化性が良好となることから好ましく、さらに好ましくは、メトキシ化率80%以上のメトキシメチロール化メラミン樹脂がより好ましい。 As the resin structure of the alkoxylated melamine resin used in the present invention, the methoxymethylolated melamine resin is preferable because the compatibility with the polyimide resin and the curability at the time of curing are good, and more preferably, the methoxylation rate is 80% or more. More preferred are methoxymethylolated melamine resins.
 また、メラミン樹脂の樹脂構造としては、自己縮合して多核体であっても良い。この時の重合度は相溶性や安定性の面で1~5が好ましく、さらに1.2~3がより好ましい。 Further, the resin structure of the melamine resin may be a polynuclear body by self-condensation. The degree of polymerization at this time is preferably 1 to 5 and more preferably 1.2 to 3 in terms of compatibility and stability.
 本発明で用いるアルコキシ化メラミン樹脂の数平均分子量としては、100~10000のものが使用できる。好ましくは、300~2000がポリイミド樹脂との相溶性と硬化時の硬化性の面で好ましく、さらに400~1000がより好ましい。 The number average molecular weight of the alkoxylated melamine resin used in the present invention may be 100 to 10,000. Preferably, 300 to 2000 is preferable in terms of compatibility with the polyimide resin and curability at the time of curing, and more preferably 400 to 1000.
 本発明で用いるアルコキシ化メラミン樹脂としては、メラミンやベンゾグアナミン、ホルマリン及びアルコールを同時に仕込んで反応させても、メラミンやベンゾグアナミンとホルマリンを予め反応させてメチロール化メラミン化合物を得てからアルコール化合物とのアルコキシ化を行っても良い。 As the alkoxylated melamine resin used in the present invention, even if melamine, benzoguanamine, formalin and alcohol are simultaneously charged and reacted, melamine or benzoguanamine and formalin are reacted in advance to obtain a methylolated melamine compound and then alkoxy with the alcohol compound. You may do.
 本発明で用いるアルコキシ化メラミン樹脂の市販品としては、例えば、メトキシメチロール化メラミン樹脂としては、具体的には、例えば、日本サイテックインダストリーズ製の商品サイメル300、301、303、305等が挙げられる。また、メチロール基含有のメトキシメチロール化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル370、771等が挙げられる。イミノ基含有メトキシ化メラミン樹脂としては、例えば、三井サイテック株式会社製の商品サイメル325、327、701、703、712等が挙げられる。メトキシ化ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル232、235、236、238、266、267、285等が挙げられる。ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品ユーバン20SE60等が挙げられる。 Specific examples of commercially available alkoxylated melamine resins used in the present invention include, for example, commercial Cymel 300, 301, 303, 305 and the like manufactured by Nippon Cytec Industries, as methoxymethylolated melamine resins. Examples of the methylol group-containing methoxymethylolated melamine resin include product Cymel 370 and 771 manufactured by Nippon Cytec Industries. Examples of the imino group-containing methoxylated melamine resin include product Cymel 325, 327, 701, 703, and 712 manufactured by Mitsui Cytec Co., Ltd. Examples of the methoxylated butoxylated melamine resin include product Cymel 232, 235, 236, 238, 266, 267, 285 manufactured by Nippon Cytec Industries. Examples of the butoxylated melamine resin include product Uban 20SE60 manufactured by Nippon Cytec Industries.
 本発明で用いるアルコキシ化メラミン樹脂の使用量は、ポリイミド樹脂の物性とアルコキシ化メラミン樹脂の硬化による相乗効果が得られ、特段優れた機械物性と高TGを両立することができることからポリイミド樹脂の樹脂固形分換算で100重量部に対し、1~30重量部配合するのが好ましく、1~20重量部がより好ましく、1~10重量部が更に好ましく、2~7重量部が特に好ましい。 The use amount of the alkoxylated melamine resin used in the present invention is a polyimide resin resin because the physical properties of the polyimide resin and the synergistic effect due to the curing of the alkoxylated melamine resin are obtained, and both excellent mechanical properties and high TG can be achieved. It is preferable to mix 1 to 30 parts by weight with respect to 100 parts by weight in terms of solid content, more preferably 1 to 20 parts by weight, still more preferably 1 to 10 parts by weight, and particularly preferably 2 to 7 parts by weight.
 前記イソシアネート化合物としては、例えば、芳香族系のイソシアネート化合物、脂肪族系のイソシアネート化合物および脂環族系のイソシアネート化合物等が使用できる。好ましくは、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。また、ブロックイソシアネート化合物も使用可能である。 As the isocyanate compound, for example, an aromatic isocyanate compound, an aliphatic isocyanate compound, an alicyclic isocyanate compound, and the like can be used. Preferably, a polyisocyanate compound having two or more isocyanate groups in one molecule is preferable. A blocked isocyanate compound can also be used.
 上述のアルキルアルコキシシランとしては、例えば、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン等が挙げられる。 Examples of the alkylalkoxysilane include alkyltrialkoxysilane and dialkyldialkoxysilane.
 前記アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、フェニルトリメトキシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン等が挙げられる。 Examples of the alkyltrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, Examples thereof include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, and phenyltributoxysilane.
 前記ジアルキルジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジブトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジブトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジプロポキシシラン、メチルフェニルジブトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。 Examples of the dialkyl dialkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldibutoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, diethyldibutoxysilane, and diphenyldimethoxy. Silane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenyldibutoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldibutoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane , Methylphenyldipropoxysilane, methylphenyldibutoxysilane, trimethylmethoxysilane, trimethyl Tokishishiran, triethyl silane, triethyl silane, triphenyl methoxy silane, triphenyl ethoxy silane, and the like.
 また、アルキルアルコキシシランの縮合物も使用かのうであり例えば、前記したアルキルトリアルコキシシランの縮合物や、ジアルキルジアルコキシシランの縮合物等が挙げられる。 Also, condensates of alkylalkoxysilanes may be used, and examples thereof include the above-mentioned alkyltrialkoxysilane condensates and dialkyldialkoxysilane condensates.
 さらに本発明の樹脂にはポリエステル、フェノキシ樹脂、PPS樹脂、PPE樹脂、ポリアリレーン樹脂等のバインダー樹脂、フェノール樹脂、メラミン樹脂、アルコキシシラン系硬化剤、多塩基酸無水物、シアネート化合物等の硬化剤あるいは反応性化合物やメラミン、ジシアンジアミド、グアナミンやその誘導体、イミダゾール類、アミン類、水酸基を1個有するフェノール類、有機フォスフィン類、ホスホニュウム塩類、4級アンモニュウム塩類、光カチオン触媒等の硬化触媒や硬化促進剤、さらにフィラー、その他の添加剤として消泡材、レベリング剤、スリップ剤、ぬれ改良剤、沈降防止剤、難燃剤、酸化防止剤、紫外線吸収剤等添加し、ポリイミド樹脂組成物することも可能である。 Further, the resin of the present invention includes polyester, phenoxy resin, PPS resin, PPE resin, polyarylene resin and other binder resins, phenolic resin, melamine resin, alkoxysilane-based curing agent, polybasic acid anhydride, cyanate compound and other curing agents, Reactive compounds, melamine, dicyandiamide, guanamine and derivatives thereof, imidazoles, amines, phenols having one hydroxyl group, organic phosphines, phosphonium salts, quaternary ammonium salts, photocationic catalysts, and other curing catalysts and accelerators In addition, it is also possible to add a defoaming agent, leveling agent, slip agent, wetting improver, anti-settling agent, flame retardant, antioxidant, ultraviolet absorber, etc. as a filler and other additives to make a polyimide resin composition is there.
 また、本発明のポリイミド樹脂には、更に必要に応じて、種々の充填材、有機顔料、無機顔料、体質顔料、防錆剤等を添加し、樹脂組成物とすることができる。これらは単独でも2種以上を併用してもよい。 In addition, various fillers, organic pigments, inorganic pigments, extender pigments, rust preventives, and the like can be further added to the polyimide resin of the present invention as necessary to obtain a resin composition. These may be used alone or in combination of two or more.
 前記充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化けい素酸粉、微粒状酸化けい素、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルムニウム、雲母、アルミナ等が挙げられる。 Examples of the filler include barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica, and alumina. Is mentioned.
 充填材としては、各種粒子径のものが使用可能であり、本樹脂やその組成物の物性を阻害しない程度に添加することが可能である。かかる適正な量としては、固形分重量で5~80%重量程度の範囲であり、好ましくは均一に分散してから使用することが好ましい。特に塗膜やシート状に表面を均一に本樹脂及びその組成物を形成させるためには、粒子系がその膜厚に対して十分小さいものを使用することが必要である。一方、塗膜やシート状での滑り等向上する場合は、一部粒子系の大きなものをあえて使用することもできる。 粒子系充填材の分散方法としては、公知の2本ロール、3本ロール等のロールによる分散やビーズミル、高速分散等により行うことが可能であり、粒子表面を予め分散処理剤で表面改質しても良い。 As the filler, those having various particle sizes can be used, and the filler can be added to the extent that the physical properties of the resin and its composition are not impaired. Such an appropriate amount is in the range of about 5 to 80% by weight in terms of solid content, and is preferably used after being uniformly dispersed. In particular, in order to form the present resin and its composition uniformly in the form of a coating film or a sheet, it is necessary to use a particle system having a sufficiently small particle system relative to its film thickness. On the other hand, in order to improve slippage in a coating film or a sheet form, a partly large particle type can be used. As a method for dispersing the particle-based filler, it is possible to carry out dispersion by a known roll such as a two-roll or a three-roll, bead mill, high-speed dispersion, etc. May be.
 前記有機顔料としては、アゾ顔料;フタロシアニン・ブルー、フタロシアニン・グリーンの如き銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられる。 Examples of the organic pigment include azo pigments; copper phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green, and quinacridone pigments.
 前記無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデート・オレンジの如きクロム酸塩;紺青の如きフェロシアン化物、酸化チタン、亜鉛華、ベンガラ、酸化鉄;炭化クロムグリーンの如き金属酸化物、カドミウムイエロー、カドミウムレッド;硫化水銀の如き金属硫化物、セレン化物;硫酸鉛の如き硫酸塩;群青の如き珪酸塩;炭酸塩、コバルト・バイオレッド;マンガン紫の如き燐酸塩;アルミニウム粉、亜鉛末、真鍮粉、マグネシウム粉、鉄粉、銅粉、ニッケル粉の如き金属粉;カーボンブラック等が挙げられる。 Examples of the inorganic pigment include chromates such as chrome lead, zinc chromate and molybdate orange; ferrocyanides such as bitumen, titanium oxide, zinc white, bengara, iron oxide; metal oxides such as chromium carbide green, Cadmium yellow, cadmium red; metal sulfides such as mercury sulfide; selenides; sulfates such as lead sulfate; silicates such as ultramarine; carbonates, cobalt biored; phosphates such as manganese purple; aluminum powder, zinc dust Metal powders such as brass powder, magnesium powder, iron powder, copper powder and nickel powder; carbon black and the like.
 また、その他の着色、防錆、体質顔料のいずれも使用することができる。これらは単独でも2種以上を併用してもよい。 Also, any other coloring, rust prevention and extender pigment can be used. These may be used alone or in combination of two or more.
 本発明のポリイミド樹脂ならびに熱硬化性樹脂組成物等の樹脂組成物は本発明のポリイミド樹脂あるいはその樹脂組成物を調製し塗工や成形物とした後、100~300℃で加熱することで乾燥あるいは硬化させることができる。 The resin composition such as the polyimide resin of the present invention and the thermosetting resin composition is prepared by preparing the polyimide resin of the present invention or the resin composition to form a coating or molding, and then drying by heating at 100 to 300 ° C. Alternatively, it can be cured.
 前記塗膜の形成方法で用いる基材は特に制限無く用いることができる。基材としては、例えば、プラスチック、金属、木材、ガラス、無機材、およびこれら複合材料等が挙げられる。 The substrate used in the coating film forming method can be used without any particular limitation. Examples of the substrate include plastic, metal, wood, glass, inorganic material, and composite materials thereof.
 また、本発明のポリイミド樹脂およびその組成物は、フレキシブル回路基板の製造用として好適な形態である、樹脂及びその組成物層(A層)及び支持体フィルム(B層)からなるフィルム(接着フィルム)の形態にも使用することができる。 Moreover, the polyimide resin of the present invention and the composition thereof are a film (adhesive film) comprising a resin and a composition layer (A layer) and a support film (B layer), which are suitable for production of a flexible circuit board. ).
 接着フィルムは、種々の方法に従って、例えば、本発明のポリイミド樹脂またはその組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルムにこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて樹脂層あるいは樹脂組成物層を形成させることにより製造することができる。 The adhesive film is prepared according to various methods, for example, by preparing a resin varnish obtained by dissolving the polyimide resin of the present invention or a composition thereof in an organic solvent, applying the resin varnish to a support film, and heating or blowing hot air. It can be produced by drying the organic solvent to form a resin layer or a resin composition layer.
 支持体フィルム(B層)は、接着フィルムを製造する際の支持体となるものであり、フレキシブル回路基板の製造において、最終的には剥離または除去されるものである。支持体フィルムとしては、例えば、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下、「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、更には離型紙や銅箔等の金属箔などを挙げることができる。なお、銅箔を支持体フィルムとして使用する場合は、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより除去することができる。支持フィルムはマット(mat)処理、コロナ処理の他、離型処理を施してあってもよいが、剥離性を考慮すると離型処理が施されている方がより好ましい。支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。 The support film (B layer) serves as a support when the adhesive film is produced, and is finally peeled off or removed in the production of the flexible circuit board. Examples of the support film include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, and release paper and copper foil. The metal foil etc. can be mentioned. In addition, when using copper foil as a support body film, it can remove by etching with etching liquid, such as ferric chloride and cupric chloride. The support film may be subjected to a release treatment in addition to a mat treatment and a corona treatment, but it is more preferable that the release treatment is performed in consideration of releasability. The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, and preferably 25 to 50 μm.
 ワニスを調製するための有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ガンマブチロラクトン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。 Examples of organic solvents for preparing varnish include ketones such as acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, acetate esters such as carbitol acetate, cellosolve, butyl Examples thereof include carbitols such as carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and gamma butyrolactone. Two or more organic solvents may be used in combination.
 乾燥条件は特に限定されないが、樹脂組成物中への有機溶剤の含有割合が通常5質量%以下、好ましくは3質量%以下となるように乾燥させる。具体的な乾燥条件は、樹脂組成物の硬化性やワニス中の有機溶媒量によっても異なるが、例えば30~60質量%の有機溶剤を含むワニスにおいては、通常80~120℃で3~13分程度乾燥させることができる。当業者は、簡単な実験により適宜、好適な乾燥条件を設定することができる。 Drying conditions are not particularly limited, but drying is performed so that the content ratio of the organic solvent in the resin composition is usually 5% by mass or less, preferably 3% by mass or less. The specific drying conditions vary depending on the curability of the resin composition and the amount of the organic solvent in the varnish. It can be dried to some extent. Those skilled in the art can appropriately set suitable drying conditions by simple experiments.
 樹脂およびその組成物層(A層)の厚さは通常5~500μmの範囲とすることができる。A層の厚さの好ましい範囲は接着フィルムの用途により異なり、ビルドアップ工法により多層フレキシブル回路基板の製造に用いる場合は、回路を形成する導体層の厚みが通常5~70μmであるので、層間絶縁層に相当するA層の厚さは10~100μmの範囲であるのが好ましい。 The thickness of the resin and its composition layer (A layer) can usually be in the range of 5 to 500 μm. The preferred range of the thickness of the A layer varies depending on the use of the adhesive film. When the multilayer flexible circuit board is manufactured by the build-up method, the thickness of the conductor layer forming the circuit is usually 5 to 70 μm. The thickness of the A layer corresponding to the layer is preferably in the range of 10 to 100 μm.
 A層は保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムはラミネートの際に剥離される。保護フィルムとしては支持フィルムと同様の材料を用いることができる。保護フィルムの厚さは特に限定されないが、好ましくは1~40μmの範囲である。 The A layer may be protected with a protective film. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The protective film is peeled off during lamination. As the protective film, the same material as the support film can be used. The thickness of the protective film is not particularly limited, but is preferably in the range of 1 to 40 μm.
 本発明のポリイミド樹脂や組成物を用いて得られた接着フィルムは特に多層フレキシブル回路基板の製造に好適に使用することができる。以下に、多層フレキシブル回路基板を製造する方法について説明する。接着フィルムは真空ラミネーターにより好適にフレキシブル回路基板にラミネートすることができる。ここで使用するフレキシブル回路基板は、主として、ポリエステル基板、ポリイミド基板、ポリアミドイミド基板、液晶ポリマー基板等の基板の片面又は両面にパターン加工された導体層(回路)はもちろん、回路と絶縁層が交互に層形成され、片面又は両面が回路形成されている多層フレキシブル回路基板を更に多層化するために使用することもできる。なお回路表面は過酸化水素/硫酸、メックエッチボンド(メック株式会社製)等の表面処理剤により予め粗化処理が施されていた方が絶縁層の回路基板への密着性の観点から好ましい。 The adhesive film obtained using the polyimide resin or composition of the present invention can be suitably used particularly for the production of multilayer flexible circuit boards. Below, the method to manufacture a multilayer flexible circuit board is demonstrated. The adhesive film can be suitably laminated on the flexible circuit board by a vacuum laminator. The flexible circuit board used here is mainly composed of a conductive layer (circuit) patterned on one or both sides of a substrate such as a polyester substrate, a polyimide substrate, a polyamideimide substrate, or a liquid crystal polymer substrate, as well as alternating circuits and insulating layers. It is also possible to use a multilayer flexible circuit board that is layered and has a circuit formed on one or both sides for further multilayering. The surface of the circuit is preferably subjected to a roughening treatment in advance with a surface treatment agent such as hydrogen peroxide / sulfuric acid or MEC etch bond (manufactured by MEC Co., Ltd.) from the viewpoint of adhesion of the insulating layer to the circuit board.
 市販されている真空ラミネーターとしては、例えば、ニチゴー・モートン株式会社製 バキュームアップリケーター、株式会社名機製作所製 真空加圧式ラミネーター、日立テクノエンジニアリング株式会社製 ロール式ドライコータ、日立エーアイーシー株式会社製真空ラミネーター等を挙げることができる。 Commercially available vacuum laminators include, for example, Nichigo-Morton Co., Ltd., Sakai Vacuum Applicator, Meiki Seisakusho Co., Ltd., Vacuum Pressurized Laminator, Hitachi Techno Engineering Co., Ltd., Sakai Roll Dry Coater, Hitachi AIC Co., Ltd., Vacuum A laminator etc. can be mentioned.
 ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、接着フィルムを加圧及び加熱しながら回路基板に圧着する。ラミネートの条件は、接着フィルム及び回路基板を必要によりプレヒートし、圧着温度を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cmとし、空気圧20mmHg以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。 In the lamination, when the adhesive film has a protective film, the protective film is removed, and then the adhesive film is pressure-bonded to the circuit board while being pressurized and heated. The lamination is performed by preheating the adhesive film and the circuit board as required, laminating at a pressure of preferably 70 to 140 ° C., a pressure of preferably 1 to 11 kgf / cm 2 and laminating under a reduced pressure of air pressure 20 mmHg or less. preferable. The laminating method may be a batch method or a continuous method using a roll.
 接着フィルムを回路基板にラミネートした後、室温付近に冷却し支持体フィルムを剥離する。次いで、回路基板にラミネートされたポリイミド樹脂や組成物を加熱し、該組成物が熱硬化性樹脂組成物である場合は加熱し、硬化させる。加熱(硬化)の条件は通常150℃~220℃で20分~180分の範囲で選択され、より好ましくは160℃~200℃で30~120分の範囲で選択される。なお支持体フィルムが離型処理やシリコン等の剥離層を有する場合は、熱硬化性ポリイミド樹脂組成物の加熱硬化後あるいは加熱(硬化)及び穴開け後に支持体フィルムを剥離することもできる。 After laminating the adhesive film on the circuit board, it is cooled to around room temperature and the support film is peeled off. Next, the polyimide resin or composition laminated on the circuit board is heated, and when the composition is a thermosetting resin composition, it is heated and cured. The heating (curing) conditions are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes. In addition, when a support body film has a peeling process or peeling layers, such as a silicon | silicone, a support body film can also be peeled after heat-hardening of a thermosetting polyimide resin composition, or heating (hardening) and punching.
 本発明のポリイミド樹脂またはポリイミド樹脂組成物の硬化物である絶縁層が形成された後、必要に応じて回路基板にドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法により穴開けを行いビアホールやスルーホールを形成してもよい。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。 After the insulating layer, which is a cured product of the polyimide resin or polyimide resin composition of the present invention, is formed, drilling is performed on the circuit board by a method such as drilling, laser, plasma, or a combination thereof as necessary. A through hole may be formed. In particular, drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.
 次いで絶縁層(ポリイミド樹脂またはポリイミド樹脂組成物の硬化物)の表面処理を行う。表面処理はデスミアプロセスで用いられる方法を採用することができ、デスミアプロセスを兼ねた形で行うことができる。デスミアプロセスに用いられる薬品としては酸化剤が一般的である。酸化剤としては、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて処理を行うのが好ましい。酸化剤で処理する前に、膨潤剤による処理を行うこともできる。また酸化剤による処理の後は、通常、還元剤による中和処理が行われる。 Next, the surface treatment of the insulating layer (polyimide resin or a cured product of the polyimide resin composition) is performed. The surface treatment can employ a method used in a desmear process, and can be performed in a form that also serves as a desmear process. As a chemical used in the desmear process, an oxidizing agent is generally used. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, and the like. Preferably, an alkaline permanganate solution (for example, potassium permanganate, sodium hydroxide solution of sodium permanganate), which is an oxidizer widely used for roughening an insulating layer in the production of multilayer printed wiring boards by the build-up method. It is preferable to carry out the treatment using A treatment with a swelling agent can also be performed before the treatment with the oxidizing agent. Further, after the treatment with an oxidizing agent, neutralization treatment with a reducing agent is usually performed.
 表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。導体層形成は無電解メッキと電解メッキを組み合わせた方法で実施することができる。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。導体層形成後、150~200℃で20~90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。 After the surface treatment, a conductor layer is formed by plating on the surface of the insulating layer. The conductor layer can be formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. After forming the conductor layer, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
 導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。サブトラクティブ法の場合、無電解銅メッキ層の厚みは0.1乃至3μm、好ましくは0.3乃至2μmである。その上に電気メッキ層(パネルメッキ層)を3乃至35μm、好ましくは5乃至20μmの厚みで形成した後、エッチングレジストを形成し、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより導体パターンを形成した後、エッチングレジストを剥離することにより、回路基板を得ることが出来る。また、セミアディティブ法の場合には、無電解銅メッキ層の厚みを0.1乃至3μm、好ましくは0.3乃至2μmで無電解銅メッキ層を形成後、パターンレジストを形成し、次いで電気銅メッキ後に剥離することにより、回路基板を得ることができる。 As a method of forming a circuit by patterning the conductor layer, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. In the case of the subtractive method, the thickness of the electroless copper plating layer is 0.1 to 3 μm, preferably 0.3 to 2 μm. An electroplating layer (panel plating layer) is formed thereon with a thickness of 3 to 35 μm, preferably 5 to 20 μm, an etching resist is formed, and etching is performed with an etching solution such as ferric chloride or cupric chloride. After forming a conductor pattern by this, a circuit board can be obtained by peeling an etching resist. In the case of the semi-additive method, after forming the electroless copper plating layer with an electroless copper plating layer thickness of 0.1 to 3 μm, preferably 0.3 to 2 μm, a pattern resist is formed, and then the electrolytic copper A circuit board can be obtained by peeling after plating.
 支持体フィルムを耐熱樹脂層(耐熱樹脂フィルム)で置き換えた形態のフィルム、すなわち、ポリイミド樹脂またはその組成物層(A層)及び耐熱樹脂層(C層)からなるフィルムは、フレキシブル回路基板用のベースフィルムとして使用できる。また樹脂およびその組成物層(A層)、耐熱樹脂層(C層)及び銅箔(D層)からなるフィルムも同様にフレキシブル回路基板のベースフィルムとして使用できる。この場合ベースフィルムはA層、C層、D層の順の層構成を有する。以上のようなベースフィルムでは、耐熱樹脂層は剥離されずに、フレキシブル回路基板の一部を構成することとなる。 A film in which the support film is replaced with a heat-resistant resin layer (heat-resistant resin film), that is, a film composed of a polyimide resin or a composition layer (A layer) and a heat-resistant resin layer (C layer) is used for a flexible circuit board. Can be used as a base film. A film made of a resin and its composition layer (A layer), a heat resistant resin layer (C layer) and a copper foil (D layer) can also be used as a base film of a flexible circuit board. In this case, the base film has a layer structure in the order of A layer, C layer, and D layer. In the base film as described above, the heat-resistant resin layer is not peeled off and constitutes a part of the flexible circuit board.
 本発明のポリイミド樹脂または樹脂組成物の硬化物からなる絶縁層(A′層)が耐熱樹脂層(C層)上に形成されたフィルムは片面フレキシブル回路基板用のベースフィルムとして使用できる。また、A′層、C層及びA′層の順の層構成を有するフィルム、及びA′層、C層及び銅箔(D層)からなり、A′層、C層及びD層の順の層構成を有するフィルムも同様に両面フレキシブル回路基板用のベースフィルムとして使用できる。 A film in which an insulating layer (A ′ layer) made of a cured product of the polyimide resin or resin composition of the present invention is formed on a heat-resistant resin layer (C layer) can be used as a base film for a single-sided flexible circuit board. It consists of a film having an order of layers of A ′ layer, C layer and A ′ layer, and A ′ layer, C layer and copper foil (D layer). Similarly, a film having a layer structure can be used as a base film for a double-sided flexible circuit board.
 耐熱樹脂層に用いられる耐熱樹脂は、ポリイミド樹脂、アラミド樹脂、ポリアミドイミド樹脂、液晶ポリマーなどを挙げることができる。特に、ポリイミド樹脂及びポリアミドイミド樹脂が好ましい。またフレキシブル回路基板に用いる特性上、破断強度が100MPa以上、破断伸度が5%以上、20~150℃間の熱膨張係数が40ppm以下、およびガラス転移温度が200℃以上又は分解温度が300℃以上である耐熱樹脂を用いるのが好ましい。 Examples of the heat-resistant resin used in the heat-resistant resin layer include polyimide resin, aramid resin, polyamideimide resin, and liquid crystal polymer. In particular, a polyimide resin and a polyamideimide resin are preferable. Further, due to the characteristics used for the flexible circuit board, the breaking strength is 100 MPa or more, the breaking elongation is 5% or more, the thermal expansion coefficient between 20 to 150 ° C. is 40 ppm or less, and the glass transition temperature is 200 ° C. or more, or the decomposition temperature is 300 ° C. It is preferable to use the above heat resistant resin.
 このような特性を満たす耐熱樹脂としては、フィルム状で市販されている耐熱樹脂を好適に用いることができ、例えば、宇部興産株式会社製ポリイミドフィルム「ユーピ レックス-S」、東レ・デュポン株式会社製ポリイミドフィルム「カプトン」、鐘淵化学工業株式会社製ポリイミドフィルム「アピカル」、帝人アドバンストフィルム株式会社製「アラミカ」、株式会社クラレ製液晶ポリマーフィルム「ベクスター」、住友ベークライト株式会社製ポリエーテルエーテルケトンフィルム「スミライトFS-1100C」等が知られている。 As the heat-resistant resin satisfying such characteristics, a commercially available heat-resistant resin in the form of a film can be suitably used. For example, a polyimide film “UPI Rex-S” manufactured by Ube Industries, Ltd., manufactured by Toray DuPont Co., Ltd. Polyimide film “Kapton”, Kaneka Chemical Co., Ltd. polyimide film “Apical”, Teijin Advanced Films Ltd. “Aramika”, Kuraray liquid crystal polymer film “Bexter”, Sumitomo Bakelite Co., Ltd. polyetheretherketone film “Sumilite FS-1100C” and the like are known.
 耐熱樹脂層の厚さは、通常2~150μmであり、好ましくは10~50μmの範囲とするのがよい。耐熱樹脂層(C層)は表面処理を施したものを用いてもよい。表面処理としては、マット(mat)処理、コロナ放電処理、プラズマ処理等の乾式処理、溶剤処理、酸処理、アルカリ処理等の化学処理、サンドブラスト処理、機械研磨処理などが挙げられる。特にA層との密着性の観点から、プラズマ処理が施されているのが好ましい。 The thickness of the heat resistant resin layer is usually 2 to 150 μm, preferably 10 to 50 μm. As the heat-resistant resin layer (C layer), a surface-treated layer may be used. Examples of the surface treatment include dry treatment such as mat treatment, corona discharge treatment and plasma treatment, chemical treatment such as solvent treatment, acid treatment and alkali treatment, sand blast treatment and mechanical polishing treatment. In particular, from the viewpoint of adhesion to the A layer, it is preferable that plasma treatment is performed.
 絶縁層(A′)と耐熱樹脂層(C)からなる片面フレキシブル回路基板用のベースフィルムは以下のようにして製造することができる。まず、前述した接着フィルムと同様に、本発明の樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、耐熱樹脂フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させてポリイミド樹脂層または樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。ポリイミド樹脂層や樹脂組成物層の厚さは5~15μmの範囲とするのが好ましい 。 A base film for a single-sided flexible circuit board composed of an insulating layer (A ′) and a heat-resistant resin layer (C) can be produced as follows. First, similarly to the adhesive film described above, a resin varnish prepared by dissolving the resin composition of the present invention in an organic solvent is prepared, this resin varnish is applied on a heat-resistant resin film, and the organic solvent is removed by heating or hot air blowing. It is made to dry and a polyimide resin layer or a resin composition layer is formed. Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film. The thickness of the polyimide resin layer or the resin composition layer should preferably be in the range of 5 to 15 μm.
 次にポリイミド樹脂層または樹脂組成物層を加熱乾燥させ、ポリイミド樹脂またはポリイミド樹脂組成物の絶縁層を形成させる。加熱硬化の条件は通常150℃~220℃で20分~180分の範囲で選択され、より好ましくは160℃~200℃で30~120分の範囲で選択される。 Next, the polyimide resin layer or the resin composition layer is heated and dried to form an insulating layer of the polyimide resin or the polyimide resin composition. The conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.
 絶縁層(A′層)、耐熱樹脂層(C)層及び銅箔(D層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は、耐熱樹脂層(C層)と銅箔(D層)よりなる銅張積層フィルム上に樹脂組成物を層形成し、上記と同様にして製造すればよい。銅張積層フィルムとしては、キャスト法2層CCL(Copper-clad laminate)、スパッタ法2層CCL、ラミネート法2層CCL、3層CCLなどが挙げられる。銅箔の厚さは12μm、18μmのものが好適に使用される。 The production of a base film of a double-sided flexible circuit board film consisting of three layers of an insulating layer (A ′ layer), a heat-resistant resin layer (C) layer and a copper foil (D layer) is made of a heat-resistant resin layer (C layer) and a copper foil. A resin composition may be formed on a copper-clad laminated film made of (D layer) and manufactured in the same manner as described above. Examples of the copper-clad laminated film include a cast method two-layer CCL (Copper-clad laminate), a sputtering method two-layer CCL, a laminate method two-layer CCL, and a three-layer CCL. The thickness of the copper foil is preferably 12 μm or 18 μm.
 市販されている2層CCLとしては、エスパネックスSC(新日鐵化学社製)、ネオフレックスI<CM>、ネオフレックスI<LM>(三井化学社製)、S’PERFLEX(住友金属鉱山社製)等が挙げられ、また市販されている3層CCLとしては、ニカフレックスF-50VC1(ニッカン工業社製)等が挙げられる。 Commercially available two-layer CCL includes Espanex SC (manufactured by Nippon Steel Chemical Co., Ltd.), Neoprex I <CM>, Neoprex I <LM> (Mitsui Chemicals), S'PERFLEX (Sumitomo Metal Mining) Nikaflex F-50VC1 (manufactured by Nikkan Kogyo Co., Ltd.) and the like can be mentioned as a commercially available three-layer CCL.
 絶縁層(A′層)、耐熱樹脂層(C層)及び絶縁層(A′層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は以下のようにして行うことができる。まず前述した接着フィルムと同様に、本発明のポリイミド樹脂または樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させてポリイミド樹脂層または樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。ポリイミド樹脂層または樹脂組成物層の厚さは5~15μmの範囲とするのが好ましい。 The production of a base film for a double-sided flexible circuit board film comprising three layers of an insulating layer (A ′ layer), a heat-resistant resin layer (C layer) and an insulating layer (A ′ layer) can be carried out as follows. First, in the same manner as the adhesive film described above, a resin varnish prepared by dissolving the polyimide resin or resin composition of the present invention in an organic solvent is prepared, and this resin varnish is applied on a support film, and then organically heated or sprayed with hot air. The solvent is dried to form a polyimide resin layer or a resin composition layer. Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film. The thickness of the polyimide resin layer or the resin composition layer is preferably in the range of 5 to 15 μm.
 次に、この接着フィルムを耐熱樹脂フィルムの両面にラミネートする。ラミネートの条件は前記と同様である。また耐熱フィルムの片面に予め樹脂組成物層が設けられていれば、ラミネートは片面のみでよい。次に樹脂組成物層を加熱硬化させ、ポリイミド樹脂層または樹脂組成物の層である絶縁層を形成させる。加熱硬化の条件は通常150℃~220℃で20分~180分の範囲で選択され、より好ましくは160℃~200℃で30~120分の範囲で選択される。 Next, this adhesive film is laminated on both sides of the heat resistant resin film. Lamination conditions are the same as described above. Moreover, if the resin composition layer is previously provided on one side of the heat-resistant film, the lamination may be only on one side. Next, the resin composition layer is cured by heating to form an insulating layer that is a polyimide resin layer or a resin composition layer. The conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.
 フレキシブル回路基板用のベースフィルムからフレキシブル回路基板を製造する方法について説明する。A′層、C層及びA′層からなるベースフィルムの場合は、まず加熱硬化後、回路基板にドリル、レーザー、プラズマ等の方法により穴開けし、両面の導通のためのスルーホールを形成する。A′層、C層及びD層からなるベースフィルムの場合は、同様の方法により穴開けし、ビアホールを形成する。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。 A method for manufacturing a flexible circuit board from a base film for a flexible circuit board will be described. In the case of a base film comprising an A ′ layer, a C layer, and an A ′ layer, first, after heat curing, a circuit board is drilled by a method such as drilling, laser, or plasma to form a through hole for conduction on both sides. . In the case of a base film composed of an A ′ layer, a C layer, and a D layer, holes are formed by the same method to form via holes. In particular, drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.
 次いで絶縁層(ポリイミド樹脂の層または樹脂組成物の層)の表面処理を行う。表面処理については、前述した接着フィルムの場合と同様である。表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。メッキによる導体層形成については、前述した接着フィルムの場合と同様である。導体層形成後、150~200℃で20~90分アニール処理することにより、導体層のピール強度をさらに向上、安定化させることができる。 Next, surface treatment of the insulating layer (polyimide resin layer or resin composition layer) is performed. About surface treatment, it is the same as that of the case of the adhesive film mentioned above. After the surface treatment, a conductor layer is formed by plating on the surface of the insulating layer. The formation of the conductor layer by plating is the same as in the case of the adhesive film described above. After the conductor layer is formed, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.
 次に、導体層をパターン加工し回路形成しフレキシブル回路基板とする。A層、C層及びD層からなるベースフィルムを使用した場合は、D層である銅箔にも回路形成を行う。回路形成の方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。詳細は前述の接着フィルムの場合と同様である。 Next, the conductor layer is patterned to form a circuit to obtain a flexible circuit board. When a base film composed of an A layer, a C layer, and a D layer is used, a circuit is also formed on the copper foil that is the D layer. As a circuit formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. Details are the same as in the case of the adhesive film described above.
 このようにして得られた片面又は両面フレキシブル回路基板は、例えば、前述したように、本発明の接着フィルムを用いて多層化することで、多層フレキシブル回路基板を製造することができる。 The single-sided or double-sided flexible circuit board obtained in this way can be multilayered using the adhesive film of the present invention, for example, as described above, to produce a multilayer flexible circuit board.
 また、本発明のポリイミド樹脂または樹脂組成物は半導体とサブストレート基板間の応力緩和層を形成するための材料としても有用である。例えば、前記と同様にして、本発明のポリイミド樹脂または樹脂組成物を用いて得られた接着フィルムによりサブストレート基板の最も上部の絶縁層の全部または一部を形成し、半導体を接続することにより、該ポリイミド樹脂の硬化物または該樹脂組成物の硬化物を介して半導体とサブストレート基板が接着された半導体装置を製造することができる。この場合、接着フィルムのポリイミド樹脂層または樹脂組成物層の厚みは10~1000μmの範囲で適宜選択される。本発明のポリイミド樹脂または樹脂組成物はメッキにより導体層の形成が可能であり、サブストレート基板上に設けた応力緩和用の絶縁層上にも簡便にメッキにより導体層を形成し回路パターンを作製することも可能である。 The polyimide resin or resin composition of the present invention is also useful as a material for forming a stress relaxation layer between a semiconductor and a substrate substrate. For example, in the same manner as described above, by forming all or part of the uppermost insulating layer of the substrate substrate with the adhesive film obtained by using the polyimide resin or resin composition of the present invention, and connecting the semiconductor A semiconductor device in which a semiconductor and a substrate substrate are bonded through a cured product of the polyimide resin or a cured product of the resin composition can be manufactured. In this case, the thickness of the polyimide resin layer or the resin composition layer of the adhesive film is appropriately selected within the range of 10 to 1000 μm. The polyimide resin or resin composition of the present invention can be used to form a conductor layer by plating, and a conductor pattern can be easily formed on a stress relaxation insulating layer provided on a substrate substrate to produce a circuit pattern. It is also possible to do.
 次に、本発明を実施例および比較例によりさらに具体的に説明する。以下において、部および「%」は特に断りのない限り、すべて「重量%」である。 Next, the present invention will be described more specifically with reference to examples and comparative examples. In the following, all parts and “%” are “% by weight” unless otherwise specified.
 実施例1
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、第1表に示す原料を仕込んだ。攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、更に2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度が7Pa・sの樹脂固形分16%で溶液酸価が2.1(KOHmg/g)のポリイミド樹脂(A1)の溶液(ポリイミド樹脂がγ-ブチロラクトンに溶解した樹脂組成物)を得た。尚、樹脂の固形分酸価は13.1(KOHmg/g)であった。また、ゲルパーミエーションクロマトグラフィー(GPC)の測定の結果、重量平均分子量29000であった。
Example 1
The raw materials shown in Table 1 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A1) having a resin solid content of 16% with a viscosity of 7 Pa · s at 25 ° C. and a solution acid value of 2.1 (KOHmg / g) (resin composition in which the polyimide resin is dissolved in γ-butyrolactone) Got. The solid content acid value of the resin was 13.1 (KOH mg / g). Moreover, it was the weight average molecular weight 29000 as a result of the measurement of a gel permeation chromatography (GPC).
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 第1表の脚注(以下同様)
 MDI:ジフェニルメタンジイソシアネート
 DMBPDI:ジメチルビフェニルジイソシアネート(下記構造)
Footnotes in Table 1 (the same applies hereinafter)
MDI: Diphenylmethane diisocyanate DMBPDI: Dimethylbiphenyl diisocyanate (structure below)
Figure JPOXMLDOC01-appb-C000048
 TMA:無水トリメリット酸
 BTDA:ベンゾフェノンテトラカルボン酸二無水物
 TMAH:水添無水トリメリット酸(下記構造)
Figure JPOXMLDOC01-appb-C000048
TMA: trimellitic anhydride BTDA: benzophenone tetracarboxylic dianhydride TMAH: hydrogenated trimellitic anhydride (the following structure)
Figure JPOXMLDOC01-appb-C000049
 HCAHQ:9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイドとハイドロキノンとの反応生成物(下記構造)
Figure JPOXMLDOC01-appb-C000049
HCAHQ: reaction product of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and hydroquinone (the following structure)
Figure JPOXMLDOC01-appb-C000050
 GBL:γ-ブチロラクトン
Figure JPOXMLDOC01-appb-C000050
GBL: γ-butyrolactone
 得られたポリイミド樹脂(A1)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトル(図1)を測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ内容重量の変化で追跡し、80.96g(1.84モル)であった。これよりカルボン酸および酸無水物基の全量である1.84モルの全量がイミド結合およびアミド結合に変換していると結論される。さらにC13-NMR(図2)による分析を行った結果下記構造に代表されるポリイミド樹脂であることが確認された。尚、ポリイミド樹脂(A1)の赤外線吸収スペクトルのチャートを図1に、C13-NMRのチャートを図1にそれぞれ示す。 The obtained polyimide resin (A1) solution was coated on a KBr plate and the infrared absorption spectrum (FIG. 1) of the sample in which the solvent was volatilized was measured. As a result, 2270 cm −1 , the characteristic absorption of the isocyanate group, completely disappeared. The characteristic absorption of the imide ring was confirmed at 725 cm −1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the flask content weight. From this, it is concluded that the total amount of 1.84 moles, which is the total amount of carboxylic acid and acid anhydride groups, has been converted to imide bonds and amide bonds. Further, analysis by C13-NMR (FIG. 2) confirmed that it was a polyimide resin represented by the following structure. The infrared absorption spectrum chart of the polyimide resin (A1) is shown in FIG. 1, and the C13-NMR chart is shown in FIG.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 但し上記構造中のA1~A6の構造単位は、以下の式である。またa1からa6は構造単位の存在割合としてのモル比を示し以下と結論される。a7は繰り返し単位であり、括弧内の各構造単位はその順序や繰り返し数に限定は無くランダムに結合している(以下同様)。
 a1:a2:a3:a4:a5:a6=24.4 :42.2 :8.1 :8.2 :14.3 :2.7
However, the structural units of A1 to A6 in the above structure are represented by the following formula. Moreover, a1 to a6 show the molar ratio as the abundance ratio of the structural unit, and are concluded as follows. a7 is a repeating unit, and each structural unit in the parenthesis is not limited in its order and the number of repetitions, and is bonded at random (the same applies hereinafter).
a1: a2: a3: a4: a5: a6 = 24.4: 42.2: 8.1: 8.2: 14.3: 2.7
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
上記構造単位A1~A6において、*は、分子主鎖への結合点を示す。 In the structural units A1 to A6, * represents a point of attachment to the molecular main chain.
得られたポリイミド樹脂(A)の溶液の溶剤溶解性、保存安定性、塗装作業性、塗膜造膜性(表面平滑性)、耐熱性、機械物性、難燃性及び寸法安定性を下記方法に従って評価した。その結果を第5表に示す。 Solvent solubility, storage stability, coating workability, coating film forming property (surface smoothness), heat resistance, mechanical properties, flame retardancy and dimensional stability of the obtained polyimide resin (A) solution are as follows. Evaluated according to. The results are shown in Table 5.
 (1)溶剤溶解性及び保存安定性
 溶剤溶解性試験及び保存安定性試験は調製直後のポリイミド樹脂(A1)の溶剤溶解性及び長期間静置後の溶剤溶解性を評価する事により行った。調製直後のポリイミド樹脂組成物をガンマブチロラクトンにて樹脂濃度を10%の溶液に調整し、これを蓋付ガラス瓶に25ml入れ、その外観を観察し、以下の評価基準にて評価した。これを調製直後のポリイミド樹脂組成物の溶剤溶解性とした。その後、ポリイミド樹脂組成物が入った蓋付ガラス瓶を40℃で30日間静置した後、その外観を観察し、経時溶剤溶解性として以下の評価基準にて評価した。
(1) Solvent solubility and storage stability The solvent solubility test and the storage stability test were performed by evaluating the solvent solubility of the polyimide resin (A1) immediately after preparation and the solvent solubility after standing for a long time. Immediately after the preparation, the polyimide resin composition was adjusted to a 10% solution with gamma-butyrolactone, put in 25 ml of a glass bottle with a lid, the appearance was observed, and evaluated according to the following evaluation criteria. This was defined as the solvent solubility of the polyimide resin composition immediately after preparation. Thereafter, the glass bottle with the lid containing the polyimide resin composition was allowed to stand at 40 ° C. for 30 days, and then the appearance was observed and evaluated as the solvent solubility with time based on the following evaluation criteria.
 ○ :樹脂溶液が透明であり、流動性がある。
 △ :流動性があるが濁りが発生する。
 × :透明感が無く、流動性もない。
○: The resin solution is transparent and fluid.
Δ: Fluidity but turbidity occurs.
X: There is no transparency and fluidity.
 (2)塗装作業性の評価
 ポリイミド樹脂(A1)をブリキ板に0.152ミルのアプリケーターで室温にて塗装した。塗装外観について以下の評価基準で評価した。尚、以下の実施例及び比較例において調製した樹脂溶液に固形分が混じっている時は樹脂溶液の温度を120℃まで上げて固形分を一度溶解させてから塗装した。
(2) Evaluation of coating workability Polyimide resin (A1) was coated on a tin plate at room temperature with a 0.152 mil applicator. The appearance of the coating was evaluated according to the following evaluation criteria. In addition, when solid content was mixed in the resin solutions prepared in the following Examples and Comparative Examples, the temperature of the resin solution was raised to 120 ° C. and the solid content was once dissolved before coating.
 ○:透明で表面に光沢がありフラットな面である。
 △:不透明であるがフラットな面である。
 ×:不透明で表面がフラットな面ではない。
○: Transparent, glossy and flat surface.
Δ: Opaque but flat surface.
X: Opaque and not a flat surface.
 (3)塗膜造膜性(表面平滑性)の評価
 ポリイミド樹脂(A1)を乾燥後の膜厚が30μmになるようにブリキ板にアプリケーターにて塗布後、110℃で30分間乾燥させて試験片を作成した。この試験片を、25℃にて24時間放置し、塗膜外観を以下の評価基準で評価した。
(3) Evaluation of film-forming property (surface smoothness) The polyimide resin (A1) was applied to a tin plate with an applicator so that the film thickness after drying was 30 μm, and then dried at 110 ° C. for 30 minutes for testing. Created a piece. This test piece was allowed to stand at 25 ° C. for 24 hours, and the appearance of the coating film was evaluated according to the following evaluation criteria.
 ○:塗膜にクラック等の異常は見られない。
 △:塗膜に若干クラックが見られる。
 ×:塗膜全面にクラックが発生した。
○: No abnormalities such as cracks are observed in the coating film.
Δ: Some cracks are observed in the coating film.
X: Cracks occurred on the entire surface of the coating film.
 (4)耐熱性の評価
 ポリイミド樹脂(A1)を硬化後の膜厚が30μmになるように銅泊がラミネートされたガラスエポキシ基板上に塗装し、200℃の乾燥機で60分間乾燥した後、室温まで冷却し試験片を作成した。この試験片を260℃の溶融ハンダ浴に30秒浸漬し、室温に冷却した。このハンダ浴の浸漬操作を合計3回行い、硬化塗膜の外観について以下の評価基準で評価した。
(4) Evaluation of heat resistance After the polyimide resin (A1) was coated on a glass epoxy substrate laminated with a copper stay so that the film thickness after curing was 30 μm and dried for 60 minutes with a 200 ° C. dryer, The specimen was prepared by cooling to room temperature. This test piece was immersed in a molten solder bath at 260 ° C. for 30 seconds and cooled to room temperature. This solder bath immersion operation was performed three times in total, and the appearance of the cured coating film was evaluated according to the following evaluation criteria.
 ○:塗膜に外観異常は見られない。
 △:塗膜にフクレ、はがれ等異常が若干見られる。
 ×:塗膜全面にフクレ、はがれ等異常が見られる。
○: Appearance abnormality is not observed in the coating film.
Δ: Abnormalities such as swelling and peeling are slightly observed in the coating film.
X: Abnormalities such as swelling and peeling are observed on the entire surface of the coating film.
 (5)機械物性の評価
 機械物性は塗膜(フィルム)の引張試験を行い、弾性率と破断強度と破断伸度を求めることにより評価した。
 <試験片の作製>
 ポリイミド樹脂(A1)を得られる塗膜の膜厚が30μmになるようにブリキ基板上に塗装した。次いで、この塗装板を50℃の乾燥機で30分間、100℃の乾燥機で30分間、200℃の乾燥機で60分間乾燥して塗膜(フィルム)を作成した。室温まで冷却した後、塗膜(フィルム)を所定の大きさに切り出し、基板から単離して測定用試料とした。
(5) Evaluation of mechanical properties Mechanical properties were evaluated by conducting a tensile test of a coating film (film) and obtaining elastic modulus, breaking strength and breaking elongation.
<Preparation of test piece>
It coated on the tinplate board | substrate so that the film thickness of the coating film which can obtain a polyimide resin (A1) might be set to 30 micrometers. Next, this coated plate was dried with a dryer at 50 ° C. for 30 minutes, with a dryer at 100 ° C. for 30 minutes, and with a dryer at 200 ° C. for 60 minutes to form a coating film (film). After cooling to room temperature, the coating film (film) was cut into a predetermined size, isolated from the substrate, and used as a measurement sample.
 <引張試験測定方法>
 測定用試料を5枚作成し、下記の条件で引張試験を行い、弾性率と破断強度と破断伸度を求めた。弾性率の値が低いほど柔軟性に優れる塗膜であることを表す。破断伸度の値が高いほど柔軟性に優れる塗膜であることを表す。そして、破断強度の値が高いほど強靭な塗膜であることを表す。
   測定機器:東洋ボールドウィン社製テンシロン
   サンプル形状:10mm×70mm
   チャック間:20mm
   引張速度:10mm/min
   測定雰囲気:22℃、45%RH
<Tensile test measurement method>
Five samples for measurement were prepared and subjected to a tensile test under the following conditions to determine the elastic modulus, breaking strength, and breaking elongation. It represents that it is a coating film which is excellent in a softness | flexibility, so that the value of an elasticity modulus is low. It represents that it is a coating film which is excellent in a softness | flexibility, so that the value of breaking elongation is high. And it shows that it is a tough coating film, so that the value of breaking strength is high.
Measuring instrument: Tensilon manufactured by Toyo Baldwin, Inc. Sample shape: 10 mm x 70 mm
Between chucks: 20 mm
Tensile speed: 10 mm / min
Measurement atmosphere: 22 ° C., 45% RH
 (6)TGおよび線膨張係数の測定
 <試験用試験片の作製>
 ポリイミド樹脂(A1)を硬化後の膜厚が20μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を幅5mm、長さ30mmに切り出し、測定用試料とした。
(6) Measurement of TG and linear expansion coefficient <Preparation of test specimen for test>
The polyimide resin (A1) was coated on a tin plate so that the film thickness after curing was 20 μm, dried for 20 minutes with a 70 ° C. dryer, cured at 200 ° C. for 1 hour, cooled, and then peeled off. The coating film was cut into a width of 5 mm and a length of 30 mm to obtain a measurement sample.
 <TG及び線膨張係数測定方法>
 セイコー電子(株)製熱分析システムTMA-SS6000を用いて、試料長10mm、昇温速度10℃/分、荷重30mNの条件でTMA(Thermal Mechanical Analysis)法により測定した。なお、TGは、TMA測定での温度-寸法変化曲線からその変極点を求め、その温度をTGとした。さらに線膨張係数に使用した温度域は50~220℃での試料長の変位より求めた。TGが高いほど耐熱性に優れ線膨張係数が小さいほど寸法安定性に優れることを示す。
<TG and linear expansion coefficient measurement method>
Using a thermal analysis system TMA-SS6000 manufactured by Seiko Electronics Co., Ltd., measurement was performed by the TMA (Thermal Mechanical Analysis) method under the conditions of a sample length of 10 mm, a heating rate of 10 ° C./min, and a load of 30 mN. For TG, the inflection point was obtained from the temperature-dimension change curve in TMA measurement, and the temperature was taken as TG. Further, the temperature range used for the linear expansion coefficient was determined from the sample length displacement at 50 to 220 ° C. The higher the TG, the better the heat resistance, and the smaller the linear expansion coefficient, the better the dimensional stability.
 (7)難燃性評価
 ポリイミド樹脂(A1)を硬化後の膜厚が20μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を幅10mm、長さ70mmの短冊状に切り出し、測定用試料とした。上記短冊試料の長手方向の片末端をクランプに固定し、もう一方の末端を下方向で地面に垂直になるようにセットした。ライターでこの下部末端に着火して試料の燃焼挙動を観察した。この操作を5回行って以下の基準で評価を行った。
(7) Flame Retardancy Evaluation A polyimide resin (A1) is coated on a tinplate so that the film thickness after curing is 20 μm, dried for 20 minutes with a 70 ° C. dryer, and then cured at 200 ° C. for 1 hour. After cooling, the peeled cured coating film was cut into a strip shape having a width of 10 mm and a length of 70 mm to obtain a measurement sample. One end of the strip sample in the longitudinal direction was fixed to the clamp, and the other end was set to be perpendicular to the ground in the downward direction. The lower end was ignited with a lighter and the combustion behavior of the sample was observed. This operation was performed 5 times and evaluated according to the following criteria.
 ◎:5回中すべての試料で着火後クランプまで燃えずに自己消火する。
 ○:5回中2~4の試料で着火後クランプまで燃えずに自己消火する。
 △:5回中1回の試料で着火後クランプまで燃えずに自己消火する。
 ×:5回中すべての試料で着火後クランプまで燃えつきる。
A: Self-extinguish without igniting the clamp after ignition for all samples in 5 times.
○: Self-extinguish without igniting the clamp after ignition with 2-4 samples out of 5 times.
Δ: Self-extinguish without igniting to clamp after ignition with 1 sample out of 5 times.
X: All samples in 5 times burned up to the clamp after ignition.
 実施例2
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、第2表の原料を仕込んだ。攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、更に2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度が7Pa・sの樹脂固形分16%で溶液酸価が1.8(KOHmg/g)のポリイミド樹脂(A2)の溶液(ポリイミド樹脂がγ-ブチロラクトンに溶解した樹脂組成物)を得た。尚、樹脂の固形分酸価は11.25(KOHmg/g)であった。また、ゲルパーミエーションクロマトグラフィー(GPC)の測定の結果、重量平均分子量39000であった。
Example 2
The raw materials shown in Table 2 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A2) having a resin solid content of 16% with a viscosity of 7 Pa · s at 25 ° C. and a solution acid value of 1.8 (KOHmg / g) (resin composition in which the polyimide resin is dissolved in γ-butyrolactone) Got. The solid content acid value of the resin was 11.25 (KOH mg / g). Moreover, it was the weight average molecular weight 39000 as a result of the measurement of a gel permeation chromatography (GPC).
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 第2表の脚注(以下同様)
 BPF:ビスフェノールF
Footnotes in Table 2 (the same applies hereinafter)
BPF: Bisphenol F
 得られたポリイミド樹脂(A2)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、80.96g(1.84モル)であった。よって実施例1同様にイソシアネート基の全量がイミド結合およびアミド結合に変換していて以下の代表構造式と結論された。 The obtained polyimide resin (A2) solution was applied to a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm −1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 式中の構造単位A1~A6の構造単位は実施例1に示した構造単位とそれぞれ同一である。またa1からa7は構造単位の存在割合としてのモル比を示し以下と結論される。a1:a2:a3:a4:a5:a6=24.4 :42.2 :8.1 :8.2 :14.3 :2.7 The structural units of structural units A1 to A6 in the formula are the same as the structural units shown in Example 1, respectively. Moreover, a1 to a7 show the molar ratio as the abundance ratio of the structural unit, and it is concluded as follows. a1: a2: a3: a4: a5: a6 = 24.4: 42.2: 8.1: 8.2: 14.3: 2.7
 得られたポリイミド樹脂(A2)の溶液の評価を実施例1と同様にして評価を行い、その結果を第5表に示す。 Evaluation of the obtained polyimide resin (A2) solution was conducted in the same manner as in Example 1, and the results are shown in Table 5.
 実施例3
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、第3表に示す原料を仕込んだ。攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、更に2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度が8Pa・sの樹脂固形分16%で溶液酸価が2.3(KOHmg/g)のポリイミド樹脂(A3)の溶液(ポリイミド樹脂がγ-ブチロラクトンに溶解した樹脂組成物)を得た。尚、樹脂の固形分酸価は14.3(KOHmg/g)であった。また、ゲルパーミエーションクロマトグラフィー(GPC)の測定の結果、重量平均分子量35000であった。
Example 3
The raw materials shown in Table 3 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A3) having a resin solid content of 16% with a viscosity of 8 Pa · s at 25 ° C. and a solution acid value of 2.3 (KOHmg / g) (resin composition in which the polyimide resin is dissolved in γ-butyrolactone) Got. The solid content acid value of the resin was 14.3 (KOH mg / g). Moreover, it was the weight average molecular weight 35000 as a result of the measurement of a gel permeation chromatography (GPC).
Figure JPOXMLDOC01-appb-T000055
BP: ビフェノール
Figure JPOXMLDOC01-appb-T000055
BP: Biphenol
 得られたポリイミド樹脂(A3)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、80.96g(1.84モル)であった。よって実施例1同様にイソシアネート基の全量がイミド結合およびアミド結合に変換していて以下の代表構造式と結論された。 The obtained polyimide resin (A3) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample obtained by volatilizing the solvent was measured. As a result, 2270 cm −1, which is the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 式中の構造単位A1、A2、A4及びA5の構造単位は実施例1に示した構造単位とそれぞれ同一である。またa1、a2、a4及びa5は構造単位の存在割合としてのモル比を示し以下と結論される。
 a1:a2:a4:a5=30:45:10:15
The structural units of structural units A1, A2, A4 and A5 in the formula are the same as the structural units shown in Example 1, respectively. Moreover, a1, a2, a4 and a5 show the molar ratio as the abundance ratio of the structural unit, and are concluded as follows.
a1: a2: a4: a5 = 30: 45: 10: 15
 得られたポリイミド樹脂(A3)の溶液の評価を実施例1と同様にして評価を行い、その結果を表5に示す。 Evaluation of the obtained polyimide resin (A3) solution was performed in the same manner as in Example 1, and the results are shown in Table 5.
 実施例4
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、第4表に示す原料を仕込んだ。攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、更に2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度が10Pa・sの樹脂固形分16%で溶液酸価が2.7(KOHmg/g)のポリイミド樹脂(A4)の溶液(ポリイミド樹脂がγ-ブチロラクトンに溶解した樹脂組成物)を得た。尚、樹脂の固形分酸価は16.9(KOHmg/g)であった。また、ゲルパーミエーションクロマトグラフィー(GPC)の測定の結果、重量平均分子量23000であった。
Example 4
The raw materials shown in Table 4 were charged into a flask equipped with a stirrer, a thermometer and a condenser. While stirring, the temperature was raised to 80 ° C. while paying attention to heat generation. The mixture was dissolved and reacted at this temperature for 1 hour, further heated to 160 ° C. over 2 hours, and then reacted at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. Solution of polyimide resin (A4) having a resin solid content of 16% with a viscosity of 10 Pa · s at 25 ° C. and a solution acid value of 2.7 (KOHmg / g) (resin composition in which the polyimide resin is dissolved in γ-butyrolactone) Got. The solid content acid value of the resin was 16.9 (KOH mg / g). Moreover, it was the weight average molecular weight 23000 as a result of the measurement of a gel permeation chromatography (GPC).
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
 得られたポリイミド樹脂(A4)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、80.96g(1.84モル)であった。よって実施例1同様にイソシアネート基の全量がイミド結合およびアミド結合に変換していて以下の代表構造式と結論された。 The obtained polyimide resin (A4) solution was applied to a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm −1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 80.96 g (1.84 mol), which was monitored by the change in the weight charged to the flask. Therefore, as in Example 1, the total amount of isocyanate groups was converted to imide bonds and amide bonds, and the following representative structural formula was concluded.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 式中の構造単位A1、A2及びA3の構造単位は実施例1に示した構造単位とそれぞれ同一である。構造単位A´4、A´5、A´6は下記式で表される構造単位である。またa1~a3及びa´4~a´6は構造単位の存在割合としてのモル比を示し以下と結論される。
 a1:a2:a3:a´4:a´5:a´6=24.4:42.2:8.1:8.2:14.3:2.7
The structural units of structural units A1, A2 and A3 in the formula are the same as the structural units shown in Example 1, respectively. The structural units A′4, A′5, and A′6 are structural units represented by the following formula. Moreover, a1 to a3 and a′4 to a′6 indicate the molar ratios as the proportions of the structural units, and are concluded as follows.
a1: a2: a3: a′4: a′5: a′6 = 24.4: 42.2: 8.1: 8.2: 14.3: 2.7
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000059
 得られたポリイミド樹脂(A4)の溶液の評価を実施例1と同様にして評価を行い、その結果を第5表に示す。 Evaluation of the obtained polyimide resin (A4) solution was conducted in the same manner as in Example 1, and the results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
 実施例5~7
 第6表に示す配合で調製し、本発明の熱硬化性樹脂組成物1~4を得た。実施例1と同様の評価を実施し、その結果を第7表に示す。但し、第6表中の配合数値は、樹脂固形分量を示す。
Examples 5-7
The compositions shown in Table 6 were prepared to obtain thermosetting resin compositions 1 to 4 of the present invention. The same evaluation as in Example 1 was performed, and the results are shown in Table 7. However, the compounding numerical value in Table 6 shows the resin solid content.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 第6表の脚注
 HP4032:1,6-ジヒドロキシナフタレンのエポキシ化樹脂。エポキシ当量=141。下記一般式にその代表構造を示す。
Footnotes in Table 6 HP4032: Epoxidized resin of 1,6-dihydroxynaphthalene. Epoxy equivalent = 141. The following general formula shows the representative structure.
Figure JPOXMLDOC01-appb-C000062
 HP4700:2,7-ジヒドロキシナフタレンのエポキシ化樹脂のノボラック体。エポキシ当量=163。下記一般式にその代表構造を示す。
Figure JPOXMLDOC01-appb-C000062
HP4700: Novolac body of epoxidized resin of 2,7-dihydroxynaphthalene. Epoxy equivalent = 163. The following general formula shows the representative structure.
Figure JPOXMLDOC01-appb-C000063
 EMZ:硬化触媒、2-エチル-4-メチルイミダゾール
Figure JPOXMLDOC01-appb-C000063
EMZ: curing catalyst, 2-ethyl-4-methylimidazole
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 比較例1
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、GBL 337.8gとMDI 225g(0.9モル)とTMA 192(1モル)とを仕込み、攪拌を行いながら発熱に注意して2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度を測定しようとしたが、結晶化し粘度が測定できなかった。樹脂固形分は50%であった。これをポリイミド樹脂(a1)の溶液と略記する。尚、樹脂溶液酸価〔16.6(KOHmg/g)〕より平均分子量は3400と結論される。
Comparative Example 1
A flask equipped with a stirrer, a thermometer and a condenser was charged with 337.8 g of GBL, 225 g of MDI (0.9 mol) and TMA 192 (1 mol). After heating up to 160 degreeC, it was made to react at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. An attempt was made to measure the viscosity at 25 ° C., but crystallization occurred and the viscosity could not be measured. The resin solid content was 50%. This is abbreviated as polyimide resin (a1) solution. The resin solution acid value [16.6 (KOHmg / g)] concludes that the average molecular weight is 3400.
 得られたポリイミド樹脂(a1)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、79.2g(1.8モル)であった。これよりイソシアネート基の全量である1.8モルの全量がイミド結合およびアミド結合に変換していると結論される。 The obtained solution of the polyimide resin (a1) was coated on a KBr plate, a result of measuring the infrared absorption spectrum of the sample after evaporation of the solvent, 2270 cm-1 which is the characteristic absorption of an isocyanate group was disappeared completely, 725 cm - Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 79.2 g (1.8 mol), which was monitored by the change in the weight charged to the flask. From this, it is concluded that the total amount of 1.8 moles, which is the total amount of isocyanate groups, has been converted to imide bonds and amide bonds.
 得られたポリイミド樹脂(a1)の溶液を用いた以外は実施例1と同様にしてポリイミド樹脂(a1)を評価した。その結果を第8表に示す。 The polyimide resin (a1) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a1) solution was used. The results are shown in Table 8.
 比較例2
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、GBL 345.9gとMDI 237.5g(0.95モル)とTMA 192(1モル)とを仕込み、攪拌を行いながら発熱に注意して2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度を測定しようとしたが、結晶化し粘度が測定できなかった。樹脂固形分は50%であった。これをポリイミド樹脂(a2)の溶液と略記する。尚、樹脂溶液酸価〔8.1(KOHmg/g)〕より平均分子量は6900と結論される。
Comparative Example 2
A flask equipped with a stirrer, a thermometer and a condenser was charged with 345.9 g of GBL, 237.5 g (0.95 mol) of MDI and 192 (1 mol) of TMA, and stirred for 2 hours while paying attention to heat generation. The temperature was raised to 160 ° C. over a period of time, and the reaction was carried out at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown transparent liquid. An attempt was made to measure the viscosity at 25 ° C., but crystallization occurred and the viscosity could not be measured. The resin solid content was 50%. This is abbreviated as polyimide resin (a2) solution. The resin solution acid value [8.1 (KOHmg / g)] concludes that the average molecular weight is 6900.
 得られたポリイミド樹脂(a2)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、83.6g(1.9モル)であった。これよりイソシアネート基の全量である1.9モルの全量がイミド結合およびアミド結合に変換していると結論される。 The obtained polyimide resin (a2) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm −1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 83.6 g (1.9 mol), which was monitored by the change in the weight charged to the flask. From this, it is concluded that the total amount of 1.9 mol, which is the total amount of isocyanate groups, has been converted to imide bonds and amide bonds.
 得られたポリイミド樹脂(a2)の溶液を用いた以外は実施例1と同様にしてポリイミド樹脂(a2)を評価した。その結果を第8表に示す。 The polyimide resin (a2) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a2) solution was used. The results are shown in Table 8.
 比較例3
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、GBL 292.32gとMDI 190g(0.76モル)とTMA 130.56(0.68モル)及びBTDA 38.64g(0.12モル)とを仕込み、攪拌を行いながら発熱に注意して2時間かけて160℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体から濁りを発生した。25℃での粘度を測定しようとしたが、結晶化し粘度が測定できなかった。樹脂固形分は50%であった。これをポリイミド樹脂(a3)の溶液(ポリイミド樹脂がγ-ブチロラクトンに溶解しなかった樹脂組成物)と略記する。尚、樹脂溶液酸価〔7.7(KOHmg/g)〕より平均分子量は7300と結論される。
Comparative Example 3
GBL 292.32 g, MDI 190 g (0.76 mol), TMA 130.56 (0.68 mol) and BTDA 38.64 g (0.12 mol) were added to a flask equipped with a stirrer, a thermometer and a condenser. While charging and stirring, paying attention to heat generation, the temperature was raised to 160 ° C. over 2 hours, followed by reaction at this temperature for 5 hours. The reaction proceeded with the foaming of carbon dioxide gas, and the system was turbid from a brown transparent liquid. An attempt was made to measure the viscosity at 25 ° C., but crystallization occurred and the viscosity could not be measured. The resin solid content was 50%. This is abbreviated as a solution of polyimide resin (a3) (resin composition in which polyimide resin was not dissolved in γ-butyrolactone). From the resin solution acid value [7.7 (KOHmg / g)], it is concluded that the average molecular weight is 7300.
 得られたポリイミド樹脂(a3)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cm-1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、66.88g(1.52モル)であった。これよりイソシアネート基の全量である1.52モルの全量がイミド結合およびアミド結合に変換していると結論される。 The obtained solution of the polyimide resin (a3) was coated on a KBr plate, a result of measuring the infrared absorption spectrum of the sample after evaporation of the solvent, 2270 cm-1 which is the characteristic absorption of an isocyanate group was disappeared completely, 725 cm - Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm −1 . The amount of carbon dioxide generated was 66.88 g (1.52 mol), which was monitored by the change in the weight of the flask charged. From this, it is concluded that the total amount of 1.52 mol, which is the total amount of isocyanate groups, has been converted into imide bonds and amide bonds.
 得られたポリイミド樹脂(a3)の溶液を用いた以外は実施例1と同様にしてポリイミド樹脂(a3)を評価した。その結果を第8表に示す。 The polyimide resin (a3) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a3) solution was used. The results are shown in Table 8.
 比較例4
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、DMAC(ジメチルアセトアミド)140gと、TMEG(エチレングリコールビスアンヒドロトリメリテート)98.4g(0.24モル)と、BPS(ビスフェノールS)40g(0.16モル)と、MDI(ジフェニルメタンジイソシアネート)40g(0.16モル)と、HDI(ヘキサメチレンジイソシアネート)26.9g(0.16モル)とを仕込み、攪拌を行いながら発熱に注意して80℃に昇温し、この温度で1時間かけて溶解、反応させ、更に2時間かけて120℃まで昇温した後、この温度で1時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の液体となった。DMACにて樹脂固形分濃度を55%に調整し、25℃での粘度が100Pa・sのポリイミド樹脂(a4)の溶液を得た。
Comparative Example 4
In a flask equipped with a stirrer, a thermometer and a condenser, 140 g of DMAC (dimethylacetamide), 98.4 g (0.24 mol) of TMEG (ethylene glycol bisanhydrotrimellitate), and 40 g of BPS (bisphenol S) ( 0.16 mol), 40 g (0.16 mol) of MDI (diphenylmethane diisocyanate) and 26.9 g (0.16 mol) of HDI (hexamethylene diisocyanate), and paying attention to heat generation while stirring. The temperature was raised to 0 ° C., dissolved and reacted at this temperature for 1 hour, further heated to 120 ° C. over 2 hours, and then reacted at this temperature for 1 hour. The reaction proceeded with the foaming of carbon dioxide, and the system became a brown liquid. The resin solid content concentration was adjusted to 55% with DMAC, and a polyimide resin (a4) solution having a viscosity at 25 ° C. of 100 Pa · s was obtained.
 得られたポリイミド樹脂(a4)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm-1が完全に消滅し、725cm-1と1780cm-1と1720cmとにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ仕込み重量の変化で追跡し、21.1g(0.48モル)であった。これよりTMEGの酸無水物基の全量0.48モルの全量がイミド結合に変換していて、残りのイソシアネート基は、BPSとウレタン結合を形成して樹脂に連結されていると結論される。 The obtained polyimide resin (a4) solution was coated on a KBr plate, and the infrared absorption spectrum of the sample in which the solvent was volatilized was measured. As a result, 2270 cm −1 , the characteristic absorption of the isocyanate group, disappeared completely, and 725 cm Characteristic absorption of the imide ring was confirmed at 1 , 1780 cm −1 and 1720 cm + . Further, the amount of carbon dioxide generated was 21.1 g (0.48 mol), which was traced by the change in the weight charged to the flask. From this, it is concluded that the total amount of 0.48 mol of TMEG acid anhydride groups has been converted to imide bonds, and the remaining isocyanate groups are linked to the resin by forming urethane bonds with BPS.
 得られたポリイミド樹脂(a4)の溶液を用いた以外は実施例1と同様にしてポリイミド樹脂(a4)を評価した。但し溶剤溶解性と経時溶剤溶解性の評価に関しては、合成溶剤をDMACとした為、ガンマブチロラクトンをDMACに変更して評価を行った。その結果を第8表に示す。 The polyimide resin (a4) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin (a4) solution was used. However, the solvent solubility and the solvent solubility over time were evaluated by changing the gamma butyrolactone to DMAC because the synthetic solvent was DMAC. The results are shown in Table 8.
 比較例5
 ポリイミド樹脂(a4)80部、N680(大日本インキ化学工業株式会社製クレゾールノボラック型エポキシ樹脂 エポキシ当量214 軟化点81℃)20部及びトリフェニルフォスフィン0.5部を混合し、比較対象用ポリイミド樹脂組成物(a5)を調製した。
Comparative Example 5
Polyimide resin (a4) 80 parts, N680 (Dainippon Ink Chemical Co., Ltd. cresol novolac type epoxy resin epoxy equivalent 214 softening point 81 ° C.) 20 parts and triphenylphosphine 0.5 part were mixed, and polyimide for comparison A resin composition (a5) was prepared.
 得られたポリイミド樹脂組成物(a5)を用いた以外は実施例1と同様にしてポリイミド樹脂組成物(a5)を評価した。但し溶剤溶解性と経時溶剤溶解性の評価に関しては、合成溶剤をDMACとした為、ガンマブチロラクトンをDMACに変更して評価を行った。その結果を第8表に示す。 The polyimide resin composition (a5) was evaluated in the same manner as in Example 1 except that the obtained polyimide resin composition (a5) was used. However, the solvent solubility and the solvent solubility over time were evaluated by changing the gamma butyrolactone to DMAC because the synthetic solvent was DMAC. The results are shown in Table 8.
 比較例6
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、TMA 172.9g(0.9モル)、3,3′-4,4′-ジフェニルエーテルテトラカルボン酸二無水物31g(0.1モル)、DMBPDI 264.3g(1モル)、及びGBL 2155gを仕込み、攪拌を行いながら発熱に注意して2時間かけて150℃まで昇温した。この温度で反応進行されたがトップ温度に昇温してから1時間後からフラスコ系内に濁りが生じた。さらにこの温度で6時間反応させて取り出したが、室温で溶剤と固形樹脂分が分離し不均一状態となったその為、この時点で合成を中止した。
Comparative Example 6
To a flask equipped with a stirrer, a thermometer and a condenser, 172.9 g (0.9 mol) of TMA, 31 g (0.1 mol) of 3,3′-4,4′-diphenyl ether tetracarboxylic dianhydride, DMBPDI 264.3 g (1 mol) and 2155 g of GBL were charged, and the temperature was raised to 150 ° C. over 2 hours while stirring while paying attention to heat generation. Although the reaction proceeded at this temperature, turbidity occurred in the flask system 1 hour after the temperature was raised to the top temperature. Furthermore, although it was made to react at this temperature for 6 hours and took out, the solvent and solid resin part isolate | separated at room temperature and became non-uniform | heterogenous state, Therefore Synthesis | combination was stopped at this time.
 比較例7
 攪拌装置、温度計およびコンデンサーを付けたフラスコに、TMA96g(0.5モル)、セバシン酸101g(0.5モル)、MDI:115g(0.46モル)、TDI 87g(0.5モル)と溶剤としてシクロヘキサノン:399g(固形分濃度50%)を仕込み、触媒としてジアザビシクロウンデセン0.02モルを添加して140℃で3時間反応させた。さらにMDI:5g(0.02モル)を追加して140℃で2時間反応を行い固形分濃度25%になるようにシクロヘキサノンにて希釈して取り出し、ポリイミド樹脂(a7)の溶液を得た。実施例1と同様の評価を行い、その結果を第9表に示す。但し溶剤溶解性と経時溶剤溶解性の評価に関しては、合成溶剤をシクロヘキサノンとした為、ガンマブチロラクトンをシクロヘキサノンに変更して評価を行った。
Comparative Example 7
In a flask equipped with a stirrer, a thermometer and a condenser, TMA 96 g (0.5 mol), sebacic acid 101 g (0.5 mol), MDI: 115 g (0.46 mol), TDI 87 g (0.5 mol) Cyclohexanone: 399 g (solid content concentration: 50%) was charged as a solvent, 0.02 mol of diazabicycloundecene was added as a catalyst, and the mixture was reacted at 140 ° C. for 3 hours. Further, 5 g (0.02 mol) of MDI was added and reacted at 140 ° C. for 2 hours, diluted with cyclohexanone to a solid content concentration of 25%, and taken out to obtain a solution of polyimide resin (a7). The same evaluation as in Example 1 was performed, and the results are shown in Table 9. However, the solvent solubility and the solvent solubility over time were evaluated by changing the gamma-butyrolactone to cyclohexanone because the synthetic solvent was cyclohexanone.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
合成例1で得られた本発明のポリイミド樹脂の赤外線吸収スペクトルである。2 is an infrared absorption spectrum of the polyimide resin of the present invention obtained in Synthesis Example 1. 合成例1で得られた本発明のポリイミド樹脂の核磁気共鳴吸収スペクトルである。2 is a nuclear magnetic resonance absorption spectrum of the polyimide resin of the present invention obtained in Synthesis Example 1.

Claims (17)

  1. 一般式(1)で表される構造と一般式(2)で表される構造とを有することを特徴とするポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (Rは、ジイソシアネートからNCO基を除いた残基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは1分子中に2個以上のフェノール性水酸基を有するフェノール系化合物から2個のフェノール性水酸基を除いた残基を示す。)
    A polyimide resin having a structure represented by the general formula (1) and a structure represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 represents a residue obtained by removing the NCO group from diisocyanate.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, X represents a residue obtained by removing two phenolic hydroxyl groups from a phenolic compound having two or more phenolic hydroxyl groups in one molecule.)
  2. 前記一般式(1)中のRが下記一般式(3)、(4)または(5)の構造を有する請求項1記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式中Rはそれぞれ独立して水素原子、炭素原子数1~9の炭化水素基を示す。*は結合点を示す。)
    The polyimide resin according to claim 1, wherein R 1 in the general formula (1) has a structure represented by the following general formula (3), (4), or (5).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, each R 2 independently represents a hydrogen atom or a hydrocarbon group having 1 to 9 carbon atoms. * Represents a bonding point.)
  3. 前記一般式(1)中のRが下記一般式(5-1)で表される構造を有する請求項1記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (*は結合点を示す。)
    The polyimide resin according to claim 1, wherein R 1 in the general formula (1) has a structure represented by the following general formula (5-1).
    Figure JPOXMLDOC01-appb-C000004
    (* Indicates a bonding point.)
  4. 更に下記一般式(6)で表される構造を有する請求項1~3のいずれか1項記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000005
    (Rは、ジイソシアネートからNCO基を除いた残基を示す。)
    The polyimide resin according to any one of claims 1 to 3, further having a structure represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000005
    (R 1 represents a residue obtained by removing the NCO group from diisocyanate.)
  5. 更に下記一般式(7)で表される構造を有する請求項1~4のいずれか1項記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000006
    The polyimide resin according to any one of claims 1 to 4, further having a structure represented by the following general formula (7).
    Figure JPOXMLDOC01-appb-C000006
  6. 下記一般式(8-1)で表される構造単位と(8-2)で表される構造単位とを有する請求項4記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000007
    (式中、m、nは、それぞれ1~100である。)
    The polyimide resin according to claim 4, comprising a structural unit represented by the following general formula (8-1) and a structural unit represented by (8-2).
    Figure JPOXMLDOC01-appb-C000007
    (Wherein m and n are each 1 to 100)
  7. 下記一般式(9)で表される構造を有する請求項4記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000008
    (式中、m、n、p、qは、それぞれ1~100である。Yは前記一般式(3)または一般式(4)で表される構造を示す。)
    The polyimide resin of Claim 4 which has a structure represented by following General formula (9).
    Figure JPOXMLDOC01-appb-C000008
    (Wherein m, n, p and q are each 1 to 100. Y represents the structure represented by the general formula (3) or the general formula (4).)
  8. 下記で示される構造単位を有し、且つ、重量平均分子量が1000~100000である請求項1記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000009
    (式中のa1、a2、a3、a4、a5およびa6はそれぞれ1~10000である。Yは前記一般式(3)または一般式(4)で表される構造を示す。*はアミド結合またはイミド結合を形成しうる結合点を示す。)
    The polyimide resin according to claim 1, having a structural unit shown below and having a weight average molecular weight of 1,000 to 100,000.
    Figure JPOXMLDOC01-appb-C000009
    (Wherein a1, a2, a3, a4, a5 and a6 are each 1 to 10000. Y represents the structure represented by the general formula (3) or the general formula (4). * Represents an amide bond or (A bond point that can form an imide bond is shown.)
  9. 前記一般式(10-1)で表される構造単位と一般式(10-2)で表される構造単位を、それぞれ10~40重量%含有する請求項8記載のポリイミド樹脂。 The polyimide resin according to claim 8, comprising 10 to 40% by weight of the structural unit represented by the general formula (10-1) and the structural unit represented by the general formula (10-2), respectively.
  10. 前記一般式(2)のXが下記式(2-1)、式(2-2)、式(2-4)または式(2-5)の構造である請求項1~9のいずれか1項記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000010
    〔式中Rは、単結合あるいは2価の連結基であり、Rは水素または炭素原子数1~5のアルキル基を示す。Rは、水素または炭素原子数1~5のアルキル基、または下記一般式(2-3)で示される構造を示す。Rは、直接結合あるいは2価の連結基であり、Rは同一でも異なっていても良く、水素原子または炭素原子数1~18のアルキル基を示す。aとbとcとの合計は1以上で、*は連結基である。〕
    Figure JPOXMLDOC01-appb-C000011
    10. The X of the general formula (2) is a structure of the following formula (2-1), formula (2-2), formula (2-4) or formula (2-5) Item polyimide resin.
    Figure JPOXMLDOC01-appb-C000010
    [Wherein R 2 represents a single bond or a divalent linking group, and R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms. R 4 represents hydrogen or an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following general formula (2-3). R 5 is a direct bond or a divalent linking group, and R 6 may be the same or different and represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms. The sum of a, b and c is 1 or more, and * is a linking group. ]
    Figure JPOXMLDOC01-appb-C000011
  11. 前記一般式(2)のXが下記式(2-6)で表される構造である請求項10記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000012
    (*は結合点を示す。)
    The polyimide resin according to claim 10, wherein X in the general formula (2) has a structure represented by the following formula (2-6).
    Figure JPOXMLDOC01-appb-C000012
    (* Indicates a bonding point.)
  12. 樹脂の酸価が1~50である請求項1~11のいずれか1項記載のポリイミド樹脂。 The polyimide resin according to any one of claims 1 to 11, wherein the acid value of the resin is 1 to 50.
  13. 25℃のガンマブチロラクトンに10重量%の濃度で溶解する請求項1~12のいずれか1項記載のポリイミド樹脂。 The polyimide resin according to any one of claims 1 to 12, which is soluble in gamma-butyrolactone at 25 ° C at a concentration of 10% by weight.
  14. 請求項1~13のいずれか1項記載のポリイミド樹脂を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the polyimide resin according to any one of claims 1 to 13.
  15. 2個以上のフェノール性水酸基を有するポリフェノール化合物(A)とジイソシアネート化合物を含有するポリイソシアネート化合物(B)とシクロヘキサントリカルボン酸無水物を含有する酸無水物化合物(C)とをとを反応させることを特徴とするポリイミド樹脂の製造方法。 Reacting a polyphenol compound (A) having two or more phenolic hydroxyl groups, a polyisocyanate compound (B) containing a diisocyanate compound, and an acid anhydride compound (C) containing cyclohexanetricarboxylic acid anhydride. A method for producing a characteristic polyimide resin.
  16. 請求項1~13のいずれか1項記載のポリイミド樹脂とエポキシ樹脂とを含有することを特徴とする熱硬化性樹脂組成物。 A thermosetting resin composition comprising the polyimide resin according to any one of claims 1 to 13 and an epoxy resin.
  17. 請求項16記載の熱硬化性樹脂組成物を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the thermosetting resin composition according to claim 16.
PCT/JP2010/052669 2009-02-27 2010-02-23 Polyimide resin, process for production of polyimide resin, polyimide resin compositions, and cured products of same WO2010098296A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501585A JPWO2010098296A1 (en) 2009-02-27 2010-02-23 Polyimide resin, method for producing polyimide resin, polyimide resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-045814 2009-02-27
JP2009045814 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098296A1 true WO2010098296A1 (en) 2010-09-02

Family

ID=42665503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052669 WO2010098296A1 (en) 2009-02-27 2010-02-23 Polyimide resin, process for production of polyimide resin, polyimide resin compositions, and cured products of same

Country Status (3)

Country Link
JP (1) JPWO2010098296A1 (en)
TW (1) TW201035172A (en)
WO (1) WO2010098296A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105558A1 (en) * 2011-02-01 2012-08-09 Dic株式会社 Thermosetting resin composition, cured product thereof, and interlayer adhesive film for printed wiring board
JP2013100419A (en) * 2011-11-09 2013-05-23 Dic Corp Thermosetting resin composition and interlayer adhesion film for printed wiring board
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179565A (en) * 2003-12-22 2005-07-07 Toyobo Co Ltd Polyamide imide resin and its varnish
JP2007138000A (en) * 2005-11-17 2007-06-07 Toyobo Co Ltd Polyamideimide resin varnish and method for producing the same
JP2007137050A (en) * 2005-10-21 2007-06-07 Mitsubishi Gas Chem Co Inc Metal foil-clad laminate and method of manufacturing the same
JP2007277518A (en) * 2005-12-15 2007-10-25 Dainippon Ink & Chem Inc Thermosetting resin composition
WO2008072495A1 (en) * 2006-12-12 2008-06-19 Toyo Boseki Kabushiki Kaisha Polyamide-imide resin, colorless transparent flexible metal laminate made of the same, and wiring board
WO2008114858A1 (en) * 2007-03-20 2008-09-25 Mitsui Mining & Smelting Co., Ltd. Resin composition for forming insulating layer of printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179565A (en) * 2003-12-22 2005-07-07 Toyobo Co Ltd Polyamide imide resin and its varnish
JP2007137050A (en) * 2005-10-21 2007-06-07 Mitsubishi Gas Chem Co Inc Metal foil-clad laminate and method of manufacturing the same
JP2007138000A (en) * 2005-11-17 2007-06-07 Toyobo Co Ltd Polyamideimide resin varnish and method for producing the same
JP2007277518A (en) * 2005-12-15 2007-10-25 Dainippon Ink & Chem Inc Thermosetting resin composition
WO2008072495A1 (en) * 2006-12-12 2008-06-19 Toyo Boseki Kabushiki Kaisha Polyamide-imide resin, colorless transparent flexible metal laminate made of the same, and wiring board
WO2008114858A1 (en) * 2007-03-20 2008-09-25 Mitsui Mining & Smelting Co., Ltd. Resin composition for forming insulating layer of printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105558A1 (en) * 2011-02-01 2012-08-09 Dic株式会社 Thermosetting resin composition, cured product thereof, and interlayer adhesive film for printed wiring board
JP5278785B2 (en) * 2011-02-01 2013-09-04 Dic株式会社 Thermosetting resin composition, cured product thereof and interlayer adhesive film for printed wiring board
JP2013100419A (en) * 2011-11-09 2013-05-23 Dic Corp Thermosetting resin composition and interlayer adhesion film for printed wiring board
WO2019026806A1 (en) * 2017-08-02 2019-02-07 旭化成株式会社 Polyimide varnish and method for producing same
JPWO2019026806A1 (en) * 2017-08-02 2020-02-06 旭化成株式会社 Polyimide varnish and method for producing the same
US11702565B2 (en) 2017-08-02 2023-07-18 Asahi Kasei Kabushiki Kaisha Polyimide varnish and method for producing same

Also Published As

Publication number Publication date
JPWO2010098296A1 (en) 2012-08-30
TW201035172A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
JP4716149B2 (en) Polyimide resin, curable polyimide resin composition and cured product
JP4807603B2 (en) Thermosetting resin composition and cured product thereof
JP5278785B2 (en) Thermosetting resin composition, cured product thereof and interlayer adhesive film for printed wiring board
JP5326396B2 (en) Thermosetting resin composition
JP5092484B2 (en) Thermosetting polyimide resin composition
JP5494341B2 (en) Thermosetting resin composition, cured product thereof and interlayer adhesive film for printed wiring board
JP5233510B2 (en) Thermosetting resin composition
JP5655451B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5119757B2 (en) Polyimide resin composition
JP2009179697A (en) Polyimide resin, polyimide resin composition, and method for producing polyimide resin
WO2010098296A1 (en) Polyimide resin, process for production of polyimide resin, polyimide resin compositions, and cured products of same
JP5092491B2 (en) Thermosetting polyimide resin composition
JP5861915B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5655400B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5577997B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5303860B2 (en) Thermosetting polyimide resin composition
JP5119754B2 (en) Thermosetting polyimide resin composition
JP5633736B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5655446B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5320824B2 (en) Thermosetting resin composition
JP5577996B2 (en) Thermosetting resin composition and interlayer adhesive film for printed wiring board
JP5233329B2 (en) Thermosetting polyimide resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746177

Country of ref document: EP

Kind code of ref document: A1