WO2010098278A1 - Composition for metal film polishing - Google Patents

Composition for metal film polishing Download PDF

Info

Publication number
WO2010098278A1
WO2010098278A1 PCT/JP2010/052618 JP2010052618W WO2010098278A1 WO 2010098278 A1 WO2010098278 A1 WO 2010098278A1 JP 2010052618 W JP2010052618 W JP 2010052618W WO 2010098278 A1 WO2010098278 A1 WO 2010098278A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
acid
copper
polishing composition
rate
Prior art date
Application number
PCT/JP2010/052618
Other languages
French (fr)
Japanese (ja)
Inventor
義之 松村
Original Assignee
ニッタ・ハース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ・ハース株式会社 filed Critical ニッタ・ハース株式会社
Priority to JP2011501579A priority Critical patent/JPWO2010098278A1/en
Publication of WO2010098278A1 publication Critical patent/WO2010098278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a polishing composition for polishing a metal film.
  • CMP Chemical Mechanical Polishing
  • LSI large scale integrated circuit
  • Patent Document 1 JP-A-2005-183684. Issue gazette).
  • a polishing rate of 5400 nm / min and a dicing amount of 150 nm (wiring width: 100 ⁇ m) are obtained.
  • a metal film polishing composition containing an oxidizing agent, a compound that dissolves copper and forms a complex with copper, a dissolution rate accelerator, and a dissolution inhibitor is also known (Patent Document 2: International Publication No. 2006). / 030595 publication).
  • the dissolution rate accelerator promotes dissolution of copper under load.
  • a dissolution inhibitor suppresses dissolution of copper that is not loaded.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2005-014206). Publication).
  • a polishing rate of 52 to 64 nm / min is obtained by polishing the tantalum film using this metal film polishing composition.
  • Patent Documents 1 to 3 when the metal film polishing composition described in Patent Documents 1 to 3 is used, there is a problem that a sufficient effect cannot be obtained in terms of dishing and suppressing the etching rate.
  • an object of the present invention is to provide a polishing composition capable of suppressing an etching rate and a dishing amount while maintaining a high polishing rate. .
  • the polishing composition contains spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and an anionic surfactant.
  • the anionic surfactant includes first and second anionic surfactants.
  • the first anionic surfactant has one or more benzene rings.
  • the second anionic surfactant has a branched chain structure.
  • the first anionic surfactant contains an alkyl group having 9 or more carbon atoms.
  • the polishing accelerator is made of phosphoric acid or a salt of phosphoric acid.
  • the content of the anionic surfactant is in the range of 0.1 to 1.5% by weight with respect to the entire polishing composition.
  • the polishing composition further contains a water-soluble polymer substance.
  • the polishing composition according to the embodiment of the present invention includes spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and an anionic surfactant.
  • the hydrophilic group of the anionic surfactant is electrically adsorbed on the copper surface, and the copper surface is covered with the hydrophobic group, thereby preventing the polishing slurry from contacting the copper surface.
  • the etching rate and dishing amount can be suppressed while maintaining the polishing rate high.
  • the polishing composition according to the embodiment of the present invention includes a first anionic surfactant having spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and one or more benzene rings. And a second anionic surfactant having a branched chain structure. Then, by polishing the metal film using the polishing composition according to the embodiment, the oxidation of the metal film surface and the formation of the metal complex layer (fragile layer) sequentially proceed to polish the metal film surface, The adsorption rate of the first and second anionic surfactants to the metal film is different from the adsorption rate of the first anionic surfactant alone to the metal film and the second anionic surfactant alone to the metal film.
  • the metal film formed in the wiring groove or the via hole has these two kinds of anionic properties.
  • the surfactant By being covered quickly with the surfactant, it is protected from etching and mechanical contact, and the amount of dishing can be reduced.
  • the polishing composition according to the embodiment of the present invention further includes a water-soluble polymer substance.
  • the water-soluble polymer substance covers even a slight gap between the hydrophobic groups of the surfactant.
  • these coating layers are fragile, they can be easily removed with abrasive grains and a polishing pad, and it is difficult to cause a decrease in the polishing rate.
  • the etching rate and dishing amount can be suppressed while maintaining the polishing rate high.
  • Polishing composition COMP1 according to Embodiment 1 of the present invention includes abrasive grains, an oxidizing agent, a polishing accelerator, an anionic surfactant, and a corrosion inhibitor.
  • the polishing composition COMP1 targets a metal film such as copper, copper alloy, tantalum, tantalum nitride, titanium, titanium nitride, and tungsten for polishing.
  • the abrasive grains are made of particles commonly used for polishing a metal film, and are made of, for example, any of colloidal silica, fumed silica, colloidal alumina, fumed alumina, and ceria.
  • the abrasive grains have a true sphere shape.
  • the average particle diameter is, for example, 80 nm.
  • An average particle size of 80 nm means that the particle size of colloidal silica is mainly distributed at 80 nm.
  • Oxidizing agents are hydrogen peroxide, sulfuric acid, hydrochloric acid, nitric acid, iodic acid, iodate (potassium iodate, etc.), periodic acid, periodate (potassium periodate, etc.), persulfate, hypochlorite It consists of 1 type, or 2 or more types, such as an acid and ozone water.
  • Hydrogen peroxide, sulfuric acid, hydrochloric acid, iodate and persulfate are preferred as oxidizing agents, and hydrogen peroxide is particularly preferred.
  • the content of the oxidizing agent is not particularly limited, and is the type of abrasive grains, the particle size and content, the presence or absence of organic acids and other components, the type and content of organic acids and other components, and the subject of polishing. It is appropriately selected according to various conditions such as the type and thickness of the metal film.
  • the polishing accelerator consists of a polishing accelerator 1 and a polishing accelerator 2.
  • the polishing accelerator 1 is made of an accelerator commonly used for polishing a metal film, and is made of, for example, an organic acid or a salt of an organic acid with an alkali metal, an alkaline earth metal, and an amine. More specifically, the polishing accelerator 1 is an organic acid such as malic acid, oxalic acid, malonic acid, L-tartaric acid, citric acid, nicotinic acid, valeric acid, ascorbic acid, adipic acid, pyruvic acid and glycine, or It consists of any of these sodium salts, potassium salts, amine salts, imine salts, quaternary ammonium salts, calcium salts, and halide salts.
  • an organic acid such as malic acid, oxalic acid, malonic acid, L-tartaric acid, citric acid, nicotinic acid, valeric acid, ascorbic acid, adipic acid, pyruvic acid and glycine, or It consists of any
  • the content of these polishing accelerators 1 is not particularly limited, and the type of abrasive grains, particle size and content, organic acid, presence or absence of other components, type and content of organic acid and other components, and polishing target
  • the metal film is appropriately selected according to various conditions such as the type and thickness of the metal film.
  • the content of these polishing accelerators 1 is usually 6% by weight or less, preferably 0.3 to 6% by weight, based on the total amount of the polishing composition COMP1.
  • the polishing accelerator 2 is made of phosphoric acid, for example.
  • phosphoric acid should just dissociate in water and produces a phosphate ion, for example, consists of either orthophosphoric acid (what is called phosphoric acid), metaphosphoric acid, and polyphosphoric acid.
  • the phosphoric acid may be any of condensed phosphoric acids such as pyrophosphoric acid, triphosphoric acid, hexametaphosphoric acid, and cyclophosphoric acid.
  • the salt forming the phosphate is not particularly limited as long as it is a basic substance capable of forming a salt with phosphoric acid.
  • the basic substance include alkali metals such as potassium and sodium, calcium, magnesium, and barium.
  • alkaline earth metals such as ammonia, alkylamines such as methylamine, dimethylamine, ethylamine and diethylamine, and aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine. Of these, ammonia, diethanolamine, triethanolamine, and dimethylamine are preferable.
  • phosphoric acids or salts thereof can be used alone or in combination of two or more.
  • phosphoric acids or salts thereof are blended so that the concentration thereof is about 0.01 to 3.00% by weight with respect to the entire polishing composition COMP1, but preferably the concentration is about 0.05 to The amount is 2.00% by weight, particularly preferably about 0.10 to 1.50% by weight, and most preferably about 0.50 to 1.00% by weight.
  • the anionic surfactant used together with phosphoric acid or a salt thereof includes a surfactant having a functional group that is dissociated in water and becomes an anion.
  • a functional group examples thereof include a sulfonic acid group, a sulfate ester group, a phosphonic acid group, and a carboxylic acid group.
  • a surfactant having the above-described functional group and containing a higher chain hydrocarbon is preferable, and the higher chain hydrocarbon has 9 or more carbon atoms.
  • An anionic surfactant containing a chain hydrocarbon is preferable, and an anionic surfactant containing a chain hydrocarbon having 9 to 20 carbon atoms is particularly preferable.
  • an anionic surfactant containing a chain hydrocarbon having 12 to 18 carbon atoms is particularly preferred.
  • anionic surfactants include higher fatty acid alkali metal salts (soap), higher alcohol sulfates, alkyl sulfates, alkylbenzene sulfonates, aliphatic sulfonates, and polyoxyethylene alkyl ether sulfates. , Aliphatic organic acid salts, and phosphates. These anionic surfactants can be used alone or in combination of two or more.
  • anionic surfactant is not limited to those having a single chain hydrocarbon, and for example, a surfactant containing a plurality of chain hydrocarbons having different carbon numbers can be used without any problem. Can do.
  • Examples of the higher fatty acid constituting the higher fatty acid alkali metal salt include salts of fatty acids having 9 or more carbon atoms and basic substances, and higher fatty acids include fatty acids having 9 to 20 carbon atoms. These fatty acids may be saturated carboxylic acids or unsaturated carboxylic acids. Examples of the fatty acid include nonanoic acid (C9), decanoic acid (C10), undecanoic acid (C11), lauric acid (C12), tetradecanoic acid (C14), hexadecanoic acid (C16), heptadecanoic acid (C17), and octadecane. An acid (C18), an oleic acid (C18), etc. are mentioned.
  • Examples of basic substances that form salts with these include alkali metals such as potassium and sodium, alkaline earth metals such as calcium, magnesium, and barium, ammonia, and alkyl such as methylamine, dimethylamine, ethylamine, and diethylamine. Examples thereof include amino alcohols such as amines, monoethanolamine, diethanolamine, and triethanolamine. Examples of preferred higher fatty acid alkali metal salts include sodium laurate, sodium stearate (sodium octadecanoate), potassium oleate, and castor oil potassium.
  • Examples of the higher alcohol sulfate ester salt include a sulfate ester salt of an alcohol having 9 or more carbon atoms, and preferably an alcohol sulfate ester having 9 to 20 carbon atoms.
  • nona alcohol C9, deca alcohol (C10), undeca alcohol (C11), lauryl alcohol (C12), tridecyl alcohol (13), myristyl alcohol (C14), pentadecyl alcohol (C15) ), And sulfuric acid esters of alcohols such as hexadecyl alcohol (C16), heptadecyl alcohol (C17), and octadecyl alcohol (C18).
  • the alcohol is not limited to those described above.
  • the primary alcohol may be a secondary alcohol or a tertiary alcohol.
  • it may be a saturated alcohol or an unsaturated alcohol.
  • the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used.
  • alkyl sulfate ester salts examples include salts of alkyl sulfate esters having 9 or more carbon atoms.
  • the salts the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used.
  • alkyl sulfate for example, an alkyl sulfate ester having 9 to 20 carbon atoms is preferable.
  • alkyl benzene sulfonate examples include salts of alkyl benzene sulfonic acids having 9 to 20 carbon atoms, and the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used. Specific examples include triethanolamine laurylbenzenesulfonate, sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate, and sodium tetradecylbenzenesulfonate.
  • polyoxyethylene alkyl ether sulfate ester salts examples include those having 9 to 20 carbon atoms, such as sodium polyoxyethylene lauryl ether sulfate.
  • sulfonates include sodium alkyl naphthalene sulfonate, sodium dioctyl sulfosuccinate, sodium dialkyl sulfosuccinate, sodium alkyl diphenyl ether disulfonate, and sodium alkane sulfonate.
  • N-acyl amino acid salts include N-acyl amino acid salts having 9 to 20 carbon atoms, such as sodium N-lauryl glycine and N-myristyl glutamate triethanolamine.
  • surfactants such as dipotassium alkenyl succinate, sodium lauryl sarcosine, sodium lauryl- ⁇ -alanyl, sodium laurylmethyl taurate, and the like can also be suitably used.
  • the polishing composition COMP1 may have two or more anionic functional groups in the molecule as an anionic surfactant.
  • alkylene disulfonic acid, naphthalene disulfonic acid formalin condensate, phenol disulfone examples include compounds having an ether bond such as alkyl diphenyl ether disulfonic acid, alkyl diphenyl ether diphosphonic acid, and alkyl diphenyl ether dicarboxylic acid, and salts thereof.
  • the salt include sodium salt, ammonium salt, triethanolamine salt, disodium salt, diammonium salt, and ditriethanolamine salt.
  • anionic surfactants are blended so as to have a concentration of 0.1 to 1.5% by weight, particularly preferably 0.25 to 0.5%, based on the whole polishing composition COMP1. It mix
  • preferred combinations include a combination of phosphoric acid or a salt thereof and a higher alkylbenzene sulfonate, a combination of phosphoric acid or a salt thereof and an N-acyl amino acid salt, a phosphoric acid or a salt thereof and a polyoxyethylene alkyl ether.
  • a combination of a sulfate ester salt, a combination of phosphoric acid or a salt thereof and a dialkylsulfosuccinate is exemplified.
  • More preferable combinations include a combination of phosphoric acid or a salt thereof and a higher alkylbenzene sulfonate having 12 to 18 carbon atoms, a combination of phosphoric acid or a salt thereof and an N-acyl amino acid salt having 12 to 18 carbon atoms, a phosphoric acid or a salt thereof Examples thereof include a combination of a salt and a polyoxyethylene alkyl ether sulfate ester having 12 to 18 carbon atoms, and a combination of phosphoric acid or a salt thereof and a dialkylsulfosuccinate.
  • particularly preferable combinations include a combination of phosphoric acid or a salt thereof and laurylbenzene sulfonate, sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate or sodium tetradecylbenzenesulfonate, phosphoric acid or a salt thereof and N
  • a combination of sodium lauryl-N-methylglycine, a combination of phosphoric acid or a salt thereof and polyoxyethylene alkyl ether sulfate, a combination of phosphoric acid or a salt thereof and dioctyl sulfosuccinate or sodium di-2-ethylhexyl sulfosuccinate Can be mentioned.
  • the corrosion inhibitor examples include benzotriazole derivatives such as benzotriazole, tolyltriazole, benzotriazole-4-carboxylic acid or its methyl ester, ethyl ester, propyl ester, butyl ester and octyl ester, as well as naphthotriazole or its derivative.
  • Imidazole, quinaldic acid, and invar derivatives are preferable, and benzotriazole and derivatives thereof are particularly preferable.
  • a corrosion inhibitor may be used independently or may use 2 or more types.
  • the content of the corrosion inhibitor is not particularly limited, and the type, size and content of abrasive grains, the presence and absence and type and content of organic acids and other components, the type of metal film to be polished, the film thickness, etc. May be appropriately selected from a wide range according to the various conditions, and is usually 0.005 to 0.5% by weight, preferably 0.01 to 0.3% by weight, based on the entire polishing composition COMP1. .
  • a water-soluble polymer substance can be combined with phosphoric acid or a salt thereof and an anionic surfactant, thereby further suppressing the etching rate.
  • water-soluble polymer substances examples include polycarboxylic acid compounds or water-soluble vinyl alcohol derivatives, and water-soluble polymer substances used in this technical field.
  • polycarboxylic acid includes polyacrylic acid, polymethacrylic acid, and polystyrene acrylic acid
  • water-soluble vinyl derivatives include polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. May be maleic acid / vinyl copolymer and xanthan gum.
  • polycarboxylic acids can also be used as polycarboxylic acid salts.
  • salts include alkali metal salts such as potassium and sodium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. Can be mentioned.
  • Water-soluble cellulose derivatives can also be suitably used as water-soluble polymer substances.
  • Specific examples of water-soluble cellulose derivatives include carboxyalkyl celluloses such as carboxymethyl cellulose and carboxyethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl. Examples thereof include hydroxycelluloses such as cellulose and ethylhydroxyethylcellulose, and alkylcelluloses such as methylcellulose and ethylcellulose.
  • these water-soluble polymer substances are polycarboxylic acid compounds or water-soluble vinyl alcohol derivatives
  • these water-soluble polymer substances preferably have a molecular weight of 50,000 or less, particularly those having a molecular weight of 3000 to 10,000. Is preferred.
  • the molecular weight is preferably 50000 or less, and particularly preferably the molecular weight is 3000 to 25000.
  • These water-soluble polymer substances are blended so as to have a concentration of about 0.001 to 3.00% by weight with respect to the entire polishing composition COMP1.
  • the polishing composition COMP1 having the above-described configuration can achieve a low etching rate of 100 nm / min or less while maintaining the wafer polishing rate at a high rate of 1500 nm / min or more, and suppresses dishing. Excellent effects such as no aggregation, sedimentation and dissolution of grains, and precipitation of polishing accelerators are produced.
  • the hydrophobic group is more preferably a carbon number of 9 or more in order to keep a sufficient distance between the copper surface and the polishing slurry, since an extremely excellent effect can be obtained.
  • the addition of the water-soluble polymer substance further enhances the etching rate suppression effect because the water-soluble polymer substance covers even a small gap between the hydrophobic groups of the surfactant. .
  • these coating layers are fragile, they can be easily removed with abrasive grains and a polishing pad, and also have an effect of hardly causing a decrease in polishing rate.
  • the pH of the polishing composition COMP1 is preferably 4.0 or less, particularly preferably 1.5 to 2.5.
  • pH adjuster those commonly used in this technical field can be used, for example, organic acids such as lactic acid, acetic acid, and citric acid as acid components, alkali metals such as potassium and sodium as alkali components, and the like. Hydroxides and ammonium can be used as they are, or as appropriate, as a salt.
  • the polishing composition COMP1 is prepared by adding abrasive grains, an oxidizing agent, a polishing accelerator (phosphoric acid or a salt thereof, etc.), an anionic surfactant, and a corrosion inhibitor, as appropriate, and adding them to water. Each component is made by sequentially mixing with water and adjusting to the desired pH.
  • the polishing composition COMP1 further contains a water-soluble polymer substance, abrasive grains, an oxidizing agent, a polishing accelerator (phosphoric acid or a salt thereof, etc.), an anionic surfactant, a corrosion inhibitor, and a water-soluble high-molecular substance.
  • the molecular substances are prepared by mixing them as appropriate and adding them to water, or by sequentially mixing each of these components into water and adjusting to the desired pH.
  • means for mixing the components means commonly used in this technical field such as a homogenizer and ultrasonic waves can be employed.
  • Example 1 Examples 1 to 5 and Comparative Examples 1 to 5 and Comparative Examples 6 to 8 Each component was mixed and dissolved in water in the proportions shown in Tables 1 to 3, and Examples 1 to 5 and Comparative Examples 1 to 8 as the polishing composition COMP1 were prepared.
  • abrasive grains colloidal silica having an average particle diameter of 80 nm was used.
  • sodium dialkylsulfosuccinate is Rapisol A-30 (mixture of 10 to 16 carbon atoms) manufactured by NOF Corporation.
  • Polyoxyalkyl sulfate sodium is Persoft EF (mixture of 10 to 14 carbon atoms) manufactured by NOF Corporation.
  • BTA is benzotriazole.
  • Example 6 to 9 Each component was mixed and dissolved in water in the proportions shown in Table 4 to prepare Examples 6 to 9 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
  • Example 10 to 13 Each component was mixed and dissolved in water in the proportions shown in Table 5 to prepare Examples 10 to 13 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
  • Example 14 to 17 Each component was mixed and dissolved in water in the proportions shown in Table 6 to prepare Examples 14 to 17 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
  • the carboxylic acid copolymer ammonium salt in Table 6 has a molecular weight of 8000 (Aron A-6114 manufactured by Toagosei Co., Ltd.).
  • (*) represents an average molecular weight of 10,000 (manufactured by NOF Corporation, Polystar OM), and (**) represents an average molecular weight of 10,000 (manufactured by NOF Corporation, Marialim AKM-053).
  • Example 18 to 20 Each component was mixed and dissolved in water in the proportions shown in Table 7 to prepare Examples 18 to 20 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
  • (* 2) in Table 7 represents an average molecular weight of 25000, and (* 3) represents an average molecular weight of 10,000.
  • polishing rate evaluation Using a polishing apparatus (EBARA EPO222 (manufactured by Ebara Seisakusho)), 150 ml / min of the polishing compositions of Examples and Comparative Examples were applied to a polishing pad (IC1000 050 k-grv A2 / P922 "(manufactured by Nitta Haas Co., Ltd.)).
  • the polishing platen was rotated at 90 rpm and the carrier was rotated at 80 rpm while applying a pressure of 210 hPa to a copper-plated wafer having a diameter of 200 mm, and polishing was performed for 60 seconds.
  • the difference in copper thickness was calculated from the resistance value of the copper surface (measured using the four-probe method), and the polishing rate was evaluated by the thickness (nm / min) of the wafer removed by polishing per unit time.
  • a stylus profiler trade name: P12, manufactured by KLA Tencor
  • Comparative Examples 1 to 5 are unsuitable for both items of polishing rate and dishing amount. You can see that it was obtained.
  • the etching rate is 3 to 17 times higher than that of Examples 1 to 5, indicating that this is not preferable as a polishing composition.
  • Example 2 Under the same polishing conditions as in Experimental Example 1, the concentration of the anionic surfactant was changed variously, the polishing rate and the copper etching rate were measured, and the effect of the change in the anionic surfactant concentration on the polishing rate and the copper etching rate Evaluated.
  • FIG. 1 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the amount of surfactant added.
  • the vertical axis represents the copper polishing rate and the copper etching rate
  • the horizontal axis represents the addition amount of the surfactant.
  • a curve k1 indicates the copper polishing rate
  • a curve k2 indicates the copper etching rate.
  • the copper polishing rate and the copper etching rate shown in FIG. 1 are the results when the addition amount of laurylbenzenesulfonic acid triethanolamine was changed in the polishing composition in Example 9 described above.
  • the copper polishing rate is more than 1500 nm / min.
  • the copper etching rate becomes lower than 100 nm / min (see curve k2).
  • the addition amount of the anionic surfactant is suitably in the range of 0.1% by weight to 1.5% by weight.
  • FIG. 2 is a diagram showing the relationship between the copper polishing rate and the copper etching rate, and the concentration of hydrogen peroxide.
  • the vertical axis represents the copper polishing rate and the copper etching rate
  • the horizontal axis represents the concentration of hydrogen peroxide.
  • a curve k3 indicates the copper polishing rate
  • a curve k4 indicates the copper etching rate.
  • the copper polishing rate and the copper etching rate shown in FIG. 2 are the results when the concentration of hydrogen peroxide was changed in the polishing composition of Example 9 described above.
  • the concentration of hydrogen peroxide is 2.0 wt% to 10.0 wt%
  • the copper polishing rate is higher than 1500 nm / min (see curve k3)
  • the copper etching rate is , Lower than 100 nm / min (see curve k4).
  • the concentration of the oxidizing agent is suitably in the range of 2.0 wt% to 10.0 wt%.
  • FIG. 3 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the concentration of the organic acid.
  • the vertical axis represents the copper polishing rate and the copper etching rate
  • the horizontal axis represents the concentration of the organic acid.
  • Curve k5 indicates the copper polishing rate
  • curve k6 indicates the copper etching rate.
  • the copper polishing rate and the copper etching rate shown in FIG. 3 are the results when the concentration of L-tartaric acid as the organic acid was changed in the polishing composition of Example 9 described above.
  • the copper polishing rate is higher than 1500 nm / min (see curve k5).
  • the copper etching rate is lower than 100 nm / min (see curve k6).
  • the concentration of the organic acid as the polishing accelerator 1 is suitably in the range of 0.3 wt% to 6.0 wt%.
  • FIG. 4 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the phosphoric acid concentration.
  • the vertical axis represents the copper polishing rate and the copper etching rate
  • the horizontal axis represents the concentration of phosphoric acid.
  • a curve k7 indicates the copper polishing rate
  • a curve k8 indicates the copper etching rate.
  • the copper polishing rate and the copper etching rate shown in FIG. 4 are the results when the concentration of phosphoric acid was changed in the polishing composition of Example 9 described above.
  • the concentration of phosphoric acid is 0.05 wt% to 2.00 wt%
  • the copper polishing rate is higher than 1500 nm / min (see curve k7)
  • the copper etching rate is It becomes lower than 100 nm / min (see curve k8).
  • the concentration of phosphoric acid as the polishing accelerator 2 is suitably in the range of 0.05 wt% to 2.00 wt%.
  • the polishing composition COMP1 according to Embodiment 1 contains an anionic surfactant
  • the hydrophilic group of the anionic surfactant can be reduced by using the polishing composition COMP1 for polishing a metal film. It is electrically adsorbed on the surface of the metal film, and the hydrophobic group covers the surface of the metal film. As a result, contact of the polishing slurry with the copper surface is prevented, and etching is suppressed.
  • an etching rate lower than 100 nm / min and a dishing amount of 300 nm or less can be obtained while maintaining a polishing rate higher than 1500 nm / min.
  • Polishing composition COMP2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, and a second chain having a branched chain structure.
  • An anionic surfactant and a corrosion inhibitor included in the polishing composition COMP2 according to Embodiment 2.
  • polishing composition COMP2 is obtained by replacing the anionic surfactant of polishing composition COMP1 according to Embodiment 1 with the first and second anionic surfactants, and the others are the polishing composition. It is the same as the product COMP1.
  • polishing composition COMP2 also targets metal films such as copper, copper alloy, tantalum, tantalum nitride, titanium, titanium nitride, and tungsten.
  • the first anionic surfactant is composed of an alkylbenzene sulfonate or alkylnaphthalene sulfonate containing an alkyl group having 9 or more carbon atoms. This is because when the number of carbon atoms is less than 9, the alkylbenzene sulfonate or alkylnaphthalene sulfonate cannot exhibit sufficient hydrophobicity when adsorbed on the copper surface, and the copper surface is etched by the slurry.
  • the alkyl benzene sulfonate has one benzene ring, and the alkyl naphthalene sulfonate has two benzene rings.
  • the alkylbenzene sulfonate is composed of a salt of alkylbenzene sulfonic acid containing an alkyl group having 9 or more carbon atoms.
  • the alkylbenzene sulfonic acid includes p-decylbenzene sulfonic acid, dodecyl benzene sulfonic acid, tetradecyl benzene sulfonic acid, and the like.
  • the basic substance that forms a salt with alkylbenzenesulfonic acid is composed of, for example, any one of alkali metals, alkaline earth metals, ammonia, alkylamines, and amino alcohols.
  • the alkali metal consists of potassium and sodium.
  • the alkaline earth metal is composed of calcium, magnesium, barium and the like.
  • Alkylamines include methylamine, dimethylamine, ethylamine, diethylamine and the like.
  • Amino alcohols consist of monoethanolamine, diethanolamine, triethanolamine and the like.
  • alkylbenzene sulfonate examples include sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate, sodium tetradecylbenzenesulfonate, and triethanolamine alkylbenzenesulfonate.
  • the alkyl naphthalene sulfonate is composed of a salt of an alkyl naphthalene sulfonic acid containing an alkyl group having 9 or more carbon atoms.
  • the basic substance that forms a salt with alkylnaphthalenesulfonic acid is the same as the basic substance that forms a salt with alkylbenzenesulfonic acid.
  • alkylbenzene sulfonate having one benzene ring is triethanolamine alkylbenzene sulfonate.
  • alkyl naphthalene sulfonate having two benzene rings is sodium alkyl naphthalene sulfonate.
  • the first anionic surfactant has one or more benzene rings.
  • the second anionic surfactant is composed of di-2-ethylhexyl sulfosuccinate having a branched chain structure.
  • Di2-ethylhexylsulfosuccinate is a salt of di-2-ethylhexylsulfosuccinic acid.
  • the basic substance that forms a salt with di-2-ethylhexylsulfosuccinic acid is an alkali metal or an alkaline earth metal.
  • the alkali metal is composed of potassium, sodium and the like.
  • the alkaline earth metal is composed of calcium, magnesium, barium and the like.
  • di-2-ethylhexyl sulfosuccinate is sodium di-2-ethylhexyl sulfosuccinate.
  • Corrosion inhibitors include, for example, benzotriazole, tolyltriazole, benzotriazole-4-carboxylic acid, benzotriazole methyl ester, benzotriazole ethyl ester, benzotriazole propyl ester, benzotriazole butyl ester and benzotriazole octyl ester Benzotriazole derivatives such as naphthotriazole or derivatives thereof, imidazole, quinaldic acid, and invar derivatives.
  • Polishing composition COMP2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, a second anionic surfactant having a branched chain structure, and corrosion. It is prepared by mixing the inhibitor appropriately and adding water. Further, the polishing composition COMP2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, a second anionic surfactant having a branched chain structure, And a corrosion inhibitor, in turn, by mixing with water. As means for mixing these components, means commonly used in the technical field of polishing compositions such as a homogenizer and ultrasonic waves are used.
  • the oxidation of the metal film surface, the formation of the metal complex layer (fragile layer), and the copper anticorrosion layer proceed in sequence to polish the metal film surface.
  • the adsorption rate of the first and second anionic surfactants to the metal film is different from the adsorption rate of the first anionic surfactant alone to the metal film and the metal film of the second anionic surfactant alone. It becomes faster than the sum of the adsorption speed. That is, as the polishing of the metal film proceeds, the first and second anionic properties of the surface of the metal film are faster than when the first anionic surfactant or the second anionic surfactant is used alone. Covered by surfactant.
  • the metal film formed in the wiring groove or the via hole has these two kinds of anionic properties.
  • the surfactant By being covered quickly with the surfactant, it is protected from etching and mechanical contact, and the amount of dishing can be reduced.
  • Table 8 shows the compositions of the polishing compositions and the evaluation results in Examples 21 to 25.
  • Table 9 shows the compositions of the polishing compositions and the evaluation results in Examples 26 to 28.
  • Table 10 shows the compositions of the polishing compositions and the evaluation results in Comparative Examples 9 to 13.
  • Polishing composition COMP2_1 in Example 21 was 0.5% by weight colloidal silica, 6% by weight hydrogen peroxide, 5% by weight glycine, 0.5% by weight phosphoric acid, 0.2% It contains wt% benzotriazole (BTA), 0.025 wt% triethanolamine alkylbenzene sulfonate, and 0.025 wt% sodium di-2-ethylhexyl sulfosuccinate.
  • BTA benzotriazole
  • colloidal silica has an average particle diameter of 80 nm.
  • the alkylbenzenesulfonic acid triethanolamine contains an alkyl group having 12 carbon atoms.
  • Polishing composition COMP2_2 in Example 22 changed the content of triethanolamine alkylbenzene sulfonate in polishing composition COMP2_1 from 0.025 wt% to 0.05 wt%, and contained sodium di-2-ethylhexylsulfosuccinate The amount is changed from 0.025% by weight to 0.05% by weight, and the others are the same as the polishing composition COMP2_1.
  • Polishing composition COMP2_3 in Example 23 was prepared by replacing 5% by weight of glycine in polishing composition COMP2_1 with 5% by weight of L-tartaric acid, and changing the content of sodium di-2-ethylhexylsulfosuccinate from 0.025% by weight. The content is changed to 0.05% by weight, and the others are the same as the polishing composition COMP2_1.
  • Example 24 The polishing composition COMP2_4 in Example 24 was prepared by replacing 5% by weight of glycine in the polishing composition COMP2_1 with 5% by weight of L-tartaric acid and changing the content of triethanolamine alkylbenzene sulfonate from 0.025% by weight to 0%.
  • the content of sodium di-2-ethylhexylsulfosuccinate was changed from 0.025 wt% to 0.05 wt%, and the others were the same as the polishing composition COMP2_1.
  • polishing composition COMP2_5 in Example 25 In polishing composition COMP2_5 in Example 25, 5% by weight of glycine in polishing composition COMP2_1 was replaced with 5% by weight of citric acid, and the content of triethanolamine alkylbenzene sulfonate was 0.025% by weight to 0.2%. The content of sodium di-2-ethylhexylsulfosuccinate was changed from 0.025 wt% to 0.05 wt%, and the others were the same as the polishing composition COMP2_1.
  • Polishing composition COMP2_6 in Example 26 was obtained by changing 0.025% by weight of alkylbenzenesulfonic acid triethanolamine in polishing composition COMP2_1 to 0.05% by weight of sodium alkylnaphthalenesulfonate, and di-2-ethylhexylsulfosuccinic acid. The content of sodium is changed from 0.025 wt% to 0.05 wt%, and the others are the same as the polishing composition COMP2_1.
  • Polishing composition COMP2_7 in Example 27 was prepared by changing 0.025% by weight of alkylbenzenesulfonic acid triethanolamine in polishing composition COMP2_1 to 0.05% by weight of disodium dodecyl diphenyl ether sulfonate and di-2-ethylhexylsulfosucci The content of sodium acid was changed from 0.025% by weight to 0.05% by weight, and the rest was the same as the polishing composition COMP2_1.
  • the product name of disodium dodecyl diphenyl ether sulfonate is PELEX SS-L (NOF).
  • the product name for sodium di-2-ethylhexyl sulfosuccinate is Rapisol A80 (Nippon Oil).
  • Polishing composition COMP2_8 in Example 28 was obtained by changing 0.025 wt% of triethanolamine alkylbenzene sulfonate in the polishing composition COMP2_1 to 0.05 wt% of disodium dodecyl diphenyl ether sulfonate and 0.025 wt%
  • the sodium di-2-ethylhexylsulfosuccinate was changed to 0.05% by weight of oxochol sulfate, and the others were the same as the polishing composition COMP2_1.
  • oxocol sulfate Fine Oxocol N140N (Nissan Chemical).
  • Comparative Example 9 The polishing composition in Comparative Example 9 is the same as the polishing composition COMP2_3 except that the benzotriazole (BTA) of the polishing composition COMP2_3 is deleted.
  • Comparative Example 10 The polishing composition in Comparative Example 10 is the same as the polishing composition COMP2_3 except that triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexylsulfosuccinate are removed from the polishing composition COMP2_3.
  • Comparative Example 11 The polishing composition in Comparative Example 11 is the same as the polishing composition in Comparative Example 10 except that the phosphoric acid of the polishing composition in Comparative Example 10 is deleted.
  • Comparative Example 12 The polishing composition in Comparative Example 12 was obtained by increasing the amount of colloidal silica in the polishing composition in Comparative Example 11 from 0.5% by weight to 5% by weight. Others were the polishing composition in Comparative Example 11. It is the same as a thing.
  • Comparative Example 13 The polishing composition in Comparative Example 13 is the same as the polishing composition in Comparative Example 12 except that the benzotriazole (BTA) in the polishing composition in Comparative Example 12 was deleted.
  • BTA benzotriazole
  • Evaluation items consist of polishing rate, etching rate, polishing rate / etching rate ratio, dishing amount, slurry foaming and slurry stability.
  • polishing rate evaluation The polishing compositions COMP1 to COMP1 of Examples 1 to 6 were applied to a polishing pad (IC1000 050 k-grv A2 / P922 ′′ (Nitta Haas Co., Ltd.)) using a polishing apparatus (EBARA EP0222 (manufactured by Ebara Manufacturing Co., Ltd.)). While supplying COMP6 at a rate of 150 ml / min and applying a pressure of 210 hPa to a copper-plated wafer having a diameter of 200 mm, the polishing platen is rotated at a rotation speed of 90 rpm, and the carrier is rotated at a rotation speed of 80 rpm for 60 seconds. Polishing was performed.
  • the difference in thickness of copper removed by polishing was calculated from the resistance value of the copper surface (measured using the four-probe method).
  • the polishing rate was evaluated by the thickness (nm / min) of the wafer removed by polishing per unit time.
  • the corrosion current value was calculated by Tafel plot using the electrochemical measurement method. And the average etching rate in the copper electrode per unit area was computed from the corrosion current value, and the calculation result was made into the etching rate.
  • Sample to be measured (i) Immediately after production, (ii) One week later Sample storage status: Place in a sample bottle and leave at 20 ° C. for one week Judgment method: For aggregation and sedimentation, determine visually. Lightly agitate before measurement to homogenize the whole, then measure the average particle size using a particle size distribution analyzer ELS-Z manufactured by Otsuka Electronics Co., Ltd. to confirm the change in the particle size of the abrasive grains
  • the polishing rate is higher than 3500 nm / min, and the dishing amount is 300 nm or less.
  • the etching rate is as low as 10 to 23 nm / min. Further, the ratio of the polishing rate to the etching rate is as large as 169 to 490. Further, the slurry is stable without increasing the abrasive grain size. Further, in the polishing compositions COMP2_1 to COMP2_8, the slurry foaming is 0 to 5 mm, which is favorable. Furthermore, there is no increase in the abrasive grain size and the slurry stability is high.
  • the polishing rate is higher than 4000 nm / min and the dishing amount is 100 nm or less.
  • the etching rate is as low as 10 to 14 nm / min.
  • the ratio of the polishing rate to the etching rate is as large as 321 to 490.
  • polishing compositions COMP2_3 to COMP2_5 when copper was polished using the polishing compositions COMP2_3 to COMP2_5, a polishing rate of 4900 nm / min and a dishing amount of 100 nm or less were obtained.
  • the ratio of the polishing rate to the etching rate is as large as 400 or more.
  • the polishing rate was as low as 3000 nm / min or less.
  • the etching rate is one digit or more larger than the etching rate when copper is polished using the polishing compositions COMP2_1 to COMP2_8.
  • the dishing amount is 300 nm or more and less than 1000 nm in Comparative Examples 10 to 12, and in Comparative Example 13 is 1000 nm or more.
  • sedimentation occurs after several hours after transfer to the sample bottle, and the slurry stability is low.
  • polishing copper using polishing compositions COMP2_1 to COMP2_8 containing an anionic surfactant having one or more benzene rings and an anionic surfactant having a branched chain structure, 3500 nm / min.
  • the above polishing rate and a dishing amount of 300 nm or less, preferably a polishing rate of 4000 nm / min or more and a dishing amount of 100 nm or less can be obtained.
  • Benzotriazole (BTA) is an additive necessary for obtaining a dishing amount of 100 nm or less while maintaining a polishing rate of 4000 nm / min or more.
  • polishing compositions COMP2_1 to COMP2_8 are suitable for polishing copper.
  • FIG. 5 is a diagram showing the relationship between the surfactant adsorption rate and the type of surfactant.
  • the vertical axis represents the surfactant adsorption rate
  • the horizontal axis represents the surfactant type.
  • A represents sodium di-2-ethylhexylsulfosuccinate
  • B represents triethanolamine alkylbenzene sulfonate.
  • the adsorption rate was measured using an intermolecular interaction analyzer of Q-sense, Q-SENSE E1. That is, using a sensor in which 200 nm of copper for a unit area is formed on one surface of a sensor in which both sides of a crystal unit are sandwiched by gold electrodes, ultrapure water is allowed to flow on the surface for 1 minute while adjusting the temperature to 25 ° C. After that, the sample was switched to a sample, and an aqueous solution containing a surfactant (sodium di-2-ethylhexylsulfosuccinate and / or triethanolamine alkylbenzenesulfonate) was contacted with the copper surface for 1 minute. When prompted the frequency change. And the frequency change amount per unit time was calculated
  • a surfactant sodium di-2-ethylhexylsulfosuccinate
  • the measured frequency change amount ⁇ f is converted into the weight change amount ⁇ m using the equation (1), the weight change amount per unit time is obtained using the converted weight change amount ⁇ m, and the obtained unit time.
  • the weight change per hit may be used as the adsorption rate.
  • the adsorption rate of benzotriazole (BTA) alone is 0.60 (Hz / sec) for a concentration of 2000 ppm.
  • the adsorption rate of the mixture of sodium di-2-ethylhexyl sulfosuccinate and benzotriazole (BTA) is 0.81 (Hz / sec) when the concentration of sodium di-2-ethylhexyl sulfosuccinate is 250 ppm and 500 ppm, respectively. 0.82 (Hz / sec).
  • the adsorption rate of the mixture of alkylbenzene sulfonate triethanolamine and benzotriazole (BTA) is 1.00 (Hz / sec), respectively, when the alkylbenzene sulfonate triethanolamine concentration is 250 ppm, 500 ppm and 1000 ppm. 1.07 (Hz / sec) and 1.13 (Hz / sec).
  • the adsorption rate of tribenzeneamine alkylbenzene sulfonate having a benzene ring is faster than the adsorption rate of sodium di-2-ethylhexylsulfosuccinate having a branched chain structure.
  • the adsorption rate of triethanolamine having an alkylbenzene sulfonate having a benzene ring increases as the concentration increases.
  • the adsorption rate of sodium di-2-ethylhexylsulfosuccinate having a branched chain structure increases even when the concentration increases. Almost no change.
  • the adsorption rate of the surfactant is faster than 2 (Hz / sec). That is, the adsorption rate of the surfactant is 2.17 (Hz / sec) when 250 ppm of sodium di-2-ethylhexylsulfosuccinate, 250 ppm of triethanolamine alkylbenzenesulfonate and 2000 ppm of benzotriazole (BTA) are mixed. It is.
  • the adsorption rate of the surfactant is 2.35 (Hz / sec) when 250 ppm sodium di-2-ethylhexylsulfosuccinate, 500 ppm alkylbenzenesulfonic acid triethanolamine and 2000 ppm benzotriazole (BTA) are mixed. It is. Further, the adsorption rate of the surfactant is 2.21 (Hz / sec) when 500 ppm of sodium di-2-ethylhexylsulfosuccinate, 250 ppm of triethanolamine alkylbenzenesulfonate and 2000 ppm of benzotriazole (BTA) are mixed. It is.
  • the adsorption rate of the surfactant is the same as the adsorption rate when triethanolamine alkylbenzene sulfonate alone is added, and di-2-ethylhexyl. It becomes faster than the sum of the adsorption rates when sodium sulfosuccinate alone is added.
  • concentrations of triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexyl sulfosuccinate are added.
  • FIG. 6 is a diagram showing the relationship between the adsorption rate ratio and the type of surfactant.
  • the vertical axis represents the adsorption rate ratio
  • the horizontal axis represents the type of surfactant.
  • the adsorption rate ratio is a ratio when the adsorption rate of 2000 ppm benzotriazole (BTA) alone is 1.00.
  • the adsorption rate in the case of adding di-ethylhexyl sulfosuccinate sodium alone having a branched chain structure is 1.35 to 1.36 times the adsorption rate of benzotriazole (BTA) alone.
  • the adsorption rate in the case of adding an alkylbenzenesulfonic acid triethanolamine alone having a benzene ring is 1.67 to 1.88 times the adsorption rate of benzotriazole (BTA) alone.
  • the adsorption rate when triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexyl sulfosuccinate are added is 3.61 to 3.92 times the adsorption rate of benzotriazole (BTA) alone.
  • the alkylbenzene sulfonate triethanolamine and di-2-ethylhexylsulfosuccinate are faster on the copper surface than when triethanolamine alkylbenzenesulfonate or sodium di2-ethylhexylsulfosuccinate is used alone. Covered by sodium.
  • a polishing rate of 3500 nm / min or more and a dishing amount of 300 nm or less, preferably a polishing rate of 4000 nm / min or more and a dishing amount of 100 nm or less can be obtained.
  • the present invention is applied to a polishing composition used for metal polishing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Disclosed is a polishing composition which is capable of suppressing the etching rate and the dishing amount, while maintaining a high polishing rate. Specifically disclosed is a polishing composition which contains abrasive grains, an oxidizing agent, a polishing accelerator, an anionic surfactant, and a corrosion inhibitor. The abrasive grains are composed of, for example, spherical colloidal silica particles. The oxidizing agent is composed of, for example, hydrogen peroxide. The polishing accelerator is composed of a polishing accelerator (1) and a polishing accelerator (2). The polishing accelerator (1) is composed of, for example, L-tartaric acid, and the polishing accelerator (2) is composed of, for example, phosphoric acid. The anionic surfactant is composed of, for example, laurylbenzenesulfonic acid triethanolamine. The corrosion inhibitor is composed of, for example, benzotriazole.

Description

金属膜研磨用組成物Metal film polishing composition
 本発明は、金属膜を研磨する研磨用組成物に関するものである。 The present invention relates to a polishing composition for polishing a metal film.
 CMP(Chemical Mechanical Polishing、化学機械研磨)は、主に、シリコンおよびガリウム砒素等からなるウェハ表面に形成された酸化膜、金属膜、およびセラミックス膜等の多層配線用薄膜を平坦化するために利用され、ウェハ表面に多層配線を構築し、高性能化および高集積化が進んだ超LSI(Large Scale Integrated circuit)を製造する上で必要不可欠な技術になっている。 CMP (Chemical Mechanical Polishing) is mainly used for planarizing thin films for multilayer wiring such as oxide films, metal films, and ceramic films formed on the wafer surface made of silicon and gallium arsenide. As a result, it has become an indispensable technology for constructing a multi-layer wiring on the wafer surface and manufacturing a large scale integrated circuit (LSI) with high performance and high integration.
 従来、金属膜の研磨に用いられる研磨用組成物として、非真球状コロイダルシリカとクリスタルシリカ粒子との複合粒子を含む金属膜研磨組成物が知られている(特許文献1:特開2005-183684号公報)。この金属膜研磨組成物を用いて銅を研磨することによって、5400nm/分の研磨速度および150nmのディシング量(配線幅:100μm)が得られている。 Conventionally, as a polishing composition used for polishing a metal film, a metal film polishing composition containing composite particles of non-spherical colloidal silica and crystal silica particles is known (Patent Document 1: JP-A-2005-183684). Issue gazette). By polishing copper using this metal film polishing composition, a polishing rate of 5400 nm / min and a dicing amount of 150 nm (wiring width: 100 μm) are obtained.
 また、酸化剤と、銅を溶解させるとともに銅と錯体を作る化合物と、溶解速度促進剤と、溶解抑制剤とを含む金属膜研磨組成物も知られている(特許文献2:国際公開第2006/030595号公報)。そして、溶解速度促進剤は、荷重下における銅の溶解を促進させる。また、溶解抑制剤は、荷重がかかっていない銅の溶解を抑制する。この金属膜研磨組成物を用いて銅を研磨することによって、300nm/分以上の研磨速度および10nm以下のディシング量が得られている。 Further, a metal film polishing composition containing an oxidizing agent, a compound that dissolves copper and forms a complex with copper, a dissolution rate accelerator, and a dissolution inhibitor is also known (Patent Document 2: International Publication No. 2006). / 030595 publication). The dissolution rate accelerator promotes dissolution of copper under load. Moreover, a dissolution inhibitor suppresses dissolution of copper that is not loaded. By polishing copper using this metal film polishing composition, a polishing rate of 300 nm / min or more and a dishing amount of 10 nm or less are obtained.
 更に、2つ以上のアニオン系官能基を有するアニオン系界面活性剤と、無機酸と塩基との塩とを含む金属膜研磨組成物も知られている(特許文献3:特開2005-014206号公報)。この金属膜研磨組成物を用いてタンタル膜を研磨することによって、52~64nm/分の研磨速度が得られている。 Furthermore, a metal film polishing composition containing an anionic surfactant having two or more anionic functional groups and a salt of an inorganic acid and a base is also known (Patent Document 3: Japanese Patent Application Laid-Open No. 2005-014206). Publication). A polishing rate of 52 to 64 nm / min is obtained by polishing the tantalum film using this metal film polishing composition.
 しかし、特許文献1~3に記載された金属膜研磨組成物を用いた場合、ディッシングやエッチング速度の抑制という面で十分な効果が得られないという問題がある。 However, when the metal film polishing composition described in Patent Documents 1 to 3 is used, there is a problem that a sufficient effect cannot be obtained in terms of dishing and suppressing the etching rate.
 そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、研磨速度を高く維持しながら、エッチング速度やディッシング量を抑制し得る研磨用組成物を提供することである。 Accordingly, the present invention has been made to solve such problems, and an object of the present invention is to provide a polishing composition capable of suppressing an etching rate and a dishing amount while maintaining a high polishing rate. .
 この発明によれば、研磨用組成物は、球状の砥粒と、酸化剤と、研磨促進剤と、腐食抑制剤と、アニオン性界面活性剤とを含む。 According to the present invention, the polishing composition contains spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and an anionic surfactant.
 好ましくは、アニオン性界面活性剤は、第1および第2のアニオン性界面活性剤を含む。第1のアニオン性界面活性剤は、1個以上のベンゼン環を有する。第2のアニオン性界面活性剤は、分岐鎖構造を持つ。 Preferably, the anionic surfactant includes first and second anionic surfactants. The first anionic surfactant has one or more benzene rings. The second anionic surfactant has a branched chain structure.
 好ましくは、第1のアニオン性界面活性剤は、炭素数が9以上であるアルキル基を含む。 Preferably, the first anionic surfactant contains an alkyl group having 9 or more carbon atoms.
 好ましくは、研磨促進剤は、リン酸またはリン酸の塩からなる。 Preferably, the polishing accelerator is made of phosphoric acid or a salt of phosphoric acid.
 好ましくは、アニオン性界面活性剤の含有量は、当該研磨用組成物全体に対して0.1~1.5重量%の範囲である。 Preferably, the content of the anionic surfactant is in the range of 0.1 to 1.5% by weight with respect to the entire polishing composition.
 好ましくは、研磨用組成物は、水溶性高分子物質を更に含む。 Preferably, the polishing composition further contains a water-soluble polymer substance.
 この発明の実施の形態による研磨用組成物は、球状の砥粒と、酸化剤と、研磨促進剤と、腐食抑制剤と、アニオン性界面活性剤とを含む。その結果、アニオン性界面活性剤の親水基を電気的に銅表面に吸着させ、疎水基で銅表面を覆わせることによって、研磨用スラリーが銅表面に接触することを阻止する。 The polishing composition according to the embodiment of the present invention includes spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and an anionic surfactant. As a result, the hydrophilic group of the anionic surfactant is electrically adsorbed on the copper surface, and the copper surface is covered with the hydrophobic group, thereby preventing the polishing slurry from contacting the copper surface.
 従って、研磨速度を高く維持しながら、エッチング速度やディッシング量を抑制できる。 Therefore, the etching rate and dishing amount can be suppressed while maintaining the polishing rate high.
 また、この発明の実施の形態による研磨用組成物は、球状の砥粒と、酸化剤と、研磨促進剤と、腐食抑制剤と、1個以上のベンゼン環を有する第1のアニオン性界面活性剤と、分岐鎖構造を持つ第2のアニオン性界面活性剤とを含む。そして、実施の形態による研磨用組成物を用いて金属膜を研磨することによって、金属膜表面の酸化および金属錯体層(脆弱層)の形成が順次進行して金属膜表面が研磨されるとともに、第1および第2のアニオン性界面活性剤の金属膜への吸着速度が第1のアニオン性界面活性剤単体の金属膜への吸着速度と第2のアニオン性界面活性剤単体の金属膜への吸着速度との和よりも速くなる。即ち、金属膜の研磨が進行するとともに、金属膜の表面が第1のアニオン性界面活性剤または第2のアニオン性界面活性剤を単体で用いた場合よりも速く第1および第2のアニオン性界面活性剤によって覆われる。 In addition, the polishing composition according to the embodiment of the present invention includes a first anionic surfactant having spherical abrasive grains, an oxidizing agent, a polishing accelerator, a corrosion inhibitor, and one or more benzene rings. And a second anionic surfactant having a branched chain structure. Then, by polishing the metal film using the polishing composition according to the embodiment, the oxidation of the metal film surface and the formation of the metal complex layer (fragile layer) sequentially proceed to polish the metal film surface, The adsorption rate of the first and second anionic surfactants to the metal film is different from the adsorption rate of the first anionic surfactant alone to the metal film and the second anionic surfactant alone to the metal film. It becomes faster than the sum of the adsorption speed. That is, as the polishing of the metal film proceeds, the first and second anionic properties of the surface of the metal film are faster than when the first anionic surfactant or the second anionic surfactant is used alone. Covered by surfactant.
 その結果、配線溝またはビアホール以外の層間絶縁膜上に形成された金属膜が研磨によって除去された後においては、配線溝内またはビアホール内に形成された金属膜は、これらの2種のアニオン性界面活性剤によって素早く覆われることによってエッチングおよび機械的接触から保護され、ディッシングの発生量を低減できる。 As a result, after the metal film formed on the interlayer insulating film other than the wiring groove or the via hole is removed by polishing, the metal film formed in the wiring groove or the via hole has these two kinds of anionic properties. By being covered quickly with the surfactant, it is protected from etching and mechanical contact, and the amount of dishing can be reduced.
 従って、3500nm/分以上の研磨速度を保持しながら、300nm以下のディシング量、好ましくは、100nm以下のディシング量を実現できる。 Therefore, it is possible to realize a dishing amount of 300 nm or less, preferably 100 nm or less, while maintaining a polishing rate of 3500 nm / min or more.
 更に、この発明の実施の形態による研磨用組成物は、水溶性高分子物質を更に含む。水溶性高分子物質を添加したことによって水溶性高分子物質が界面活性剤の疎水基間の僅かな隙間をも被覆する。しかも、これら被覆層は、脆弱であるため、砥粒および研磨パッドにより容易に除去することができ、研磨速度の低下を招き難い。 Furthermore, the polishing composition according to the embodiment of the present invention further includes a water-soluble polymer substance. By adding the water-soluble polymer substance, the water-soluble polymer substance covers even a slight gap between the hydrophobic groups of the surfactant. Moreover, since these coating layers are fragile, they can be easily removed with abrasive grains and a polishing pad, and it is difficult to cause a decrease in the polishing rate.
 従って、研磨速度を高く維持しながら、エッチング速度やディッシング量を抑制できる。 Therefore, the etching rate and dishing amount can be suppressed while maintaining the polishing rate high.
銅研磨速度および銅エッチング速度と、界面活性剤の添加量との関係を示す図である。It is a figure which shows the relationship between a copper polishing rate and a copper etching rate, and the addition amount of surfactant. 銅研磨速度および銅エッチング速度と、過酸化水素の濃度との関係を示す図である。It is a figure which shows the relationship between a copper polishing rate and a copper etching rate, and the density | concentration of hydrogen peroxide. 銅研磨速度および銅エッチング速度と、有機酸の濃度との関係を示す図である。It is a figure which shows the relationship between a copper polishing rate and a copper etching rate, and the density | concentration of an organic acid. 銅研磨速度および銅エッチング速度と、リン酸の濃度との関係を示す図である。It is a figure which shows the relationship between a copper polishing rate and a copper etching rate, and the density | concentration of phosphoric acid. 界面活性剤の吸着速度と界面活性剤の種類との関係を示す図である。It is a figure which shows the relationship between the adsorption rate of surfactant, and the kind of surfactant. 吸着速度比と界面活性剤の種類との関係を示す図である。It is a figure which shows the relationship between adsorption rate ratio and the kind of surfactant.
 本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 この発明の実施の形態1による研磨用組成物COMP1は、砥粒と、酸化剤と、研磨促進剤と、アニオン性界面活性剤と、腐食抑制剤とを含む。
[Embodiment 1]
Polishing composition COMP1 according to Embodiment 1 of the present invention includes abrasive grains, an oxidizing agent, a polishing accelerator, an anionic surfactant, and a corrosion inhibitor.
 そして、研磨用組成物COMP1は、銅、銅合金、タンタル、窒化タンタル、チタン、窒化チタンおよびタングステン等の金属膜を研磨の対象とする。 Further, the polishing composition COMP1 targets a metal film such as copper, copper alloy, tantalum, tantalum nitride, titanium, titanium nitride, and tungsten for polishing.
 砥粒は、金属膜の研磨に常用される粒子からなり、例えば、コロイダルシリカ、ヒュームドシリカ、コロイダルアルミナ、ヒュームドアルミナおよびセリアのいずれかからなる。そして、砥粒は、真球(球状)の形状を有する。砥粒がコロイダルシリカからなる場合、平均粒径は、例えば、80nmである。平均粒径が80nmであるとは、コロイダルシリカの粒径が主に80nmに分布していることを言う。 The abrasive grains are made of particles commonly used for polishing a metal film, and are made of, for example, any of colloidal silica, fumed silica, colloidal alumina, fumed alumina, and ceria. The abrasive grains have a true sphere shape. When the abrasive grains are made of colloidal silica, the average particle diameter is, for example, 80 nm. An average particle size of 80 nm means that the particle size of colloidal silica is mainly distributed at 80 nm.
 酸化剤は、過酸化水素、硫酸、塩酸、硝酸、ヨウ素酸、ヨウ素酸塩(ヨウ素酸カリウム等)、過ヨウ素酸、過ヨウ素酸塩(過ヨウ素酸カリウム等)、過硫酸塩、次亜塩素酸、およびオゾン水等の1種または2種以上からなる。 Oxidizing agents are hydrogen peroxide, sulfuric acid, hydrochloric acid, nitric acid, iodic acid, iodate (potassium iodate, etc.), periodic acid, periodate (potassium periodate, etc.), persulfate, hypochlorite It consists of 1 type, or 2 or more types, such as an acid and ozone water.
 そして、過酸化水素、硫酸、塩酸、ヨウ素酸塩および過硫酸塩が酸化剤として好ましく、過酸化水素が特に好ましい。 Hydrogen peroxide, sulfuric acid, hydrochloric acid, iodate and persulfate are preferred as oxidizing agents, and hydrogen peroxide is particularly preferred.
 また、酸化剤の含有量は、特に制限されず、砥粒の種類、粒径および含有量、有機酸、その他の成分の有無、有機酸およびその他の成分の種類および含有量、研磨対象である金属膜の種類および膜厚等の各種の条件に応じて適宜選択される。 Further, the content of the oxidizing agent is not particularly limited, and is the type of abrasive grains, the particle size and content, the presence or absence of organic acids and other components, the type and content of organic acids and other components, and the subject of polishing. It is appropriately selected according to various conditions such as the type and thickness of the metal film.
 研磨促進剤は、研磨促進剤1と、研磨促進剤2とからなる。 The polishing accelerator consists of a polishing accelerator 1 and a polishing accelerator 2.
 研磨促進剤1は、金属膜の研磨に常用される促進剤からなり、例えば、有機酸、または有機酸とアルカリ金属、アルカリ土類金属、およびアミン類との塩からなる。より具体的には、研磨促進剤1は、リンゴ酸、シュウ酸、マロン酸、L-酒石酸、クエン酸、ニコチン酸、吉草酸、アスコルビン酸、アジピン酸、ピルビン酸およびグリシン等の有機酸、またはこれらのナトリウム塩、カリウム塩、アミン塩、イミン塩、第四級アンモニウム塩、カルシウム塩、およびハロゲン化物の塩のいずれかからなる。 The polishing accelerator 1 is made of an accelerator commonly used for polishing a metal film, and is made of, for example, an organic acid or a salt of an organic acid with an alkali metal, an alkaline earth metal, and an amine. More specifically, the polishing accelerator 1 is an organic acid such as malic acid, oxalic acid, malonic acid, L-tartaric acid, citric acid, nicotinic acid, valeric acid, ascorbic acid, adipic acid, pyruvic acid and glycine, or It consists of any of these sodium salts, potassium salts, amine salts, imine salts, quaternary ammonium salts, calcium salts, and halide salts.
 これらの研磨促進剤1の含有量は、特に制限されず、砥粒の種類、粒径および含有量、有機酸、その他の成分の有無、有機酸およびその他の成分の種類および含有量、研磨対象である金属膜の種類および膜厚等の各種の条件に応じて適宜選択される。そして、これらの研磨促進剤1の含有量は、通常、研磨用組成物COMP1の全量に対して6重量%以下であり、好ましくは、0.3~6重量%である。 The content of these polishing accelerators 1 is not particularly limited, and the type of abrasive grains, particle size and content, organic acid, presence or absence of other components, type and content of organic acid and other components, and polishing target The metal film is appropriately selected according to various conditions such as the type and thickness of the metal film. The content of these polishing accelerators 1 is usually 6% by weight or less, preferably 0.3 to 6% by weight, based on the total amount of the polishing composition COMP1.
 研磨促進剤2は、例えば、リン酸からなる。そして、リン酸は、水中で解離してリン酸イオンを生じるものであればよく、例えば、オルトリン酸(いわゆるリン酸)、メタリン酸、およびポリリン酸のいずれかからなる。また、リン酸は、ピロリン酸、トリリン酸、ヘキサメタリン酸、およびシクロリン酸等の縮合リン酸のいずれかであってもよい。 The polishing accelerator 2 is made of phosphoric acid, for example. And phosphoric acid should just dissociate in water and produces a phosphate ion, for example, consists of either orthophosphoric acid (what is called phosphoric acid), metaphosphoric acid, and polyphosphoric acid. The phosphoric acid may be any of condensed phosphoric acids such as pyrophosphoric acid, triphosphoric acid, hexametaphosphoric acid, and cyclophosphoric acid.
 リン酸塩を形成する塩としては、リン酸と塩を形成しうる塩基性物質であれば特に限定されないが、塩基性物質としては、例えば、カリウム、ナトリウムなどのアルカリ金属、カルシウム、マグネシウム、バリウムなどのアルカリ土類金属、アンモニア、またはメチルアミン、ジメチルアミン、エチルアミン、ジエチルアミンなどのアルキルアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類が挙げられる。これらのうち、アンモニア、ジエタノールアミン、トリエタノールアミン、ジメチルアミンが好ましい。 The salt forming the phosphate is not particularly limited as long as it is a basic substance capable of forming a salt with phosphoric acid. Examples of the basic substance include alkali metals such as potassium and sodium, calcium, magnesium, and barium. And alkaline earth metals such as ammonia, alkylamines such as methylamine, dimethylamine, ethylamine and diethylamine, and aminoalcohols such as monoethanolamine, diethanolamine and triethanolamine. Of these, ammonia, diethanolamine, triethanolamine, and dimethylamine are preferable.
 これらのリン酸もしくはその塩は、単独で使用でき、また2種以上を併用することもできる。 These phosphoric acids or salts thereof can be used alone or in combination of two or more.
 これらのリン酸もしくはその塩は、研磨用組成物COMP1全体に対して、濃度が約0.01~3.00重量%となるように配合されるが、好ましくは、濃度が約0.05~2.00重量%、特に好ましくは、約0.10~1.50重量%、最も好ましくは、約0.50~1.00重量%となるように配合される。 These phosphoric acids or salts thereof are blended so that the concentration thereof is about 0.01 to 3.00% by weight with respect to the entire polishing composition COMP1, but preferably the concentration is about 0.05 to The amount is 2.00% by weight, particularly preferably about 0.10 to 1.50% by weight, and most preferably about 0.50 to 1.00% by weight.
 また、実施の形態1において、リン酸もしくはその塩とともに用いられるアニオン性界面活性剤としては、水中で解離して陰イオンとなる官能基を有する界面活性剤が挙げられ、かかる官能基としては、スルホン酸基、硫酸エステル基、ホスホン酸基、およびカルボン酸基等が挙げられる。 In the first embodiment, the anionic surfactant used together with phosphoric acid or a salt thereof includes a surfactant having a functional group that is dissociated in water and becomes an anion. As such a functional group, Examples thereof include a sulfonic acid group, a sulfate ester group, a phosphonic acid group, and a carboxylic acid group.
 更に、実施の形態1におけるアニオン性界面活性剤としては、上述した官能基を有し、かつ高級鎖式炭化水素を含む界面活性剤が好ましく、高級鎖式炭化水素としては、炭素数が9以上の鎖式炭化水素を含むアニオン性界面活性剤が好ましく、特に炭素数9~20の鎖式炭化水素を含むアニオン性界面活性剤が好ましい。更には、炭素数12~18の鎖式炭化水素を含むアニオン性界面活性剤が特に好ましい。 Furthermore, as the anionic surfactant in the first embodiment, a surfactant having the above-described functional group and containing a higher chain hydrocarbon is preferable, and the higher chain hydrocarbon has 9 or more carbon atoms. An anionic surfactant containing a chain hydrocarbon is preferable, and an anionic surfactant containing a chain hydrocarbon having 9 to 20 carbon atoms is particularly preferable. Furthermore, an anionic surfactant containing a chain hydrocarbon having 12 to 18 carbon atoms is particularly preferred.
 かかるアニオン性界面活性剤としては、例えば、高級脂肪酸アルカリ金属塩(セッケン)、高級アルコール硫酸エステル塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪族有機酸塩、およびリン酸系などが挙げられる。これらのアニオン性界面活性剤は、単独で使用することもでき、2種以上を混合して使用することもできる。 Examples of such anionic surfactants include higher fatty acid alkali metal salts (soap), higher alcohol sulfates, alkyl sulfates, alkylbenzene sulfonates, aliphatic sulfonates, and polyoxyethylene alkyl ether sulfates. , Aliphatic organic acid salts, and phosphates. These anionic surfactants can be used alone or in combination of two or more.
 更に、アニオン性界面活性剤としては、単一の鎖式炭化水素を有するものに限られず、例えば、炭素数が異なる複数の鎖式炭化水素を含む界面活性剤であっても問題なく使用することができる。 Furthermore, the anionic surfactant is not limited to those having a single chain hydrocarbon, and for example, a surfactant containing a plurality of chain hydrocarbons having different carbon numbers can be used without any problem. Can do.
 高級脂肪酸アルカリ金属塩を構成する高級脂肪酸としては、例えば、炭素数9以上の脂肪酸と塩基性物質の塩が挙げられ、高級脂肪酸としては炭素数9~20の脂肪酸が挙げられる。これらの脂肪酸は、飽和カルボン酸であってもよく、不飽和カルボン酸であってもよい。かかる脂肪酸としては、例えば、ノナン酸(C9)、デカン酸(C10)、ウンデカン酸(C11)、ラウリン酸(C12)、テトラデカン酸(C14)、ヘキサデカン酸(C16)、ヘプタデカン酸(C17)、オクタデカン酸(C18)、およびオレイン酸(C18)等が挙げられる。 Examples of the higher fatty acid constituting the higher fatty acid alkali metal salt include salts of fatty acids having 9 or more carbon atoms and basic substances, and higher fatty acids include fatty acids having 9 to 20 carbon atoms. These fatty acids may be saturated carboxylic acids or unsaturated carboxylic acids. Examples of the fatty acid include nonanoic acid (C9), decanoic acid (C10), undecanoic acid (C11), lauric acid (C12), tetradecanoic acid (C14), hexadecanoic acid (C16), heptadecanoic acid (C17), and octadecane. An acid (C18), an oleic acid (C18), etc. are mentioned.
 これらと塩を形成する塩基性物質としては、例えば、カリウム、ナトリウムなどのアルカリ金属、カルシウム、マグネシウム、およびバリウム等のアルカリ土類金属、アンモニア、またはメチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン等のアルキルアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミノアルコール類があげられる。好ましい高級脂肪酸アルカリ金属塩の一例としては、例えば、ラウリン酸ナトリウム、ステアリン酸ナトリウム(オクタデカン酸ナトリウム)、オレイン酸カリウム、およびヒマシ油カリウム等が挙げられる。 Examples of basic substances that form salts with these include alkali metals such as potassium and sodium, alkaline earth metals such as calcium, magnesium, and barium, ammonia, and alkyl such as methylamine, dimethylamine, ethylamine, and diethylamine. Examples thereof include amino alcohols such as amines, monoethanolamine, diethanolamine, and triethanolamine. Examples of preferred higher fatty acid alkali metal salts include sodium laurate, sodium stearate (sodium octadecanoate), potassium oleate, and castor oil potassium.
 高級アルコール硫酸エステル塩としては、例えば、炭素数9以上のアルコールの硫酸エステルの塩があげられ、好ましくは、炭素数9~20のアルコール硫酸エステルが挙げられる。 Examples of the higher alcohol sulfate ester salt include a sulfate ester salt of an alcohol having 9 or more carbon atoms, and preferably an alcohol sulfate ester having 9 to 20 carbon atoms.
 具体的には、例えば、ノナアルコール(C9)、デカアルコール(C10)、ウンデカアルコール(C11)、ラウリルアルコール(C12)、トリデシルアルコール(13)、ミリスチルアルコール(C14)、ペンタデシルアルコール(C15)、およびヘキサデシルアルコール(C16)、ヘプタデシルアルコール(C17)、オクタデシルアルコール(C18)等のアルコールの硫酸エステルが挙げられるが、これらにおいて、アルコールとしては上記のものに限られることはなく、例えば、1級アルコールであってもよく、2級アルコールまたは3級アルコールであってもよい。更には、飽和アルコールであってもよく、不飽和アルコールであってもよい。これらのアルコール硫酸エステルと塩を形成するものとしては、上述した高級脂肪酸アルカリ金属塩において記載した塩基性物質を使用することができる。 Specifically, for example, nona alcohol (C9), deca alcohol (C10), undeca alcohol (C11), lauryl alcohol (C12), tridecyl alcohol (13), myristyl alcohol (C14), pentadecyl alcohol (C15) ), And sulfuric acid esters of alcohols such as hexadecyl alcohol (C16), heptadecyl alcohol (C17), and octadecyl alcohol (C18). However, in these, the alcohol is not limited to those described above. The primary alcohol may be a secondary alcohol or a tertiary alcohol. Furthermore, it may be a saturated alcohol or an unsaturated alcohol. As those which form salts with these alcohol sulfates, the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used.
 アルキル硫酸エステル塩としては、炭素数9以上のアルキル硫酸エステルの塩が挙げられ、塩としては、上述した高級脂肪酸アルカリ金属塩において記載した塩基性物質を使用することができる。かかるアルキル硫酸エステルとしては、例えば、炭素数9~20のアルキル硫酸エステル塩が好ましく、具体的には、例えば、オクチル硫酸ナトリウム(C8)、ノナ硫酸ナトリウム(C9)、デカ硫酸ナトリウム(C10)、ウンデカ硫酸カリウム(C11)、ラウリル硫酸ナトリウム、ラウリル硫酸トリエタノールアミン(C12)、トリデシル硫酸ナトリウム(13)、ミリスチル硫酸エステル塩(C14)、ペンタデシル硫酸ナトリウム(C15)、ヘキサデシル硫酸ナトリウム(C16)、ヘプタデシル硫酸ナトリウム(C17)、およびオクタデシル硫酸ナトリウム(C18)が挙げられる。 Examples of the alkyl sulfate ester salts include salts of alkyl sulfate esters having 9 or more carbon atoms. As the salts, the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used. As the alkyl sulfate, for example, an alkyl sulfate ester having 9 to 20 carbon atoms is preferable. Specifically, for example, sodium octyl sulfate (C8), sodium nonasulfate (C9), sodium decasulfate (C10), Undecasulfate potassium (C11), sodium lauryl sulfate, lauryl sulfate triethanolamine (C12), sodium tridecyl sulfate (13), myristyl sulfate ester salt (C14), sodium pentadecyl sulfate (C15), sodium hexadecyl sulfate (C16), heptadecyl Examples thereof include sodium sulfate (C17) and sodium octadecyl sulfate (C18).
 アルキルベンゼンスルホン酸塩としては、炭素数9~20のアルキルベンゼンスルホン酸の塩があげられ、塩としては、上述した高級脂肪酸アルカリ金属塩において記載した塩基性物質を使用することができる。具体的には、例えば、ラウリルベンゼンスルホン酸トリエタノールアミン、p-デシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、およびテトラデシルベンゼンスルホン酸ナトリウム等が挙げられる。 Examples of the alkyl benzene sulfonate include salts of alkyl benzene sulfonic acids having 9 to 20 carbon atoms, and the basic substances described in the above-mentioned higher fatty acid alkali metal salts can be used. Specific examples include triethanolamine laurylbenzenesulfonate, sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate, and sodium tetradecylbenzenesulfonate.
 ポリオキシエチレンアルキルエーテル硫酸エステル塩としては、炭素数9~20のものが挙げられ、例えば、ポリオキシエチレンラウリルエーテル硫酸ナトリウムが挙げられる。 Examples of the polyoxyethylene alkyl ether sulfate ester salts include those having 9 to 20 carbon atoms, such as sodium polyoxyethylene lauryl ether sulfate.
 その他のスルホン酸塩としては、アルキルナフタレンスルホン酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウム、およびアルカンスルホン酸ナトリウムが挙げられる。 Other sulfonates include sodium alkyl naphthalene sulfonate, sodium dioctyl sulfosuccinate, sodium dialkyl sulfosuccinate, sodium alkyl diphenyl ether disulfonate, and sodium alkane sulfonate.
 N-アシルアミノ酸塩としては、炭素数9~20のN-アシルアミノ酸の塩が挙げられ、例えば、N-ラウリルグリシンナトリウムおよびN-ミリスチリルグルタミン酸塩トリエタノールアミン等が挙げられる。 Examples of N-acyl amino acid salts include N-acyl amino acid salts having 9 to 20 carbon atoms, such as sodium N-lauryl glycine and N-myristyl glutamate triethanolamine.
 更に、アルケニルコハク酸ジカリウム、ラウリルザルコシンナトリウム、ラウリル-β-アラニルナトリウム、およびラウリルメチルタウリンナトリウム等のような界面活性剤も好適に使用することができる。 Furthermore, surfactants such as dipotassium alkenyl succinate, sodium lauryl sarcosine, sodium lauryl-β-alanyl, sodium laurylmethyl taurate, and the like can also be suitably used.
 また、研磨用組成物COMP1においては、アニオン性界面活性剤として分子中に2つ以上のアニオン系官能基を有していてもよく、例えば、アルキレンジスルホン酸、ナフタレンジスルホン酸ホルマリン縮合物、フェノールジスルホン酸ホルマリン縮合物、およびフェニルフェノールジスルホン酸ホルマリン縮合物等の他に、アルキルジフェニルエーテルジスルホン酸、アルキルジフェニルエーテルジホスホン酸、およびアルキルジフェニルエーテルジカルボン酸等の更にエーテル結合を有する化合物およびそれらの塩が挙げられ、塩としては、具体的には、ナトリウム塩、アンモニウム塩、トリエタノールアミン塩、ジナトリウム塩、ジアンモニウム塩、およびジトリエタノールアミン塩等が挙げられる。 Further, the polishing composition COMP1 may have two or more anionic functional groups in the molecule as an anionic surfactant. For example, alkylene disulfonic acid, naphthalene disulfonic acid formalin condensate, phenol disulfone In addition to acid formalin condensate, phenylphenol disulfonic acid formalin condensate and the like, examples include compounds having an ether bond such as alkyl diphenyl ether disulfonic acid, alkyl diphenyl ether diphosphonic acid, and alkyl diphenyl ether dicarboxylic acid, and salts thereof. Specific examples of the salt include sodium salt, ammonium salt, triethanolamine salt, disodium salt, diammonium salt, and ditriethanolamine salt.
 これらのアニオン性界面活性剤は、研磨用組成物COMP1全体に対して、濃度が0.1~1.5重量%となるように配合され、特に好ましくは、濃度が0.25~0.5重量%となるように配合される。0.1重量%以下では、アニオン性界面活性剤添加の効果が得られず、1.5重量%以上加えた場合は研磨レートが低下する。 These anionic surfactants are blended so as to have a concentration of 0.1 to 1.5% by weight, particularly preferably 0.25 to 0.5%, based on the whole polishing composition COMP1. It mix | blends so that it may become weight%. If it is 0.1% by weight or less, the effect of adding an anionic surfactant cannot be obtained, and if 1.5% by weight or more is added, the polishing rate decreases.
 実施の形態1において、好ましい組み合わせとしては、リン酸もしくはその塩と高級アルキルベンゼンスルホン酸塩の組合せ、リン酸もしくはその塩とN-アシルアミノ酸塩の組合せ、リン酸もしくはその塩とポリオキシエチレンアルキルエーテル硫酸エステル塩の組合せ、リン酸もしくはその塩とジアルキルスルホコハク酸塩の組合せが挙げられる。 In Embodiment 1, preferred combinations include a combination of phosphoric acid or a salt thereof and a higher alkylbenzene sulfonate, a combination of phosphoric acid or a salt thereof and an N-acyl amino acid salt, a phosphoric acid or a salt thereof and a polyoxyethylene alkyl ether. A combination of a sulfate ester salt, a combination of phosphoric acid or a salt thereof and a dialkylsulfosuccinate is exemplified.
 より好ましい組み合わせとしては、リン酸もしくはその塩と炭素数12~18の高級アルキルベンゼンスルホン酸塩の組合せ、リン酸もしくはその塩と炭素数12~18のN-アシルアミノ酸塩の組合せ、リン酸もしくはその塩と炭素数12~18のポリオキシエチレンアルキルエーテル硫酸エステル塩の組合せ、リン酸もしくはその塩とジアルキルスルホコハク酸塩の組合せが挙げられる。 More preferable combinations include a combination of phosphoric acid or a salt thereof and a higher alkylbenzene sulfonate having 12 to 18 carbon atoms, a combination of phosphoric acid or a salt thereof and an N-acyl amino acid salt having 12 to 18 carbon atoms, a phosphoric acid or a salt thereof Examples thereof include a combination of a salt and a polyoxyethylene alkyl ether sulfate ester having 12 to 18 carbon atoms, and a combination of phosphoric acid or a salt thereof and a dialkylsulfosuccinate.
 また、特に好ましい組み合わせとしては、リン酸もしくはその塩とラウリルベンゼンスルホン酸塩、p-デシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムもしくはテトラデシルベンゼンスルホン酸ナトリウムの組合せ、リン酸もしくはその塩とN-ラウリル-N-メチルグリシンナトリウム塩の組合せ、リン酸もしくはその塩とポリオキシエチレンアルキルエーテル硫酸エステル塩の組合せ、リン酸もしくはその塩とジオクチルスルホコハク酸塩またはジ2-エチルヘキシルスルホコハク酸ナトリウムの組合せが挙げられる。 Further, particularly preferable combinations include a combination of phosphoric acid or a salt thereof and laurylbenzene sulfonate, sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate or sodium tetradecylbenzenesulfonate, phosphoric acid or a salt thereof and N A combination of sodium lauryl-N-methylglycine, a combination of phosphoric acid or a salt thereof and polyoxyethylene alkyl ether sulfate, a combination of phosphoric acid or a salt thereof and dioctyl sulfosuccinate or sodium di-2-ethylhexyl sulfosuccinate Can be mentioned.
 腐食防止剤としては、例えば、ベンゾトリアゾール、トリルトリアゾール、ベンゾトリアゾール-4-カルボン酸もしくはそのメチルエステル、エチルエステル、プロピルエステル、ブチルエステルおよびオクチルエステル等のベンゾトリアゾール誘導体のほか、ナフトトリアゾールもしくはその誘導体、イミダゾール、キナルジン酸、およびインバール誘導体等が挙げられる。これらの中でも、ベンゾトリアゾールもしくはその誘導体、イミダゾール、キナルジン酸、インバール誘導体などが好ましく、ベンゾトリアゾールとその誘導体が特に好ましい。腐食防止剤は、単独で用いてもよくまたは2種以上を用いてもよい。腐食防止剤の含有量は、特に制限されず、砥粒の種類、粒径および含有量、有機酸その他の成分の有無とその種類および含有量、研磨対象である金属膜の種類、膜厚などの各種条件に応じて広い範囲から適宜選択すればよく、通常は、研磨用組成物COMP1全体に対して0.005~0.5重量%、好ましくは0.01~0.3重量%である。 Examples of the corrosion inhibitor include benzotriazole derivatives such as benzotriazole, tolyltriazole, benzotriazole-4-carboxylic acid or its methyl ester, ethyl ester, propyl ester, butyl ester and octyl ester, as well as naphthotriazole or its derivative. Imidazole, quinaldic acid, and invar derivatives. Among these, benzotriazole or derivatives thereof, imidazole, quinaldic acid, invar derivatives and the like are preferable, and benzotriazole and derivatives thereof are particularly preferable. A corrosion inhibitor may be used independently or may use 2 or more types. The content of the corrosion inhibitor is not particularly limited, and the type, size and content of abrasive grains, the presence and absence and type and content of organic acids and other components, the type of metal film to be polished, the film thickness, etc. May be appropriately selected from a wide range according to the various conditions, and is usually 0.005 to 0.5% by weight, preferably 0.01 to 0.3% by weight, based on the entire polishing composition COMP1. .
 研磨用組成物COMP1においては、リン酸もしくはその塩およびアニオン性界面活性剤に、水溶性高分子物質を組合せることもでき、これによってエッチング速度をさらに抑制することが可能となる。 In the polishing composition COMP1, a water-soluble polymer substance can be combined with phosphoric acid or a salt thereof and an anionic surfactant, thereby further suppressing the etching rate.
 かかる水溶性高分子物質としては、ポリカルボン酸化合物または水溶性のビニルアルコール誘導体のほか、この技術分野において使用される水溶性高分子物質があげられる。 Examples of such water-soluble polymer substances include polycarboxylic acid compounds or water-soluble vinyl alcohol derivatives, and water-soluble polymer substances used in this technical field.
 具体的には、例えば、ポリカルボン酸としては、ポリアクリル酸、ポリメタクリル酸、およびポリスチレンアクリル酸が挙げられ、水溶性ビニル誘導体としては、ポリビニルピロリドン、ポリビニルアルコール、およびポリエチレングリコールが挙げられ、更には、マレイン酸・ビニル共重合体、およびキサンタンガム等が使用できる。 Specifically, for example, polycarboxylic acid includes polyacrylic acid, polymethacrylic acid, and polystyrene acrylic acid, and water-soluble vinyl derivatives include polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol. May be maleic acid / vinyl copolymer and xanthan gum.
 これらのうち、ポリカルボン酸は、ポリカルボン酸塩としても用いることができ、塩としては、カリウム、およびナトリウム等のアルカリ金属塩、カルシウム、およびマグネシウム等のアルカリ土類金属塩、アンモニウム塩などが挙げられる。 Of these, polycarboxylic acids can also be used as polycarboxylic acid salts. Examples of salts include alkali metal salts such as potassium and sodium, alkaline earth metal salts such as calcium and magnesium, and ammonium salts. Can be mentioned.
 また、水溶性セルロース誘導体も水溶性高分子物質として好適に使用することができ、水溶性セルロース誘導体としては、具体的には、カルボキシメチルセルロース、カルボキシエチルセルロース等のカルボキシアルキルセルロース類、ヒドロキシエチルセルロース、ヒドロキプロピルセルロース、およびエチルヒドロキシエチルセルロース等のヒドロキシセルロース類、メチルセルロース、およびエチルセルロース等のアルキルセルロース類が挙げられる。 Water-soluble cellulose derivatives can also be suitably used as water-soluble polymer substances. Specific examples of water-soluble cellulose derivatives include carboxyalkyl celluloses such as carboxymethyl cellulose and carboxyethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl. Examples thereof include hydroxycelluloses such as cellulose and ethylhydroxyethylcellulose, and alkylcelluloses such as methylcellulose and ethylcellulose.
 これらの水溶性高分子物質がポリカルボン酸化合物または水溶性のビニルアルコール誘導体等である場合、これらの水溶性高分子物質は、分子量が50000以下のものが好ましく、特に分子量が3000~10000のものが好ましい。 When these water-soluble polymer substances are polycarboxylic acid compounds or water-soluble vinyl alcohol derivatives, these water-soluble polymer substances preferably have a molecular weight of 50,000 or less, particularly those having a molecular weight of 3000 to 10,000. Is preferred.
 また、水溶性高分子物質として、水溶性セルロース誘導体を用いる場合には、その分子量が50000以下のものが好ましく、特に分子量が3000~25000のものが好ましい。 In addition, when a water-soluble cellulose derivative is used as the water-soluble polymer substance, the molecular weight is preferably 50000 or less, and particularly preferably the molecular weight is 3000 to 25000.
 これらの水溶性高分子物質は、研磨用組成物COMP1全体に対して、濃度が約0.001~3.00重量%となるように配合される。 These water-soluble polymer substances are blended so as to have a concentration of about 0.001 to 3.00% by weight with respect to the entire polishing composition COMP1.
 以上の構成を有する研磨用組成物COMP1は、ウェハの研磨速度を1500nm/分以上の高い速度に維持しつつ100nm/分以下の低いエッチング速度を達成でき、かつディッシングも抑制すること、加えて砥粒の凝集、沈降および溶解、研磨促進剤の析出などが生じないなどのすぐれた効果を奏する。 The polishing composition COMP1 having the above-described configuration can achieve a low etching rate of 100 nm / min or less while maintaining the wafer polishing rate at a high rate of 1500 nm / min or more, and suppresses dishing. Excellent effects such as no aggregation, sedimentation and dissolution of grains, and precipitation of polishing accelerators are produced.
 これらの効果は、アニオン性界面活性剤の親水基を電気的に銅表面に吸着させ、疎水基で銅表面を覆わせることによって、研磨用スラリーが銅表面に接触することを阻止し、エッチングを抑制させるメカニズムによるものである。また、このメカニズムから疎水基は、銅表面と研磨用スラリーの距離を十分保つため、炭素数が9以上であると極めて優れた効果が得られるのでより好ましい。更に、水溶性高分子物質を添加したことによってエッチング速度の抑制効果が更に高められ理由は、水溶性高分子物質が界面活性剤の疎水基間の僅かな隙間をも被覆することによるものである。しかも、これら被覆層は、脆弱であるため、砥粒および研磨パッドにより容易に除去することができ、研磨速度の低下を招き難いという効果も併せ有する。 These effects prevent the polishing slurry from coming into contact with the copper surface by electrically adsorbing the hydrophilic group of the anionic surfactant on the copper surface and covering the copper surface with the hydrophobic group. This is due to the suppression mechanism. Further, from this mechanism, the hydrophobic group is more preferably a carbon number of 9 or more in order to keep a sufficient distance between the copper surface and the polishing slurry, since an extremely excellent effect can be obtained. Further, the addition of the water-soluble polymer substance further enhances the etching rate suppression effect because the water-soluble polymer substance covers even a small gap between the hydrophobic groups of the surfactant. . In addition, since these coating layers are fragile, they can be easily removed with abrasive grains and a polishing pad, and also have an effect of hardly causing a decrease in polishing rate.
 研磨用組成物COMP1のpHは、4.0以下が好ましく、特に1.5~2.5が好ましい。 The pH of the polishing composition COMP1 is preferably 4.0 or less, particularly preferably 1.5 to 2.5.
 pH調整剤としては、この技術分野において常用されるものを使用することができ、例えば、酸成分として乳酸、酢酸、およびクエン酸等の有機酸、アルカリ成分としてカリウム、およびナトリウム等のアルカリ金属の水酸化物やアンモニウムをそのままで用いることができ、あるいは、適宜、塩として用いることができる。 As the pH adjuster, those commonly used in this technical field can be used, for example, organic acids such as lactic acid, acetic acid, and citric acid as acid components, alkali metals such as potassium and sodium as alkali components, and the like. Hydroxides and ammonium can be used as they are, or as appropriate, as a salt.
 研磨用組成物COMP1は、砥粒、酸化剤、研磨促進剤(リン酸もしくはその塩等)、アニオン性界面活性剤、および腐食抑制剤を、適宜、混合して水に加えるか、またはこれらの各成分を順次、水に混合し、所望のpHに調整することによって作製される。 The polishing composition COMP1 is prepared by adding abrasive grains, an oxidizing agent, a polishing accelerator (phosphoric acid or a salt thereof, etc.), an anionic surfactant, and a corrosion inhibitor, as appropriate, and adding them to water. Each component is made by sequentially mixing with water and adjusting to the desired pH.
 また、研磨用組成物COMP1は、水溶性高分子物質を更に含む場合、砥粒、酸化剤、研磨促進剤(リン酸もしくはその塩等)、アニオン性界面活性剤、腐食抑制剤および水溶性高分子物質を、適宜、混合して水に加えるか、またはこれらの各成分を順次、水に混合し、所望のpHに調整することによって作製される。 In addition, when the polishing composition COMP1 further contains a water-soluble polymer substance, abrasive grains, an oxidizing agent, a polishing accelerator (phosphoric acid or a salt thereof, etc.), an anionic surfactant, a corrosion inhibitor, and a water-soluble high-molecular substance. The molecular substances are prepared by mixing them as appropriate and adding them to water, or by sequentially mixing each of these components into water and adjusting to the desired pH.
 この場合、各成分を混合する手段としては、ホモジナイザー、および超音波等、この技術分野において常用される手段を採用することができる。 In this case, as means for mixing the components, means commonly used in this technical field such as a homogenizer and ultrasonic waves can be employed.
 以下に実験例、実施例および比較例を挙げ、本発明を具体的に説明する。 Hereinafter, the present invention will be described in detail by giving experimental examples, examples and comparative examples.
 (実験例1)
 実施例1~5および比較例1~5並びに比較例6~8
 表1~3に示す割合で各成分を水に混合、溶解し、研磨用組成物COMP1である実施例1~5、比較例1~8を調製した。なお、砥粒としては、平均粒子径80nmのコロイダルシリカを用いた。
(Experimental example 1)
Examples 1 to 5 and Comparative Examples 1 to 5 and Comparative Examples 6 to 8
Each component was mixed and dissolved in water in the proportions shown in Tables 1 to 3, and Examples 1 to 5 and Comparative Examples 1 to 8 as the polishing composition COMP1 were prepared. As abrasive grains, colloidal silica having an average particle diameter of 80 nm was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1におけるジアルキルスルホコハク酸ナトリウムは、日油株式会社製のラピゾールA-30(炭素数10~16の混合物)である。また、ポリオキシアルキル硫酸エステルナトリウムは、日油株式会社製のパーソフトEF(炭素数10~14の混合物)である。更に、BTAは、ベンゾトリアゾールである。 In Table 1, sodium dialkylsulfosuccinate is Rapisol A-30 (mixture of 10 to 16 carbon atoms) manufactured by NOF Corporation. Polyoxyalkyl sulfate sodium is Persoft EF (mixture of 10 to 14 carbon atoms) manufactured by NOF Corporation. Furthermore, BTA is benzotriazole.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例6~9)
 表4に示す割合で各成分を水に混合、溶解し、研磨用組成物COMP1である実施例6~9を調製した。なお、砥粒として平均粒子径80nmのコロイダルシリカを用いた。
(Examples 6 to 9)
Each component was mixed and dissolved in water in the proportions shown in Table 4 to prepare Examples 6 to 9 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例10~13)
 表5に示す割合で各成分を水に混合、溶解し、研磨用組成物COMP1である実施例10~13を調製した。なお、砥粒として平均粒子径80nmのコロイダルシリカを用いた。
(Examples 10 to 13)
Each component was mixed and dissolved in water in the proportions shown in Table 5 to prepare Examples 10 to 13 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例14~17)
 表6に示す割合で各成分を水に混合、溶解し、研磨用組成物COMP1である実施例14~17を調製した。なお、砥粒として平均粒子径80nmのコロイダルシリカを用いた。
(Examples 14 to 17)
Each component was mixed and dissolved in water in the proportions shown in Table 6 to prepare Examples 14 to 17 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6におけるカルボン酸系共重合体アンモニウム塩は、東亞合成株式会社製のアロンA-6114)分子量8000である。また、表6における(*)は、平均分子量10000(日油株式会社製、ポリスターOM)を表し、(**)は、平均分子量10000(日油株式会社製、マリアリムAKM-0531)を表す。 The carboxylic acid copolymer ammonium salt in Table 6 has a molecular weight of 8000 (Aron A-6114 manufactured by Toagosei Co., Ltd.). In Table 6, (*) represents an average molecular weight of 10,000 (manufactured by NOF Corporation, Polystar OM), and (**) represents an average molecular weight of 10,000 (manufactured by NOF Corporation, Marialim AKM-053).
(実施例18~20)
 表7に示す割合で各成分を水に混合、溶解し、研磨用組成物COMP1である実施例18~20を調製した。なお、砥粒として平均粒子径80nmのコロイダルシリカを用いた。
(Examples 18 to 20)
Each component was mixed and dissolved in water in the proportions shown in Table 7 to prepare Examples 18 to 20 as the polishing composition COMP1. Note that colloidal silica having an average particle diameter of 80 nm was used as the abrasive grains.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7における(*2)は、平均分子量25000を表し、(*3)は、平均分子量10000を表す。 (* 2) in Table 7 represents an average molecular weight of 25000, and (* 3) represents an average molecular weight of 10,000.
 (研磨速度評価)
 研磨装置(EBARA EPO222(荏原製作所社製))を用い、研磨パッド(IC1000 050k-grv A2/P922"(ニッタ・ハース株式会社製))に実施例および比較例の研磨用組成物を150ml/分の割合で供給し、かつ直径200mmの銅めっきウェハに210hPaの圧力をかけながら、研磨定盤を90rpmおよびキャリアを80rpmでそれぞれ回転させ、60秒間研磨を行った。研磨終了後、研磨によって除去された銅の厚みの差を銅表面の抵抗値(四探針法を用いて測定)から算出した。単位時間当たりに研磨によって除去されたウェハの厚み(nm/min)で研磨速度を評価した。
(Polishing rate evaluation)
Using a polishing apparatus (EBARA EPO222 (manufactured by Ebara Seisakusho)), 150 ml / min of the polishing compositions of Examples and Comparative Examples were applied to a polishing pad (IC1000 050 k-grv A2 / P922 "(manufactured by Nitta Haas Co., Ltd.)). The polishing platen was rotated at 90 rpm and the carrier was rotated at 80 rpm while applying a pressure of 210 hPa to a copper-plated wafer having a diameter of 200 mm, and polishing was performed for 60 seconds. The difference in copper thickness was calculated from the resistance value of the copper surface (measured using the four-probe method), and the polishing rate was evaluated by the thickness (nm / min) of the wafer removed by polishing per unit time.
 [銅研磨速度の判定基準]
   ◎:3500nm/分以上
   ○:1500nm/分以上、3500nm/分未満
   ×:1500nm/分未満
(ディッシング量評価)
 シリコンウェハに深さ5μm、φ100μmのビアを形成し、バリアメタルとしてTa、Cuシード層、Cuメッキを10μm施したφ200mmのパターンウェハを用いて、銅配線の露出に要した時間の30%に相当する時間を追加研磨時間として研磨を行った。また、研磨後、銅配線の表面に形成された凹みの深さを触針式プロファイラー(商品名 P12、KLA Tencor社製)によって測定し、測定結果をディッシング量とした。
[Criteria for copper polishing rate]
◎: 3500 nm / min or more ○: 1500 nm / min or more, less than 3500 nm / min ×: less than 1500 nm / min (dishing amount evaluation)
Equivalent to 30% of the time required to expose copper wiring using a 200 mm pattern wafer with a via formed in a silicon wafer with a depth of 5 μm and φ100 μm, Ta, Cu seed layer, and Cu plating 10 μm as the barrier metal Polishing was performed with the time to be added as additional polishing time. Further, after polishing, the depth of the dent formed on the surface of the copper wiring was measured with a stylus profiler (trade name: P12, manufactured by KLA Tencor), and the measurement result was used as the dishing amount.
[φ100μmビアのディッシング判定基準]
   ◎:1000Å以下
   ○:3000Å以下
   △:10000Å未満
   ×:10000Å以上
 (エッチング速度評価)
 電気化学測定手法を用いて、ターフェルプロットにより腐食電流値を算出した。また、腐食電流値より、単位面積あたりの銅電極での平均エッチング速度を算出し、銅エッチング速度とした。
[Dishing criterion for φ100μm via]
◎: 1000 Å or less ○: 3000 Å or less △: Less than 10000 × ×: 10000 Å or more (Etching rate evaluation)
The corrosion current value was calculated by Tafel plot using the electrochemical measurement method. Moreover, the average etching rate with the copper electrode per unit area was calculated from the corrosion current value, and was defined as the copper etching rate.
 [エッチング速度判定基準]
   ◎:50nm/分以下
   ○:50nm/分を越え100nm/分以下
   △:100nm/分を越え200nm/分以下
   ▲:200nm/分を越え300nm/分以下
   ×:300nm/分を越えるもの
[Etching rate criterion]
◎: 50 nm / min or less ○: Over 50 nm / min to 100 nm / min or less △: Over 100 nm / min to 200 nm / min or less ▲: Over 200 nm / min to 300 nm / min or less ×: Over 300 nm / min
 (スラリー安定性評価)
 大塚電子社製の粒度分布測定器ELS-Zを用いて、調合直後と調合後24時間経過時の平均粒子径を測定し、砥粒粒子径および凝集、沈降等の変化を確認した。
(Slurry stability evaluation)
Using an Otsuka Electronics particle size distribution measuring device ELS-Z, the average particle size was measured immediately after compounding and after 24 hours from compounding, and changes in abrasive particle size, aggregation, sedimentation, and the like were confirmed.
 [スラリー安定性判定基準]
   ○:砥粒粒子径の増加なし
   △:砥粒粒子径の増加あり
   ×:凝集および沈降
[Slurry stability criteria]
○: No increase in abrasive particle size Δ: Increase in abrasive particle size ×: Aggregation and sedimentation
 (結果)
 上記実施例1~20および比較例1~8を用いた実験例から次のことがわかる。
リン酸とアニオン性界面活性剤を用いた実施の形態1における実施例は、研磨速度、エッチング速度、ディッシングおよびスラリー安定性のいずれの項目においても、優れた結果を示している。
(result)
From the experimental examples using Examples 1 to 20 and Comparative Examples 1 to 8, the following can be seen.
The example in Embodiment 1 using phosphoric acid and an anionic surfactant shows excellent results in any items of polishing rate, etching rate, dishing and slurry stability.
 これに対し、比較例1~5(アニオン性界面活性剤を使用しない例)は、研磨速度、およびディッシング量のいずれの項目も不適であり、わずかにスラリー安定性において実施例と同様の評価が得られたことがわかる。 On the other hand, Comparative Examples 1 to 5 (examples in which no anionic surfactant is used) are unsuitable for both items of polishing rate and dishing amount. You can see that it was obtained.
 エッチング速度は、実施例1~5に比べて、3倍~17倍高いエッチング速度となっており、研磨用組成物として好ましくないことがわかる。 The etching rate is 3 to 17 times higher than that of Examples 1 to 5, indicating that this is not preferable as a polishing composition.
 また、比較例6~8(リン酸以外の無機酸とアニオン性界面活性剤を組み合わせた例)では、研磨速度は、実施例1~5と同様の結果を示したものの、エッチング速度は、実施例1~5の2.4倍~7倍高く、ディッシング量も不適という結果となっており、研磨用組成物として好ましくないことがわかる。 In Comparative Examples 6 to 8 (an example in which an inorganic acid other than phosphoric acid and an anionic surfactant were combined), the polishing rate showed the same results as in Examples 1 to 5, but the etching rate was The results are 2.4 to 7 times higher than those of Examples 1 to 5, and the dishing amount is unsuitable, indicating that it is not preferable as a polishing composition.
 (実験例2)
 実験例1と同様の研磨条件で、アニオン性界面活性剤の濃度を種々変えて、研磨速度と銅エッチング速度を測定し、アニオン性界面活性剤の濃度変化が研磨速度と銅エッチング速度に及ぼす影響を評価した。
(Experimental example 2)
Under the same polishing conditions as in Experimental Example 1, the concentration of the anionic surfactant was changed variously, the polishing rate and the copper etching rate were measured, and the effect of the change in the anionic surfactant concentration on the polishing rate and the copper etching rate Evaluated.
 図1は、銅研磨速度および銅エッチング速度と、界面活性剤の添加量との関係を示す図である。図1において、縦軸は、銅研磨速度および銅エッチング速度を表し、横軸は、界面活性剤の添加量を表す。また、曲線k1は、銅研磨速度を示し、曲線k2は、銅エッチング速度を示す。更に、図1に示す銅研磨速度および銅エッチング速度は、上述した実施例9における研磨用組成物において、ラウリルベンゼンスルホン酸トリエタノールアミンの添加量を変えたときの結果である。 FIG. 1 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the amount of surfactant added. In FIG. 1, the vertical axis represents the copper polishing rate and the copper etching rate, and the horizontal axis represents the addition amount of the surfactant. A curve k1 indicates the copper polishing rate, and a curve k2 indicates the copper etching rate. Furthermore, the copper polishing rate and the copper etching rate shown in FIG. 1 are the results when the addition amount of laurylbenzenesulfonic acid triethanolamine was changed in the polishing composition in Example 9 described above.
 図1を参照して、アニオン性界面活性剤(ラウリルベンゼンスルホン酸トリエタノールアミン)の添加量が0.1重量%~1.5重量%である場合、銅研磨速度は、1500nm/minよりも高くなり(曲線k1参照)、銅エッチング速度は、100nm/minよりも低くなる(曲線k2参照)。 Referring to FIG. 1, when the addition amount of the anionic surfactant (laurylbenzenesulfonic acid triethanolamine) is 0.1 wt% to 1.5 wt%, the copper polishing rate is more than 1500 nm / min. The copper etching rate becomes lower than 100 nm / min (see curve k2).
 従って、アニオン性界面活性剤の添加量は、0.1重量%~1.5重量%の範囲が適していることが実証された。 Therefore, it was proved that the addition amount of the anionic surfactant is suitably in the range of 0.1% by weight to 1.5% by weight.
 図2は、銅研磨速度および銅エッチング速度と、過酸化水素の濃度との関係を示す図である。図2において、縦軸は、銅研磨速度および銅エッチング速度を表し、横軸は、過酸化水素の濃度を表す。また、曲線k3は、銅研磨速度を示し、曲線k4は、銅エッチング速度を示す。更に、図2に示す銅研磨速度および銅エッチング速度は、上述した実施例9における研磨用組成物において、過酸化水素の濃度を変えたときの結果である。 FIG. 2 is a diagram showing the relationship between the copper polishing rate and the copper etching rate, and the concentration of hydrogen peroxide. In FIG. 2, the vertical axis represents the copper polishing rate and the copper etching rate, and the horizontal axis represents the concentration of hydrogen peroxide. A curve k3 indicates the copper polishing rate, and a curve k4 indicates the copper etching rate. Furthermore, the copper polishing rate and the copper etching rate shown in FIG. 2 are the results when the concentration of hydrogen peroxide was changed in the polishing composition of Example 9 described above.
 図2を参照して、過酸化水素の濃度が2.0重量%~10.0重量%である場合、銅研磨速度は、1500nm/minよりも高くなり(曲線k3参照)、銅エッチング速度は、100nm/minよりも低くなる(曲線k4参照)。 Referring to FIG. 2, when the concentration of hydrogen peroxide is 2.0 wt% to 10.0 wt%, the copper polishing rate is higher than 1500 nm / min (see curve k3), and the copper etching rate is , Lower than 100 nm / min (see curve k4).
 従って、酸化剤(過酸化水素)の濃度は、2.0重量%~10.0重量%の範囲が適していることが実証された。 Therefore, it was proved that the concentration of the oxidizing agent (hydrogen peroxide) is suitably in the range of 2.0 wt% to 10.0 wt%.
 図3は、銅研磨速度および銅エッチング速度と、有機酸の濃度との関係を示す図である。図3において、縦軸は、銅研磨速度および銅エッチング速度を表し、横軸は、有機酸の濃度を表す。また、曲線k5は、銅研磨速度を示し、曲線k6は、銅エッチング速度を示す。更に、図3に示す銅研磨速度および銅エッチング速度は、上述した実施例9における研磨用組成物において、有機酸としてのL-酒石酸の濃度を変えたときの結果である。 FIG. 3 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the concentration of the organic acid. In FIG. 3, the vertical axis represents the copper polishing rate and the copper etching rate, and the horizontal axis represents the concentration of the organic acid. Curve k5 indicates the copper polishing rate, and curve k6 indicates the copper etching rate. Furthermore, the copper polishing rate and the copper etching rate shown in FIG. 3 are the results when the concentration of L-tartaric acid as the organic acid was changed in the polishing composition of Example 9 described above.
 図3を参照して、有機酸(=L-酒石酸)の濃度が0.3重量%~6.0重量%である場合、銅研磨速度は、1500nm/minよりも高くなり(曲線k5参照)、銅エッチング速度は、100nm/minよりも低くなる(曲線k6参照)。 Referring to FIG. 3, when the concentration of organic acid (= L-tartaric acid) is 0.3 wt% to 6.0 wt%, the copper polishing rate is higher than 1500 nm / min (see curve k5). The copper etching rate is lower than 100 nm / min (see curve k6).
 従って、研磨促進剤1としての有機酸の濃度は、0.3重量%~6.0重量%の範囲が適していることが実証された。 Therefore, it was proved that the concentration of the organic acid as the polishing accelerator 1 is suitably in the range of 0.3 wt% to 6.0 wt%.
 図4は、銅研磨速度および銅エッチング速度と、リン酸の濃度との関係を示す図である。図4において、縦軸は、銅研磨速度および銅エッチング速度を表し、横軸は、リン酸の濃度を表す。また、曲線k7は、銅研磨速度を示し、曲線k8は、銅エッチング速度を示す。更に、図4に示す銅研磨速度および銅エッチング速度は、上述した実施例9における研磨用組成物において、リン酸の濃度を変えたときの結果である。 FIG. 4 is a graph showing the relationship between the copper polishing rate and the copper etching rate, and the phosphoric acid concentration. In FIG. 4, the vertical axis represents the copper polishing rate and the copper etching rate, and the horizontal axis represents the concentration of phosphoric acid. A curve k7 indicates the copper polishing rate, and a curve k8 indicates the copper etching rate. Furthermore, the copper polishing rate and the copper etching rate shown in FIG. 4 are the results when the concentration of phosphoric acid was changed in the polishing composition of Example 9 described above.
 図4を参照して、リン酸の濃度が0.05重量%~2.00重量%である場合、銅研磨速度は、1500nm/minよりも高くなり(曲線k7参照)、銅エッチング速度は、100nm/minよりも低くなる(曲線k8参照)。 Referring to FIG. 4, when the concentration of phosphoric acid is 0.05 wt% to 2.00 wt%, the copper polishing rate is higher than 1500 nm / min (see curve k7), and the copper etching rate is It becomes lower than 100 nm / min (see curve k8).
 従って、研磨促進剤2としてのリン酸の濃度は、0.05重量%~2.00重量%の範囲が適していることが実証された。 Therefore, it was proved that the concentration of phosphoric acid as the polishing accelerator 2 is suitably in the range of 0.05 wt% to 2.00 wt%.
 上述したように、実施の形態1による研磨用組成物COMP1は、アニオン性界面活性剤を含むので、研磨用組成物COMP1を金属膜の研磨に用いることによって、アニオン性界面活性剤の親水基が電気的に金属膜の表面に吸着し、疎水基が金属膜の表面を覆う。その結果、研磨用スラリーの銅表面への接触が阻止され、エッチングが抑制される。 As described above, since the polishing composition COMP1 according to Embodiment 1 contains an anionic surfactant, the hydrophilic group of the anionic surfactant can be reduced by using the polishing composition COMP1 for polishing a metal film. It is electrically adsorbed on the surface of the metal film, and the hydrophobic group covers the surface of the metal film. As a result, contact of the polishing slurry with the copper surface is prevented, and etching is suppressed.
 従って、1500nm/minよりも高い研磨速度を維持しながら、100nm/minよりも低いエッチング速度および300nm以下のディッシング量を得ることができる。 Therefore, an etching rate lower than 100 nm / min and a dishing amount of 300 nm or less can be obtained while maintaining a polishing rate higher than 1500 nm / min.
 [実施の形態2]
 実施の形態2による研磨用組成物COMP2は、砥粒と、酸化剤と、研磨促進剤と、1個以上のベンゼン環を有する第1のアニオン性界面活性剤と、分岐鎖構造を持つ第2のアニオン性界面活性剤と、腐食抑制剤とを含む。
[Embodiment 2]
Polishing composition COMP2 according to Embodiment 2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, and a second chain having a branched chain structure. An anionic surfactant and a corrosion inhibitor.
 即ち、研磨用組成物COMP2は、実施の形態1による研磨用組成物COMP1のアニオン性界面活性剤を第1および第2のアニオン性界面活性剤に代えたものであり、その他は、研磨用組成物COMP1と同じである。 That is, polishing composition COMP2 is obtained by replacing the anionic surfactant of polishing composition COMP1 according to Embodiment 1 with the first and second anionic surfactants, and the others are the polishing composition. It is the same as the product COMP1.
 そして、研磨用組成物COMP2も、銅、銅合金、タンタル、窒化タンタル、チタン、窒化チタンおよびタングステン等の金属膜を研磨の対象とする。 Further, the polishing composition COMP2 also targets metal films such as copper, copper alloy, tantalum, tantalum nitride, titanium, titanium nitride, and tungsten.
 第1のアニオン性界面活性剤は、炭素数が9以上であるアルキル基を含むアルキルベンゼンスルホン酸塩またはアルキルナフタレンスルホン酸塩からなる。炭素数が9未満になると、アルキルベンゼンスルホン酸塩またはアルキルナフタレンスルホン酸塩は、銅表面に吸着させた際に十分な疎水性を発揮できないため、銅表面がスラリーによってエッチングされてしまうからである。 The first anionic surfactant is composed of an alkylbenzene sulfonate or alkylnaphthalene sulfonate containing an alkyl group having 9 or more carbon atoms. This is because when the number of carbon atoms is less than 9, the alkylbenzene sulfonate or alkylnaphthalene sulfonate cannot exhibit sufficient hydrophobicity when adsorbed on the copper surface, and the copper surface is etched by the slurry.
 アルキルベンゼンスルホン酸塩は、1個のベンゼン環を有し、アルキルナフタレンスルホン酸塩は、2個のベンゼン環を有する。 The alkyl benzene sulfonate has one benzene ring, and the alkyl naphthalene sulfonate has two benzene rings.
 アルキルベンゼンスルホン酸塩は、炭素数が9以上であるアルキル基を含むアルキルベンゼンスルホン酸の塩からなる。 The alkylbenzene sulfonate is composed of a salt of alkylbenzene sulfonic acid containing an alkyl group having 9 or more carbon atoms.
 そして、アルキルベンゼンスルホン酸は、p-デシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、およびテトラデシルベンゼンスルホン酸等からなる。 The alkylbenzene sulfonic acid includes p-decylbenzene sulfonic acid, dodecyl benzene sulfonic acid, tetradecyl benzene sulfonic acid, and the like.
 また、アルキルベンゼンスルホン酸と塩を形成する塩基性物質は、例えば、アルカリ金属、アルカリ土類金属、アンモニア、アルキルアミン類およびアミノアルコール類のいずれかからなる。アルカリ金属は、カリウムおよびナトリウム等からなる。アルカリ土類金属は、カルシウム、マグネシウムおよびバリウム等からなる。アルキルアミン類は、メチルアミン、ジメチルアミン、エチルアミン、およびジエチルアミン等からなる。アミノアルコール類は、モノエタノールアミン、ジエタノールアミンおよびトリエタノールアミン等からなる。 The basic substance that forms a salt with alkylbenzenesulfonic acid is composed of, for example, any one of alkali metals, alkaline earth metals, ammonia, alkylamines, and amino alcohols. The alkali metal consists of potassium and sodium. The alkaline earth metal is composed of calcium, magnesium, barium and the like. Alkylamines include methylamine, dimethylamine, ethylamine, diethylamine and the like. Amino alcohols consist of monoethanolamine, diethanolamine, triethanolamine and the like.
 アルキルベンゼンスルホン酸塩の具体例は、例えば、p-デシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸ナトリウム、およびアルキルベンゼンスルホン酸トリエタノールアミンである。 Specific examples of the alkylbenzene sulfonate are, for example, sodium p-decylbenzenesulfonate, sodium dodecylbenzenesulfonate, sodium tetradecylbenzenesulfonate, and triethanolamine alkylbenzenesulfonate.
 アルキルナフタレンスルホン酸塩は、炭素数が9以上であるアルキル基を含むアルキルナフタレンスルホン酸の塩からなる。 The alkyl naphthalene sulfonate is composed of a salt of an alkyl naphthalene sulfonic acid containing an alkyl group having 9 or more carbon atoms.
 そして、アルキルナフタレンスルホン酸と塩を形成する塩基性物質は、アルキルベンゼンスルホン酸と塩を形成する塩基性物質と同じである。 The basic substance that forms a salt with alkylnaphthalenesulfonic acid is the same as the basic substance that forms a salt with alkylbenzenesulfonic acid.
 1個のベンゼン環を有するアルキルベンゼンスルホン酸塩の好ましい例は、アルキルベンゼンスルホン酸トリエタノールアミンである。 A preferred example of the alkylbenzene sulfonate having one benzene ring is triethanolamine alkylbenzene sulfonate.
 また、2個のベンゼン環を有するアルキルナフタレンスルホン酸塩の好ましい例は、アルキルナフタレンスルホン酸ナトリウムである。 A preferred example of the alkyl naphthalene sulfonate having two benzene rings is sodium alkyl naphthalene sulfonate.
 このように、この発明の実施の形態においては、第1のアニオン性界面活性剤は、1個以上のベンゼン環を有する。 Thus, in the embodiment of the present invention, the first anionic surfactant has one or more benzene rings.
 第2のアニオン性界面活性剤は、分岐鎖構造を有するジ2-エチルヘキシルスルホコハク酸塩からなる。 The second anionic surfactant is composed of di-2-ethylhexyl sulfosuccinate having a branched chain structure.
 ジ2-エチルヘキシルスルホコハク酸塩は、ジ2-エチルヘキシルスルホコハク酸の塩からなる。 Di2-ethylhexylsulfosuccinate is a salt of di-2-ethylhexylsulfosuccinic acid.
 ジ2-エチルヘキシルスルホコハク酸と塩を形成する塩基性物質は、アルカリ金属またはアルカリ土類金属である。そして、アルカリ金属は、カリウムおよびナトリウム等からなる。また、アルカリ土類金属は、カルシウム、マグネシウムおよびバリウム等からなる。 The basic substance that forms a salt with di-2-ethylhexylsulfosuccinic acid is an alkali metal or an alkaline earth metal. The alkali metal is composed of potassium, sodium and the like. The alkaline earth metal is composed of calcium, magnesium, barium and the like.
 ジ2-エチルヘキシルスルホコハク酸塩の好ましい例は、ジ2-エチルヘキシルスルホコハク酸ナトリウムである。 A preferred example of di-2-ethylhexyl sulfosuccinate is sodium di-2-ethylhexyl sulfosuccinate.
 腐食抑制剤は、例えば、ベンゾトリアゾール、トリルトリアゾール、ベンゾトリアゾール-4-カルボン酸、ベンゾトリアゾールのメチルエステル、ベンゾトリアゾールのエチルエステル、ベンゾトリアゾールのプロピルエステル、ベンゾトリアゾールのブチルエステルおよびベンゾトリアゾールのオクチルエステル等のベンゾトリアゾール誘導体、ナフトトリアゾールもしくはその誘導体、イミダゾール、キナルジン酸、およびインバール誘導体のいずれかからなる。 Corrosion inhibitors include, for example, benzotriazole, tolyltriazole, benzotriazole-4-carboxylic acid, benzotriazole methyl ester, benzotriazole ethyl ester, benzotriazole propyl ester, benzotriazole butyl ester and benzotriazole octyl ester Benzotriazole derivatives such as naphthotriazole or derivatives thereof, imidazole, quinaldic acid, and invar derivatives.
 研磨用組成物COMP2は、砥粒、酸化剤、研磨促進剤、1個以上のベンゼン環を有する第1のアニオン性界面活性剤、分岐鎖構造を持つ第2のアニオン性界面活性剤、および腐食抑制剤を適宜混合して水を加えることによって作製される。また、研磨用組成物COMP2は、砥粒、酸化剤、研磨促進剤、1個以上のベンゼン環を有する第1のアニオン性界面活性剤、分岐鎖構造を持つ第2のアニオン性界面活性剤、および腐食抑制剤を、順次、水に混合することによって作製される。そして、これらの成分を混合する手段としては、ホモジナイザー、および超音波等、研磨用組成物の技術分野において常用される手段が用いられる。 Polishing composition COMP2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, a second anionic surfactant having a branched chain structure, and corrosion. It is prepared by mixing the inhibitor appropriately and adding water. Further, the polishing composition COMP2 includes abrasive grains, an oxidizing agent, a polishing accelerator, a first anionic surfactant having one or more benzene rings, a second anionic surfactant having a branched chain structure, And a corrosion inhibitor, in turn, by mixing with water. As means for mixing these components, means commonly used in the technical field of polishing compositions such as a homogenizer and ultrasonic waves are used.
 研磨用組成物COMP2を用いて銅等の金属膜を研磨することによって、金属膜表面の酸化、金属錯体層(脆弱層)および銅防食層の形成が順次進行して金属膜表面が研磨されるとともに、第1および第2のアニオン性界面活性剤の金属膜への吸着速度が第1のアニオン性界面活性剤単体の金属膜への吸着速度と第2のアニオン性界面活性剤単体の金属膜への吸着速度との和よりも速くなる。即ち、金属膜の研磨が進行するとともに、金属膜の表面が第1のアニオン性界面活性剤または第2のアニオン性界面活性剤を単体で用いた場合よりも速く第1および第2のアニオン性界面活性剤によって覆われる。 By polishing a metal film such as copper using the polishing composition COMP2, the oxidation of the metal film surface, the formation of the metal complex layer (fragile layer), and the copper anticorrosion layer proceed in sequence to polish the metal film surface. In addition, the adsorption rate of the first and second anionic surfactants to the metal film is different from the adsorption rate of the first anionic surfactant alone to the metal film and the metal film of the second anionic surfactant alone. It becomes faster than the sum of the adsorption speed. That is, as the polishing of the metal film proceeds, the first and second anionic properties of the surface of the metal film are faster than when the first anionic surfactant or the second anionic surfactant is used alone. Covered by surfactant.
 その結果、配線溝またはビアホール以外の層間絶縁膜上に形成された金属膜が研磨によって除去された後においては、配線溝内またはビアホール内に形成された金属膜は、これらの2種のアニオン性界面活性剤によって素早く覆われることによってエッチングおよび機械的接触から保護され、ディッシングの発生量を低減できる。 As a result, after the metal film formed on the interlayer insulating film other than the wiring groove or the via hole is removed by polishing, the metal film formed in the wiring groove or the via hole has these two kinds of anionic properties. By being covered quickly with the surfactant, it is protected from etching and mechanical contact, and the amount of dishing can be reduced.
 従って、速い研磨速度を保持しつつ、小さいディッシング量とすることができる。 Therefore, it is possible to reduce the dishing amount while maintaining a high polishing rate.
 以下に実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
 実施例21~実施例25における研磨用組成物の組成と、評価結果とを表8に示す。また、実施例26~実施例28における研磨用組成物の組成と、評価結果とを表9に示す。更に、比較例9~比較例13における研磨用組成物の組成と、評価結果とを表10に示す。 Table 8 shows the compositions of the polishing compositions and the evaluation results in Examples 21 to 25. Table 9 shows the compositions of the polishing compositions and the evaluation results in Examples 26 to 28. Furthermore, Table 10 shows the compositions of the polishing compositions and the evaluation results in Comparative Examples 9 to 13.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (実施例21)
 実施例21における研磨用組成物COMP2_1は、0.5重量%のコロイダルシリカと、6重量%の過酸化水素と、5重量%のグリシンと、0.5重量%のリン酸と、0.2重量%のベンゾトリアゾール(BTA:Benzotriazole)と、0.025重量%のアルキルベンゼンスルホン酸トリエタノールアミンと、0.025重量%のジ2-エチルヘキシルスルホコハク酸ナトリウムとを含む。
(Example 21)
Polishing composition COMP2_1 in Example 21 was 0.5% by weight colloidal silica, 6% by weight hydrogen peroxide, 5% by weight glycine, 0.5% by weight phosphoric acid, 0.2% It contains wt% benzotriazole (BTA), 0.025 wt% triethanolamine alkylbenzene sulfonate, and 0.025 wt% sodium di-2-ethylhexyl sulfosuccinate.
 そして、コロイダルシリカは、80nmの平均粒径を有する。また、アルキルベンゼンスルホン酸トリエタノールアミンは、炭素数が12であるアルキル基を含む。 And colloidal silica has an average particle diameter of 80 nm. Moreover, the alkylbenzenesulfonic acid triethanolamine contains an alkyl group having 12 carbon atoms.
 (実施例22)
 実施例22における研磨用組成物COMP2_2は、研磨用組成物COMP2_1におけるアルキルベンゼンスルホン酸トリエタノールアミンの含有量を0.025重量%から0.05重量%に変え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 22)
Polishing composition COMP2_2 in Example 22 changed the content of triethanolamine alkylbenzene sulfonate in polishing composition COMP2_1 from 0.025 wt% to 0.05 wt%, and contained sodium di-2-ethylhexylsulfosuccinate The amount is changed from 0.025% by weight to 0.05% by weight, and the others are the same as the polishing composition COMP2_1.
 (実施例23)
 実施例23における研磨用組成物COMP2_3は、研磨用組成物COMP2_1における5重量%のグリシンを5重量%のL-酒石酸に代え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 23)
Polishing composition COMP2_3 in Example 23 was prepared by replacing 5% by weight of glycine in polishing composition COMP2_1 with 5% by weight of L-tartaric acid, and changing the content of sodium di-2-ethylhexylsulfosuccinate from 0.025% by weight. The content is changed to 0.05% by weight, and the others are the same as the polishing composition COMP2_1.
 (実施例24)
 実施例24における研磨用組成物COMP2_4は、研磨用組成物COMP2_1における5重量%のグリシンを5重量%のL-酒石酸に代え、アルキルベンゼンスルホン酸トリエタノールアミンの含有量を0.025重量%から0.05重量%に変え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 24)
The polishing composition COMP2_4 in Example 24 was prepared by replacing 5% by weight of glycine in the polishing composition COMP2_1 with 5% by weight of L-tartaric acid and changing the content of triethanolamine alkylbenzene sulfonate from 0.025% by weight to 0%. The content of sodium di-2-ethylhexylsulfosuccinate was changed from 0.025 wt% to 0.05 wt%, and the others were the same as the polishing composition COMP2_1.
 (実施例25)
 実施例25における研磨用組成物COMP2_5は、研磨用組成物COMP2_1における5重量%のグリシンを5重量%のクエン酸に代え、アルキルベンゼンスルホン酸トリエタノールアミンの含有量を0.025重量%から0.05重量%に変え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 25)
In polishing composition COMP2_5 in Example 25, 5% by weight of glycine in polishing composition COMP2_1 was replaced with 5% by weight of citric acid, and the content of triethanolamine alkylbenzene sulfonate was 0.025% by weight to 0.2%. The content of sodium di-2-ethylhexylsulfosuccinate was changed from 0.025 wt% to 0.05 wt%, and the others were the same as the polishing composition COMP2_1.
 (実施例26)
 実施例26における研磨用組成物COMP2_6は、研磨用組成物COMP2_1における0.025重量%のアルキルベンゼンスルホン酸トリエタノールアミンを0.05重量%のアルキルナフタレンスルホン酸ナトリウムに変え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 26)
Polishing composition COMP2_6 in Example 26 was obtained by changing 0.025% by weight of alkylbenzenesulfonic acid triethanolamine in polishing composition COMP2_1 to 0.05% by weight of sodium alkylnaphthalenesulfonate, and di-2-ethylhexylsulfosuccinic acid. The content of sodium is changed from 0.025 wt% to 0.05 wt%, and the others are the same as the polishing composition COMP2_1.
 (実施例27)
 実施例27における研磨用組成物COMP2_7は、研磨用組成物COMP2_1における0.025重量%のアルキルベンゼンスルホン酸トリエタノールアミンを0.05重量%のドデシルジフェニルエーテルスルホン酸ジナトリウムに変え、ジ2-エチルヘキシルスルホコハク酸ナトリウムの含有量を0.025重量%から0.05重量%に変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 27)
Polishing composition COMP2_7 in Example 27 was prepared by changing 0.025% by weight of alkylbenzenesulfonic acid triethanolamine in polishing composition COMP2_1 to 0.05% by weight of disodium dodecyl diphenyl ether sulfonate and di-2-ethylhexylsulfosucci The content of sodium acid was changed from 0.025% by weight to 0.05% by weight, and the rest was the same as the polishing composition COMP2_1.
 なお、ドデシルジフェニルエーテルスルホン酸ジナトリウムの品名は、ペレックスSS-L(日油)である。ジ2-エチルヘキシルスルホコハク酸ナトリウムの品名は、ラピゾールA80(日油)である。 The product name of disodium dodecyl diphenyl ether sulfonate is PELEX SS-L (NOF). The product name for sodium di-2-ethylhexyl sulfosuccinate is Rapisol A80 (Nippon Oil).
 (実施例28)
 実施例28における研磨用組成物COMP2_8は、研磨用組成物COMP2_1における0.025重量%のアルキルベンゼンスルホン酸トリエタノールアミンを0.05重量%のドデシルジフェニルエーテルスルホン酸ジナトリウムに変え、0.025重量%のジ2-エチルヘキシルスルホコハク酸ナトリウムを0.05重量%のオキソコール硫酸エステルに変えたものであり、その他は、研磨用組成物COMP2_1と同じである。
(Example 28)
Polishing composition COMP2_8 in Example 28 was obtained by changing 0.025 wt% of triethanolamine alkylbenzene sulfonate in the polishing composition COMP2_1 to 0.05 wt% of disodium dodecyl diphenyl ether sulfonate and 0.025 wt% The sodium di-2-ethylhexylsulfosuccinate was changed to 0.05% by weight of oxochol sulfate, and the others were the same as the polishing composition COMP2_1.
 なお、オキソコール硫酸エステルの品名は、ファインオキソコールN140N(日産化学)である。 The product name of oxocol sulfate is Fine Oxocol N140N (Nissan Chemical).
 (比較例9)
 比較例9における研磨用組成物は、研磨用組成物COMP2_3のベンゾトリアゾール(BTA)を削除したものであり、その他は、研磨用組成物COMP2_3と同じである。
(Comparative Example 9)
The polishing composition in Comparative Example 9 is the same as the polishing composition COMP2_3 except that the benzotriazole (BTA) of the polishing composition COMP2_3 is deleted.
 (比較例10)
 比較例10における研磨用組成物は、研磨用組成物COMP2_3のアルキルベンゼンスルホン酸トリエタノールアミンおよびジ2-エチルヘキシルスルホコハク酸ナトリウムを削除したものであり、その他は、研磨用組成物COMP2_3と同じである。
(Comparative Example 10)
The polishing composition in Comparative Example 10 is the same as the polishing composition COMP2_3 except that triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexylsulfosuccinate are removed from the polishing composition COMP2_3.
 (比較例11)
 比較例11における研磨用組成物は、比較例10における研磨用組成物のリン酸を削除したものであり、その他は、比較例10における研磨用組成物と同じである。
(Comparative Example 11)
The polishing composition in Comparative Example 11 is the same as the polishing composition in Comparative Example 10 except that the phosphoric acid of the polishing composition in Comparative Example 10 is deleted.
 (比較例12)
 比較例12における研磨用組成物は、比較例11における研磨用組成物のコロイダルシリカの量を0.5重量%から5重量%へ増加したものであり、その他は、比較例11における研磨用組成物と同じである。
(Comparative Example 12)
The polishing composition in Comparative Example 12 was obtained by increasing the amount of colloidal silica in the polishing composition in Comparative Example 11 from 0.5% by weight to 5% by weight. Others were the polishing composition in Comparative Example 11. It is the same as a thing.
 (比較例13)
 比較例13における研磨用組成物は、比較例12における研磨用組成物のベンゾトリアゾール(BTA)を削除したものであり、その他は、比較例12における研磨用組成物と同じである。
(Comparative Example 13)
The polishing composition in Comparative Example 13 is the same as the polishing composition in Comparative Example 12 except that the benzotriazole (BTA) in the polishing composition in Comparative Example 12 was deleted.
 評価項目は、研磨速度、エッチング速度、研磨速度/エッチング速度比、ディッシング量、スラリー起泡およびスラリー安定性からなる。 Evaluation items consist of polishing rate, etching rate, polishing rate / etching rate ratio, dishing amount, slurry foaming and slurry stability.
 (研磨速度評価)
 研磨装置(EBARA EP0222(荏原製作所社製))を用い、研磨パッド(IC1000 050k-grv A2/P922”(ニッタ・ハース株式会社製))に実施例1~実施例6の研磨用組成物COMP1~COMP6を150ml/分の割合で供給し、かつ、直径200mmの銅メッキウェハに210hPaの圧力をかけながら研磨定盤を90rpmの回転速度で回転させ、キャリアを80rpmの回転速度で回転させながら、60秒間、研磨を行なった。
(Polishing rate evaluation)
The polishing compositions COMP1 to COMP1 of Examples 1 to 6 were applied to a polishing pad (IC1000 050 k-grv A2 / P922 ″ (Nitta Haas Co., Ltd.)) using a polishing apparatus (EBARA EP0222 (manufactured by Ebara Manufacturing Co., Ltd.)). While supplying COMP6 at a rate of 150 ml / min and applying a pressure of 210 hPa to a copper-plated wafer having a diameter of 200 mm, the polishing platen is rotated at a rotation speed of 90 rpm, and the carrier is rotated at a rotation speed of 80 rpm for 60 seconds. Polishing was performed.
 研磨終了後、研磨によって除去された銅の厚みの差を銅表面の抵抗値(四探針法を用いて測定)から算出した。研磨速度は、単位時間当たりに研磨によって除去されたウェハの厚み(nm/分)で評価した。 After polishing, the difference in thickness of copper removed by polishing was calculated from the resistance value of the copper surface (measured using the four-probe method). The polishing rate was evaluated by the thickness (nm / min) of the wafer removed by polishing per unit time.
 (研磨速度の判定基準)
  ◎:4000nm/分以上
  ○:1500nm/分以上、4000nm/分未満
  ×:1500nm/分未満
(Criteria for polishing rate)
◎: 4000 nm / min or more ○: 1500 nm / min or more, less than 4000 nm / min ×: less than 1500 nm / min
 (ディッシング量の評価)
 シリコンウェハに深さ5μm、直径100μmのビアホールを形成し、バリアメタルとしてTa、Cuシード層、Cuメッキを10μm施した直径200mmのパターンウェハを用いて、銅配線の露出に要した時間の30%に相当する時間を追加研磨時間として研磨を行なった。そして、研磨後、銅配線の表面に形成された窪みの深さを触針式プロファイラー(商品名 P12 KLA Tencor社製)によって測定し、その測定結果をディッシング量とした。
(Evaluation of dishing amount)
30% of the time required to expose copper wiring using a 200 mm diameter patterned wafer in which a via hole having a depth of 5 μm and a diameter of 100 μm is formed on a silicon wafer, and Ta, Cu seed layer and Cu plating are applied to a thickness of 10 μm as a barrier metal. Polishing was performed using the time corresponding to the above as additional polishing time. And after grinding | polishing, the depth of the hollow formed in the surface of copper wiring was measured with the stylus type profiler (made by brand name P12 KLA Tencor), and the measurement result was made into dishing amount.
 [直径100μmのビアホールのディッシング量の判定基準]
  ◎:100nm以下
  ○:300nm以下
  △:1000nm未満
  ×:1000nm以上
[Criteria for dishing amount of via hole with diameter of 100μm]
◎: 100 nm or less ○: 300 nm or less △: Less than 1000 nm ×: 1000 nm or more
 (エッチング速度評価)
 電気化学測定方法を用いて、ターフェルプロットにより腐食電流値を算出した。そして、腐食電流値から単位面積当たりの銅電極での平均エッチング速度を算出し、その算出結果をエッチング速度とした。
(Etching rate evaluation)
The corrosion current value was calculated by Tafel plot using the electrochemical measurement method. And the average etching rate in the copper electrode per unit area was computed from the corrosion current value, and the calculation result was made into the etching rate.
 (スラリー安定性評価)
 測定対象試料:(i)製造直後、(ii)一週間後
 試料保管状況:サンプル瓶に入れ、20℃で一週間静置
 判定方法:凝集および沈降については、目視にて判定
      粒子径については、測定前に軽く攪拌して全体を均一化した後に、大塚電子社製粒度分布測定器ELS-Zを用いて平均粒子径を測定し、砥粒の粒子径の変化を確認
(Slurry stability evaluation)
Sample to be measured: (i) Immediately after production, (ii) One week later Sample storage status: Place in a sample bottle and leave at 20 ° C. for one week Judgment method: For aggregation and sedimentation, determine visually. Lightly agitate before measurement to homogenize the whole, then measure the average particle size using a particle size distribution analyzer ELS-Z manufactured by Otsuka Electronics Co., Ltd. to confirm the change in the particle size of the abrasive grains
 [スラリー安定性判定の基準]
  ○:砥粒粒子径の増加なし
  △:砥粒粒子径の増加あり
  ×:凝集及び沈降
[Criteria for determining slurry stability]
○: No increase in abrasive particle size Δ: Increase in abrasive particle size ×: Aggregation and sedimentation
 (スラリー起泡評価)
 スラリー20mlを100mlの振とう管に入れ、ストローク量50mmで100回/分の速度で振とうする振とう機にて、1分間、スラリーを振とうさせた。その後、1分間、静置した後の液面からの泡の高さを測定した。
(Slurry foam evaluation)
20 ml of the slurry was placed in a 100 ml shaking tube, and the slurry was shaken for 1 minute with a shaker that shakes at a stroke rate of 50 mm and at a speed of 100 times / minute. Then, the height of the bubble from the liquid surface after standing still for 1 minute was measured.
 [スラリー起泡判定の基準]
  ○:0~5mm
  △:6~20mm
  ×:21mm以上
[Slurry foaming criteria]
○: 0-5mm
Δ: 6 to 20 mm
×: 21 mm or more
 (結果)
 上述した研磨用組成物COMP2_1~COMP2_8を用いて銅を研磨したとき、研磨速度は、3500nm/分よりも速く、かつ、ディッシング量は、300nm以下である。また、エッチング速度は、10~23nm/分と小さい。更に、エッチング速度に対する研磨速度の比は、169~490と大きい。更に、スラリーは、砥粒粒子径の増加がなく、安定である。更に、研磨用組成物COMP2_1~COMP2_8においては、スラリー起泡が0~5mmであり、良好である。更に、砥粒粒子径の増加が無く、スラリー安定性が高い。
(result)
When copper is polished using the above-described polishing compositions COMP2_1 to COMP2_8, the polishing rate is higher than 3500 nm / min, and the dishing amount is 300 nm or less. The etching rate is as low as 10 to 23 nm / min. Further, the ratio of the polishing rate to the etching rate is as large as 169 to 490. Further, the slurry is stable without increasing the abrasive grain size. Further, in the polishing compositions COMP2_1 to COMP2_8, the slurry foaming is 0 to 5 mm, which is favorable. Furthermore, there is no increase in the abrasive grain size and the slurry stability is high.
 また、研磨用組成物COMP2_1~COMP2_6を用いて銅を研磨したとき、研磨速度は、4000nm/分よりも速く、かつ、ディッシング量は、100nm以下である。また、エッチング速度は、10~14nm/分と小さい。更に、エッチング速度に対する研磨速度の比は、321~490と大きい。 Further, when copper is polished using the polishing compositions COMP2_1 to COMP2_6, the polishing rate is higher than 4000 nm / min and the dishing amount is 100 nm or less. The etching rate is as low as 10 to 14 nm / min. Furthermore, the ratio of the polishing rate to the etching rate is as large as 321 to 490.
 更に、研磨用組成物COMP2_3~COMP2_5を用いて銅を研磨したとき、4900nm/分の研磨速度、および100nm以下のディッシング量が得られた。そして、エッチング速度に対する研磨速度の比は、400以上と大きい。 Furthermore, when copper was polished using the polishing compositions COMP2_3 to COMP2_5, a polishing rate of 4900 nm / min and a dishing amount of 100 nm or less were obtained. The ratio of the polishing rate to the etching rate is as large as 400 or more.
 一方、研磨用組成物COMP2_3(実施例23)からベンゾトリアゾール(BTA)を削除した比較例9の研磨用組成物を用いて銅を研磨した時、研磨速度(=4610nm/分)は、研磨用組成物COMP2_1~COMP2_6,COMP2_8を用いて銅を研磨したときの研磨速度と同程度である。 On the other hand, when copper was polished using the polishing composition of Comparative Example 9 in which benzotriazole (BTA) was deleted from the polishing composition COMP2_3 (Example 23), the polishing rate (= 4610 nm / min) was The polishing rate is the same as the polishing rate when copper is polished using the compositions COMP2_1 to COMP2_6 and COMP2_8.
 しかし、比較例9の研磨用組成物を用いて銅を研磨した時、エッチング速度(=186nm/分)は、研磨用組成物COMP2_1~COMP2_8を用いて銅を研磨したときのエッチング速度よりも1桁以上大きい。また、比較例9の研磨用組成物を用いて銅を研磨した時、ディッシング量は、研磨用組成物COMP2_1~COMP2_7を用いて銅を研磨したときのディッシング量よりも大きい。 However, when copper was polished using the polishing composition of Comparative Example 9, the etching rate (= 186 nm / min) was 1 more than the etching rate when copper was polished using the polishing compositions COMP2_1 to COMP2_8. More than an order of magnitude larger. Further, when copper is polished using the polishing composition of Comparative Example 9, the dishing amount is larger than the dishing amount when copper is polished using the polishing compositions COMP2_1 to COMP2_7.
 また、アルキルベンゼンスルホン酸トリエタノールアミンおよびジ2-エチルヘキシルスルホコハク酸ナトリウムの両方を含まない比較例10~13の研磨用組成物を用いて銅を研磨した時、研磨速度は、3000nm/分以下と低く、エッチング速度は、研磨用組成物COMP2_1~COMP2_8を用いて銅を研磨したときのエッチング速度よりも1桁以上大きい。そして、ディッシング量は、比較例10~12において、300nm以上1000nm未満であり、比較例13において、1000nm以上である。また、比較例12,13においては、サンプル瓶に移した後、数時間後に沈降が生じ、スラリー安定性が低い。 Further, when copper was polished using the polishing compositions of Comparative Examples 10 to 13 containing neither triethanolamine alkylbenzenesulfonate or sodium di-2-ethylhexylsulfosuccinate, the polishing rate was as low as 3000 nm / min or less. The etching rate is one digit or more larger than the etching rate when copper is polished using the polishing compositions COMP2_1 to COMP2_8. The dishing amount is 300 nm or more and less than 1000 nm in Comparative Examples 10 to 12, and in Comparative Example 13 is 1000 nm or more. In Comparative Examples 12 and 13, sedimentation occurs after several hours after transfer to the sample bottle, and the slurry stability is low.
 従って、1個以上のベンゼン環を有するアニオン性界面活性剤と、分岐鎖構造を持つアニオン性界面活性剤とを含む研磨用組成物COMP2_1~COMP2_8を用いて銅を研磨することによって、3500nm/分以上の研磨速度および300nm以下のディッシング量、好ましくは、4000nm/分以上の研磨速度および100nm以下のディッシング量を得ることができる。そして、ベンゾトリアゾール(BTA)は、4000nm/分以上の研磨速度を保持しながら、100nm以下のディッシング量を得るために必要な添加物である。 Therefore, by polishing copper using polishing compositions COMP2_1 to COMP2_8 containing an anionic surfactant having one or more benzene rings and an anionic surfactant having a branched chain structure, 3500 nm / min. The above polishing rate and a dishing amount of 300 nm or less, preferably a polishing rate of 4000 nm / min or more and a dishing amount of 100 nm or less can be obtained. Benzotriazole (BTA) is an additive necessary for obtaining a dishing amount of 100 nm or less while maintaining a polishing rate of 4000 nm / min or more.
 このように、研磨用組成物COMP2_1~COMP2_8は、銅の研磨に好適である。 Thus, the polishing compositions COMP2_1 to COMP2_8 are suitable for polishing copper.
 図5は、界面活性剤の吸着速度と界面活性剤の種類との関係を示す図である。図5において、縦軸は、界面活性剤の吸着速度を表し、横軸は、界面活性剤の種類を表す。また、Aは、ジ2-エチルヘキシルスルホコハク酸ナトリウムを表し、Bは、アルキルベンゼンスルホン酸トリエタノールアミンを表す。 FIG. 5 is a diagram showing the relationship between the surfactant adsorption rate and the type of surfactant. In FIG. 5, the vertical axis represents the surfactant adsorption rate, and the horizontal axis represents the surfactant type. A represents sodium di-2-ethylhexylsulfosuccinate, and B represents triethanolamine alkylbenzene sulfonate.
 吸着速度は、Q-sense社製 Q-SENSE E1の分子間相互作用解析装置を用いて測定された。即ち、水晶振動子の両面を金電極で挟んだセンサの片面に単位面積分の銅200nmを成膜したセンサを用い、その表面に25℃に温度調節しながら超純水を1分間流し、センサの周波数を15MHzに安定させ、その後、試料に切り替えて、界面活性剤(ジ2-エチルヘキシルスルホコハク酸ナトリウムおよび/またはアルキルベンゼンスルホン酸トリエタノールアミン)を含む水溶液を、1分間、銅表面に接触させたときの周波数変化を促成した。そして、このときの1分間の周波数変化量から単位時間当たりの周波数変化量を求め、その求めた単位時間当たりの周波数変化量を吸着速度とした。 The adsorption rate was measured using an intermolecular interaction analyzer of Q-sense, Q-SENSE E1. That is, using a sensor in which 200 nm of copper for a unit area is formed on one surface of a sensor in which both sides of a crystal unit are sandwiched by gold electrodes, ultrapure water is allowed to flow on the surface for 1 minute while adjusting the temperature to 25 ° C. After that, the sample was switched to a sample, and an aqueous solution containing a surfactant (sodium di-2-ethylhexylsulfosuccinate and / or triethanolamine alkylbenzenesulfonate) was contacted with the copper surface for 1 minute. When prompted the frequency change. And the frequency change amount per unit time was calculated | required from the frequency change amount for 1 minute at this time, and the calculated frequency change amount per unit time was made into adsorption speed.
 なお、測定された周波数変化量Δfは、次式を用いて重量変化量Δmに変換される。 Note that the measured frequency change amount Δf is converted into a weight change amount Δm using the following equation.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 従って、測定された周波数変化量Δfを式(1)を用いて重量変化量Δmに変換し、その変換した重量変換量Δmを用いて単位時間当たりの重量変化量を求め、その求めた単位時間当たりの重量変化量を吸着速度としてもよい。 Therefore, the measured frequency change amount Δf is converted into the weight change amount Δm using the equation (1), the weight change amount per unit time is obtained using the converted weight change amount Δm, and the obtained unit time. The weight change per hit may be used as the adsorption rate.
 図5を参照して、ベンゾトリアゾール(BTA)単体の吸着速度は、2000ppmの濃度に対して0.60(Hz/sec)である。 Referring to FIG. 5, the adsorption rate of benzotriazole (BTA) alone is 0.60 (Hz / sec) for a concentration of 2000 ppm.
 また、ジ2-エチルヘキシルスルホコハク酸ナトリウムとベンゾトリアゾール(BTA)との混合物の吸着速度は、ジ2-エチルヘキシルスルホコハク酸ナトリウムの濃度が250ppmおよび500ppmである場合、それぞれ0.81(Hz/sec)および0.82(Hz/sec)である。 Also, the adsorption rate of the mixture of sodium di-2-ethylhexyl sulfosuccinate and benzotriazole (BTA) is 0.81 (Hz / sec) when the concentration of sodium di-2-ethylhexyl sulfosuccinate is 250 ppm and 500 ppm, respectively. 0.82 (Hz / sec).
 更に、アルキルベンゼンスルホン酸トリエタノールアミンとベンゾトリアゾール(BTA)との混合物の吸着速度は、アルキルベンゼンスルホン酸トリエタノールアミンの濃度が250ppm、500ppmおよび1000ppmである場合、それぞれ1.00(Hz/sec)、1.07(Hz/sec)および1.13(Hz/sec)である。 Further, the adsorption rate of the mixture of alkylbenzene sulfonate triethanolamine and benzotriazole (BTA) is 1.00 (Hz / sec), respectively, when the alkylbenzene sulfonate triethanolamine concentration is 250 ppm, 500 ppm and 1000 ppm. 1.07 (Hz / sec) and 1.13 (Hz / sec).
 従って、ベンゼン環を有するアルキルベンゼンスルホン酸トリエタノールアミンの吸着速度は、分岐鎖構造を持つジ2-エチルヘキシルスルホコハク酸ナトリウムの吸着速度よりも速い。 Therefore, the adsorption rate of tribenzeneamine alkylbenzene sulfonate having a benzene ring is faster than the adsorption rate of sodium di-2-ethylhexylsulfosuccinate having a branched chain structure.
 また、ベンゼン環を有するアルキルベンゼンスルホン酸トリエタノールアミンの吸着速度は、濃度が高くになるに従って速くなるが、分岐鎖構造を持つジ2-エチルヘキシルスルホコハク酸ナトリウムの吸着速度は、濃度が高くなっても殆ど変化しない。 Further, the adsorption rate of triethanolamine having an alkylbenzene sulfonate having a benzene ring increases as the concentration increases. However, the adsorption rate of sodium di-2-ethylhexylsulfosuccinate having a branched chain structure increases even when the concentration increases. Almost no change.
 一方、アルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとベンゾトリアゾール(BTA)とを混合した場合、界面活性剤の吸着速度は、2(Hz/sec)よりも速い。即ち、界面活性剤の吸着速度は、250ppmのジ2-エチルヘキシルスルホコハク酸ナトリウムと250ppmのアルキルベンゼンスルホン酸トリエタノールアミンと2000ppmのベンゾトリアゾール(BTA)とを混合した場合、2.17(Hz/sec)である。また、界面活性剤の吸着速度は、250ppmのジ2-エチルヘキシルスルホコハク酸ナトリウムと500ppmのアルキルベンゼンスルホン酸トリエタノールアミンと2000ppmのベンゾトリアゾール(BTA)とを混合した場合、2.35(Hz/sec)である。更に、界面活性剤の吸着速度は、500ppmのジ2-エチルヘキシルスルホコハク酸ナトリウムと250ppmのアルキルベンゼンスルホン酸トリエタノールアミンと2000ppmのベンゾトリアゾール(BTA)とを混合した場合、2.21(Hz/sec)である。 On the other hand, when triethanolamine alkylbenzenesulfonate, sodium di-2-ethylhexylsulfosuccinate and benzotriazole (BTA) are mixed, the adsorption rate of the surfactant is faster than 2 (Hz / sec). That is, the adsorption rate of the surfactant is 2.17 (Hz / sec) when 250 ppm of sodium di-2-ethylhexylsulfosuccinate, 250 ppm of triethanolamine alkylbenzenesulfonate and 2000 ppm of benzotriazole (BTA) are mixed. It is. Further, the adsorption rate of the surfactant is 2.35 (Hz / sec) when 250 ppm sodium di-2-ethylhexylsulfosuccinate, 500 ppm alkylbenzenesulfonic acid triethanolamine and 2000 ppm benzotriazole (BTA) are mixed. It is. Further, the adsorption rate of the surfactant is 2.21 (Hz / sec) when 500 ppm of sodium di-2-ethylhexylsulfosuccinate, 250 ppm of triethanolamine alkylbenzenesulfonate and 2000 ppm of benzotriazole (BTA) are mixed. It is.
 従って、アルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとを添加した場合、界面活性剤の吸着速度は、アルキルベンゼンスルホン酸トリエタノールアミン単体を添加した場合の吸着速度と、ジ2-エチルヘキシルスルホコハク酸ナトリウム単体を添加した場合の吸着速度との和よりも速くなる。 Accordingly, when triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexylsulfosuccinate are added, the adsorption rate of the surfactant is the same as the adsorption rate when triethanolamine alkylbenzene sulfonate alone is added, and di-2-ethylhexyl. It becomes faster than the sum of the adsorption rates when sodium sulfosuccinate alone is added.
 例えば、250ppmのジ2-エチルヘキシルスルホコハク酸ナトリウムと250ppmのアルキルベンゼンスルホン酸トリエタノールアミンとを添加した場合、界面活性剤の吸着速度(=2.17(Hz/sec))は、250ppmのジ2-エチルヘキシルスルホコハク酸ナトリウム単体を添加した場合の吸着速度(=0.81(Hz/sec))と、250ppmのアルキルベンゼンスルホン酸トリエタノールアミン単体を添加した場合の吸着速度(=1.00(Hz/sec))との和(=1.81(Hz/sec))よりも速い。他の濃度のアルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとを添加した場合も、同様である。 For example, when 250 ppm of sodium di-2-ethylhexylsulfosuccinate and 250 ppm of triethanolamine alkylbenzene sulfonate are added, the adsorption rate of the surfactant (= 2.17 (Hz / sec)) is 250 ppm of di-2-ethyl sulfonate. Adsorption rate when sodium ethylhexylsulfosuccinate alone is added (= 0.81 (Hz / sec)), and adsorption rate when 250 ppm alkylbenzenesulfonic acid triethanolamine alone is added (= 1.00 (Hz / sec) )) And the sum (= 1.81 (Hz / sec)). The same applies when other concentrations of triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexyl sulfosuccinate are added.
 図6は、吸着速度比と界面活性剤の種類との関係を示す図である。図6において、縦軸は、吸着速度比を表し、横軸は、界面活性剤の種類を表す。なお、吸着速度比は、2000ppmのベンゾトリアゾール(BTA)単体の吸着速度を1.00としたときの比である。 FIG. 6 is a diagram showing the relationship between the adsorption rate ratio and the type of surfactant. In FIG. 6, the vertical axis represents the adsorption rate ratio, and the horizontal axis represents the type of surfactant. The adsorption rate ratio is a ratio when the adsorption rate of 2000 ppm benzotriazole (BTA) alone is 1.00.
 図6を参照して、分岐鎖構造を持つジ2-エチルヘキシルスルホコハク酸ナトリウム単体を添加した場合の吸着速度は、ベンゾトリアゾール(BTA)単体の吸着速度の1.35~1.36倍である。 Referring to FIG. 6, the adsorption rate in the case of adding di-ethylhexyl sulfosuccinate sodium alone having a branched chain structure is 1.35 to 1.36 times the adsorption rate of benzotriazole (BTA) alone.
 また、ベンゼン環を有するアルキルベンゼンスルホン酸トリエタノールアミン単体を添加した場合の吸着速度は、ベンゾトリアゾール(BTA)単体の吸着速度の1.67~1.88倍である。 In addition, the adsorption rate in the case of adding an alkylbenzenesulfonic acid triethanolamine alone having a benzene ring is 1.67 to 1.88 times the adsorption rate of benzotriazole (BTA) alone.
 更に、アルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとを添加した場合の吸着速度は、ベンゾトリアゾール(BTA)単体の吸着速度の3.61~3.92倍である。 Furthermore, the adsorption rate when triethanolamine alkylbenzene sulfonate and sodium di-2-ethylhexyl sulfosuccinate are added is 3.61 to 3.92 times the adsorption rate of benzotriazole (BTA) alone.
 このように、アルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとを添加した場合、界面活性剤の銅表面への吸着速度は、アルキルベンゼンスルホン酸トリエタノールアミンとジ2-エチルヘキシルスルホコハク酸ナトリウムとの相乗効果によって速くなる。 Thus, when triethanolamine alkylbenzenesulfonate and sodium di-2-ethylhexylsulfosuccinate were added, the adsorption rate of the surfactant on the copper surface was as follows: triethanolamine alkylbenzenesulfonate and sodium di-2-ethylhexylsulfosuccinate It becomes faster by the synergistic effect.
 その結果、銅表面の酸化および銅錯体層(脆弱層)の形成が順次進行して銅表面が研磨されるとともに、アルキルベンゼンスルホン酸トリエタノールアミンおよびジ2-エチルヘキシルスルホコハク酸ナトリウムの銅への吸着速度がアルキルベンゼンスルホン酸トリエタノールアミン単体の銅への吸着速度とジ2-エチルヘキシルスルホコハク酸ナトリウム単体の銅への吸着速度との和よりも速くなる。即ち、銅の研磨が進行するとともに、銅の表面がアルキルベンゼンスルホン酸トリエタノールアミンまたはジ2-エチルヘキシルスルホコハク酸ナトリウムを単体で用いた場合よりも速くアルキルベンゼンスルホン酸トリエタノールアミンおよびジ2-エチルヘキシルスルホコハク酸ナトリウムによって覆われる。 As a result, oxidation of copper surface and formation of a copper complex layer (fragile layer) proceed in sequence, and the copper surface is polished, and the adsorption rate of triethanolamine alkylbenzenesulfonate and sodium di-2-ethylhexylsulfosuccinate to copper Becomes faster than the sum of the adsorption rate of tribenzeneamine alkylbenzene sulfonate on copper and the adsorption rate of sodium di2-ethylhexyl sulfosuccinate on copper. That is, as the copper polishing progresses, the alkylbenzene sulfonate triethanolamine and di-2-ethylhexylsulfosuccinate are faster on the copper surface than when triethanolamine alkylbenzenesulfonate or sodium di2-ethylhexylsulfosuccinate is used alone. Covered by sodium.
 その結果、配線溝またはビアホール以外の層間絶縁膜上に形成された銅が研磨によって除去された後においては、層間絶縁膜間(=配線溝内またはビアホール内)に形成された銅の表面がエッチングされる割合が低減する。 As a result, after the copper formed on the interlayer insulating film other than the wiring trench or via hole is removed by polishing, the surface of the copper formed between the interlayer insulating films (= in the wiring trench or via hole) is etched. The rate of being reduced.
 従って、3500nm/分以上の研磨速度および300nm以下のディッシング量、好ましくは、4000nm/分以上の研磨速度および100nm以下のディッシング量を得ることができる。 Therefore, a polishing rate of 3500 nm / min or more and a dishing amount of 300 nm or less, preferably a polishing rate of 4000 nm / min or more and a dishing amount of 100 nm or less can be obtained.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
 この発明は、金属の研磨に用いられる研磨用組成物に適用される。 The present invention is applied to a polishing composition used for metal polishing.

Claims (7)

  1.  球状の砥粒と、
     酸化剤と、
     研磨促進剤と、
     腐食抑制剤と、
     アニオン性界面活性剤とを含む研磨用組成物。
    Spherical abrasive grains,
    An oxidizing agent,
    A polishing accelerator;
    A corrosion inhibitor;
    A polishing composition comprising an anionic surfactant.
  2.  前記アニオン性界面活性剤は、
     1個以上のベンゼン環を有する第1のアニオン性界面活性剤と、
     分岐鎖構造を持つ第2のアニオン性界面活性剤とを含む、請求項1に記載の研磨用組成物。
    The anionic surfactant is
    A first anionic surfactant having one or more benzene rings;
    The polishing composition according to claim 1, comprising a second anionic surfactant having a branched chain structure.
  3.  前記第1のアニオン性界面活性剤は、炭素数が9以上であるアルキル基を含む、請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the first anionic surfactant contains an alkyl group having 9 or more carbon atoms.
  4.  前記研磨促進剤は、リン酸または前記リン酸の塩からなる、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the polishing accelerator comprises phosphoric acid or a salt of the phosphoric acid.
  5.  水溶性高分子物質を更に含む、請求項4に記載の研磨用組成物。 The polishing composition according to claim 4, further comprising a water-soluble polymer substance.
  6.  前記アニオン性界面活性剤の含有量は、当該研磨用組成物全体に対して0.1~1.5重量%の範囲である、請求項4に記載の研磨用組成物。 The polishing composition according to claim 4, wherein the content of the anionic surfactant is in the range of 0.1 to 1.5% by weight with respect to the entire polishing composition.
  7.  水溶性高分子物質を更に含む、請求項6に記載の研磨用組成物。 The polishing composition according to claim 6, further comprising a water-soluble polymer substance.
PCT/JP2010/052618 2009-02-24 2010-02-22 Composition for metal film polishing WO2010098278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501579A JPWO2010098278A1 (en) 2009-02-24 2010-02-22 Metal film polishing composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009041518 2009-02-24
JP2009-041518 2009-02-24
JP2010015272 2010-01-27
JP2010-015272 2010-01-27

Publications (1)

Publication Number Publication Date
WO2010098278A1 true WO2010098278A1 (en) 2010-09-02

Family

ID=42665485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052618 WO2010098278A1 (en) 2009-02-24 2010-02-22 Composition for metal film polishing

Country Status (3)

Country Link
JP (1) JPWO2010098278A1 (en)
TW (1) TW201042018A (en)
WO (1) WO2010098278A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012051787A1 (en) * 2010-10-22 2012-04-26 安集微电子(上海)有限公司 Chemical mechanical polishing liquid
WO2014069457A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
WO2014069139A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
WO2014103725A1 (en) * 2012-12-25 2014-07-03 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
JP2015135968A (en) * 2015-01-28 2015-07-27 ニッタ・ハース株式会社 Polishing slurry
WO2016181600A1 (en) * 2015-05-08 2016-11-17 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate, and method for polishing synthetic quartz glass substrate
JP2019537246A (en) * 2016-09-29 2019-12-19 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing method for tungsten
WO2021130947A1 (en) * 2019-12-26 2021-07-01 ニッタ・デュポン株式会社 Polishing slurry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400897B2 (en) * 2013-11-06 2018-10-03 ニッタ・ハース株式会社 Polishing composition
CN106916536B (en) * 2015-12-25 2021-04-20 安集微电子(上海)有限公司 Alkaline chemical mechanical polishing solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294848A (en) * 2000-04-17 2001-10-23 Sanyo Chem Ind Ltd Abrasive grain dispersant for polishing, and slurry for polishing
JP2007514553A (en) * 2003-11-26 2007-06-07 スリーエム イノベイティブ プロパティズ カンパニー Workpiece polishing method
JP2007326916A (en) * 2006-06-06 2007-12-20 Nitta Haas Inc Abrasive composition and method for producing abrasive composition
JP2008091524A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Polishing solution for metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294848A (en) * 2000-04-17 2001-10-23 Sanyo Chem Ind Ltd Abrasive grain dispersant for polishing, and slurry for polishing
JP2007514553A (en) * 2003-11-26 2007-06-07 スリーエム イノベイティブ プロパティズ カンパニー Workpiece polishing method
JP2007326916A (en) * 2006-06-06 2007-12-20 Nitta Haas Inc Abrasive composition and method for producing abrasive composition
JP2008091524A (en) * 2006-09-29 2008-04-17 Fujifilm Corp Polishing solution for metal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012051787A1 (en) * 2010-10-22 2012-04-26 安集微电子(上海)有限公司 Chemical mechanical polishing liquid
US9505951B2 (en) 2012-11-02 2016-11-29 Fujimi Incorporated Polishing composition
WO2014069457A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
WO2014069139A1 (en) * 2012-11-02 2014-05-08 株式会社フジミインコーポレーテッド Polishing composition
US9486892B2 (en) 2012-11-02 2016-11-08 Fujimi Incorporated Polishing composition
WO2014103725A1 (en) * 2012-12-25 2014-07-03 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
US20150344739A1 (en) * 2012-12-25 2015-12-03 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
JPWO2014103725A1 (en) * 2012-12-25 2017-01-12 Jsr株式会社 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2015135968A (en) * 2015-01-28 2015-07-27 ニッタ・ハース株式会社 Polishing slurry
JP2016210885A (en) * 2015-05-08 2016-12-15 信越化学工業株式会社 Abrasive agent for synthetic quartz glass substrate and polishing method of synthetic quartz glass substrate
WO2016181600A1 (en) * 2015-05-08 2016-11-17 信越化学工業株式会社 Polishing agent for synthetic quartz glass substrate, and method for polishing synthetic quartz glass substrate
KR20180005176A (en) * 2015-05-08 2018-01-15 신에쓰 가가꾸 고교 가부시끼가이샤 Polishing method for synthetic quartz glass substrate and polishing method of synthetic quartz glass substrate
US10683437B2 (en) 2015-05-08 2020-06-16 Shin-Etsu Chemical Co., Ltd. Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
KR102613230B1 (en) 2015-05-08 2023-12-13 신에쓰 가가꾸 고교 가부시끼가이샤 Abrasives for synthetic quartz glass substrates and polishing methods for synthetic quartz glass substrates
JP2019537246A (en) * 2016-09-29 2019-12-19 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Chemical mechanical polishing method for tungsten
WO2021130947A1 (en) * 2019-12-26 2021-07-01 ニッタ・デュポン株式会社 Polishing slurry

Also Published As

Publication number Publication date
JPWO2010098278A1 (en) 2012-08-30
TW201042018A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
WO2010098278A1 (en) Composition for metal film polishing
JP6023125B2 (en) Chemical mechanical polishing slurry composition and method for copper using it and through silicon via application
US6679929B2 (en) Polishing composition and polishing method employing it
JP4494538B2 (en) Chemical and mechanical polishing slurry useful for copper-based substrates
TWI374931B (en) Compositions and methods for polishing silicon nitride materials
TWI462999B (en) Rate-enhanced cmp compositions for dielectric films
EP2758989B1 (en) Composition and method for polishing aluminum semiconductor substrates
JP5202258B2 (en) Metal polishing composition and chemical mechanical polishing method
TWI687496B (en) Nitride inhibitors for high selectivity of tin-sin cmp applications
JP2005117046A (en) Abrasive composition and its use
EP1354017A2 (en) Ready-to-use stable chemical-mechanical polishing slurries
TWI729219B (en) A chemical mechanical polishing slurry for the planarization of the barrier layer
US20070249167A1 (en) CMP method for copper-containing substrates
KR102459546B1 (en) Chemical mechanical polishing method for cobalt
IL192551A (en) Iodate-containing chemical-mechanical polishing compositions and methods
JP2018506609A (en) Use of chemical mechanical polishing (CMP) compositions for polishing substrates containing cobalt and / or cobalt alloys
TWI758254B (en) Chemical mechanical polishing composition and chemical mechanical polishing method
JP2009514196A (en) Chemical mechanical polishing slurry for tantalum barrier layer
TW201915132A (en) Chemical mechanical polishing method for cobalt
JP2006316167A (en) Polishing composition for chemical mechanical polishing
JP2001031950A (en) Polishing agent for metallic film
JP2013145877A (en) Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method
TW202024291A (en) Chemical mechanical polishing of substrates containing copper and ruthenium
JP5703060B2 (en) Chemical mechanical polishing liquid
TW202132541A (en) Ruthenium-etching solution, method for manufacturing ruthenium-etching solution, method for processing object to be processed, and method for manufacturing ruthenium-containing wiring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011501579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746159

Country of ref document: EP

Kind code of ref document: A1