WO2010098047A1 - Alkenylphosphorus compounds, alkenylphosphorus compound polymers, and alkenylphosphorus compound copolymers - Google Patents

Alkenylphosphorus compounds, alkenylphosphorus compound polymers, and alkenylphosphorus compound copolymers Download PDF

Info

Publication number
WO2010098047A1
WO2010098047A1 PCT/JP2010/001068 JP2010001068W WO2010098047A1 WO 2010098047 A1 WO2010098047 A1 WO 2010098047A1 JP 2010001068 W JP2010001068 W JP 2010001068W WO 2010098047 A1 WO2010098047 A1 WO 2010098047A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phosphorus compound
alkenyl
alkenylphosphorus
alkenyl phosphorus
Prior art date
Application number
PCT/JP2010/001068
Other languages
French (fr)
Japanese (ja)
Inventor
韓立彪
二村靖治
藤野博良
渡邊智子
Original Assignee
独立行政法人産業技術総合研究所
片山化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 片山化学工業株式会社 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2010098047A1 publication Critical patent/WO2010098047A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657172Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and one oxygen atom being part of a (thio)phosphinic acid ester: (X = O, S)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus

Definitions

  • the present invention relates to an alkenyl phosphorus compound, an alkenyl phosphorus compound polymer which is a homopolymer thereof, and an alkenyl phosphorus compound copolymer which is a copolymer (copolymer) of an alkenyl phosphorus compound and an alkene compound. It is.
  • thermoplastic resins polyester, polyamide, etc.
  • thermosetting resins epoxy resin, etc.
  • Halogen flame retardant [tetrabromodiphenyl ether, tetrabromobisphenol A, tri (dichloropropyl) phosphate, tri (dibromopropyl) phosphate, etc.]
  • Organophosphorous flame retardants triphenyl phosphate, tricresyl phosphate, etc.
  • Inorganic flame retardant metal oxide, metal hydrate, red phosphorus, etc.
  • a triazine flame retardant derived from urea [5] Organocyclic phosphorus compounds (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.)
  • Non-halogen flame retardants are also known (for example, see Patent Documents 1 to 5).
  • the [5] organic cyclic phosphorus compound one that can be used as a reaction raw material (reactive flame retardant) of an epoxy resin having a cyclic phosphorus structure has been proposed (for example, see Patent Document 2). It is common to knead into.
  • a flame retardant polymer in which such an organic cyclic phosphorus compound is kneaded in a polymer it contains a flame retardant comprising an organic cyclic phosphorus compound, a hydrophilic silica powder having an average particle size of 15 ⁇ m or less, and a resin.
  • a flame-retardant resin processed product obtained by molding or coating a resin composition having a total content of the flame retardant and the hydrophilic silica powder of 10 to 45% by mass has been proposed (for example, see Patent Document 3). .)
  • JP-A-61-197588 (conventional technology, problems to be solved by the invention, claims, etc.)
  • JP 2006-328125 A background art, problems to be solved by the invention, claim 1 etc.
  • Japanese Unexamined Patent Publication No. 2006-28102 (Background Art, Problem to be Solved by the Invention, Claim 1 etc.)
  • JP 2007-91824 A (Claim 1 etc.)
  • halogen flame retardant when the halogenated radical generated by thermal decomposition or the like captures the organic radical as a combustion source and stops the chain reaction of combustion, the flame retardant effect is exhibited. It is considered.
  • the halogen-based flame retardant has a problem that dioxins harmful to the human body may be generated during combustion of the polymer composition.
  • the organophosphorus flame retardant has a problem that it may not be able to fully exhibit the flame retarding effect because it is easily decomposed by the action of other components coexisting in the polymer composition. Moreover, since the flame retarding effect cannot be sufficiently exhibited unless it is uniformly dispersed in the polymer, there is a problem that the amount of addition tends to increase depending on the type of polymer to which the organophosphorous flame retardant is added.
  • red phosphorus bleed out occurs, the flame retardancy of the polymer molded product gradually decreases, and there is a risk of causing pollution of environmental hormones (endocrine disrupting chemicals). There is. In addition, red phosphorus reacts with moisture in the air to produce phosphoric acid, which rusts the electronic substrate, which makes it difficult to use as a flame retardant for the electronic substrate.
  • the triazine-based flame retardant has a problem that design properties are limited because gloss is easily generated in a polymer molded product.
  • a matting agent such as talc or calcium carbonate
  • the polymer molded product can be prevented from being glossy, but the toughness of the polymer molded product is lowered.
  • the bleedout of the triazine flame retardant occurs, there is a problem that the flame retardancy of the polymer molded product is gradually lowered and there is a risk of causing environmental hormone pollution pollution.
  • the vinyl phosphorus compound is introduced into the polymer chain by a chemical bond, but there is a problem that it is easily colored by heating at the time of molding or the like.
  • An object of the present invention is to provide an alkenyl phosphorus compound polymer and an alkenyl phosphorus compound copolymer having the characteristics of being difficult, and an alkenyl phosphorus compound suitable as a monomer thereof.
  • the alkenyl phosphorus compound according to the first invention for achieving the above object has the general formula (Where R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . ) It is represented by
  • the alkenyl phosphorus compound polymer according to the second invention has a general formula (Where n represents an integer of 2 or more, R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . ) It is represented by
  • the alkenyl phosphorus compound copolymer according to the third invention comprises an alkenyl phosphorus compound according to the first invention and a general formula. (Wherein R 11 , R 12 , R 13 , and R 14 each represent a hydrogen atom, an aryl group, a cyano group, an alkoxycarbonyl group, an alkyl group, or a carboxyl group.)
  • the alkene compound represented by these is copolymerized.
  • the first invention it can be suitably used as a monomer of the alkenyl phosphorus compound polymer or the alkenyl phosphorus compound copolymer.
  • the alkenyl phosphorus compound according to the first invention since the alkenyl phosphorus compound according to the first invention is introduced into the polymer chain by a chemical bond, it has flame retardancy and is colored even when heated during molding or the like. Hard to do. Moreover, since the alkenyl phosphorus compound does not bleed out, flame retardancy can be maintained for a long time (semi-permanently) and there is no possibility of causing environmental hormone pollution pollution. Furthermore, since the site of the alkenyl phosphorus compound is difficult to hydrolyze, it is excellent in water resistance and electrical insulation, and even if the site of the alkenyl phosphorus compound is hydrolyzed, the hydrolyzate is not released to the outside. In addition, flame retardancy can be imparted to the polymer by blending (mixing) with a polymer that does not have flame retardancy.
  • the alkenyl phosphorus compound according to the first embodiment has a general formula 9,10-Dihydro-9-oxa-10-vinyl-10-phosphaphenanthrene-10-oxide (9,10-Dihydro-9-Oxa-10-vinyl-10-Phosphaphenanthrene-10-oxide) Or a derivative thereof.
  • R 1 and R 2 in the general formula (1) are each a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are respectively a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • a cyano group, or an acyl group are respectively a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • the carbon number of the alkyl group is 1 to 18, preferably 1 to 10.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the carbon number of the cycloalkyl group is 5 to 18, preferably 5 to 10.
  • Examples of the cycloalkyl group include a cyclohexyl group, a cyclooctyl group, and a cyclododecyl group.
  • the number of carbon atoms of the aryl group is 6 to 14, preferably 6 to 10.
  • Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, a naphthyl group, and a benzylphenyl group.
  • the heteroaryl group is a cyclic compound containing a hetero atom (oxygen, nitrogen, sulfur, etc.), and the number of atoms contained therein is suitably 4 to 12, preferably 4 to 8.
  • Examples of the heteroaryl group include a thienyl group, a furyl group, a pyridyl group, and a pyrrolyl group.
  • the carbon number of the aralkyl group is 7 to 13, preferably 7 to 9.
  • Examples of the aralkyl group include a benzyl group, a phenethyl group, a phenylbenzyl group, and a naphthylmethyl group.
  • the number of carbon atoms of the alkenyl group is suitably 2 to 18, preferably 2 to 10.
  • Examples of the alkenyl group include a vinyl group and a 3-butenyl group.
  • the number of carbon atoms of the alkoxy group is 1 to 8, preferably 1 to 4.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, and a butoxy group.
  • the carbon number of the aryloxy group is 6 to 14, preferably 6 to 10.
  • Examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a triphenylsilyl group, a phenyldimethylsilyl group, and a trimethoxysilyl group.
  • the number of carbon atoms of the acyl group is 1 to 8, preferably 1 to 4.
  • Examples of the acyl group include an aldehyde group (formyl group), an acetyl group, a propionyl group, and a butyryl group.
  • the metal catalyst includes nickel (Ni) catalysts such as Ni (PMe 3 ) 4 and Ni [P (n-Bu) 3 ] 4 , as well as conventionally known palladium (Pd) catalysts, rhodium (Rh) catalysts, etc. Also good.
  • Ni nickel
  • Pd palladium
  • Rh rhodium
  • N-Bu represents an n-butyl group.
  • alkyne compound represented by the general formula (5) examples include acetylene, butyne (1-butyne, 2-butyne), octyne (1-octyne, 2-octyne, 3-octyne, 4-octyne), phenylacetylene, trimethylsilyl.
  • alkyne compound represented by the general formula (5) examples include acetylene, butyne (1-butyne, 2-butyne), octyne (1-octyne, 2-octyne, 3-octyne, 4-octyne), phenylacetylene, trimethylsilyl.
  • examples include acetylene, ethynylthiophene, hexinonitrile, cyclohexenylacetylene, and the like.
  • the obtained alkenyl phosphorus compound has an alkenyl group in the molecule, as described later, as a monomer of the alkenyl phosphorus compound polymer of the second embodiment or the alkenyl phosphorus compound copolymer of the third embodiment. It can be preferably used.
  • the alkenyl phosphorus compound polymer (homopolymer) according to the second embodiment has a general formula It is represented by
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are R 1 , R in the general formula (1), respectively.
  • 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are the same, and n is an integer of 2 or more.
  • the alkenyl phosphorus compound represented by the general formula (1) is polymerized (homopolymerized).
  • the temperature condition for the polymerization reaction is 0 to 200 ° C., preferably room temperature to 100 ° C.
  • the polymerization reaction can be performed in an air atmosphere or an inert gas atmosphere (such as a nitrogen atmosphere or an argon atmosphere). Although the polymerization reaction proceeds only by heating, it can be efficiently polymerized by reacting in the presence of a polymerization initiator such as a radical polymerization initiator or an anionic polymerization initiator.
  • the addition ratio of the polymerization initiator is 0.1 to 50 mol%, preferably 1 to 5 mol%.
  • radical polymerization initiators include peroxide catalysts and azo catalysts.
  • peroxide catalyst examples include potassium persulfate, sodium persulfate, peracetic acid, benzoyl peroxide, cumene hydroperoxide, and the like.
  • azo catalyst examples include azobisisobutyronitrile (AIBN).
  • anionic polymerization initiators include Grignard compounds and organic lithium compounds.
  • the Grignard compound include methyl magnesium halide, n-butyl magnesium halide, t-butyl magnesium halide, vinyl magnesium halide, allyl magnesium halide, benzyl magnesium halide, phenyl magnesium halide and the like.
  • the halide means chloride (chloride), bromide (bromide), and iodide (iodide).
  • organic lithium compound include methyl lithium, n-butyl lithium, t-butyl lithium, phenyl lithium and the like.
  • the polymerization can be carried out efficiently.
  • the solvent include aromatic hydrocarbon solvents and cyclic ether solvents.
  • aromatic hydrocarbon solvent include benzene, toluene, xylene and the like.
  • cyclic ether solvent include THF (tetrahydrofuran), tetrahydropyran, dioxane and the like.
  • the polymerization reaction is usually completed in about 30 minutes to 24 hours. After completion of the polymerization reaction, if necessary, the solvent is distilled off from the reaction mixture, washed with water and a dilute aqueous acid solution, and then dried by vacuum drying or the like. Coalescence can be obtained.
  • the molecular weight of the obtained alkenyl phosphorus compound polymer is not particularly limited, but about 1,000 to 1,000,000 is suitable.
  • the alkenyl phosphorus compound represented by the general formula (1) since the alkenyl phosphorus compound represented by the general formula (1) is introduced into the polymer chain by a chemical bond, it has flame retardancy and is heated at the time of molding or the like. However, there is an advantage that it is difficult to color. In addition, since the alkenyl phosphorus compound does not bleed out, there is an advantage that flame retardancy can be maintained for a long time (semi-permanently) and there is no possibility of causing environmental hormone pollution pollution.
  • the site of the alkenyl phosphorus compound is difficult to hydrolyze, it is excellent in water resistance and electrical insulation, and even if the site of the alkenyl phosphorus compound is hydrolyzed, the hydrolyzate is not released to the outside.
  • the alkenyl phosphorus compound copolymer (copolymer) according to the third embodiment includes an alkenyl phosphorus compound represented by the general formula (1), a general formula The alkene compound represented by these is copolymerized.
  • R 11 , R 12 , R 13 and R 14 in the general formula (3) are each a hydrogen atom, an aryl group (such as a phenyl group), a cyano group, an alkoxycarbonyl group (such as a methoxycarbonyl group), an alkyl group (a methyl group). Etc.) or a carboxyl group.
  • alkene compounds include styrene, acrylonitrile, methyl acrylate (methyl acrylate), methyl methacrylate (methyl methacrylate), acrylic acid, and methacrylic acid.
  • an alkenyl phosphorus compound represented by the general formula (1) and an alkene compound represented by the general formula (3) under the same reaction conditions and operation as in the second embodiment. And are copolymerized.
  • the alkenyl phosphorus compound copolymer can be obtained by evaporating the solvent from the reaction mixture as necessary, washing with water and dilute aqueous acid solution, and drying by vacuum drying or the like.
  • the blending ratio of the alkene compound as a comonomer with respect to the alkenyl phosphorus compound is not particularly limited, but about 1 to 1000 is suitable.
  • the alkenyl phosphorus compound represented by the general formula (1) is introduced into the polymer chain by a chemical bond, the same as the alkenyl phosphorus compound polymer of the second embodiment.
  • the polymer is made flame retardant by blending (mixing) with a polymer having no flame retardant property. There is an advantage that it can be granted.
  • the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol
  • the solvent is 2 mL of THF
  • the alkyne compound is 1 mmol of diphenylacetylene
  • the reaction catalyst is 5 mol% of Ni [P (n-Bu ) 3 ]
  • the reaction was performed in the same manner as in Example 1 except that 4 .
  • the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol
  • the solvent is 2 mL of THF
  • the alkyne compound is 1 mmol of 1-octyne
  • the reaction catalyst is 5 mol% of Ni [P (n- Bu) 3 ]
  • the reaction was carried out in the same manner as in Example 1 except that 4 and 5 mol% of diphenylphosphinic acid were used and stirred at 25 ° C. overnight.
  • the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol
  • the solvent is 2 mL of ethyl alcohol
  • the alkyne compound is 1 mmol of 1-octyne
  • the reaction catalyst is 5 mol% of Ni [P (n -Bu) 3 ]
  • the reaction was performed in the same manner as in Example 1 except that 4 .
  • alkenyl phosphorus compound polymer [Production of alkenyl phosphorus compound polymer (homopolymer)] 5 mol% of azobisisobutyronitrile (AIBN) was used as a polymerization initiator, and the alkenyl phosphorus compound (9,10-dihydro-9-oxa-10-vinyl-10-phos represented by the structural formula (6) was used.
  • AIBN azobisisobutyronitrile
  • BPVP faphenanthrene-10-oxide
  • the yield of the obtained polymer was calculated. Moreover, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained polymer were measured by GPC (gel permeation chromatography), and molecular weight distribution (Mw / Mn) was computed from them. These results are shown in Table 1.
  • Example 5 [Production of alkenyl phosphorus compound polymer (homopolymer)] The same operation as in Example 5 was performed under the conditions shown in Table 1 different from those in Example 5. Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
  • Example 5 [Production of alkenyl phosphorus compound polymer (homopolymer)] The same operation as in Example 5 was performed under the conditions shown in Table 1 different from those in Example 5. Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
  • alkenyl phosphorus compound polymer (homopolymer)
  • the alkenyl phosphorus compound (BPVP) represented by the structural formula (6) was 1 mmol
  • the solvent was 2 mL of THF
  • 0.05 mmol of phenylmagnesium bromide was added, and the mixture was stirred at 25 ° C. for 3 hours. Except for the above, the same operation as in Example 5 was performed.
  • Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
  • Example 9 Manufacture of alkenyl phosphorus compound copolymer
  • Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
  • Example 9 Manufacture of alkenyl phosphorus compound copolymer
  • Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
  • Example 9 Manufacture of alkenyl phosphorus compound copolymer
  • Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
  • Example 9 Manufacture of alkenyl phosphorus compound copolymer
  • Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
  • Example 9 Manufacture of alkenyl phosphorus compound copolymer
  • Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
  • the alkenyl phosphorus compound polymer and the alkenyl phosphorus compound copolymer according to the present invention solve the problems of the conventional flame retardant, and have the property of being difficult to be colored even when heated. Useful as a polymer.
  • the alkenyl phosphorus compound according to the present invention is useful as a monomer of the alkenyl phosphorus compound polymer or the alkenyl phosphorus compound copolymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are alkenylphosphorus compound polymers and alkenylphosphorus compound copolymers which overcome the problems associated with conventional flame retardants, and which also exhibit a characteristic of being rarely discolored even when heated. Also provided are alkenylphosphorus compounds suitable as starting monomers for the polymers and copolymers. The akenylphosphorus compound polymers are represented by general formula (2). The alkenylphosphorus compound copolymers are copolymers obtained by copolymerizing an alkenylphosphorus compound represented by general formula (1) with an alkene compound represented by general formula (3).

Description

アルケニルリン化合物、アルケニルリン化合物重合体、及びアルケニルリン化合物共重合体Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
 本発明は、アルケニルリン化合物、その単独重合体(ホモポリマー)であるアルケニルリン化合物重合体、及び、アルケニルリン化合物とアルケン化合物との共重合体(コポリマー)であるアルケニルリン化合物共重合体に関するものである。 The present invention relates to an alkenyl phosphorus compound, an alkenyl phosphorus compound polymer which is a homopolymer thereof, and an alkenyl phosphorus compound copolymer which is a copolymer (copolymer) of an alkenyl phosphorus compound and an alkene compound. It is.
 周知のように、熱可塑性樹脂(ポリエステル、ポリアミド等)や熱硬化性樹脂(エポキシ樹脂等)等のポリマーは、汎用プラスチックやエンジニアリングプラスチック等として優れた成形加工性、機械的強度、電気特性等を有しているので、電気分野や電子分野を含む各種の分野で広く使用されている。そして、このようなポリマーを成形・加工したポリマー成形品には、火災の発生や延焼を防止するために難燃性が要求されることが多い。 As is well known, polymers such as thermoplastic resins (polyester, polyamide, etc.) and thermosetting resins (epoxy resin, etc.) have excellent moldability, mechanical strength, electrical properties, etc. as general-purpose plastics and engineering plastics. Therefore, it is widely used in various fields including the electric field and the electronic field. In many cases, a polymer molded product obtained by molding and processing such a polymer is required to have flame retardancy in order to prevent the occurrence of fire and the spread of fire.
 ポリマーに難燃性を付与するために添加される従来の難燃剤としては、
〔1〕ハロゲン系難燃剤〔テトラブロモジフェニルエーテル、テトラブロモビスフェノールA、トリ(ジクロロプロピル)ホスフェート、トリ(ジブロモプロピル)ホスフェート等〕
の他、
〔2〕有機リン系難燃剤(トリフェニルホスフェート、トリクレジルホスフェート等)、
〔3〕無機難燃剤(金属酸化物、金属水和物、赤リン等)、
〔4〕尿素から誘導されるトリアジン系難燃剤、
〔5〕有機環状リン化合物(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキシド等)、
等の非ハロゲン系難燃剤も知られている(例えば、特許文献1~5参照。)。
As conventional flame retardants added to impart flame retardancy to polymers,
[1] Halogen flame retardant [tetrabromodiphenyl ether, tetrabromobisphenol A, tri (dichloropropyl) phosphate, tri (dibromopropyl) phosphate, etc.]
And
[2] Organophosphorous flame retardants (triphenyl phosphate, tricresyl phosphate, etc.),
[3] Inorganic flame retardant (metal oxide, metal hydrate, red phosphorus, etc.)
[4] A triazine flame retardant derived from urea,
[5] Organocyclic phosphorus compounds (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.)
Non-halogen flame retardants are also known (for example, see Patent Documents 1 to 5).
 前記〔5〕有機環状リン化合物については、環状リン構造を有するエポキシ樹脂の反応原料(反応型難燃剤)として使用可能なもの(例えば、特許文献2参照。)も提案されているが、ポリマー中に練り込むのが一般的である。このような有機環状リン化合物をポリマー中に練り込んだ難燃性ポリマーとしては、有機環状リン化合物からなる難燃剤と、平均粒子径が15μm以下の親水性シリカパウダーと、樹脂とを含有し、前記難燃剤と前記親水性シリカパウダーとの合計含有量が10~45質量%である樹脂組成物を成形又は塗膜化した難燃性樹脂加工品が提案されている(例えば、特許文献3参照。)。 As for the [5] organic cyclic phosphorus compound, one that can be used as a reaction raw material (reactive flame retardant) of an epoxy resin having a cyclic phosphorus structure has been proposed (for example, see Patent Document 2). It is common to knead into. As a flame retardant polymer in which such an organic cyclic phosphorus compound is kneaded in a polymer, it contains a flame retardant comprising an organic cyclic phosphorus compound, a hydrophilic silica powder having an average particle size of 15 μm or less, and a resin. A flame-retardant resin processed product obtained by molding or coating a resin composition having a total content of the flame retardant and the hydrophilic silica powder of 10 to 45% by mass has been proposed (for example, see Patent Document 3). .)
 また、反応型難燃剤を化学結合によりポリマー鎖内に導入した難燃性ポリマーとして、
〔6〕ビニルリン化合物重合体(ポリジフェニルビニルホスフィンオキシド等)
等も提案されている(例えば、特許文献5参照。)。
In addition, as a flame retardant polymer in which a reactive flame retardant is introduced into the polymer chain by chemical bonding,
[6] Vinyl phosphorus compound polymer (polydiphenyl vinyl phosphine oxide, etc.)
Etc. have also been proposed (see, for example, Patent Document 5).
特開平10-114783号公報(従来の技術、発明が解決しようとする課題、請求項1等)Japanese Patent Laid-Open No. 10-114783 (prior art, problem to be solved by the invention, claim 1 etc.) 特開昭61-197588号公報(従来の技術、発明が解決しようとする問題点、特許請求の範囲等)JP-A-61-197588 (conventional technology, problems to be solved by the invention, claims, etc.) 特開2006-328125号公報(背景技術、発明が解決しようとする課題、請求項1等)JP 2006-328125 A (background art, problems to be solved by the invention, claim 1 etc.) 特開2006-28102号公報(背景技術、発明が解決しようとする課題、請求項1等)Japanese Unexamined Patent Publication No. 2006-28102 (Background Art, Problem to be Solved by the Invention, Claim 1 etc.) 特開2007-91824号公報(請求項1等)JP 2007-91824 A (Claim 1 etc.)
 前記〔1〕ハロゲン系難燃剤については、熱分解等により生成したハロゲン化ラジカルが燃焼源としての有機ラジカルを捕捉し、燃焼の連鎖反応を停止させることによって、難燃化効果が発揮されると考えられている。しかし、ハロゲン系難燃剤においては、ポリマー組成物の燃焼時に人体に有害なダイオキシンが発生するおそれがあるという問題点がある。 With respect to the above-mentioned [1] halogen flame retardant, when the halogenated radical generated by thermal decomposition or the like captures the organic radical as a combustion source and stops the chain reaction of combustion, the flame retardant effect is exhibited. It is considered. However, the halogen-based flame retardant has a problem that dioxins harmful to the human body may be generated during combustion of the polymer composition.
 前記〔2〕有機リン系難燃剤においては、ポリマー組成物中に共存する他の成分の作用により分解され易いので、難燃化効果を十分に発揮できないことがあるという問題点がある。また、ポリマー中に均一に分散されていなければ難燃化効果を十分に発揮できないので、有機リン系難燃剤を添加するポリマーの種類によっては添加量が多くなりがちであるという問題点がある。 [2] The organophosphorus flame retardant has a problem that it may not be able to fully exhibit the flame retarding effect because it is easily decomposed by the action of other components coexisting in the polymer composition. Moreover, since the flame retarding effect cannot be sufficiently exhibited unless it is uniformly dispersed in the polymer, there is a problem that the amount of addition tends to increase depending on the type of polymer to which the organophosphorous flame retardant is added.
 前記〔3〕無機難燃剤のうち、金属酸化物(酸化アンチモン、酸化アルミニウム等)や金属水和物(水酸化アルミニウム、水酸化マグネシウム等)においては、難燃化効果が余り高くなく、ポリマー中に多量に配合する必要があるので、ポリマー成形品の成形性が悪いと共に、ポリマー成形品の機械的強度が低下し易いという問題点がある。赤リンにおいては、難燃化効果が高いものの、ポリマーに対する分散不良によりポリマー成形品の成形性や電気特性が低下すると共に、人体に有害なガスが発生し易いという問題点がある。また、赤リンのブリードアウト(外部への放出)が発生するので、ポリマー成形品の難燃性が徐々に低下すると共に、環境ホルモン(内分泌かく乱化学物質)汚染公害を引き起こすおそれがあるという問題点がある。更に、赤リンが空気中の水分と反応してリン酸を生成し、そのリン酸が電子基板を錆びさせるので、電子基板の難燃剤として使いにくいという問題点がある。 Among the above [3] inorganic flame retardants, metal oxides (antimony oxide, aluminum oxide, etc.) and metal hydrates (aluminum hydroxide, magnesium hydroxide, etc.) are not so high in flame retardant effect, Therefore, there are problems that the moldability of the polymer molded product is poor and the mechanical strength of the polymer molded product tends to be lowered. Although red phosphorus has a high flame retardant effect, there are problems that moldability and electrical characteristics of a polymer molded product are lowered due to poor dispersion with respect to the polymer, and gas harmful to the human body is easily generated. In addition, since red phosphorus bleed out (release to the outside) occurs, the flame retardancy of the polymer molded product gradually decreases, and there is a risk of causing pollution of environmental hormones (endocrine disrupting chemicals). There is. In addition, red phosphorus reacts with moisture in the air to produce phosphoric acid, which rusts the electronic substrate, which makes it difficult to use as a flame retardant for the electronic substrate.
 前記〔4〕トリアジン系難燃剤においては、ポリマー成形品に光沢が生じ易いので、意匠性が制限されるという問題点がある。ポリマーにタルク、炭酸カルシウム等の艶消し剤を配合した場合には、ポリマー成形品に光沢が生じるのを防止できるものの、ポリマー成形品の靱性が低下するという問題点がある。また、トリアジン系難燃剤のブリードアウトが発生するので、ポリマー成形品の難燃性が徐々に低下すると共に、環境ホルモン汚染公害を引き起こすおそれがあるという問題点がある。 [4] The triazine-based flame retardant has a problem that design properties are limited because gloss is easily generated in a polymer molded product. When a matting agent such as talc or calcium carbonate is added to the polymer, the polymer molded product can be prevented from being glossy, but the toughness of the polymer molded product is lowered. Further, since the bleedout of the triazine flame retardant occurs, there is a problem that the flame retardancy of the polymer molded product is gradually lowered and there is a risk of causing environmental hormone pollution pollution.
 前記〔5〕有機環状リン化合物においては、それが徐々に加水分解するので、ポリマー成形品の耐水性や電気絶縁性が低いという問題点がある。また、有機環状リン化合物のブリードアウトが発生するので、ポリマー成形品の難燃性が徐々に低下すると共に、環境ホルモン汚染公害を引き起こすおそれがあるという問題点がある。 [5] Since the organic cyclic phosphorus compound gradually hydrolyzes, there is a problem that the water resistance and electrical insulation of the polymer molded product are low. In addition, since the organic cyclic phosphorus compound bleeds out, there is a problem that the flame retardancy of the polymer molded article is gradually lowered and there is a risk of causing environmental hormone pollution pollution.
 前記〔6〕ビニルリン化合物重合体においては、ビニルリン化合物が化学結合によりポリマー鎖内に導入されているが、成形時等における加熱によって着色し易いという問題点がある。 In the above [6] vinyl phosphorus compound polymer, the vinyl phosphorus compound is introduced into the polymer chain by a chemical bond, but there is a problem that it is easily colored by heating at the time of molding or the like.
 本発明は、以上のような事情や問題点に鑑みてなされたものであり、前記〔1〕~〔5〕のような従来の難燃剤の問題点を解決しつつ、加熱しても着色しにくいという特性を兼ね備えたアルケニルリン化合物重合体及びアルケニルリン化合物共重合体、並びにそれらのモノマー(単量体)として好適なアルケニルリン化合物を提供することを目的とする。 The present invention has been made in view of the above circumstances and problems, and is colored even when heated while solving the problems of conventional flame retardants such as the above [1] to [5]. An object of the present invention is to provide an alkenyl phosphorus compound polymer and an alkenyl phosphorus compound copolymer having the characteristics of being difficult, and an alkenyl phosphorus compound suitable as a monomer thereof.
 前記目的を達成するための第1の発明に係るアルケニルリン化合物は、一般式
Figure JPOXMLDOC01-appb-C000001
(式中、
 R1、R2は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はシリル基を示し、
 R3、R4、R5、R6、R7、R8、R9、R10は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、シアノ基、又はアシル基を示す。)
で表されるものである。
The alkenyl phosphorus compound according to the first invention for achieving the above object has the general formula
Figure JPOXMLDOC01-appb-C000001
(Where
R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group,
R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . )
It is represented by
 第2の発明に係るアルケニルリン化合物重合体は、一般式
Figure JPOXMLDOC01-appb-C000002
(式中、
 nは、2以上の整数を示し、
 R1、R2は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はシリル基を示し、
 R3、R4、R5、R6、R7、R8、R9、R10は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、シアノ基、又はアシル基を示す。)
で表されるものである。
The alkenyl phosphorus compound polymer according to the second invention has a general formula
Figure JPOXMLDOC01-appb-C000002
(Where
n represents an integer of 2 or more,
R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group,
R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . )
It is represented by
 第3の発明に係るアルケニルリン化合物共重合体は、第1の発明に係るアルケニルリン化合物と、一般式
Figure JPOXMLDOC01-appb-C000003
(式中、R11、R12、R13、R14は、それぞれ水素原子、アリール基、シアノ基、アルコキシカルボニル基、アルキル基、又はカルボキシル基を示す。)
で表されるアルケン化合物と、を共重合させたものである。
The alkenyl phosphorus compound copolymer according to the third invention comprises an alkenyl phosphorus compound according to the first invention and a general formula.
Figure JPOXMLDOC01-appb-C000003
(Wherein R 11 , R 12 , R 13 , and R 14 each represent a hydrogen atom, an aryl group, a cyano group, an alkoxycarbonyl group, an alkyl group, or a carboxyl group.)
The alkene compound represented by these is copolymerized.
 第1の発明によれば、前記アルケニルリン化合物重合体や前記アルケニルリン化合物共重合体のモノマーとして好適に使用することができる。 According to the first invention, it can be suitably used as a monomer of the alkenyl phosphorus compound polymer or the alkenyl phosphorus compound copolymer.
 第2及び第3の発明によれば、第1の発明に係るアルケニルリン化合物が化学結合によりポリマー鎖内に導入されているので、難燃性を有すると共に、成形時等に加熱しても着色しにくい。また、前記アルケニルリン化合物のブリードアウトが発生しないので、難燃性を長期間(半永久的に)維持できると共に、環境ホルモン汚染公害を引き起こすおそれがない。更に、前記アルケニルリン化合物の部位が加水分解しにくいので、耐水性や電気絶縁性に優れると共に、前記アルケニルリン化合物の部位が加水分解したとしても加水分解物が外部へ放出されることがない。加えて、難燃性を有しないポリマーにブレンド(混合)することによって、そのポリマーに難燃性を付与することができる。 According to the second and third inventions, since the alkenyl phosphorus compound according to the first invention is introduced into the polymer chain by a chemical bond, it has flame retardancy and is colored even when heated during molding or the like. Hard to do. Moreover, since the alkenyl phosphorus compound does not bleed out, flame retardancy can be maintained for a long time (semi-permanently) and there is no possibility of causing environmental hormone pollution pollution. Furthermore, since the site of the alkenyl phosphorus compound is difficult to hydrolyze, it is excellent in water resistance and electrical insulation, and even if the site of the alkenyl phosphorus compound is hydrolyzed, the hydrolyzate is not released to the outside. In addition, flame retardancy can be imparted to the polymer by blending (mixing) with a polymer that does not have flame retardancy.
 以下、本発明の実施形態について説明する。
 第1実施形態に係るアルケニルリン化合物は、一般式
Figure JPOXMLDOC01-appb-C000004
で表される9,10-ジヒドロ-9-オキサ-10-ビニル-10-フォスファフェナントレン-10-オキシド(9,10-Dihydro-9-Oxa-10-vinyl-10-Phosphaphenanthrene-10-oxide)又はその誘導体である。
Hereinafter, embodiments of the present invention will be described.
The alkenyl phosphorus compound according to the first embodiment has a general formula
Figure JPOXMLDOC01-appb-C000004
9,10-Dihydro-9-oxa-10-vinyl-10-phosphaphenanthrene-10-oxide (9,10-Dihydro-9-Oxa-10-vinyl-10-Phosphaphenanthrene-10-oxide) Or a derivative thereof.
 一般式(1)中のR1、R2は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はシリル基である。また、一般式(1)中のR3、R4、R5、R6、R7、R8、R9、R10は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、シアノ基、又はアシル基である。 R 1 and R 2 in the general formula (1) are each a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group. . In the general formula (1), R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are respectively a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group. , A cyano group, or an acyl group.
 アルキル基の炭素数としては、1~18、好ましくは1~10が適当である。アルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基、デシル基等が挙げられる。 The carbon number of the alkyl group is 1 to 18, preferably 1 to 10. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
 シクロアルキル基の炭素数としては、5~18、好ましくは5~10が適当である。シクロアルキル基としては、シクロヘキシル基、シクロオクチル基、シクロドデシル基等が挙げられる。 The carbon number of the cycloalkyl group is 5 to 18, preferably 5 to 10. Examples of the cycloalkyl group include a cyclohexyl group, a cyclooctyl group, and a cyclododecyl group.
 アリール基の炭素数としては、6~14、好ましくは6~10が適当である。アリール基としては、フェニル基、ナフチル基、トリル基、ナフチル基、ベンジルフェニル基等が挙げられる。 The number of carbon atoms of the aryl group is 6 to 14, preferably 6 to 10. Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, a naphthyl group, and a benzylphenyl group.
 ヘテロアリール基は、ヘテロ原子(酸素、窒素、硫黄等)を含む環式化合物であり、それに含まれる原子数としては、4~12、好ましくは4~8が適当である。ヘテロアリール基としては、チエニル基、フリル基、ピリジル基、ピロリル基等が挙げられる。 The heteroaryl group is a cyclic compound containing a hetero atom (oxygen, nitrogen, sulfur, etc.), and the number of atoms contained therein is suitably 4 to 12, preferably 4 to 8. Examples of the heteroaryl group include a thienyl group, a furyl group, a pyridyl group, and a pyrrolyl group.
 アラルキル基の炭素数としては、7~13、好ましくは7~9が適当である。アラルキル基としては、ベンジル基、フェネチル基、フェニルベンジル基、ナフチルメチル基等が挙げられる。 The carbon number of the aralkyl group is 7 to 13, preferably 7 to 9. Examples of the aralkyl group include a benzyl group, a phenethyl group, a phenylbenzyl group, and a naphthylmethyl group.
 アルケニル基の炭素数としては、2~18、好ましくは2~10が適当である。アルケニル基としては、ビニル基、3-ブテニル基等が挙げられる。 The number of carbon atoms of the alkenyl group is suitably 2 to 18, preferably 2 to 10. Examples of the alkenyl group include a vinyl group and a 3-butenyl group.
 アルコキシ基の炭素数としては、1~8、好ましくは1~4が適当である。アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。 The number of carbon atoms of the alkoxy group is 1 to 8, preferably 1 to 4. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a butoxy group.
 アリールオキシ基の炭素数としては、6~14、好ましくは6~10が適当である。アリールオキシ基としては、フェノキシ基、ナフチルオキシ基等が挙げられる。 The carbon number of the aryloxy group is 6 to 14, preferably 6 to 10. Examples of the aryloxy group include a phenoxy group and a naphthyloxy group.
 シリル基としては、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、フェニルジメチルシリル基、トリメトキシシリル基等が挙げられる。 Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, a triphenylsilyl group, a phenyldimethylsilyl group, and a trimethoxysilyl group.
 アシル基の炭素数としては、1~8、好ましくは1~4が適当である。アシル基としては、アルデヒド基(ホルミル基)、アセチル基、プロピオニル基、ブチリル基等が挙げられる。 The number of carbon atoms of the acyl group is 1 to 8, preferably 1 to 4. Examples of the acyl group include an aldehyde group (formyl group), an acetyl group, a propionyl group, and a butyryl group.
 一般式(1)で表されるアルケニルリン化合物を製造するには、下記の反応式
Figure JPOXMLDOC01-appb-C000005
に示すように、一般式(4)で表される9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキシド(9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-oxide)又はその誘導体と、一般式(5)で表されるアルキン化合物とを、メチルアルコール等の溶媒中、Ni(PMe3)4等の金属触媒の存在下で反応させる。なお、「Me」は、メチル基を示す。一般式(5)及び一般式(1)中のR2が水素原子でない場合は、E体(又はトランス体)のアルケニルリン化合物が選択的に生成する。
In order to produce the alkenyl phosphorus compound represented by the general formula (1), the following reaction formula:
Figure JPOXMLDOC01-appb-C000005
9,10-Dihydro-9-Oxa-10-phosphaphenanthrene-10-oxide (9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10- represented by the general formula (4) oxide) or a derivative thereof and an alkyne compound represented by the general formula (5) are reacted in a solvent such as methyl alcohol in the presence of a metal catalyst such as Ni (PMe 3 ) 4 . “Me” represents a methyl group. When R 2 in the general formulas (5) and (1) is not a hydrogen atom, an E-type (or trans-type) alkenyl phosphorus compound is selectively produced.
 金属触媒は、Ni(PMe3)4、Ni[P(n-Bu)3]4等のニッケル(Ni)触媒の他、従来公知のパラジウム(Pd)触媒、ロジウム(Rh)触媒等であってもよい。なお、「n-Bu」は、n-ブチル基を示す。 The metal catalyst includes nickel (Ni) catalysts such as Ni (PMe 3 ) 4 and Ni [P (n-Bu) 3 ] 4 , as well as conventionally known palladium (Pd) catalysts, rhodium (Rh) catalysts, etc. Also good. “N-Bu” represents an n-butyl group.
 一般式(5)で表されるアルキン化合物としては、アセチレン、ブチン(1-ブチン、2-ブチン)、オクチン(1-オクチン、2-オクチン、3-オクチン、4-オクチン)、フェニルアセチレン、トリメチルシリルアセチレン、エチニルチオフェン、ヘキシノニトリル、シクロヘキセニルアセチレン等が挙げられる。 Examples of the alkyne compound represented by the general formula (5) include acetylene, butyne (1-butyne, 2-butyne), octyne (1-octyne, 2-octyne, 3-octyne, 4-octyne), phenylacetylene, trimethylsilyl. Examples include acetylene, ethynylthiophene, hexinonitrile, cyclohexenylacetylene, and the like.
 得られたアルケニルリン化合物は、分子内にアルケニル基を有しているので、後述するように、第2実施形態のアルケニルリン化合物重合体や第3実施形態のアルケニルリン化合物共重合体のモノマーとして好適に使用することができる。 Since the obtained alkenyl phosphorus compound has an alkenyl group in the molecule, as described later, as a monomer of the alkenyl phosphorus compound polymer of the second embodiment or the alkenyl phosphorus compound copolymer of the third embodiment. It can be preferably used.
 第2実施形態に係るアルケニルリン化合物重合体(ホモポリマー)は、一般式
Figure JPOXMLDOC01-appb-C000006
で表される。
The alkenyl phosphorus compound polymer (homopolymer) according to the second embodiment has a general formula
Figure JPOXMLDOC01-appb-C000006
It is represented by
 一般式(2)中、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10は、それぞれ一般式(1)中のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10と同じであり、nは2以上の整数である。 In the general formula (2), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are R 1 , R in the general formula (1), respectively. 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 are the same, and n is an integer of 2 or more.
 一般式(2)で表されるアルケニルリン化合物重合体を製造するには、一般式(1)で表されるアルケニルリン化合物を重合(単独重合)させる。 In order to produce the alkenyl phosphorus compound polymer represented by the general formula (2), the alkenyl phosphorus compound represented by the general formula (1) is polymerized (homopolymerized).
 重合反応の温度条件としては、0~200℃、好ましくは室温~100℃が適当である。重合反応は、空気雰囲気、又は不活性ガス雰囲気(窒素雰囲気、アルゴン雰囲気等)で行うことができる。重合反応は加熱だけでも進行するが、ラジカル重合開始剤、アニオン重合開始剤等の重合開始剤の存在下で反応させれば、効率良く重合させることができる。重合開始剤の添加割合としては、0.1~50mol%、好ましくは1~5mol%が適当である。 The temperature condition for the polymerization reaction is 0 to 200 ° C., preferably room temperature to 100 ° C. The polymerization reaction can be performed in an air atmosphere or an inert gas atmosphere (such as a nitrogen atmosphere or an argon atmosphere). Although the polymerization reaction proceeds only by heating, it can be efficiently polymerized by reacting in the presence of a polymerization initiator such as a radical polymerization initiator or an anionic polymerization initiator. The addition ratio of the polymerization initiator is 0.1 to 50 mol%, preferably 1 to 5 mol%.
 ラジカル重合開始剤としては、過酸化物触媒、アゾ系触媒等が挙げられる。過酸化物触媒としては、過硫酸カリウム、過硫酸ナトリウム、過酢酸、過酸化ベンゾイル、クメンヒドロペルオキシド等が挙げられる。アゾ系触媒としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。 Examples of radical polymerization initiators include peroxide catalysts and azo catalysts. Examples of the peroxide catalyst include potassium persulfate, sodium persulfate, peracetic acid, benzoyl peroxide, cumene hydroperoxide, and the like. Examples of the azo catalyst include azobisisobutyronitrile (AIBN).
 アニオン重合開始剤としては、グリニャール化合物、有機リチウム化合物等が挙げられる。グリニャール化合物としては、メチルマグネシウムハライド、n-ブチルマグネシウムハライド、t-ブチルマグネシウムハライド、ビニルマグネシウムハライド、アリルマグネシウムハライド、ベンジルマグネシウムハライド、フェニルマグネシウムハライド等が挙げられる。ここで、ハライドとは、クロリド(塩化物)、ブロミド(臭化物)、及びヨージド(ヨウ化物)を意味する。有機リチウム化合物としては、メチルリチウム、n-ブチルリチウム、t-ブチルリチウム、フェニルリチウム等が挙げられる。 Examples of anionic polymerization initiators include Grignard compounds and organic lithium compounds. Examples of the Grignard compound include methyl magnesium halide, n-butyl magnesium halide, t-butyl magnesium halide, vinyl magnesium halide, allyl magnesium halide, benzyl magnesium halide, phenyl magnesium halide and the like. Here, the halide means chloride (chloride), bromide (bromide), and iodide (iodide). Examples of the organic lithium compound include methyl lithium, n-butyl lithium, t-butyl lithium, phenyl lithium and the like.
 また、溶媒中で反応させた場合も、効率良く重合させることができる。溶媒としては、芳香族炭化水素系溶媒、環状エーテル系溶媒等が挙げられる。芳香族炭化水素系溶媒としては、ベンゼン、トルエン、キシレン等が挙げられる。環状エーテル系溶媒としては、THF(テトラヒドロフラン)、テトラヒドロピラン、ジオキサン等が挙げられる。 Also, when the reaction is carried out in a solvent, the polymerization can be carried out efficiently. Examples of the solvent include aromatic hydrocarbon solvents and cyclic ether solvents. Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene and the like. Examples of the cyclic ether solvent include THF (tetrahydrofuran), tetrahydropyran, dioxane and the like.
 重合反応は、通常の場合、30分~24時間程度で終了する。重合反応終了後、必要に応じて反応混合物から溶媒を留去し、水及び希酸水溶液で洗浄してから真空乾燥等により乾燥させれば、一般式(2)で表されるアルケニルリン化合物重合体を得ることができる。 The polymerization reaction is usually completed in about 30 minutes to 24 hours. After completion of the polymerization reaction, if necessary, the solvent is distilled off from the reaction mixture, washed with water and a dilute aqueous acid solution, and then dried by vacuum drying or the like. Coalescence can be obtained.
 得られるアルケニルリン化合物重合体の分子量は、特に限定されるものではないが、1000~100万程度が適当である。 The molecular weight of the obtained alkenyl phosphorus compound polymer is not particularly limited, but about 1,000 to 1,000,000 is suitable.
 得られたアルケニルリン化合物重合体においては、一般式(1)で表されるアルケニルリン化合物が化学結合によりポリマー鎖内に導入されているので、難燃性を有すると共に、成形時等に加熱しても着色しにくいという利点がある。また、前記アルケニルリン化合物のブリードアウトが発生しないので、難燃性を長期間(半永久的に)維持できると共に、環境ホルモン汚染公害を引き起こすおそれがないという利点がある。更に、前記アルケニルリン化合物の部位が加水分解しにくいので、耐水性や電気絶縁性に優れると共に、前記アルケニルリン化合物の部位が加水分解したとしても加水分解物が外部へ放出されることがないという利点がある。 In the obtained alkenyl phosphorus compound polymer, since the alkenyl phosphorus compound represented by the general formula (1) is introduced into the polymer chain by a chemical bond, it has flame retardancy and is heated at the time of molding or the like. However, there is an advantage that it is difficult to color. In addition, since the alkenyl phosphorus compound does not bleed out, there is an advantage that flame retardancy can be maintained for a long time (semi-permanently) and there is no possibility of causing environmental hormone pollution pollution. Furthermore, since the site of the alkenyl phosphorus compound is difficult to hydrolyze, it is excellent in water resistance and electrical insulation, and even if the site of the alkenyl phosphorus compound is hydrolyzed, the hydrolyzate is not released to the outside. There are advantages.
 第3実施形態に係るアルケニルリン化合物共重合体(コポリマー)は、一般式(1)で表されるアルケニルリン化合物と、一般式
Figure JPOXMLDOC01-appb-C000007
で表されるアルケン化合物とを共重合させたものである。
The alkenyl phosphorus compound copolymer (copolymer) according to the third embodiment includes an alkenyl phosphorus compound represented by the general formula (1), a general formula
Figure JPOXMLDOC01-appb-C000007
The alkene compound represented by these is copolymerized.
 一般式(3)中のR11、R12、R13、R14は、それぞれ水素原子、アリール基(フェニル基等)、シアノ基、アルコキシカルボニル基(メトキシカルボニル基等)、アルキル基(メチル基等)、又はカルボキシル基である。このようなアルケン化合物としては、スチレン、アクリロニトリル、アクリル酸メチル(メチルアクリレート)、メタクリル酸メチル(メチルメタクリレート)、アクリル酸、メタクリル酸等が挙げられる。 R 11 , R 12 , R 13 and R 14 in the general formula (3) are each a hydrogen atom, an aryl group (such as a phenyl group), a cyano group, an alkoxycarbonyl group (such as a methoxycarbonyl group), an alkyl group (a methyl group). Etc.) or a carboxyl group. Examples of such alkene compounds include styrene, acrylonitrile, methyl acrylate (methyl acrylate), methyl methacrylate (methyl methacrylate), acrylic acid, and methacrylic acid.
 アルケニルリン化合物共重合体を製造するには、第2実施形態と同様の反応条件及び操作で、一般式(1)で表されるアルケニルリン化合物と、一般式(3)で表されるアルケン化合物とを共重合させる。 In order to produce an alkenyl phosphorus compound copolymer, an alkenyl phosphorus compound represented by the general formula (1) and an alkene compound represented by the general formula (3) under the same reaction conditions and operation as in the second embodiment. And are copolymerized.
 共重合反応終了後、必要に応じて反応混合物から溶媒を留去し、水及び希酸水溶液で洗浄してから真空乾燥等により乾燥させれば、アルケニルリン化合物共重合体を得ることができる。 After completion of the copolymerization reaction, the alkenyl phosphorus compound copolymer can be obtained by evaporating the solvent from the reaction mixture as necessary, washing with water and dilute aqueous acid solution, and drying by vacuum drying or the like.
 前記アルケニルリン化合物に対するコモノマーとしてのアルケン化合物の配合割合は、特に限定されるものではないが、1~1000程度が適当である。 The blending ratio of the alkene compound as a comonomer with respect to the alkenyl phosphorus compound is not particularly limited, but about 1 to 1000 is suitable.
 得られたアルケニルリン化合物共重合体においては、一般式(1)で表されるアルケニルリン化合物が化学結合によりポリマー鎖内に導入されているので、第2実施形態のアルケニルリン化合物重合体と同様の利点がある。また、第2実施形態のアルケニルリン化合物重合体や第3実施形態のアルケニルリン化合物共重合体においては、難燃性を有しないポリマーにブレンド(混合)することによって、そのポリマーに難燃性を付与できるという利点がある。 In the obtained alkenyl phosphorus compound copolymer, since the alkenyl phosphorus compound represented by the general formula (1) is introduced into the polymer chain by a chemical bond, the same as the alkenyl phosphorus compound polymer of the second embodiment. There are advantages. Further, in the alkenyl phosphorus compound polymer of the second embodiment and the alkenyl phosphorus compound copolymer of the third embodiment, the polymer is made flame retardant by blending (mixing) with a polymer having no flame retardant property. There is an advantage that it can be granted.
 以下、実施例を列挙して本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by listing examples, but the present invention is not limited to these examples.
〔反応触媒の調製〕
 下記の反応式
Figure JPOXMLDOC01-appb-C000008
に示すように、Ni(cod)2とPMe3とを反応させることにより、反応触媒としてのNi(PMe3)4を調製した。なお、「cod」は、1,5-シクロオクタジエンを示す。
(Preparation of reaction catalyst)
The following reaction formula
Figure JPOXMLDOC01-appb-C000008
As shown in FIG. 2 , Ni (cod) 2 and PMe 3 were reacted to prepare Ni (PMe 3 ) 4 as a reaction catalyst. “Cod” represents 1,5-cyclooctadiene.
 具体的には、フラスコ内の空気を窒素ガスで置換した後、フラスコ内に1当量のNi(cod)2を入れ、更に4当量のPMe3を加えた。そして、フラスコを氷浴で冷却しながら溶液を30分間撹拌したところ、固体が得られた。 Specifically, after the air in the flask was replaced with nitrogen gas, 1 equivalent of Ni (cod) 2 was placed in the flask, and 4 equivalents of PMe 3 was further added. The solution was stirred for 30 minutes while cooling the flask in an ice bath to obtain a solid.
〔アルケニルリン化合物の製造〕
 下記の反応式
Figure JPOXMLDOC01-appb-C000009
に示すように、前記の操作で得られた固体を反応触媒として使用し、構造式(4)で表される9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキシドとアセチレンとを反応させることにより、構造式(6)で表される9,10-ジヒドロ-9-オキサ-10-ビニル-10-フォスファフェナントレン-10-オキシドを製造した。
(Production of alkenyl phosphorus compound)
The following reaction formula
Figure JPOXMLDOC01-appb-C000009
As shown in the following, 9,10-dihydro-9-oxa-10-phosphenanthrene-10-oxide represented by the structural formula (4) and acetylene are obtained using the solid obtained by the above operation as a reaction catalyst. To produce 9,10-dihydro-9-oxa-10-vinyl-10-phosphaphenanthrene-10-oxide represented by the structural formula (6).
 具体的には、構造式(4)で表される環状リン化合物12.75gをフラスコに入れ、フラスコ内の空気を窒素ガスで置換した後、フラスコ内にメチルアルコール30mLを入れ、前記環状リン化合物をメチルアルコールに溶解させた。次いで、溶液を脱気した後、溶液に1当量のアセチレンを吹き込み、更に1mol%の前記反応触媒を添加してから70℃で3時間撹拌することにより反応を行った。反応終了後、反応液を濃縮、減圧蒸留(真空度:0.1Pa、沸点:200~230℃)した。このような操作により、白色の結晶が13.0g(収率:90%)得られた。得られた結晶の融点は、62.6~62.9℃であった。 Specifically, 12.75 g of the cyclic phosphorus compound represented by the structural formula (4) is put in a flask, the air in the flask is replaced with nitrogen gas, 30 mL of methyl alcohol is put in the flask, and the cyclic phosphorus compound is added. Dissolved in methyl alcohol. Next, after degassing the solution, 1 equivalent of acetylene was blown into the solution, and 1 mol% of the reaction catalyst was further added, followed by stirring at 70 ° C. for 3 hours. After completion of the reaction, the reaction solution was concentrated and distilled under reduced pressure (vacuum degree: 0.1 Pa, boiling point: 200 to 230 ° C.). By this operation, 13.0 g (yield: 90%) of white crystals was obtained. The melting point of the obtained crystal was 62.6-62.9 ° C.
 また、得られた結晶のNMR(核磁気共鳴)スペクトルデータを測定した。その結果を以下に示す。
 1H-NMR(400MHz、CDCl3)δ: 7.87(dt、J=17.1Hz,6.1Hz、2H)、7.70(dt、J=13.4Hz,3.9Hz、1H)、7.61(t、J=7.8Hz、1H)、7.45~7.39(m、1H)、7.28(q、J=6.4Hz、1H)、7.16(s、1H)、7.13(d、J=9.1Hz、1H)、6.27(ttt、J=32.5Hz,13.2Hz,4.2Hz、3H)
 31P-NMR(400MHz、CDCl3): 23.47
Further, NMR (nuclear magnetic resonance) spectrum data of the obtained crystal was measured. The results are shown below.
1 H-NMR (400 MHz, CDCl 3 ) δ: 7.87 (dt, J = 17.1 Hz, 6.1 Hz, 2H), 7.70 (dt, J = 13.4 Hz, 3.9 Hz, 1H), 7.61 (t, J = 7.8 Hz 1H), 7.45-7.39 (m, 1H), 7.28 (q, J = 6.4 Hz, 1H), 7.16 (s, 1H), 7.13 (d, J = 9.1 Hz, 1H), 6.27 (ttt, J = (32.5Hz, 13.2Hz, 4.2Hz, 3H)
31 P-NMR (400 MHz, CDCl 3 ): 23.47
 更に、得られた結晶の高分解能質量分析スペクトル(HRMS)データを測定した。その結果を以下に示す。
 構造式(6)で表されるアルケニルリン化合物の分子式: C14122
 C14122Pの分子量の理論値: 242.0497
 得られた結晶の分子量の実測値: 242.0479
Furthermore, high resolution mass spectrometry spectrum (HRMS) data of the obtained crystals were measured. The results are shown below.
Molecular formula of the alkenyl phosphorus compound represented by the structural formula (6): C 14 H 12 O 2 P
Theoretical molecular weight of C 14 H 12 O 2 P: 242.0497
Measured value of molecular weight of the obtained crystal: 242.0479
〔アルケニルリン化合物の製造〕
下記の反応式
Figure JPOXMLDOC01-appb-C000010
に示すように、構造式(4)で表される環状リン化合物とジフェニルアセチレンとを反応させることにより、構造式(7)で表される9,10-ジヒドロ-9-オキサ-10-ビニル-10-フォスファフェナントレン-10-オキシドの誘導体を製造した。
(Production of alkenyl phosphorus compound)
The following reaction formula
Figure JPOXMLDOC01-appb-C000010
As shown in FIG. 9, 9,10-dihydro-9-oxa-10-vinyl- represented by the structural formula (7) is obtained by reacting the cyclic phosphorus compound represented by the structural formula (4) with diphenylacetylene. A derivative of 10-phosphaphenanthrene-10-oxide was prepared.
 具体的には、構造式(4)で表される環状リン化合物を1mmolとし、溶媒を2mLのTHFとし、アルキン化合物を1mmolのジフェニルアセチレンとし、反応触媒を5mol%のNi[P(n-Bu)3]4とした以外は、実施例1と同様にして反応を行った。 Specifically, the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol, the solvent is 2 mL of THF, the alkyne compound is 1 mmol of diphenylacetylene, and the reaction catalyst is 5 mol% of Ni [P (n-Bu ) 3 ] The reaction was performed in the same manner as in Example 1 except that 4 .
 その結果、白色の結晶が得られた(収率:72%)。得られた結晶の融点は、169.2℃であった。また、得られた結晶のNMRスペクトルデータを測定した。その結果を以下に示す。
 1H-NMR(399.78MHz、CDCl3)δ: 6.97~7.85(m、19H)
As a result, white crystals were obtained (yield: 72%). The melting point of the obtained crystal was 169.2 ° C. Further, NMR spectrum data of the obtained crystal was measured. The results are shown below.
1 H-NMR (399.78 MHz, CDCl 3 ) δ: 6.97-7.85 (m, 19H)
〔アルケニルリン化合物の製造〕
 下記の反応式
Figure JPOXMLDOC01-appb-C000011
に示すように、構造式(4)で表される環状リン化合物と1-オクチンとを反応させることにより、構造式(8)で表されるアルケニルリン化合物と構造式(9)で表されるアルケニルリン化合物との混合物を製造した。
(Production of alkenyl phosphorus compound)
The following reaction formula
Figure JPOXMLDOC01-appb-C000011
As shown in FIG. 4, the cyclic phosphorus compound represented by the structural formula (4) is reacted with 1-octyne to represent the alkenyl phosphorus compound represented by the structural formula (8) and the structural formula (9). A mixture with an alkenyl phosphorus compound was prepared.
 具体的には、構造式(4)で表される環状リン化合物を1mmolとし、溶媒を2mLのTHFとし、アルキン化合物を1mmolの1-オクチンとし、反応触媒を5mol%のNi[P(n-Bu)3]4及び5mol%のジフェニルホスフィン酸とし、25℃で一晩撹拌した以外は、実施例1と同様にして反応を行った。 Specifically, the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol, the solvent is 2 mL of THF, the alkyne compound is 1 mmol of 1-octyne, and the reaction catalyst is 5 mol% of Ni [P (n- Bu) 3 ] The reaction was carried out in the same manner as in Example 1 except that 4 and 5 mol% of diphenylphosphinic acid were used and stirred at 25 ° C. overnight.
 その結果、油状物質が得られた(収率:87%)。また、得られた油状物質のNMRスペクトルデータを測定した。その結果を以下に示す。
 1H-NMR(399.78MHz、CDCl3)δ: 7.00~7.99(m、61.6H)、6.10(d、JPH=24.0、5.36H)、5.95(d、JPH=44.0、5.36H)、5.92(d、J=16.0、1H)、5.86(d、J=16.0、1H)、2.17~2.28(m、3.62H)、1.20~1.69(m、75.09H)、0.84~0.90(m、31.67H)
As a result, an oily substance was obtained (yield: 87%). Further, NMR spectrum data of the obtained oily substance was measured. The results are shown below.
1 H-NMR (399.78 MHz, CDCl 3 ) δ: 7.00 to 7.99 (m, 61.6 H), 6.10 (d, J PH = 24.0, 5.36 H), 5.95 (d, J PH = 44.0, 5.36 H), 5.92 (D, J = 16.0, 1H), 5.86 (d, J = 16.0, 1H), 2.17 to 2.28 (m, 3.62H), 1.20 to 1.69 (m, 75.09H), 0.84 to 0.90 (m, 31.67H)
 測定したNMRスペクトルデータに基づいて、構造式(8)で表されるアルケニルリン化合物と構造式(9)で表されるアルケニルリン化合物とのモル比率を算出したところ、
  76.1:23.9
であった。
Based on the measured NMR spectrum data, the molar ratio between the alkenyl phosphorus compound represented by Structural Formula (8) and the alkenyl phosphorus compound represented by Structural Formula (9) was calculated.
76.1: 23.9
Met.
〔アルケニルリン化合物の製造〕
 実施例3の反応式に示すように、構造式(4)で表される環状リン化合物と1-オクチンとを反応させることにより、構造式(8)で表されるアルケニルリン化合物と構造式(9)で表されるアルケニルリン化合物との混合物を製造した。
(Production of alkenyl phosphorus compound)
As shown in the reaction formula of Example 3, by reacting the cyclic phosphorus compound represented by the structural formula (4) with 1-octyne, the alkenyl phosphorus compound represented by the structural formula (8) and the structural formula ( A mixture with the alkenyl phosphorus compound represented by 9) was produced.
 具体的には、構造式(4)で表される環状リン化合物を1mmolとし、溶媒を2mLのエチルアルコールとし、アルキン化合物を1mmolの1-オクチンとし、反応触媒を5mol%のNi[P(n-Bu)3]4とした以外は、実施例1と同様にして反応を行った。 Specifically, the cyclic phosphorus compound represented by the structural formula (4) is 1 mmol, the solvent is 2 mL of ethyl alcohol, the alkyne compound is 1 mmol of 1-octyne, and the reaction catalyst is 5 mol% of Ni [P (n -Bu) 3 ] The reaction was performed in the same manner as in Example 1 except that 4 .
 その結果、油状物質が得られた(収率:75%)。また、得られた油状物質のNMRスペクトルデータを測定した。その結果を以下に示す。
 1H-NMR(399.78MHz、CDCl3)δ: 6.95~7.98(m、154H)、6.08(d、JPH=24.0、1.03H)、5.94(d、JPH=47.9、1H)、5.92(d、J=16.0、1H)、5.86(d、J=16.0、1.35H)、2.14~2.28(m、7.5H)、1.68~1.73(m、8.23H)、1.19~1.45(m、33.53H)、0.81~0.87(m、14.3H)
As a result, an oily substance was obtained (yield: 75%). Further, NMR spectrum data of the obtained oily substance was measured. The results are shown below.
1 H-NMR (399.78 MHz, CDCl 3 ) δ: 6.95 to 7.98 (m, 154H), 6.08 (d, J PH = 24.0, 1.03 H), 5.94 (d, J PH = 47.9, 1 H), 5.92 (d , J = 16.0, 1H), 5.86 (d, J = 16.0, 1.35H), 2.14-2.28 (m, 7.5H), 1.68-1.73 (m, 8.23H), 1.19-1.45 (m, 33.53H), 0.81 to 0.87 (m, 14.3H)
 測定したNMRスペクトルデータに基づいて、構造式(8)で表されるアルケニルリン化合物と構造式(9)で表されるアルケニルリン化合物とのモル比率を算出したところ、
  29.9:70.1
であった。
Based on the measured NMR spectrum data, the molar ratio between the alkenyl phosphorus compound represented by Structural Formula (8) and the alkenyl phosphorus compound represented by Structural Formula (9) was calculated.
29.9: 70.1
Met.
〔アルケニルリン化合物重合体(ホモポリマー)の製造〕
 5mol%のアゾビスイソブチロニトリル(AIBN)を重合開始剤として使用し、構造式(6)で表されるアルケニルリン化合物(9,10-ジヒドロ-9-オキサ-10-ビニル-10-フォスファフェナントレン-10-オキシド。以下、「BPVP」という。)をモノマーとして、表1に示す条件(反応温度:80℃、反応時間:16時間)で重合(単独重合)させることにより、一般式
Figure JPOXMLDOC01-appb-C000012
で表されるアルケニルリン化合物重合体を製造した。
[Production of alkenyl phosphorus compound polymer (homopolymer)]
5 mol% of azobisisobutyronitrile (AIBN) was used as a polymerization initiator, and the alkenyl phosphorus compound (9,10-dihydro-9-oxa-10-vinyl-10-phos represented by the structural formula (6) was used. By polymerizing (homopolymerizing) faphenanthrene-10-oxide (hereinafter referred to as “BPVP”) as a monomer under the conditions shown in Table 1 (reaction temperature: 80 ° C., reaction time: 16 hours).
Figure JPOXMLDOC01-appb-C000012
The alkenyl phosphorus compound polymer represented by these was manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた重合体の収率を算出した。また、得られた重合体の重量平均分子量(Mw)及び数平均分子量(Mn)をGPC(ゲル浸透クロマトグラフィー)で測定し、それらから分子量分布(Mw/Mn)を算出した。これらの結果を表1に示す。 The yield of the obtained polymer was calculated. Moreover, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained polymer were measured by GPC (gel permeation chromatography), and molecular weight distribution (Mw / Mn) was computed from them. These results are shown in Table 1.
〔アルケニルリン化合物重合体(ホモポリマー)の製造〕
 実施例5と同様の操作を、実施例5とは異なる表1に示す条件で行った。得られた重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を表1に示す。
[Production of alkenyl phosphorus compound polymer (homopolymer)]
The same operation as in Example 5 was performed under the conditions shown in Table 1 different from those in Example 5. Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
〔アルケニルリン化合物重合体(ホモポリマー)の製造〕
 実施例5と同様の操作を、実施例5とは異なる表1に示す条件で行った。得られた重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を表1に示す。
[Production of alkenyl phosphorus compound polymer (homopolymer)]
The same operation as in Example 5 was performed under the conditions shown in Table 1 different from those in Example 5. Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
〔アルケニルリン化合物重合体(ホモポリマー)の製造〕
 表1に示すように、構造式(6)で表されるアルケニルリン化合物(BPVP)を1mmolとし、溶媒を2mLのTHFとし、0.05mmolのフェニルマグネシウムブロミドを添加し、25℃で3時間撹拌した以外は、実施例5と同様の操作を行った。得られた重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を表1に示す。
[Production of alkenyl phosphorus compound polymer (homopolymer)]
As shown in Table 1, the alkenyl phosphorus compound (BPVP) represented by the structural formula (6) was 1 mmol, the solvent was 2 mL of THF, 0.05 mmol of phenylmagnesium bromide was added, and the mixture was stirred at 25 ° C. for 3 hours. Except for the above, the same operation as in Example 5 was performed. Table 1 shows the yield, weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the obtained polymer.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 構造式(6)で表されるアルケニルリン化合物(BPVP)に対して5mol%のアゾビスイソブチロニトリル(AIBN)を重合開始剤として使用し、前記アルケニルリン化合物(BPVP)と、表2に示すコモノマーとを、表2に示す条件で共重合させた。コモノマーとBPVPとのモル比は、
  コモノマー:BPVP=5:1
とした。反応温度は80℃、反応時間は16時間とした。なお、表2中の「MeOH」は、メチルアルコールを示す。
[Manufacture of alkenyl phosphorus compound copolymer]
5 mol% of azobisisobutyronitrile (AIBN) is used as a polymerization initiator with respect to the alkenyl phosphorus compound (BPVP) represented by the structural formula (6), and the alkenyl phosphorus compound (BPVP) The comonomer shown was copolymerized under the conditions shown in Table 2. The molar ratio of comonomer to BPVP is
Comonomer: BPVP = 5: 1
It was. The reaction temperature was 80 ° C. and the reaction time was 16 hours. “MeOH” in Table 2 represents methyl alcohol.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた共重合体の収率、及び前記アルケニルリン化合物(BPVP)の取込率を算出した。また、得られた共重合体の重量平均分子量(Mw)及び数平均分子量(Mn)をGPCで測定し、それらから分子量分布(Mw/Mn)を算出した。これらの結果を表2に示す。 The yield of the obtained copolymer and the uptake rate of the alkenyl phosphorus compound (BPVP) were calculated. Moreover, the weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained copolymer were measured by GPC, and molecular weight distribution (Mw / Mn) was computed from them. These results are shown in Table 2.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 実施例9と同様の操作を、実施例9とは異なる表2に示す条件でそれぞれ行った。得られた共重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、並びに前記アルケニルリン化合物(BPVP)の取込率を表2に示す。
[Manufacture of alkenyl phosphorus compound copolymer]
The same operations as in Example 9 were performed under the conditions shown in Table 2 different from those in Example 9. Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 実施例9と同様の操作を、実施例9とは異なる表2に示す条件でそれぞれ行った。得られた共重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、並びに前記アルケニルリン化合物(BPVP)の取込率を表2に示す。
[Manufacture of alkenyl phosphorus compound copolymer]
The same operations as in Example 9 were performed under the conditions shown in Table 2 different from those in Example 9. Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 実施例9と同様の操作を、実施例9とは異なる表2に示す条件でそれぞれ行った。得られた共重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、並びに前記アルケニルリン化合物(BPVP)の取込率を表2に示す。
[Manufacture of alkenyl phosphorus compound copolymer]
The same operations as in Example 9 were performed under the conditions shown in Table 2 different from those in Example 9. Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 実施例9と同様の操作を、実施例9とは異なる表2に示す条件でそれぞれ行った。得られた共重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、並びに前記アルケニルリン化合物(BPVP)の取込率を表2に示す。
[Manufacture of alkenyl phosphorus compound copolymer]
The same operations as in Example 9 were performed under the conditions shown in Table 2 different from those in Example 9. Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
〔アルケニルリン化合物共重合体(コポリマー)の製造〕
 実施例9と同様の操作を、実施例9とは異なる表2に示す条件でそれぞれ行った。得られた共重合体の収率、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、並びに前記アルケニルリン化合物(BPVP)の取込率を表2に示す。
[Manufacture of alkenyl phosphorus compound copolymer]
The same operations as in Example 9 were performed under the conditions shown in Table 2 different from those in Example 9. Table 2 shows the yield, weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), and uptake rate of the alkenyl phosphorus compound (BPVP) of the obtained copolymer.
 以上のように、本発明に係るアルケニルリン化合物重合体及びアルケニルリン化合物共重合体は、従来の難燃剤の問題点を解決しつつ、加熱しても着色しにくいという特性を兼ね備えた難燃性ポリマーとして有用である。また、本発明に係るアルケニルリン化合物は、前記アルケニルリン化合物重合体や前記アルケニルリン化合物共重合体のモノマーとして有用である。 As described above, the alkenyl phosphorus compound polymer and the alkenyl phosphorus compound copolymer according to the present invention solve the problems of the conventional flame retardant, and have the property of being difficult to be colored even when heated. Useful as a polymer. Moreover, the alkenyl phosphorus compound according to the present invention is useful as a monomer of the alkenyl phosphorus compound polymer or the alkenyl phosphorus compound copolymer.

Claims (3)

  1.  一般式
    Figure JPOXMLDOC01-appb-C000013
    (式中、
     R1、R2は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はシリル基を示し、
     R3、R4、R5、R6、R7、R8、R9、R10は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、シアノ基、又はアシル基を示す。)
    で表されるアルケニルリン化合物。
    General formula
    Figure JPOXMLDOC01-appb-C000013
    (Where
    R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group,
    R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . )
    The alkenyl phosphorus compound represented by these.
  2.  一般式
    Figure JPOXMLDOC01-appb-C000014
    (式中、
     nは、2以上の整数を示し、
     R1、R2は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、ヘテロアリール基、アルケニル基、アルコキシ基、アリールオキシ基、又はシリル基を示し、
     R3、R4、R5、R6、R7、R8、R9、R10は、それぞれ水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、シアノ基、又はアシル基を示す。)
    で表されるアルケニルリン化合物重合体。
    General formula
    Figure JPOXMLDOC01-appb-C000014
    (Where
    n represents an integer of 2 or more,
    R 1 and R 2 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkoxy group, an aryloxy group, or a silyl group,
    R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 each represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a cyano group, or an acyl group. . )
    The alkenyl phosphorus compound polymer represented by these.
  3.  請求項1記載のアルケニルリン化合物と、
     一般式
    Figure JPOXMLDOC01-appb-C000015
    (式中、R11、R12、R13、R14は、それぞれ水素原子、アリール基、シアノ基、アルコキシカルボニル基、アルキル基、又はカルボキシル基を示す。)
    で表されるアルケン化合物と、
     を共重合させたアルケニルリン化合物共重合体。
    An alkenyl phosphorus compound according to claim 1;
    General formula
    Figure JPOXMLDOC01-appb-C000015
    (Wherein R 11 , R 12 , R 13 , and R 14 each represent a hydrogen atom, an aryl group, a cyano group, an alkoxycarbonyl group, an alkyl group, or a carboxyl group.)
    An alkene compound represented by:
    An alkenyl phosphorus compound copolymer.
PCT/JP2010/001068 2009-02-28 2010-02-19 Alkenylphosphorus compounds, alkenylphosphorus compound polymers, and alkenylphosphorus compound copolymers WO2010098047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009047433A JP5709094B2 (en) 2009-02-28 2009-02-28 Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
JP2009-047433 2009-02-28

Publications (1)

Publication Number Publication Date
WO2010098047A1 true WO2010098047A1 (en) 2010-09-02

Family

ID=42665265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001068 WO2010098047A1 (en) 2009-02-28 2010-02-19 Alkenylphosphorus compounds, alkenylphosphorus compound polymers, and alkenylphosphorus compound copolymers

Country Status (2)

Country Link
JP (1) JP5709094B2 (en)
WO (1) WO2010098047A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076327A1 (en) * 2014-11-11 2016-05-19 宇部興産株式会社 Non-aqueous electrolyte solution, and power storage device in which non-aqueous electrolyte solution is used
JP2016183288A (en) * 2015-03-26 2016-10-20 Mcppイノベーション合同会社 Resin composition, molded body and wire
CN109749044A (en) * 2018-11-29 2019-05-14 四川大学 The pure and mild fire-retardant anti-static polyurethane elastomer prepared therefrom of phosphorus contained multicomponent and their preparation method
TWI721011B (en) * 2015-09-11 2021-03-11 日商丸善石油化學股份有限公司 Manufacturing method of alkenyl phosphorus compound

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756699B2 (en) * 2011-07-19 2015-07-29 パナソニック株式会社 Modified polyphenylene ether and method for producing the same
EP2844678B1 (en) * 2012-05-01 2017-02-22 Bridgestone Corporation Polydienes and diene copolymers having organophosphine functionality
JP6209324B2 (en) * 2012-10-30 2017-10-04 東レエンジニアリング株式会社 Microreactor system and compound production method using the same
US20160060281A1 (en) * 2013-05-31 2016-03-03 Scott Edward Angell Butadien2,3-diyl linked di-dopo derivatives as flame retardants
JPWO2017119303A1 (en) 2016-01-08 2018-10-25 丸善石油化学株式会社 Organophosphorus compound, flame retardant containing the same, and process for producing organophosphorus compound
JP2017179250A (en) * 2016-03-31 2017-10-05 Mcppイノベーション合同会社 Modified polyolefin-based resin, method for producing the same, molded body, electric wire, and resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160643A (en) * 2004-12-06 2006-06-22 Nagase Chemtex Corp METHOD FOR MANUFACTURING beta,gamma-UNSATURATED PHOSPHINIC ESTER
JP2007146131A (en) * 2005-11-04 2007-06-14 National Institute Of Advanced Industrial & Technology Novel phosphorus-containing alkadiene polymer and method of preparing the same
JP2009266663A (en) * 2008-04-25 2009-11-12 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670009B2 (en) * 2005-09-27 2011-04-13 独立行政法人産業技術総合研究所 High molecular weight polydiphenylvinylphosphine oxide, process for producing the same, and metal extractant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160643A (en) * 2004-12-06 2006-06-22 Nagase Chemtex Corp METHOD FOR MANUFACTURING beta,gamma-UNSATURATED PHOSPHINIC ESTER
JP2007146131A (en) * 2005-11-04 2007-06-14 National Institute Of Advanced Industrial & Technology Novel phosphorus-containing alkadiene polymer and method of preparing the same
JP2009266663A (en) * 2008-04-25 2009-11-12 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCON, M. JOSE ET AL.: "Cadiz, Virginia, Synthesis, characterization and polymerization of a novel glycidyl phosphinate", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 22, no. ISSUE, 17 October 2001 (2001-10-17), pages 1265 - 1271 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076327A1 (en) * 2014-11-11 2016-05-19 宇部興産株式会社 Non-aqueous electrolyte solution, and power storage device in which non-aqueous electrolyte solution is used
JPWO2016076327A1 (en) * 2014-11-11 2017-08-17 宇部興産株式会社 Non-aqueous electrolyte and power storage device using the same
JP2016183288A (en) * 2015-03-26 2016-10-20 Mcppイノベーション合同会社 Resin composition, molded body and wire
TWI721011B (en) * 2015-09-11 2021-03-11 日商丸善石油化學股份有限公司 Manufacturing method of alkenyl phosphorus compound
CN109749044A (en) * 2018-11-29 2019-05-14 四川大学 The pure and mild fire-retardant anti-static polyurethane elastomer prepared therefrom of phosphorus contained multicomponent and their preparation method
CN109749044B (en) * 2018-11-29 2021-05-21 四川大学 Phosphorus-containing polyol, flame-retardant antistatic polyurethane elastomer prepared from phosphorus-containing polyol and preparation method of flame-retardant antistatic polyurethane elastomer

Also Published As

Publication number Publication date
JP2010202718A (en) 2010-09-16
JP5709094B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5709094B2 (en) Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
TWI289596B (en) Flame retardant, flame-retardant resin composition, molded object, and electronic part
CN102219906B (en) Hyperbranched polysiloxane and preparation method thereof
CN104211880B (en) A kind of fire-retardant block copolymer of containing phosphorus silicon and preparation method thereof
CN103819634B (en) A kind of containing phosphorus silicon segmented copolymer and its preparation method
CN101792537A (en) Silane coupling agent containing DOPO group and preparation method thereof
CN104262538A (en) Phosphorus/silicon-containing reactive high-molecular flame retardant, and preparation method and application thereof
CN102276836A (en) Flame retardant bimaleimide resin and preparation method thereof
CN108314787A (en) A kind of phosphorus-nitrogen containing silicon polymer modified graphene oxide fire retardant and preparation method thereof
CN104356388A (en) Flame-retardant bismaleimide resin and preparation method thereof
CA3178772A1 (en) Flameproof acrylate
JP5880907B2 (en) Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
KR101098415B1 (en) Novel Phosphoric Compound, Method of Preparing the Same and Flameproof Thermoplastic Resin Composition Using the Same
JP5786269B2 (en) Method for producing alkenyl phosphorus compound, method for producing alkenyl phosphorus compound polymer, and method for producing alkenyl phosphorus compound copolymer
JPH10152551A (en) Norbornane cyclic carbonate composition
JP4836134B2 (en) Novel phosphorus-containing alkadiene polymer and process for producing the same
TWI492974B (en) A flame retardant, a method for producing the same, and a flame retardant
CN109942766B (en) Styrene and organic phosphaphenanthrene methylene acrylate block copolymer and preparation method thereof
JP2012136576A (en) Curable composition having resistance to cure shrinkage, and cured product obtained by curing the curable composition
CN106432332A (en) Preparation method of phosphorus and nitrogen contained acrylate and copolymer core-shell particles of phosphorus and nitrogen contained acrylate
CN103588990B (en) Heat-resisting reaction type phosphorate containing flame retardant with maleimide structure and preparation method thereof
CN1128165C (en) Long chain branched syndiotactic vinyl aromatic polymers
TW200923001A (en) Non-halogen flameproof resin composition
KR20100131904A (en) Preparation method of organic-inorganic hybrid graft polysilsesquioxane and graft polysilsesquioxane prepared by the same
JP4066335B2 (en) Organic phosphorus composition, flame retardant containing the same, and flame retardant resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745934

Country of ref document: EP

Kind code of ref document: A1