WO2010095515A1 - Stator and torque converter - Google Patents

Stator and torque converter Download PDF

Info

Publication number
WO2010095515A1
WO2010095515A1 PCT/JP2010/051566 JP2010051566W WO2010095515A1 WO 2010095515 A1 WO2010095515 A1 WO 2010095515A1 JP 2010051566 W JP2010051566 W JP 2010051566W WO 2010095515 A1 WO2010095515 A1 WO 2010095515A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
torque converter
impeller
turbine
shell
Prior art date
Application number
PCT/JP2010/051566
Other languages
French (fr)
Japanese (ja)
Inventor
敦義 塩村
知寛 田坂
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to CN2010800080434A priority Critical patent/CN102317651A/en
Priority to DE112010000842T priority patent/DE112010000842T5/en
Priority to US13/201,526 priority patent/US20110311367A1/en
Publication of WO2010095515A1 publication Critical patent/WO2010095515A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H41/26Shape of runner blades or channels with respect to function
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H41/28Details with respect to manufacture, e.g. blade attachment
    • F16H2041/285Details with respect to manufacture, e.g. blade attachment of stator blades

Definitions

  • the present invention relates to a stator, and more particularly to a stator for rectifying the flow of hydraulic fluid from a torque converter turbine to the impeller.
  • the present invention also relates to a torque converter, and more particularly to a torque converter for transmitting torque from an engine to the transmission side by fluid.
  • the torque converter includes a front cover, an impeller, a turbine, and a stator. Torque from the engine is transmitted to the front cover, and then the torque transmitted to the front cover is transmitted to the impeller. When power is transmitted to the impeller, the impeller rotates to move the hydraulic oil to the turbine side, and the hydraulic oil moved to the turbine side rotates the turbine. At this time, torque is transmitted from the turbine to the transmission side shaft, and the transmission side shaft is rotated. Then, the hydraulic oil on the turbine side is returned to the impeller side via the stator.
  • the stator is a mechanism for straightening the flow of hydraulic oil from the turbine to the impeller, and is disposed between the inner periphery of the impeller and the inner periphery of the turbine.
  • the stator mainly includes an annular stator shell, a plurality of stator blades provided on the outer peripheral surface of the shell, and an annular stator core fixed to the tips of the plurality of stator blades.
  • the stator shell is supported by a fixed shaft via a one-way clutch (Patent Document 1).
  • An object of the present invention is to suppress generation of vortices at a portion where hydraulic oil separates from a stator, and to allow the hydraulic oil to efficiently flow from a turbine to an impeller so as to increase a capacity coefficient. .
  • the stator of the torque converter according to claim 1 rectifies the flow of hydraulic fluid returning from the turbine of the torque converter to the impeller, and is disposed so as to radially extend from the annular shell and the annular shell on the hydraulic oil outlet side And an annular core disposed on an outer peripheral side of the blade.
  • the stator of the torque converter according to claim 2 is the stator according to claim 1, wherein each of the plurality of blades has a blade width with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. A plurality of recesses recessed in the direction are formed. Also in this case, the same function and effect as in claim 1 can be obtained.
  • the stator of the torque converter according to claim 3 is the stator according to claim 1, wherein each of the plurality of blades has a blade width with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. A plurality of projections projecting in the direction are formed. Also in this case, the same function and effect as in claim 1 can be obtained.
  • the stator of the torque converter according to claim 4 is the stator according to any one of claims 1 to 3, wherein the wave shape of the plurality of blades has a ratio of the total height h of the unevenness to the full width H in the radial direction of 3% to 20%. It is below.
  • the torque converter according to claim 5 is a torque converter for transmitting torque from the engine to the transmission side by fluid, and the impeller to which the torque from the engine is input is disposed opposite to the impeller and the torque is transmitted to the transmission. And a stator according to any one of claims 1 to 4 disposed on the inner peripheral side between the impeller and the turbine.
  • the generation of a particularly large eddy is suppressed at the portion where the hydraulic oil separates from the stator, and the capacity coefficient can be increased.
  • FIG. 7 shows a stator blade according to another embodiment of the present invention.
  • FIG. 1 is a schematic longitudinal sectional view of a torque converter 1 in which one embodiment of the present invention is adopted.
  • the torque converter 1 is a device for transmitting torque from an engine crankshaft (not shown) to an input shaft (not shown) of a transmission.
  • An engine (not shown) is disposed on the left side of FIG. 1, and a transmission (not shown) is disposed on the right side of FIG.
  • the OO line shown in FIG. 1 is the rotation axis of the torque converter 1.
  • the torque converter 1 is composed of a torus 5 composed of three types of impellers (impeller 2, turbine 3, stator 4) and a lockup device 6.
  • the front cover 10 is a disk-like member, and is disposed close to the tip of the crankshaft of the engine.
  • a center boss 11 is fixed to the inner peripheral portion of the front cover 10 by welding.
  • a plurality of nuts 12 are fixed at equal intervals in the circumferential direction.
  • An outer peripheral cylindrical portion 13 extending toward the transmission in the axial direction is formed on an outer peripheral portion of the front cover 10.
  • the outer peripheral edge of the impeller shell 15 of the impeller 2 is fixed to the end of the outer peripheral cylindrical portion 13 by welding.
  • the front cover 10 and the impeller 2 form a fluid chamber in which the working oil (fluid) is filled.
  • the impeller 2 mainly includes an impeller shell 15, a plurality of impeller blades 16 fixed to the inside of the impeller shell 15, and an impeller hub 17 fixed to the inner circumferential portion of the impeller shell 15.
  • An annular impeller core 18 is fixed to the inside of the plurality of impeller blades 16.
  • the central portion of the circle of impeller blade 16 is semi-circular, and impeller core 18 has a cross-sectional shape along it.
  • the turbine 3 is axially opposed to the impeller 2 in the fluid chamber.
  • the turbine 3 includes a turbine shell 20, a turbine blade 21, a turbine core 22, and a turbine hub 23.
  • the turbine shell 20 is an annular member, and the inner peripheral side thereof is fixed to the turbine hub 23 by welding.
  • the turbine blades 21 are members fixed to the inside of the turbine shell 21 and arranged in plural in the circumferential direction.
  • the turbine core 22 is a portion provided at the tip of the turbine blade 21.
  • the turbine hub 23 is a portion attached to a transmission-side shaft so as not to be relatively rotatable, and includes a cylindrical portion 23 a and a disk-shaped flange 23 b.
  • the cylindrical portion 23a is disposed on the outer peripheral side of the transmission-side shaft, and the flange 23b protrudes from substantially the center of the cylindrical portion 23a in the axial direction toward the outer peripheral side.
  • the stator 4 is a mechanism for rectifying the flow of the hydraulic oil from the turbine 3 back to the impeller 2.
  • the stator 4 is an integral member formed by casting of resin, aluminum alloy or the like.
  • the stator 4 is disposed between the inner periphery of the impeller 2 and the inner periphery of the turbine 3.
  • the stator 4 mainly includes an annular stator shell 25, a plurality of stator blades 26 provided on the outer peripheral surface of the stator shell 25, and an annular stator core 27 fixed to the tips of the plurality of stator blades 26. ing.
  • the stator shell 25 is supported by a fixed shaft (not shown) via a one-way clutch 30. Further, a retainer 31 is disposed on the axial direction engine side of the one-way clutch 30.
  • the retainer 31 is disposed between the one-way clutch 30 and the flange 23 b of the turbine hub 23 and holds the one-way clutch 30. Further, a plurality of grooves extending in the radial direction are formed in the contact surface of the retainer 31 with the flange 23b, and hydraulic fluid can flow from the inner peripheral side to the outer peripheral side.
  • a thrust bearing 32 is disposed between the impeller hub 17 and the stator shell 25.
  • a seal member 33 is disposed between the inner ring of the one-way clutch 30 and the outer peripheral portion of the cylindrical portion 23 a of the turbine hub 23.
  • the stator blade 26 is a plate-like portion having a predetermined width connecting the stator shell 25 and the stator core 27 as partially enlarged in FIG. 2.
  • the stator blade 26 has an inlet-side edge and an outlet-side edge, and the inlet-side edge is formed to connect the shell side end S1 and the core side end C1 in a straight line. There is.
  • the shell side end S2 and the core side end C2 are not connected by the straight line M, and three concave portions 26a which are recessed inward (entrance side) in the width direction with respect to the straight line M Is formed.
  • the recess 26 a is formed to be recessed in an arc shape.
  • two convex portions 26b are formed to be tapered in the flow direction of the hydraulic fluid.
  • the edge on the outlet side is formed in a wave shape having unevenness in the blade width direction.
  • the uneven portions 26a and 26b are not formed to an extent due to manufacturing errors, but are positively formed uneven.
  • the length (height of the protrusion 26b) h of the recess 26a is 3% or more and 20% or less preferable.
  • the lockup device 6 mainly includes a piston 40 and a damper mechanism 41.
  • the piston 40 is a disk-shaped member disposed between the front cover 10 and the turbine 3.
  • An inner peripheral cylindrical portion 42 extending toward the transmission in the axial direction is formed on the inner peripheral portion of the piston 40.
  • the inner circumferential tubular portion 42 is supported on the outer circumferential surface of the turbine hub 23 so as to be capable of relative rotation and axial movement.
  • the axial transmission end of the inner cylindrical portion 42 abuts on the flange 23 b of the turbine hub 23 so that the movement toward the axial transmission is limited to a predetermined position.
  • a seal ring 43 is disposed on the outer peripheral surface of the turbine hub 23, and the seal ring 43 seals axial spaces at the inner peripheral portion of the piston 40.
  • the outer peripheral portion of the piston 40 functions as a clutch connecting portion. That is, an annular friction facing 45 is fixed to the engine side of the outer peripheral portion of the piston 40. The friction facing 45 is opposed to an annular and flat friction surface formed on the inner surface of the outer periphery of the front cover 10.
  • the damper mechanism 41 includes a retaining plate 46, a driven plate 47, and a plurality of torsion springs 48.
  • the retaining plate 46 is fixed to the turbine 3 side of the outer peripheral portion of the piston 40 by a plurality of rivets 49.
  • the retaining plate 46 has a cut-and-raised portion for storing and supporting the torsion spring 48.
  • the plurality of torsion springs 48 are coil springs extending in the circumferential direction, and are accommodated in the retaining plate 46 and supported at both circumferential ends.
  • the driven plate 47 is an annular plate fixed to the outer peripheral side of the turbine shell 20 of the turbine 3.
  • the driven plate 47 has protruding claws 47 a which extend toward the front cover 10 and engage with both circumferential ends of the torsion spring 48.
  • Torque is transmitted from a crankshaft of an engine (not shown) to the front cover 10 and the impeller 2.
  • the hydraulic oil driven by the impeller blade 16 of the impeller 2 rotates the turbine 3.
  • the rotation of the turbine 3 is output to an input shaft (not shown) on the transmission side via a turbine hub 23.
  • the hydraulic oil flowing from the turbine 3 to the impeller 2 flows toward the impeller 2 through a passage defined by the stator shell 25 of the stator 4 and the stator core 27.
  • the flow of the hydraulic oil passing through the stator 4 is restricted by the stator blade 26 and is separated from the stator blade 26 at the end edge of the stator blade 26 on the outlet side.
  • the flow velocity of the hydraulic oil flowing from the edge on the outlet side to the impeller 2 is not uniform, and the wave shape It changes according to the unevenness of. For this reason, large vortices generated in the conventional stator blade are less likely to be generated, relatively small vortices are irregularly generated, and as a result, these vortices cancel each other.
  • FIG. 4 shows a comparison of the characteristics of a conventional torque converter using a stator blade and a torque converter using the stator blade 26 of the present embodiment.
  • the characteristic indicated by the solid line is the characteristic of the present embodiment
  • the characteristic indicated by the broken line is the characteristic of the conventional torque converter.
  • the capacity coefficient of this embodiment is characteristic Cc1
  • the torque ratio is characteristic T1
  • the torque transfer efficiency is characteristic ⁇ 1
  • the conventional capacity coefficient is characteristic Cc2
  • the torque ratio is characteristic T2
  • the torque transfer efficiency is characteristic It is ⁇ 2.
  • FIG. 5 shows another embodiment of the stator blade.
  • the stator blade 26 ' has a plurality of convex portions 26b' projecting outward in the width direction with respect to a straight line M connecting the shell side end S2 and the core side end C2 at the edge on the outlet side.
  • the convex portion 26b ' is formed to be tapered toward the flow direction of the hydraulic oil, and a concave portion 26a' is formed between the convex portions 26b 'to form a wave shape as a whole.
  • the generation of a particularly large eddy is suppressed at the portion where the hydraulic oil separates from the stator, and the capacity coefficient can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The occurrence of eddies where the operating oil separates from the stator is inhibited, and the capacity coefficient is increased by ensuring that the operating oil flows efficiently from the turbine to the impeller. The stator of this torque converter rectifies the flow of operating oil returning to the impeller from the turbine of the torque converter, and is equipped with an annular stator shell (25), stator blades (26) arranged extending radially from the annular stator shell (25) with edges formed in a corrugated shape on the operating oil outlet side, and an annular stator core (27) arranged around the outside of the stator blades (26).

Description

ステータ及びトルクコンバータStator and torque converter
 本発明は、ステータ、特に、トルクコンバータのタービンからインペラーに戻る作動油の流れを整流するためのステータに関する。また、本発明は、トルクコンバータ、特に、エンジンからのトルクを流体によってトランスミッション側に伝達するためのトルクコンバータに関する。 The present invention relates to a stator, and more particularly to a stator for rectifying the flow of hydraulic fluid from a torque converter turbine to the impeller. The present invention also relates to a torque converter, and more particularly to a torque converter for transmitting torque from an engine to the transmission side by fluid.
 トルクコンバータは、フロントカバーと、インペラーと、タービンと、ステータと、を備えている。エンジンからのトルクはフロントカバーに伝達され、その後フロントカバーに伝達されたトルクはインペラーに伝達される。インペラーに動力が伝達されるとインペラーが回転して作動油がタービン側に移動し、タービン側に移動した作動油によってタービンが回転させられる。このとき、タービンからトランスミッション側のシャフトにトルクが伝達され、トランスミッション側のシャフトが回転させられる。そして、タービン側の作動油はステータを介してインペラー側に戻される。 The torque converter includes a front cover, an impeller, a turbine, and a stator. Torque from the engine is transmitted to the front cover, and then the torque transmitted to the front cover is transmitted to the impeller. When power is transmitted to the impeller, the impeller rotates to move the hydraulic oil to the turbine side, and the hydraulic oil moved to the turbine side rotates the turbine. At this time, torque is transmitted from the turbine to the transmission side shaft, and the transmission side shaft is rotated. Then, the hydraulic oil on the turbine side is returned to the impeller side via the stator.
 ここで、ステータは、タービンからインペラーに戻る作動油の流れを整流するための機構であり、インペラーの内周部とタービン内周部との間に配置されている。ステータは、主に、環状のステータシェルと、シェルの外周面に設けられた複数のステータブレードと、複数のステータブレードの先端に固定された環状のステータコアと、から構成されている。ステータシェルはワンウェイクラッチを介して固定シャフトに支持されている(特許文献1)。 Here, the stator is a mechanism for straightening the flow of hydraulic oil from the turbine to the impeller, and is disposed between the inner periphery of the impeller and the inner periphery of the turbine. The stator mainly includes an annular stator shell, a plurality of stator blades provided on the outer peripheral surface of the shell, and an annular stator core fixed to the tips of the plurality of stator blades. The stator shell is supported by a fixed shaft via a one-way clutch (Patent Document 1).
特開2001-355701号公報JP 2001-355701 A
 特許文献1に示されるような従来のトルクコンバータにおけるステータ近傍の流体の流れに着目すると、ステータのブレードにおける流体出口付近では、作動油がブレードから剥離する。このとき、ブレードの下流側(インペラー側)において渦が発生する。このように渦が発生すると、作動油によるトルク伝達容量の損失が大きくなり、トルクコンバータの容量係数が小さくなってトルク伝達の効率が悪くなる。 Focusing on the flow of fluid in the vicinity of the stator in the conventional torque converter as shown in Patent Document 1, the hydraulic oil separates from the blade near the fluid outlet at the stator blade. At this time, vortices are generated on the downstream side (impeller side) of the blade. When a vortex is generated as described above, the loss of torque transfer capacity by the hydraulic fluid increases, the capacity coefficient of the torque converter decreases, and the efficiency of torque transfer deteriorates.
 本発明の課題は、作動油がステータから剥離する部分での渦の発生を抑制し、タービンからインペラーに効率よく作動油が流れるようにして容量係数を増加させることができるようにすることにある。 An object of the present invention is to suppress generation of vortices at a portion where hydraulic oil separates from a stator, and to allow the hydraulic oil to efficiently flow from a turbine to an impeller so as to increase a capacity coefficient. .
 請求項1に係るトルクコンバータのステータは、トルクコンバータのタービンからインペラーに戻る作動油の流れを整流するものであり、環状のシェルと、環状のシェルから放射状に延びるように配置され作動油出口側の端縁が波形状に形成された複数のブレードと、ブレードの外周側に配置された環状のコアと、を備えている。 The stator of the torque converter according to claim 1 rectifies the flow of hydraulic fluid returning from the turbine of the torque converter to the impeller, and is disposed so as to radially extend from the annular shell and the annular shell on the hydraulic oil outlet side And an annular core disposed on an outer peripheral side of the blade.
 ここでは、ブレードの出口側の端縁が波形状に形成されているので、ブレード出口側における作動油の速度が不均一になる。このため、従来のように大きな渦が発生するのではなく、比較的小さい多数の渦が発生し、しかもこの多数の渦が互いにその渦を打ち消し合うように作用する。このため、渦の発生による効率の低下を抑制することができる。 Here, since the edge on the outlet side of the blade is formed in a wave shape, the velocity of the hydraulic oil on the blade outlet side becomes uneven. For this reason, rather than the large vortices as in the prior art, a relatively large number of relatively small vortices are generated, and the large number of vortices act so as to cancel each other out. For this reason, the fall of the efficiency by generation | occurrence | production of a vortex can be suppressed.
 請求項2に係るトルクコンバータのステータは、請求項1のステータにおいて、複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に凹む複数の凹部が形成されている。この場合も、請求項1と同様の作用効果が得られる。 The stator of the torque converter according to claim 2 is the stator according to claim 1, wherein each of the plurality of blades has a blade width with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. A plurality of recesses recessed in the direction are formed. Also in this case, the same function and effect as in claim 1 can be obtained.
 請求項3に係るトルクコンバータのステータは、請求項1のステータにおいて、複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に突出する複数の凸部が形成されている。この場合も、請求項1と同様の作用効果が得られる。 The stator of the torque converter according to claim 3 is the stator according to claim 1, wherein each of the plurality of blades has a blade width with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. A plurality of projections projecting in the direction are formed. Also in this case, the same function and effect as in claim 1 can be obtained.
 請求項4に係るトルクコンバータのステータは、請求項1から3のいずれかのステータにおいて、複数のブレードの波形状は、径方向の全幅Hに対する凹凸の全高さhの比が3%以上20%以下である。 The stator of the torque converter according to claim 4 is the stator according to any one of claims 1 to 3, wherein the wave shape of the plurality of blades has a ratio of the total height h of the unevenness to the full width H in the radial direction of 3% to 20%. It is below.
 請求項5に係るトルクコンバータは、エンジンからのトルクを流体によってトランスミッション側に伝達するためのトルクコンバータであって、エンジンからのトルクが入力されるインペラーと、インペラーに対向して配置されトランスミッションにトルクを出力可能なタービンと、インペラーとタービンとの間の内周側に配置された請求項1から4のいずれかに記載のステータと、を備えている。 The torque converter according to claim 5 is a torque converter for transmitting torque from the engine to the transmission side by fluid, and the impeller to which the torque from the engine is input is disposed opposite to the impeller and the torque is transmitted to the transmission. And a stator according to any one of claims 1 to 4 disposed on the inner peripheral side between the impeller and the turbine.
 以上のような本発明によれば、作動油がステータから剥離する部分での、特に大きな渦の発生が抑制され、容量係数を増加させることができる。 According to the present invention as described above, the generation of a particularly large eddy is suppressed at the portion where the hydraulic oil separates from the stator, and the capacity coefficient can be increased.
本発明の実施形態としてのトルクコンバータの縦断面概略図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-section schematic of the torque converter as embodiment of this invention. ステータの正面部分図。The front partial view of a stator. ステータの外観斜視部分図。The external appearance perspective view of a stator. 本実施形態のステータブレードを用いたトルクコンバータと従来のトルクコンバータの特性の比較を示す図。The figure which shows the comparison of the characteristic of the torque converter using the stator blade of this embodiment, and the conventional torque converter. 本発明の他の実施形態によるステータブレードを示す図。FIG. 7 shows a stator blade according to another embodiment of the present invention.
 [トルクコンバータの基本構造]
 図1は本発明の一実施形態が採用されたトルクコンバータ1の縦断面概略図である。トルクコンバータ1は、エンジンのクランクシャフト(図示せず)からトランスミッションの入力シャフト(図示せず)にトルクの伝達を行うための装置である。図1の左側に図示しないエンジンが配置され、図1の右側に図示しないトランスミッションが配置されている。図1に示すO-O線がトルクコンバータ1の回転軸である。
[Basic structure of torque converter]
FIG. 1 is a schematic longitudinal sectional view of a torque converter 1 in which one embodiment of the present invention is adopted. The torque converter 1 is a device for transmitting torque from an engine crankshaft (not shown) to an input shaft (not shown) of a transmission. An engine (not shown) is disposed on the left side of FIG. 1, and a transmission (not shown) is disposed on the right side of FIG. The OO line shown in FIG. 1 is the rotation axis of the torque converter 1.
 トルクコンバータ1は、3種の羽根車(インペラー2、タービン3、ステータ4)からなるトーラス5と、ロックアップ装置6とから構成されている。 The torque converter 1 is composed of a torus 5 composed of three types of impellers (impeller 2, turbine 3, stator 4) and a lockup device 6.
 フロントカバー10は、円板状の部材であり、エンジンのクランクシャフト先端に近接して配置されている。フロントカバー10の内周部にはセンターボス11が溶接により固定されている。フロントカバー10の外周側かつエンジン側には、円周方向に等間隔で複数のナット12が固定されている。 The front cover 10 is a disk-like member, and is disposed close to the tip of the crankshaft of the engine. A center boss 11 is fixed to the inner peripheral portion of the front cover 10 by welding. On the outer peripheral side of the front cover 10 and the engine side, a plurality of nuts 12 are fixed at equal intervals in the circumferential direction.
 フロントカバー10の外周部には、軸方向トランスミッション側に延びる外周筒状部13が形成されている。この外周筒状部13の先端にインペラー2のインペラーシェル15の外周縁が溶接により固定されている。この結果フロントカバー10とインペラー2が、内部に作動油(流体)が充填された流体室を形成している。 An outer peripheral cylindrical portion 13 extending toward the transmission in the axial direction is formed on an outer peripheral portion of the front cover 10. The outer peripheral edge of the impeller shell 15 of the impeller 2 is fixed to the end of the outer peripheral cylindrical portion 13 by welding. As a result, the front cover 10 and the impeller 2 form a fluid chamber in which the working oil (fluid) is filled.
 インペラー2は、主に、インペラーシェル15と、インペラーシェル15の内側に固定された複数のインペラーブレード16と、インペラーシェル15の内周部に固定されたインペラーハブ17とから構成されている。複数のインペラーブレード16の内側には、環状のインペラーコア18が固定されている。インペラーブレード16の円の中心部分は半月状になっており、インペラーコア18はそれに沿った断面形状を有している。 The impeller 2 mainly includes an impeller shell 15, a plurality of impeller blades 16 fixed to the inside of the impeller shell 15, and an impeller hub 17 fixed to the inner circumferential portion of the impeller shell 15. An annular impeller core 18 is fixed to the inside of the plurality of impeller blades 16. The central portion of the circle of impeller blade 16 is semi-circular, and impeller core 18 has a cross-sectional shape along it.
 タービン3は流体室内でインペラー2に軸方向に対向して配置されている。タービン3は、タービンシェル20と、タービンブレード21と、タービンコア22と、タービンハブ23と、を有している。タービンシェル20は、環状の部材であって、内周側がタービンハブ23に溶接により固定されている。タービンブレード21は、タービンシェル21の内部に固定される部材であって、周方向に並べて複数配置されている。タービンコア22は、タービンブレード21の先端に設けられた部分である。タービンハブ23は、トランスミッション側のシャフトに相対回転不能に取り付けられる部分であって、筒状部23aと、円板状のフランジ23bとを備えている。筒状部23aはトランスミッション側のシャフトの外周側に配置され、フランジ23bは、筒状部23aの軸方向ほぼ中央から外周側に向かって突出している。 The turbine 3 is axially opposed to the impeller 2 in the fluid chamber. The turbine 3 includes a turbine shell 20, a turbine blade 21, a turbine core 22, and a turbine hub 23. The turbine shell 20 is an annular member, and the inner peripheral side thereof is fixed to the turbine hub 23 by welding. The turbine blades 21 are members fixed to the inside of the turbine shell 21 and arranged in plural in the circumferential direction. The turbine core 22 is a portion provided at the tip of the turbine blade 21. The turbine hub 23 is a portion attached to a transmission-side shaft so as not to be relatively rotatable, and includes a cylindrical portion 23 a and a disk-shaped flange 23 b. The cylindrical portion 23a is disposed on the outer peripheral side of the transmission-side shaft, and the flange 23b protrudes from substantially the center of the cylindrical portion 23a in the axial direction toward the outer peripheral side.
 ステータ4は、タービン3からインペラー2に戻る作動油の流れを整流するための機構である。ステータ4は、樹脂やアルミ合金等で鋳造により形成された一体の部材である。ステータ4はインペラー2の内周部とタービン3の内周部との間に配置されている。ステータ4は、主に、環状のステータシェル25と、ステータシェル25の外周面に設けられた複数のステータブレード26と、複数のステータブレード26の先端に固定された環状のステータコア27とから構成されている。ステータシェル25はワンウェイクラッチ30を介して図示しない固定シャフトに支持されている。また、ワンウェイクラッチ30の軸方向エンジン側にはリテーナ31が配置されている。リテーナ31は、ワンウェイクラッチ30とタービンハブ23のフランジ23bとの間に配置されており、ワンウェイクラッチ30を保持している。また、リテーナ31のフランジ23bとの接触面には、半径方向に延びる複数の溝が形成されており、作動油が内周側から外周側に流通可能となっている。 The stator 4 is a mechanism for rectifying the flow of the hydraulic oil from the turbine 3 back to the impeller 2. The stator 4 is an integral member formed by casting of resin, aluminum alloy or the like. The stator 4 is disposed between the inner periphery of the impeller 2 and the inner periphery of the turbine 3. The stator 4 mainly includes an annular stator shell 25, a plurality of stator blades 26 provided on the outer peripheral surface of the stator shell 25, and an annular stator core 27 fixed to the tips of the plurality of stator blades 26. ing. The stator shell 25 is supported by a fixed shaft (not shown) via a one-way clutch 30. Further, a retainer 31 is disposed on the axial direction engine side of the one-way clutch 30. The retainer 31 is disposed between the one-way clutch 30 and the flange 23 b of the turbine hub 23 and holds the one-way clutch 30. Further, a plurality of grooves extending in the radial direction are formed in the contact surface of the retainer 31 with the flange 23b, and hydraulic fluid can flow from the inner peripheral side to the outer peripheral side.
 インペラーハブ17とステータシェル25との間には、スラストベアリング32が配置されている。また、ワンウェイクラッチ30の内輪とタービンハブ23の筒状部23aの外周部との間には、シール部材33が配置されている。 A thrust bearing 32 is disposed between the impeller hub 17 and the stator shell 25. In addition, a seal member 33 is disposed between the inner ring of the one-way clutch 30 and the outer peripheral portion of the cylindrical portion 23 a of the turbine hub 23.
 [ステータブレード]
 次にステータブレード26について、図2~図4を用いて詳細に説明する。ステータブレード26は、図2で一部を拡大して示すように、ステータシェル25とステータコア27とを結ぶ所定の幅を有するプレート状の部分である。ステータブレード26は入り口側の端縁と出口側の端縁とを有しており、入り口側の端縁は、シェル側端部S1とコア側端部C1とを直線で結ぶように形成されている。一方、出口側の端縁は、シェル側端部S2とコア側端部C2とが直線Mでは結ばれておらず、直線Mに対して幅方向において内側(入り口側)に凹む3つの凹部26aが形成されている。この凹部26aは、円弧状に凹むように形成されている。換言すれば、ステータブレード26の出口側の端縁には、作動油の流れる方向に向かって先細に形成された2つの凸部26bが形成されている。このように、出口側の端縁はブレード幅方向において凹凸を有する波形状に形成されている。
[Stator blade]
Next, the stator blade 26 will be described in detail with reference to FIGS. The stator blade 26 is a plate-like portion having a predetermined width connecting the stator shell 25 and the stator core 27 as partially enlarged in FIG. 2. The stator blade 26 has an inlet-side edge and an outlet-side edge, and the inlet-side edge is formed to connect the shell side end S1 and the core side end C1 in a straight line. There is. On the other hand, in the end edge on the outlet side, the shell side end S2 and the core side end C2 are not connected by the straight line M, and three concave portions 26a which are recessed inward (entrance side) in the width direction with respect to the straight line M Is formed. The recess 26 a is formed to be recessed in an arc shape. In other words, at the outlet edge of the stator blade 26, two convex portions 26b are formed to be tapered in the flow direction of the hydraulic fluid. As described above, the edge on the outlet side is formed in a wave shape having unevenness in the blade width direction.
 ここで、これらの凹凸部26a,26bは、製造上の誤差で形成される程度のものではなく、積極的に凹凸を形成したものである。ここで、図2におけるS2からC2を結んだ直線の長さ(径方向の全幅)Hに対して、凹部26aの長さ(凸部26bの高さ)hは、3%以上20%以下が好ましい。 Here, the uneven portions 26a and 26b are not formed to an extent due to manufacturing errors, but are positively formed uneven. Here, with respect to the length (full width in the radial direction) H of a straight line connecting S2 to C2 in FIG. 2, the length (height of the protrusion 26b) h of the recess 26a is 3% or more and 20% or less preferable.
 [ロックアップ装置]
 次に、ロックアップ装置6について説明する。ロックアップ装置6は、主に、ピストン40とダンパー機構41とから構成されている。
[Lockup device]
Next, the lockup device 6 will be described. The lockup device 6 mainly includes a piston 40 and a damper mechanism 41.
 ピストン40はフロントカバー10とタービン3との間に配置された円板状の部材である。ピストン40の内周部には軸方向トランスミッション側に延びる内周筒状部42が形成されている。内周筒状部42はタービンハブ23の外周面に相対回転及び軸方向に移動可能に支持されている。なお、内周筒状部42の軸方向トランスミッション側端部はタービンハブ23のフランジ23bに当接することで軸方向トランスミッション側への移動は所定位置までに制限されている。タービンハブ23の外周面にはシールリング43が配置され、シールリング43はピストン40の内周部において軸方向の空間を互いにシールしている。 The piston 40 is a disk-shaped member disposed between the front cover 10 and the turbine 3. An inner peripheral cylindrical portion 42 extending toward the transmission in the axial direction is formed on the inner peripheral portion of the piston 40. The inner circumferential tubular portion 42 is supported on the outer circumferential surface of the turbine hub 23 so as to be capable of relative rotation and axial movement. The axial transmission end of the inner cylindrical portion 42 abuts on the flange 23 b of the turbine hub 23 so that the movement toward the axial transmission is limited to a predetermined position. A seal ring 43 is disposed on the outer peripheral surface of the turbine hub 23, and the seal ring 43 seals axial spaces at the inner peripheral portion of the piston 40.
 ピストン40の外周部はクラッチ連結部として機能している。すなわち、ピストン40の外周部のエンジン側には、環状の摩擦フェーシング45が固定されている。摩擦フェーシング45は、フロントカバー10の外周部内側面に形成された環状でかつ平坦な摩擦面に対向している。 The outer peripheral portion of the piston 40 functions as a clutch connecting portion. That is, an annular friction facing 45 is fixed to the engine side of the outer peripheral portion of the piston 40. The friction facing 45 is opposed to an annular and flat friction surface formed on the inner surface of the outer periphery of the front cover 10.
 ダンパー機構41は、リティーニングプレート46と、ドリブンプレート47と、複数のトーションスプリング48とから構成されている。リティーニングプレート46は、ピストン40の外周部のタービン3側に、複数のリベット49により固定されている。リティーニングプレート46は、トーションスプリング48を収納及び支持するための切り起こし部を有している。複数のトーションスプリング48は、円周方向に延びるコイルスプリングであり、リティーニングプレート46内に収納されて円周方向両端を支持されている。ドリブンプレート47は、タービン3のタービンシェル20の外周側に固定された環状のプレートである。ドリブンプレート47はフロントカバー10側に延びトーションスプリング48の円周方向両端に係合する突起爪47aを有している。 The damper mechanism 41 includes a retaining plate 46, a driven plate 47, and a plurality of torsion springs 48. The retaining plate 46 is fixed to the turbine 3 side of the outer peripheral portion of the piston 40 by a plurality of rivets 49. The retaining plate 46 has a cut-and-raised portion for storing and supporting the torsion spring 48. The plurality of torsion springs 48 are coil springs extending in the circumferential direction, and are accommodated in the retaining plate 46 and supported at both circumferential ends. The driven plate 47 is an annular plate fixed to the outer peripheral side of the turbine shell 20 of the turbine 3. The driven plate 47 has protruding claws 47 a which extend toward the front cover 10 and engage with both circumferential ends of the torsion spring 48.
 [動作]
 図示しないエンジンのクランクシャフトからフロントカバー10及びインペラー2にトルクが伝達される。インペラー2のインペラーブレード16により駆動された作動油は、タービン3を回転させる。このタービン3の回転はタービンハブ23を介して図示しないトランスミッション側の入力シャフトに出力される。タービン3からインペラー2へと流れる作動油は、ステータ4のステータシェル25とステータコア27により決められた通路を通ってインペラー2側へと流れる。
[Operation]
Torque is transmitted from a crankshaft of an engine (not shown) to the front cover 10 and the impeller 2. The hydraulic oil driven by the impeller blade 16 of the impeller 2 rotates the turbine 3. The rotation of the turbine 3 is output to an input shaft (not shown) on the transmission side via a turbine hub 23. The hydraulic oil flowing from the turbine 3 to the impeller 2 flows toward the impeller 2 through a passage defined by the stator shell 25 of the stator 4 and the stator core 27.
 ここで、ステータ4を通過する作動油は、ステータブレード26によってその流れが規制され、ステータブレード26の出口側の端縁でステータブレード26から剥離する。このとき、ステータブレード26の出口側の端縁には、複数の凹凸が形成されて波形状であるので、出口側の端縁からインペラー2側に流れる作動油の流速は均一ではなく、波形状の凹凸に応じて変化している。このため、従来のステータブレードにおいて生じていた大きな渦が発生しにくく、比較的小さい渦が不規則に発生することになり、結果的にこれらの渦が互いに打ち消し合うことになる。 Here, the flow of the hydraulic oil passing through the stator 4 is restricted by the stator blade 26 and is separated from the stator blade 26 at the end edge of the stator blade 26 on the outlet side. At this time, since a plurality of irregularities are formed in the edge on the outlet side of the stator blade 26 to form a wave shape, the flow velocity of the hydraulic oil flowing from the edge on the outlet side to the impeller 2 is not uniform, and the wave shape It changes according to the unevenness of. For this reason, large vortices generated in the conventional stator blade are less likely to be generated, relatively small vortices are irregularly generated, and as a result, these vortices cancel each other.
 このように、ステータブレード26の出口側端縁が波形状に形成されていることにより、渦の発生が抑えられ、容量係数の落ち込みを抑えることができる。図4に、従来のステータブレードを用いたトルクコンバータと本実施形態のステータブレード26を用いたトルクコンバータの特性の比較を示している。なお、図4において、実線で示す特性が本実施形態の特性であり、破線で示す特性が従来のトルクコンバータの特性である。より具体的には、本実施形態の容量係数は特性Cc1、トルク比は特性T1、トルク伝達効率は特性η1であり、従来の容量係数は特性Cc2、トルク比は特性T2、トルク伝達効率は特性η2である。 As described above, since the outlet side edge of the stator blade 26 is formed in a wave shape, the generation of a vortex can be suppressed, and the drop of the capacity coefficient can be suppressed. FIG. 4 shows a comparison of the characteristics of a conventional torque converter using a stator blade and a torque converter using the stator blade 26 of the present embodiment. In FIG. 4, the characteristic indicated by the solid line is the characteristic of the present embodiment, and the characteristic indicated by the broken line is the characteristic of the conventional torque converter. More specifically, the capacity coefficient of this embodiment is characteristic Cc1, the torque ratio is characteristic T1, the torque transfer efficiency is characteristic η1, the conventional capacity coefficient is characteristic Cc2, the torque ratio is characteristic T2, and the torque transfer efficiency is characteristic It is η2.
 この図4から明らかなように、本実施形態のステータブレード26を用いたトルクコンバータでは、効率をほぼ従来と同様に維持しながら、容量係数を増加させることができることがわかる。 As apparent from FIG. 4, in the torque converter using the stator blade 26 of the present embodiment, it can be understood that the capacity coefficient can be increased while maintaining the efficiency almost the same as the conventional one.
 なお、フロントカバー10とピストン40との間の空間の作動油が内周側からドレンされると、油圧差によってピストン40がフロントカバー10側に移動し、摩擦フェーシング45がフロントカバー10の摩擦面に押しつけられる。この結果、フロントカバー10からロックアップ装置6を介してタービンハブ23にトルクが直接伝達される。 When the hydraulic oil in the space between the front cover 10 and the piston 40 is drained from the inner peripheral side, the piston 40 moves to the front cover 10 side due to the hydraulic pressure difference, and the friction facing 45 is the friction surface of the front cover 10 It is pressed by As a result, torque is directly transmitted from the front cover 10 to the turbine hub 23 via the lockup device 6.
 [他の実施形態]
 本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 図5にステータブレードの他の実施形態を示す。ここでは、ステータブレード26’は、出口側の端縁において、シェル側端部S2とコア側端部C2とを結ぶ直線Mに対して、幅方向において外側に突出する複数の凸部26b’を有している。この凸部26b’は、作動油の流れる方向に向かって先細に形成されており、それらの間には凹部26a’が形成されており、全体として波形となっている。 FIG. 5 shows another embodiment of the stator blade. Here, the stator blade 26 'has a plurality of convex portions 26b' projecting outward in the width direction with respect to a straight line M connecting the shell side end S2 and the core side end C2 at the edge on the outlet side. Have. The convex portion 26b 'is formed to be tapered toward the flow direction of the hydraulic oil, and a concave portion 26a' is formed between the convex portions 26b 'to form a wave shape as a whole.
 以上のような本発明によれば、作動油がステータから剥離する部分での、特に大きな渦の発生が抑制され、容量係数を増加させることができる。 According to the present invention as described above, the generation of a particularly large eddy is suppressed at the portion where the hydraulic oil separates from the stator, and the capacity coefficient can be increased.
1 トルクコンバータ
2 インペラー
3 タービン
4 ステータ
25 ステータシェル
26 ステータブレード
26a 凹部
26b 凸部
27 スタータコア
Reference Signs List 1 torque converter 2 impeller 3 turbine 4 stator 25 stator shell 26 stator blade 26 a recess 26 b protrusion 27 starter core

Claims (8)

  1.  トルクコンバータのタービンからインペラーに戻る作動油の流れを整流するためのステータであって、
     環状のシェルと、
     前記環状のシェルから放射状に延びるように配置され、作動油出口側の端縁が波形状に形成された複数のブレードと、
     前記ブレードの外周側に配置された環状のコアと、
    を備えたトルクコンバータのステータ。
    A stator for rectifying the flow of hydraulic fluid returning from a torque converter turbine to an impeller, comprising:
    With an annular shell,
    A plurality of blades arranged to extend radially from the annular shell, the edge on the hydraulic oil outlet side being formed in a wave shape;
    An annular core disposed on an outer peripheral side of the blade;
    Torque converter stator with.
  2.  前記複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に凹む複数の凹部が形成されている、請求項1に記載のトルクコンバータのステータ。 Each of the plurality of blades has a plurality of recesses formed in the blade width direction with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. Torque converter stator.
  3.  前記複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に突出する複数の凸部が形成されている、請求項1に記載のトルクコンバータのステータ。 Each of the plurality of blades is formed with a plurality of protrusions projecting in the blade width direction with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. Stator of the torque converter according to.
  4.  前記複数のブレードの波形状は、径方向の全幅Hに対する凹凸の全高さhの比が3%以上20%以下である、請求項1に記載のトルクコンバータのステータ。 The stator of a torque converter according to claim 1, wherein a ratio of a total height h of the unevenness to a full width H in the radial direction is 3% or more and 20% or less.
  5.  エンジンからのトルクを流体によってトランスミッション側に伝達するためのトルクコンバータであって、
     前記エンジンからのトルクが入力されるインペラーと、
     前記インペラーに対向して配置され、前記トランスミッションにトルクを出力可能なタービンと、
     前記インペラーと前記タービンとの間の内周側に配置されたステータと、
    を備え、
     前記ステータは、
     環状のシェルと、
     前記環状のシェルから放射状に延びるように配置され、作動油出口側の端縁が波形状に形成された複数のブレードと、
     前記ブレードの外周側に配置された環状のコアと、
    を有している、
    トルクコンバータ。
    A torque converter for transmitting torque from an engine to a transmission through a fluid,
    An impeller to which torque from the engine is input;
    A turbine disposed opposite to the impeller and capable of outputting torque to the transmission;
    A stator disposed on an inner circumferential side between the impeller and the turbine;
    Equipped with
    The stator is
    With an annular shell,
    A plurality of blades arranged to extend radially from the annular shell, the edge on the hydraulic oil outlet side being formed in a wave shape;
    An annular core disposed on an outer peripheral side of the blade;
    have,
    Torque converter.
  6.  前記複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に凹む複数の凹部が形成されている、請求項5に記載のトルクコンバータ。 The plurality of recesses according to claim 5, wherein each of the plurality of blades has a plurality of recessed portions recessed in the blade width direction with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. Torque converter.
  7.  前記複数のブレードのそれぞれは、作動油出口側の端縁において、シェル側端とコア側端とを結ぶ直線に対してブレード幅方向に突出する複数の凸部が形成されている、請求項5に記載のトルクコンバータ。 Each of the plurality of blades is formed with a plurality of projections projecting in the blade width direction with respect to a straight line connecting the shell side end and the core side end at an end edge on the hydraulic oil outlet side. Torque converter as described in.
  8.  前記複数のブレードの波形状は、径方向の全幅Hに対する凹凸の全高さhの比が3%以上20%以下である、請求項5に記載のトルクコンバータ。
     
    The torque converter according to claim 5, wherein a ratio of a total height h of the unevenness to a full width H in the radial direction is 3% or more and 20% or less.
PCT/JP2010/051566 2009-02-17 2010-02-04 Stator and torque converter WO2010095515A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800080434A CN102317651A (en) 2009-02-17 2010-02-04 Stator and torque converter
DE112010000842T DE112010000842T5 (en) 2009-02-17 2010-02-04 Stator and torque converter
US13/201,526 US20110311367A1 (en) 2009-02-17 2010-02-04 Stator and torque converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009033618A JP4620785B2 (en) 2009-02-17 2009-02-17 Stator and torque converter
JP2009-033618 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095515A1 true WO2010095515A1 (en) 2010-08-26

Family

ID=42633799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051566 WO2010095515A1 (en) 2009-02-17 2010-02-04 Stator and torque converter

Country Status (5)

Country Link
JP (1) JP4620785B2 (en)
KR (1) KR20110112423A (en)
CN (1) CN102317651A (en)
DE (1) DE112010000842T5 (en)
WO (1) WO2010095515A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476875B2 (en) 2015-01-13 2019-03-06 アイシン精機株式会社 Torque converter stator wheel and torque converter
KR101862673B1 (en) * 2017-05-22 2018-05-31 김종길 Toque converter
KR102094239B1 (en) * 2018-11-20 2020-03-27 삼영엠티 주식회사 Torque converter with enhanced fluid acceleration efficiency

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783309A (en) * 1993-09-16 1995-03-28 Nissan Motor Co Ltd Torque converter
JPH1122805A (en) * 1997-07-07 1999-01-26 Jatco Corp Stator structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745942B2 (en) 2000-06-14 2006-02-15 株式会社エクセディ Stator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783309A (en) * 1993-09-16 1995-03-28 Nissan Motor Co Ltd Torque converter
JPH1122805A (en) * 1997-07-07 1999-01-26 Jatco Corp Stator structure

Also Published As

Publication number Publication date
JP2010190273A (en) 2010-09-02
CN102317651A (en) 2012-01-11
KR20110112423A (en) 2011-10-12
JP4620785B2 (en) 2011-01-26
DE112010000842T5 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US7454902B2 (en) Torque converter
WO2011055622A1 (en) Power transmission device for torque converter
JP2011122622A (en) Lock-up device for torque converter
JP2011122640A (en) Lockup device for torque converter
JP3825219B2 (en) Fluid torque transmission device
KR100529868B1 (en) Torque converter
JP4926228B2 (en) Torque converter power transmission device
KR20120054073A (en) Hydraulic torque transmission device
WO2010095515A1 (en) Stator and torque converter
JP4684348B1 (en) Damper device
US20110311367A1 (en) Stator and torque converter
JP5258950B2 (en) Torque converter
JP5242514B2 (en) Torque converter
JP4999437B2 (en) Torque converter
JP4975482B2 (en) Fluid coupling
JP4187727B2 (en) Torque converter
JP3881152B2 (en) Impeller and fluid torque transmission device
CN215720621U (en) Torque converter
JP2008196646A (en) Torque converter
WO2011030711A1 (en) Fluid power-transmission device
JP5766149B2 (en) Stator structure in torque converter
US20170370456A1 (en) Torque converter including front cover fluid flow baffles
JP2019138332A (en) Torque converter
JP2000074174A (en) Torque converter
JP2008215447A (en) Torque converter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008043.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117018488

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13201526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100008426

Country of ref document: DE

Ref document number: 112010000842

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743643

Country of ref document: EP

Kind code of ref document: A1