WO2010095313A1 - 表示装置および表示装置の駆動方法 - Google Patents

表示装置および表示装置の駆動方法 Download PDF

Info

Publication number
WO2010095313A1
WO2010095313A1 PCT/JP2009/068414 JP2009068414W WO2010095313A1 WO 2010095313 A1 WO2010095313 A1 WO 2010095313A1 JP 2009068414 W JP2009068414 W JP 2009068414W WO 2010095313 A1 WO2010095313 A1 WO 2010095313A1
Authority
WO
WIPO (PCT)
Prior art keywords
output stage
common electrode
sub
output
potential
Prior art date
Application number
PCT/JP2009/068414
Other languages
English (en)
French (fr)
Inventor
則夫 大村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011500463A priority Critical patent/JP5323924B2/ja
Priority to BRPI0924750A priority patent/BRPI0924750A2/pt
Priority to CN2009801566911A priority patent/CN102318000A/zh
Priority to US13/138,427 priority patent/US20110298773A1/en
Priority to RU2011135308/08A priority patent/RU2486607C2/ru
Publication of WO2010095313A1 publication Critical patent/WO2010095313A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a display device that performs common inversion driving.
  • Common inversion driving is to invert the common electrode potential between positive and negative in AC driving.
  • the gradation reference voltage range Vp of the positive polarity data and the gradation reference voltage range Vn of the negative polarity data are made equal to each other, and the common electrode potential Vcom is set to the corresponding level. Inversion is performed for each horizontal period between the binary level of the voltage level V1 on the higher side and the voltage level V2 on the lower side of the adjustment reference voltage range.
  • the common electrode potential Vcom is set to the voltage level V2.
  • the common electrode potential Vcom is set to the voltage level V1.
  • the common inversion driving it is not necessary to prepare the gradation reference voltage ranges for the positive polarity data and the negative polarity data separately, so that the power supply voltage can be lowered. Further, since the gradation reference voltage is common to the positive polarity data and the negative polarity data, the configuration of the circuit that generates the gradation reference voltage can be simplified.
  • the common electrode potential Vcom is supplied from the output stage 101 of the common electrode driving circuit to the common electrode 103 as shown in FIG.
  • the output stage 101 is in accordance with a common polarity inversion signal that is switched between High and Low.
  • the voltage level V1 on the high potential side and the voltage level V2 on the low potential side are switched every horizontal period and output from the COM output terminal 102.
  • the common electrode 103 is connected to the COM output terminal 102, and a liquid crystal capacitor CL is formed with a liquid crystal layer interposed between the common electrode 103 and the pixel electrode 104.
  • the common electrode 103 itself also has a capacitor. Therefore, the common inversion driving is an operation in which the common electrode driving circuit charges these capacitors alternately positive and negative.
  • JP 2006-178072 A Japanese Patent Laid-Open No. 4-28489 (published October 9, 1992)
  • the output stage 101 including the push-pull output stage of the common electrode driving circuit includes the output transistor Tp including the p-channel field effect transistor on the positive side of the common electrode potential Vcom and the negative polarity.
  • the ON resistance of the output transistor Tn formed of the n-channel field effect transistor on the side is small, and these ON resistances dominate the output impedance of the output stage 101.
  • the output transistors Tp and Tn may be bipolar transistors. When the common polarity inversion signal is at a high level, the output transistor Tn is turned on. When the common polarity inversion signal is at a low level, the output transistor Tp is turned on. This inrush current causes radiation noise.
  • the liquid crystal display device when the liquid crystal display device includes the capacitive touch panel 112 on the liquid crystal panel 111 through a gap, the capacitance change in the detection operation of the touch panel 112. Therefore, the detection operation of the touch panel 112 is easily affected by the radiation noise. As a result, an error due to radiation noise occurs in the detection result, the detection accuracy of the touch panel 112 is lowered, and a significant reduction in sensitivity is caused.
  • the VCOMH generation circuit 110 (high potential side voltage generation circuit) outputs the high potential side voltage VCOM based on the high potential side input voltage
  • the VCOML generation circuit 120 ( The low potential side voltage generating circuit) outputs the low potential side voltage VCOM based on the low potential side input voltage.
  • the power supply circuit 100 can control the supply capability of the common electrode potential by the VCOMH generation circuit 110 and the VCOML generation circuit 120. When the common electrode potential drops due to the polarity inversion of the common electrode potential or voltage application to the pixel electrode, the supply capability of the common electrode potential is increased, and at other times, the supply capability is reduced.
  • Patent Document 1 increases the supply capability of the common electrode potential when the drop of the common electrode potential is large, the peak of the inrush current is large. Therefore, when a touch panel is mounted on the liquid crystal panel, the influence of radiation noise due to inrush current is large, and the detection accuracy of the touch panel is lowered.
  • the display drive circuit of the plasma display panel of Patent Document 2 shown in FIG. 14 has a configuration in which capacitive display cells 11 arranged in a matrix are driven by a Y-side driver circuit 12 and an X-side driver circuit 13.
  • the Y-side applied pulse YSUS is supplied to the transistor QY1 from the Y-side timing generator 32
  • the Y-side tristate control signal YTSC is supplied to the transistor QY2
  • the X-side applied pulse XSUS is supplied to the transistor QX2 from the X-side timing generator 33.
  • An X-side tristate control signal XTSC is supplied.
  • the tri-state control signals YTSC and XTSC are set so that the outputs of the Y-side driver circuit 12 and the X-side driver circuit 13 are in a high impedance state when they are “L”.
  • the control signal YTSC or XTSC is set to “L” to set the output of the Y-side driver circuit 12 or X-side driver circuit 13 to a high impedance state, and the current level of the displacement current flowing through the capacitance of the display cell 11 is lowered.
  • the pulse falls, the pulse falls while the current is suppressed, and the high voltage X-side application pulse XSUS or the Y-side application pulse YSUS is given to the counter electrode driver circuit, so that the counter electrode Set the output of the driver circuit on the side to a low impedance state.
  • radiation noise due to switching and ground noise due to discharge current can be suppressed when the high-voltage applied pulse falls.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a display device capable of effectively suppressing radiation noise when the common electrode potential is inverted, and a display device driving method. There is to do.
  • the display device of the present invention is a display device that performs common inversion driving, and the output stage of the common electrode driving circuit has a plurality of outputs each capable of outputting a voltage to the common electrode.
  • a sub-output stage, and each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods, and each of the partial periods includes one or more sub-output stages selected for each of the partial periods.
  • the overall load driving capability of the final sub-output stage consisting of one or more sub-output stages selected during the partial period in which a voltage is supplied to the common electrode and the final potential of the common electrode potential of each polarity is supplied
  • the overall load driving capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the polarity inversion operation of the common electrode potential is smaller.
  • the start timing of each period of the partial period included in the transition time in which the polarity of the common electrode potential is reversed including the partial period in which the voltage is output by the initial sub-output stage as the current flowing in the common electrode
  • a display device driving method is a display device driving method that performs common inversion driving, and each of the plurality of sub-output stages is capable of outputting a voltage to a common electrode. And each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods, and each partial period is provided in the output stage of the common electrode driving circuit selected for each partial period.
  • the overall load drive capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the polarity inversion operation of the common electrode potential is smaller than the overall load drive capability of It is characterized in that.
  • the start timing of each period of the partial period included in the transition time in which the polarity of the common electrode potential is reversed including the partial period in which the voltage is output by the initial sub-output stage as the current flowing in the common electrode
  • the display device of the present invention is a display device that performs common inversion driving, and in each supply period of the common electrode potential of each polarity, after the polarity inversion of the common electrode potential is started,
  • the waveform of the common electrode potential once reaches the potential on the opposite polarity side of the final potential of the common electrode potential of each polarity, and then reaches the final potential at a rate of change larger than when the potential reaches the middle potential. It is characterized by rising toward the potential.
  • the display device driving method of the present invention is a display device driving method that performs common inversion driving, wherein the polarity inversion of the common electrode potential is performed in each supply period of the common electrode potential of each polarity.
  • the display device is a display device that performs common inversion driving, and the output stage of the common electrode driving circuit includes a plurality of sub-output stages each capable of outputting a voltage to the common electrode.
  • Each of the supply periods of the common electrode potential of each polarity is divided into a plurality of partial periods, and each of the partial periods includes a common electrode by one or more sub-output stages selected for each of the partial periods.
  • the common electrode is more than the overall load driving capability of the final sub-output stage composed of one or more sub-output stages selected in the partial period for supplying the voltage to the common electrode potential of each polarity.
  • the overall load driving capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the potential polarity reversal operation is smaller.
  • the display device driving method of the present invention is a display device driving method that performs common inversion driving, and includes a plurality of sub-output stages each capable of outputting a voltage to a common electrode. And each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods, and each of the partial periods is provided for the output stage of the common electrode driving circuit selected for each partial period.
  • the sub-output stage supplies a voltage to the common electrode and supplies the final arrival potential of the common electrode potential of each polarity.
  • the entire final sub-output stage comprising one or more sub-output stages selected in the partial period is supplied.
  • the overall load driving capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the polarity inversion operation of the common electrode potential is smaller than the load driving capability.
  • FIG. 1 showing an embodiment of the present invention, is a circuit block diagram showing a first configuration of an output stage of a common electrode driving circuit.
  • FIG. It is a wave form diagram which shows the operation
  • FIG. 5 is a waveform diagram showing operation waveforms of the output stage of FIG. 4.
  • FIG. 11 is a circuit block diagram illustrating a third configuration of the output stage of the common electrode driving circuit according to the embodiment of the present invention.
  • FIG. 9 is a circuit block diagram illustrating a fourth configuration of the output stage of the common electrode driving circuit according to the embodiment of the present invention. It is a wave form diagram which shows the operation
  • FIG. 10 is a circuit diagram illustrating in detail a configuration of an output stage of the common electrode driving circuit of FIG. 9. It is sectional drawing which shows a prior art and shows the structure of the liquid crystal display device carrying a touch panel. It is a circuit block diagram which shows a prior art and shows the other structural example of a common electrode drive circuit. It is a circuit block diagram which shows a prior art and shows the structure of the display drive circuit of a plasma display panel.
  • FIG. 15 is a waveform diagram showing operation waveforms of the display drive circuit of FIG. 14.
  • FIGS. 1 to 8 Embodiments of the present invention will be described with reference to FIGS. 1 to 8 as follows.
  • FIG. 3 shows a configuration of a liquid crystal display device (display device) 1 according to the present embodiment.
  • the liquid crystal display device 1 is an active matrix display device, and includes a gate driver 3 as a scanning signal line drive circuit, a source driver 4 as a data signal line drive circuit, a display unit 2, a gate driver 3 and a source driver 4
  • the display control circuit 5 and the power supply circuit 6 are provided.
  • the liquid crystal display device 1 performs driving in which the data polarities of all the pixels are the same during the same horizontal period for each row, such as gate line inversion driving as alternating current driving or driving in which the polarity is inverted for each row. . Further, common inversion driving is performed to invert the polarities of the common electrode potentials in a period in which positive polarity data is supplied to the panel and a period in which negative polarity data is supplied to the panel.
  • the display unit 2 includes gate lines GL1 to GLm as a plurality (m) of scanning signal lines, and source lines as a plurality (n) of data signal lines intersecting each of the gate lines GL1 to GLm. SL1 to SLn, and a plurality (m ⁇ n) of picture elements PIX... Provided corresponding to the intersections of the gate lines GL1 to GLm and the source lines SL1 to SLn, respectively.
  • the display unit 2 includes storage capacitor lines CSL... In parallel with the gate lines GL1 to GLm, and one display element row composed of n picture elements arranged in the direction. A storage capacitor line CSL is allocated.
  • the plurality of picture elements PIX are arranged in a matrix to form a picture element array, and each picture element PIX includes a TFT 14, a liquid crystal capacitor CL, and a holding capacitor Cs.
  • the gate electrode of the TFT 14 is connected to the gate line GLj (1 ⁇ j ⁇ m), the source electrode is connected to the source line SLi (1 ⁇ i ⁇ n), and the drain electrode is connected to the pixel electrode.
  • the liquid crystal capacitor CL is composed of a picture element electrode, a common electrode facing the picture element electrode, and a liquid crystal layer sandwiched therebetween.
  • a common electrode potential Vcom is applied from the power supply circuit 6 to the common electrode.
  • a storage capacitor potential Vcs is applied from the power supply circuit 6 to the storage capacitor lines CSL.
  • the liquid crystal capacitor CL and the holding capacitor Cs constitute a pixel capacitor. However, there is a parasitic capacitor formed between the pixel electrode and the peripheral wiring as another capacitor constituting the pixel capacitor.
  • the display control circuit 5 supplies the gate driver 3 with the gate start pulse GSP and the gate clock signal GCK, and supplies the source driver 4 with the source start pulse SSP, the source clock signal SCK, and the display data DA.
  • the power supply circuit 6 generates and supplies a gradation reference voltage to the source driver 4 and generates and outputs the common electrode potential Vcom and the storage capacitor potential Vcs.
  • FIG. 1 shows the configuration of the output stage 11 of the common electrode driving circuit according to this embodiment.
  • the output stage 11 includes a first output stage (sub output stage, final sub output stage) 11a, a first switch SWa, a second output stage (sub output stage, initial sub output stage) 11b, and a second switch SWb. ing.
  • Each of the first output stage 11a and the second output stage 11b is composed of output transistors Tp and Tn, as in FIG.
  • the output transistor Tp of the second output stage 11b has a higher ON resistance than the output transistor Tp of the first output stage 11a, and the output transistor Tn of the second output stage 11b is more ON than the output transistor Tn of the first output stage 11a.
  • the resistance is set large. Increasing the ON resistance can be realized by reducing the channel width W of the transistor or increasing the channel length L.
  • the output impedance of the second output stage 11b is larger than the output impedance of the first output stage 11a. That is, the second output stage 11b has a smaller load driving capability than the first output stage 11a.
  • Both the output of the first output stage 11 a and the output of the second output stage 11 b are connected to the COM output terminal 102. Both the first output stage 11a and the second output stage 11b output a voltage level V1 that is a positive common electrode potential Vcom via an output transistor Tp, and a negative common electrode potential via an output transistor Tn. A voltage level V2 (V2 ⁇ V1) which is Vcom is output.
  • the first switch SWa is connected in series to the input side of the first output stage 11a with respect to the first output stage 11a, and ON / OFF of the input of the common polarity inversion signal to the first output stage 11a according to the control signal s1.
  • the second switch SWb is connected in series to the input side of the second output stage 11b with respect to the second output stage 11b, and ON / OFF of the input of the common polarity inversion signal to the second output stage 11b according to the control signal s1. Turn off.
  • the terminal opposite to the input side of the first output stage 11a of the first switch SWa and the terminal opposite to the input side of the second output stage 11b of the second switch SWb both supply a common polarity inversion signal. Connected to the original.
  • FIG. 2 shows operation waveforms of the output stage 11 having the above configuration.
  • the output stage 11 supplies the common electrode potential Vcom to the COM output terminal 102 in accordance with the input common polarity inversion signal and the control signal s1.
  • the common polarity inversion signal (not shown) is composed of a High period and a Low period each equal to one horizontal period, and one of the High period and the Low period has the positive polarity (voltage) of the common electrode potential Vcom.
  • Level V1 is instructed, and the other period is instructed to make the common electrode potential Vcom negative (voltage level V2).
  • the control signal s1 becomes a high level in the first period (partial period) t1 of each horizontal period in which the common electrode potential Vcom becomes positive, and becomes a low level in the remaining period (partial period) t2 of the horizontal period. It has a waveform and becomes a high level in the first period (partial period) t3 of each horizontal period in which the common electrode potential Vcom becomes negative, and at a low level in the remaining period (partial period) t4 of the horizontal period. Has a waveform.
  • the first switch SWa is turned on when the control signal s1 is at the low level, and is turned off when the control signal s1 is at the high level.
  • the second switch SWa is turned on when the control signal s1 is at a high level, and is turned off when the control signal s1 is at a low level.
  • the second switch SWb is turned on and the first switch SWa is turned off in the periods t1 and t3, and the first switch SWa is turned on and the second switch SWb in the periods t2 and t4. Is turned off.
  • the common electrode potential Vcom is supplied by the output from the second output stage 11b in the period (partial period including the start of the polarity reversal operation) t1 and t3, and from the first output stage 11a in the period t2 and t4.
  • the common electrode potential Vcom is supplied by the output.
  • each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods.
  • the time constant of the waveform change of the common electrode potential Vcom in the periods t1 and t3 is the common electrode in the periods t2 and t4. It is larger than the time constant of the waveform change of the potential Vcom. Therefore, when the positive common electrode potential Vcom is supplied, it slowly rises to the first potential level in the middle of the period t1, and then rises quickly in the period t2 to reach the voltage level V1, which is the final potential level.
  • the fall of the positive common electrode potential Vcom is equal to the rise of the negative common electrode potential Vcom, and slowly falls to the second potential level in the middle of the period t3 (rises for the negative polarity). It falls rapidly in period t4 (rises for negative polarity) and reaches a voltage level V2 which is the final potential level.
  • the falling of the negative common electrode potential Vcom is equal to the rising of the positive common electrode potential Vcom.
  • the waveform of the common electrode potential Vcom is the waveform of the common electrode potential Vcom after the polarity inversion of the common electrode potential Vcom is started in each supply period of the common electrode potential Vcom of each polarity. Once reaching the potential halfway on the opposite polarity side of the final potential of the common electrode potential Vcom of each polarity, it rises toward the final potential at a higher rate of change than when reaching the middle potential. .
  • the scanning signal Vg for turning on the TFT 14 of the picture element PIX is a pulse waveform that becomes a high level only in each of the periods t2 and t4. That is, the data writing period to the picture element PIX is set within each of the periods t2 and t4.
  • FIG. 4 shows the configuration of the output stage 12 of the common electrode driving circuit according to this embodiment.
  • the output stage 12 includes a first output stage (sub output stage, final sub output stage) 12a, a first switch SWd, a second output stage (sub output stage, initial sub output stage) 12b, and a second switch SWe. ing.
  • Each of the first output stage 12a and the second output stage 12b is composed of output transistors Tp and Tn, as in FIG.
  • the first output stage 12a outputs a voltage level V1 that is a positive common electrode potential Vcom via the output transistor Tp, and a voltage level V2 that is a negative common electrode potential Vcom via the output transistor Tn.
  • the second output stage 12b outputs a voltage level V3 that is a positive common electrode potential Vcom via the output transistor Tp, and a voltage level that is a negative common electrode potential Vcom via the output transistor Tn.
  • V4 is output.
  • the voltage level V3 is closer to the voltage level V2 which is the opposite polarity than the voltage level V1
  • the voltage level V4 is closer to the voltage level V1 which is the opposite polarity than the voltage level V2.
  • Both the output of the first output stage 12 a and the output of the second output stage 12 b are connected to the COM output terminal 102.
  • the first switch SWd is connected in series to the input side of the first output stage 12a with respect to the first output stage 12a, and ON / OFF of the input of the common polarity inversion signal to the first output stage 12a according to the control signal s2.
  • the second switch SWe is connected in series to the input side of the second output stage 11b with respect to the second output stage 12b, and ON / OFF of the input of the common polarity inversion signal to the second output stage 12b according to the control signal s2. Turn off.
  • the terminal opposite to the input side of the first output stage 12a of the first switch SWd and the terminal opposite to the input side of the second output stage 12b of the second switch SWe both supply a common polarity inversion signal. Connected to the original.
  • FIG. 5 shows operation waveforms of the output stage 12 having the above configuration.
  • the output stage 12 supplies the common electrode potential Vcom to the COM output terminal 102 in accordance with the input common polarity inversion signal and the control signal s2.
  • the common polarity inversion signal (not shown) is composed of a High period and a Low period each equal to one horizontal period, and one of the High period and the Low period has the positive polarity (voltage) of the common electrode potential Vcom.
  • Level V1 is instructed, and the other period is instructed to make the common electrode potential Vcom negative (voltage level V2).
  • the control signal s2 becomes High level in the first period (partial period) t1 of each horizontal period in which the common electrode potential Vcom becomes positive, and becomes Low level in the remaining period (partial period) t2 of the horizontal period. It has a waveform and becomes a high level in the first period (partial period) t3 of each horizontal period in which the common electrode potential Vcom becomes negative, and at a low level in the remaining period (partial period) t4 of the horizontal period. Has a waveform.
  • the first switch SWd is turned on when the control signal s2 is at the low level, and is turned off when the control signal s2 is at the high level.
  • the second switch SWe is turned on when the control signal s2 is at a high level, and is turned off when the control signal s2 is at a low level.
  • the second switch SWe is turned on and the first switch SWd is turned off in the periods t1 and t3, and the first switch SWd is turned on and the second switch SWe in the periods t2 and t4. Is turned off.
  • the common electrode potential Vcom is supplied by the output from the second output stage 12b in the period (partial period including the start of the polarity reversal operation) t1 and t3, and from the first output stage 12a in the period t2 and t4.
  • the common electrode potential Vcom is supplied by the output.
  • each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods.
  • the time constant of the waveform change of the common electrode potential Vcom in the periods t1 and t3 is the common electrode in the periods t2 and t4.
  • the final ultimate voltage possible is smaller than the period t2 ⁇ t4. Therefore, when the positive common electrode potential Vcom is supplied, the voltage level rises to the voltage level V3 in the period t1, and then reaches the voltage level V1, which is the final potential level, in the period t2.
  • the fall of the positive common electrode potential Vcom is equal to the rise of the negative common electrode potential Vcom, falls to the voltage level V4 in the period t3 (rises for the negative polarity), and then reaches the final potential in the period t4.
  • the falling of the negative common electrode potential Vcom is equal to the rising of the positive common electrode potential Vcom.
  • the waveform of the common electrode potential Vcom is the waveform of the common electrode potential Vcom after the polarity inversion of the common electrode potential Vcom is started in each supply period of the common electrode potential Vcom of each polarity. Once reaching the potential halfway on the opposite polarity side of the final potential of the common electrode potential Vcom of each polarity, it rises toward the final potential at a higher rate of change than when reaching the middle potential. .
  • the scanning signal Vg for turning on the TFT 14 of the picture element PIX is a pulse waveform that becomes a high level only in each of the periods t2 and t4. That is, the data writing period to the picture element PIX is set within each of the periods t2 and t4.
  • FIG. 6 shows the configuration of the output stage 13 of the common electrode driving circuit according to this embodiment.
  • the output stage 13 includes a first output stage (sub output stage, final sub output stage) 13a, a first switch SWf, a second output stage (sub output stage) 13b, a second switch SWg, and a third output stage (sub output stage). , Initial sub output stage) 13c, and a third switch SWh.
  • Each of the first output stage 13a, the second output stage 13b, and the third output stage 13c is composed of output transistors Tp and Tn, as in FIG.
  • the first output stage 13a outputs a voltage level V1 that is a positive common electrode potential Vcom via the output transistor Tp, and a voltage level V2 that is a negative common electrode potential Vcom via the output transistor Tn.
  • the second output stage 13b outputs a voltage level V3 that is a positive common electrode potential Vcom via an output transistor Tp, and outputs a voltage level V4 that is a negative common electrode potential Vcom via an output transistor Tn.
  • the third output stage 13c outputs a voltage level V5 that is a positive common electrode potential Vcom via the output transistor Tp, and outputs a voltage level V6 that is a negative common electrode potential Vcom via the output transistor Tn.
  • the output of the first output stage 13a, the output of the second output stage 13b, and the output of the third output stage 13c are all connected to the COM output terminal 102.
  • the first switch SWf is connected in series to the input side of the first output stage 13a with respect to the first output stage 13a, and ON / OFF of the input of the common polarity inversion signal to the first output stage 13a according to the control signal s3.
  • the second switch SWg is connected in series to the input side of the second output stage 13b with respect to the second output stage 13b, and ON / OFF of the input of the common polarity inversion signal to the second output stage 13b according to the control signal s3. Turn off.
  • the third switch SWh is connected in series to the input side of the third output stage 13c with respect to the third output stage 13c, and ON / OFF of the input of the common polarity inversion signal to the third output stage 13c according to the control signal s3. Turn off.
  • the output transistor Tp of the second output stage 13b has a higher ON resistance than the output transistor Tp of the first output stage 13a, and the output transistor Tn of the second output stage 13b is more ON than the output transistor Tn of the first output stage 13a.
  • the resistance is set large.
  • the output transistor Tp of the third output stage 13c has a higher ON resistance than the output transistor Tp of the second output stage 13b, and the output transistor Tn of the third output stage 13c has a higher ON resistance than the output transistor Tn of the second output stage 13b. It is set large. Increasing the ON resistance can be realized by reducing the channel width W of the transistor or increasing the channel length L.
  • the output impedance of the second output stage 13b is larger than the output impedance of the first output stage 13a
  • the output impedance of the third output stage 13c is larger than the output impedance of the second output stage 13b. That is, the second output stage 13b has a smaller load driving capability than the first output stage 13a, and the third output stage 13c has a smaller load driving capability than the second output stage 13b.
  • the output stage 13 is not limited to the above, and may generally include a first output stage to an nth output stage (n is an integer of 2 or more). Further, a plurality of the first output stage to the n-th output stage may have the same output impedance, that is, the same load driving capability. Further, a plurality of the first to n-th output stages may supply the common electrode potential Vcom at the same time. In general, of the first output stage to the n-th output stage, the total load drive capacity that is the sum of the load drive capacity of one or more output stages that supply the final ultimate potential of the common electrode potential Vcom of each polarity.
  • the polarity inversion operation of the common electrode potential may be started by one or more output stages that reduce the overall load driving capability.
  • the magnitude relationship of the load driving capability in the period between the partial period including the start of the polarity inversion operation and the partial period for supplying the final potential is not particularly defined.
  • the total load driving capability of each output stage can be expressed as the sum of currents that each output stage can output to the same load.
  • the second output stage 13b has a smaller load drive capability than the first output stage 13a
  • the third output stage 13c has a load drive capability than the second output stage 13b.
  • Ability is reduced.
  • the output stage 13 is not limited to the above, and may generally include a first output stage to an nth output stage (n is an integer of 2 or more). Further, a plurality of the first output stage to the n-th output stage may have the same power supply voltage of the common electrode potential, that is, the same load driving capability. A plurality of the first to nth output stages having the same power supply voltage may supply the common electrode potential Vcom at the same time. In general, of the first output stage to the n-th output stage, the total load drive capacity that is the sum of the load drive capacity of one or more output stages that supply the final ultimate potential of the common electrode potential Vcom of each polarity.
  • the polarity inversion operation of the common electrode potential may be started by one or more output stages that reduce the overall load driving capability.
  • the magnitude relationship of the load driving capability in the period between the period including the start of the polarity inversion operation and the period for supplying the final ultimate potential is not particularly defined.
  • the total load driving capability of each output stage can be expressed as the sum of currents that each output stage can output to the same load.
  • FIG. 7 shows the configuration of the output stage 14 of the common electrode driving circuit according to this embodiment.
  • the output stage 14 includes a first output stage (sub output stage, final sub output stage) 14a, a first switch SWi, a second output stage (sub output stage, initial sub output stage) 14b, and a second switch SWj. ing.
  • the second output stage 14b includes a voltage dividing circuit in which the resistor R1 and the resistor R2 are connected in series so as to divide the voltage level V1 and the voltage level V2 (V2 ⁇ V1). A voltage level V1 is applied to one end of the resistor R1, and a voltage level V2 is applied to one end of the resistor R2.
  • the first output stage 14a is composed of output transistors Tp and Tn as in FIG.
  • the ON resistance of the output transistor Tp of the first output stage 14a is smaller than the resistance value of the resistor R1 of the second output stage 14b, and the ON resistance of the output transistor Tn of the first output stage 14a is the second output stage 14b. Is set smaller than the resistance value of the resistor R2.
  • the ON resistance can be realized by adjusting the channel width W and channel length L of the transistor.
  • the output impedance of the second output stage 14b is larger than the output impedance of the first output stage 14a. That is, the second output stage 14b has a smaller load driving capability than the first output stage 14a.
  • the output of the first output stage 14 a is connected to the COM output terminal 102.
  • the first output stage 14a outputs a voltage level V1 that is a positive common electrode potential Vcom via the output transistor Tp, and a voltage level V2 (V2 ⁇ V) that is a negative common electrode potential Vcom via the output transistor Tn. V1) is output.
  • the first switch SWi is connected in series to the input side of the first output stage 14a with respect to the first output stage 14a, and ON / OFF of the input of the common polarity inversion signal to the first output stage 14a according to the control signal s4. Turn off.
  • the second switch SWj is connected to the output side of the second output stage 14b (the connection point between the resistor R1 and the resistor R2) with respect to the second output stage 14b, and is connected to the second output stage 14b according to the control signal s4. Turns on / off the input of the common polarity inversion signal.
  • the terminal opposite to the input side of the first output stage 14a of the first switch SWi is connected to the supply source of the common polarity inversion signal.
  • FIG. 8 shows operation waveforms of the output stage 14 configured as described above.
  • the output stage 14 supplies the common electrode potential Vcom to the COM output terminal 102 in accordance with the input common polarity inversion signal and the control signal s4.
  • the common polarity inversion signal (not shown) is composed of a High period and a Low period each equal to one horizontal period, and one of the High period and the Low period has the positive polarity (voltage) of the common electrode potential Vcom.
  • Level V1 is instructed, and the other period is instructed to make the common electrode potential Vcom negative (voltage level V2).
  • the control signal s4 becomes High level in the first period (partial period) t1 of each horizontal period in which the common electrode potential Vcom becomes positive, and becomes Low level in the remaining period (partial period) t2 of the horizontal period. It has a waveform and becomes a high level in the first period (partial period) t3 of each horizontal period in which the common electrode potential Vcom becomes negative, and at a low level in the remaining period (partial period) t4 of the horizontal period. Has a waveform.
  • the first switch SWa is turned on when the control signal s1 is at the low level, and is turned off when the control signal s1 is at the high level.
  • the second switch SWa is turned on when the control signal s1 is at a high level, and is turned off when the control signal s1 is at a low level.
  • the second switch SWj is turned on and the first switch SWi is turned off in the periods t1 and t3, and the first switch SWi is turned on and the second switch SWj in the periods t2 and t4. Is turned off.
  • the common electrode potential Vcom is supplied by the output from the second output stage 14b in the periods t1 and t3, and the common electrode potential Vcom is supplied by the output from the first output stage 14a in the periods t2 and t4.
  • each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods.
  • the time constant of the waveform change of the common electrode potential Vcom in the periods t1 and t3 is the common electrode in the periods t2 and t4. It is larger than the time constant of the waveform change of the potential Vcom. Therefore, when supplying the common electrode potential Vcom having the positive polarity, it slowly rises to the first potential level that is lower than (V1 ⁇ V2) ⁇ R2 / (R1 + R2) in the period t1, and then quickly in the period t2. It rises and reaches the voltage level V1, which is the final potential level.
  • the fall of the positive common electrode potential Vcom is equal to the rise of the negative common electrode potential Vcom, and slowly falls to the second potential level in the middle of becoming (V1 ⁇ V2) ⁇ R2 / (R1 + R2) or more in the period t3. It falls (rises for negative polarity) and then falls rapidly (rises for negative polarity) in period t4 to reach the voltage level V2 which is the final potential level.
  • the falling of the negative common electrode potential Vcom is equal to the rising of the positive common electrode potential Vcom.
  • the waveform of the common electrode potential Vcom is the waveform of the common electrode potential Vcom after the polarity inversion of the common electrode potential Vcom is started in each supply period of the common electrode potential Vcom of each polarity. Once reaching the potential halfway on the opposite polarity side of the final potential of the common electrode potential Vcom of each polarity, it rises toward the final potential at a higher rate of change than when reaching the middle potential. .
  • the scanning signal Vg for turning on the TFT 14 of the picture element PIX is a pulse waveform that becomes a high level only in each of the periods t2 and t4. That is, the data writing period to the picture element PIX is set within each of the periods t2 and t4.
  • the display device of the present invention is a display device that performs common inversion driving, and the output stage of the common electrode driving circuit has a plurality of outputs each capable of outputting a voltage to the common electrode.
  • a sub-output stage, and each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods, and each of the partial periods includes one or more sub-output stages selected for each of the partial periods.
  • the overall load driving capability of the final sub-output stage consisting of one or more sub-output stages selected during the partial period in which a voltage is supplied to the common electrode and the final potential of the common electrode potential of each polarity is supplied
  • the overall load driving capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the polarity inversion operation of the common electrode potential is smaller.
  • the start timing of each period of the partial period included in the transition time in which the polarity of the common electrode potential is reversed including the partial period in which the voltage is output by the initial sub-output stage as the current flowing in the common electrode
  • the display device of the present invention is characterized in that the overall output impedance of the initial sub-output stage is larger than the overall output impedance of the final sub-output stage.
  • the display device of the present invention is characterized in that the initial sub-output stage and the final sub-output stage include a sub-output stage that outputs a voltage by a push-pull operation using a transistor. It is said.
  • the output impedance can be set by the ON resistance of the transistor.
  • the display device of the present invention is configured such that, in each supply period of the common electrode potential of each polarity, the power supply voltage of the voltage output by the initial sub-output stage is on the opposite polarity side to the final ultimate potential. It is characterized by being close to.
  • the initial sub output stage includes a sub output stage that outputs a voltage divided by a resistor, and the final sub output stage uses a transistor. And a sub output stage for outputting a voltage by the push-pull operation.
  • a display device driving method is a display device driving method that performs common inversion driving, and each of the plurality of sub-output stages is capable of outputting a voltage to a common electrode. And each supply period of the common electrode potential of each polarity is divided into a plurality of partial periods, and each partial period is provided in the output stage of the common electrode driving circuit selected for each partial period.
  • the overall load drive capability of the initial sub-output stage composed of one or more sub-output stages selected in the partial period including the start of the polarity inversion operation of the common electrode potential is smaller than the overall load drive capability of It is characterized in that.
  • the start timing of each period of the partial period included in the transition time in which the polarity of the common electrode potential is reversed including the partial period in which the voltage is output by the initial sub-output stage as the current flowing in the common electrode
  • the display device driving method of the present invention is characterized in that the overall output impedance of the initial sub-output stage is larger than the overall output impedance of the final sub-output stage.
  • the initial sub-output stage and the final sub-output stage include a sub-output stage that outputs a voltage by a push-pull operation using a transistor. It is characterized by that.
  • the output impedance can be set by the ON resistance of the transistor.
  • the display device driving method of the present invention is configured such that, in each supply period of the common electrode potential of each polarity, the power supply voltage of the voltage output by the initial sub-output stage is higher than the final ultimate potential. It is characterized by being close to the opposite polarity side.
  • the initial sub-output stage includes a sub-output stage that outputs a voltage divided by a resistor
  • the final sub-output stage includes: A sub-output stage that outputs a voltage by push-pull operation using a transistor is included.
  • the display device of the present invention is a display device that performs common inversion driving, and in each supply period of the common electrode potential of each polarity, after the polarity inversion of the common electrode potential is started,
  • the waveform of the common electrode potential once reaches the potential on the opposite polarity side of the final potential of the common electrode potential of each polarity, and then reaches the final potential at a rate of change larger than when the potential reaches the middle potential. It is characterized by rising toward the potential.
  • the display device driving method of the present invention is a display device driving method that performs common inversion driving, wherein the polarity inversion of the common electrode potential is performed in each supply period of the common electrode potential of each polarity.
  • the present invention can be suitably used for various display devices including a liquid crystal display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 コモン電極駆動回路の出力段(11)は、それぞれがコモン電極(103)に電圧を出力することが可能な複数のサブ出力段(11a、11b)を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された1つ以上のサブ出力段(11b)によって、コモン電極(103)に供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段(11a)からなる最終サブ出力段(11a)の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段(11b)からなる初期サブ出力段(11b)の全体の負荷駆動能力のほうが小さい。

Description

表示装置および表示装置の駆動方法
 本発明は、コモン反転駆動を行う表示装置に関する。
 液晶表示装置にコモン反転駆動を行うものがある。コモン反転駆動は、交流駆動においてコモン電極電位を正負に反転させるものである。例えば図10に示すように、ゲートバスライン反転駆動において、正極性データの階調基準電圧範囲Vpと負極性データの階調基準電圧範囲Vnとを互いに等しいものとし、コモン電極電位Vcomを当該階調基準電圧範囲よりも高い側の電圧レベルV1と低い側の電圧レベルV2との2値レベル間で1水平期間ごとに反転させる。正極性データを絵素に書き込む場合にはコモン電極電位Vcomを電圧レベルV2とし、負極性データを絵素に書き込む場合にはコモン電極電位Vcomを電圧レベルV1とする。
 コモン反転駆動によれば、正極性データと負極性データとの各階調基準電圧範囲を別々に用意しなくて済むので電源電圧を低くすることができる。また、階調基準電圧が正極性データと負極性データとに共通であるので、階調基準電圧を生成する回路の構成を簡略化することができる。
 コモン反転駆動を行う場合には、図9に示すような、コモン電極駆動回路の出力段101からコモン電極103にコモン電極電位Vcomが供給される。当該出力段101は、入力されるHighとLowとの間で切り替えられるコモン極性反転信号に従って、
高電位側の電圧レベルV1と低電位側の電圧レベルV2とを1水平期間ごとに切り替えて、COM出力端子102から出力する。コモン電極103はCOM出力端子102に接続されており、絵素電極104との間に液晶層を挟んで液晶容量CLを形成するが、コモン電極103自身も容量を有している。従って、コモン反転駆動は、コモン電極駆動回路がこれらの容量を交互に正負に充電する動作となる。
特開2006-178072号公報(2006年7月6日公開) 特開平4-284489号公報(1992年10月9日公開)
 しかしながら、従来のコモン反転駆動では、図10に示すように、コモン電極電位Vcomが反転する瞬間に、コモン電極103への電位供給経路に、大きなピークを有する充放電電流Icomが発生するという問題がある。これは、図11に示すように、コモン電極駆動回路のプッシュプル出力段からなる出力段101が備える、コモン電極電位Vcomの正極性側のpチャネルの電界効果トランジスタからなる出力トランジスタTpおよび負極性側のnチャネルの電界効果トランジスタからなる出力トランジスタTnのON抵抗が小さく、これらのON抵抗が出力段101の出力インピーダンスを支配しているからである。出力トランジスタTp・Tnはバイポーラトランジスタでもよい。コモン極性反転信号がHighレベルのときには出力トランジスタTnがON状態となり、コモン極性反転信号がLowレベルのときは出力トランジスタTpがON状態となる。この突入電流は放射ノイズの原因となる。
 従って、例えば、図12に示すように、液晶表示装置が液晶パネル111上にギャップを介して静電容量方式のタッチパネル112を備えている場合には、タッチパネル112の検出動作において静電容量の変化を検出する信号を積分する処理を行うことから、タッチパネル112の検出動作が上記放射ノイズの影響を受けやすい。これにより、検出結果に放射ノイズに起因する誤差が発生してタッチパネル112の検出精度が低下し、顕著な感度低下が引き起こされる。
 図13に示す特許文献1に記載の電源回路100は、VCOMH生成回路110(高電位側電圧生成回路)が高電位側入力電圧に基づいて高電位側電圧VCOMを出力し、VCOML生成回路120(低電位側電圧生成回路)が低電位側入力電圧に基づいて低電位側電圧VCOMを出力するものである。そして、この電源回路100は、VCOMH生成回路110およびVCOML生成回路120によって、コモン電極電位の供給能力制御を行うことができるようになっている。コモン電極電位の極性反転や絵素電極への電圧印加により、コモン電極電位が降下する際には、コモン電極電位の供給能力を増大させ、その他のときには供給能力を低下させる。
 しかし、この特許文献1の電源回路100は、コモン電極電位の降下が大きいときにはコモン電極電位の供給能力を増大させるため、突入電流のピークは大きい。従って、液晶パネルにタッチパネルを搭載した場合には、突入電流に起因する放射ノイズの影響が大きく、タッチパネルの検出精度は低下してしまう。
 また、図14に示す特許文献2のプラズマディスプレイパネルの表示駆動回路は、Y側ドライバ回路12とX側ドライバ回路13とで、マトリクス状に配置された容量性の表示セル11を駆動する構成において、Y側タイミングジェネレータ32からトランジスタQY1にY側印加パルスYSUSが、トランジスタQY2にY側トライステートコントロール信号YTSCが供給され、X側タイミングジェネレータ33からトランジスタQX1にX側印加パルスXSUSが、トランジスタQX2にX側トライステートコントロール信号XTSCが供給されるようになっている。ここで、トライステートコントロール信号YTSC・XTSCは、それぞれ”L”のときにY側ドライバ回路12およびX側ドライバ回路13の出力が高インピーダンス状態になるように設定されている。
 図14の表示駆動回路において、図15に示すように、Y側印加パルスYSUSあるいはX側印加パルスXSUSを印加する際に、それぞれのパルスの立ち上がりおよび立ち下がりに対応して、その直前にトライステートコントロール信号YTSCあるいはXTSCを”L”としてY側ドライバ回路12あるいはX側ドライバ回路13の出力を高インピーダンス状態にして、表示セル11の容量に流れる変位電流の電流レベルを下げる。さらに、パルスの立ち下がり時には、電流が抑制されている間にパルスが立ち下がるようにするとともに、対向電極ドライバ回路には高圧のX側印加パルスXSUSあるいはY側印加パルスYSUSを与えて、対向電極側のドライバ回路の出力を低インピーダンス状態とする。これにより、高圧の印加パルスの立ち下げ時に、スイッチングによる放射ノイズや放電電流によるグランドノイズを抑制することができる。
 当該表示駆動回路では、このようにして放射ノイズやグランドノイズを低減させるようにしている。しかしながら、このようなノイズ抑制方法は、プラズマディスプレイパネルの駆動方法には採用することができるが、液晶表示装置のコモン反転駆動に適用することはできない。また、この方法では電流の抑制を行うだけであるので、放電時間の長期化などの弊害が発生する。
 このように、従来のコモン反転駆動においては、コモン電極電位の反転時の放射ノイズを有効に抑制することができなかった。
 本発明は、上記従来の問題点に鑑みなされたものであり、その目的は、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置、および、表示装置の駆動方法を実現することにある。
 本発明の表示装置は、上記課題を解決するために、コモン反転駆動を行う表示装置であって、コモン電極駆動回路の出力段は、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、初期サブ出力段により電圧が出力される部分期間を含み、コモン電極電位の極性が反転する遷移時間に含まれる部分期間の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置を実現することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、コモン反転駆動を行う表示装置の駆動方法であって、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された、コモン電極駆動回路の出力段に備えられる1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、初期サブ出力段により電圧が出力される部分期間を含み、コモン電極電位の極性が反転する遷移時間に含まれる部分期間の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置の駆動方法を実現することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、コモン反転駆動を行う表示装置であって、各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位の波形が、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がることを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、コモン電極電位の極性が反転する遷移時間に、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置を実現することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、コモン反転駆動を行う表示装置の駆動方法であって、各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位を、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる波形とすることを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、コモン電極電位の極性が反転する遷移時間に、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置の駆動方法を実現することができるという効果を奏する。
 本発明の表示装置は、以上のように、コモン反転駆動を行う表示装置であって、コモン電極駆動回路の出力段は、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さい。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置を実現することができるという効果を奏する。
 本発明の表示装置の駆動方法は、以上のように、コモン反転駆動を行う表示装置の駆動方法であって、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された、コモン電極駆動回路の出力段に備えられる1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さい。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置の駆動方法を実現することができるという効果を奏する。
本発明の実施形態を示すものであり、コモン電極駆動回路の出力段の第1の構成を示す回路ブロック図である。 図1の出力段の動作波形を示す波形図である。 本発明の実施形態を示すものであり、表示装置の構成を示すブロック図である。 本発明の実施形態を示すものであり、コモン電極駆動回路の出力段の第2の構成を示す回路ブロック図である。 図4の出力段の動作波形を示す波形図である。 本発明の実施形態を示すものであり、コモン電極駆動回路の出力段の第3の構成を示す回路ブロック図である。 本発明の実施形態を示すものであり、コモン電極駆動回路の出力段の第4の構成を示す回路ブロック図である。 図7の出力段の動作波形を示す波形図である。 従来技術を示すものであり、コモン電極駆動回路の出力段の構成を示す回路ブロック図である。 図9のコモン電極駆動回路の動作波形を示す波形図である。 図9のコモン電極駆動回路の出力段の構成を詳細に示す回路図である。 従来技術を示すものであり、タッチパネルを搭載した液晶表示装置の構成を示す断面図である。 従来技術を示すものであり、コモン電極駆動回路の他の構成例を示す回路ブロック図である。 従来技術を示すものであり、プラズマディスプレイパネルの表示駆動回路の構成を示す回路ブロック図である。 図14の表示駆動回路の動作波形を示す波形図である。
 本発明の実施形態について、図1~図8を用いて説明すれば以下の通りである。
 図3に、本実施形態に係る液晶表示装置(表示装置)1の構成を示す。
 液晶表示装置1はアクティブマトリクス型の表示装置であり、走査信号線駆動回路としてのゲートドライバ3と、データ信号線駆動回路としてのソースドライバ4と、表示部2と、ゲートドライバ3およびソースドライバ4を制御するための表示制御回路5と、電源回路6とを備えている。この液晶表示装置1は、交流駆動としてゲートライン反転駆動や、複数行ずつ極性を反転する駆動などの、各行について、全ての絵素のデータ極性が同じ水平期間中は互いに同じである駆動を行う。そして、さらに、正極性データをパネルに供給する期間と負極性データをパネルに供給する期間とで、互いにコモン電極電位の極性を反転させるコモン反転駆動を行う。
 表示部2は、複数本(m本)の走査信号線としてのゲートラインGL1~GLmと、それらのゲートラインGL1~GLmのそれぞれと交差する複数本(n本)のデータ信号線としてのソースラインSL1~SLnと、それらのゲートラインGL1~GLmとソースラインSL1~SLnとの交差点にそれぞれ対応して設けられた複数個(m×n個)の絵素PIX…とを含む。また、ここでは図示しないが、表示部2は、ゲートラインGL1~GLmと平行に保持容量配線CSL…を備えており、当該方向に並んだn個の絵素からなる各絵素行に1本の保持容量配線CSLが割り当てられている。
 複数の絵素PIX…はマトリクス状に配置されて絵素アレイを構成し、各絵素PIXは、TFT14と、液晶容量CLと、保持容量Csとを備えている。TFT14のゲート電極はゲートラインGLj(1≦j≦m)に、ソース電極はソースラインSLi(1≦i≦n)に、ドレイン電極は絵素電極にそれぞれ接続されている。液晶容量CLは、絵素電極と、絵素電極に対向するコモン電極と、それらの間に挟持された液晶層とから構成されている。コモン電極には電源回路6からコモン電極電位Vcomが印加される。保持容量配線CSL…には、電源回路6から保持容量電位Vcsが印加される。液晶容量CLと保持容量Csとは絵素容量を構成しているが、絵素容量を構成する他の容量として、絵素電極と周辺配線との間に形成される寄生容量も存在する。
 表示制御回路5は、ゲートドライバ3にゲートスタートパルスGSPおよびゲートクロック信号GCKを供給するとともに、ソースドライバ4にソーススタートパルスSSP、ソースクロック信号SCK、および、表示データDAを供給する。電源回路6は、ソースドライバ4に階調基準電圧を生成して供給する他、前記コモン電極電位Vcomおよび保持容量電位Vcsを生成して出力する。
 次に、図3の電源回路6に備えられるコモン電極駆動回路の構成について、以下に実施例を挙げて説明する。なお、以下の各実施例において、COM出力端子102と、液晶層がコモン電極103と絵素電極104との間に配置されてなる液晶容量CLとの接続関係については、図9のものと同様であるとする。
 図1に、本実施例に係るコモン電極駆動回路の出力段11の構成を示す。
 出力段11は、第1出力段(サブ出力段、最終サブ出力段)11a、第1スイッチSWa、第2出力段(サブ出力段、初期サブ出力段)11b、および、第2スイッチSWbを備えている。
 第1出力段11aと第2出力段11bとのそれぞれは、図11と同様に、出力トランジスタTp・Tnにより構成されている。
 但し、第2出力段11bの出力トランジスタTpは第1出力段11aの出力トランジスタTpよりもON抵抗が大きく、第2出力段11bの出力トランジスタTnは第1出力段11aの出力トランジスタTnよりもON抵抗が大きく設定されている。上記ON抵抗を大きくするには、トランジスタのチャネル幅Wを小さくしたり、チャネル長Lを大きくしたりすることにより実現することができる。これにより、第2出力段11bの出力インピーダンスは、第1出力段11aの出力インピーダンスよりも大きくなっている。すなわち、第2出力段11bは第1出力段11aよりも負荷駆動能力が小さい。
 第1出力段11aの出力と第2出力段11bの出力とは、共にCOM出力端子102に接続されている。第1出力段11aと第2出力段11bとは、共に、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV1を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV2(V2<V1)を出力する。
 第1スイッチSWaは、第1出力段11aに対して第1出力段11aの入力側に直列に接続されており、制御信号s1に従って第1出力段11aへのコモン極性反転信号の入力のON/OFFを行う。第2スイッチSWbは第2出力段11bに対して第2出力段11bの入力側に直列に接続されており、制御信号s1に従って、第2出力段11bへのコモン極性反転信号の入力のON/OFFを行う。
 第1スイッチSWaの第1出力段11aの入力側とは反対側の端子と、第2スイッチSWbの第2出力段11bの入力側とは反対側の端子とは、共にコモン極性反転信号の供給元に接続されている。
 図2に、上記構成の出力段11の動作波形を示す。
 出力段11は、入力されるコモン極性反転信号および制御信号s1に従って、COM出力端子102にコモン電極電位Vcomを供給する。コモン極性反転信号(図示せず)はそれぞれが1水平期間に等しいHigh期間とLow期間とからなり、High期間とLow期間とのうちのいずれか一方の期間がコモン電極電位Vcomを正極性(電圧レベルV1)とする指示を行い、他方の期間がコモン電極電位Vcomを負極性(電圧レベルV2)とする指示を行う。
 制御信号s1は、コモン電極電位Vcomが正極性となる各水平期間の最初の期間(部分期間)t1にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t2にLowレベルとなる波形を有しており、コモン電極電位Vcomが負極性となる各水平期間の最初の期間(部分期間)t3にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t4にLowレベルとなる波形を有している。ここでt1=t3、t2=t4である。第1スイッチSWaは、制御信号s1がLowレベルであるときにON状態となり、制御信号s1がHighレベルであるときにOFF状態となる。第2スイッチSWaは、制御信号s1がHighレベルであるときにON状態となり、制御信号s1がLowレベルであるときにOFF状態となる。
 すなわち、期間t1・t3には第2スイッチSWbがON状態になるとともに、第1スイッチSWaがOFF状態になり、期間t2・t4には第1スイッチSWaがON状態になるとともに、第2スイッチSWbがOFF状態になる。これにより、期間(極性反転動作の開始を含む部分期間)t1・t3においては第2出力段11bからの出力によってコモン電極電位Vcomが供給され、期間t2・t4においては第1出力段11aからの出力によってコモン電極電位Vcomが供給される。
 このように、本実施例では、各極性のコモン電極電位の各供給期間は複数の部分期間に分割されている。
 第2出力段11bは第1出力段11aよりも出力インピーダンスが大きいことにより負荷駆動能力が小さいので、期間t1・t3におけるコモン電極電位Vcomの波形変化の時定数は、期間t2・t4におけるコモン電極電位Vcomの波形変化の時定数よりも大きい。従って、正極性のコモン電極電位Vcomを供給するときには、期間t1で途中の第1の電位レベルまで緩慢に立ち上がり、続いて期間t2で迅速に立ち上がって最終電位レベルである電圧レベルV1に達する。正極性のコモン電極電位Vcomの立ち下がりは負極性のコモン電極電位Vcomの立ち上がりに等しく、期間t3で途中の第2の電位レベルまで緩慢に立ち下がって(負極性にとっては立ち上がって)、続いて期間t4で迅速に立ち下がって(負極性にとっては立ち上がって)最終電位レベルである電圧レベルV2に達する。また、負極性のコモン電極電位Vcomの立ち下がりは正極性のコモン電極電位Vcomの立ち上がりに等しい。
 この結果、コモン電極電流Icomとして、コモン電極電位Vcomの極性が反転する遷移時間に含まれる期間t1~t4の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 なお、図2では、結果として、コモン電極電位Vcomの波形は、各極性のコモン電極電位Vcomの各供給期間において、コモン電極電位Vcomの極性反転が開始されてから、コモン電極電位Vcomの波形が、各極性のコモン電極電位Vcomの最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる。
 また、絵素PIXのTFT14をON状態にする走査信号Vgは、期間t2・t4のそれぞれの期間内でのみHighレベルとなるパルス波形である。すなわち、絵素PIXへのデータ書き込み期間は、期間t2・t4のそれぞれの期間内に設定される。
 図4に、本実施例に係るコモン電極駆動回路の出力段12の構成を示す。
 出力段12は、第1出力段(サブ出力段、最終サブ出力段)12a、第1スイッチSWd、第2出力段(サブ出力段、初期サブ出力段)12b、および、第2スイッチSWeを備えている。
 第1出力段12aと第2出力段12bとのそれぞれは、図11と同様に、出力トランジスタTp・Tnにより構成されている。
 但し、第1出力段12aは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV1を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV2を出力するとともに、第2出力段12bは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV3を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV4を出力する。ここで、V1>V3>V4>V2である。電圧レベルV3は電圧レベルV1よりも、反対極性側である電圧レベルV2側に近く、電圧レベルV4は電圧レベルV2よりも、反対極性側である電圧レベルV1側に近い。これにより、第2出力段12bがコモン電極103に与える充電のための電位変化が第1出力段12aよりも小さくなるので、第2出力段12bは第1出力段12aよりも負荷駆動能力が小さい。
 第1出力段12aの出力と第2出力段12bの出力とは、共にCOM出力端子102に接続されている。
 第1スイッチSWdは、第1出力段12aに対して第1出力段12aの入力側に直列に接続されており、制御信号s2に従って第1出力段12aへのコモン極性反転信号の入力のON/OFFを行う。第2スイッチSWeは第2出力段12bに対して第2出力段11bの入力側に直列に接続されており、制御信号s2に従って、第2出力段12bへのコモン極性反転信号の入力のON/OFFを行う。
 第1スイッチSWdの第1出力段12aの入力側とは反対側の端子と、第2スイッチSWeの第2出力段12bの入力側とは反対側の端子とは、共にコモン極性反転信号の供給元に接続されている。
 図5に、上記構成の出力段12の動作波形を示す。
 出力段12は、入力されるコモン極性反転信号および制御信号s2に従って、COM出力端子102にコモン電極電位Vcomを供給する。コモン極性反転信号(図示せず)はそれぞれが1水平期間に等しいHigh期間とLow期間とからなり、High期間とLow期間とのうちのいずれか一方の期間がコモン電極電位Vcomを正極性(電圧レベルV1)とする指示を行い、他方の期間がコモン電極電位Vcomを負極性(電圧レベルV2)とする指示を行う。
 制御信号s2は、コモン電極電位Vcomが正極性となる各水平期間の最初の期間(部分期間)t1にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t2にLowレベルとなる波形を有しており、コモン電極電位Vcomが負極性となる各水平期間の最初の期間(部分期間)t3にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t4にLowレベルとなる波形を有している。ここでt1=t3、t2=t4である。第1スイッチSWdは、制御信号s2がLowレベルであるときにON状態となり、制御信号s2がHighレベルであるときにOFF状態となる。第2スイッチSWeは、制御信号s2がHighレベルであるときにON状態となり、制御信号s2がLowレベルであるときにOFF状態となる。
 すなわち、期間t1・t3には第2スイッチSWeがON状態になるとともに、第1スイッチSWdがOFF状態になり、期間t2・t4には第1スイッチSWdがON状態になるとともに、第2スイッチSWeがOFF状態になる。これにより、期間(極性反転動作の開始を含む部分期間)t1・t3においては第2出力段12bからの出力によってコモン電極電位Vcomが供給され、期間t2・t4においては第1出力段12aからの出力によってコモン電極電位Vcomが供給される。
 このように、本実施例では、各極性のコモン電極電位の各供給期間は複数の部分期間に分割されている。
 第2出力段12bは第1出力段12aよりも電源電圧が小さいことにより負荷駆動能力が小さいので、期間t1・t3におけるコモン電極電位Vcomの波形変化の時定数は、期間t2・t4におけるコモン電極電位Vcomの波形変化の時定数と等しいが、期間t2・t4よりも可能な最終到達電圧が小さい。従って、正極性のコモン電極電位Vcomを供給するときには、期間t1で電圧レベルV3まで小さく立ち上がり、続いて期間t2で最終電位レベルである電圧レベルV1に達する。正極性のコモン電極電位Vcomの立ち下がりは負極性のコモン電極電位Vcomの立ち上がりに等しく、期間t3で電圧レベルV4まで小さく立ち下がって(負極性にとっては立ち上がって)、続いて期間t4で最終電位レベルである電圧レベルV2に達する。また、負極性のコモン電極電位Vcomの立ち下がりは正極性のコモン電極電位Vcomの立ち上がりに等しい。
 この結果、コモン電極電流Icomとして、コモン電極電位Vcomの極性が反転する遷移時間に含まれる期間t1~t4の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 なお、図5では、結果として、コモン電極電位Vcomの波形は、各極性のコモン電極電位Vcomの各供給期間において、コモン電極電位Vcomの極性反転が開始されてから、コモン電極電位Vcomの波形が、各極性のコモン電極電位Vcomの最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる。
 また、絵素PIXのTFT14をON状態にする走査信号Vgは、期間t2・t4のそれぞれの期間内でのみHighレベルとなるパルス波形である。すなわち、絵素PIXへのデータ書き込み期間は、期間t2・t4のそれぞれの期間内に設定される。
 図6に、本実施例に係るコモン電極駆動回路の出力段13の構成を示す。
 出力段13は、第1出力段(サブ出力段、最終サブ出力段)13a、第1スイッチSWf、第2出力段(サブ出力段)13b、第2スイッチSWg、第3出力段(サブ出力段、初期サブ出力段)13c、および、第3スイッチSWhを備えている。
 第1出力段13aと第2出力段13bと第3出力段13cとのそれぞれは、図11と同様に、出力トランジスタTp・Tnにより構成されている。
 但し、第1出力段13aは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV1を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV2を出力する。第2出力段13bは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV3を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV4を出力する。第3出力段13cは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV5を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV6を出力する。
 第1出力段13aの出力と第2出力段13bの出力と第3出力段13cの出力とは、共にCOM出力端子102に接続されている。
 第1スイッチSWfは、第1出力段13aに対して第1出力段13aの入力側に直列に接続されており、制御信号s3に従って第1出力段13aへのコモン極性反転信号の入力のON/OFFを行う。第2スイッチSWgは第2出力段13bに対して第2出力段13bの入力側に直列に接続されており、制御信号s3に従って、第2出力段13bへのコモン極性反転信号の入力のON/OFFを行う。第3スイッチSWhは、第3出力段13cに対して第3出力段13cの入力側に直列に接続されており、制御信号s3に従って第3出力段13cへのコモン極性反転信号の入力のON/OFFを行う。
 (1)ここで、まずV1=V3=V5>V2=V4=V6とする。
 また、第2出力段13bの出力トランジスタTpは第1出力段13aの出力トランジスタTpよりもON抵抗が大きく、第2出力段13bの出力トランジスタTnは第1出力段13aの出力トランジスタTnよりもON抵抗が大きく設定されている。第3出力段13cの出力トランジスタTpは第2出力段13bの出力トランジスタTpよりもON抵抗が大きく、第3出力段13cの出力トランジスタTnは第2出力段13bの出力トランジスタTnよりもON抵抗が大きく設定されている。上記ON抵抗を大きくするには、トランジスタのチャネル幅Wを小さくしたり、チャネル長Lを大きくしたりすることにより実現することができる。これにより、第2出力段13bの出力インピーダンスは、第1出力段13aの出力インピーダンスよりも大きく、第3出力段13cの出力インピーダンスは、第2出力段13bの出力インピーダンスよりも大きくなっている。すなわち、第2出力段13bは第1出力段13aよりも負荷駆動能力が小さく、第3出力段13cは第2出力段13bよりも負荷駆動能力が小さい。
 この場合に、各水平期間において、第3スイッチSWh、第2スイッチSWg、第1スイッチSWfの順に、選択的にスイッチをON状態としていくと、コモン電極電位Vcomは、第3出力段13c、第2出力段13b、第1出力段13aという負荷駆動能力の小さい順で供給される。従って、コモン電極電流Icomとして大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 なお、出力段13は、上記のものに限らず、一般に第1出力段から第n出力段(nは2以上の整数)まで備えていてよい。また、第1出力段から第n出力段のうちの複数が同じ出力インピーダンス、すなわち同じ負荷駆動能力を有していてもよい。また、第1出力段から第n出力段のうちの複数が同時にコモン電極電位Vcomを供給するようにしてもよい。一般に、第1出力段から第n出力段のうち、各極性のコモン電極電位Vcomの最終到達電位を供給する1つ以上の出力段の各負荷駆動能力の合計である全体の負荷駆動能力よりも、全体の負荷駆動能力が小さくなるような1つ以上の出力段によって、コモン電極電位の極性反転動作を開始するようにすればよい。極性反転動作の開始を含む部分期間と、最終到達電位を供給する部分期間との間の期間における負荷駆動能力の大小関係は特に規定されない。各出力段の負荷駆動能力の合計は、各出力段が同じ負荷に対して出力することのできる電流の和で表すことができる。
 (2)次に、V1>V3>V5>V6>V4>V2とする。
 この場合には、コモン電極電位Vcomの電源電圧の大小によって、第2出力段13bは第1出力段13aよりも負荷駆動能力が小さく、第3出力段13cは第2出力段13bよりも負荷駆動能力が小さくなる。
 この場合に、各水平期間において、第3スイッチSWh、第2スイッチSWg、第1スイッチSWfの順に、選択的にスイッチをON状態としていくと、コモン電極電位Vcomは、第3出力段13c、第2出力段13b、第1出力段13aという負荷駆動能力の小さい順で供給される。従って、コモン電極電流Icomとして大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 なお、出力段13は、上記のものに限らず、一般に第1出力段から第n出力段(nは2以上の整数)まで備えていてよい。また、第1出力段から第n出力段のうちの複数が同じ、コモン電極電位の電源電圧、すなわち同じ負荷駆動能力を有していてもよい。また、第1出力段から第n出力段のうちの同じ上記電源電圧を有する複数のものが同時にコモン電極電位Vcomを供給するようにしてもよい。一般に、第1出力段から第n出力段のうち、各極性のコモン電極電位Vcomの最終到達電位を供給する1つ以上の出力段の各負荷駆動能力の合計である全体の負荷駆動能力よりも、全体の負荷駆動能力が小さくなるような1つ以上の出力段によって、コモン電極電位の極性反転動作を開始するようにすればよい。極性反転動作の開始を含む期間と、最終到達電位を供給する期間との間の期間における負荷駆動能力の大小関係は特に規定されない。各出力段の負荷駆動能力の合計は、各出力段が同じ負荷に対して出力することのできる電流の和で表すことができる。
 なお、上記(1)と(2)とを組み合わせてもよい。
 図7に、本実施例に係るコモン電極駆動回路の出力段14の構成を示す。
 出力段14は、第1出力段(サブ出力段、最終サブ出力段)14a、第1スイッチSWi、第2出力段(サブ出力段、初期サブ出力段)14b、および、第2スイッチSWjを備えている。第2出力段14bは、抵抗R1と抵抗R2とが電圧レベルV1と電圧レベルV2(V2<V1)とを分圧するように直列に接続された分圧回路を備えている。抵抗R1の一端に電圧レベルV1が印加されており、抵抗R2の一端に電圧レベルV2が印加されている。
 第1出力段14aは、図11と同様に、出力トランジスタTp・Tnにより構成されている。
 但し、第1出力段14aの出力トランジスタTpのON抵抗は、第2出力段14bの抵抗R1の抵抗値よりも小さく、第1出力段14aの出力トランジスタTnのON抵抗は、第2出力段14bの抵抗R2の抵抗値よりも小さく設定されている。上記ON抵抗は、トランジスタのチャネル幅Wやチャネル長Lを調節することにより実現することができる。これにより、第2出力段14bの出力インピーダンスは、第1出力段14aの出力インピーダンスよりも大きくなっている。すなわち、第2出力段14bは第1出力段14aよりも負荷駆動能力が小さい。
 第1出力段14aの出力はCOM出力端子102に接続されている。第1出力段14aは、出力トランジスタTpを介して正極性のコモン電極電位Vcomである電圧レベルV1を出力し、出力トランジスタTnを介して負極性のコモン電極電位Vcomである電圧レベルV2(V2<V1)を出力する。
 第1スイッチSWiは、第1出力段14aに対して第1出力段14aの入力側に直列に接続されており、制御信号s4に従って第1出力段14aへのコモン極性反転信号の入力のON/OFFを行う。第2スイッチSWjは第2出力段14bに対して第2出力段14bの出力側(抵抗R1と抵抗R2との接続点)に接続されており、制御信号s4に従って、第2出力段14bへのコモン極性反転信号の入力のON/OFFを行う。
 第1スイッチSWiの第1出力段14aの入力側とは反対側の端子は、コモン極性反転信号の供給元に接続されている。
 図8に、上記構成の出力段14の動作波形を示す。
 出力段14は、入力されるコモン極性反転信号および制御信号s4に従って、COM出力端子102にコモン電極電位Vcomを供給する。コモン極性反転信号(図示せず)はそれぞれが1水平期間に等しいHigh期間とLow期間とからなり、High期間とLow期間とのうちのいずれか一方の期間がコモン電極電位Vcomを正極性(電圧レベルV1)とする指示を行い、他方の期間がコモン電極電位Vcomを負極性(電圧レベルV2)とする指示を行う。
 制御信号s4は、コモン電極電位Vcomが正極性となる各水平期間の最初の期間(部分期間)t1にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t2にLowレベルとなる波形を有しており、コモン電極電位Vcomが負極性となる各水平期間の最初の期間(部分期間)t3にHighレベルとなるとともに、当該水平期間の残りの期間(部分期間)t4にLowレベルとなる波形を有している。ここでt1=t3、t2=t4である。第1スイッチSWaは、制御信号s1がLowレベルであるときにON状態となり、制御信号s1がHighレベルであるときにOFF状態となる。第2スイッチSWaは、制御信号s1がHighレベルであるときにON状態となり、制御信号s1がLowレベルであるときにOFF状態となる。
 すなわち、期間t1・t3には第2スイッチSWjがON状態になるとともに、第1スイッチSWiがOFF状態になり、期間t2・t4には第1スイッチSWiがON状態になるとともに、第2スイッチSWjがOFF状態になる。これにより、期間t1・t3においては第2出力段14bからの出力によってコモン電極電位Vcomが供給され、期間t2・t4においては第1出力段14aからの出力によってコモン電極電位Vcomが供給される。
 このように、本実施例では、各極性のコモン電極電位の各供給期間は複数の部分期間に分割されている。
 第2出力段14bは第1出力段11aよりも出力インピーダンスが大きいことにより負荷駆動能力が小さいので、期間t1・t3におけるコモン電極電位Vcomの波形変化の時定数は、期間t2・t4におけるコモン電極電位Vcomの波形変化の時定数よりも大きい。従って、正極性のコモン電極電位Vcomを供給するときには、期間t1で(V1-V2)×R2/(R1+R2)以下となる途中の第1の電位レベルまで緩慢に立ち上がり、続いて期間t2で迅速に立ち上がって最終電位レベルである電圧レベルV1に達する。正極性のコモン電極電位Vcomの立ち下がりは負極性のコモン電極電位Vcomの立ち上がりに等しく、期間t3で(V1-V2)×R2/(R1+R2)以上となる途中の第2の電位レベルまで緩慢に立ち下がって(負極性にとっては立ち上がって)、続いて期間t4で迅速に立ち下がって(負極性にとっては立ち上がって)最終電位レベルである電圧レベルV2に達する。また、負極性のコモン電極電位Vcomの立ち下がりは正極性のコモン電極電位Vcomの立ち上がりに等しい。
 この結果、コモン電極電流Icomとして、コモン電極電位Vcomの極性が反転する遷移時間に含まれる期間t1~t4の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 なお、図8では、結果として、コモン電極電位Vcomの波形は、各極性のコモン電極電位Vcomの各供給期間において、コモン電極電位Vcomの極性反転が開始されてから、コモン電極電位Vcomの波形が、各極性のコモン電極電位Vcomの最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる。
 また、絵素PIXのTFT14をON状態にする走査信号Vgは、期間t2・t4のそれぞれの期間内でのみHighレベルとなるパルス波形である。すなわち、絵素PIXへのデータ書き込み期間は、期間t2・t4のそれぞれの期間内に設定される。
 本発明の表示装置は、上記課題を解決するために、コモン反転駆動を行う表示装置であって、コモン電極駆動回路の出力段は、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、初期サブ出力段により電圧が出力される部分期間を含み、コモン電極電位の極性が反転する遷移時間に含まれる部分期間の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置を実現することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記初期サブ出力段の全体の出力インピーダンスは、上記最終サブ出力段の全体の出力インピーダンスよりも大きいことを特徴としている。
 上記の発明によれば、初期サブ出力段の全体の負荷駆動能力と、最終サブ出力段の全体の負荷駆動能力とを容易に設定することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記初期サブ出力段および上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴としている。
 上記の発明によれば、出力インピーダンスをトランジスタのON抵抗により設定することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、各極性のコモン電極電位の各供給期間において、上記初期サブ出力段が出力する電圧の電源電圧は、上記最終到達電位よりも反対極性側に近いことを特徴としている。
 上記の発明によれば、初期サブ出力段の全体の負荷駆動能力と、最終サブ出力段の全体の負荷駆動能力とを容易に設定することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、上記初期サブ出力段は、抵抗により分圧された電圧を出力するサブ出力段を含んでおり、上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴としている。
 上記の発明によれば、サブ出力段として、抵抗を用いた簡単な構成のものを採用することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、コモン反転駆動を行う表示装置の駆動方法であって、それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された、コモン電極駆動回路の出力段に備えられる1つ以上のサブ出力段によって、コモン電極に電圧を供給し、各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、初期サブ出力段により電圧が出力される部分期間を含み、コモン電極電位の極性が反転する遷移時間に含まれる部分期間の各期間の開始タイミングに、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置の駆動方法を実現することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、上記初期サブ出力段の全体の出力インピーダンスは、上記最終サブ出力段の全体の出力インピーダンスよりも大きいことを特徴としている。
 上記の発明によれば、初期サブ出力段の全体の負荷駆動能力と、最終サブ出力段の延滞の負荷駆動能力とを容易に設定することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、上記初期サブ出力段および上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴としている。
 上記の発明によれば、出力インピーダンスをトランジスタのON抵抗により設定することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、各極性のコモン電極電位の各供給期間において、上記初期サブ出力段が出力する電圧の電源電圧は、上記最終到達電位よりも反対極性側に近いことを特徴としている。
 上記の発明によれば、初期サブ出力段の全体の負荷駆動能力と、最終サブ出力段の全体の負荷駆動能力とを容易に設定することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、上記初期サブ出力段は、抵抗により分圧された電圧を出力するサブ出力段を含んでおり、上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴としている。
 上記の発明によれば、サブ出力段として、抵抗を用いた簡単な構成のものを採用することができるという効果を奏する。
 本発明の表示装置は、上記課題を解決するために、コモン反転駆動を行う表示装置であって、各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位の波形が、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がることを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、コモン電極電位の極性が反転する遷移時間に、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置を実現することができるという効果を奏する。
 本発明の表示装置の駆動方法は、上記課題を解決するために、コモン反転駆動を行う表示装置の駆動方法であって、各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位を、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる波形とすることを特徴としている。
 上記の発明によれば、コモン電極に流れる電流として、コモン電極電位の極性が反転する遷移時間に、大きさが抑制されたピークを有する電流のみが流れるようになる。
 従って、従来のような、コモン反転時の大きなコモン電極の充放電電流に起因した放射ノイズが発生することを抑制することができる。
 以上により、コモン電極電位の反転時の放射ノイズを有効に抑制することのできる表示装置の駆動方法を実現することができるという効果を奏する。
 本発明は上述した各実施形態に限定されるものではなく、各実施形態を組み合わせてもよく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示装置を初めとする各種表示装置に好適に使用することができる。
 1      液晶表示装置(表示装置)
 2      表示部
 11~14  出力段
 11a、12a、13a、14a
        第1出力段(サブ出力段、最終サブ出力段)
 11b、12b、14b
        第2出力段(サブ出力段、初期サブ出力段)
 13b    第2出力段(サブ出力段)
 13c    第3出力段(サブ出力段、初期サブ出力段)
 103    コモン電極
 t1~t4  期間(部分期間)
 Vcom   コモン電極電位

Claims (12)

  1.  コモン反転駆動を行う表示装置であって、
     コモン電極駆動回路の出力段は、
     それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、
     各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された1つ以上のサブ出力段によって、コモン電極に電圧を供給し、
     各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴とする表示装置。
  2.  上記初期サブ出力段の全体の出力インピーダンスは、上記最終サブ出力段の全体の出力インピーダンスよりも大きいことを特徴とする請求項1に記載の表示装置。
  3.  上記初期サブ出力段および上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴とする請求項2に記載の表示装置。
  4.  各極性のコモン電極電位の各供給期間において、上記初期サブ出力段が出力する電圧の電源電圧は、上記最終到達電位よりも反対極性側に近いことを特徴とする請求項1に記載の表示装置。
  5.  上記初期サブ出力段は、抵抗により分圧された電圧を出力するサブ出力段を含んでおり、
     上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴とする請求項2に記載の表示装置。
  6.  コモン反転駆動を行う表示装置の駆動方法であって、
     それぞれがコモン電極に電圧を出力することが可能な複数のサブ出力段を備えており、
     各極性のコモン電極電位の各供給期間を複数の部分期間に分割して、各上記部分期間には上記部分期間ごとに選択された、コモン電極駆動回路の出力段に備えられる1つ以上のサブ出力段によって、コモン電極に電圧を供給し、
     各極性のコモン電極電位の最終到達電位を供給する上記部分期間に選択される1つ以上のサブ出力段からなる最終サブ出力段の全体の負荷駆動能力よりも、コモン電極電位の極性反転動作の開始を含む上記部分期間に選択される1つ以上のサブ出力段からなる初期サブ出力段の全体の負荷駆動能力のほうが小さいことを特徴とする表示装置の駆動方法。
  7.  上記初期サブ出力段の全体の出力インピーダンスは、上記最終サブ出力段の全体の出力インピーダンスよりも大きいことを特徴とする請求項6に記載の表示装置の駆動方法。
  8.  上記初期サブ出力段および上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴とする請求項7に記載の表示装置の駆動方法。
  9.  各極性のコモン電極電位の各供給期間において、上記初期サブ出力段が出力する電圧の電源電圧は、上記最終到達電位よりも反対極性側に近いことを特徴とする請求項6に記載の表示装置の駆動方法。
  10.  上記初期サブ出力段は、抵抗により分圧された電圧を出力するサブ出力段を含んでおり、
     上記最終サブ出力段は、トランジスタを用いたプッシュプル動作により電圧を出力するサブ出力段を含んでいることを特徴とする請求項7に記載の表示装置の駆動方法。
  11.  コモン反転駆動を行う表示装置であって、
     各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位の波形が、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がることを特徴とする表示装置。
  12.  コモン反転駆動を行う表示装置の駆動方法であって、
     各極性のコモン電極電位の各供給期間において、コモン電極電位の極性反転が開始されてから、コモン電極電位を、各極性のコモン電極電位の最終到達電位よりも反対極性側の途中の電位に一旦到達してから、上記途中の電位への到達時よりも大きい変化率で上記最終到達電位へ向かって立ち上がる波形とすることを特徴とする表示装置の駆動方法。
PCT/JP2009/068414 2009-02-18 2009-10-27 表示装置および表示装置の駆動方法 WO2010095313A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011500463A JP5323924B2 (ja) 2009-02-18 2009-10-27 表示装置および表示装置の駆動方法
BRPI0924750A BRPI0924750A2 (pt) 2009-02-18 2009-10-27 dispositivo de exibição e método para o acionamento do mesmo
CN2009801566911A CN102318000A (zh) 2009-02-18 2009-10-27 显示装置和显示装置的驱动方法
US13/138,427 US20110298773A1 (en) 2009-02-18 2009-10-27 Display device and method for driving same
RU2011135308/08A RU2486607C2 (ru) 2009-02-18 2009-10-27 Дисплейное устройство и способ управления им

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-035406 2009-02-18
JP2009035406 2009-02-18

Publications (1)

Publication Number Publication Date
WO2010095313A1 true WO2010095313A1 (ja) 2010-08-26

Family

ID=42633606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068414 WO2010095313A1 (ja) 2009-02-18 2009-10-27 表示装置および表示装置の駆動方法

Country Status (6)

Country Link
US (1) US20110298773A1 (ja)
JP (1) JP5323924B2 (ja)
CN (1) CN102318000A (ja)
BR (1) BRPI0924750A2 (ja)
RU (1) RU2486607C2 (ja)
WO (1) WO2010095313A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6534596B2 (ja) * 2015-10-09 2019-06-26 株式会社ワコム 位置指示器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318565A (ja) * 2001-04-23 2002-10-31 Hitachi Ltd 液晶表示装置
JP2005024583A (ja) * 2003-06-30 2005-01-27 Renesas Technology Corp 液晶駆動装置
JP2005134910A (ja) * 2003-10-28 2005-05-26 Samsung Electronics Co Ltd フラットパネルディスプレイの駆動において減少された電力消耗を提供するドライバ回路及び方法
JP2005303992A (ja) * 2004-03-16 2005-10-27 Matsushita Electric Ind Co Ltd 駆動電圧生成装置および駆動電圧生成装置の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0124975B1 (ko) * 1994-06-07 1997-12-01 김광호 박막 트랜지스터형 액정표시장치의 전력 구동회로
RU2146393C1 (ru) * 1998-08-03 2000-03-10 Володин Виталий Александрович Способ, устройство управления экраном и экран (варианты)
KR100806906B1 (ko) * 2001-09-25 2008-02-22 삼성전자주식회사 액정 표시 장치와 이의 구동 장치 및 구동 방법
US7283939B2 (en) * 2003-05-14 2007-10-16 Incs Inc. Method, system and program for supporting mechanism design
JP3861860B2 (ja) * 2003-07-18 2006-12-27 セイコーエプソン株式会社 電源回路、表示ドライバ及び電圧供給方法
US20050088395A1 (en) * 2003-10-28 2005-04-28 Samsung Electronics Co., Ltd. Common Voltage driver circuits and methods providing reduced power consumption for driving flat panel displays
KR101213810B1 (ko) * 2005-12-27 2012-12-18 엘지디스플레이 주식회사 액정표시소자의 구동 장치 및 방법
US20080165108A1 (en) * 2007-01-10 2008-07-10 Vastview Technology Inc. Method for driving liquid crystal display in a multi-frame polarity inversion manner
US20080174285A1 (en) * 2007-01-22 2008-07-24 Seiko Epson Corporation Common electrode voltage generation circuit, display driver and electronic instrument
KR101432715B1 (ko) * 2008-01-21 2014-08-21 삼성디스플레이 주식회사 액정 표시 장치 및 그의 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318565A (ja) * 2001-04-23 2002-10-31 Hitachi Ltd 液晶表示装置
JP2005024583A (ja) * 2003-06-30 2005-01-27 Renesas Technology Corp 液晶駆動装置
JP2005134910A (ja) * 2003-10-28 2005-05-26 Samsung Electronics Co Ltd フラットパネルディスプレイの駆動において減少された電力消耗を提供するドライバ回路及び方法
JP2005303992A (ja) * 2004-03-16 2005-10-27 Matsushita Electric Ind Co Ltd 駆動電圧生成装置および駆動電圧生成装置の制御方法

Also Published As

Publication number Publication date
CN102318000A (zh) 2012-01-11
BRPI0924750A2 (pt) 2016-01-26
RU2011135308A (ru) 2013-03-27
JP5323924B2 (ja) 2013-10-23
JPWO2010095313A1 (ja) 2012-08-23
US20110298773A1 (en) 2011-12-08
RU2486607C2 (ru) 2013-06-27

Similar Documents

Publication Publication Date Title
US10163392B2 (en) Active matrix display device and method for driving same
KR101032945B1 (ko) 시프트 레지스터 및 이를 포함하는 표시 장치
CN109935217B (zh) 有源矩阵型显示装置及其驱动方法
CN108154861B (zh) 一种削角电压产生电路及液晶显示装置
KR20080111233A (ko) 액정 표시 장치의 구동 장치와 이를 포함하는 액정 표시장치
JP2010164844A (ja) 液晶表示装置、該液晶表示装置に用いられる駆動方法及び集積回路
US20190340995A1 (en) Display device
TW525131B (en) System for driving a liquid crystal display with power saving and cross-talk reduction features
JP2008262196A (ja) ガンマ電圧生成回路及びそれを有する表示装置
KR100637060B1 (ko) 아날로그 버퍼 및 그 구동 방법과, 그를 이용한 액정 표시장치 및 그 구동 방법
WO2010113359A1 (ja) 液晶表示装置ならびにその駆動回路および駆動方法
EP2458581B1 (en) Drive device for liquid crystal display panel
WO2014050719A1 (ja) 液晶表示装置
JP2008191375A (ja) 表示装置ならびにその駆動回路および駆動方法
JP5323924B2 (ja) 表示装置および表示装置の駆動方法
JP2009003207A (ja) 表示装置ならびにその駆動回路
US20090002406A1 (en) Data line drive circuit and method for driving data lines
JP2005128153A (ja) 液晶表示装置ならびにその駆動回路および駆動方法
JP2006527390A (ja) アクティブマトリクスディスプレイ装置
JP2006343748A (ja) デュアルセレクトダイオオード(dsd)lcd駆動方法と駆動デバイス
WO2012123995A1 (ja) 階調電圧発生回路及び表示装置
JPH0954309A (ja) 液晶表示装置
JP2007010871A (ja) 表示信号処理装置および液晶表示装置
CN111968588B (zh) 一种多路复用显示面板
KR100412120B1 (ko) 액정표시장치의 구동회로 및 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156691.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500463

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13138427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6028/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011135308

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 09840416

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924750

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924750

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110816