WO2010087610A2 - Vent ring, nozzle assembly for an injection machine comprising same, and method for manufacturing same - Google Patents

Vent ring, nozzle assembly for an injection machine comprising same, and method for manufacturing same Download PDF

Info

Publication number
WO2010087610A2
WO2010087610A2 PCT/KR2010/000481 KR2010000481W WO2010087610A2 WO 2010087610 A2 WO2010087610 A2 WO 2010087610A2 KR 2010000481 W KR2010000481 W KR 2010000481W WO 2010087610 A2 WO2010087610 A2 WO 2010087610A2
Authority
WO
WIPO (PCT)
Prior art keywords
vent ring
poppet
nozzle assembly
groove
molten resin
Prior art date
Application number
PCT/KR2010/000481
Other languages
French (fr)
Korean (ko)
Other versions
WO2010087610A3 (en
Inventor
김종수
Original Assignee
한도철강 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한도철강 주식회사 filed Critical 한도철강 주식회사
Publication of WO2010087610A2 publication Critical patent/WO2010087610A2/en
Publication of WO2010087610A3 publication Critical patent/WO2010087610A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/20Injection nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/63Venting or degassing means

Definitions

  • the present invention relates to a vent ring, a nozzle assembly for an injection molding machine having the same, and a production method thereof. More specifically, the present invention relates to a venting ring for manufacturing a high-quality injection product by smoothly discharging the gas contained in the molten resin moving at high pressure to the outside, an injection machine nozzle assembly having the same, and a production method thereof.
  • Injection molding is a representative method for molding thermoplastics. Injection molding sprays the molten resin into the mold to make the product. Thus, the injection machine is equipped with a nozzle for injecting the molten resin into the mold.
  • the injector nozzle allows the molten resin to be fed to the injection mold while pressing the screw cylinder.
  • Such injection machine nozzles have been proposed through Utility Model Publication No. 1990-4225 (hereinafter referred to as "quoting citation").
  • the present invention has been made to solve the above problems, a vent ring capable of producing a high-quality injection product by effectively extracting the gas contained in the molten resin moving at high pressure, nozzle assembly for injection machine having the same and
  • the purpose is to provide the production method.
  • the first projection protruding in the longitudinal direction on one side outer peripheral surface
  • the second projection protruding in the longitudinal direction on one side inner peripheral surface and the gas formed between the first projection and the second projection It includes a collection space
  • the second protrusion may be formed in the venting micro groove in the radial direction.
  • the depth of the venting microgroove may be in the range of 0.001 mm to 0.02 mm.
  • the vent ring may be divided into a plurality of pieces.
  • the nozzle assembly for an injection molding machine includes a body in which a molten resin passage through which molten resin passes is formed; A head having one end coupled to the body and the other end having an injection hole for injecting molten resin; Poppet inserted in the body, the molten resin is moved to extract the gas contained in the molten resin; And a vent ring fitted into the poppet and discharging the extracted gas.
  • the vent ring may be a vent ring according to an embodiment of the present invention.
  • the vent ring may be provided in plural numbers to be in contact with each other, and the vent ring microgroove may be formed on at least one surface of the vent ring.
  • a first resin moving groove and a second resin moving groove are formed to move the molten resin and to extract the gas contained in the molten resin, and the first resin moving groove is drilled in the head direction.
  • the second resin moving groove may be blocked in the head direction.
  • a venting pedestal may be formed at one side of the poppet, and the venting pedestal may be provided with a connection hole connecting the molten resin passage and the second resin moving groove.
  • the poppet the shaft; A cone coupled to one end of the shaft and having a venting pedestal formed with a connection hole connecting the molten resin passageway and the second resin movement groove; And a plurality of shaft vent rings fitted to the shaft and having the first and second resin moving grooves formed on outer surfaces thereof. It may include.
  • a head vent ring may be inserted into the head, and a head exhaust hole may be formed from an inner circumferential surface of the head to an outer circumferential surface.
  • the nozzle assembly for the injection molding machine according to the second embodiment of the present invention is provided to surround the poppet in the body, and further includes a support cylinder in which a plurality of support grooves are formed, and the vent ring is divided into a plurality of pieces. Each piece may be inserted into the support groove.
  • a venting pedestal is formed at one side of the poppet, and the venting pedestal may be provided with a connection hole for connecting the molten resin passage and the second resin moving groove.
  • a plurality of support cylinder protrusion jaws are formed between the support grooves, and a poppet protrusion jaw is formed between the first and second resin moving grooves, and the support cylinder protrusion jaws and the poppet protrusion jaw alternately by a predetermined distance. Can be spaced apart.
  • the said setting distance is 0.3-0.6 mm.
  • the support groove may have a support groove exhaust hole.
  • At least one poppet groove may be formed in the longitudinal direction to move the molten resin and extract gas contained in the molten resin.
  • the poppet groove may be formed in a straight line.
  • the poppet groove may be formed spirally.
  • the poppet may be formed with at least one bent portion formed by changing the direction of the poppet groove.
  • the bent portion may be formed with a groove (groove) in which the molten resin is accumulated.
  • the vent ring may be sintered.
  • the method for producing a vent ring in the method for producing a vent ring having microgrooves formed on at least one surface for discharging air to the outside, the method of forming the microgrooves by etching, and forming by electric discharge machining It may be formed by any one of the method or the method of forming using a laser.
  • the depth of the micro grooves may be in the range 0.001mm to 0.02mm.
  • the method of forming the microgrooves by etching includes forming a resist layer on the venting ring; Forming a micro pattern on the resist layer; Corroding a portion of the surface of the vent ring; And removing the resist layer; It may include.
  • the micropattern forming method may include optical lithography, imprint lithography, soft etching and injection molding.
  • the method of forming the microgroove using the laser may include processing a groove having a depth set by the laser.
  • the method of forming the microgrooves using the laser may further include applying titanium to the surface.
  • the method of forming the microgrooves using the laser may further include removing foreign substances on the surface by ultrasonic waves.
  • the vent ring may be sintered.
  • the present invention can be discharged through the fine groove formed in the vent ring to improve the quality of the injection product.
  • the molten resin moving at a high pressure is passed from the second resin moving groove to the first resin moving groove to be ejected, thereby spreading the molten resin thinly and evenly, and effectively extracting gas components contained in the molten resin.
  • the extracted gas is discharged to the outside through the gap between the pieces of the vent ring as well as the gap between the vent ring, it is possible to effectively discharge the gas component contained in the molten resin.
  • FIG. 1 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the first embodiment of the present invention is coupled.
  • FIG 3 is a perspective view showing one structure of a poppet used in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
  • Figure 4 is an exploded perspective view showing another structure of the poppet used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention.
  • FIG. 5 is a front view showing an example of a vent ring for use in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
  • Figure 6 is an exploded perspective view showing a state in which the nozzle assembly for the injection molding machine according to the second embodiment of the present invention is coupled.
  • FIG. 7 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the second embodiment of the present invention is coupled.
  • FIG. 8 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 9 is a front view of the venting member in the nozzle assembly for an injection molding machine according to the second embodiment of the present invention.
  • FIG. 10 is a front view of the support cylinder in the nozzle assembly for an injection molding machine according to the second embodiment of the present invention.
  • FIG. 11 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to a third embodiment of the present invention.
  • FIG. 12 is a view showing a modified embodiment of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention.
  • Fig. 13 is a view showing another modification of the poppet of the nozzle assembly for the injection molding machine in the third embodiment of the present invention.
  • FIG. 14 is a view for explaining a method for forming a fine groove in the vent ring in accordance with an embodiment of the present invention.
  • 15 is a flowchart illustrating a method of forming microgrooves by etching in a vent ring according to an embodiment of the present invention.
  • 16 and 17 are flowcharts illustrating a method of forming microgrooves in a bent ring by laser processing according to an embodiment of the present invention.
  • FIG. 18 is an enlarged photograph showing that the microgroove is formed by etching the vent ring according to the exemplary embodiment of the present invention.
  • 19 is an enlarged photograph showing a coating other than titanium after forming a micro groove in a vent ring according to an embodiment of the present invention.
  • FIG. 20 is an enlarged photograph showing a titanium coating after forming a micro groove in a vent ring according to an embodiment of the present invention.
  • 21 is a front view showing the configuration of a vent ring used in a conventional nozzle assembly for an injection molding machine.
  • injection port 220 head exhaust hole
  • connection hole 350 connection hole 350
  • 360 cone
  • vent ring 410 head vent ring
  • gas collection space 430 first projection
  • FIG. 1 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to the first embodiment of the present invention
  • Figure 2 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the first embodiment of the present invention is coupled.
  • the nozzle assembly for the injection molding machine is the body 100, the head 200, the poppet 300, and the vent ring (400, 410, 420) ).
  • the body 100 has a cylindrical shape penetrated therein. One end of the body 100 is connected to an injection machine cylinder (not shown) to receive molten resin, and the other end thereof is coupled to the head 200.
  • the molten resin passage 110 is formed inside the body 100. Therefore, the molten resin supplied through one end of the body 100 is supplied to the head 200 through the molten resin passage 110.
  • a vent ring 420 for discharging the gas component included in the molten resin may be inserted into the rear end of the body 100.
  • the body gas discharge passage 120 is formed in the body 100.
  • the body gas discharge passage 120 communicates from the inner circumferential surface to the outer circumferential surface of the body 100.
  • the body gas discharge passage 120 discharges gas components contained in the molten resin to the outside of the body 100.
  • One end of the head 200 is coupled to the body 100, and an injection hole 210 is formed at the other end of the head 200 to eject molten resin into a mold (not shown).
  • the coupling of the body 100 and the head 200 may be a screw coupling. That is, a screw thread may be formed on an outer circumferential surface of one side of the head 200, and a screw thread may be formed on an inner circumferential surface of one side of the body 100 to screw the body 100 and the head 200.
  • the head 200 is configured to gradually reduce the inner diameter from the end portion of the body 100 to the injection hole 210 in order to eject the molten resin having the required diameter.
  • the head 200 may be inserted into the head vent ring 410 for discharging the gas component contained in the molten resin, the head exhaust hole 220 is formed from the inner peripheral surface to the outer peripheral surface to the gas component Discharge to the outside of the head 200.
  • the poppet 300 has cones 350 and 360 formed at both ends thereof, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the poppet 300 in the longitudinal direction.
  • FIG 3 is a perspective view showing one structure of a poppet used in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
  • the poppet 300 As shown in FIG. 3, the poppet 300 according to the exemplary embodiment has cones 350 and 360 integrally formed at both ends thereof, and the venting bearing 330 is formed at one side of the poppet 300. It is formed integrally. A plurality of connection holes 340 are formed in the vent ring support 330.
  • first and second resin moving grooves 310 and 320 are formed in the longitudinal direction, and the first resin moving groove 310 is bored in the head 200 direction.
  • the second resin moving groove 320 is blocked in the head 200 direction.
  • connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320.
  • the molten resin supplied to the molten resin passage 110 moves toward the head 200 through the second resin moving groove 320. Thereafter, the molten resin is limited to its movement by the blocked second resin moving groove 320, and is transferred to the first resin moving groove 310 formed around the resin. In this process, the molten resin is thinly and evenly spread, and gas components contained in the molten resin are effectively extracted.
  • the molten resin is moved to the head 200 along the first resin moving groove 310, and is ejected to the mold through the injection hole 210.
  • Figure 4 is an exploded perspective view showing another structure of the poppet used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention.
  • the poppet 300 includes an axis 370, cones 350 and 360, and a plurality of axis venting rings 380.
  • Cones 350 and 360 are coupled to both ends of the shaft 370.
  • the cones 350 and 360 may be screwed to the shaft 370.
  • a vent ring pedestal 330 is integrally formed in one cone 360, and a plurality of connection holes 340 are formed in the vent ring pedestal 330.
  • the plurality of shaft vent rings 380 may use a conventional vent ring, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the shaft vent ring 380, respectively.
  • the plurality of shaft vent rings 380 are fitted to the shaft 370.
  • first resin groove 320 is formed in the shaft vent ring 380 closest to the head 200 side of the shaft vent ring 380. That is, the first and second resin moving grooves 310 and 320 formed in each of the shaft vent rings 380 respectively form moving passages through which the molten resin can move, among which the second resin moving grooves 320 are formed. This moving passage is formed to be blocked in the head 200 direction.
  • connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320.
  • the molten resin moves through the second resin moving groove 320 and then passes to the first resin moving groove 310 to extract gas components. Thereafter, the molten resin is ejected into the mold through the injection port 210 of the head 200.
  • the vent ring 400 is fitted to the poppet 300 and discharges the extracted gas to the outside of the body 100.
  • FIG 5 is a front view showing an example of the vent ring used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention
  • Figure 21 is a front view showing an example of the vent ring used in the nozzle assembly for a conventional injection molding machine. .
  • the vent ring 400 includes a first protrusion 430, a second protrusion 440, and a gas collection space 405.
  • the first protrusion 430 protrudes in the longitudinal direction on one side outer circumferential surface of the vent ring 400.
  • the second protrusion 440 protrudes in the longitudinal direction on one side inner circumferential surface of the vent ring 400.
  • the gas collection space 405 is formed between the first protrusion 430 and the second protrusion 440.
  • Fine grooves 422 may be formed in the second protrusion 440.
  • the vent rings 400 may be provided in plural numbers to be in contact with each other, and gas components included in the molten resin may be formed by pressure. Collected into the gas collection space 405 through the groove 422.
  • the vent ring 400 may be formed of a plurality of radially divided pieces. There is a fine gap between each piece, through which the gas is released. The number of said pieces can be made into the value desired by those skilled in the art.
  • a gas moving groove 450 is radially formed in the first protrusion 430, and gas is supplied through the gas moving groove 450. Discharged.
  • a gas groove 452 connected to the gas moving groove 450 may be formed on an outer circumferential surface of the first vent ring 400. In this case, since the gas moves through the gas groove 452 and is discharged, the discharge effect may be further increased.
  • the vent ring 400 has a gas movement hole 460 formed from an inner circumference to an outer circumference thereof, and gas is discharged through the gas movement hole 460.
  • fine grooves 724 and 726 are integrally formed from the inner circumferential surface of the vent ring to the outer circumferential surface.
  • This configuration can separate the air and the molten resin, but there is a limit to the work speed, there is a limit to the forced separation of air from the outside.
  • the air may be forcibly extracted using the vacuum pump 600 or the like, and a gap between the gas collection space 405 and the vent ring of FIG. 5A and the gas movement of FIG. 5B may be used.
  • the exhaust gas may be extracted more quickly and efficiently through the groove 450, the gas groove 452 of FIG. 5C, or the gas movement hole 460 of FIG. 5D.
  • the depth of the microgroove 422 may be 0.001 to 0.02 mm as the depth at which the molten resin does not flow out while the molten resin and the gas are separated smoothly.
  • microgrooves 422 and 424 in the vent ring 400 require very precise processing, and the mass production of the venting grooves in which the microgrooves are formed by a conventional metal processing method requires considerable cost and time. .
  • the micro grooves in the nozzle assembly for the injection molding machine according to the embodiment of the present invention may be formed by etching.
  • the microgroove formation using etching is prepared. As shown in FIG. 14A, the vent ring 400 is prepared.
  • a resist layer 610 is formed on the vent ring 400.
  • the material constituting the resist layer 610 may be applied to a variety of commonly used resists such as photoresist or thermosetting resist, it may be formed by a film type or spray coating.
  • a micro pattern is formed on the resist layer 610.
  • the micro pattern formation method may be applied to various methods such as optical lithography, imprint lithography, soft etching, injection molding.
  • the surface of the vent ring 400 is etched by etching to remove the resist layer 610 on the surface of the vent ring 400.
  • the etching may be applied in various ways such as dry etching or wet etching.
  • vent rings 400 may be exposed to a corrosion solution to corrode or exposed to a plasma to form the microgrooves 422 and 424.
  • 15 is a flowchart illustrating a method of forming microgrooves by etching in a vent ring according to an embodiment of the present invention.
  • Forming a resist layer on the vent ring (S110), forming a micro pattern on the resist layer (S120), corroding a portion of the surface of the vent ring (S130) and the The microgrooves 422 and 424 may be formed through the step S140 of removing the resist layer.
  • FIG. 18 is an enlarged photograph illustrating formation of fine grooves by etching in a vent ring according to an exemplary embodiment of the present invention. As shown in the photograph, the molten resin and the gas may be separated and discharged smoothly.
  • vent ring 400 may form the microgrooves 424 through laser processing (light amplification by stimulated emission of radiation).
  • the microgrooves 422 and 424 may be formed by laser processing suitable for precision processing in order to have such precision.
  • 16 and 17 are flowcharts illustrating a method of forming microgrooves in a bent ring by laser processing according to an embodiment of the present invention.
  • the step of polishing the venting surface (S210), the removal of foreign substances on the surface of the venting ring (S220), the step of forming a micro groove by laser processing the venting surface (S231), polishing A fine groove may be formed through a polishing step (S233) and a titanium coating step (S235) on the bent ring surface.
  • the step of removing foreign matters on the surface of the bent ring may be performed in the middle of each step to increase the precision of the bent ring micro grooves regardless of the order shown, the polishing step (S233) It can also be inserted in the middle of the fabrication process.
  • the titanium coating steps S237 and S239 may be roughened before and after the laser processing step S239, which may increase surface precision and prevent corrosion after processing.
  • the step S220 of removing the foreign matter from the surface of the bent ring may be performed in the middle of each step to increase the precision of the bent ring microgroove, and the polishing step S233 may also be performed. It can also be inserted in the middle of the fabrication process.
  • Figure 19 shows the surface corrosion that may occur when coating other than titanium after forming the micro grooves in the vent ring according to the embodiment of the present invention by laser processing, irregularities are generated in the micro grooves to discharge gas from the micro grooves This is not easy.
  • FIG. 20 is an enlarged photograph showing the formation of the microgroove according to the step of FIG. 17 by laser processing the vent ring according to the embodiment of the present invention. Can be.
  • powder metallurgy In some cases, such as the production of small metal parts such as gears for use in small machines, casting requires a great deal of machining, and the use of powder metallurgy can be more economical because of the large amount of metal that is lost. It is also impractical to melt them when making alloys with very high melting points, such as metals such as tungsten, or materials that do not melt together, such as copper and graphite. Powder metallurgy is also used to make porous objects through which liquids or gases can permeate.
  • the vent ring 400 in which the microgrooves 422 are formed may be manufactured using a sintering method.
  • the vent ring 400 When the vent ring 400 is formed by the sintering method, the vent ring 400 may be precisely formed. In addition, when the micro groove 422 is formed, the gas component included in the molten resin may pass through the vent ring 400. It is possible to expect more effective gas emissions.
  • the molten resin supplied to the molten resin passage 110 is supplied to the second resin moving groove 320 through the connection hole 340 and moves along the second resin moving groove 320. However, since the end of the second resin moving groove 320 is blocked, the molten resin is restricted to the movement, and then moves along the first resin moving groove 310 after being transferred to the first resin moving groove 310. In this process, the molten resin is thinly and evenly spread, and the gas component contained in the molten resin is effectively extracted.
  • the extracted gas component is collected in the gas collection space 405 through a gap formed between the vent rings 400.
  • a gap between the pieces constituting the vent ring 400 is also collected in the gas collection space 405. Thereafter, the collected gas is moved to the inner circumferential surface of the body 100 through the gap between the pieces constituting the vent ring 400, and the body through the body gas discharge passage 120 formed in the body 100. It is discharged to the outside of the (100).
  • a nozzle assembly for an injection machine according to a second embodiment of the present invention will be described in detail.
  • the same configuration as that of the nozzle assembly for the injection molding machine according to the first embodiment of the present invention will be omitted from the configuration of the nozzle assembly for the injection molding machine according to the second embodiment of the present invention.
  • FIG. 6 is a perspective view showing the disassembled nozzle assembly for the injection molding machine according to the second embodiment of the present invention
  • Figure 7 is a cross-sectional view showing a combined nozzle assembly for the injection molding machine according to the second embodiment of the present invention
  • 8 is a cross-sectional view taken along line AA of FIG. 7.
  • the nozzle assembly for the injection molding machine according to the second embodiment of the present invention, the body 100, the head 200, the support cylinder 500, the poppet 300, and the vent Ring 470.
  • One end of the body 100 is connected to an injection cylinder (not shown), and the other end is coupled to the head 200.
  • the molten resin passage 110 is formed inside the body 100.
  • One end of the head 200 is coupled to the body 100, and an injection hole 210 is formed at the other end of the head 200.
  • the support cylinder 500 has a cylindrical shape penetrated therein and is inserted into the body 100.
  • the inner circumferential surface of the support cylinder 500 is formed with a plurality of support grooves 510.
  • a support cylinder protrusion jaw 530 is formed between the support grooves 510.
  • the support groove 510 is formed with a support groove exhaust hole 520 to discharge the gas moved to the support groove 510.
  • the poppet 300 has cones 350 and 360 formed at both ends thereof, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the poppet 300 in the longitudinal direction.
  • a vent ring support 330 is formed at one side of the poppet 300, and a plurality of connection holes 340 are formed in the vent ring support 330.
  • connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320.
  • first resin moving groove 310 is drilled in the direction of the head 200, and the second resin moving groove 320 is blocked in the direction of the head 200.
  • a poppet protruding jaw 390 is formed between the first and second resin moving grooves 310 and 320.
  • the poppet protrusion 390 is alternately spaced apart from the support tube protrusion 530 by a set distance d.
  • the set distance d may be 0.3 to 0.6 mm.
  • the molten resin supplied to the molten resin passage 110 moves toward the head 200 through the second resin moving groove 320. Thereafter, the molten resin is limited to its movement by the blocked second resin moving groove 320. Therefore, the molten resin is transferred to the first resin moving groove 310 through a space between the poppet protrusion 390 and the support tube protrusion 530 spaced apart from each other. In this process, the molten resin is thinly and evenly spread, and gas components contained in the molten resin are effectively extracted.
  • the molten resin is moved to the head 200 along the first resin moving groove 310, and is ejected to the mold through the injection hole 210.
  • the vent ring member 470 is divided into a plurality of pieces, and each piece is inserted into the support groove 510.
  • each piece of the venting member 470 is convexly protruding from the inner circumferential surface, the protruding portion is inserted into a predetermined portion of the first and second resin moving grooves 310 and 320 so that the molten resin is spread evenly. It can move and facilitate the extraction of the gas contained in the molten resin.
  • the vent ring 470 includes a first protrusion 430, a second protrusion 440, and a gas collection space 405.
  • the first protrusion 430 protrudes in a longitudinal direction on one side outer circumferential surface of the vent ring member 470
  • the second protrusion 440 extends in a longitudinal direction on one inner side circumferential surface of the vent ring member 470.
  • the gas collection space 405 is formed between the first protrusion 430 and the second protrusion 440.
  • the nozzle assembly for the injection machine may further include a vacuum pump (see FIG. 5D) to effectively discharge the gas, the vacuum pump is the body gas discharge passage 120 and It is connected.
  • the vacuum pump may be provided outside the body 100 and may be integrally formed with the body 100.
  • the fine groove 428 may be formed in the second protrusion 440.
  • microgroove 428 of the second embodiment of the present invention is the same as the microgroove 422 described in the first embodiment, detailed description thereof will be omitted.
  • a nozzle assembly for an injection molding machine according to a third embodiment of the present invention will be described in detail.
  • the same configuration as that of the nozzle assembly for the injection molding machine according to the first and second embodiments of the present invention among the configuration of the nozzle assembly for the injection molding machine according to the second embodiment of the present invention uses the same reference numerals, and unless otherwise specified, the same configuration is used. The operation is omitted and detailed description is omitted.
  • FIG. 11 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to a third embodiment of the present invention.
  • the nozzle assembly for the injection molding machine includes a body 100, a head 200, a poppet 301, and a vent ring 400.
  • At least one poppet groove 303 is formed in the longitudinal direction of the poppet 301 to move the molten resin and to extract the gas contained in the molten resin.
  • the poppet groove 303 shown in FIG. 11 is formed in a helical shape, and the molten resin passes and is thinly spread so that gas can be extracted.
  • the configuration of the poppet is simple, so that the production cost can be lowered and a similar effect can be obtained.
  • FIG. 12 is a view showing a modified embodiment of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention.
  • the poppet grooves 3031, 3032, and 3033 are formed with at least one bent portion 3030 whose direction is changed. Since the direction of the poppet grooves 3031, 3032, and 3033 is changed before and after the bent portion 3030, the molten resin may spread and the gas may be easily separated.
  • a bent groove 3037 is formed in the bent portion 3030, and the directions of the poppet grooves 3034, 3035 and 3036 are changed before and after the bent groove 3037. Gas can be separated more easily.
  • Figure 13 (a) is a perspective view showing another modified example of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention
  • Figure 13 (b) is a line BB of Figure 13 (a) The cross section along the.
  • a plurality of poppet grooves 309 are formed in the poppet 307 in the longitudinal direction.
  • the configuration of the poppet 307 is simpler, which can significantly reduce the production cost.
  • the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a vent ring which smoothly discharges gas contained in a molten resin flowing at a high pressure to the outside to produce high quality injection molded products, to a nozzle assembly for an injection machine comprising the vent ring, and to a method for manufacturing same. The vent ring according to the present invention comprises a first protrusion protruding in a lengthwise direction from the outer surface of one side thereof, a second protrusion protruding in a lengthwise direction from the inner surface of one side thereof, and a gas collection space formed between the first protrusion and the second protrusion, wherein said second protrusion has a vent ring microgroove formed in a radial direction.

Description

벤트링, 이를 구비한 사출기용 노즐 어셈블리 및 그 생산 방법Vent ring, nozzle assembly for injection molding machine having the same and production method thereof
본 발명은 벤트링, 이를 구비한 사출기용 노즐 어셈블리 및 그 생산 방법 관한 것이다. 더욱 상세하게는 고압으로 이동하는 용융 수지에 포함되어 있는 가스를 외부로 원활하게 배출시킴으로써 고품질의 사출 제품을 제조할 수 있도록 하는 벤트링, 이를 구비한 사출기용 노즐 어셈블리 및 그 생산 방법에 관한 것이다.The present invention relates to a vent ring, a nozzle assembly for an injection molding machine having the same, and a production method thereof. More specifically, the present invention relates to a venting ring for manufacturing a high-quality injection product by smoothly discharging the gas contained in the molten resin moving at high pressure to the outside, an injection machine nozzle assembly having the same, and a production method thereof.
사출 성형은 열가소성수지를 성형하는 대표적인 방법이다. 사출 성형은 용융된 수지를 금형 내로 분사하여 제품을 만든다. 따라서, 사출기에는 용융된 수지를 금형 내로 분사하기 위한 노즐이 장착된다. Injection molding is a representative method for molding thermoplastics. Injection molding sprays the molten resin into the mold to make the product. Thus, the injection machine is equipped with a nozzle for injecting the molten resin into the mold.
사출기 노즐은 용융된 수지를 스크류 실린더를 이용하여 압송시키면서 사출 금형으로 공급되도록 한다. 이러한 사출기 노즐에 대해서는 실용신안공고번호 제1990-4225호(이하, "인용고안"이라고 한다.)를 통해 제안된 바 있다.The injector nozzle allows the molten resin to be fed to the injection mold while pressing the screw cylinder. Such injection machine nozzles have been proposed through Utility Model Publication No. 1990-4225 (hereinafter referred to as "quoting citation").
그러나, 인용고안에 의하면, 용융된 수지로부터 가스를 효과적으로 추출할 수 있는 구성은 없었다. 따라서, 사출구를 통해 분사되는 용융 수지에는 다량의 가스 성분들이 포함되어 있고, 이들 가스 성분들에 의하여 제품 불량이 발생되기도 하였다. However, according to the cited proposal, there was no configuration capable of effectively extracting gas from the molten resin. Therefore, a large amount of gas components are included in the molten resin injected through the injection hole, and product defects may be caused by these gas components.
또한, 가스 성분을 효과적으로 제거하지 못하므로 용융된 수지에 포함된 가스 성분들을 건조시키기 위하여는 별도의 건조기가 필요하였다. 따라서, 설비가 복잡하고 제작 비용이 과대해지는 문제점이 있었다.In addition, since the gas component is not effectively removed, a separate dryer is required to dry the gas components included in the molten resin. Therefore, there is a problem that the equipment is complicated and the manufacturing cost is excessive.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 고압으로 이동하는 용융 수지에 포함되어 있는 가스를 효과적으로 추출하여 고품질의 사출 제품을 제조할 수 있는 벤트링, 이를 구비한 사출기용 노즐 어셈블리 및 그 생산 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, a vent ring capable of producing a high-quality injection product by effectively extracting the gas contained in the molten resin moving at high pressure, nozzle assembly for injection machine having the same and The purpose is to provide the production method.
상기와 같은 목적을 달성하기 위하여, In order to achieve the above object,
본 발명의 실시예에 따른 벤트링은, 일측면 외주면에 길이방향으로 돌출된 제1돌출부, 일측면 내주면에 길이방향으로 돌출된 제2돌출부 그리고 상기 제1돌출부와 상기 제2돌출부 사이에 형성된 가스 수집 공간을 포함하며, 상기 제2돌출부에 방사 방향으로 벤트링 미세홈이 형성될 수 있다.Vent ring according to an embodiment of the present invention, the first projection protruding in the longitudinal direction on one side outer peripheral surface, the second projection protruding in the longitudinal direction on one side inner peripheral surface and the gas formed between the first projection and the second projection It includes a collection space, the second protrusion may be formed in the venting micro groove in the radial direction.
상기 벤트링 미세홈의 깊이는 0.001mm 내지 0.02mm 범위로 할 수 있다.The depth of the venting microgroove may be in the range of 0.001 mm to 0.02 mm.
상기 벤트링은 복수개의 조각으로 분할될 수 있다.The vent ring may be divided into a plurality of pieces.
본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리는, 내부에 용융된 수지가 지나가는 용융 수지 통로가 형성되어 있는 바디; 일단은 상기 바디에 결합되며, 타단에는 용융된 수지를 분사하는 사출구가 형성된 헤드; 상기 바디 내부에 삽치되어 있으며, 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하는 포페트; 그리고 상기 포페트에 끼워지며, 상기 추출된 가스를 배출하는 벤트링;을 포함하되, 상기 벤트링은 본 발명의 실시예에 의한 벤트링일 수 있다.The nozzle assembly for an injection molding machine according to the first embodiment of the present invention includes a body in which a molten resin passage through which molten resin passes is formed; A head having one end coupled to the body and the other end having an injection hole for injecting molten resin; Poppet inserted in the body, the molten resin is moved to extract the gas contained in the molten resin; And a vent ring fitted into the poppet and discharging the extracted gas. The vent ring may be a vent ring according to an embodiment of the present invention.
상기 벤트링은 복수개로 구비되어 서로 맞닿아 정렬되어 있고, 상기 벤트링 미세홈이 상기 벤트링의 적어도 일면에 형성될 수 있다.The vent ring may be provided in plural numbers to be in contact with each other, and the vent ring microgroove may be formed on at least one surface of the vent ring.
상기 포페트에는 상기 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하도록 제1수지 이동홈과 제2수지 이동홈이 형성되어 있으며, 상기 제1수지 이동홈은 상기 헤드 방향으로 뚫려 있으며, 상기 제2수지 이동홈은 상기 헤드 방향으로 막혀 있을 수 있다.In the poppet, a first resin moving groove and a second resin moving groove are formed to move the molten resin and to extract the gas contained in the molten resin, and the first resin moving groove is drilled in the head direction. The second resin moving groove may be blocked in the head direction.
상기 포페트의 일측부에는 벤트링 받침대가 형성되어 있으며, 상기 벤트링 받침대에는 상기 용융 수지 통로와 상기 제2수지 이동홈을 연결하는 연결 구멍이 형성될 수 있다.A venting pedestal may be formed at one side of the poppet, and the venting pedestal may be provided with a connection hole connecting the molten resin passage and the second resin moving groove.
상기 포페트는, 축; 상기 축의 일단에 결합되며, 상기 용융 수지 통로와 상기 제2수지 이동홈을 연결하는 연결 구멍이 형성된 벤트링 받침대가 구비되어 있는 콘; 그리고 상기 축에 끼워지며, 외주면에 상기 제1,2수지 이동홈이 형성된 복수개의 축벤트링; 을 포함할 수 있다.The poppet, the shaft; A cone coupled to one end of the shaft and having a venting pedestal formed with a connection hole connecting the molten resin passageway and the second resin movement groove; And a plurality of shaft vent rings fitted to the shaft and having the first and second resin moving grooves formed on outer surfaces thereof. It may include.
상기 헤드 내부에 헤드 벤트링이 삽입되고, 상기 헤드의 내주면에서 외주면으로 헤드 배기 구멍이 형성될 수 있다.A head vent ring may be inserted into the head, and a head exhaust hole may be formed from an inner circumferential surface of the head to an outer circumferential surface.
본 발명의 제2 실시예에 의한 사출기용 노즐 어셈블리는 상기 바디 내부에서 상기 포페트를 감싸도록 구비되며, 복수개의 지지홈이 형성된 지지통을 더 포함하되, 상기 벤트링은 복수개의 조각으로 분할되어 있으며, 각 조각들은 상기 지지홈에 삽입될 수 있다.The nozzle assembly for the injection molding machine according to the second embodiment of the present invention is provided to surround the poppet in the body, and further includes a support cylinder in which a plurality of support grooves are formed, and the vent ring is divided into a plurality of pieces. Each piece may be inserted into the support groove.
상기 포페트의 일측부에는 벤트링 받침대가 형성되어 있으며, 상기 벤트링 받침대에는 상기 용융 수지 통로와 상기 제2수지 이동홈을 연결하는 연결구멍이 형성될 수 있다.A venting pedestal is formed at one side of the poppet, and the venting pedestal may be provided with a connection hole for connecting the molten resin passage and the second resin moving groove.
상기 지지홈 사이에는 복수개의 지지통 돌출턱이 형성되고, 상기 제1,2수지 이동홈 사이에는 포페트 돌출턱이 형성되어, 상기 지지통 돌출턱과 상기 포페트 돌출턱은 교대로 설정 거리만큼 이격될 수 있다.A plurality of support cylinder protrusion jaws are formed between the support grooves, and a poppet protrusion jaw is formed between the first and second resin moving grooves, and the support cylinder protrusion jaws and the poppet protrusion jaw alternately by a predetermined distance. Can be spaced apart.
상기 설정 거리는 0.3~0.6mm 인 것이 바람직하다.It is preferable that the said setting distance is 0.3-0.6 mm.
상기 지지홈에는 지지홈 배기 구멍이 형성될 수 있다.The support groove may have a support groove exhaust hole.
본 발명의 제3 실시예에 의한 사출기용 노즐 어셈블리는 상기 포페트에 상기 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하도록 길이 방향으로 적어도 하나의 포페트홈이 형성될 수 있다.In the nozzle assembly for the injection molding machine according to the third embodiment of the present invention, at least one poppet groove may be formed in the longitudinal direction to move the molten resin and extract gas contained in the molten resin. .
상기 포페트홈은 직선으로 형성될 수 있다.The poppet groove may be formed in a straight line.
상기 포페트홈은 나선형으로 형성될 수 있다.The poppet groove may be formed spirally.
상기 포페트는 상기 포페트홈의 방향이 바뀌어 형성되는 절곡 부분이 적어도 하나 이상 형성될 수 있다.The poppet may be formed with at least one bent portion formed by changing the direction of the poppet groove.
상기 절곡 부분에는 상기 용융 수지가 고이는 절곡 홈(groove)이 형성될 수 있다.The bent portion may be formed with a groove (groove) in which the molten resin is accumulated.
상기 벤트링은 소결(sintering) 형성될 수 있다.The vent ring may be sintered.
본 발명의 실시예에 의한 벤트링의 생산 방법은, 공기를 외부로 배출하기 위해 적어도 일면에 미세홈이 형성된 벤트링의 생산방법에 있어서, 상기 미세홈은 에칭으로 형성하는 방법, 방전 가공으로 형성하는 방법 또는 레이저를 이용하여 형성하는 방법 중 어느 하나의 방법으로 형성될 수 있다.In the method for producing a vent ring according to an embodiment of the present invention, in the method for producing a vent ring having microgrooves formed on at least one surface for discharging air to the outside, the method of forming the microgrooves by etching, and forming by electric discharge machining It may be formed by any one of the method or the method of forming using a laser.
상기 미세홈의 깊이는 0.001mm 내지 0.02mm 범위로 할 수 있다.The depth of the micro grooves may be in the range 0.001mm to 0.02mm.
상기 미세홈을 에칭으로 형성하는 방법은, 벤트링 상에 레지스트 층을 형성하는 단계; 상기 레지스트 층에 마이크로 패턴을 형성하는 단계; 상기 벤트링의 표면 일부를 부식시키는 단계; 및 상기 레지스트 층을 제거하는 단계; 를 포함할 수 있다.The method of forming the microgrooves by etching includes forming a resist layer on the venting ring; Forming a micro pattern on the resist layer; Corroding a portion of the surface of the vent ring; And removing the resist layer; It may include.
상기 마이크로 패턴 형성 방법은, 광 리소그래피, 임프린트 리소그래피, 연성 식각 및 사출 성형을 포함할 수 있다.The micropattern forming method may include optical lithography, imprint lithography, soft etching and injection molding.
상기 레이저를 이용하여 미세홈을 형성하는 방법은, 레이저로 설정된 깊이의 홈을 가공하는 단계를 포함할 수 있다.The method of forming the microgroove using the laser may include processing a groove having a depth set by the laser.
상기 레이저를 이용하여 미세홈을 형성하는 방법은, 표면에 티타늄 코팅을 하는 단계를 더 포함할 수 있다.The method of forming the microgrooves using the laser may further include applying titanium to the surface.
상기 레이저를 이용하여 미세홈을 형성하는 방법은, 초음파로 표면의 이물질을 제거하는 단계를 더 포함할 수 있다.The method of forming the microgrooves using the laser may further include removing foreign substances on the surface by ultrasonic waves.
상기 벤트링은 소결(sintering) 형성될 수 있다.The vent ring may be sintered.
상기한 바와 같이, 본 발명은 벤트링에 형성된 미세홈을 통해 공기가 배출되어 사출제품의 품질 향상을 도모할 수 있다.As described above, the present invention can be discharged through the fine groove formed in the vent ring to improve the quality of the injection product.
또한, 고압으로 이동하는 용융 수지를 제2수지 이동홈에서 제1수지 이동홈으로 넘어간 후 분출하도록 하여 용융 수지를 얇고 고르게 펴며, 용융 수지에 포함되어 있는 가스 성분을 효과적으로 추출한다. In addition, the molten resin moving at a high pressure is passed from the second resin moving groove to the first resin moving groove to be ejected, thereby spreading the molten resin thinly and evenly, and effectively extracting gas components contained in the molten resin.
또한, 추출된 가스를 벤트링 사이의 틈뿐만 아니라 벤트링을 구성하는 각 조각들 사이의 틈을 통하여 외부로 배출하므로 효과적으로 용융 수지에 포함된 가스 성분을 배출할 수 있다.In addition, since the extracted gas is discharged to the outside through the gap between the pieces of the vent ring as well as the gap between the vent ring, it is possible to effectively discharge the gas component contained in the molten resin.
따라서, 별도의 건조기가 필요 없고, 사출 제품의 품질 향상을 도모할 수 있다.Therefore, a separate dryer is not necessary and the quality of an injection product can be improved.
도 1은 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리가 분해된 모습을 보인 사시도이다.1 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리가 결합된 모습을 보인 단면도이다.2 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the first embodiment of the present invention is coupled.
도 3은 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 포페트의 하나의 구조를 보인 사시도이다.3 is a perspective view showing one structure of a poppet used in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
도 4는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 포페트의 다른 구조를 보인 분해 사시도이다.Figure 4 is an exploded perspective view showing another structure of the poppet used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 벤트링의 예를 도시한 정면도이다.5 is a front view showing an example of a vent ring for use in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
도 6은 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리가 결합된 모습을 보인 분해 사시도이다.Figure 6 is an exploded perspective view showing a state in which the nozzle assembly for the injection molding machine according to the second embodiment of the present invention is coupled.
도 7은 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리가 결합된 모습을 보인 단면도이다.7 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the second embodiment of the present invention is coupled.
도 8은 도 7의 A-A 단면도이다.8 is a cross-sectional view taken along the line A-A of FIG.
도 9는 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리에서 벤트링 부재의 정면도이다.9 is a front view of the venting member in the nozzle assembly for an injection molding machine according to the second embodiment of the present invention.
도 10은 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리에서 지지통의 정면도이다.10 is a front view of the support cylinder in the nozzle assembly for an injection molding machine according to the second embodiment of the present invention.
도 11은 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리가 분해된 모습을 보인 사시도이다.11 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to a third embodiment of the present invention.
도 12는 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리의 포페트의변형된 실시예를 도시한 도면이다.12 is a view showing a modified embodiment of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention.
도13은 본 발명의 제3 실시예에 사출기용 노즐 어셈블리의 포페트의 또따른 변형예를 도시한 도면이다.Fig. 13 is a view showing another modification of the poppet of the nozzle assembly for the injection molding machine in the third embodiment of the present invention.
도14는 본 발명의 실시예에 따른 벤트링에 에칭으로 미세홈을 형성하는 방법을 설명하는 도면이다.14 is a view for explaining a method for forming a fine groove in the vent ring in accordance with an embodiment of the present invention.
도15는 본 발명의 실시예에 따른 벤트링에 에칭으로 미세홈을 형성하는 방법을 설명하는 플로우 차트이다.15 is a flowchart illustrating a method of forming microgrooves by etching in a vent ring according to an embodiment of the present invention.
도16 및 도17은 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 미세홈을 형성하는 방법을 설명하는 플로우 차트이다.16 and 17 are flowcharts illustrating a method of forming microgrooves in a bent ring by laser processing according to an embodiment of the present invention.
도18은 본 발명의 실시예에 따른 벤트링에 에칭으로 미세홈을 형성한 것을 나타내는 확대 사진이다.18 is an enlarged photograph showing that the microgroove is formed by etching the vent ring according to the exemplary embodiment of the present invention.
도19은 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 미세홈을 형성한 후 티타늄 이외의 코팅을 한 것을 나타내는 확대 사진이다.19 is an enlarged photograph showing a coating other than titanium after forming a micro groove in a vent ring according to an embodiment of the present invention.
도20는 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 미세홈을 형성한 후 티타늄 코팅을 한 것을 나타내는 확대 사진이다.20 is an enlarged photograph showing a titanium coating after forming a micro groove in a vent ring according to an embodiment of the present invention.
도 21은 종래의 사출기용 노즐 어셈블리에 사용되는 벤트링의 구성을 도시한 정면도이다.21 is a front view showing the configuration of a vent ring used in a conventional nozzle assembly for an injection molding machine.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
100: 바디 110: 용융 수지 통로100: body 110: molten resin passage
120: 바디 가스 배출 통로 200: 헤드120: body gas discharge passage 200: head
210: 사출구 220: 헤드 배기 구멍210: injection port 220: head exhaust hole
300: 포페트 (poppet) 310: 제1수지 이동홈300: poppet 310: first resin moving groove
320: 제2수지 이동홈 330: 벤트링 받침320: second resin moving groove 330: vent ring support
340: 연결 구멍 350, 360: 콘340: connection hole 350, 360: cone
370: 축 380: 축 벤트링370: shaft 380: shaft vent ring
400, 410, 420: 벤트링 410: 헤드 벤트링400, 410, 420: vent ring 410: head vent ring
405: 가스 수집 공간 430: 제1돌출부405: gas collection space 430: first projection
440: 제2돌출부 450: 가스 이동 홈440: second projection 450: gas moving groove
460: 가스 이동 구멍 520: 지지홈 배기 구멍460: gas shift hole 520: support groove exhaust hole
이하, 첨부된 도면을 참조로, 본 발명의 실시예들에 따른 사출기용 노즐 어셈블리를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, a nozzle assembly for an injection machine according to embodiments of the present invention will be described in detail.
도 1은 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리가 분해된 모습을 보인 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리가 결합된 모습을 보인 단면도이다.1 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to the first embodiment of the present invention, Figure 2 is a cross-sectional view showing a state in which the nozzle assembly for the injection molding machine according to the first embodiment of the present invention is coupled.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리는 바디(100), 헤드(200), 포페트(300), 그리고 벤트링(400, 410, 420)을 포함한다.1 and 2, the nozzle assembly for the injection molding machine according to the first embodiment of the present invention is the body 100, the head 200, the poppet 300, and the vent ring (400, 410, 420) ).
상기 바디(100)는 내부가 관통된 원통 형상이다. 상기 바디(100)는 그 일단이 사출기 실린더(도시하지 않음)에 연결되어 용융된 수지를 공급받으며, 그 타단은 상기 헤드(200)와 결합되어 있다.The body 100 has a cylindrical shape penetrated therein. One end of the body 100 is connected to an injection machine cylinder (not shown) to receive molten resin, and the other end thereof is coupled to the head 200.
상기 바디(100)의 내부에는 용융 수지 통로(110)가 형성되어 있다. 따라서, 상기 바디(100)의 일단을 통해 공급된 용융된 수지는 상기 용융 수지 통로(110)를 통해 상기 헤드(200)에 공급된다.The molten resin passage 110 is formed inside the body 100. Therefore, the molten resin supplied through one end of the body 100 is supplied to the head 200 through the molten resin passage 110.
또한, 상기 바디(100)의 후단부에는 용융된 수지에 포함된 가스 성분을 배출하기 위한 벤트링(420)이 삽입될 수 있다. In addition, a vent ring 420 for discharging the gas component included in the molten resin may be inserted into the rear end of the body 100.
또한, 상기 바디(100)에는 바디 가스 배출 통로(120)가 형성되어 있다. 상기 바디 가스 배출 통로(120)은 상기 바디(100)의 내주면에서 외주면까지 연통되어 있다. 상기 바디 가스 배출 통로(120)는 용융된 수지에 포함된 가스 성분을 상기 바디(100)의 외부로 배출한다. In addition, the body gas discharge passage 120 is formed in the body 100. The body gas discharge passage 120 communicates from the inner circumferential surface to the outer circumferential surface of the body 100. The body gas discharge passage 120 discharges gas components contained in the molten resin to the outside of the body 100.
상기 헤드(200)는 그 일단이 상기 바디(100)와 결합하고 그 타단에는 사출구(210)가 형성되어 있어, 용융된 수지를 금형(도시하지 않음)으로 분출한다.One end of the head 200 is coupled to the body 100, and an injection hole 210 is formed at the other end of the head 200 to eject molten resin into a mold (not shown).
상기 바디(100)와 헤드(200)의 결합은 나사결합일 수 있다. 즉, 상기 헤드(200)의 일측 외주면에 나사산을 형성하고, 상기 바디(100)의 일측 내주면에 나사산을 형성하여 상기 바디(100)와 헤드(200)를 나사 결합할 수 있다.The coupling of the body 100 and the head 200 may be a screw coupling. That is, a screw thread may be formed on an outer circumferential surface of one side of the head 200, and a screw thread may be formed on an inner circumferential surface of one side of the body 100 to screw the body 100 and the head 200.
또한, 상기 헤드(200)는 필요로 하는 직경을 가진 용융된 수지를 분출시키기 위해 상기 바디(100)측 단부로부터 상기 사출구(210)로 점차 내경이 축소되도록 구성되어 있다. In addition, the head 200 is configured to gradually reduce the inner diameter from the end portion of the body 100 to the injection hole 210 in order to eject the molten resin having the required diameter.
또한, 상기 헤드(200)에는 용융된 수지에 포함된 가스 성분을 배출하기 위한 헤드 벤트링(410)이 삽입될 수 있으며, 내주면으로부터 외주면까지 헤드 배기 구멍(220)이 형성되어 상기 가스 성분을 상기 헤드(200) 외부로 배출한다.In addition, the head 200 may be inserted into the head vent ring 410 for discharging the gas component contained in the molten resin, the head exhaust hole 220 is formed from the inner peripheral surface to the outer peripheral surface to the gas component Discharge to the outside of the head 200.
따라서, 용융된 수지에서 가스 성분을 더 많이 제거할 수 있어 사출 제품의 품질 향상을 도모하게 된다.Therefore, more gaseous components can be removed from the molten resin to improve the quality of the injection molded product.
상기 포페트(300)는 양 단부에 콘(350, 360)이 형성되어 있으며, 상기 포페트(300)의 외주면에는 길이 방향으로 제1,2수지 이동홈(310, 320)이 형성되어 있다. The poppet 300 has cones 350 and 360 formed at both ends thereof, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the poppet 300 in the longitudinal direction.
도 3을 참조로, 상기 포페트의 일실시예를 상세히 설명한다.3, an embodiment of the poppet will be described in detail.
도 3은 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 포페트의 하나의 구조를 보인 사시도이다.3 is a perspective view showing one structure of a poppet used in the nozzle assembly for an injection molding machine according to the first embodiment of the present invention.
도 3에 도시된 바와 같이, 일 실시예에 따른 포페트(300)는 양단에 콘들(350, 360)이 일체로 형성되어 있으며, 포페트(300)의 일측부에 벤트링 받침(330)이 일체로 형성되어 있다. 상기 벤트링 받침(330)에는 복수개의 연결 구멍(340)이 형성되어 있다. As shown in FIG. 3, the poppet 300 according to the exemplary embodiment has cones 350 and 360 integrally formed at both ends thereof, and the venting bearing 330 is formed at one side of the poppet 300. It is formed integrally. A plurality of connection holes 340 are formed in the vent ring support 330.
상기 포페트(300)의 외주면에는 길이 방향으로 제1,2수지 이동홈(310, 320)이 형성되어 있으며, 상기 제1수지 이동홈(310)은 상기 헤드(200) 방향으로 뚫려 있으며, 상기 제2수지 이동홈(320)은 상기 헤드(200) 방향으로 막혀 있다.On the outer circumferential surface of the poppet 300, first and second resin moving grooves 310 and 320 are formed in the longitudinal direction, and the first resin moving groove 310 is bored in the head 200 direction. The second resin moving groove 320 is blocked in the head 200 direction.
또한, 상기 연결구멍(340)은 상기 용융 수지 통로(110)와 상기 제2수지 이동홈(320)을 연결한다. In addition, the connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320.
따라서, 상기 용융 수지 통로(110)로 공급된 용융된 수지는 상기 제2수지 이동홈(320)을 통하여 헤드(200) 방향으로 이동한다. 그 후, 상기 용융된 수지는 막혀있는 제2수지 이동홈(320)에 의해 그 이동을 제한 받게 되고, 주위에 형성된 제1수지 이동홈(310)으로 넘어가게 된다. 이 과정에서 용융된 수지는 얇고 고르게 펴지며, 용융된 수지에 포함되어 있는 가스 성분이 효과적으로 추출되게 된다.Therefore, the molten resin supplied to the molten resin passage 110 moves toward the head 200 through the second resin moving groove 320. Thereafter, the molten resin is limited to its movement by the blocked second resin moving groove 320, and is transferred to the first resin moving groove 310 formed around the resin. In this process, the molten resin is thinly and evenly spread, and gas components contained in the molten resin are effectively extracted.
그 후, 용융된 수지는 제1수지 이동홈(310)을 따라 헤드(200)로 이동하게 되고, 상기 사출구(210)를 통해 금형으로 분출되게 된다.Thereafter, the molten resin is moved to the head 200 along the first resin moving groove 310, and is ejected to the mold through the injection hole 210.
도 4를 참조로, 상기 포페트의 다른 실시예를 상세히 설명한다.4, another embodiment of the poppet will be described in detail.
도 4는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 포페트의 다른 구조를 보인 분해 사시도이다.Figure 4 is an exploded perspective view showing another structure of the poppet used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention.
도 4에 도시된 바와 같이, 다른 실시예에 따른 포페트(300)는 축(370), 콘들(350, 360), 복수개의 축 벤트링(380)을 포함한다.As shown in FIG. 4, the poppet 300 according to another embodiment includes an axis 370, cones 350 and 360, and a plurality of axis venting rings 380.
콘들(350, 360)은 상기 축(370)의 양단에 결합되어 있다. 상기 콘들(350, 360)은 상기 축(370)에 나사 결합할 수 있다. Cones 350 and 360 are coupled to both ends of the shaft 370. The cones 350 and 360 may be screwed to the shaft 370.
또한, 하나의 콘(360)에는 벤트링 받침대(330)가 일체로 형성되어 있으며, 상기 벤트링 받침대(330)에는 연결 구멍(340)이 복수개 형성되어 있다.In addition, a vent ring pedestal 330 is integrally formed in one cone 360, and a plurality of connection holes 340 are formed in the vent ring pedestal 330.
상기 복수개의 축 벤트링(380)은 통상적인 벤트링을 사용할 수 있으며, 축 벤트링(380)의 외주면에는 각각 제1,2수지 이동홈(310, 320)이 형성되어 있다. 상기 복수개의 축 벤트링(380)은 상기 축(370)에 끼워진다.The plurality of shaft vent rings 380 may use a conventional vent ring, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the shaft vent ring 380, respectively. The plurality of shaft vent rings 380 are fitted to the shaft 370.
또한, 상기 축 벤트링(380) 중 헤드(200)쪽에 가장 가까운 축 벤트링(380)에는 제1수지홈(320)만이 형성되어 있다. 즉 각각의 축 벤트링(380)에 형성된 제1,2수지 이동홈(310, 320) 전체로서 용융된 수지가 이동할 수 있는 이동 통로를 각각 형성하게 되고, 그 중 제2수지 이동홈(320)이 형성하는 이동 통로는 헤드(200) 방향으로 막혀 있게 된다. In addition, only the first resin groove 320 is formed in the shaft vent ring 380 closest to the head 200 side of the shaft vent ring 380. That is, the first and second resin moving grooves 310 and 320 formed in each of the shaft vent rings 380 respectively form moving passages through which the molten resin can move, among which the second resin moving grooves 320 are formed. This moving passage is formed to be blocked in the head 200 direction.
또한, 상기 연결구멍(340)은 상기 용융 수지 통로(110)와 상기 제2수지 이동홈(320)을 연결한다.In addition, the connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320.
따라서, 상기 제1실시예에서와 마찬가지로 용융된 수지는 제2수지 이동홈(320)을 통해 이동하다 제1수지 이동홈(310)으로 넘어가며 가스 성분을 추출하게 된다. 그 후, 용융된 수지는 헤드(200)의 사출구(210)를 통해 금형으로 분출되게 된다.Therefore, as in the first embodiment, the molten resin moves through the second resin moving groove 320 and then passes to the first resin moving groove 310 to extract gas components. Thereafter, the molten resin is ejected into the mold through the injection port 210 of the head 200.
벤트링(400)은 상기 포페트(300)에 끼워지며, 추출된 가스를 바디(100)의 외부로 배출시킨다.The vent ring 400 is fitted to the poppet 300 and discharges the extracted gas to the outside of the body 100.
도 5를 참고로, 벤트링의 구조를 상세히 설명한다.Referring to Figure 5, the structure of the vent ring will be described in detail.
도 5는 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리에 사용되는 벤트링의 예를 도시한 정면도이고, 도 21은 종래의 사출기용 노즐 어셈블리에 사용되는 벤트링의 예를 도시한 정면도이다.5 is a front view showing an example of the vent ring used in the nozzle assembly for the injection molding machine according to the first embodiment of the present invention, Figure 21 is a front view showing an example of the vent ring used in the nozzle assembly for a conventional injection molding machine. .
도 5에 도시된 바와 같이, 벤트링(400)은 제1돌출부(430), 제2돌출부(440), 그리고 가스 수집 공간(405)을 포함한다.As shown in FIG. 5, the vent ring 400 includes a first protrusion 430, a second protrusion 440, and a gas collection space 405.
상기 제1돌출부(430)는 상기 벤트링(400)의 일측면 외주면에 길이방향으로 돌출되어 있다.The first protrusion 430 protrudes in the longitudinal direction on one side outer circumferential surface of the vent ring 400.
상기 제2돌출부(440)는 상기 벤트링(400)의 일측면 내주면에 길이방향으로 돌출되어 있다.The second protrusion 440 protrudes in the longitudinal direction on one side inner circumferential surface of the vent ring 400.
상기 가스 수집 공간(405)은 상기 제1돌출부(430)와 상기 제2돌출부(440) 사이에 형성되어 있다.The gas collection space 405 is formed between the first protrusion 430 and the second protrusion 440.
상기 제2돌출부(440)에는 미세홈(422)이 형성될 수 있으며, 상기 벤트링(400)은 복수개로 구비되어 서로 맞닿아 정렬되고, 용융된 수지에 포함된 가스 성분은 압력에 의하여 상기 미세홈(422)을 통하여 상기 가스 수집 공간(405) 내로 수집된다. Fine grooves 422 may be formed in the second protrusion 440. The vent rings 400 may be provided in plural numbers to be in contact with each other, and gas components included in the molten resin may be formed by pressure. Collected into the gas collection space 405 through the groove 422.
도 5a에 도시된 바와 같이, 일 예에 따른 벤트링(400)은 방사상으로 분할된 복수개의 조각들로 구성될 수 있다. 각각의 조각 사이에는 미세한 틈이 존재하게 되고, 이 틈을 통하여 가스가 배출된다. 상기 조각들의 개수는 당업자가 바람직하다고 하는 값으로 할 수 있다.As shown in FIG. 5A, the vent ring 400 according to an example may be formed of a plurality of radially divided pieces. There is a fine gap between each piece, through which the gas is released. The number of said pieces can be made into the value desired by those skilled in the art.
도 5b에 도시된 바와 같이, 다른 예에 따른 벤트링(400)에서 상기 제1돌출부(430)에는 방사상으로 가스 이동 홈(450)이 형성되어 있으며, 상기 가스 이동 홈(450)을 통하여 가스가 배출된다.As shown in FIG. 5B, in the vent ring 400 according to another example, a gas moving groove 450 is radially formed in the first protrusion 430, and gas is supplied through the gas moving groove 450. Discharged.
또한, 도 5c에 도시된 바와 같이, 상기 제1벤트링(400)의 외주면에 상기 가스 이동 홈(450)에 연결되는 가스 홈(452)을 형성할 수 있다. 이 경우, 가스가 상기 가스 홈(452)을 통해 이동하며 배출되므로 배출 효과를 더욱 증가시킬 수 있다. In addition, as illustrated in FIG. 5C, a gas groove 452 connected to the gas moving groove 450 may be formed on an outer circumferential surface of the first vent ring 400. In this case, since the gas moves through the gas groove 452 and is discharged, the discharge effect may be further increased.
도 5d에 도시된 바와 같이, 또 다른 예에 따른 벤트링(400)은 내주면에서 외주면으로 가스 이동 구멍(460)이 형성되어 있으며, 상기 가스 이동 구멍(460)을 통하여 가스가 배출된다. As shown in FIG. 5D, the vent ring 400 according to another example has a gas movement hole 460 formed from an inner circumference to an outer circumference thereof, and gas is discharged through the gas movement hole 460.
도 21에 도시된 종래의 사출기용 노즐 어셈블리에 사용되는 벤트링(700)은 미세홈(724,726)이 벤트링의 내주면에서 외주면으로 일체로 형성되어 있다.In the vent ring 700 used in the nozzle assembly for the conventional injection molding machine shown in FIG. 21, fine grooves 724 and 726 are integrally formed from the inner circumferential surface of the vent ring to the outer circumferential surface.
이러한 구성은 공기와 용융 수지를 분리할 수는 있으나 작업 속도에 한계가 있으며, 외부에서 강제로 공기를 분리하는 것에 한계가 있다.This configuration can separate the air and the molten resin, but there is a limit to the work speed, there is a limit to the forced separation of air from the outside.
그러나 도 5d에 도시된 바와 같이, 진공 펌프(600) 등을 이용하여 공기를 강제로 추출할 수 있으며, 상기 가스 수집 공간(405)과 도 5a의 벤트링 사이의 틈, 도 5b의 상기 가스 이동 홈(450), 도 5c의 상기 가스 홈(452) 또는 도 5d의 상기 가스 이동 구멍(460)을 통해 보다 빠르고 효율적으로 배출 가스를 추출할 수 있다.However, as shown in FIG. 5D, the air may be forcibly extracted using the vacuum pump 600 or the like, and a gap between the gas collection space 405 and the vent ring of FIG. 5A and the gas movement of FIG. 5B may be used. The exhaust gas may be extracted more quickly and efficiently through the groove 450, the gas groove 452 of FIG. 5C, or the gas movement hole 460 of FIG. 5D.
상기 미세홈(422)의 깊이는 상기 용융 수지와 상기 가스가 원활히 분리되면서도 상기 용융 수지가 유출되지 않는 깊이로 0.001~0.02mm일 수 있다. The depth of the microgroove 422 may be 0.001 to 0.02 mm as the depth at which the molten resin does not flow out while the molten resin and the gas are separated smoothly.
상기 벤트링(400)에 상기 미세홈(422,424)을 형성하는 것은 대단히 정밀한 가공을 필요로 하는 것으로, 통상의 금속 가공 방법으로 미세홈이 형성된 벤트링을 대량으로 생산하는 것은 상당한 비용과 시간을 요한다.The formation of the microgrooves 422 and 424 in the vent ring 400 requires very precise processing, and the mass production of the venting grooves in which the microgrooves are formed by a conventional metal processing method requires considerable cost and time. .
따라서, 생산 단가를 낮추고 생산 시간을 단축하기 위한 방법으로, 본 발명의 실시예에 의한 사출기용 노즐 어셈블리에서 미세홈은 에칭(etching)으로 형성할 수 있다.Therefore, as a method for lowering the production cost and shortening the production time, the micro grooves in the nozzle assembly for the injection molding machine according to the embodiment of the present invention may be formed by etching.
도14를 참조하여 에칭을 이용한 미세홈 형성을 설명하면, 도 14a에 도시한 바와 같이 벤트링(400)을 준비한다Referring to FIG. 14, the microgroove formation using etching is prepared. As shown in FIG. 14A, the vent ring 400 is prepared.
도 14b에 도시된 바와 같이 벤트링(400) 상에 레지스트층(610)을 형성한다. 이 때 레지스트층(610)을 이루는 물질은 포토 레지스트 또는 열경화성 레지스트 등 일반적으로 사용되는 다양한 종류의 레지스트가 적용될 수 있으며, 필름 형식이나 스프레이 도포 등으로 형성될 수 있다.As shown in FIG. 14B, a resist layer 610 is formed on the vent ring 400. At this time, the material constituting the resist layer 610 may be applied to a variety of commonly used resists such as photoresist or thermosetting resist, it may be formed by a film type or spray coating.
도 14c에 도시된 바와 같이 레지스트층(610)에 마이크로 패턴을 형성한다. 마이크로 패턴 형성 방법은 광 리소그래피, 임프린트 리소그래피, 연성 식각, 사출 성형 등 다양한 방법이 적용될 수 있다.As shown in FIG. 14C, a micro pattern is formed on the resist layer 610. The micro pattern formation method may be applied to various methods such as optical lithography, imprint lithography, soft etching, injection molding.
도 14d에 도시된 바와 같이 에칭을 하여 상기 벤트링(400)의 표면 일부를 부식시킨 후 상기 벤트링(400)표면에 존재하는 레지스트층(610)을 제거한다. 이때 에칭은 건식 에칭, 또는 습식 에칭 등 다양한 방식의 에칭이 적용될 수 있다.As shown in FIG. 14D, the surface of the vent ring 400 is etched by etching to remove the resist layer 610 on the surface of the vent ring 400. In this case, the etching may be applied in various ways such as dry etching or wet etching.
즉, 상기 벤트링(400)을 부식액(solution)에 노출시켜 부식시키거나, 플리즈마(plasma)에 노출시켜 상기 미세홈(422,424)을 형성할 수도 있다.That is, the vent rings 400 may be exposed to a corrosion solution to corrode or exposed to a plasma to form the microgrooves 422 and 424.
도15는 본 발명의 실시예에 따른 벤트링에 에칭으로 미세홈을 형성하는 방법을 설명하는 플로우 차트이다.15 is a flowchart illustrating a method of forming microgrooves by etching in a vent ring according to an embodiment of the present invention.
도15에 도시된 바와 같이 벤트링 상에 레지스트 층을 형성하는 단계(S110), 상기 레지스트 층에 마이크로 패턴을 형성하는 단계(S120), 상기 벤트링의 표면 일부를 부식시키는 단계(S130) 및 상기 레지스트 층을 제거하는 단계(S140)를 통해 상기 미세홈(422,424)을 형성할 수 있다.Forming a resist layer on the vent ring (S110), forming a micro pattern on the resist layer (S120), corroding a portion of the surface of the vent ring (S130) and the The microgrooves 422 and 424 may be formed through the step S140 of removing the resist layer.
또한, 티타늄 코팅 단계(S150)를 추가할 수 있으며, 티타늄 코팅에 의하여 부식 방지하고, 미세홈(424)이 확장되는 것을 방지할 수 있다.In addition, it is possible to add a titanium coating step (S150), to prevent corrosion by the titanium coating, it is possible to prevent the microgroove 424 is expanded.
도18은 본 발명의 실시예에 따른 벤트링에 에칭으로 미세홈을 형성한 것을 나타내는 확대 사진으로, 사진에 나타난 바와 같이, 용융 수지와 가스를 원활히 분리하여 배출할 수 있다.FIG. 18 is an enlarged photograph illustrating formation of fine grooves by etching in a vent ring according to an exemplary embodiment of the present invention. As shown in the photograph, the molten resin and the gas may be separated and discharged smoothly.
또한, 상기 벤트링(400)은 레이져(light amplification by stimulated emission of radiation) 가공을 통해 미세홈(424)을 형성할 수도 있다.In addition, the vent ring 400 may form the microgrooves 424 through laser processing (light amplification by stimulated emission of radiation).
상술한 바와 같이, 상기 미세홈(424)의 깊이는 0.001~0.02mm의 범위인 것이 바람직하므로, 이러한 정밀도를 갖기 위해서는 정밀 가공에 적합한 레어져 가공으로 상기 미세 홈(422,424)을 형성할 수 있다.As described above, since the depth of the microgroove 424 is preferably in the range of 0.001 to 0.02mm, the microgrooves 422 and 424 may be formed by laser processing suitable for precision processing in order to have such precision.
도16 및 도17은 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 미세홈을 형성하는 방법을 설명하는 플로우 차트이다.16 and 17 are flowcharts illustrating a method of forming microgrooves in a bent ring by laser processing according to an embodiment of the present invention.
도16에 도시된 바와 같이, 벤트링 표면을 연마하는 단계(S210), 벤트링 표면의 이물질 제거하는 단계(S220), 벤트링 표면에 레이저 가공을 하여 미세홈을 형성하는 단계(S231), 폴리싱(polishing) 단계(S233), 벤트링 표면에 티타늄 코팅하는 단계(S235)를 통해 미세홈을 형성할 수 있다.As shown in FIG. 16, the step of polishing the venting surface (S210), the removal of foreign substances on the surface of the venting ring (S220), the step of forming a micro groove by laser processing the venting surface (S231), polishing A fine groove may be formed through a polishing step (S233) and a titanium coating step (S235) on the bent ring surface.
여기서, 벤트링 표면의 이물질 제거하는 단계(S220)는 도시된 순서에 상관 없이 벤트링 미세홈의 정밀도를 높일 수 있도록 각각의 단계 중간에 실시할 수도 있고, 상기 폴리싱(polishing) 단계(S233) 또한 제작 공정 중간에 삽입 될 수도 있다.Here, the step of removing foreign matters on the surface of the bent ring (S220) may be performed in the middle of each step to increase the precision of the bent ring micro grooves regardless of the order shown, the polishing step (S233) It can also be inserted in the middle of the fabrication process.
상기 벤트링 표면에 티타늄 코팅하는 단계(S235)를 거치게 되면, 벤트링의 표면에서 발생할 수 있는 부식을 방지할 수 있고, 미세홈이 커지는 현상을 방지할 수 있다.When the titanium coating step (S235) on the surface of the vent ring, it is possible to prevent corrosion that may occur on the surface of the vent ring, it is possible to prevent the phenomenon that the micro grooves grow.
도17에 도시된 바와 같이, 레이저 가공 단계(S239) 전후에 티타늄 코팅 단계(S237), (S239)를 거칠 수 있으며, 이는 표면 정밀도를 높이며 가공 후 부식을 방지할 수 있다. 도16에 도시된 바와 마찬가지로, 벤트링 표면의 이물질 제거하는 단계(S220)가 벤트링 미세홈의 정밀도를 높일 수 있도록 각각의 단계 중간에 실시할 수도 있고, 상기 폴리싱(polishing) 단계(S233) 또한 제작 공정 중간에 삽입 될 수도 있다.As shown in FIG. 17, the titanium coating steps S237 and S239 may be roughened before and after the laser processing step S239, which may increase surface precision and prevent corrosion after processing. As shown in FIG. 16, the step S220 of removing the foreign matter from the surface of the bent ring may be performed in the middle of each step to increase the precision of the bent ring microgroove, and the polishing step S233 may also be performed. It can also be inserted in the middle of the fabrication process.
도19는 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 미세홈을 형성한 이후에 티타늄 이외의 코팅을 했을 때 발생할 수 있는 표면 부식을 나타내는 것으로 미세홈에 요철이 발생하여 미세홈에서 가스 배출이 용이하지 않게 된다.Figure 19 shows the surface corrosion that may occur when coating other than titanium after forming the micro grooves in the vent ring according to the embodiment of the present invention by laser processing, irregularities are generated in the micro grooves to discharge gas from the micro grooves This is not easy.
도20은 본 발명의 실시예에 따른 벤트링에 레이저 가공으로 도17의 단계에 따라 미세홈을 형성한 것을 나타낸 확대 사진으로, 표면 가공 단계를 거쳐 표면 보다 매끄럽게 가공되어 가스 배출이 보다 원활해 질 수 있다.20 is an enlarged photograph showing the formation of the microgroove according to the step of FIG. 17 by laser processing the vent ring according to the embodiment of the present invention. Can be.
소형 기계에 사용될 기어 같은 작은 금속부품을 만드는 경우처럼 몇몇 경우에는 주조를 하면 상당히 많은 기계가공을 해야 하며, 손실되는 금속조각이 많기 때문에 분말야금을 이용하는 것이 보다 경제적일 수 있다. 또한 텅스텐 같은 금속처럼 녹는점이 매우 높거나, 또는 구리와 흑연처럼 서로 녹지 않는 물질로 이루어진 합금을 만드는 경우에도 용융시키는 것이 비실용적이다. 이러한 분말야금법은 액체나 기체가 투과할 수 있는 다공성 물체를 만드는 데 이용되기도 한다.In some cases, such as the production of small metal parts such as gears for use in small machines, casting requires a great deal of machining, and the use of powder metallurgy can be more economical because of the large amount of metal that is lost. It is also impractical to melt them when making alloys with very high melting points, such as metals such as tungsten, or materials that do not melt together, such as copper and graphite. Powder metallurgy is also used to make porous objects through which liquids or gases can permeate.
이러한 분말야금법 중 소결(sintering)방법을 이용하여 상기 미세홈(422)이 형성된 벤트링(400)을 만들 수 있다.In the powder metallurgy method, the vent ring 400 in which the microgrooves 422 are formed may be manufactured using a sintering method.
소결방법으로 벤트링(400)을 형성하게 되면, 정밀하게 상기 벤트링(400)을 형성할 수 있고, 이에 추가하여 상기 미세홈(422)을 형성하면 용융된 수지에 포함된 가스 성분이 투과할 수 있어 더욱 효과적인 가스 배출을 기대할 수 있다.When the vent ring 400 is formed by the sintering method, the vent ring 400 may be precisely formed. In addition, when the micro groove 422 is formed, the gas component included in the molten resin may pass through the vent ring 400. It is possible to expect more effective gas emissions.
이하, 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리의 작용을 설명한다.Hereinafter, the operation of the nozzle assembly for the injection molding machine according to the first embodiment of the present invention will be described.
용융 수지 통로(110)로 공급된 용융 수지는 연결 구멍(340)을 통하여 제2수지 이동홈(320)으로 공급되고, 상기 제2수지 이동홈(320)을 따라 이동한다. 그러나, 상기 제2수지 이동홈(320)은 그 끝이 막혀 있으므로 상기 용융 수지는 이동을 제한받게 되어 제1수지 이동홈(310)으로 넘어간 후 제1수지 이동홈(310)을 따라 이동한다. 이 과정에서 용융된 수지는 얇고 고르게 펴지게 되며, 용융된 수지에 포함되어 있는 가스 성분이 효과적으로 추출되게 된다. The molten resin supplied to the molten resin passage 110 is supplied to the second resin moving groove 320 through the connection hole 340 and moves along the second resin moving groove 320. However, since the end of the second resin moving groove 320 is blocked, the molten resin is restricted to the movement, and then moves along the first resin moving groove 310 after being transferred to the first resin moving groove 310. In this process, the molten resin is thinly and evenly spread, and the gas component contained in the molten resin is effectively extracted.
또한, 추출된 가스 성분은 벤트링(400)들 사이에 형성된 틈을 통하여 가스 수집 공간(405)에 수집된다. 또한, 상기 벤트링(400)을 구성하는 각 조각들 사이의 틈을 통하여도 가스 수집 공간(405)에 수집된다. 그 후, 수집된 가스는 벤트링(400)을 구성하는 각 조각들 사이의 틈을 통하여 바디(100)의 내주면으로 이동되고, 상기 바디(100)에 형성된 바디 가스 배출 통로(120)을 통하여 바디(100)의 외부로 배출되게 된다. In addition, the extracted gas component is collected in the gas collection space 405 through a gap formed between the vent rings 400. In addition, a gap between the pieces constituting the vent ring 400 is also collected in the gas collection space 405. Thereafter, the collected gas is moved to the inner circumferential surface of the body 100 through the gap between the pieces constituting the vent ring 400, and the body through the body gas discharge passage 120 formed in the body 100. It is discharged to the outside of the (100).
이하, 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리를 상세히 설명한다. 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리의 구성 중 본 발명의 제1 실시예에 따른 사출기용 노즐 어셈블리의 구성과 동일한 것은 상세한 설명을 생략한다.Hereinafter, a nozzle assembly for an injection machine according to a second embodiment of the present invention will be described in detail. The same configuration as that of the nozzle assembly for the injection molding machine according to the first embodiment of the present invention will be omitted from the configuration of the nozzle assembly for the injection molding machine according to the second embodiment of the present invention.
도 6은 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리가 분해된 모습을 보인 사시도이고, 도 7은 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리가 결합된 모습을 보인 단면도이고, 도 8은 도 7의 A-A 단면도이다.6 is a perspective view showing the disassembled nozzle assembly for the injection molding machine according to the second embodiment of the present invention, Figure 7 is a cross-sectional view showing a combined nozzle assembly for the injection molding machine according to the second embodiment of the present invention, 8 is a cross-sectional view taken along line AA of FIG. 7.
도 6 내지 도8에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리는, 바디(100), 헤드(200), 지지통(500), 포페트(300), 그리고 벤트링 (470)를 포함한다.6 to 8, the nozzle assembly for the injection molding machine according to the second embodiment of the present invention, the body 100, the head 200, the support cylinder 500, the poppet 300, and the vent Ring 470.
상기 바디(100)는 그 일단이 사출기 실린더(도시하지 않음)에 연결되어 있으며, 타단은 상기 헤드(200)와 결합되어 있다. 상기 바디(100)의 내부에는 용융 수지 통로(110)가 형성되어 있다.One end of the body 100 is connected to an injection cylinder (not shown), and the other end is coupled to the head 200. The molten resin passage 110 is formed inside the body 100.
상기 헤드(200)는 그 일단이 상기 바디(100)와 결합하고, 타단에는 사출구(210)가 형성되어 있다.One end of the head 200 is coupled to the body 100, and an injection hole 210 is formed at the other end of the head 200.
도 10에 도시된 바와 같이, 지지통(500)은 내부가 관통된 원통 형상이며, 상기 바디(100)의 내부에 삽치되어 있다. 상기 지지통(500)의 내주면은 복수개의 지지홈(510)이 형성되어 있다. 또한, 상기 지지홈(510)들 사이에는 지지통 돌출턱(530)이 형성되어 있다.As shown in FIG. 10, the support cylinder 500 has a cylindrical shape penetrated therein and is inserted into the body 100. The inner circumferential surface of the support cylinder 500 is formed with a plurality of support grooves 510. In addition, a support cylinder protrusion jaw 530 is formed between the support grooves 510.
또한, 상기 지지홈(510)에는 지지홈 배기 구멍(520)이 형성되어 있어, 상기 지지홈(510)으로 이동한 가스를 배출한다.In addition, the support groove 510 is formed with a support groove exhaust hole 520 to discharge the gas moved to the support groove 510.
상기 포페트(300)는 양 단부에 콘(350, 360)이 형성되어 있으며, 상기 포페트(300)의 외주면에는 길이 방향으로 제1,2수지 이동홈(310, 320)이 형성되어 있다.The poppet 300 has cones 350 and 360 formed at both ends thereof, and first and second resin moving grooves 310 and 320 are formed on the outer circumferential surface of the poppet 300 in the longitudinal direction.
상기 포페트(300)의 일측부에는 벤트링 받침(330)이 형성되어 있으며, 상기 벤트링 받침(330)에는 복수개의 연결 구멍(340)이 형성되어 있다.A vent ring support 330 is formed at one side of the poppet 300, and a plurality of connection holes 340 are formed in the vent ring support 330.
상기 연결 구멍(340)은 상기 용융 수지 통로(110)와 상기 제2수지 이동홈(320)을 연결한다. 또한, 상기 제1수지 이동홈(310)은 상기 헤드(200) 방향으로 뚫려 있으며, 상기 제2수지 이동홈(320)은 상기 헤드(200) 방향으로 막혀 있다.The connection hole 340 connects the molten resin passage 110 and the second resin moving groove 320. In addition, the first resin moving groove 310 is drilled in the direction of the head 200, and the second resin moving groove 320 is blocked in the direction of the head 200.
또한, 상기 제1,2수지 이동 홈(310, 320) 사이에는 포페트 돌출턱(390)이 형성되어 있다. 상기 포페트 돌출턱(390)은 교대로 상기 지지통 돌출턱(530)과 설정된 거리(d)만큼 이격되어 있다. 상기 설정된 거리(d)는 0.3~0.6mm일 수 있다.In addition, a poppet protruding jaw 390 is formed between the first and second resin moving grooves 310 and 320. The poppet protrusion 390 is alternately spaced apart from the support tube protrusion 530 by a set distance d. The set distance d may be 0.3 to 0.6 mm.
따라서, 상기 용융 수지 통로(110)로 공급된 용융된 수지는 상기 제2수지 이동홈(320)을 통하여 헤드(200) 방향으로 이동한다. 그 후, 상기 용융된 수지는 막혀 있는 제2수지 이동홈(320)에 의해 그 이동을 제한 받게 된다. 따라서, 상기 용융된 수지는 이격되어 있는 상기 포페트 돌출턱(390)과 상기 지지통 돌출턱(530) 사이의 공간을 통해 제1수지 이동홈(310)으로 넘어가게 된다. 이 과정에서 용융된 수지는 얇고 고르게 펴지며, 용융된 수지에 포함되어 있는 가스 성분이 효과적으로 추출되게 된다.Therefore, the molten resin supplied to the molten resin passage 110 moves toward the head 200 through the second resin moving groove 320. Thereafter, the molten resin is limited to its movement by the blocked second resin moving groove 320. Therefore, the molten resin is transferred to the first resin moving groove 310 through a space between the poppet protrusion 390 and the support tube protrusion 530 spaced apart from each other. In this process, the molten resin is thinly and evenly spread, and gas components contained in the molten resin are effectively extracted.
그 후, 용융된 수지는 제1수지 이동홈(310)을 따라 헤드(200)로 이동하게 되고, 상기 사출구(210)를 통해 금형으로 분출되게 된다.Thereafter, the molten resin is moved to the head 200 along the first resin moving groove 310, and is ejected to the mold through the injection hole 210.
도 9에 도시된 바와 같이, 상기 벤트링 부재(470)는 복수개의 조각으로 분할되어 있으며, 각 조각들은 상기 지지홈(510)에 삽입된다.As shown in FIG. 9, the vent ring member 470 is divided into a plurality of pieces, and each piece is inserted into the support groove 510.
또한, 상기 벤트링 부재(470)의 각 조각들은 내주면이 볼록하게 돌출되어 있으며, 상기 돌출된 부분은 상기 제1,2수지 이동홈(310, 320)에 일정 부분 삽입되어 용융된 수지가 고르게 퍼져 이동할 수 있도록 하며, 용융된 수지에 포함된 가스의 추출을 용이하게 한다.In addition, each piece of the venting member 470 is convexly protruding from the inner circumferential surface, the protruding portion is inserted into a predetermined portion of the first and second resin moving grooves 310 and 320 so that the molten resin is spread evenly. It can move and facilitate the extraction of the gas contained in the molten resin.
상기 벤트링(470)은 제1돌출부(430), 제2돌출부(440), 그리고 가스 수집 공간(405)를 포함한다. 상기 제1돌출부(430)은 상기 벤트링 부재(470)의 일측면 외주면에 길이방향으로 돌출되어 있으며, 상기 제2돌출부(440)는 상기 벤트링 부재(470)의 일측면 내주면에 길이방향으로 돌출되어 있으며, 상기 가스 수집 공간(405)는 상기 제1돌출부(430)와 상기 제2돌출부(440) 사이에 형성되어 있다.The vent ring 470 includes a first protrusion 430, a second protrusion 440, and a gas collection space 405. The first protrusion 430 protrudes in a longitudinal direction on one side outer circumferential surface of the vent ring member 470, and the second protrusion 440 extends in a longitudinal direction on one inner side circumferential surface of the vent ring member 470. The gas collection space 405 is formed between the first protrusion 430 and the second protrusion 440.
또한, 본 발명의 실시예들에 따른 사출기용 노즐 어셈블리는 가스의 배출을 효과적으로 수행하도록 하는 진공 펌프(도5d 참조)를 더 포함할 수 있으며, 상기 진공 펌프는 상기 바디 가스 배출 통로(120)과 연결되어 있다. In addition, the nozzle assembly for the injection machine according to the embodiments of the present invention may further include a vacuum pump (see FIG. 5D) to effectively discharge the gas, the vacuum pump is the body gas discharge passage 120 and It is connected.
또한, 상기 진공 펌프는 바디(100)의 외부에 구비될 수 있으며, 상기 바디(100)와 일체식으로 형성될 수 있다. In addition, the vacuum pump may be provided outside the body 100 and may be integrally formed with the body 100.
제1 실시예에서 설명한 바와 같이, 상기 제2돌출부(440)에 미세홈(428)이 형성될 수 있다.As described in the first embodiment, the fine groove 428 may be formed in the second protrusion 440.
본 발명의 제2 실시예의 상기 미세홈(428)은 제1 실시예에서 설명한 미세홈(422)과 동일하므로 자세한 설명은 생략한다.Since the microgroove 428 of the second embodiment of the present invention is the same as the microgroove 422 described in the first embodiment, detailed description thereof will be omitted.
이하, 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리를 상세히 설명한다. 본 발명의 제2 실시예에 따른 사출기용 노즐 어셈블리의 구성 중 본 발명의 제1,2 실시예에 따른 사출기용 노즐 어셈블리의 구성과 동일한 구성은 동일한 도면 번호를 이용하며, 특별한 언급이 없는 한 동일한 작동을 하는 것으로 상세한 설명을 생략한다.Hereinafter, a nozzle assembly for an injection molding machine according to a third embodiment of the present invention will be described in detail. The same configuration as that of the nozzle assembly for the injection molding machine according to the first and second embodiments of the present invention among the configuration of the nozzle assembly for the injection molding machine according to the second embodiment of the present invention uses the same reference numerals, and unless otherwise specified, the same configuration is used. The operation is omitted and detailed description is omitted.
도 11은 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리가 분해된 모습을 보인 사시도이다.11 is a perspective view showing the disassembled nozzle assembly for an injection molding machine according to a third embodiment of the present invention.
본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리는 도 11에 도시된 바와 같이, 바디(100), 헤드(200), 포페트(301), 그리고 벤트링(400)을 포함한다.As shown in FIG. 11, the nozzle assembly for the injection molding machine according to the third exemplary embodiment of the present invention includes a body 100, a head 200, a poppet 301, and a vent ring 400.
상기 포페트(301)는 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하도록 길이 방향으로 적어도 하나의 포페트홈(303)이 형성된다.At least one poppet groove 303 is formed in the longitudinal direction of the poppet 301 to move the molten resin and to extract the gas contained in the molten resin.
도11에 도시된 상기 포페트홈(303)은 나선형으로 형성되어 되며, 상기 용융된 수지가 지나가며 얇게 퍼져 가스가 추출될 수 있다.The poppet groove 303 shown in FIG. 11 is formed in a helical shape, and the molten resin passes and is thinly spread so that gas can be extracted.
상기 제1,2 실시예와 비교하면, 상기 포페트의 구성이 간단하여 생산 단가를낮출 수 있으며, 유사한 효과를 얻을 수 있다.Compared with the first and second embodiments, the configuration of the poppet is simple, so that the production cost can be lowered and a similar effect can be obtained.
도 12는 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리의 포페트의변형된 실시예를 도시한 도면이다.12 is a view showing a modified embodiment of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention.
도 12a에 도시된 바와 같이, 포페트홈(3031,3032,3033)은 그 방향이 바뀌는절곡 부분(3030)이 적어도 하나 이상 형성된다. 이러한 절곡 부분(3030) 전후로 상기 포페트홈(3031,3032,3033)의 방향이 바뀌게 되므로, 용융 수지가 퍼지며 가스가 용이하게 분리될 수 있다.As shown in FIG. 12A, the poppet grooves 3031, 3032, and 3033 are formed with at least one bent portion 3030 whose direction is changed. Since the direction of the poppet grooves 3031, 3032, and 3033 is changed before and after the bent portion 3030, the molten resin may spread and the gas may be easily separated.
도 12b와 12c에 도시된 실시예에서는 상기 절곡 부분(3030)에 절곡 홈(groove; 3037)이 형성되며, 포페트홈(3034,3035,3036)의 방향이 상기 절곡 홈(3037) 전후로 바뀌게 되어 보다 용이하게 가스가 분리될 수 있다.12B and 12C, a bent groove 3037 is formed in the bent portion 3030, and the directions of the poppet grooves 3034, 3035 and 3036 are changed before and after the bent groove 3037. Gas can be separated more easily.
도13의 (a)는 본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리의 포페트의 또 다른 변형예를 도시한 사시도이고, 도13의 (b)는 도13의 (a)의 B-B선을 따른 단면도이다.Figure 13 (a) is a perspective view showing another modified example of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention, Figure 13 (b) is a line BB of Figure 13 (a) The cross section along the.
본 발명의 제3 실시예에 따른 사출기용 노즐 어셈블리의 포페트의 또 다른 변형예에서는 포페트(307)에 길이방향으로 복수개의 포페트홈(309)가 형성되어 있다.In another modified example of the poppet of the nozzle assembly for the injection molding machine according to the third embodiment of the present invention, a plurality of poppet grooves 309 are formed in the poppet 307 in the longitudinal direction.
상기 도11의 실시예와 비교하면 포페트(307)의 구성이 더욱 간단하여 생산비용을 상당히 절감할 수 있다.Compared to the embodiment of FIG. 11, the configuration of the poppet 307 is simpler, which can significantly reduce the production cost.
이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.

Claims (29)

  1. 일측면 외주면에 길이방향으로 돌출된 제1돌출부;A first protrusion protruding in the longitudinal direction on one side outer circumferential surface;
    일측면 내주면에 길이방향으로 돌출된 제2돌출부; 그리고A second protrusion protruding in the longitudinal direction on one side inner circumferential surface; And
    상기 제1돌출부와 상기 제2돌출부 사이에 형성된 가스 수집 공간;A gas collection space formed between the first protrusion and the second protrusion;
    을 포함하며,Including;
    상기 제2돌출부에 방사 방향으로 벤트링 미세홈이 형성된 벤트링.Vent ring fine groove formed in the radial direction in the second projection.
  2. 제 1항에서,In claim 1,
    상기 벤트링 미세홈의 깊이는 0.001mm 내지 0.02mm 범위인 것을 특징으로 하는 벤트링.Venting microcavity, characterized in that the depth of the bent ring is 0.001mm to 0.02mm range.
  3. 제 1항 또는 제 2항 중 어느 하나의 항에서,The method of any one of claims 1 or 2,
    상기 벤트링은 복수개의 조각으로 분할되어 있는 것을 특징으로 하는 벤트링.The vent ring is divided into a plurality of pieces.
  4. 내부에 용융된 수지가 지나가는 용융 수지 통로가 형성되어 있는 바디;A body in which a molten resin passage through which the molten resin passes is formed;
    일단은 상기 바디에 결합되며, 타단에는 용융된 수지를 분사하는 사출구가 형성된 헤드;A head having one end coupled to the body and the other end having an injection hole for injecting molten resin;
    상기 바디 내부에 삽치되어 있으며, 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하는 포페트; 그리고Poppet inserted in the body, the molten resin is moved to extract the gas contained in the molten resin; And
    상기 포페트에 끼워지며, 상기 추출된 가스를 배출하는 벤트링;A vent ring fitted to the poppet and discharging the extracted gas;
    을 포함하되,Including,
    상기 벤트링은 상기 제1항에 따른 벤트링인 것을 특징으로 하는 사출기용 노즐 어셈블리.The vent ring is a nozzle assembly for an injection molding machine, characterized in that the vent ring according to claim 1.
  5. 제 4항에서,In claim 4,
    상기 벤트링은 복수개로 구비되어 서로 맞닿아 정렬되어 있고,The vent ring is provided in plurality and aligned to abut each other,
    상기 벤트링 미세홈이 상기 벤트링의 적어도 일면에 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The vent ring fine groove is formed on at least one surface of the vent ring nozzle assembly for the injection molding machine.
  6. 제 4항에서,In claim 4,
    상기 포페트에는 상기 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하도록 제1수지 이동홈과 제2수지 이동홈이 형성되어 있으며,In the poppet, the first resin moving groove and the second resin moving groove are formed to move the molten resin and to extract the gas contained in the molten resin.
    상기 제1수지 이동홈은 상기 헤드 방향으로 뚫려 있으며, 상기 제2수지 이동홈은 상기 헤드 방향으로 막혀 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.The first resin moving groove is drilled in the head direction, the second resin moving groove is injector nozzle assembly, characterized in that blocked in the head direction.
  7. 제 6항에서,In claim 6,
    상기 포페트의 일측부에는 벤트링 받침대가 형성되어 있으며, 상기 벤트링 받침대에는 상기 용융 수지 통로와 상기 제2수지 이동홈을 연결하는 연결 구멍이 형성되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.A venting pedestal is formed at one side of the poppet, and the venting pedestal has a connection hole for connecting the molten resin passage and the second resin moving groove to be formed.
  8. 제 7항에서,In claim 7,
    상기 포페트는, The poppet,
    축;shaft;
    상기 축의 일단에 결합되며, 상기 용융 수지 통로와 상기 제2수지 이동홈을연결하는 연결 구멍이 형성된 벤트링 받침대가 구비되어 있는 콘; 그리고A cone coupled to one end of the shaft and having a venting pedestal formed with a connection hole for connecting the molten resin passage and the second resin moving groove; And
    상기 축에 끼워지며, 외주면에 상기 제1,2수지 이동홈이 형성된 복수개의 축벤트링;A plurality of shaft vent rings fitted to the shaft and having first and second resin moving grooves formed on outer surfaces thereof;
    을 포함하는 사출기용 노즐 어셈블리.Nozzle assembly for injection machine comprising a.
  9. 제 4항에서,In claim 4,
    상기 헤드 내부에 헤드 벤트링이 삽입되고,A head vent ring is inserted into the head,
    상기 헤드의 내주면에서 외주면으로 헤드 배기 구멍이 형성되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.The nozzle assembly for the injection molding machine, characterized in that the head exhaust hole is formed from the inner peripheral surface of the head to the outer peripheral surface.
  10. 제 4항에서,In claim 4,
    상기 바디 내부에서 상기 포페트를 감싸도록 구비되며, 복수개의 지지홈이 형성된 지지통을 더 포함하되,It is provided to surround the poppet in the body, and further comprising a support cylinder formed with a plurality of support grooves,
    상기 벤트링은 복수개의 조각으로 분할되어 있으며, 각 조각들은 상기 지지홈에 삽입되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.The vent ring is divided into a plurality of pieces, each piece is inserted into the support groove nozzle assembly for an injection molding machine.
  11. 제 10항에서,In claim 10,
    상기 포페트의 일측부에는 벤트링 받침대가 형성되어 있으며, 상기 벤트링 받침대에는 상기 용융 수지 통로와 상기 제2수지 이동홈을 연결하는 연결구멍이 형성되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.A venting pedestal is formed at one side of the poppet, and the venting pedestal has a connection hole for connecting the molten resin passage and the second resin moving groove to the nozzle assembly.
  12. 제 10항에서,In claim 10,
    상기 지지홈 사이에는 복수개의 지지통 돌출턱이 형성되고, A plurality of support cylinder protrusion jaw is formed between the support grooves,
    상기 제1,2수지 이동홈 사이에는 포페트 돌출턱이 형성되어,A poppet protrusion is formed between the first and second resin moving grooves.
    상기 지지통 돌출턱과 상기 포페트 돌출턱은 교대로 설정 거리만큼 이격되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.The support cylinder protrusion jaw and the poppet protrusion jaw is alternately spaced apart by a predetermined distance nozzle assembly for injection molding machine.
  13. 제 12항에서,In claim 12,
    상기 설정 거리는 0.3~0.6mm인 것을 특징으로 하는 사출기용 노즐 어셈블리.The nozzle assembly for an injection molding machine, characterized in that the set distance is 0.3 ~ 0.6mm.
  14. 제 12항에서,In claim 12,
    상기 지지홈에는 지지홈 배기 구멍이 형성되어 있는 것을 특징으로 하는 사출기용 노즐 어셈블리.The support groove nozzle assembly, characterized in that the support groove exhaust hole is formed in the support groove.
  15. 제 4항에서,In claim 4,
    상기 포페트에는 상기 용융된 수지가 이동하며 상기 용융된 수지에 포함된 가스를 추출하도록 길이 방향으로 적어도 하나의 포페트홈이 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The poppet nozzle assembly for an injection molding machine, characterized in that the at least one poppet groove is formed in the longitudinal direction to move the molten resin and to extract the gas contained in the molten resin.
  16. 제 15항에서,The method of claim 15,
    상기 포페트홈은 직선으로 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The poppet groove is an injection nozzle assembly, characterized in that formed in a straight line.
  17. 제 15항에서,The method of claim 15,
    상기 포페트홈은 나선형으로 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.And the poppet groove is formed in a spiral shape.
  18. 제 17항에서,The method of claim 17,
    상기 포페트는 상기 포페트홈의 방향이 바뀌어 형성되는 절곡 부분이 적어도 하나 이상 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The poppet is nozzle assembly for an injection molding machine, characterized in that at least one bent portion formed by changing the direction of the poppet groove is formed.
  19. 제 18항에서,The method of claim 18,
    상기 절곡 부분에는 상기 용융 수지가 고이는 절곡 홈(groove)이 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The bent portion is a nozzle assembly for an injection molding machine, characterized in that the groove is formed in which the molten resin is accumulated.
  20. 제 4항에서,In claim 4,
    상기 벤트링은 소결(sintering) 형성된 것을 특징으로 하는 사출기용 노즐 어셈블리.The vent ring nozzle assembly, characterized in that the sintered (sintering) formed.
  21. 공기를 외부로 배출하기 위해 적어도 일면에 미세홈이 형성된 벤트링의 생산방법에 있어서,In the production method of the vent ring formed with a fine groove on at least one surface to discharge the air to the outside,
    상기 미세홈은 에칭으로 형성하는 방법, 방전 가공으로 형성하는 방법 또는 레이저를 이용하여 형성하는 방법 중 어느 하나의 방법으로 형성된 벤트링의 생산 방법.The fine groove is a method of producing a vent ring formed by any one of the method of forming by etching, the method of forming by electric discharge or the method of forming using a laser.
  22. 제 21항에서,The method of claim 21,
    상기 미세홈의 깊이는 0.001mm 내지 0.02mm 범위인 것을 특징으로 하는 벤트링의 생산 방법.The depth of the fine groove is a method of producing a vent ring, characterized in that in the range of 0.001mm to 0.02mm.
  23. 제 21항에서,The method of claim 21,
    상기 미세홈을 에칭으로 형성하는 방법은, The method of forming the micro grooves by etching,
    벤트링 상에 레지스트 층을 형성하는 단계;Forming a resist layer on the venting ring;
    상기 레지스트 층에 마이크로 패턴을 형성하는 단계;Forming a micro pattern on the resist layer;
    상기 벤트링의 표면 일부를 부식시키는 단계; 및Corroding a portion of the surface of the vent ring; And
    상기 레지스트 층을 제거하는 단계;Removing the resist layer;
    를 포함하는 것을 특징으로 하는 벤트링의 생산 방법.Method for producing a vent ring comprising a.
  24. 제 23항에서,The method of claim 23,
    상기 미세홈을 에칭으로 형성하는 방법은, The method of forming the micro grooves by etching,
    표면에 티타늄 코팅을 하는 단계를 더 포함하는 것을 특징으로 하는 벤트링의 생산 방법.Method of producing a vent ring, characterized in that it further comprises the step of coating a titanium coating on the surface.
  25. 제 23항에서,The method of claim 23,
    상기 마이크로 패턴 형성 방법은,The micro pattern forming method,
    광 리소그래피, 임프린트 리소그래피, 연성 식각 및 사출 성형을 포함하는 것을 특징으로 하는 벤트링의 생산 방법.A method of producing a vent ring, comprising optical lithography, imprint lithography, soft etching, and injection molding.
  26. 제 21항에서,The method of claim 21,
    상기 레이저를 이용하여 미세홈을 형성하는 방법은,The method of forming the micro grooves using the laser,
    레이저로 설정된 깊이의 홈을 가공하는 단계Steps to machine grooves of depth set by laser
    를 포함하는 것을 특징으로 하는 벤트링의 생산 방법.Method for producing a vent ring comprising a.
  27. 제 26항에서,The method of claim 26,
    상기 레이저를 이용하여 미세홈을 형성하는 방법은,The method of forming the micro grooves using the laser,
    표면에 티타늄 코팅을 하는 단계를 더 포함하는 것을 특징으로 하는 벤트링의 생산 방법.Method of producing a vent ring, characterized in that it further comprises the step of coating a titanium coating on the surface.
  28. 제 26항 또는 제27항 중 어느 하나의 항에서,28. The method of any of claims 26 or 27,
    상기 레이저를 이용하여 미세홈을 형성하는 방법은, The method of forming the micro grooves using the laser,
    초음파로 표면의 이물질을 제거하는 단계를 더 포함하는 것을 특징으로 하는 벤트링의 생산 방법.Method for producing a vent ring further comprises the step of removing foreign matter on the surface by ultrasonic.
  29. 제 21항 내지 제 27항 중 어느 하나의 항에서,28. The method of any of claims 21-27,
    상기 벤트링은 소결(sintering) 형성된 것을 특징으로 하는 벤트링의 생산 방법.The vent ring is sintered (sintering) formed method of producing a vent ring.
PCT/KR2010/000481 2009-01-30 2010-01-27 Vent ring, nozzle assembly for an injection machine comprising same, and method for manufacturing same WO2010087610A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0007569 2009-01-30
KR1020090007569A KR20100088383A (en) 2009-01-30 2009-01-30 Bent ring, nozzle assembly for injector with the bent ring and manufacturing method for the same

Publications (2)

Publication Number Publication Date
WO2010087610A2 true WO2010087610A2 (en) 2010-08-05
WO2010087610A3 WO2010087610A3 (en) 2011-01-27

Family

ID=42396173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000481 WO2010087610A2 (en) 2009-01-30 2010-01-27 Vent ring, nozzle assembly for an injection machine comprising same, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20100088383A (en)
WO (1) WO2010087610A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506035A (en) * 2020-11-16 2022-05-17 丰田自动车株式会社 Injection molding machine, injection molding device, injection molding method, and injection molding program

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277193B1 (en) * 2011-11-10 2013-06-21 주식회사 지브랜드 3-dimensional interconnect module and method for manufacturing same
KR101277191B1 (en) * 2011-11-10 2013-06-21 주식회사 지브랜드 Transcription inmold injection molding method
KR101383088B1 (en) * 2013-02-15 2014-04-08 주식회사 지브랜드 Transcription inmold injection molding method
KR101495852B1 (en) * 2014-02-20 2015-03-03 김태윤 Eco magnesium alloy and manufacturing method thereof
KR101495849B1 (en) * 2014-10-24 2015-03-03 김태윤 Eco magnesium alloy manufacturing method and manufacturing apparatus thereof
KR20160003401U (en) 2015-03-25 2016-10-06 주상규 Bent ring of nozzle assembly for injector
KR20160114843A (en) 2015-03-25 2016-10-06 주상규 Poppet of nozzle assembly for injector
KR102031745B1 (en) * 2019-03-29 2019-10-14 김주형 3d injection molding apparatus and injection molding method
KR102315861B1 (en) * 2020-12-15 2021-10-22 주상규 Prefabricated gas injection device for injection screw

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227076B1 (en) * 1996-12-02 1999-10-15 박종국 Method of making ring screw and making mold therefor
JP2005153223A (en) * 2003-11-21 2005-06-16 Toppan Printing Co Ltd Mold for optical part and its manufacturing method
KR200393017Y1 (en) * 2005-06-01 2005-08-17 김종수 Nozzle assembly for shooting out
KR20060081990A (en) * 2005-01-11 2006-07-14 (주)인듀스 Master of electro-forming
KR20070003789A (en) * 2003-12-17 2007-01-05 오씨 외를리콘 발처스 악티엔게젤샤프트 Gloss adjustment
KR100822479B1 (en) * 2006-10-23 2008-04-16 김종수 Nozzle assembly for injector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227076B1 (en) * 1996-12-02 1999-10-15 박종국 Method of making ring screw and making mold therefor
JP2005153223A (en) * 2003-11-21 2005-06-16 Toppan Printing Co Ltd Mold for optical part and its manufacturing method
KR20070003789A (en) * 2003-12-17 2007-01-05 오씨 외를리콘 발처스 악티엔게젤샤프트 Gloss adjustment
KR20060081990A (en) * 2005-01-11 2006-07-14 (주)인듀스 Master of electro-forming
KR200393017Y1 (en) * 2005-06-01 2005-08-17 김종수 Nozzle assembly for shooting out
KR100822479B1 (en) * 2006-10-23 2008-04-16 김종수 Nozzle assembly for injector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506035A (en) * 2020-11-16 2022-05-17 丰田自动车株式会社 Injection molding machine, injection molding device, injection molding method, and injection molding program
EP4000870A1 (en) * 2020-11-16 2022-05-25 Toyota Jidosha Kabushiki Kaisha Injection molding machine, injection molding apparatus, injection molding method and injection molding program
JP2022079144A (en) * 2020-11-16 2022-05-26 トヨタ自動車株式会社 Injection molding machine, injection molding device, injection molding method and injection molding program
JP7380531B2 (en) 2020-11-16 2023-11-15 トヨタ自動車株式会社 Injection molding machines, injection molding equipment, injection molding methods and injection molding programs
CN114506035B (en) * 2020-11-16 2024-05-31 丰田自动车株式会社 Injection molding machine, injection molding device, injection molding method, and injection molding program

Also Published As

Publication number Publication date
KR20100088383A (en) 2010-08-09
WO2010087610A3 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2010087610A2 (en) Vent ring, nozzle assembly for an injection machine comprising same, and method for manufacturing same
ES2084444T3 (en) METHOD AND APPARATUS TO MAKE A CONE ASSEMBLY AND SPEAKER FENCE.
KR20020087342A (en) Protective masking device to be put on an engine block during thermally coating cylinder bores provided therein, and method using the protective masking device
WO2016204339A1 (en) Metal frame and method of manufacturing the metal frame for the mobile communication terminal
CZ237794A3 (en) Process for producing parts inserted one into another
WO2015020269A1 (en) Apparatus for fixing position of workpiece
WO2019182298A1 (en) Cooling distributor of die casting mold for aluminum casting having improved cooling efficiency and method for manufacturing same
WO2018110855A1 (en) Refiner bar plate including micro-fine bar and method for manufacturing same
WO2016098984A1 (en) Nozzle head, manufacturing method for nozzle head and liquid supply apparatus comprising nozzle head
WO2011149261A2 (en) Interdental cleaner
WO2020213836A1 (en) Sic edge ring
WO2011034290A2 (en) Cooling apparatus and cooling method for an indirect extruder
JP3529598B2 (en) Rotary atomizing type coating equipment
JP2007326318A (en) Method for demolding resin molding and injection molding machine
WO2023158054A1 (en) Core drill
WO2022225124A1 (en) Eco-friendly plastic bag manufacturing apparatus
WO2021141277A1 (en) Washing machine diaphragm manufacturing method and injection mold
WO2021118078A1 (en) Mold
WO2020138905A1 (en) Molding device and method for manufacturing molded body
WO2013129762A1 (en) Apparatus for manufacturing injection-molded articles, and method for manufacturing injection-molded articles using same
WO2013187734A1 (en) Apparatus for manufacturing contact tip for welding torch by forging
JP2504131B2 (en) Casting air vent cleaning method
WO2020096391A1 (en) Compress-reducing device
WO2020116734A1 (en) Apparatus for cooling steel sheet
JP2724746B2 (en) Method for producing ceramic tubular body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10736001

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10736001

Country of ref document: EP

Kind code of ref document: A2