WO2010087101A1 - Disk brake - Google Patents

Disk brake Download PDF

Info

Publication number
WO2010087101A1
WO2010087101A1 PCT/JP2009/071756 JP2009071756W WO2010087101A1 WO 2010087101 A1 WO2010087101 A1 WO 2010087101A1 JP 2009071756 W JP2009071756 W JP 2009071756W WO 2010087101 A1 WO2010087101 A1 WO 2010087101A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
piston
disc brake
cylinder
brake
Prior art date
Application number
PCT/JP2009/071756
Other languages
French (fr)
Japanese (ja)
Inventor
潤 渡辺
貴康 坂下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2010087101A1 publication Critical patent/WO2010087101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2123/00Multiple operation forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps
    • F16D2125/38Helical cams, Ball-rotating ramps with plural cam or ball-ramp mechanisms arranged concentrically with the brake rotor axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/52Rotating members in mutual engagement with non-parallel stationary axes, e.g. worm or bevel gears

Definitions

  • the present invention relates to a hydraulic disc brake.
  • Patent Document 1 describes a hydraulic disc brake for a vehicle that includes a parking brake mechanism that maintains a braking state.
  • the hydraulic disc brake can generate a large braking force at a low hydraulic pressure by increasing the pressure receiving area of the piston that presses the brake pad.
  • the piston diameter increases, A problem arises that the brake caliper to be equipped becomes larger.
  • an object of the present invention is to provide a disc brake excellent in space efficiency.
  • the present invention provides: A disc brake, A pair of brake pads disposed on both sides of the disc rotor; A piston that presses at least one of the pair of brake pads; A bottomed cylindrical cylinder that slidably accommodates the piston, and a caliper that propels the piston by supplying hydraulic pressure into the cylinder, The bottom of the cylinder is in contact with the first moving member that moves toward the bottom of the cylinder by supplying hydraulic pressure into the cylinder, and the first moving member A conversion member that converts propulsive force into propulsive force in the opening direction of the cylinder, and abutting the conversion member and connected to the piston, and propulsive force from the conversion member in the opening direction of the cylinder to the piston
  • a disc brake provided with a conversion mechanism having a second moving member for transmission.
  • FIG. 1 is a longitudinal sectional view of a disc brake according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a transverse sectional view taken along line BB in FIG. 1.
  • It is a front view which shows arrangement
  • It is a front view which shows arrangement
  • FIG. 20 is a longitudinal sectional view showing the structure of a main part of a first modification of the disc brake conversion mechanism shown in FIG. 19.
  • FIG. 20 is a front view showing a structure of a main part of a first modification of the disc brake conversion mechanism shown in FIG. 19.
  • FIG. 20 is a longitudinal sectional view showing a structure of a main part of a second modification of the disc brake conversion mechanism shown in FIG. 19.
  • FIG. 20 is a longitudinal sectional view showing a structure of a main part of a third modification of the disc brake conversion mechanism shown in FIG. 19.
  • a disc brake 1 according to the present embodiment is a caliper floating type hydraulic disc brake, and includes a pair of brake pads 3, 4 disposed on both sides of a disc rotor 2 that rotates together with wheels.
  • the caliper 5 straddling the disc rotor 2 and the carrier 6 fixed to a non-rotating portion of the vehicle and supporting the brake pads 3 and 4 and the caliper 5 movably along the axial direction of the disc rotor 2 are provided.
  • the caliper 5 is formed with a bottomed cylindrical cylinder 7 at a position facing the back metal 3A of one brake pad 3. Further, the caliper 5 is formed with a claw portion 9 that straddles the disc rotor 2 and contacts the back metal 4A of the other brake pad 4.
  • a bottomed cylindrical piston 10 is slidably inserted via a fallback seal 11 on the opening 7A side of the cylinder 7, and the bottom of the piston 10 is in contact with the back metal 3A of the brake pad 3.
  • a hydraulic chamber 12 is formed inside the cylinder 7 by the piston 10, and a hydraulic source such as a master cylinder and a hydraulic pump is connected to the hydraulic chamber 12.
  • a pad wear compensation mechanism 13 is provided inside the piston 10.
  • a conversion mechanism 14 is provided at the bottom 7B in the cylinder 7, and a speed reduction mechanism 15 is attached to the outside of the caliper 5 on the side opposite to the bottom 7B of the cylinder 7.
  • the pad wear compensation mechanism 13 includes an adjustment nut 16 and an adjustment screw 17.
  • the adjustment nut 16 is rotatably supported in the piston 10 and has a friction surface 18 that frictionally engages the piston 11.
  • the adjustment nut 16 receives the spring force of the wave washer 19 supported by the piston 10 via the thrust washer 20, and the friction surface 18 is pressed against the piston 10.
  • the adjustment screw 17 is screwed into the adjustment nut 16, and the base end portion is in contact with and engaged with the distal end portion of the small-diameter linearly moving member 21 of the conversion mechanism 14 to be described later, so that the rotation around the axis is restricted.
  • a polygonal shape as shown in FIGS. 1 and 2 of JP-A-2005-282789 can be used.
  • the adjusting screw 17 is urged toward the bottom of the cylinder 7 by a coil spring 23 held by a spring receiver 22 fixed to the cylinder 7 and is pressed against the tip of the small diameter linearly moving member 21.
  • a seal member 24 seals the tip of the adjustment nut 16 fitted to the piston 10 and the piston 10.
  • the adjusting nut 16 and the adjusting screw 17 are screwed together by a multi-threaded screw so that the rotation-linear motion can be mutually converted.
  • the screw portion M of the adjustment nut 16 and the adjustment screw 17 is provided with a predetermined gap called a so-called built-in clearance. For this reason, the adjustment nut 16 and the adjustment screw 17 can move linearly with respect to each other without the relative rotation.
  • the adjustment nut 16 has a larger pressure receiving area with respect to the hydraulic pressure chamber 12 than the adjustment screw 17, and the spring force of the coil spring 23 is set larger than the spring force of the wave washer 19.
  • the conversion mechanism 14 includes a ball ramp mechanism that can convert rotational motion into linear motion, and includes a rotary member 25, a large-diameter linear motion member 26 as a first moving member in the present embodiment, and a second in the present embodiment.
  • a small-diameter linear motion member 21 as a moving member and a ball 27 as a conversion member in the present embodiment are provided.
  • the rotating member 25 has a substantially disc shape, and an outer peripheral ramp groove 28 and an inner peripheral ramp groove 29 are formed on the front end surface, and a shaft portion 25A is integrally formed at the center of the rear end surface.
  • the shaft portion 25A passes through the opening 5A formed in the bottom portion 7B of the cylinder 7, is rotatably supported with respect to the cylinder 7, and is fixed in the axial direction by a retaining ring 25B attached to the shaft portion 25A. ing.
  • a thrust bearing 30 is interposed between the rotating member 25 and the bottom portion 7B of the cylinder 7.
  • the cylinder 7 is formed in the range from the above-mentioned opening 7A to the bottom 7B.
  • the outer peripheral ramp grooves 28 formed on the outer peripheral side of the rotating member 25 are extended along the circumferential direction, and are arranged at three positions at equal intervals (120 ° intervals).
  • the three outer peripheral ramp grooves 28 are inclined in the same direction along the circumferential direction.
  • the inner peripheral ramp groove 29 formed on the inner peripheral side extends along the circumferential direction, and is arranged at three positions in the same phase as the outer peripheral ramp groove 28 at equal intervals. 29 is inclined in the direction opposite to the outer peripheral ramp groove 28 along the circumferential direction.
  • the large-diameter linearly moving member 26 is a substantially cylindrical annular member, and is inserted into the cylinder 7 so as to be slidable along the axial direction. And the rotation with respect to the cylinder 7 is restricted.
  • An O-ring 31 is provided between the large-diameter linearly moving member 26 and the circumferential surface of the cylinder 7 to seal the above-described hydraulic chamber 12.
  • three ramp grooves 32 are formed at the end portion 26 ⁇ / b> C of the opening 26 ⁇ / b> B of the large-diameter linear motion member 26 so as to face the three outer peripheral ramp grooves 28 of the rotating member 25.
  • the ramp groove 32 is inclined in the same direction as the outer peripheral ramp groove 28.
  • the opening 26B of the large-diameter linear motion member 26 is stepped from the large-diameter portion 26D and the small-diameter portion 26E, and the small-diameter linear motion member 21 is inserted therein.
  • the small-diameter linear motion member 21 is a stepped columnar cylindrical member composed of a large-diameter portion 21A and a small-diameter portion 21B.
  • the large-diameter portion 21A is axially disposed inside the large-diameter portion 26D of the opening 26B of the large-diameter linear motion member 26.
  • the concave / convex fitting portion 21 ⁇ / b> C is formed between a part of the outer peripheral portion and the large diameter portion 26 ⁇ / b> D, and the rotation with respect to the large diameter linearly moving member 26 is restricted.
  • the small diameter portion 21A of the small diameter linear motion member 21 is slidably inserted into the small diameter portion 26E of the opening 26B of the large diameter linear motion member 26.
  • An O-ring 33 is provided between the small-diameter portion 26E of the large-diameter linear member 26 and the small-diameter portion 21B of the small-diameter linearly-moving member 21, and seals the hydraulic chamber 12 described above.
  • three ramp grooves 34 facing the three inner peripheral ramp grooves 29 of the rotating member 25 are formed at the end 21 ⁇ / b> D of the large diameter portion 21 ⁇ / b> A of the small diameter linear motion member 21. .
  • the ramp groove 34 is inclined in the same direction as the inner peripheral ramp groove 29.
  • the ball 27 is a steel ball having sufficient rigidity with respect to a load acting on each member, and is provided between the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly-moving member 26 and the inner peripheral ramp groove. One is loaded between each groove 29 and the ramp groove 34 of the small diameter linearly moving member 21. Then, when the ball 27 rolls between the inclined grooves with respect to the rotation of the rotating member 25, the large-diameter linear motion member 26 and the small-diameter linear motion member 21 linearly move in the axial direction with respect to the rotational member 25. .
  • FIG. 6A shows the outer peripheral ramp groove 28 of the rotating member 25, the ramp groove 32 of the large-diameter linearly moving member 26, and the ball 27 loaded therebetween, and FIG. An inner peripheral ramp groove 29, a ramp groove 34 of the small-diameter linearly moving member 21, and a ball 27 loaded therebetween are shown.
  • the small-diameter linearly moving member 21 advances in the direction indicated by the arrow b in FIG. 6B (the opening direction of the cylinder 7). Further, when the rotating member 25 rotates in the braking release direction from the braking position (2) to the position indicated by (3), that is, the initial position (1), the large-diameter linearly moving member 26 moves forward in the direction opposite to the arrow a. On the other hand, the small-diameter linearly moving member 21 moves backward in the direction opposite to the arrow b.
  • the slope difference (lead) of each ramp groove is set equal to or slightly larger than the clearance of the threaded portion M of the pad wear compensation mechanism 13 in the small-diameter linear motion member 21.
  • the pressure receiving area of the large-diameter linear motion member 26 defined by the O-ring 31 and the O-ring 33 with respect to the hydraulic chamber 12 is the liquid in the small-diameter portion 21B of the small-diameter linear motion member 21 defined by the O-ring 33. It is sufficiently larger than the pressure receiving area for the pressure chamber 12. A gap between the outer peripheral portion of the tip of the piston 10 and the opening of the cylinder 7 is sealed with a dust seal 35.
  • the speed reduction mechanism 15 includes a worm wheel 38 rotatably supported by a bearing 37 in a case 36 attached to the outside of the caliper 5 on the opposite side of the bottom of the cylinder 7 by screws or the like (not shown), A meshing worm 39 is provided.
  • the worm wheel 38 is connected to the shaft portion 25 ⁇ / b> A of the rotating member 25 of the conversion mechanism 14.
  • the worm 39 is connected to an output shaft 40A of an electric motor 40 that is a drive source. Then, by rotating the worm 39 by the electric motor 40, the worm wheel 38 is rotated at a predetermined reduction ratio. When the electric motor is stopped, the worm wheel 38 functions as a holding mechanism, and the worm wheel 38 is engaged with the worm 39. It is fixed at that rotational position.
  • the disc brake 1 is operated as a service brake.
  • a fluid pressure source such as a master cylinder or a fluid pressure pump
  • the piston 10 moves forward while bending the fallback seal 11 and presses one brake pad 3 against the disc rotor 2.
  • the piston 10 moves the caliper 5 by the reaction force and presses the other brake pad 4 against the disc rotor 2 via the claw portion 9.
  • the disc rotor 2 is sandwiched by the brake pads 3 and 4 to generate a braking force.
  • the piston 10 moves forward beyond the gap of the screw portion M between the adjusting nut 16 and the adjusting screw 17 by hydraulic pressure during braking. At this time, slip occurs between the piston 10 and the fallback seal 11, and the friction engagement between the friction surface 18 of the adjustment nut 16 and the piston 10 is loosened, and the adjustment nut 16 rotates. As the pad wear compensation mechanism 13 extends in this manner, the pad wear compensation mechanism 13 maintains a state where it abuts on the piston 10 and the small diameter linear motion member 21 of the conversion mechanism 14. Note that a very large hydraulic pressure acts on the hydraulic pressure chamber 12 during braking, and the piston 10 may be displaced beyond the gap of the screw portion M due to the bending of the claw portion 9 or the like.
  • the friction surface 18 of the adjusting screw 16 is pressed against the piston 10 due to the difference in pressure receiving area between the adjusting nut 16 and the adjusting screw 17 and the difference in spring force between the wave washer 19 and the coil spring 23, and the friction between them. Since the engagement is maintained and the adjustment screw 17 does not rotate, overadjustment of the pad wear compensation mechanism 13 is prevented.
  • the conversion mechanism 14 and the speed reduction mechanism 15 operate as a parking brake mechanism.
  • hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch, etc., and at the same time, the electric motor 40 is operated to rotate the worm 39 in the braking direction.
  • the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2 as described above.
  • the speed reduction mechanism 15 the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
  • the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. Due to the inclination of the outer peripheral ramp groove 28, a rotational force in the braking direction is generated in the rotary member 25. In this way, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
  • the hydraulic pressure in the hydraulic chamber 12 also acts on the small-diameter linear motion member 21 to generate a rotational force in the non-braking direction on the rotating member 25, but the large-diameter linear motion member 26 receives pressure on the hydraulic chamber 12. Since the area is larger than the pressure receiving area of the small-diameter linearly moving member 21 with respect to the hydraulic pressure chamber 12, a rotational force in the braking direction is applied to the rotating member 25.
  • the electric motor 40 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction.
  • the rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
  • the braking state of the parking brake is maintained by the engagement of the worm wheel 38 and the worm 39 of the speed reduction mechanism 15, but other types of irreversible speed reduction mechanisms may be used. Good. Further, instead of using the irreversible speed reduction mechanism, a holding unit that holds the rotational position of the rotating member 25 may be used.
  • a coil spring 50 that is a compression spring is interposed between the spring receiver 22 fixed to the cylinder 7 and the large-diameter linear motion member 26 of the conversion mechanism 14.
  • the large-diameter linearly moving member 26 is biased toward the rotating member 25 by the spring force of the coil spring 50.
  • the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly moving member 26 opposed thereto are inclined so as to have a deepest portion at the center.
  • Concave portions 28a, 28b and 32a, 32b are respectively formed, and concave portions 28c, 28d and 32c, 32d with which the spherical surface of the ball 27 engages are formed at the shallowest ends.
  • 9A at the initial position (1) in the non-braking state, the recess 28c of the rotating member 25 and the recess 32c of the large-diameter linearly moving member 26 face each other, and the ball 27 is disposed therebetween.
  • the spring force of the coil spring 50 and the inclination angles of the outer peripheral ramp groove 28 and the ramp groove 32 are set so that the rotating member 25 does not rotate due to the spring force of the coil spring 50 acting on the large-diameter linearly moving member 26.
  • the inner circumferential ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small-diameter linearly moving member 21 opposed thereto have a deepest portion at one end, and from the deepest portion to the center.
  • Inclined portions 29a and 34a that are inclined upward to the respective portions are formed, flat end portions 29b and 34b that are flatly extended from the center portion to the other end portion are formed, and the deepest portion is engaged with the spherical surface of the ball 27.
  • 29c and 34c are formed, respectively.
  • the concave portion 29c of the rotating member 25 and the concave portion 34c of the small-diameter linearly moving member 21 face each other, and the ball 27 is disposed therebetween.
  • the height difference (lead) of the inclination of the inner peripheral ramp groove 29 and the ramp groove 34 is set in accordance with the gap of the screw portion M.
  • the operation as a service brake is the same as in the first embodiment.
  • the ball 27 is held by the inner peripheral ramp groove 28 and the concave portions 28c, 32c of the ramp groove 32 functioning as holding means. Since the large-diameter linearly moving member 26 does not move and the rotating member 25 does not rotate due to the hydraulic pressure in the hydraulic pressure chamber 12, the speed reduction mechanism 15 may not have irreversibility or a holding function.
  • hydraulic pressure is supplied to the cylinder chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch, and the electric motor 40 is simultaneously operated to rotate the worm 39 in the braking direction.
  • a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch
  • the electric motor 40 is simultaneously operated to rotate the worm 39 in the braking direction.
  • the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2, as in the first embodiment.
  • the speed reduction mechanism 15 the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
  • the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG.
  • the rotating member 25 After the ball 27 gets over the edges of the recesses 28c and 32c by rotation, the rotating member 25 generates a rotational force in the braking direction by rolling on the inclined portions 28a and 32a. Thereby, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
  • the ball 27 reaches the flat end portions 29b and 34b of the inner peripheral ramp groove 29 and the ramp groove 34, and simultaneously the outer peripheral ramp groove 28 and the ramp.
  • the supply of hydraulic pressure to the hydraulic chamber 12 is stopped.
  • the electric motor 40 further rotates in the braking direction and stops energization of the electric motor 40 when the rotating member 25 reaches the holding position (3).
  • the large-diameter linearly moving member 26 can move toward the hydraulic chamber 12 against only the spring force of the coil spring 50.
  • the small-diameter linearly moving member 21 does not cause a load on the electric motor 40 because the ball 27 rolls on the flat end portions 29b and 34b and does not move in the axial direction.
  • the reaction force from the brake pad 3 acts on the small-diameter linearly-moving member 21, but since the ball 27 is at the flat end portions 29b and 34b, no rotational force is generated on the rotating member 25. Further, the rotation position of the rotating member 25 is maintained by holding the ball 27 between the recesses 28d and 32d between the rotating member 25 and the large-diameter linearly moving member 26. As a result, the braking state can be maintained even after energization of the electric motor 40 is stopped. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
  • the electric motor 40 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction.
  • the rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
  • the large-diameter linearly moving member 26 moves to the piston 10 side by the balls 27 rolling on the inclined portions 32a and 28a, and the small-diameter linearly-directing member. 21, the ball 27 rolls back on the rotating member 25 side by rolling the inclined portions 29a, 34a toward the recesses 29c, 34c, and the rotating member 25 moves to the braking release position (5), that is, the initial position (1).
  • the adjustment screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking.
  • the hydraulic pressure may be supplied to the hydraulic chamber 12 while the large-diameter linearly moving member 26 moves from the holding position (3) to the braking position (4).
  • the coil spring 50 shown in FIG. 8 is not provided.
  • the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly moving member 26 are provided with flat end portions 28e, 32e instead of one inclined portion 28b, 32b.
  • the recesses 28d and 32d are omitted.
  • the inner peripheral ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small diameter linearly moving member 21 are engaged with the spherical surface of the ball 27 at the ends of the flat end portions 29b and 34b. Concave portions 29d and 34d are provided.
  • the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG.
  • the rotation of the ball 27 passes over the edges of the recesses 28c and 32c, and then rolls on the inclined portions 28a and 32a, thereby generating a rotational force in the braking direction on the rotating member 25 and reaching the flat end portions 28e and 32e. .
  • the driving force of the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
  • the electric motor 40 further rotates in the braking direction.
  • the rotating member 25 reaches the holding position (3) and the ball 27 is engaged with the recesses 29d and 34d, the supply of the hydraulic pressure to the hydraulic chamber 12 and the energization of the electric motor 40 are stopped.
  • the ball 27 rolls on the flat end portions 28e and 32e, and no rotational force is generated in the large-diameter linearly moving member 26. Therefore, no load is applied to the electric motor 40.
  • the supply of hydraulic pressure to the hydraulic pressure chamber 12 may be stopped when the rotating member 25 reaches the braking position (2).
  • the electric motor 40 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction.
  • the rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
  • the rotating member 25 rotates in the braking release direction, and the ball 27 is recessed in the inner peripheral ramp groove 29 and the ramp groove 34.
  • the ball 27 rolls on the flat end portions 28e and 32e and reaches the braking position (4) in the outer peripheral ramp groove 28 and the ramp groove 32.
  • the small-diameter linear motion member 21 and the large-diameter linear motion member 26 do not move in the axial direction because the ball 27 rolls on the flat end portions 29b and 34b and the flat portions 28e and 32e.
  • FIG. 8 a fourth embodiment of the present invention will be described with reference to FIG. 8, FIG. 13, and FIG. Note that the same reference numerals are used for the same parts with respect to the third embodiment, and only different parts will be described in detail.
  • a coil spring 50 is interposed between the spring receiver 22 and the large-diameter linear motion member 26 of the conversion mechanism 14, and the large-diameter linear motion member is caused by the spring force of the coil spring 50. 26 is urged to the rotating member 25 side.
  • concave portions 28f and 32f are formed at the end portions of the flat end portion 28e of the outer peripheral ramp groove 28 of the rotating member 25 and the flat end portion 32e of the ramp groove 32 of the large diameter linearly moving member 26, Further, as shown in FIG.
  • the concave portions 29d and 34d are omitted from the end portions of the flat end portion 29b of the inner peripheral ramp groove 29 of the rotating member 25 and the flat end portion 34b of the ramp groove 34 of the small diameter linearly moving member 21. ing.
  • the operation as a service brake is the same as that in the first embodiment.
  • the rotating member 25 moves to the holding position (3), the rotating member 25 and the large-diameter linearly moving member 26
  • the ball 27 is engaged with the recesses 28 f and 32 f and is held by the spring force of the coil spring 50.
  • the speed reduction mechanism 15 may not have irreversibility or a holding function.
  • FIGS. 8 and 15 to 18 a fifth embodiment of the present invention will be described with reference to FIGS. 8 and 15 to 18. Note that the same reference numerals are used for the same parts with respect to the second embodiment, and only different parts will be described in detail.
  • each outer peripheral ramp groove 28 of the rotating member 25 and each ramp groove 32 of the large-diameter linearly moving member 26 that opposes the outer peripheral ramp groove 28 have a central angle 60 along the circumferential direction.
  • Six pieces extending in the range of ° are arranged and integrated to form a continuous annular groove.
  • the recesses 28c, 32c and 28d, 32d at both ends of each outer peripheral lamp groove 28 and each lamp groove 32 adjacent to each other in the circumferential direction overlap to form a common recess 28cd, 32cd.
  • FIG. 17A schematically shows two adjacent outer peripheral lamp grooves 28 and lamp grooves 32 extending in a range of a central angle of 120 °.
  • the inner circumferential ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small-diameter linearly-moving member 21 opposed thereto are within a range of a central angle of 60 ° along the circumferential direction.
  • the brake release portions 41 and 42 are provided so as to be extended and further connected to the end portions of the flat end portions 29b and 34b.
  • the brake release portions 41 and 42 are further extended in the circumferential direction within a range of a central angle of 60 °. It is extended to.
  • the three inner peripheral ramp grooves 29 and the ramp groove 34 are integrated to form a continuous annular groove.
  • the brake release portions 41 and 42 are inclined portions 41a and 42a that are inclined downward from the flat end portions 29b and 34b to the center portion in the circumferential direction, and uneven portions 41b and 42b that extend horizontally with small unevenness from the center portion in the circumferential direction. And have. And the recessed part 29c of the edge part of the adjacent inner periphery ramp groove 29 and the edge part of the uneven part 41b overlap, and the recessed part 34c of the edge part of the lamp groove 34 and the edge part of the uneven part 42b overlap.
  • the operation as a service brake is the same as in the first embodiment.
  • the case of operating as a parking brake will be described below.
  • hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating the parking brake switch and the electric motor 40 is operated simultaneously.
  • the worm 39 is rotated in the braking direction.
  • the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2.
  • the speed reduction mechanism 15 the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
  • the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. After the ball 27 gets over the edges of the recesses 28 cd and 32 cd by rotation, the rotating member 25 generates a rotational force in the braking direction by rolling on the inclined portions 28 a and 32 a. Thereby, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
  • the reaction force from the brake pad 3 acts on the small-diameter linearly-moving member 21, but since the ball 27 is at the flat end portions 29b and 34b, no rotational force is generated on the rotating member 25. Further, the rotation position of the rotating member 25 is maintained by holding the ball 27 between the concave portions 28 cd and 32 cd between the rotating member 25 and the large-diameter linearly moving member 26. As a result, the braking state can be maintained even after energization of the electric motor 40 is stopped. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
  • the electric motor 40 is operated in the same direction as during braking by operating the parking brake switch or the like to further rotate the worm 39 in the same direction as during braking. Due to the rotation of the worm 39, the worm wheel 38 is further rotated in the same direction as during braking at a predetermined reduction ratio, and the rotating member 25 of the conversion mechanism 14 is further rotated in the same direction as during braking.
  • the large-diameter linearly moving member 26 27 moves over the edge of the recesses 32 cd and 28 cd and rolls the inclined portions 32 a and 28 a toward the deepest part, so that it moves toward the rotating member 25 as indicated by an arrow a.
  • the ball 27 rolls on the inclined portions 41a and 42a of the brake release portions 41 and 42, the ball 27 moves backward toward the rotating member 25.
  • the adjustment screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking.
  • the hydraulic pressure may be supplied to the hydraulic chamber 12 while the large-diameter linearly moving member 26 moves from the holding position (3) to the brake release (4).
  • the ball 27 After the rotating member 25 reaches the braking release position (4), in the large diameter linear motion member 26, the ball 27 rolls on the inclined portions 28b and 32b, and in the small diameter linear motion member 21, the ball 27 includes the uneven portion 41b, 42b rolls to reach the position indicated by (5), that is, the initial position (1).
  • the release of the parking brake can be detected by detecting the ripple current of the electric motor 40. it can.
  • hydraulic pressure is supplied to the hydraulic chamber 12 by operating the service brake or the like between the brake release position (4) and the initial position (1), the hydraulic pressure becomes a load on the electric motor 40 and the rotating member. Therefore, when the hydraulic pressure is released, the rotating member 25 rotates to the initial position (1).
  • the speed reduction mechanism 15 and the electric motor 40 are omitted, the function as a parking brake is omitted, and the rotating member 25 of the conversion mechanism 14 can freely rotate. It has become.
  • the adjusting nut 16 After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. Press on. As a result, in addition to the propulsive force of the piston 10 due to the hydraulic pressure, the pressing force generated by the conversion mechanism 14 acts on the piston 10, and the propulsive force of the piston 10 can be increased.
  • the conversion mechanism 14 ⁇ / b> A uses the link mechanism to replace the ball ramp mechanism with the hydraulic pressure acting on the large-diameter linearly-moving member 26, so Is supposed to be generated.
  • the conversion mechanism 14A is provided with a link member 43 extending in the radial direction on the back of the large-diameter linear motion member 26 and the small-diameter linear motion member 21.
  • the link member 43 is rotatably supported by a pin 44 orthogonal to the link member 43, one end abuts against the rear end portion of the large-diameter linear motion member 26, and the other end portion is the rear end portion of the small-diameter linear motion member 21. Abut.
  • the distance from the contact portion of the link member 43 with the large-diameter linear motion member 26 is sufficiently larger than the distance from the contact portion with the small-diameter linear motion member 21, and this lever ratio causes the large-diameter linear motion It arrange
  • FIG. In the example shown in the figure, three link members 43 are arranged at equal intervals, but other link members 43 may be arranged. For example, one or two link members 43 may be disposed, or four or more link members 43 may be disposed, and the distance between the link members 43 may not be equal.
  • the conversion mechanism 14 ⁇ / b> B generates a propulsive force on the small-diameter linearly-moving member 21 using a fluid member instead of the ball ramp mechanism.
  • a hydraulic chamber 45 is formed between the large-diameter linear motion member 26 and the small-diameter linear motion member 21 and the bottom of the cylinder 7. Is filled.
  • the small diameter linearly moving member 21 has a sufficiently large pressure receiving area of the large diameter portion 21 ⁇ / b> A with respect to the hydraulic pressure chamber 45 and a sufficiently small pressure receiving area of the small diameter portion 21 ⁇ / b> B with respect to the hydraulic pressure chamber 12.
  • the large-diameter linear motion member 26 has a sufficiently large pressure receiving area for the hydraulic pressure chamber 12 and a sufficiently small pressure receiving area for the hydraulic pressure chamber 45.
  • the pressing force increased by the conversion mechanism 14 ⁇ / b> B can be applied to the piston 10 via the adjustment screw 17, and the propulsion of the piston 10 can be performed.
  • the power can be increased.
  • the fluid pressure chamber 45 may be filled with another fluid member in place of the brake fluid as long as the pressure can be transmitted from the large diameter linear motion member 26 to the small diameter linear motion member 21.
  • the conversion mechanism 14C generates a propulsive force on the small-diameter linearly moving member 21 by using hydraulic pressure instead of the ball ramp mechanism.
  • the large-diameter linear motion member 26 and the small-diameter linear motion member 21 are liquid-tightly inserted into the cylinder portions 7A and 7B formed at the bottom of the cylinder 7, and hydraulic chambers 46 and 47 are formed in the respective back portions. .
  • the hydraulic chambers 46 and 47 are connected to each other through a passage 48.
  • a solenoid valve 49 for opening and closing the passage 48 is provided in the passage 48.
  • the hydraulic chambers 46 and 47 are filled with brake fluid.
  • the large-diameter linear motion member 26 has a sufficiently large pressure-receiving area with respect to the hydraulic pressure chamber 12 and a sufficiently small pressure-receiving area with respect to the hydraulic pressure chamber 46, and the small-diameter linear motion member 21 has a sufficiently small pressure-receiving area with respect to the hydraulic pressure chamber 12.
  • the pressure receiving area for the pressure chamber 47 is sufficiently large.
  • the propulsive force generated in the small-diameter linear motion member 21 is increased by the difference in the pressure-receiving area of the large-diameter linear motion member 26 with respect to the hydraulic chambers 12 and 46 and the pressure-receiving area of the small-diameter linear motion member 21 with respect to the hydraulic chambers 12 and 47.
  • the pressing force increased by the conversion mechanism 14C can be applied to the piston 10 via the adjustment screw 17, and the piston 10 The driving force can be increased.
  • the large-diameter linear motion member 26 is moved backward by the hydraulic pressure in the hydraulic chamber 12 so that the small-diameter linear motion member 21 moves forward to the piston 10 side.
  • the small diameter linear motion member 21 may be moved backward by the hydraulic pressure of the pressure chamber 12 and the large diameter linear motion member 26 may be advanced to the piston 10 side.
  • the pressure receiving area of the small-diameter portion 21B of the small-diameter linear motion member 21 defined by the O-ring 33 with respect to the hydraulic chamber 12 is defined as the liquid of the large-diameter linear motion member 26 defined by the O-ring 31 and the O-ring 33. This is sufficiently larger than the pressure receiving area for the pressure chamber 12.
  • the small-diameter linear motion member 21 constitutes the first moving member of the present invention
  • the large-diameter linear motion member 26 constitutes the second moving member of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Transmission Devices (AREA)

Abstract

Disclosed is a disk brake having increased braking force with respect to the hydraulic pressure, and increased space efficiency. When braking occurs, hydraulic pressure is supplied to a hydraulic pressure chamber (12), a piston (10) is moved forward, and brake pads (3, 4) are pressed against a disk rotor (2). When the parking brake is operated, hydraulic pressure is supplied to the hydraulic pressure chamber (12) to move the piston (10) forward, a worm (39) is driven by an electric motor (40), a rotary member (25) is rotated by a worm wheel (38), a small-diameter direct-acting member (21) is moved forward by the rolling motion of a ball (27), and thrust is imparted to the piston (10). At this time, the hydraulic pressure of the hydraulic pressure chamber (12) operates on a large-diameter direct-acting member (26), a rotary force in the braking direction is generated in the rotary member (25) by means of the rolling motion of the ball (27), and the drive force of the electric motor (40) is reduced. Even if the hydraulic pressure is released and energization is stopped, the rotational position of the rotary member (25) is maintained by the meshing of the worm (39) and the worm wheel (38), and the braking status is maintained.

Description

ディスクブレーキDisc brake
 本発明は、液圧式のディスクブレーキに関するものである。 The present invention relates to a hydraulic disc brake.
 ブレーキ液の液圧によってブレーキパッドをディスクロータに押付けて制動力を発生させる液圧式のディスクブレーキが公知である。そして、特許文献1には、制動状態を保持する駐車ブレーキ機構を備えた車両用液圧式ディスクブレーキが記載されている。 A hydraulic type disc brake that generates a braking force by pressing a brake pad against a disc rotor by the hydraulic pressure of the brake fluid is known. Patent Document 1 describes a hydraulic disc brake for a vehicle that includes a parking brake mechanism that maintains a braking state.
特開2007-177996号公報JP 2007-177996 A
 液圧式のディスクブレーキは、ブレーキパッドを押圧するピストンの受圧面積を大きくすることにより、低い液圧で大きな制動力を発生させることができるが、この場合、ピストンの径が大きくなるため、ピストンを装備するブレーキキャリパが大型化するという問題を生じる。 The hydraulic disc brake can generate a large braking force at a low hydraulic pressure by increasing the pressure receiving area of the piston that presses the brake pad. However, in this case, the piston diameter increases, A problem arises that the brake caliper to be equipped becomes larger.
 そこで、本発明は、スペース効率に優れたディスクブレーキを提供することを目的とする。 Therefore, an object of the present invention is to provide a disc brake excellent in space efficiency.
 上記の課題を解決するために、本発明は、
 ディスクブレーキであって、
 ディスクロータの両面に配置される一対のブレーキパッドと、
 該一対のブレーキパッドのうち少なくとも一方を押圧するピストンと、
 該ピストンを摺動可能に収納する有底筒状のシリンダが形成され、該シリンダ内への液圧供給により、前記ピストンを推進するキャリパと、を備え、
 前記シリンダの底部には、前記シリンダ内への液圧供給により、前記シリンダの底部側に移動する第1の移動部材と、該第1の移動部材に当接して、該第1の移動部材の推進力を前記シリンダの開口方向への推進力に変換する変換部材と、該変換部材に当接すると共に前記ピストンに接続され、前記変換部材からの前記シリンダの開口方向への推進力を前記ピストンに伝達する第2の移動部材とを有する変換機構が設けられている、ディスクブレーキを提供する。
In order to solve the above problems, the present invention provides:
A disc brake,
A pair of brake pads disposed on both sides of the disc rotor;
A piston that presses at least one of the pair of brake pads;
A bottomed cylindrical cylinder that slidably accommodates the piston, and a caliper that propels the piston by supplying hydraulic pressure into the cylinder,
The bottom of the cylinder is in contact with the first moving member that moves toward the bottom of the cylinder by supplying hydraulic pressure into the cylinder, and the first moving member A conversion member that converts propulsive force into propulsive force in the opening direction of the cylinder, and abutting the conversion member and connected to the piston, and propulsive force from the conversion member in the opening direction of the cylinder to the piston There is provided a disc brake provided with a conversion mechanism having a second moving member for transmission.
本発明の第1実施形態に係るディスクブレーキの縦断面図である。1 is a longitudinal sectional view of a disc brake according to a first embodiment of the present invention. 図1のA-A線による横断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1のB-B線による横断面図である。FIG. 3 is a transverse sectional view taken along line BB in FIG. 1. 図1に示すディスクブレーキの変換機構の回転部材のランプ溝の配置を示す正面図である。It is a front view which shows arrangement | positioning of the ramp groove of the rotation member of the conversion mechanism of the disc brake shown in FIG. 図4に示す回転部材に対向する大径直動部材及び小径直動部材のランプ溝の配置を示す正面図である。It is a front view which shows arrangement | positioning of the ramp groove of the large diameter linear motion member and small diameter linear motion member which oppose the rotation member shown in FIG. 図1に示すディスクブレーキの変換機構のランプ溝を展開して示す概略図である。It is the schematic which expand | deploys and shows the ramp groove of the conversion mechanism of the disc brake shown in FIG. 図1に示すディスクブレーキの変換機構の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conversion mechanism of the disc brake shown in FIG. 本発明の第2実施形態に係るディスクブレーキの縦断面図である。It is a longitudinal cross-sectional view of the disc brake which concerns on 2nd Embodiment of this invention. 図8に示すディスクブレーキの変換機構のランプ溝を展開して示す概略図である。It is the schematic which expand | deploys and shows the ramp groove of the conversion mechanism of the disc brake shown in FIG. 図8に示すディスクブレーキの変換機構の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conversion mechanism of the disc brake shown in FIG. 本発明の第3実施形態に係るディスクブレーキの変換機構のランプ溝を展開して示す概略図である。It is the schematic which expand | deploys and shows the ramp groove of the conversion mechanism of the disc brake which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るディスクブレーキの変換機構の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conversion mechanism of the disc brake which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るディスクブレーキの変換機構のランプ溝を展開して示す概略図である。It is the schematic which expand | deploys and shows the ramp groove of the conversion mechanism of the disc brake which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係るディスクブレーキの変換機構の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conversion mechanism of the disc brake which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るディスクブレーキの変換機構の回転部材のランプ溝の配置を示す正面図である。It is a front view which shows arrangement | positioning of the ramp groove of the rotation member of the conversion mechanism of the disc brake which concerns on 5th Embodiment of this invention. 図15に示す回転部材に対向する大径直動部材及び小径直動部材のランプ溝の配置を示す正面図である。It is a front view which shows arrangement | positioning of the ramp groove of the large diameter linear motion member and small diameter linear motion member which oppose the rotation member shown in FIG. 本発明の第5実施形態に係るディスクブレーキの変換機構のランプ溝を展開して示す概略図である。It is the schematic which expand | deploys and shows the ramp groove of the conversion mechanism of the disc brake which concerns on 5th Embodiment of this invention. 本発明の第5実施形態に係るディスクブレーキの変換機構の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the conversion mechanism of the disc brake which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るディスクブレーキの縦断面図である。It is a longitudinal cross-sectional view of the disc brake which concerns on 6th Embodiment of this invention. 図19に示すディスクブレーキの変換機構の第1変形例の要部の構造を示す縦断面図である。FIG. 20 is a longitudinal sectional view showing the structure of a main part of a first modification of the disc brake conversion mechanism shown in FIG. 19. 図19に示すディスクブレーキの変換機構の第1変形例の要部の構造を示す正面図である。FIG. 20 is a front view showing a structure of a main part of a first modification of the disc brake conversion mechanism shown in FIG. 19. 図19に示すディスクブレーキの変換機構の第2変形例の要部の構造を示す縦断面図である。FIG. 20 is a longitudinal sectional view showing a structure of a main part of a second modification of the disc brake conversion mechanism shown in FIG. 19. 図19に示すディスクブレーキの変換機構の第3変形例の要部の構造を示す縦断面図である。FIG. 20 is a longitudinal sectional view showing a structure of a main part of a third modification of the disc brake conversion mechanism shown in FIG. 19.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。本発明の第1実施形態に係るディスクブレーキについて図1から図7を参照して説明する。図1に示すように、本実施形態に係るディスクブレーキ1は、キャリパ浮動型の液圧式ディスクブレーキであって、車輪とともに回転するディスクロータ2の両側に配置された一対のブレーキパッド3、4と、ディスクロータ2を跨ぐキャリパ5と、車両の非回転部分に固定されてブレーキパッド3、4及びキャリパ5をディスクロータ2の軸方向に沿って移動可能に支持するキャリア6とを備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. A disc brake according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a disc brake 1 according to the present embodiment is a caliper floating type hydraulic disc brake, and includes a pair of brake pads 3, 4 disposed on both sides of a disc rotor 2 that rotates together with wheels. The caliper 5 straddling the disc rotor 2 and the carrier 6 fixed to a non-rotating portion of the vehicle and supporting the brake pads 3 and 4 and the caliper 5 movably along the axial direction of the disc rotor 2 are provided.
 キャリパ5には、一方のブレーキパッド3の裏金3Aに対向する位置に有底筒状のシリンダ7が形成されている。また、キャリパ5には、ディスクロータ2を跨いで他方のブレーキパッド4の裏金4Aに当接する爪部9が形成されている。シリンダ7の開口7A側には、有底円筒状のピストン10がフォールバックシール11を介して摺動可能に挿入され、ピストン10の底部がブレーキパッド3の裏金3Aに当接している。また、ピストン10によってシリンダ7の内部に液圧室12が形成され、液圧室12にマスタシリンダ、液圧ポンプ等の液圧源が接続される。ピストン10の内部には、パッド摩耗補償機構13が設けられている。また、シリンダ7内の底部7Bには、変換機構14が設けられ、一方、シリンダ7の底部7Bと反対側のキャリパ5の外部には、減速機構15が取付けられている。 The caliper 5 is formed with a bottomed cylindrical cylinder 7 at a position facing the back metal 3A of one brake pad 3. Further, the caliper 5 is formed with a claw portion 9 that straddles the disc rotor 2 and contacts the back metal 4A of the other brake pad 4. A bottomed cylindrical piston 10 is slidably inserted via a fallback seal 11 on the opening 7A side of the cylinder 7, and the bottom of the piston 10 is in contact with the back metal 3A of the brake pad 3. In addition, a hydraulic chamber 12 is formed inside the cylinder 7 by the piston 10, and a hydraulic source such as a master cylinder and a hydraulic pump is connected to the hydraulic chamber 12. A pad wear compensation mechanism 13 is provided inside the piston 10. A conversion mechanism 14 is provided at the bottom 7B in the cylinder 7, and a speed reduction mechanism 15 is attached to the outside of the caliper 5 on the side opposite to the bottom 7B of the cylinder 7.
 パッド摩耗補償機構13は、調整ナット16及び調整ネジ17を備えている。調整ナット16は、ピストン10内に回転可能に支持され、ピストン11に摩擦係合する摩擦面18を有している。また、調整ナット16は、ピストン10に支持されたウエーブワッシャ19のバネ力をスラストワッシャ20を介して受け、摩擦面18がピストン10に押圧されている。調整ネジ17は、調整ナット16に螺合し、基端部が後述する変換機構14の小径直動部材21の先端部に当接、係合して、その軸周りの回転が規制されている。この場合、例えば、特開2005-282789号公報の図1及び図2に示されるような、多角形のものを使用することができる。特開2005-282789号公報の全開示内容は、明細書、特許請求の範囲、図面及び要約書を含め全てが参照により本明細書に組み込まれる。また、調整ネジ17は、シリンダ7に固定されたバネ受22に保持されたコイルバネ23によってシリンダ7の底部側へ付勢されて、小径直動部材21の先端部に押圧されている。ピストン10に嵌合された調整ナット16の先端部とピストン10との間は、シール部材24によってシールされている。 The pad wear compensation mechanism 13 includes an adjustment nut 16 and an adjustment screw 17. The adjustment nut 16 is rotatably supported in the piston 10 and has a friction surface 18 that frictionally engages the piston 11. The adjustment nut 16 receives the spring force of the wave washer 19 supported by the piston 10 via the thrust washer 20, and the friction surface 18 is pressed against the piston 10. The adjustment screw 17 is screwed into the adjustment nut 16, and the base end portion is in contact with and engaged with the distal end portion of the small-diameter linearly moving member 21 of the conversion mechanism 14 to be described later, so that the rotation around the axis is restricted. . In this case, for example, a polygonal shape as shown in FIGS. 1 and 2 of JP-A-2005-282789 can be used. The entire disclosure of Japanese Patent Application Laid-Open No. 2005-282789 is incorporated herein by reference in its entirety, including the specification, claims, drawings, and abstract. The adjusting screw 17 is urged toward the bottom of the cylinder 7 by a coil spring 23 held by a spring receiver 22 fixed to the cylinder 7 and is pressed against the tip of the small diameter linearly moving member 21. A seal member 24 seals the tip of the adjustment nut 16 fitted to the piston 10 and the piston 10.
 調整ナット16と調整ネジ17とは、多条ネジによって互いに螺合しており、回転-直線運動が相互に変換可能となっている。また、調整ナット16及び調整ネジ17のネジ部Mには、いわゆる、ビルトインクリアランスとよばれる所定の隙間が設けられている。このため、調整ナット16と調整ネジ17とは、相対回転することなく、その隙間の分だけ相互に直線移動できるようになっている。調整ナット16は、調整ネジ17よりも液圧室12に対する受圧面積が大きく、また、コイルバネ23のバネ力は、ウエーブワッシャ19のバネ力よりも大きく設定されている。 The adjusting nut 16 and the adjusting screw 17 are screwed together by a multi-threaded screw so that the rotation-linear motion can be mutually converted. The screw portion M of the adjustment nut 16 and the adjustment screw 17 is provided with a predetermined gap called a so-called built-in clearance. For this reason, the adjustment nut 16 and the adjustment screw 17 can move linearly with respect to each other without the relative rotation. The adjustment nut 16 has a larger pressure receiving area with respect to the hydraulic pressure chamber 12 than the adjustment screw 17, and the spring force of the coil spring 23 is set larger than the spring force of the wave washer 19.
 次に、変換機構14について、図1に加えて図2から図5を参照して説明する。 Next, the conversion mechanism 14 will be described with reference to FIGS. 2 to 5 in addition to FIG.
 変換機構14は、回転運動を直線運動に変換可能なボールランプ機構を備え、回転部材25と、本実施形態における第1の移動部材としての大径直動部材26と、本実施形態における第2の移動部材としての小径直動部材21と、本実施形態における変換部材としてのボール27とを備えている。回転部材25は、略円板状で前端面に外周ランプ溝28及び内周ランプ溝29が形成され、後端面中央部に軸部25Aが一体的に形成されている。そして、軸部25Aがシリンダ7の底部7Bに穿設された開口5Aを貫通して、シリンダ7に対して回転可能に支持され、軸部25Aに取付けられた止輪25Bによって軸方向に固定されている。回転部材25とシリンダ7の底部7Bとの間には、スラストベアリング30が介装されている。ここで、シリンダ7は、上述の開口7Aから底部7Bまでの範囲で形成されている。 The conversion mechanism 14 includes a ball ramp mechanism that can convert rotational motion into linear motion, and includes a rotary member 25, a large-diameter linear motion member 26 as a first moving member in the present embodiment, and a second in the present embodiment. A small-diameter linear motion member 21 as a moving member and a ball 27 as a conversion member in the present embodiment are provided. The rotating member 25 has a substantially disc shape, and an outer peripheral ramp groove 28 and an inner peripheral ramp groove 29 are formed on the front end surface, and a shaft portion 25A is integrally formed at the center of the rear end surface. The shaft portion 25A passes through the opening 5A formed in the bottom portion 7B of the cylinder 7, is rotatably supported with respect to the cylinder 7, and is fixed in the axial direction by a retaining ring 25B attached to the shaft portion 25A. ing. A thrust bearing 30 is interposed between the rotating member 25 and the bottom portion 7B of the cylinder 7. Here, the cylinder 7 is formed in the range from the above-mentioned opening 7A to the bottom 7B.
 図4に示すように、回転部材25の外周側に形成された外周ランプ溝28は、円周方向に沿って延ばされ、等間隔(120°間隔)で3箇所に配置されており、これら3つの外周ランプ溝28は、円周方向に沿って同方向に傾斜されている。また、内周側に形成された内周ランプ溝29は、円周方向に沿って延ばされ、等間隔で外周ランプ溝28と同位相で3箇所に配置され、これら3つの内周ランプ溝29は、円周方向に沿って外周ランプ溝28とは反対方向に傾斜されている。 As shown in FIG. 4, the outer peripheral ramp grooves 28 formed on the outer peripheral side of the rotating member 25 are extended along the circumferential direction, and are arranged at three positions at equal intervals (120 ° intervals). The three outer peripheral ramp grooves 28 are inclined in the same direction along the circumferential direction. Further, the inner peripheral ramp groove 29 formed on the inner peripheral side extends along the circumferential direction, and is arranged at three positions in the same phase as the outer peripheral ramp groove 28 at equal intervals. 29 is inclined in the direction opposite to the outer peripheral ramp groove 28 along the circumferential direction.
 大径直動部材26は、略円筒状の円環部材で、シリンダ7内に軸方向に沿って摺動可能に挿入され、その外周部の一部とシリンダ7との間に凹凸嵌合部26Aが形成されて、シリンダ7に対する回転が規制されている。また、大径直動部材26とシリンダ7周面との間には、Oリング31が設けられ、上述の液圧室12をシールしている。大径直動部材26の開口部26Bの端部26Cには、図5に示すように、回転部材25の3つの外周ランプ溝28にそれぞれに対向する3つのランプ溝32が形成されている。ランプ溝32は、外周ランプ溝28と同方向に傾斜されている。大径直動部材26の開口部26Bは、大径部26Dと小径部26Eとから段付に形成されており、小径直動部材21が挿入されるようになっている。 The large-diameter linearly moving member 26 is a substantially cylindrical annular member, and is inserted into the cylinder 7 so as to be slidable along the axial direction. And the rotation with respect to the cylinder 7 is restricted. An O-ring 31 is provided between the large-diameter linearly moving member 26 and the circumferential surface of the cylinder 7 to seal the above-described hydraulic chamber 12. As shown in FIG. 5, three ramp grooves 32 are formed at the end portion 26 </ b> C of the opening 26 </ b> B of the large-diameter linear motion member 26 so as to face the three outer peripheral ramp grooves 28 of the rotating member 25. The ramp groove 32 is inclined in the same direction as the outer peripheral ramp groove 28. The opening 26B of the large-diameter linear motion member 26 is stepped from the large-diameter portion 26D and the small-diameter portion 26E, and the small-diameter linear motion member 21 is inserted therein.
 小径直動部材21は、大径部21A及び小径部21Bからなる段付円柱状の円柱部材で、大径部21Aが大径直動部材26の開口部26Bの大径部26Dの内部に軸方向に沿って摺動可能に挿入され、その外周部の一部と大径部26Dとの間に凹凸嵌合部21Cが形成されて、大径直動部材26に対する回転が規制されている。小径直動部材21の小径部21Aは大径直動部材26の開口部26Bの小径部26Eに摺動可能に挿入されている。大径直部材26の小径部26Eと小径直動部材21の小径部21Bとの間には、Oリング33が設けられ、上述の液圧室12をシールしている。小径直動部材21の大径部21Aの端部21Dには、図5に示すように、回転部材25の3つの内周ランプ溝29にそれぞれに対向する3つのランプ溝34が形成されている。ランプ溝34は、内周ランプ溝29と同方向に傾斜している。 The small-diameter linear motion member 21 is a stepped columnar cylindrical member composed of a large-diameter portion 21A and a small-diameter portion 21B. The large-diameter portion 21A is axially disposed inside the large-diameter portion 26D of the opening 26B of the large-diameter linear motion member 26. The concave / convex fitting portion 21 </ b> C is formed between a part of the outer peripheral portion and the large diameter portion 26 </ b> D, and the rotation with respect to the large diameter linearly moving member 26 is restricted. The small diameter portion 21A of the small diameter linear motion member 21 is slidably inserted into the small diameter portion 26E of the opening 26B of the large diameter linear motion member 26. An O-ring 33 is provided between the small-diameter portion 26E of the large-diameter linear member 26 and the small-diameter portion 21B of the small-diameter linearly-moving member 21, and seals the hydraulic chamber 12 described above. As shown in FIG. 5, three ramp grooves 34 facing the three inner peripheral ramp grooves 29 of the rotating member 25 are formed at the end 21 </ b> D of the large diameter portion 21 </ b> A of the small diameter linear motion member 21. . The ramp groove 34 is inclined in the same direction as the inner peripheral ramp groove 29.
 ボール27は、各部材に作用する荷重に対して充分な剛性を有する鋼球であり、回転部材25の外周ランプ溝28と大径直動部材26のランプ溝32との間、及び内周ランプ溝29と小径直動部材21のランプ溝34との間に、各溝間に1個ずつ装填されている。そして、回転部材25の回転に対して、傾斜した各溝間でボール27が転動することにより、回転部材25に対して大径直動部材26及び小径直動部材21が軸方向に直線運動する。 The ball 27 is a steel ball having sufficient rigidity with respect to a load acting on each member, and is provided between the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly-moving member 26 and the inner peripheral ramp groove. One is loaded between each groove 29 and the ramp groove 34 of the small diameter linearly moving member 21. Then, when the ball 27 rolls between the inclined grooves with respect to the rotation of the rotating member 25, the large-diameter linear motion member 26 and the small-diameter linear motion member 21 linearly move in the axial direction with respect to the rotational member 25. .
 各ランプ溝の傾斜、相互の位置及びボール27の位置について、図6を参照して説明する。図6(A)は、回転部材25の外周ランプ溝28と大径直動部材26のランプ溝32とこれらの間に装填されたボール27とを示し、図6(B)は、回転部材25の内周ランプ溝29と小径直動部材21のランプ溝34とこれらの間に装填されたボール27とを示している。回転部材25が初期位置(1)から制動位置(2)に向かって制動方向に回転したとき、大径直動部材26は、図6(A)に矢印aで示す方向(シリンダ7の底部方向)に後退するのに対して、小径直動部材21は、図6(B)に矢印bで示す方向(シリンダ7の開口方向)に前進する。また、回転部材25が制動位置(2)から(3)で示す位置すなわち初期位置(1)に制動解除方向に回転したとき、大径直動部材26は、矢印aとは反対方向に前進するのに対して、小径直動部材21は、矢印bとは反対方向に後退する。各ランプ溝の傾斜の高低差(リード)は、小径直動部材21がパッド摩耗補償機構13のネジ部Mの隙間と同等あるいは僅かに大きく設定されている。 The inclination of each ramp groove, the mutual position, and the position of the ball 27 will be described with reference to FIG. 6A shows the outer peripheral ramp groove 28 of the rotating member 25, the ramp groove 32 of the large-diameter linearly moving member 26, and the ball 27 loaded therebetween, and FIG. An inner peripheral ramp groove 29, a ramp groove 34 of the small-diameter linearly moving member 21, and a ball 27 loaded therebetween are shown. When the rotating member 25 rotates in the braking direction from the initial position (1) toward the braking position (2), the large-diameter linearly moving member 26 is in the direction indicated by the arrow a in FIG. 6A (the bottom direction of the cylinder 7). In contrast, the small-diameter linearly moving member 21 advances in the direction indicated by the arrow b in FIG. 6B (the opening direction of the cylinder 7). Further, when the rotating member 25 rotates in the braking release direction from the braking position (2) to the position indicated by (3), that is, the initial position (1), the large-diameter linearly moving member 26 moves forward in the direction opposite to the arrow a. On the other hand, the small-diameter linearly moving member 21 moves backward in the direction opposite to the arrow b. The slope difference (lead) of each ramp groove is set equal to or slightly larger than the clearance of the threaded portion M of the pad wear compensation mechanism 13 in the small-diameter linear motion member 21.
 ここで、上述のOリング31とOリング33とで規定される大径直動部材26の液圧室12に対する受圧面積は、Oリング33で規定される小径直動部材21の小径部21Bの液圧室12に対する受圧面積よりも充分大きくなっている。なお、ピストン10の先端外周部とシリンダ7の開口部との間は、ダストシール35によってシールされている。 Here, the pressure receiving area of the large-diameter linear motion member 26 defined by the O-ring 31 and the O-ring 33 with respect to the hydraulic chamber 12 is the liquid in the small-diameter portion 21B of the small-diameter linear motion member 21 defined by the O-ring 33. It is sufficiently larger than the pressure receiving area for the pressure chamber 12. A gap between the outer peripheral portion of the tip of the piston 10 and the opening of the cylinder 7 is sealed with a dust seal 35.
 減速機構15は、シリンダ7の底部の反対側でキャリパ5の外側に図示せぬネジ等により取付けられたケース36内にベアリング37によって回転可能に支持されたウォームホイール38と、このウォームホイール38と噛合うウォーム39とを備えている。ウォームホイール38は、変換機構14の回転部材25の軸部25Aに連結されている。ウォーム39は、駆動源である電動モータ40の出力軸40Aに連結されている。そして、電動モータ40によってウォーム39を回転させることにより、ウォームホイール38が所定の減速比で回転し、電動モータの停止状態では、保持機構として機能して、ウォームホイール38は、ウォーム39との噛合いによってその回転位置で固定されるようになっている。 The speed reduction mechanism 15 includes a worm wheel 38 rotatably supported by a bearing 37 in a case 36 attached to the outside of the caliper 5 on the opposite side of the bottom of the cylinder 7 by screws or the like (not shown), A meshing worm 39 is provided. The worm wheel 38 is connected to the shaft portion 25 </ b> A of the rotating member 25 of the conversion mechanism 14. The worm 39 is connected to an output shaft 40A of an electric motor 40 that is a drive source. Then, by rotating the worm 39 by the electric motor 40, the worm wheel 38 is rotated at a predetermined reduction ratio. When the electric motor is stopped, the worm wheel 38 functions as a holding mechanism, and the worm wheel 38 is engaged with the worm 39. It is fixed at that rotational position.
 以上のように構成した本実施形態の作用について次に説明する。 先ず、ディスクブレーキ1をサービスブレーキとして作動させる場合について説明する。マスタシリンダ、液圧ポンプ等の液圧源から液圧室12へ液圧を供給すると、ピストン10は、フォールバックシール11を撓ませながら前進して、一方のブレーキパッド3をディスクロータ2に押圧する。また、ピストン10は、その反力によってキャリパ5を移動させ、爪部9を介して他方のブレーキパッド4をディスクロータ2に押圧する。これにより、ブレーキパッド3、4によってディスクロータ2を挟みつけて制動力を発生させる。このとき、減速機構15のウォームホイール38がウォーム39との噛合いによって固定しており、回転部材25が固定されるので、大径直動部材26及び小径直動部材21は、液圧室12の液圧によって後退することはない。 Next, the operation of the present embodiment configured as described above will be described. First, the case where the disc brake 1 is operated as a service brake will be described. When fluid pressure is supplied from a fluid pressure source such as a master cylinder or a fluid pressure pump to the fluid pressure chamber 12, the piston 10 moves forward while bending the fallback seal 11 and presses one brake pad 3 against the disc rotor 2. To do. Further, the piston 10 moves the caliper 5 by the reaction force and presses the other brake pad 4 against the disc rotor 2 via the claw portion 9. As a result, the disc rotor 2 is sandwiched by the brake pads 3 and 4 to generate a braking force. At this time, since the worm wheel 38 of the speed reduction mechanism 15 is fixed by meshing with the worm 39 and the rotating member 25 is fixed, the large-diameter linear motion member 26 and the small-diameter linear motion member 21 are connected to the hydraulic chamber 12. There is no retreat by hydraulic pressure.
 液圧源からの液圧を解放すると、ピストン10は、フォールバックシール11の弾性によって初期位置まで後退して、制動が解除される。このとき、ブレーキパッド3、4の摩耗がない場合には、ピストン10は、調整ナット16と調整ネジ17とのネジ部Mの隙間の範囲内で進退動するので、パッド摩耗補償機構13は作動しない。 When the hydraulic pressure from the hydraulic pressure source is released, the piston 10 is retracted to the initial position by the elasticity of the fallback seal 11 and the braking is released. At this time, when the brake pads 3 and 4 are not worn, the piston 10 moves forward and backward within the gap of the screw portion M between the adjustment nut 16 and the adjustment screw 17, so that the pad wear compensation mechanism 13 operates. do not do.
 ブレーキパッド3、4が摩耗している場合には、制動時にピストン10は、液圧によって調整ナット16と調整ネジ17とのネジ部Mの隙間の範囲を超えて前進する。このとき、ピストン10とフォールバックシール11との間に滑りが生じ、また、調整ナット16の摩擦面18とピストン10との摩擦係合が緩んで調整ナット16が回転する。このようにパッド摩耗補償機構13が伸長することにより、パッド摩耗補償機構13は、ピストン10及び変換機構14の小径直動部材21に当接した状態を維持する。なお、制動時に液圧室12に非常に大きな液圧が作用して、爪部9の撓み等によって、ピストン10がネジ部Mの隙間を超えて変位することがある。この場合は、調整ナット16と調整ネジ17の受圧面積差及びウエーブワッシャ19とコイルバネ23とのバネ力の差によって、調整ネジ16の摩擦面18がピストン10に押付けられて、これらの間の摩擦係合が維持され、調整ネジ17が回転しないことにより、パッド摩耗補償機構13の過調整が防止される。 When the brake pads 3 and 4 are worn, the piston 10 moves forward beyond the gap of the screw portion M between the adjusting nut 16 and the adjusting screw 17 by hydraulic pressure during braking. At this time, slip occurs between the piston 10 and the fallback seal 11, and the friction engagement between the friction surface 18 of the adjustment nut 16 and the piston 10 is loosened, and the adjustment nut 16 rotates. As the pad wear compensation mechanism 13 extends in this manner, the pad wear compensation mechanism 13 maintains a state where it abuts on the piston 10 and the small diameter linear motion member 21 of the conversion mechanism 14. Note that a very large hydraulic pressure acts on the hydraulic pressure chamber 12 during braking, and the piston 10 may be displaced beyond the gap of the screw portion M due to the bending of the claw portion 9 or the like. In this case, the friction surface 18 of the adjusting screw 16 is pressed against the piston 10 due to the difference in pressure receiving area between the adjusting nut 16 and the adjusting screw 17 and the difference in spring force between the wave washer 19 and the coil spring 23, and the friction between them. Since the engagement is maintained and the adjustment screw 17 does not rotate, overadjustment of the pad wear compensation mechanism 13 is prevented.
 次に、ディスクブレーキ1を駐車ブレーキとして作動させる場合について、さらに図6及び図7を参照して説明する。この場合、変換機構14及び減速機構15が駐車ブレーキ機構として作動する。 駐車ブレーキの制動開始時には、駐車ブレーキスイッチ等の操作によって液圧ポンプ等の液圧源から液圧室12に液圧を供給し、同時に電動モータ40を作動させてウォーム39を制動方向に回転させる。液圧室12への液圧の供給によって、上記のようにピストン10が前進してブレーキパッド3、4をディスクロータ2に押圧する。一方、減速機構15では、ウォーム39の回転により、ウォームホイール38が所定の減速比で回転して、変換機構14の回転部材25を制動方向に回転させる。 Next, the case where the disc brake 1 is operated as a parking brake will be further described with reference to FIGS. In this case, the conversion mechanism 14 and the speed reduction mechanism 15 operate as a parking brake mechanism. At the start of braking of the parking brake, hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch, etc., and at the same time, the electric motor 40 is operated to rotate the worm 39 in the braking direction. . By supplying the hydraulic pressure to the hydraulic chamber 12, the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2 as described above. On the other hand, in the speed reduction mechanism 15, the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
 変換機構14では、図6(B)に示すように、回転部材25が初期位置(1)から制動位置(2)に向かって制動方向に回転すると、ボール27の転動によって小径直動部材21が矢印bで示す方向に前進して、調整ねじ17をピストン10側へ前進させる。これにより、調整ネジ17は、液圧によってピストン10と共にブレーキパッド3側に移動する調整ナット16に追従し、これらのネジ部Mの隙間を移動した後、調整ナット16を摩擦面18でピストン10に押圧する。このとき、大径直動部材26は、液圧室12内の液圧を受けて、図6(A)に矢印cで示すように、回転部材25側に押圧されているので、ランプ溝32及び外周ランプ溝28の傾斜によって回転部材25に制動方向の回転力が生じる。このようにして、液圧室12に供給する液圧によって電動モータ40による駆動力を軽減することができる。なお、液圧室12内の液圧は、小径直動部材21にも作用して、回転部材25に非制動方向の回転力を発生させるが、大径直動部材26の液圧室12に対する受圧面積は、小径直動部材21の液圧室12に対する受圧面積よりも大きいので、回転部材25には制動方向の回転力が付与されることになる。 In the conversion mechanism 14, as shown in FIG. 6B, when the rotating member 25 rotates in the braking direction from the initial position (1) toward the braking position (2), the small-diameter linearly-moving member 21 is caused by the rolling of the balls 27. Advances in the direction indicated by the arrow b to advance the adjustment screw 17 toward the piston 10 side. As a result, the adjusting screw 17 follows the adjusting nut 16 that moves to the brake pad 3 side together with the piston 10 by hydraulic pressure. After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. Press on. At this time, the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. Due to the inclination of the outer peripheral ramp groove 28, a rotational force in the braking direction is generated in the rotary member 25. In this way, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12. The hydraulic pressure in the hydraulic chamber 12 also acts on the small-diameter linear motion member 21 to generate a rotational force in the non-braking direction on the rotating member 25, but the large-diameter linear motion member 26 receives pressure on the hydraulic chamber 12. Since the area is larger than the pressure receiving area of the small-diameter linearly moving member 21 with respect to the hydraulic pressure chamber 12, a rotational force in the braking direction is applied to the rotating member 25.
 そして、調整ネジ17がピストン10の押圧を開始すると、電動モータの負荷が増大してストール状態が生じるので、このストール状態を検知して、液圧室12への液圧の供給及び電動モータへの通電を停止する。なお、調整ネジ17のピストン10の押圧開始を電動モータの回転、通電時間等の他の方法によって検知して液圧室12への液圧の供給及び電動モータ40への通電を停止してもよい。液圧及び通電の停止後、減速機構15のウォームホイール38とウォーム39との噛合いにより、ウォームホイール38及び回転部材25の回転位置が保持されるので、制動状態を保持することができる。 When the adjustment screw 17 starts pressing the piston 10, the load of the electric motor increases and a stalled state occurs. Therefore, the stalled state is detected, the hydraulic pressure is supplied to the hydraulic chamber 12, and the electric motor is supplied. Stop energizing. Even if the supply of hydraulic pressure to the hydraulic chamber 12 and the energization of the electric motor 40 are stopped by detecting the start of pressing the piston 10 of the adjusting screw 17 by other methods such as rotation of the electric motor, energization time, etc. Good. After stopping the hydraulic pressure and energization, the rotational positions of the worm wheel 38 and the rotating member 25 are held by the engagement of the worm wheel 38 and the worm 39 of the speed reduction mechanism 15, so that the braking state can be held.
 駐車ブレーキの制動解除時には、駐車ブレーキスイッチ等の操作によって電動モータ40を制動時とは反対方向に作動させてウォーム39を制動解除方向に回転させる。ウォーム39の回転により、ウォームホイール38が所定の減速比で制動時とは反対方向に回転して、変換機構14の回転部材25を制動解除方向に回転させる。 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction. The rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
 変速機構14では、図6(B)に示すように、回転部材25が制動位置(2)から(3)の位置すなわち初期位置(1)に向かって制動解除方向に回転すると、小径直動部材21が矢印bとは反対方向に後退して、調整ネジ17を後退させ、ピストン10がフォールバックシール11の弾性力によって後退して制動が解除される。同時に、図6(A)に示すように、回転部材25の制動位置(2)から(3)の位置すなわち初期位置(1)に向かう回転により、大径直動部材26が矢印aとは反対方向に前進する。なお、運転者の操作によるサービスブレーキの作動等によって液圧室12に液圧が作用している場合には、大径直動部材26に作用する液圧によって回転部材25の制動解除方向への回転が阻止されるが、この場合には、液圧室12の液圧の解除を待って回転部材25が制動解除方向に回転して、制動が解除されることになる。 In the speed change mechanism 14, as shown in FIG. 6B, when the rotating member 25 rotates in the braking release direction from the braking position (2) toward the position (3), that is, the initial position (1), the small-diameter linearly-moving member. 21 is retracted in the direction opposite to the arrow b, the adjusting screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking. At the same time, as shown in FIG. 6A, the rotation of the large-diameter linearly moving member 26 in the direction opposite to the arrow a is caused by the rotation of the rotating member 25 from the braking position (2) to the position (3), that is, the initial position (1). Go forward. When hydraulic pressure is applied to the hydraulic chamber 12 due to the operation of a service brake or the like by the driver's operation, the rotation of the rotating member 25 in the braking release direction is performed by the hydraulic pressure applied to the large-diameter linear motion member 26. In this case, however, the rotating member 25 rotates in the braking release direction after the hydraulic pressure in the hydraulic chamber 12 is released, and the braking is released.
 上述の駐車ブレーキの(1)~(2)で示す制動開始時及び(2)~(3)で示す制動解除時の大径直動部材26及び小径直動部材21の位置、液圧室12の液圧及び制動力は、図7に示すチャート図のようになる。 The position of the large-diameter linearly moving member 26 and the small-diameter linearly-directing member 21 at the start of braking indicated by (1) to (2) and the braking release indicated by (2) to (3) of the above-described parking brake, The hydraulic pressure and braking force are as shown in the chart of FIG.
 なお、本実施形態では、減速機構15のウォームホイール38とウォーム39との噛合いによって駐車ブレーキの制動状態を保持するようにしているが、他の形式の非可逆性の減速機構を用いてもよい。また、非可逆性の減速機構を用いず、別途、回転部材25の回転位置を保持する保持手段を用いてもよい。 In the present embodiment, the braking state of the parking brake is maintained by the engagement of the worm wheel 38 and the worm 39 of the speed reduction mechanism 15, but other types of irreversible speed reduction mechanisms may be used. Good. Further, instead of using the irreversible speed reduction mechanism, a holding unit that holds the rotational position of the rotating member 25 may be used.
 次に、本発明の第2実施形態について、図8から図10を参照して説明する。なお、以下の説明において、上記第1実施形態に対して、同様の部分には同一の符号を用いて、異なる部分についてのみ詳細に説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are used for the same parts with respect to the first embodiment, and only different parts will be described in detail.
 図8に示すように、本実施形態に係るディスクブレーキでは、シリンダ7に固定されたバネ受22と変換機構14の大径直動部材26との間に圧縮バネであるコイルバネ50が介装され、コイルバネ50のバネ力によって大径直動部材26は、回転部材25側へ付勢されている。 As shown in FIG. 8, in the disc brake according to the present embodiment, a coil spring 50 that is a compression spring is interposed between the spring receiver 22 fixed to the cylinder 7 and the large-diameter linear motion member 26 of the conversion mechanism 14. The large-diameter linearly moving member 26 is biased toward the rotating member 25 by the spring force of the coil spring 50.
 図9(A)に示すように、回転部材25の外周ランプ溝28及びこれに対向する大径直動部材26のランプ溝32は、中央部に最深部を有するようにV字形に形成された傾斜部28a、28b及び32a、32bをそれぞれ有し、最も浅い両端部にボール27の球面が係合する凹部28c、28d及び32c、32dがそれぞれ形成されている。そして、図9(A)において、非制動状態の初期位置(1)では、回転部材25の凹部28cと大径直動部材26の凹部32cとが互いに対向し、これらの間にボール27が配置されている。なお、大径直動部材26に作用するコイルバネ50のバネ力によって回転部材25が回転しないようにコイルバネ50のバネ力、並びに、外周ランプ溝28及びランプ溝32の傾斜角度が設定されている。 As shown in FIG. 9 (A), the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly moving member 26 opposed thereto are inclined so as to have a deepest portion at the center. Concave portions 28a, 28b and 32a, 32b are respectively formed, and concave portions 28c, 28d and 32c, 32d with which the spherical surface of the ball 27 engages are formed at the shallowest ends. 9A, at the initial position (1) in the non-braking state, the recess 28c of the rotating member 25 and the recess 32c of the large-diameter linearly moving member 26 face each other, and the ball 27 is disposed therebetween. ing. The spring force of the coil spring 50 and the inclination angles of the outer peripheral ramp groove 28 and the ramp groove 32 are set so that the rotating member 25 does not rotate due to the spring force of the coil spring 50 acting on the large-diameter linearly moving member 26.
 一方、図9(B)に示すように、回転部材25の内周ランプ溝29及びこれに対向する小径直動部材21のランプ溝34は、一端部に最深部を有し、最深部から中央部へ上方に傾斜する傾斜部29a、34aがそれぞれに形成され、中央部から他端部まで平坦に延びる平端部29b、34bがそれぞれに形成され、最深部にボール27の球面が係合する凹部29c、34cがそれぞれ形成されている。そして、図9(B)において非制動状態の初期位置(1)では、回転部材25の凹部29cと小径直動部材21の凹部34cとが互いに対向し、これらの間にボール27が配置される。また、内周ランプ溝29及びランプ溝34の傾斜の高低差(リード)は、ネジ部Mの隙間に合せて設定されている。 On the other hand, as shown in FIG. 9B, the inner circumferential ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small-diameter linearly moving member 21 opposed thereto have a deepest portion at one end, and from the deepest portion to the center. Inclined portions 29a and 34a that are inclined upward to the respective portions are formed, flat end portions 29b and 34b that are flatly extended from the center portion to the other end portion are formed, and the deepest portion is engaged with the spherical surface of the ball 27. 29c and 34c are formed, respectively. 9B, at the initial position (1) in the non-braking state, the concave portion 29c of the rotating member 25 and the concave portion 34c of the small-diameter linearly moving member 21 face each other, and the ball 27 is disposed therebetween. . Further, the height difference (lead) of the inclination of the inner peripheral ramp groove 29 and the ramp groove 34 is set in accordance with the gap of the screw portion M.
 以上のように構成した本実施形態の作用について次に説明する。 サービスブレーキとしての作動は、上記第1実施形態と同様である。このとき、図9(A)に示すように、初期位置(1)において、ボール27は、内周ランプ溝28及びランプ溝32の凹部28c、32cが保持手段として機能することによって保持されており、液圧室12の液圧によって大径直動部材26が移動して回転部材25が回転することがないので、減速機構15は非可逆性又は保持機能を有していなくてもよい。 Next, the operation of the present embodiment configured as described above will be described. The operation as a service brake is the same as in the first embodiment. At this time, as shown in FIG. 9A, in the initial position (1), the ball 27 is held by the inner peripheral ramp groove 28 and the concave portions 28c, 32c of the ramp groove 32 functioning as holding means. Since the large-diameter linearly moving member 26 does not move and the rotating member 25 does not rotate due to the hydraulic pressure in the hydraulic pressure chamber 12, the speed reduction mechanism 15 may not have irreversibility or a holding function.
 次に、駐車ブレーキとして作動させる場合について、さらに図9及び図10を参照して説明する。駐車ブレーキの制動開始時には、駐車ブレーキスイッチ等の操作によって液圧ポンプ等の液圧源からシリンダ室12に液圧を供給し、同時に電動モータ40を作動させてウォーム39を制動方向に回転させる。液圧室12への液圧の供給によって、上記第1実施形態と同様、ピストン10が前進してブレーキパッド3、4をディスクロータ2に押圧する。一方、減速機構15では、ウォーム39の回転により、ウォームホイール38が所定の減速比で回転して、変換機構14の回転部材25を制動方向に回転させる。 Next, the case of operating as a parking brake will be further described with reference to FIGS. At the start of braking of the parking brake, hydraulic pressure is supplied to the cylinder chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch, and the electric motor 40 is simultaneously operated to rotate the worm 39 in the braking direction. By supplying the hydraulic pressure to the hydraulic chamber 12, the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2, as in the first embodiment. On the other hand, in the speed reduction mechanism 15, the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
 変換機構14では、図9(B)に示すように、回転部材25が初期位置(1)から制動位置(2)に向かって制動方向に回転すると、ボール27が傾斜部29a、34aを転動することによって小径直動部材21が矢印bで示す方向に前進して、調整ねじ17をピストン10側へ前進させる。これにより、調整ネジ17は、液圧によってピストン10と共にブレーキパッド3側に移動する調整ナット16に追従し、これらのネジ部Mの隙間を移動した後、調整ナット16を摩擦面18でピストン10に押圧し、ボール27は内周ランプ溝29及びランプ溝34の平端部29b、34bに達する。 In the conversion mechanism 14, as shown in FIG. 9B, when the rotating member 25 rotates in the braking direction from the initial position (1) toward the braking position (2), the ball 27 rolls on the inclined portions 29a and 34a. By doing so, the small-diameter linearly moving member 21 moves forward in the direction indicated by the arrow b, and the adjusting screw 17 moves forward to the piston 10 side. As a result, the adjusting screw 17 follows the adjusting nut 16 that moves to the brake pad 3 side together with the piston 10 by hydraulic pressure. After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. The ball 27 reaches the flat end portions 29 b and 34 b of the inner peripheral ramp groove 29 and the ramp groove 34.
 このとき、大径直動部材26は、液圧室12内の液圧を受けて、図9(A)に矢印cで示すように、回転部材25側に押圧されているので、回転部材25の回転によってボール27が凹部28c、32cの縁部を乗越えた後、傾斜部28a、32aを転動することよって回転部材25に制動方向の回転力を発生させる。これにより、液圧室12に供給する液圧によって電動モータ40による駆動力を軽減することができる。 At this time, the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. After the ball 27 gets over the edges of the recesses 28c and 32c by rotation, the rotating member 25 generates a rotational force in the braking direction by rolling on the inclined portions 28a and 32a. Thereby, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
 そして、図9(A)、(B)の制動位置(2)に示すように、ボール27が内周ランプ溝29及びランプ溝34の平端部29b、34bに達し、同時に外周ランプ溝28及びランプ溝32の最深部に達した時点で液圧室12への液圧の供給を停止する。この状態で、電動モータ40は、制動方向にさらに回転し、回転部材25が保持位置(3)に達した時点で電動モータ40への通電を停止する。このとき、大径直動部材26は、液圧室12の液圧が解放されているので、コイルバネ50のバネ力のみに抗して液圧室12側へ移動することができる。また、小径直動部材21は、ボール27が平端部29b、34bを転動して軸方向に移動しないので、電動モータ40への負荷を生じない。 Then, as shown in the braking position (2) of FIGS. 9A and 9B, the ball 27 reaches the flat end portions 29b and 34b of the inner peripheral ramp groove 29 and the ramp groove 34, and simultaneously the outer peripheral ramp groove 28 and the ramp. When the deepest portion of the groove 32 is reached, the supply of hydraulic pressure to the hydraulic chamber 12 is stopped. In this state, the electric motor 40 further rotates in the braking direction and stops energization of the electric motor 40 when the rotating member 25 reaches the holding position (3). At this time, since the hydraulic pressure in the hydraulic chamber 12 is released, the large-diameter linearly moving member 26 can move toward the hydraulic chamber 12 against only the spring force of the coil spring 50. The small-diameter linearly moving member 21 does not cause a load on the electric motor 40 because the ball 27 rolls on the flat end portions 29b and 34b and does not move in the axial direction.
 この状態では、小径直動部材21には、ブレーキパッド3からの反力が作用するが、ボール27が平端部29b、34bにあるため、回転部材25に回転力が生じることがない。また、回転部材25は、大径直動部材26との間の凹部28d、32d間でボール27が保持されることにより、その回転位置が保持される。これにより、電動モータ40への通電を停止した後も制動状態を保持することができる。この場合、減速機構15は非可逆性又は保持機能を有していなくてもよい。 In this state, the reaction force from the brake pad 3 acts on the small-diameter linearly-moving member 21, but since the ball 27 is at the flat end portions 29b and 34b, no rotational force is generated on the rotating member 25. Further, the rotation position of the rotating member 25 is maintained by holding the ball 27 between the recesses 28d and 32d between the rotating member 25 and the large-diameter linearly moving member 26. As a result, the braking state can be maintained even after energization of the electric motor 40 is stopped. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
 駐車ブレーキの制動解除時には、駐車ブレーキスイッチ等の操作によって電動モータ40を制動時とは反対方向に作動させてウォーム39を制動解除方向に回転させる。ウォーム39の回転により、ウォームホイール38が所定の減速比で制動時とは反対方向に回転して、変換機構14の回転部材25を制動解除方向に回転させる。 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction. The rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
 変換機構14では、図9(A)、(B)に示すように、回転部材25が制動解除方向に回転すると、大径直動部材26は、ボール27が凹部32d、28dの縁部を乗越えて傾斜部32b、28bを最深部に向かって転動することにより、矢印aで示すように回転部材25側へ移動し、小径直動部材21は、ボール27が平端部29b、34bを転動することにより、軸方に移動しない。そして、回転部材25が制動位置(4)に達した後は、大径直動部材26は、ボール27が傾斜部32a、28aを転動することにより、ピストン10側へ移動し、小径直動部材21は、ボール27が凹部29c、34cに向かって傾斜部29a、34aを転動することにより、回転部材25側へ後退し、回転部材25が制動解除位置(5)すなわち初期位置(1)に戻る。これにより、調整ネジ17が後退し、ピストン10がフォールバックシール11の弾性力によって後退して制動が解除される。なお、大径直動部材26が保持位置(3)から制動位置(4)に移動する間は、液圧室12に液圧を供給してもよい。 In the conversion mechanism 14, as shown in FIGS. 9A and 9B, when the rotating member 25 rotates in the braking release direction, the large-diameter linearly moving member 26 causes the ball 27 to get over the edges of the recesses 32d and 28d. By rolling the inclined portions 32b and 28b toward the deepest portion, the slanted portions 32b and 28b move toward the rotating member 25 as indicated by the arrow a, and the small-diameter linearly moving member 21 causes the ball 27 to roll on the flat end portions 29b and 34b. Therefore, it does not move in the axial direction. After the rotating member 25 reaches the braking position (4), the large-diameter linearly moving member 26 moves to the piston 10 side by the balls 27 rolling on the inclined portions 32a and 28a, and the small-diameter linearly-directing member. 21, the ball 27 rolls back on the rotating member 25 side by rolling the inclined portions 29a, 34a toward the recesses 29c, 34c, and the rotating member 25 moves to the braking release position (5), that is, the initial position (1). Return. As a result, the adjustment screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking. The hydraulic pressure may be supplied to the hydraulic chamber 12 while the large-diameter linearly moving member 26 moves from the holding position (3) to the braking position (4).
 上述の駐車ブレーキの(1)~(3)で示す制動開始時及び(3)~(5)で示す制動解除時の大径直動部材26及び小径直動部材21の位置、液圧室12の液圧及び制動力は、図10に示すチャート図のようになる。 The position of the large-diameter linearly moving member 26 and the small-diameter linearly-directing member 21 at the start of braking indicated by (1) to (3) and the braking release indicated by (3) to (5) of the above-described parking brake, The hydraulic pressure and braking force are as shown in the chart of FIG.
 次に、本発明の第3実施形態について、図11及び図12を参照して説明する。なお、以下の説明において、上記第2実施形態に対して、同様の部分には同一の符号を用いて、異なる部分についてのみ詳細に説明する。 Next, a third embodiment of the present invention will be described with reference to FIGS. In the following description, the same reference numerals are used for the same parts with respect to the second embodiment, and only different parts will be described in detail.
 本実施形態では、図8に示したコイルバネ50は設けられていない。図11(A)に示すように、回転部材25の外周ランプ溝28及び大径直動部材26のランプ溝32は、一方の傾斜部28b、32bの代りに、平端部28e、32eが設けられ、凹部28d、32dは省略されている。また、図11(B)に示すように、回転部材25の内周ランプ溝29及び小径直動部材21のランプ溝34は、平端部29b、34bの端部にボール27の球面に係合する凹部29d、34dが設けられている。 In this embodiment, the coil spring 50 shown in FIG. 8 is not provided. As shown in FIG. 11A, the outer peripheral ramp groove 28 of the rotating member 25 and the ramp groove 32 of the large-diameter linearly moving member 26 are provided with flat end portions 28e, 32e instead of one inclined portion 28b, 32b. The recesses 28d and 32d are omitted. Further, as shown in FIG. 11B, the inner peripheral ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small diameter linearly moving member 21 are engaged with the spherical surface of the ball 27 at the ends of the flat end portions 29b and 34b. Concave portions 29d and 34d are provided.
 以上のように構成した本実施形態の作用について次に説明する。 サービスブレーキとしての作動は、上記第1実施形態と同様である。 Next, the operation of the present embodiment configured as described above will be described. The operation as a service brake is the same as in the first embodiment.
 次に、駐車ブレーキとして作動させる場合について説明する。 駐車ブレーキの制動開始時には、駐車ブレーキスイッチ等の操作によって液圧ポンプ等の液圧源から液圧室12に液圧を供給し、同時に電動モータ40を作動させてウォーム39を制動方向に回転させる。液圧室12への液圧の供給によって、上記第2実施形態と同様、ピストン10が前進してブレーキパッド3、4をディスクロータ2に押圧する。一方、減速機構15では、ウォーム39の回転により、ウォームホイール38が所定の減速比で回転して、変換機構14の回転部材25を制動方向に回転させる。 Next, the case of operating as a parking brake will be described. At the start of braking of the parking brake, hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating a parking brake switch, etc., and at the same time, the electric motor 40 is operated to rotate the worm 39 in the braking direction. . By supplying the hydraulic pressure to the hydraulic chamber 12, the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2 as in the second embodiment. On the other hand, in the speed reduction mechanism 15, the worm wheel 38 rotates at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
 変換機構14では、図11(B)に示すように、回転部材25が初期位置(1)から制動位置(2)に向かって制動方向に回転すると、ボール27が凹部29c、34cの縁部を乗越した後、傾斜部29a、34aを転動することによって小径直動部材21が矢印bで示す方向に前進して、調整ねじ17をピストン10側へ前進させる。これにより、調整ネジ17は、液圧によってピストン10と共にブレーキパッド3側に移動する調整ナット16に追従し、これらのネジ部Mの隙間を移動した後、調整ナット16を摩擦面18でピストン10に押圧し、ボール27は内周ランプ溝29及びランプ溝34の平端部29b、34bに達する。 In the conversion mechanism 14, as shown in FIG. 11B, when the rotating member 25 rotates in the braking direction from the initial position (1) toward the braking position (2), the ball 27 moves the edges of the recesses 29c and 34c. After getting over, the small-diameter linearly moving member 21 moves forward in the direction indicated by the arrow b by rolling the inclined portions 29a, 34a, and the adjusting screw 17 is moved forward to the piston 10 side. As a result, the adjusting screw 17 follows the adjusting nut 16 that moves to the brake pad 3 side together with the piston 10 by hydraulic pressure. After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. The ball 27 reaches the flat end portions 29 b and 34 b of the inner peripheral ramp groove 29 and the ramp groove 34.
 このとき、大径直動部材26は、液圧室12内の液圧を受けて、図11(A)に矢印cで示すように、回転部材25側に押圧されているので、回転部材25の回転によってボール27は、凹部28c、32cの縁部をのり越えた後、傾斜部28a、32aを転動することよって回転部材25に制動方向の回転力を発生させ、平端部28e、32eに達する。これにより、液圧室12に供給する液圧によって電動モータ40の駆動力を軽減することができる。 At this time, the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. The rotation of the ball 27 passes over the edges of the recesses 28c and 32c, and then rolls on the inclined portions 28a and 32a, thereby generating a rotational force in the braking direction on the rotating member 25 and reaching the flat end portions 28e and 32e. . Thereby, the driving force of the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
 そして、ボール27が内周ランプ溝29及びランプ溝34の平端部29b、34b及び外周ランプ溝28及びランプ溝32の平端部28e、32eに達した後、電動モータ40が制動方向にさらに回転し、回転部材25が保持位置(3)に達して、ボール27が凹部29d、34dに係合した時点で、液圧室12への液圧の供給及び電動モータ40への通電を停止する。このとき、ボール27は、平端部28e、32eを転動しており、大径直動部材26に回転力が生じないので、電動モータ40への負荷を生じない。なお、回転部材25が制動位置(2)に達した時点で液圧室12への液圧の供給を停止してもよい。 Then, after the ball 27 reaches the flat end portions 29b and 34b of the inner peripheral ramp groove 29 and the ramp groove 34 and the flat end portions 28e and 32e of the outer peripheral ramp groove 28 and the ramp groove 32, the electric motor 40 further rotates in the braking direction. When the rotating member 25 reaches the holding position (3) and the ball 27 is engaged with the recesses 29d and 34d, the supply of the hydraulic pressure to the hydraulic chamber 12 and the energization of the electric motor 40 are stopped. At this time, the ball 27 rolls on the flat end portions 28e and 32e, and no rotational force is generated in the large-diameter linearly moving member 26. Therefore, no load is applied to the electric motor 40. Note that the supply of hydraulic pressure to the hydraulic pressure chamber 12 may be stopped when the rotating member 25 reaches the braking position (2).
 この状態では、小径直動部材21には、ブレーキパッド3からの反力が作用するが、ボール27が平端部28e、32eにあり、凹部29d、34d間に保持されているので、回転部材25に回転力が生じず、その回転位置が保持される。これにより、電動モータ40への通電を停止した後も制動状態を保持することができる。この場合、減速機構15は非可逆性又は保持機能を有していなくてもよい。 In this state, a reaction force from the brake pad 3 acts on the small-diameter linearly-moving member 21, but the ball 27 is at the flat end portions 28e and 32e and is held between the concave portions 29d and 34d. Rotational force is not generated and the rotational position is maintained. As a result, the braking state can be maintained even after energization of the electric motor 40 is stopped. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
 駐車ブレーキの制動解除時には、駐車ブレーキスイッチ等の操作によって電動モータ40を制動時とは反対方向に作動させてウォーム39を制動解除方向に回転させる。ウォーム39の回転により、ウォームホイール38が所定の減速比で制動時とは反対方向に回転して、変換機構14の回転部材25を制動解除方向に回転させる。 When the parking brake is released, the electric motor 40 is operated in the opposite direction to that during braking by operating the parking brake switch or the like to rotate the worm 39 in the braking release direction. The rotation of the worm 39 causes the worm wheel 38 to rotate in a direction opposite to that during braking at a predetermined reduction ratio, thereby rotating the rotating member 25 of the conversion mechanism 14 in the braking release direction.
 図11(A)、(B)に示すように、変速機構14では、回転部材25は、制動解除方向に回転して、内周ランプ溝29及びランプ溝34では、ボール27が凹部29d、34dの縁部を乗越えて平端部29b、34bを転動し、また、外周ランプ溝28及びランプ溝32では、ボール27が平端部28e、32eを転動して、制動位置(4)に達する。このとき、小径直動部材21及び大径直動部材26は、ボール27が平端部29b、34b及び平坦部28e、32eを転動するので、軸方向に移動しない。 As shown in FIGS. 11A and 11B, in the speed change mechanism 14, the rotating member 25 rotates in the braking release direction, and the ball 27 is recessed in the inner peripheral ramp groove 29 and the ramp groove 34. The ball 27 rolls on the flat end portions 28e and 32e and reaches the braking position (4) in the outer peripheral ramp groove 28 and the ramp groove 32. At this time, the small-diameter linear motion member 21 and the large-diameter linear motion member 26 do not move in the axial direction because the ball 27 rolls on the flat end portions 29b and 34b and the flat portions 28e and 32e.
 更に、回転部材25が制動解除方向に回転すると、ボール27が傾斜部29a、34aを転動することにより、小径直動部材21は、回転部材25側へ後退し、回転部材25が制動解除位置(5)すなわち初期位置(1)に戻り、ボール27が凹部29d、34d間で保持される。これにより、調整ネジ17が後退し、ピストン10がフォールバックシール11の弾性力によって後退して制動が解除される。このとき、大径直動部材26は、ボール27が傾斜部28a、32aを転動することにより、ピストン10側へ前進するが、液圧室12に液圧が供給されていないので、電動モータ40の負荷が増大することはない。 Further, when the rotating member 25 rotates in the braking release direction, the ball 27 rolls on the inclined portions 29a and 34a, whereby the small-diameter linearly moving member 21 moves backward toward the rotating member 25, and the rotating member 25 is moved to the braking release position. (5) That is, returning to the initial position (1), the ball 27 is held between the recesses 29d and 34d. As a result, the adjustment screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking. At this time, the large-diameter linearly moving member 26 moves forward to the piston 10 side when the ball 27 rolls on the inclined portions 28 a and 32 a, but no hydraulic pressure is supplied to the hydraulic pressure chamber 12. There is no increase in load.
 上述の駐車ブレーキの(1)~(3)で示す制動開始時及び(3)~(5)で示す制動解除時の大径直動部材26及び小径直動部材21の位置、液圧室12の液圧及び制動力は、図12に示すチャート図のようになる。 The position of the large-diameter linearly moving member 26 and the small-diameter linearly-directing member 21 at the start of braking indicated by (1) to (3) and the braking release indicated by (3) to (5) of the above-described parking brake, The hydraulic pressure and braking force are as shown in the chart of FIG.
 次に、本発明の第4実施形態について、図8、図13及び図14を参照して説明する。なお、上記第3実施形態に対して、同様の部分には同一の符号を用いて、異なる部分についてのみ詳細に説明する。 Next, a fourth embodiment of the present invention will be described with reference to FIG. 8, FIG. 13, and FIG. Note that the same reference numerals are used for the same parts with respect to the third embodiment, and only different parts will be described in detail.
 本実施形態では、図8に示す第2実施形態と同様、バネ受22と変換機構14の大径直動部材26との間にコイルバネ50が介装され、コイルバネ50のバネ力によって大径直動部材26が回転部材25側へ付勢されている。また、図13(A)に示すように、回転部材25の外周ランプ溝28の平端部28e及び大径直動部材26のランプ溝32の平端部32eの端部に凹部28f、32fが形成され、また、図13(B)に示すように、回転部材25の内周ランプ溝29の平端部29b及び小径直動部材21のランプ溝34の平端部34bの端部に凹部29d、34dが省略されている。 In the present embodiment, similarly to the second embodiment shown in FIG. 8, a coil spring 50 is interposed between the spring receiver 22 and the large-diameter linear motion member 26 of the conversion mechanism 14, and the large-diameter linear motion member is caused by the spring force of the coil spring 50. 26 is urged to the rotating member 25 side. Further, as shown in FIG. 13A, concave portions 28f and 32f are formed at the end portions of the flat end portion 28e of the outer peripheral ramp groove 28 of the rotating member 25 and the flat end portion 32e of the ramp groove 32 of the large diameter linearly moving member 26, Further, as shown in FIG. 13B, the concave portions 29d and 34d are omitted from the end portions of the flat end portion 29b of the inner peripheral ramp groove 29 of the rotating member 25 and the flat end portion 34b of the ramp groove 34 of the small diameter linearly moving member 21. ing.
 本実施形態においても、サービスブレーキとしての作動は、上記第1実施形態と同様である。また、駐車ブレーキとして作動させる場合には、図13(A)及び(B)に示すように、回転部材25が保持位置(3)に移動したとき、回転部材25と大径直動部材26との間で、ボール27が凹部28f、32fに係合してコイルバネ50のバネ力によって保持される。これにより、電動モータ40への通電を停止した後も回転部材25の回転位置が保持されるので、制動状態を保持することができる。この場合、減速機構15は非可逆性又は保持機能を有していなくてもよい。 Also in this embodiment, the operation as a service brake is the same as that in the first embodiment. When operating as a parking brake, as shown in FIGS. 13A and 13B, when the rotating member 25 moves to the holding position (3), the rotating member 25 and the large-diameter linearly moving member 26 In the meantime, the ball 27 is engaged with the recesses 28 f and 32 f and is held by the spring force of the coil spring 50. As a result, the rotational position of the rotating member 25 is maintained even after the energization of the electric motor 40 is stopped, so that the braking state can be maintained. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
 本実施形態に係る駐車ブレーキの(1)~(3)で示す制動開始時及び(3)~(5)で示す制動解除時の大径直動部材26及び小径直動部材21の位置、液圧室12の液圧及び制動力は、図14に示すチャート図のようになる。 Positions and hydraulic pressures of the large-diameter linear motion member 26 and the small-diameter linear motion member 21 at the start of braking indicated by (1) to (3) and at the time of braking release indicated by (3) to (5) of the parking brake according to the present embodiment. The hydraulic pressure and braking force of the chamber 12 are as shown in the chart of FIG.
 次に、本発明の第5実施形態について、図8、図15から図18を参照して説明する。なお、上記第2実施形態に対して、同様の部分には同一の符号を用いて、異なる部分についてのみ詳細に説明する。 Next, a fifth embodiment of the present invention will be described with reference to FIGS. 8 and 15 to 18. Note that the same reference numerals are used for the same parts with respect to the second embodiment, and only different parts will be described in detail.
 図15、16及び図17(A)に示すように、回転部材25の各外周ランプ溝28及びこれに対向する大径直動部材26の各ランプ溝32は、円周方向に沿って中心角60°の範囲に延ばされたものが6つ配置され、一体化されて連続する環状溝を形成している。そして、円周方向に隣接する各外周ランプ溝28及び各ランプ溝32の両端部の凹部28c、32cと28d、32dとが重なり合って共通の凹部28cd、32cdとなっている。そして、図17(A)において、非制動状態の初期位置(1)では、回転部材25の凹部28cdと大径直動部材26の凹部32cdとが互いに対向し、合計6個の凹部28cd、32cdに1つおきに合計3つのボール27が配置される。なお、図17(A)は、中心角120°の範囲に延びる隣接する2つの外周ランプ溝28及びランプ溝32を展開して概略的に示している。 As shown in FIGS. 15, 16, and 17 (A), each outer peripheral ramp groove 28 of the rotating member 25 and each ramp groove 32 of the large-diameter linearly moving member 26 that opposes the outer peripheral ramp groove 28 have a central angle 60 along the circumferential direction. Six pieces extending in the range of ° are arranged and integrated to form a continuous annular groove. Then, the recesses 28c, 32c and 28d, 32d at both ends of each outer peripheral lamp groove 28 and each lamp groove 32 adjacent to each other in the circumferential direction overlap to form a common recess 28cd, 32cd. In FIG. 17A, at the initial position (1) in the non-braking state, the concave portion 28cd of the rotating member 25 and the concave portion 32cd of the large-diameter linearly moving member 26 face each other, and a total of six concave portions 28cd, 32cd are formed. A total of three balls 27 are arranged every other one. FIG. 17A schematically shows two adjacent outer peripheral lamp grooves 28 and lamp grooves 32 extending in a range of a central angle of 120 °.
 一方、図17(B)に示すように、回転部材25の内周ランプ溝29及びこれに対向する小径直動部材21のランプ溝34は、円周方向に沿って中心角60°の範囲に延ばされ、更に平端部29b、34bの端部に連なるように、円周方向に更に中心角60°の範囲に延びる制動解除部41、42が設けられて、これらが中心角120°の範囲に延ばされている。そして、3つの内周ランプ溝29及びランプ溝34が一体化されて連続する環状溝を形成している。 On the other hand, as shown in FIG. 17 (B), the inner circumferential ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small-diameter linearly-moving member 21 opposed thereto are within a range of a central angle of 60 ° along the circumferential direction. The brake release portions 41 and 42 are provided so as to be extended and further connected to the end portions of the flat end portions 29b and 34b. The brake release portions 41 and 42 are further extended in the circumferential direction within a range of a central angle of 60 °. It is extended to. The three inner peripheral ramp grooves 29 and the ramp groove 34 are integrated to form a continuous annular groove.
 制動解除部41、42は、平端部29b、34bから円周方向中央部まで下方へ傾斜する傾斜部41a、42aと、円周方向中央部から小さな凹凸をともなって水平に延びる凹凸部41b、42bとを有している。そして、互いに隣接する内周ランプ溝29の端部の凹部29cと凹凸部41bの端部とが重なり合い、ランプ溝34の端部の凹部34cと凹凸部42bの端部とが重なり合っている。 The brake release portions 41 and 42 are inclined portions 41a and 42a that are inclined downward from the flat end portions 29b and 34b to the center portion in the circumferential direction, and uneven portions 41b and 42b that extend horizontally with small unevenness from the center portion in the circumferential direction. And have. And the recessed part 29c of the edge part of the adjacent inner periphery ramp groove 29 and the edge part of the uneven part 41b overlap, and the recessed part 34c of the edge part of the lamp groove 34 and the edge part of the uneven part 42b overlap.
 図17(B)において、非制動状態の初期位置(1)では、内周ランプ溝29の凹部29cとランプ溝34の凹部34cとが対向し、これらの間にボール27が配置され、回転部材25と小径直動部材21との間に合計3つのボール27が介装されている。 In FIG. 17B, at the initial position (1) in the non-braking state, the concave portion 29c of the inner peripheral ramp groove 29 and the concave portion 34c of the ramp groove 34 are opposed to each other, and the ball 27 is disposed between them. A total of three balls 27 are interposed between the 25 and the small-diameter linearly moving member 21.
 以上のように構成した本実施形態の作用について次に説明する。 サービスブレーキとしての作動は、上記第1実施形態と同様である。 駐車ブレーキとして作動させる場合について、以下に説明する。 駐車ブレーキの制動開始時には、上記第2実施形態と同様、駐車ブレーキスイッチ等の操作によって液圧ポンプ等の液圧源から液圧室12に液圧を供給し、同時に電動モータ40を作動させてウォーム39を制動方向に回転させる。液圧室12への液圧の供給によって、ピストン10が前進してブレーキパッド3、4をディスクロータ2に押圧する。一方、減速機構15では、ウォーム39の回転により、ウォームホイール38が所定の減速比で回転して、変換機構14の回転部材25を制動方向に回転させる。 Next, the operation of the present embodiment configured as described above will be described. The operation as a service brake is the same as in the first embodiment. The case of operating as a parking brake will be described below. At the start of parking brake braking, as in the second embodiment, hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a hydraulic pump by operating the parking brake switch and the electric motor 40 is operated simultaneously. The worm 39 is rotated in the braking direction. By supplying the hydraulic pressure to the hydraulic chamber 12, the piston 10 moves forward and presses the brake pads 3 and 4 against the disc rotor 2. On the other hand, in the speed reduction mechanism 15, the worm wheel 38 is rotated at a predetermined speed reduction ratio by the rotation of the worm 39, and the rotation member 25 of the conversion mechanism 14 is rotated in the braking direction.
 変換機構14では、図17(B)に示すように、回転部材25が初期位置(1)から制動位置(2)に向かって制動方向に回転すると、ボール27が傾斜部29a、34aを転動することによって小径直動部材21が矢印bで示す方向に前進して、調整ねじ17をピストン10側へ前進させる。これにより、調整ネジ17は、液圧によってピストン10と共にブレーキパッド3側に移動する調整ナット16に追従し、これらのネジ部Mの隙間を移動した後、調整ナット16を摩擦面18でピストン10に押圧し、ボール27は内周ランプ溝29及びランプ溝34の平端部29b、34bに達する。 In the conversion mechanism 14, as shown in FIG. 17B, when the rotating member 25 rotates in the braking direction from the initial position (1) toward the braking position (2), the ball 27 rolls on the inclined portions 29a and 34a. By doing so, the small-diameter linearly moving member 21 moves forward in the direction indicated by the arrow b, and the adjusting screw 17 moves forward to the piston 10 side. As a result, the adjusting screw 17 follows the adjusting nut 16 that moves to the brake pad 3 side together with the piston 10 by hydraulic pressure. After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. The ball 27 reaches the flat end portions 29 b and 34 b of the inner peripheral ramp groove 29 and the ramp groove 34.
 このとき、大径直動部材26は、液圧室12内の液圧を受けて、図17(A)に矢印cで示すように、回転部材25側に押圧されているので、回転部材25の回転によってボール27が凹部28cd、32cdの縁部を乗越えた後、傾斜部28a、32aを転動することよって回転部材25に制動方向の回転力を発生させる。これにより、液圧室12に供給する液圧によって電動モータ40による駆動力を軽減することができる。 At this time, the large-diameter linearly moving member 26 receives the hydraulic pressure in the hydraulic pressure chamber 12 and is pressed toward the rotating member 25 as indicated by an arrow c in FIG. After the ball 27 gets over the edges of the recesses 28 cd and 32 cd by rotation, the rotating member 25 generates a rotational force in the braking direction by rolling on the inclined portions 28 a and 32 a. Thereby, the driving force by the electric motor 40 can be reduced by the hydraulic pressure supplied to the hydraulic chamber 12.
 そして、図17(A)、(B)の制動位置(2)に示すように、ボール27が内周ランプ溝29及びランプ溝34の平端部29b、34bに達し、同時に外周ランプ溝28及びランプ溝32の最深部に達した時点で液圧室12への液圧の供給を停止する。この状態で、電動モータ40は、制動方向にさらに回転し、大径直動部材26では、ボール27が傾斜部28b、32bを転動する(図17(A))とともに、小径直動部材21では、ボール27が平端部29b、34bを転動し(図17(B))、回転部材25が保持位置(3)に達した時点で電動モータ40への通電を停止する。このとき、大径直動部材26は、液圧室12の液圧が解放されているので、コイルバネ50のバネ力のみに抗して液圧室12側へ移動することができる。また、小径直動部材21は、ボール27が平端部29b、34bを転動して軸方向に移動しないので、電動モータ40への負荷を生じない。 Then, as shown in the braking position (2) of FIGS. 17A and 17B, the ball 27 reaches the flat end portions 29b and 34b of the inner peripheral ramp groove 29 and the ramp groove 34, and at the same time the outer peripheral ramp groove 28 and the ramp. When the deepest portion of the groove 32 is reached, the supply of hydraulic pressure to the hydraulic chamber 12 is stopped. In this state, the electric motor 40 further rotates in the braking direction. In the large-diameter linear motion member 26, the ball 27 rolls on the inclined portions 28b and 32b (FIG. 17A), and in the small-diameter linear motion member 21, When the ball 27 rolls on the flat end portions 29b and 34b (FIG. 17B) and the rotation member 25 reaches the holding position (3), the energization of the electric motor 40 is stopped. At this time, since the hydraulic pressure in the hydraulic chamber 12 is released, the large-diameter linearly moving member 26 can move toward the hydraulic chamber 12 against only the spring force of the coil spring 50. The small-diameter linearly moving member 21 does not cause a load on the electric motor 40 because the ball 27 rolls on the flat end portions 29b and 34b and does not move in the axial direction.
 この状態では、小径直動部材21には、ブレーキパッド3からの反力が作用するが、ボール27が平端部29b、34bにあるため、回転部材25に回転力が生じることがない。また、回転部材25は、大径直動部材26との間の凹部28cd、32cd間でボール27が保持されることにより、その回転位置が保持される。これにより、電動モータ40への通電を停止した後も制動状態を保持することができる。この場合、減速機構15は非可逆性又は保持機能を有していなくてもよい。 In this state, the reaction force from the brake pad 3 acts on the small-diameter linearly-moving member 21, but since the ball 27 is at the flat end portions 29b and 34b, no rotational force is generated on the rotating member 25. Further, the rotation position of the rotating member 25 is maintained by holding the ball 27 between the concave portions 28 cd and 32 cd between the rotating member 25 and the large-diameter linearly moving member 26. As a result, the braking state can be maintained even after energization of the electric motor 40 is stopped. In this case, the speed reduction mechanism 15 may not have irreversibility or a holding function.
 駐車ブレーキの制動解除時には、駐車ブレーキスイッチ等の操作によって電動モータ40を制動時と同じ方向に作動させてウォーム39を制動時と同じ方向に更に回転させる。ウォーム39の回転により、ウォームホイール38が所定の減速比で制動時と同じ方向に更に回転して、変換機構14の回転部材25を制動時と同じ方向に更に回転させる。 When the parking brake is released, the electric motor 40 is operated in the same direction as during braking by operating the parking brake switch or the like to further rotate the worm 39 in the same direction as during braking. Due to the rotation of the worm 39, the worm wheel 38 is further rotated in the same direction as during braking at a predetermined reduction ratio, and the rotating member 25 of the conversion mechanism 14 is further rotated in the same direction as during braking.
 変速機構14では、図17(A)、(B)に示すように、回転部材25が制動時と同じ方向に制動解除位置(4)に向かって更に回転すると、大径直動部材26は、ボール27が凹部32cd、28cdの縁部を乗越えて傾斜部32a、28aを最深部に向かって転動することにより、矢印aで示すように回転部材25側へ移動し、小径直動部材21は、ボール27が制動解除部41、42の傾斜部41a、42aを転動することにより、回転部材25側へ後退する。これにより、調整ネジ17が後退し、ピストン10がフォールバックシール11の弾性力によって後退して制動が解除される。なお、大径直動部材26が保持位置(3)から制動解除(4)に移動する間は、液圧室12に液圧を供給してもよい。 In the speed change mechanism 14, as shown in FIGS. 17A and 17B, when the rotating member 25 further rotates toward the braking release position (4) in the same direction as that during braking, the large-diameter linearly moving member 26 27 moves over the edge of the recesses 32 cd and 28 cd and rolls the inclined portions 32 a and 28 a toward the deepest part, so that it moves toward the rotating member 25 as indicated by an arrow a. As the ball 27 rolls on the inclined portions 41a and 42a of the brake release portions 41 and 42, the ball 27 moves backward toward the rotating member 25. As a result, the adjustment screw 17 is retracted, and the piston 10 is retracted by the elastic force of the fallback seal 11 to release the braking. The hydraulic pressure may be supplied to the hydraulic chamber 12 while the large-diameter linearly moving member 26 moves from the holding position (3) to the brake release (4).
 回転部材25が制動解除位置(4)に達した後、大径直動部材26では、ボール27が傾斜部28b、32bを転動し、小径直動部材21では、ボール27は、凹凸部41b、42bを転動して(5)で示す位置すなわち初期位置(1)に達する。このとき、ボール27が、凹凸部41b、42bを転動することにより、電動モータ40の負荷が変動するので、電動モータ40のリップル電流を検出することにより、駐車ブレーキの解除を検知することができる。なお、制動解除位置(4)から初期位置(1)の間、サービスブレーキの作動等によって液圧室12に液圧が供給された場合、この液圧が電動モータ40の負荷となって回転部材25の回転を妨げることになるので、液圧が解放された時点で回転部材25は、初期位置(1)まで回転することになる。 After the rotating member 25 reaches the braking release position (4), in the large diameter linear motion member 26, the ball 27 rolls on the inclined portions 28b and 32b, and in the small diameter linear motion member 21, the ball 27 includes the uneven portion 41b, 42b rolls to reach the position indicated by (5), that is, the initial position (1). At this time, since the load of the electric motor 40 fluctuates when the ball 27 rolls on the concave and convex portions 41b and 42b, the release of the parking brake can be detected by detecting the ripple current of the electric motor 40. it can. When hydraulic pressure is supplied to the hydraulic chamber 12 by operating the service brake or the like between the brake release position (4) and the initial position (1), the hydraulic pressure becomes a load on the electric motor 40 and the rotating member. Therefore, when the hydraulic pressure is released, the rotating member 25 rotates to the initial position (1).
 上述の駐車ブレーキの(1)~(3)で示す制動開始時及び(3)~(5)で示す制動解除時の大径直動部材26及び小径直動部材21の位置、液圧室12の液圧及び制動力は、図18に示すチャート図のようになる。 The position of the large-diameter linearly moving member 26 and the small-diameter linearly-directing member 21 at the start of braking indicated by (1) to (3) and the braking release indicated by (3) to (5) of the above-described parking brake, The hydraulic pressure and braking force are as shown in the chart of FIG.
 次に、本発明の第6実施形態について、図19を参照して説明する。なお、上記第1実施形態に対して、同様の部分には同様の符号を用いて、異なる部分についてのみ詳細に説明する。 Next, a sixth embodiment of the present invention will be described with reference to FIG. In addition, with respect to the first embodiment, like reference numerals are used for like parts, and only different parts will be described in detail.
 本実施形態に係るディスクブレーキでは、図19に示すように、減速機構15及び電動モータ40を省略して駐車ブレーキとしての機能を省略し、変換機構14の回転部材25が自由に回転できるようになっている。 In the disc brake according to the present embodiment, as shown in FIG. 19, the speed reduction mechanism 15 and the electric motor 40 are omitted, the function as a parking brake is omitted, and the rotating member 25 of the conversion mechanism 14 can freely rotate. It has become.
 このように構成したことにより、液圧室12に液圧を供給したとき、変換機構14の大径直動部材26が液圧を受けて後退し、ボール27が傾斜溝であるランプ溝32及び外周ランプ溝28を転動することによって回転部材25に制動方向の回転力が生じ、回転部材25が制動方向に回転し、回転部材25の内周ランプ溝29及び小径直動部材21のランプ溝34でボール27が転動して、小径直動部材21をピストン10側へ移動させる。これにより、調整ネジ17は、液圧によってピストン10と共にブレーキパッド3側に移動する調整ナット16に追従し、これらのネジ部Mの隙間を移動した後、調整ナット16を摩擦面18でピストン10に押圧する。その結果、液圧によるピストン10の推進力に加えて、変換機構14によって生じた押圧力がピストン10に作用することになり、ピストン10の推進力を増大させることができる。 With this configuration, when hydraulic pressure is supplied to the hydraulic chamber 12, the large-diameter linearly moving member 26 of the conversion mechanism 14 is retracted by receiving the hydraulic pressure, and the ball 27 is an inclined groove and the outer periphery of the ramp groove 32. By rolling the ramp groove 28, a rotational force in the braking direction is generated in the rotating member 25, the rotating member 25 rotates in the braking direction, and the inner peripheral ramp groove 29 of the rotating member 25 and the ramp groove 34 of the small diameter linearly moving member 21. Then, the ball 27 rolls to move the small diameter linearly moving member 21 to the piston 10 side. As a result, the adjusting screw 17 follows the adjusting nut 16 that moves to the brake pad 3 side together with the piston 10 by hydraulic pressure. After moving through the gaps between these screw portions M, the adjusting nut 16 is moved by the friction surface 18 to the piston 10. Press on. As a result, in addition to the propulsive force of the piston 10 due to the hydraulic pressure, the pressing force generated by the conversion mechanism 14 acts on the piston 10, and the propulsive force of the piston 10 can be increased.
 次に、上記第6実施形態の変換機構の変形例について、図20から図23を参照して説明する。なお、上記第6実施形態に対して、同様の部分には同一の符号を用いて、異なる部分についてのみ図示して詳細に説明する。 Next, a modified example of the conversion mechanism of the sixth embodiment will be described with reference to FIGS. Note that the same reference numerals are used for the same parts in the sixth embodiment, and only different parts are illustrated and described in detail.
 図20及び図21に示す第1変形例では、変換機構14Aは、ボールランプ機構の代りに、リンク機構を利用して大径直動部材26に作用する液圧によって小径直動部材21に推進力を発生させるようになっている。 In the first modification shown in FIGS. 20 and 21, the conversion mechanism 14 </ b> A uses the link mechanism to replace the ball ramp mechanism with the hydraulic pressure acting on the large-diameter linearly-moving member 26, so Is supposed to be generated.
 図20及び図21に示すように、変換機構14Aは、大径直動部材26及び小径直動部材21の背部にこれらの径方向に延びるリンク部材43が設けられている。リンク部材43は、リンク部材43に直交するピン44によって回動可能に支持され、一端部が大径直動部材26の後端部に当接し、他端部が小径直動部材21の後端部に当接している。ピン44は、リンク部材43の大径直動部材26との当接部からの距離が小径直動部材21との当接部からの距離がよりも充分大きくなっており、このレバー比によって大径直動部材26から受けた力を増力して小径直動部材21に伝達するように配置されている。リンク部材43は、図示の例では、等間隔で3つ配置されているが、他の配置でもよい。例えば、リンク部材43を1つ又は2つ配置しても良いし、4つ以上配置しても良く、リンク部材43の間隔が等間隔でなくとも良い。 20 and 21, the conversion mechanism 14A is provided with a link member 43 extending in the radial direction on the back of the large-diameter linear motion member 26 and the small-diameter linear motion member 21. The link member 43 is rotatably supported by a pin 44 orthogonal to the link member 43, one end abuts against the rear end portion of the large-diameter linear motion member 26, and the other end portion is the rear end portion of the small-diameter linear motion member 21. Abut. In the pin 44, the distance from the contact portion of the link member 43 with the large-diameter linear motion member 26 is sufficiently larger than the distance from the contact portion with the small-diameter linear motion member 21, and this lever ratio causes the large-diameter linear motion It arrange | positions so that the force received from the moving member 26 may be increased and it may transmit to the small diameter linearly moving member 21. FIG. In the example shown in the figure, three link members 43 are arranged at equal intervals, but other link members 43 may be arranged. For example, one or two link members 43 may be disposed, or four or more link members 43 may be disposed, and the distance between the link members 43 may not be equal.
 このように構成したことにより、マスタシリンダ等の液圧源から液圧室12に液圧を供給したとき、その液圧によって大径直動部材26が後退し、リンク部材43がピン44を軸として回転して小径直動部材21をピストン10側へ前進させる。これにより、液圧室12に対してピストン10の受圧面積を大きくしたのと同様の作用効果が得られる。このとき、リンク部材43及びピン44のレバー比によって大径直動部材26からリンク部材43を介して小径直動部材21に伝達される力が増力されるので、液圧室12に供給した液圧によるピストン10の推進力に加えて変換機構14Aによって増大された押圧力を調整ネジ17を介してピストン10に作用させることができ、ピストン10の推進力を増大させることができる。 With this configuration, when hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a master cylinder, the large-diameter linear motion member 26 is retracted by the hydraulic pressure, and the link member 43 is centered on the pin 44. The small diameter linearly moving member 21 is advanced to the piston 10 side by rotating. Thereby, the same operation effect as having increased the pressure receiving area of the piston 10 with respect to the hydraulic pressure chamber 12 is obtained. At this time, the force transmitted from the large-diameter linear motion member 26 to the small-diameter linear motion member 21 via the link member 43 is increased by the lever ratio of the link member 43 and the pin 44, so that the hydraulic pressure supplied to the hydraulic pressure chamber 12 is increased. In addition to the propulsive force of the piston 10 due to the above, the pressing force increased by the conversion mechanism 14A can be applied to the piston 10 via the adjusting screw 17, and the propulsive force of the piston 10 can be increased.
 図22に示す第2変形例では、変換機構14Bは、ボールランプ機構の代りに流動部材を利用して小径直動部材21に推進力を発生させるようになっている。 図22に示すように、変換機構14Bでは、大径直動部材26及び小径直動部材21とシリンダ7の底部との間に液圧室45が形成され、液圧室45に流動部材としてブレーキ液が充填されている。小径直動部材21は、液圧室45に対する大径部21Aの受圧面積を充分大きくし、液圧室12に対する小径部21Bの受圧面積を充分小さくしてある。これにより、大径直動部材26は、液圧室12に対する受圧面積が充分大きくなり、液圧室45に対する受圧面積が充分小さくなっている。 In the second modification shown in FIG. 22, the conversion mechanism 14 </ b> B generates a propulsive force on the small-diameter linearly-moving member 21 using a fluid member instead of the ball ramp mechanism. As shown in FIG. 22, in the conversion mechanism 14 </ b> B, a hydraulic chamber 45 is formed between the large-diameter linear motion member 26 and the small-diameter linear motion member 21 and the bottom of the cylinder 7. Is filled. The small diameter linearly moving member 21 has a sufficiently large pressure receiving area of the large diameter portion 21 </ b> A with respect to the hydraulic pressure chamber 45 and a sufficiently small pressure receiving area of the small diameter portion 21 </ b> B with respect to the hydraulic pressure chamber 12. As a result, the large-diameter linear motion member 26 has a sufficiently large pressure receiving area for the hydraulic pressure chamber 12 and a sufficiently small pressure receiving area for the hydraulic pressure chamber 45.
 このように構成したことにより、マスタシリンダ等の液圧源から液圧室12に液圧を供給したとき、その液圧によって大径直動部材26が後退して、液圧室45内のブレーキ液を加圧し、液圧室45内の液圧によって小径直動部材21がピストン10側へ前進する。このとき、液圧室12、45に対する大径直動部材26及び小径直動部材21の受圧面積の相違によって、小径直動部材21に生じる推進力が増力される。その結果、液圧室12に供給した液圧によるピストン10の推進力に加えて変換機構14Bによって増大された押圧力を調整ネジ17を介してピストン10に作用させることができ、ピストン10の推進力を増大させることができる。なお、液圧室45には、大径直動部材26から小径直動部材21に圧力を伝達することができるものであれば、ブレーキ液の代わりに他の流動性部材を充填してもよい。 With this configuration, when hydraulic pressure is supplied to the hydraulic pressure chamber 12 from a hydraulic pressure source such as a master cylinder, the large-diameter linear motion member 26 is retracted by the hydraulic pressure, and the brake fluid in the hydraulic pressure chamber 45 is retreated. The small-diameter linearly moving member 21 moves forward to the piston 10 side by the hydraulic pressure in the hydraulic chamber 45. At this time, the propulsive force generated in the small-diameter linear motion member 21 is increased by the difference in pressure receiving areas of the large-diameter linear motion member 26 and the small-diameter linear motion member 21 with respect to the hydraulic pressure chambers 12 and 45. As a result, in addition to the propulsive force of the piston 10 due to the hydraulic pressure supplied to the hydraulic pressure chamber 12, the pressing force increased by the conversion mechanism 14 </ b> B can be applied to the piston 10 via the adjustment screw 17, and the propulsion of the piston 10 can be performed. The power can be increased. The fluid pressure chamber 45 may be filled with another fluid member in place of the brake fluid as long as the pressure can be transmitted from the large diameter linear motion member 26 to the small diameter linear motion member 21.
 図23に示す第3変形例では、変換機構14Cは、ボールランプ機構の代りに液圧を利用して小径直動部材21に推進力を発生させるようになっている。 大径直動部材26及び小径直動部材21は、シリンダ7の底部に形成されたシリンダ部7A、7Bに液密的に挿入されて、それぞれの背部に液圧室46、47が形成されている。液圧室46、47間は、通路48を介して互いに接続されている。通路48には、これを開閉するソレノイドバルブ49が設けられている。液圧室46、47には、ブレーキ液が充填されている。大径直動部材26は、液圧室12に対する受圧面積が充分大きく、液圧室46に対する受圧面積が充分小さく、また、小径直動部材21は、液圧室12に対する受圧面積が充分小さく、液圧室47に対する受圧面積が充分大きくなっている。 In the third modification shown in FIG. 23, the conversion mechanism 14C generates a propulsive force on the small-diameter linearly moving member 21 by using hydraulic pressure instead of the ball ramp mechanism. The large-diameter linear motion member 26 and the small-diameter linear motion member 21 are liquid-tightly inserted into the cylinder portions 7A and 7B formed at the bottom of the cylinder 7, and hydraulic chambers 46 and 47 are formed in the respective back portions. . The hydraulic chambers 46 and 47 are connected to each other through a passage 48. A solenoid valve 49 for opening and closing the passage 48 is provided in the passage 48. The hydraulic chambers 46 and 47 are filled with brake fluid. The large-diameter linear motion member 26 has a sufficiently large pressure-receiving area with respect to the hydraulic pressure chamber 12 and a sufficiently small pressure-receiving area with respect to the hydraulic pressure chamber 46, and the small-diameter linear motion member 21 has a sufficiently small pressure-receiving area with respect to the hydraulic pressure chamber 12. The pressure receiving area for the pressure chamber 47 is sufficiently large.
 このように構成したことにより、ソレノイドバルブ48を開いた状態で、マスタシリンダ等の液圧源から液圧室12に液圧を供給したとき、その液圧によって大径直動部材26が後退して、液圧室46内のブレーキ液を加圧し、これにより、通路48を介して液圧室47が加圧され、液圧室47内の液圧によって小径直動部材21がピストン10側へ前進する。このとき、大径直動部材26の液圧室12、46に対する受圧面積及び小径直動部材21の液圧室12、47に対する受圧面積の相違によって、小径直動部材21に生じる推進力が増力される。その結果、液圧室12に供給した液圧によるピストン10の推進力に加えて、変換機構14Cによって増大された押圧力を調整ネジ17を介してピストン10に作用させることができ、ピストン10の推進力を増大させることができる。 With this configuration, when the hydraulic pressure is supplied from the hydraulic pressure source such as the master cylinder to the hydraulic pressure chamber 12 with the solenoid valve 48 opened, the large-diameter linear motion member 26 is retracted by the hydraulic pressure. Then, the brake fluid in the hydraulic pressure chamber 46 is pressurized, whereby the hydraulic pressure chamber 47 is pressurized via the passage 48, and the small-diameter linearly moving member 21 moves forward toward the piston 10 by the hydraulic pressure in the hydraulic pressure chamber 47. To do. At this time, the propulsive force generated in the small-diameter linear motion member 21 is increased by the difference in the pressure-receiving area of the large-diameter linear motion member 26 with respect to the hydraulic chambers 12 and 46 and the pressure-receiving area of the small-diameter linear motion member 21 with respect to the hydraulic chambers 12 and 47. The As a result, in addition to the propulsive force of the piston 10 by the hydraulic pressure supplied to the hydraulic pressure chamber 12, the pressing force increased by the conversion mechanism 14C can be applied to the piston 10 via the adjustment screw 17, and the piston 10 The driving force can be increased.
 また、この状態でソレノイドバルブ49を閉じることにより、液圧室47内の液圧を保持することができ、小径直動部材21を保持して、制動状態を保持することができる。そして、ソレノイドバルブ49を開くことにより、液圧室47の液圧が解放され、小径直動部材21が後退して、制動力が解除される。これにより、駐車ブレーキとして作動させることができる。 Further, by closing the solenoid valve 49 in this state, the hydraulic pressure in the hydraulic pressure chamber 47 can be maintained, and the small-diameter linearly moving member 21 can be held and the braking state can be maintained. Then, by opening the solenoid valve 49, the hydraulic pressure in the hydraulic pressure chamber 47 is released, the small-diameter linear motion member 21 is retracted, and the braking force is released. Thereby, it can be operated as a parking brake.
 なお、上記実施形態においては、液圧室12の液圧によって大径直動部材26を後退させて小径直動部材21がピストン10側へ前進するように構成したが、これとは逆に、液圧室12の液圧によって小径直動部材21を後退させて大径直動部材26をピストン10側へ前進するように構成してもよい。この場合には、Oリング33で規定される小径直動部材21の小径部21Bの液圧室12に対する受圧面積を、Oリング31とOリング33とで規定される大径直動部材26の液圧室12に対する受圧面積よりも充分大きくすることになる。また、この場合には、小径直動部材21が本発明の第1の移動部材を、大径直動部材26が本発明の第2の移動部材を構成することになる。 In the above embodiment, the large-diameter linear motion member 26 is moved backward by the hydraulic pressure in the hydraulic chamber 12 so that the small-diameter linear motion member 21 moves forward to the piston 10 side. The small diameter linear motion member 21 may be moved backward by the hydraulic pressure of the pressure chamber 12 and the large diameter linear motion member 26 may be advanced to the piston 10 side. In this case, the pressure receiving area of the small-diameter portion 21B of the small-diameter linear motion member 21 defined by the O-ring 33 with respect to the hydraulic chamber 12 is defined as the liquid of the large-diameter linear motion member 26 defined by the O-ring 31 and the O-ring 33. This is sufficiently larger than the pressure receiving area for the pressure chamber 12. In this case, the small-diameter linear motion member 21 constitutes the first moving member of the present invention, and the large-diameter linear motion member 26 constitutes the second moving member of the present invention.
 以上述べたように、上記実施形態に係るディスクブレーキによれば、スペース効率を高めることができる。 As described above, according to the disc brake according to the above embodiment, space efficiency can be improved.
 上記では、本発明のいくつかの例示的な実施形態のみを詳細に説明したが、当業者であれば、本発明の新規の教示及び利点から実質的に外れることなく、上記例示的な実施形態において様々な変形が可能であることを容易に理解するであろう。従って、そのような変形は全て本発明の範囲に含まれることを意図されている。更に、全実施形態の全ての特徴及び全ての請求項は、矛盾しない限り、互いに組み合わせることができるものである。 Although only a few exemplary embodiments of the present invention have been described in detail above, those skilled in the art will appreciate that the exemplary embodiments described above do not substantially depart from the novel teachings and advantages of the present invention. It will be readily understood that various modifications are possible. Accordingly, all such modifications are intended to be included within the scope of this invention. Moreover, all features of all embodiments and all claims can be combined with each other as long as no contradiction arises.
 本出願は、2009年1月28日に出願した日本特許出願番号2009-016767号に基づく優先権を主張する。日本特許出願番号2009-016767号の全開示内容は、明細書、特許請求の範囲、図面及び要約書を含め全てが参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2009-016767 filed on Jan. 28, 2009. The entire disclosure of Japanese Patent Application No. 2009-016767 is hereby incorporated by reference in its entirety, including the specification, claims, drawings and abstract.
 1 ディスクブレーキ、2 ディスクロータ、3、4 ブレーキパッド、 5 キャリパ、7 シリンダ、10 ピストン、14 変換機構、21 小径直動部材(第2の移動部材)、26 大径直動部材(第1の移動部材)、27 ボール(変換部材)、28 外周ランプ溝(変換部材)、29 内周ランプ溝(変換部材)、32、34 ランプ溝(変換部材) 1 disc brake, 2 disc rotor, 3, 4 brake pad, 5 caliper, 7 cylinder, 10 piston, 14 conversion mechanism, 21 small diameter linear motion member (second moving member), 26 large diameter linear motion member (first movement) Member), 27 balls (conversion member), 28 outer peripheral ramp groove (conversion member), 29 inner peripheral ramp groove (conversion member), 32, 34 ramp groove (conversion member)

Claims (10)

  1.  ディスクブレーキであって、
     ディスクロータの両面に配置される一対のブレーキパッドと、
     該一対のブレーキパッドのうち少なくとも一方を押圧するピストンと、
     該ピストンを摺動可能に収納する有底筒状のシリンダが形成され、該シリンダ内への液圧供給により、前記ピストンを推進するキャリパと、を備え、
     前記シリンダの底部には、
     前記シリンダ内への液圧供給により、前記シリンダの底部側に移動する第1の移動部材と、該第1の移動部材に当接して、該第1の移動部材の推進力を前記シリンダの開口方向への推進力に変換する変換部材と、該変換部材に当接すると共に前記ピストンに接続され、前記変換部材からの前記シリンダの開口方向への推進力を前記ピストンに伝達する第2の移動部材とを有する変換機構が設けられている、ディスクブレーキ。
    A disc brake,
    A pair of brake pads disposed on both sides of the disc rotor;
    A piston that presses at least one of the pair of brake pads;
    A bottomed cylindrical cylinder that slidably accommodates the piston, and a caliper that propels the piston by supplying hydraulic pressure into the cylinder;
    At the bottom of the cylinder,
    A hydraulic pressure supply into the cylinder causes the first moving member to move to the bottom side of the cylinder and the first moving member to contact the first moving member, and the propulsive force of the first moving member is used to open the cylinder. And a second moving member that contacts the conversion member and is connected to the piston and transmits the propulsion force from the conversion member toward the opening of the cylinder to the piston. And a disc brake provided with a conversion mechanism.
  2.  請求項1に記載のディスクブレーキにおいて、
     駐車ブレーキ指令に応じて、前記シリンダ内への液圧の供給により、前記ブレーキパッドを前記ディスクロータに押圧し、前記シリンダからの液圧解放後も機械的に前記ピストンを制動位置に保持させる駐車ブレーキ機構を更に有し、
     該駐車ブレーキ機構は、
     前記変換機構と、
     前記第2の移動部材の前記シリンダの開口方向への推進力を前記ピストンに伝達している状態で前記第2の移動部材の位置を保持する保持機構とを備える、ディスクブレーキ。
    The disc brake according to claim 1, wherein
    In response to a parking brake command, the brake pad is pressed against the disc rotor by supplying hydraulic pressure into the cylinder, and the piston is mechanically held in the braking position even after the hydraulic pressure is released from the cylinder. A brake mechanism;
    The parking brake mechanism
    The conversion mechanism;
    A disc brake, comprising: a holding mechanism that holds a position of the second moving member in a state where a propulsive force of the second moving member in the opening direction of the cylinder is transmitted to the piston.
  3.  請求項1又は2に記載のディスクブレーキにおいて、
     前記第1の移動部材と前記第2の移動部材とは、前記シリンダ内を摺動する円環部材と、該円環部材内に挿入され、該円環部材と同心の円柱部材とからなる、ディスクブレーキ。
    The disc brake according to claim 1 or 2,
    The first moving member and the second moving member include an annular member that slides in the cylinder, and a cylindrical member that is inserted into the annular member and concentric with the annular member. Disc brake.
  4.  請求項3に記載のディスクブレーキにおいて、
     前記シリンダに対する前記円環部材の受圧面積は、前記円柱部材の受圧面積よりも大きい、ディスクブレーキ。
    The disc brake according to claim 3,
    A disk brake in which a pressure receiving area of the annular member with respect to the cylinder is larger than a pressure receiving area of the cylindrical member.
  5.  請求項1乃至4の何れかに記載のディスクブレーキにおいて、
     前記変換部材は、前記第1の移動部材の推進力を増力して前記第2の移動部材に伝達する、ディスクブレーキ。
    The disc brake according to any one of claims 1 to 4,
    The conversion member is a disc brake that increases the propulsive force of the first moving member and transmits it to the second moving member.
  6.  請求項1乃至5の何れかに記載のディスクブレーキにおいて、
     前記変換部材は、板状部材に互いに逆方向のリードを有する外周ランプ溝と内周ランプ溝とが形成されたボールランプ機構である、ディスクブレーキ。
    The disc brake according to any one of claims 1 to 5,
    The conversion member is a disc brake, which is a ball ramp mechanism in which an outer peripheral ramp groove and an inner peripheral ramp groove having leads in opposite directions are formed on a plate-like member.
  7.  請求項2に記載のディスクブレーキにおいて、
     前記変換部材は、板状部材に互いに逆方向のリードを有する外周ランプ溝と内周ランプ溝とが形成されたボールランプ機構であって、
     前記保持機構は、前記外周ランプ溝又は内周ランプ溝に形成される凹部である、ディスクブレーキ。
    The disc brake according to claim 2, wherein
    The conversion member is a ball lamp mechanism in which an outer peripheral ramp groove and an inner peripheral ramp groove having leads in opposite directions are formed on a plate-shaped member,
    The disc brake, wherein the holding mechanism is a recess formed in the outer peripheral ramp groove or the inner peripheral ramp groove.
  8.  請求項7に記載のディスクブレーキにおいて、
     前記板状部材には、該板状部材を回転させる電動モータが接続されている、ディスクブレーキ。
    The disc brake according to claim 7,
    A disk brake, wherein an electric motor for rotating the plate member is connected to the plate member.
  9.  請求項8に記載のディスクブレーキにおいて、
     前記板状部材と前記電動モータとの間には不可逆の減速機構が設けられ、該減速機構が前記保持機構をなしている、ディスクブレーキ。
    The disc brake according to claim 8,
    A disc brake, wherein an irreversible speed reduction mechanism is provided between the plate member and the electric motor, and the speed reduction mechanism forms the holding mechanism.
  10.  請求項2に記載のディスクブレーキにおいて、
     前記変換部材は、板状部材に互いに逆方向のリードを有する外周ランプ溝と内周ランプ溝とが形成されたボールランプ機構であり、
     前記板状部材には、該板状部材を回転させる電動モータが不可逆の減速機構を介して接続されており、該減速機構が前記保持機構をなしている、ディスクブレーキ。
    The disc brake according to claim 2, wherein
    The conversion member is a ball lamp mechanism in which an outer peripheral ramp groove and an inner peripheral ramp groove having leads in opposite directions are formed on a plate-shaped member,
    The disc brake, wherein an electric motor for rotating the plate member is connected to the plate member via an irreversible speed reduction mechanism, and the speed reduction mechanism forms the holding mechanism.
PCT/JP2009/071756 2009-01-28 2009-12-28 Disk brake WO2010087101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-016767 2009-01-28
JP2009016767A JP5141911B2 (en) 2009-01-28 2009-01-28 Disc brake

Publications (1)

Publication Number Publication Date
WO2010087101A1 true WO2010087101A1 (en) 2010-08-05

Family

ID=42395367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071756 WO2010087101A1 (en) 2009-01-28 2009-12-28 Disk brake

Country Status (2)

Country Link
JP (1) JP5141911B2 (en)
WO (1) WO2010087101A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2483565A (en) * 2010-09-10 2012-03-14 Bosch Gmbh Robert Method of adjusting parking brake clamping force
WO2014025010A1 (en) * 2012-08-09 2014-02-13 曙ブレーキ工業株式会社 Electric disc brake apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342336B2 (en) * 2009-06-12 2013-11-13 ナブテスコ株式会社 Cylinder device and railway vehicle disc brake device
JP5252156B2 (en) * 2009-10-30 2013-07-31 日立オートモティブシステムズ株式会社 Disc brake
JP5344729B2 (en) * 2010-07-05 2013-11-20 ナブテスコ株式会社 Brake cylinder device and disc brake device
WO2012056940A1 (en) * 2010-10-29 2012-05-03 ナブテスコ株式会社 Brake cylinder device and disc brake device
KR101878692B1 (en) * 2013-08-26 2018-08-20 주식회사 만도 Electronic disc brake
CN104196922A (en) * 2014-08-20 2014-12-10 吉林大学 Worm gear, worm, ball and wedge-disc type electronic parking brake
KR101869240B1 (en) * 2017-04-25 2018-06-20 상신브레이크주식회사 Automobile electric disc brake

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307240A (en) * 2002-04-15 2003-10-31 Akebono Brake Ind Co Ltd Electric brake
JP2007085538A (en) * 2005-08-26 2007-04-05 Nissin Kogyo Co Ltd Disk brake device
JP2007100747A (en) * 2005-09-30 2007-04-19 Pubot Giken:Kk Rotation braking device
JP2007120535A (en) * 2005-10-25 2007-05-17 Shimadzu Corp Torque transmission device
JP2007139150A (en) * 2005-11-22 2007-06-07 Ntn Corp Power transmission device
JP2007146957A (en) * 2005-11-28 2007-06-14 Nissin Kogyo Co Ltd Disc brake device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868334B2 (en) * 2005-11-30 2012-02-01 日立オートモティブシステムズ株式会社 Disc brake with electric parking brake

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307240A (en) * 2002-04-15 2003-10-31 Akebono Brake Ind Co Ltd Electric brake
JP2007085538A (en) * 2005-08-26 2007-04-05 Nissin Kogyo Co Ltd Disk brake device
JP2007100747A (en) * 2005-09-30 2007-04-19 Pubot Giken:Kk Rotation braking device
JP2007120535A (en) * 2005-10-25 2007-05-17 Shimadzu Corp Torque transmission device
JP2007139150A (en) * 2005-11-22 2007-06-07 Ntn Corp Power transmission device
JP2007146957A (en) * 2005-11-28 2007-06-14 Nissin Kogyo Co Ltd Disc brake device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2483565A (en) * 2010-09-10 2012-03-14 Bosch Gmbh Robert Method of adjusting parking brake clamping force
WO2014025010A1 (en) * 2012-08-09 2014-02-13 曙ブレーキ工業株式会社 Electric disc brake apparatus
JP2014052068A (en) * 2012-08-09 2014-03-20 Akebono Brake Ind Co Ltd Electric disc brake device

Also Published As

Publication number Publication date
JP5141911B2 (en) 2013-02-13
JP2010174955A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5141911B2 (en) Disc brake
WO2015152074A1 (en) Opposed piston-type disc brake device
KR102113364B1 (en) Combined vehicle brake
JP2006283811A (en) Disk brake
JP2012229798A5 (en)
WO2014097915A1 (en) Ball-ramp mechanism, linear motion actuator, and electric disc brake device
JP2014070670A (en) Disc brake
JP5614528B2 (en) Disc brake
JP4674690B2 (en) Disc brake
JP2016050629A (en) Gear unit and brake device
KR20180060733A (en) Ball Screw Type Electro-Mechanical Brake
JP2009535587A (en) Brake caliper
WO2012124811A1 (en) Electric braking device with parking mechanism
JP2007010066A (en) Disc brake
JP5466259B2 (en) Disc brake booster
JP5404448B2 (en) Drum-type electric parking brake device
JP2006177532A (en) Disc brake
CN113494548A (en) Friction braking system for vehicle
US11293505B2 (en) Uni-directional anti-rotation member for a disc brake assembly with an electric parking brake
JP5968192B2 (en) Disc brake
JP2014214752A (en) Electric disc brake device
JP2021004646A (en) Disc brake
JP2005291337A (en) Disk brake
JP2010266005A (en) Electric disk brake
KR20220119496A (en) brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839288

Country of ref document: EP

Kind code of ref document: A1