WO2010087085A1 - 太陽電池用バックシート及びそれを備える太陽電池モジュール - Google Patents

太陽電池用バックシート及びそれを備える太陽電池モジュール Download PDF

Info

Publication number
WO2010087085A1
WO2010087085A1 PCT/JP2009/071000 JP2009071000W WO2010087085A1 WO 2010087085 A1 WO2010087085 A1 WO 2010087085A1 JP 2009071000 W JP2009071000 W JP 2009071000W WO 2010087085 A1 WO2010087085 A1 WO 2010087085A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
solar cell
resin
rubber
aromatic vinyl
Prior art date
Application number
PCT/JP2009/071000
Other languages
English (en)
French (fr)
Inventor
篤史 渡邉
橋本 昌典
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Priority to CN2009801542781A priority Critical patent/CN102271914A/zh
Priority to EP09839272.3A priority patent/EP2383116A4/en
Priority to US13/133,858 priority patent/US20110247683A1/en
Publication of WO2010087085A1 publication Critical patent/WO2010087085A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • the present invention has a dark color appearance, absorbs visible light when irradiated with light, but transmits infrared light to prevent heat storage, can improve photoelectric conversion efficiency, and
  • the present invention relates to a solar cell backsheet excellent in heat resistance, flexibility, weather resistance and scratch resistance, and a solar cell module including the same.
  • solar cells have received more attention as energy supply means in place of petroleum, which is an energy source that forms carbon dioxide, which causes global warming.
  • the demand for solar cells is also increasing, and stable supply and cost reduction of various members constituting solar cell modules included in solar cells have been demanded.
  • the demand for improving the power generation efficiency of solar cells has increased.
  • the solar cell module a large number of plate-like solar cell elements are arranged, and these are wired in series and in parallel, and packaged to protect the elements and unitized.
  • this solar cell module usually uses a composition containing an ethylene / vinyl acetate copolymer having a high transparency and excellent moisture resistance by covering the surface of the solar cell element that is exposed to sunlight with a glass plate.
  • the gap between the solar cell elements is filled to form a filler portion, and the back surface (the lower surface of the filler portion) is sealed with a member called a solar cell backsheet.
  • a back sheet for a solar cell a sheet in which a white thermoplastic resin sheet is laminated on both sides of a polyester sheet is known in order to increase the reflectance of sunlight and increase the power generation efficiency of the solar cell (Patent Document 1). 2).
  • a dark color such as black from the viewpoint of appearance, and for that reason, it is colored in a dark color
  • solar cell backsheets it is preferred to be colored in a dark color such as black from the viewpoint of appearance, and for that reason, it is colored in a dark color
  • a sheet made of carbon black As a back sheet for a solar cell colored in a dark color, a sheet made of carbon black is generally used. In this embodiment, the carbon black absorbs sunlight and the temperature rises, so that not only the power generation efficiency of the solar cell is lowered, but also the durability may be lowered.
  • a sheet made of a low heat storage thermoplastic resin composition containing a thermoplastic resin and an inorganic pigment having infrared reflection characteristics is known (see Patent Document 3). Further, there is provided a solar cell backsheet that has a black resin layer containing a perylene pigment on its surface and prevents near heat storage by reflecting near infrared rays with a reflectance of light having a wavelength of 800 to 1,100 nm of 30% or more. It is known (see Patent Document 4).
  • a solar cell module including a solar cell backsheet when water, water vapor, or the like enters from the solar cell backsheet side, the solar cell element may be deteriorated and the power generation efficiency may be lowered.
  • the present invention has a dark color appearance, is excellent in balance of heat resistance (dimensional stability) and flexibility, design properties, weather resistance, and scratch resistance, transmits infrared rays, suppresses heat storage, and has photoelectric conversion efficiency. It aims at providing the solar cell backsheet which can be improved, and a solar cell module provided with the same.
  • a solar cell backsheet comprising a first resin layer, a second resin layer, a third resin layer, and a fourth resin layer in sequence, at least the second resin of the first resin layer and the second resin layer.
  • the layer is an infrared transmissive colored resin layer
  • the third resin layer is a white resin layer
  • the fourth resin layer is a back surface protective layer
  • the thickness ( HA ) of the first resin layer
  • the back sheet for a solar cell wherein the thickness (H B ) of the second resin layer and the thickness (H C ) of the third resin layer satisfy the following formulas (1) and (2).
  • thermoplastic resin that constitutes the first resin layer, the thermoplastic resin that constitutes the second resin layer, and the thermoplastic resin that constitutes the third resin layer are all thermoplastic resins containing an aromatic vinyl resin.
  • the glass transition temperature of the thermoplastic resin constituting the first resin layer and the glass transition temperature of the thermoplastic resin constituting the third resin layer are both glass of the thermoplastic resin constituting the second resin layer.
  • the water vapor barrier layer is formed of a vapor deposition film having a film containing a metal and / or a metal oxide formed on the surface thereof.
  • 11. The solar cell backsheet according to any one of 1 to 10, wherein the solar cell backsheet has a thickness of 50 to 1,000 ⁇ m. 12
  • a solar cell module comprising the solar cell backsheet according to any one of 1 to 11 above.
  • the balance of heat resistance (dimensional stability) and flexibility, and design, weather resistance, and scratch resistance are excellent.
  • the 2nd resin layer is an infrared rays transparent colored resin layer, when using a solar cell, the heat storage of the back sheet for solar cells by infrared rays is suppressed, and the deformation
  • both the first resin layer and the second resin layer are infrared transmissive colored resin layers, infrared rays are transmitted through the first resin layer and the second resin layer and reflected by the third resin layer.
  • the photoelectric conversion efficiency can be improved.
  • the absorption rate for the light is 60% or more.
  • a battery module can be provided, and when a solar cell module provided with this sheet is arranged on the roof of a house or the like, excellent appearance and design can be obtained.
  • light having a wavelength of 800 to 1,400 nm is radiated to the surface of the first resin layer in the solar cell backsheet, if the reflectance with respect to the light is 50% or more, sunlight is adjacent.
  • thermoplastic resin that constitutes the first resin layer, the thermoplastic resin that constitutes the second resin layer, and the thermoplastic resin that constitutes the third resin layer are all thermoplastic resins containing an aromatic vinyl resin. In some cases, it is excellent in hydrolysis resistance, dimensional stability, impact resistance and the like.
  • the glass transition temperature of the thermoplastic resin constituting the first resin layer and the glass transition temperature of the thermoplastic resin constituting the third resin layer are both glass of the thermoplastic resin constituting the second resin layer.
  • the fourth resin layer is a resin layer having flame retardancy, it can be a solar cell backsheet that is superior in fire resistance from the back surface.
  • a water vapor barrier layer is provided between the third resin layer and the fourth resin layer, a solar cell back sheet having excellent water vapor barrier properties can be obtained.
  • the water vapor barrier layer is formed of a vapor deposition film having a film containing a metal and / or metal oxide formed on the surface thereof, the balance between heat resistance (dimensional stability) and flexibility is lowered. No water vapor barrier property. Moreover, deterioration of the solar cell element can be suppressed.
  • the solar cell backsheet has a thickness of 50 to 1,000 ⁇ m, the flexibility is excellent.
  • the solar cell module of the present invention since the solar cell backsheet of the present invention is provided, the solar cell having excellent heat resistance, weather resistance, design properties, water vapor barrier properties and scratch resistance, and improved photoelectric conversion efficiency.
  • a battery can be formed. This solar cell is suitable for outdoor use exposed to sunlight or wind and rain for a long time.
  • solar cell backsheet 11 first resin layer 12: second resin layer 13: third resin layer 14: water vapor barrier layer 15: fourth resin layer 2: solar cell module 21: surface side transparent protection Member 23: Front side sealing film 25: Solar cell element 27: Back side sealing film
  • (co) polymerization means homopolymerization and copolymerization.
  • (meth) acryl means acryl and methacryl, and “(meth) acrylate” means acrylate and methacrylate.
  • the solar cell backsheet of the present invention is a sheet comprising a first resin layer, a second resin layer, a third resin layer, and a fourth resin layer in sequence, and its schematic cross section is exemplified in FIG. That is, the solar cell backsheet 1 of FIG. 1 is a laminated sheet that includes the first resin layer 11, the second resin layer 12, the third resin layer 13, and the fourth resin layer 15 in order. Moreover, in the solar cell backsheet of this invention, the schematic cross section in the case of providing a water vapor
  • the solar cell backsheet of the present invention includes a first resin layer 11, a second resin layer 12, a third resin layer 13, a water vapor barrier layer 14, and a fourth resin layer 15 in order. It is.
  • the surface (upper surface side) of the first resin layer 11 is exposed on the exposed surface of the filler part including the ethylene / vinyl acetate copolymer composition, which embeds the solar cell element. Used for bonding.
  • At least the second resin layer of the first resin layer and the second resin layer is an infrared transparent colored resin layer. That is, both the first resin layer and the second resin layer may be infrared transmissive colored resin layers, or only the second resin layer may be an infrared transmissive colored resin layer.
  • the first resin layer is preferably joined to a filler part that embeds the solar cell element, and preferably contains a thermoplastic resin (hereinafter referred to as “thermoplastic resin (I)”).
  • thermoplastic resin (I) hereinafter referred to as “first thermoplastic resin composition”.
  • the first resin layer may be a colored resin layer or a non-colored resin layer. In the case of a colored resin layer, it is colored in the color of an infrared transmissive colorant, has an action of transmitting infrared light and absorbing visible light, and imparts flexibility to the sheet. A layer is preferred.
  • the first thermoplastic resin composition has a property of absorbing the thermoplastic resin (I) and visible light and transmitting infrared light.
  • a composition containing an agent hereinafter also referred to as “infrared transmitting colorant” is preferable.
  • the second resin layer is an infrared transparent colored resin layer, and preferably has a thermoplastic resin (hereinafter referred to as “thermoplastic resin (II)”) and a property of absorbing visible light and transmitting infrared light. It is a layer obtained using a thermoplastic resin composition (hereinafter referred to as “second thermoplastic resin composition”) containing a coloring agent (infrared transmitting colorant). And this 2nd resin layer is colored in the color of the infrared rays transparent coloring agent, is a base layer in the solar cell backsheet of this invention, and is a layer which has heat resistance.
  • thermoplastic resin hereinafter referred to as “thermoplastic resin (II)”
  • second thermoplastic resin composition containing a coloring agent (infrared transmitting colorant).
  • this 2nd resin layer is colored in the color of the infrared rays transparent coloring agent, is a base layer in the solar cell backsheet of this invention, and is a layer which has heat resistance.
  • the second resin layer has a function of transmitting infrared rays when infrared rays pass through the first resin layer, and absorbs visible rays when visible rays pass through the first resin layer. It is a layer having an action.
  • the solar cell backsheet of the present invention has a dark-colored appearance mainly due to the second resin layer, but this may be due to a color mixture of both the first resin layer and the second resin layer.
  • the third resin layer is a white resin layer, and preferably a thermoplastic resin (hereinafter referred to as “thermoplastic resin (III)”) and a colorant having a property of reflecting visible light and infrared rays (hereinafter referred to as “thermoplastic resin (III)”). , “White colorant”), and a layer obtained using a thermoplastic resin composition (hereinafter referred to as “third thermoplastic resin composition”). And this 3rd resin layer is a layer which has the effect
  • the fourth resin layer is a back surface protective layer, and is preferably a thermoplastic resin composition (hereinafter referred to as “fourth heat”) containing a thermoplastic resin (hereinafter referred to as “thermoplastic resin (IV)”). It is a layer obtained using a “plastic resin composition”.
  • the fourth resin layer mainly protects the solar cell backsheet of the present invention, thereby suppressing impact, heat, chemical substances, and the like due to the force from the back surface, and the solar cell backsheet. It is a layer which gives durability etc. to a solar cell module provided with.
  • the first thermoplastic resin composition, the second thermoplastic resin composition, the third thermoplastic resin composition, and the fourth thermoplastic resin composition are preferably compositions having film-forming properties. is there.
  • the glass transition temperature (hereinafter referred to as “Tg”) of the thermoplastic resin (I) contained in the first thermoplastic resin composition is from the viewpoint of imparting flexibility to the solar cell backsheet of the present invention.
  • the temperature is preferably 90 ° C to 200 ° C, more preferably 95 ° C to 180 ° C, still more preferably 100 ° C to 170 ° C, and particularly preferably 105 ° C to 160 ° C.
  • the glass transition temperature (Tg) of the thermoplastic resin (II) contained in the second thermoplastic resin composition is preferably 110 ° C. to 220 ° C. from the viewpoint of imparting heat resistance to the solar cell backsheet of the present invention.
  • the glass transition temperature (Tg) of the thermoplastic resin (III) contained in the third thermoplastic resin composition is preferably 90 from the viewpoint of imparting flexibility to the solar cell backsheet of the present invention.
  • C. to 200.degree. C. more preferably 95.degree. C. to 180.degree. C., further preferably 100.degree. C. to 170.degree. C., particularly preferably 105.degree.
  • the Tg can be measured by a differential scanning calorimeter (DSC).
  • the Tg of the thermoplastic resin (I) and the Tg of the thermoplastic resin (III) are the same as or lower than the Tg of the thermoplastic resin (II).
  • the Tg of the thermoplastic resin (I) and the Tg of the thermoplastic resin (III) are preferably lower than the Tg of the thermoplastic resin (II).
  • the difference between the Tg of the thermoplastic resin (I) and the Tg of the thermoplastic resin (II) is preferably 10 ° C. or higher, more preferably 15 ° C. or higher.
  • the Tg of the thermoplastic resin (II) and the thermoplastic resin (III ) Is preferably 10 ° C. or higher, more preferably 15 ° C. or higher.
  • the higher Tg value is adopted.
  • thermoplastic resin (I) contained in the first thermoplastic resin composition forming the first resin layer is not particularly limited as long as it is a resin having thermoplasticity.
  • examples of the thermoplastic resin (I) constituting the first resin layer include aromatic vinyl resins, polyolefin resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyvinyl acetate resins, saturated polyester resins, polycarbonate resins, and acrylic resins.
  • aromatic vinyl resins are preferred from the viewpoints of hydrolysis resistance and dimensional stability.
  • the aromatic vinyl resin is a rubber-reinforced aromatic vinyl resin obtained by polymerizing an aromatic vinyl compound or the like in the presence of a rubbery polymer; an aromatic vinyl compound such as an acrylonitrile / styrene copolymer. (Co) polymers and the like using a vinyl monomer containing In the present invention, the aromatic vinyl resin is preferably a rubber-reinforced aromatic vinyl resin.
  • the thermoplastic resin (I) contains a rubber-reinforced aromatic vinyl resin, a first resin layer excellent in hydrolysis resistance, dimensional stability, and impact resistance can be formed.
  • the aromatic vinyl resin examples include a rubber-reinforced aromatic vinyl resin (I-) obtained by polymerizing a vinyl monomer (b11) containing an aromatic vinyl compound in the presence of the rubber polymer (a11). 1), (co) polymer (I-2) of vinyl monomer (b12) containing an aromatic vinyl compound, and rubber-reinforced aromatic vinyl resin (I-1) and (co) polymer ( And a mixture of I-2).
  • I- rubber-reinforced aromatic vinyl resin obtained by polymerizing a vinyl monomer (b11) containing an aromatic vinyl compound in the presence of the rubber polymer (a11).
  • (co) polymer (I-2) of vinyl monomer (b12) containing an aromatic vinyl compound and rubber-reinforced aromatic vinyl resin (I-1) and (co) polymer ( And a mixture of I-2).
  • the rubber-reinforced aromatic vinyl resin (I-1) usually includes a copolymer resin obtained by graft-copolymerizing a vinyl monomer (b11) containing an aromatic vinyl compound to the rubber polymer (a11);
  • the ungrafted component which is not grafted to the rubber polymer (a11), that is, the (co) polymer by the remaining vinyl monomer (b11) is included.
  • the aromatic vinyl resin preferably contains at least one rubber-reinforced aromatic vinyl resin (I-1) as described above, and one or more kinds of rubber-reinforced aromatic vinyl resin (I-1). Or, a combination of one or more of rubber-reinforced aromatic vinyl resins (I-1) and one or more of (co) polymer (I-2) is particularly preferred.
  • the content of the rubber polymer (a11) in the aromatic vinyl resin is preferably 5 to 40% by mass with respect to 100% by mass of the thermoplastic resin (I) containing the aromatic vinyl resin. More preferably, it is 8 to 30% by mass, still more preferably 10 to 20% by mass, and particularly preferably 12 to 18% by mass. When the content exceeds 40% by mass, the heat resistance is not sufficient, and it may be difficult to form the first resin layer using the first thermoplastic resin composition. On the other hand, if the content is less than 5% by mass, flexibility may not be sufficient.
  • the rubbery polymer (a11) used for forming the rubber-reinforced aromatic vinyl resin (I-1) is not particularly limited as long as it is rubbery at room temperature, and any of a homopolymer and a copolymer may be used. Good. Further, the rubbery polymer (a11) may be either a crosslinked polymer or a non-crosslinked polymer.
  • the rubbery polymer (a11) is not particularly limited, but is conjugated diene rubber, hydrogenated conjugated diene rubber, ethylene / ⁇ -olefin copolymer rubber, acrylic rubber, silicone rubber, silicone / acrylic composite. Rubber etc. are mentioned. These can be used alone or in combination of two or more. Of the above, conjugated diene rubbers are preferred from the viewpoint of impact resistance, and acrylic rubbers, silicone rubbers, silicone / acrylic composite rubbers, ethylene / ⁇ -olefin copolymer rubbers and hydrogenated resins from the viewpoint of weather resistance. Conjugated diene rubber is preferred.
  • the shape of the rubbery polymer (a11) is not particularly limited, and may be particulate (spherical or substantially spherical), linear, curved or the like.
  • the volume average particle diameter is preferably 5 to 2,000 nm, more preferably 10 to 1,800 nm, and still more preferably 50 to 1,500 nm. If the volume average particle diameter is in the above range, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent.
  • the volume average particle diameter can be measured by image analysis using an electron micrograph, a laser diffraction method, a light scattering method, or the like.
  • conjugated diene rubber examples include polybutadiene, butadiene / styrene random copolymer, butadiene / styrene block copolymer, butadiene / acrylonitrile copolymer, and the like. These can be used alone or in combination of two or more.
  • the conjugated diene rubber preferably has a glass transition temperature of ⁇ 20 ° C. or lower from the viewpoints of flexibility, low temperature impact resistance and the like.
  • the acrylic rubber contains 80% by mass or more of structural units derived from an alkyl acrylate ester having an alkyl group with 2 to 8 carbon atoms based on the total amount of structural units constituting the acrylic rubber (co-). Polymers are preferred.
  • alkyl acrylate ester having 2 to 8 carbon atoms in the alkyl group examples include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, and 2-ethylhexyl acrylate. Etc. These may be used alone or in combination of two or more.
  • Preferred alkyl acrylates are n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
  • acrylic rubber contains a structural unit derived from another monomer
  • other monomers include vinyl chloride, vinylidene chloride, acrylonitrile, vinyl ester, methacrylic acid alkyl ester, (meth) acrylic acid, Monofunctional monomers such as styrene; mono- or polyethylene glycol di (such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate ( Di- or triallyl compounds such as (meth) acrylate, divinylbenzene, diallyl phthalate, diallyl maleate, diallyl succinate, triallyl triazine, allyl compounds such as allyl (meth) acrylate, conjugated dienes such as 1,3-butadiene Crosslinkable monomer such as a compound, and the like.
  • the acrylic rubber preferably has a glass transition temperature of ⁇ 10 ° C. or lower from the viewpoints of flexibility, low temperature impact resistance and the like.
  • the acrylic rubber having the glass transition temperature is usually a copolymer containing a structural unit derived from the crosslinkable monomer.
  • the content of the structural unit derived from the crosslinkable monomer constituting the preferable acrylic rubber is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass with respect to the total amount of the structural unit. %, More preferably 0.1 to 5% by mass.
  • the volume average particle diameter of the acrylic rubber is preferably 5 to 500 nm, more preferably 10 to 450 nm, and still more preferably 20 to 400 nm from the viewpoints of flexibility, low-temperature impact properties, and the like.
  • the acrylic rubber is produced by a known method, but a preferred production method is an emulsion polymerization method.
  • the silicone rubber is preferably a rubber contained in latex in order to facilitate emulsion polymerization, which is a suitable method for producing the rubber-reinforced aromatic vinyl resin (I-1). Therefore, the silicone rubber is, for example, a polyorganosiloxane rubber produced by the method described in US Pat. Nos. 2,891,920, 3,294,725, etc. Can do.
  • the polyorganosiloxane rubber is obtained by, for example, shear-mixing organosiloxane and water in the presence of a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid using a homomixer or an ultrasonic mixer.
  • a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid using a homomixer or an ultrasonic mixer.
  • the silicone rubber contained in the latex obtained by the condensation method is preferable.
  • Alkylbenzenesulfonic acid is suitable because it acts as an emulsifier for organosiloxane and also as a polymerization initiator.
  • an alkylbenzene sulfonic acid metal salt, an alkyl sulfonic acid metal salt, or the like in combination because it has an effect of stably maintaining the silicone rubber when the rubber-reinforced aromatic vinyl resin (I-1) is produced.
  • the polymer end of the polyorganosiloxane rubber may be sealed with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • a graft crossing agent and / or a crosslinking agent may be co-condensed within a range not impairing the target performance of the present invention. By using these, impact resistance can be improved.
  • the organosiloxane used in the above reaction is, for example, a compound having a structural unit represented by the following general formula (1).
  • [R 1 m SiO (4-m) / 2 ] (1) (In the formula, R 1 represents a substituted or unsubstituted monovalent hydrocarbon group, and m represents an integer of 0 to 3.)
  • the structure of the compound represented by the general formula (1) is linear, branched or cyclic, but the compound is preferably an organosiloxane having a cyclic structure.
  • R 1 possessed by the organosiloxane that is, monovalent hydrocarbon groups include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; aryl groups such as phenyl group and tolyl group; vinyl groups and allyl groups
  • alkenyl group such as: a group in which a part of hydrogen atoms bonded to carbon atoms in these hydrocarbon groups is substituted with a halogen atom, a cyano group, or the like; and at least one hydrogen atom in an alkyl group is substituted with a mercapto group Group and the like.
  • organosiloxane examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, and octaphenylcyclotetrasiloxane.
  • a cyclic compound such as a linear or branched organosiloxane. These can be used alone or in combination of two or more.
  • the organosiloxane may be a polyorganosiloxane condensed in advance, for example, having an Mw of about 500 to 10,000.
  • the organosiloxane is a polyorganosiloxane
  • the molecular chain terminal may be sealed with a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • the graft crossing agent is usually a compound having a carbon-carbon unsaturated bond and an alkoxysilyl group.
  • a compound having a carbon-carbon unsaturated bond and an alkoxysilyl group for example, p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, 3- (P-Vinylbenzoyloxy) propylmethyldimethoxysilane and the like.
  • the amount of the grafting agent used is usually 10 parts by mass or less, preferably 0.2 to 10 parts by mass, and more preferably 0.000 parts by mass when the total of the organosiloxane, the grafting agent and the crosslinking agent is 100% by mass. 5 to 5 parts by mass. If the amount of the graft crossing agent used is too large, the molecular weight of the graft copolymer is lowered, and as a result, sufficient impact resistance may not be obtained. In addition, there is a case where a rubber-reinforced aromatic vinyl resin having a good weather resistance cannot be obtained because oxidation degradation is more likely to proceed than the double bond of the polyorganosiloxane rubber after grafting.
  • crosslinking agent examples include trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane, and tetrafunctional crosslinking agents such as tetraethoxysilane.
  • trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane
  • tetrafunctional crosslinking agents such as tetraethoxysilane.
  • a crosslinkable prepolymer obtained by condensation polymerization of these compounds in advance may be used. These may be used alone or in combination of two or more.
  • the amount of the crosslinking agent used is usually 10 parts by mass or less, preferably 5 parts by mass or less, more preferably 0.01 to 5 parts by mass, when the total of the organosiloxane, the grafting agent and the crosslinking agent is 100% by mass. Part.
  • gum obtained will be impaired and the flexibility of a sheet
  • the volume average particle diameter of the silicone rubber is usually 5 to 500 nm, preferably 10 to 400 nm, and more preferably 50 to 400 nm. This volume average particle diameter can be easily controlled by the amount of emulsifier and water used during production, the degree of dispersion when mixed using a homomixer or an ultrasonic mixer, or the method of charging the organosiloxane. If the volume average particle diameter exceeds 500 nm, the appearance may be inferior, such as a decrease in gloss.
  • the silicone / acrylic composite rubber is a rubbery polymer containing a polyorganosiloxane rubber and a polyalkyl (meth) acrylate rubber.
  • a preferable silicone-acrylic composite rubber is a composite rubber having a structure in which polyorganosiloxane rubber and polyalkyl (meth) acrylate rubber are intertwined with each other so that they cannot be separated.
  • the polyorganosiloxane rubber a copolymer obtained by copolymerizing an organosiloxane can be preferably used.
  • the organosiloxane include various reduced products having three or more members, such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, Tetramethyltetraphenylcyclotetrasiloxane and octaphenylcyclotetrasiloxane are preferred.
  • organosiloxanes can be used alone or in combination of two or more.
  • the content of the structural unit derived from the organosiloxane constituting the polyorganosiloxane rubber is preferably 50% by mass or more, more preferably 70% by mass or more based on the total amount of the structural unit.
  • the acrylic rubber is preferably methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, ethoxyethoxyethyl acrylate, methoxytripropylene glycol acrylate, 4-hydroxybutyl acrylate, lauryl methacrylate.
  • These (meth) acrylic acid alkyl ester compounds can be used alone or in combination of two or more.
  • the above monomers include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; vinyl cyanide compounds such as acrylonitrile and methacrylonitrile; methacrylic acid modified
  • vinyl monomers such as silicone and fluorine-containing vinyl compound may be contained as a copolymerization component in a range of 30% by mass or less.
  • the acrylic rubber is preferably a copolymer having two or more glass transition temperatures because it can impart sufficient flexibility to the sheet.
  • silicone-acrylic composite rubber for example, those produced by the methods described in JP-A-4-239010, JP-A-4-100812, etc. can be used.
  • the volume average particle diameter of the silicone / acrylic composite rubber is preferably 5 to 500 nm, more preferably 10 to 450 nm, and still more preferably 20 to 400 nm from the viewpoints of flexibility, low-temperature impact properties, and the like.
  • the ethylene / ⁇ -olefin copolymer rubber is a copolymer containing an ethylene unit and a unit composed of an ⁇ -olefin having 3 or more carbon atoms, and includes an ethylene / ⁇ -olefin copolymer and an ethylene / ⁇ -olefin.
  • -Non-conjugated diene copolymers are exemplified.
  • Examples of the ethylene / ⁇ -olefin copolymer include an ethylene / propylene copolymer and an ethylene / butene-1 copolymer.
  • Examples of the ethylene / ⁇ -olefin / non-conjugated diene copolymer include an ethylene / propylene / non-conjugated diene copolymer and an ethylene / butene-1 / non-conjugated diene copolymer.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 3 to 20 carbon atoms, specifically, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1 -Heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-eicosene and the like.
  • a more preferable carbon number is 3 to 12, and further preferably 3 to 8.
  • the proportion of ethylene units and ⁇ -olefin units constituting the ethylene / ⁇ -olefin copolymer rubber is preferably 5 to 95% by mass and 5 to 95%, respectively, when the total of these is 100% by mass. More preferably, it is 50 to 90% by mass and 10 to 50% by mass, still more preferably 60 to 88% by mass and 12 to 40% by mass, and particularly preferably 70 to 85% by mass and 15 to 30% by mass. If the content ratio of the ⁇ -olefin unit is too large, flexibility may be lowered.
  • the ethylene / ⁇ -olefin copolymer rubber is an ethylene / ⁇ -olefin / non-conjugated diene copolymer
  • examples of the non-conjugated diene include alkenyl norbornene such as 5-ethylidene-2-norbornene; dicyclopentadiene Cyclic dienes such as aliphatic diene and the like. These compounds can be used alone or in combination of two or more.
  • the content of the structural unit derived from the non-conjugated diene is preferably 1 to 30% by mass, more preferably 2%, based on the total amount of the structural units constituting the ethylene / ⁇ -olefin / non-conjugated diene copolymer. ⁇ 20% by weight.
  • molding external appearance property and weather resistance may fall.
  • the amount of unsaturated groups in the ethylene / ⁇ -olefin copolymer rubber is preferably 4 to 40 in terms of iodine value.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C .; conforming to JIS K6300) of the ethylene / ⁇ -olefin copolymer rubber is preferably 5 to 80, more preferably 10 to 65, and still more preferably 15 to 45. is there. When the Mooney viscosity is in the above range, the impact resistance and flexibility are excellent.
  • the hydrogenated conjugated diene rubber is not particularly limited as long as it is a (co) polymer obtained by hydrogenating a (co) polymer containing a structural unit derived from a conjugated diene compound.
  • the hydrogenated conjugated diene rubber include hydrogenated conjugated diene block copolymers having the following structure. That is, a polymer block A composed of a structural unit derived from an aromatic vinyl compound; a double bond portion of a polymer composed of a structural unit derived from a conjugated diene compound having a 1,2-vinyl bond content exceeding 25 mol%.
  • Polymer block B formed by hydrogenation of 95 mol% or more; 95 mol% or more of a double bond portion of a polymer composed of a structural unit derived from a conjugated diene compound having a 1,2-vinyl bond content of 25 mol% or less Hydrogenated polymer block C formed by hydrogenation; and 95 mol% or more of a double bond portion of a copolymer composed of a structural unit derived from an aromatic vinyl compound and a structural unit derived from a conjugated diene compound. It is a block copolymer which consists of what combined 2 or more types among the polymer blocks D formed.
  • the molecular structure of the block copolymer may be branched, radial, or a combination thereof.
  • the block structure may be a diblock, a triblock, a multiblock, or a combination thereof.
  • the structure of the block copolymer includes A- (BA) n, (AB) n, A- (BC) n, C- (BC) n, and (BC) n. , A- (DA) n, (AD) n, A- (DC) n, C- (DC) n, (DC) n, A- (BCD) ) N, (ABCDD) n [n is an integer of 1 or more.
  • Preferred are ABAA, ABBA, ABBC, ADCC, and CBC.
  • the aromatic vinyl compound used for forming the polymer blocks A and D constituting the block copolymer is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples thereof include styrene, ⁇ -methylstyrene, methylstyrene, vinylxylene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, fluorostyrene, p-tert-butylstyrene, ethylstyrene, vinylnaphthalene, and the like. .
  • These compounds can be used alone or in combination of two or more. Of these, styrene is preferred.
  • the content of the polymer block A constituting the block copolymer is preferably 0 to 65% by mass, more preferably 10 to 40% by mass, based on the whole polymer. If the content of the polymer block A is too large, the impact resistance may not be sufficient.
  • the polymer blocks B, C and D are formed by hydrogenating a pre-hydrogenation block copolymer obtained using a conjugated diene compound and an aromatic vinyl compound.
  • the conjugated diene compound used for forming the polymer blocks B, C, and D include 1,3-butadiene, isoprene, 1,3-pentadiene, chloroprene, and the like. These compounds can be used alone or in combination of two or more. Of these, 1,3-butadiene and isoprene are preferred because they can be used industrially and have excellent physical properties.
  • the hydrogenation rates of the polymer blocks B, C and D are all 95 mol% or more, preferably 96 mol% or more.
  • the 1,2-vinyl bond content in the polymer block B is preferably more than 25 mol% and 90 mol% or less, more preferably 30 to 80 mol%. If the 1,2-vinyl bond content is 25 mol% or less, the rubbery properties are lost and the impact resistance may not be sufficient. On the other hand, when it exceeds 90 mol%, chemical resistance may not be sufficient.
  • the 1,2-vinyl bond content in the polymer block C is preferably 25% mol or less, more preferably 20 mol% or less.
  • the 1,2-vinyl bond content in the polymer block D is preferably 25 to 90 mol%, more preferably 30 to 80 mol%. If the 1,2-vinyl bond content is less than 25 mol%, the rubbery properties are lost and the impact resistance may not be sufficient. On the other hand, when it exceeds 90 mol%, chemical resistance may not be sufficient.
  • the amount of the aromatic vinyl compound unit in the polymer block D is preferably 25% by mass or less, more preferably 20% by mass or less. If the amount of the aromatic vinyl compound unit exceeds 25% by mass, rubber properties may be lost and impact resistance may not be sufficient.
  • hydrogenated conjugated diene rubber examples include hydrogenated polybutadiene, hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer. And a hydrogenated product of a butadiene / acrylonitrile copolymer.
  • the weight average molecular weight (Mw) of the hydrogenated conjugated diene rubber is preferably 10,000 to 1,000,000, more preferably 30,000 to 800,000, and still more preferably 50,000 to 500,000. When Mw is in the above range, the flexibility is excellent.
  • the vinyl monomer (b11) used for forming the rubber-reinforced aromatic vinyl resin (I-1) contains an aromatic vinyl compound. That is, this vinyl monomer (b11) may be composed only of an aromatic vinyl compound, or composed of an aromatic vinyl compound and another monomer copolymerizable with this compound. Also good.
  • Other monomers include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, and epoxy group-containing unsaturated compounds. Compounds, oxazoline group-containing unsaturated compounds, and the like. These can be used alone or in combination of two or more.
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring.
  • examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichloromethane.
  • Examples thereof include styrene, monobromostyrene, dibromostyrene, tribromostyrene, and fluorostyrene. These compounds can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferable, and styrene is particularly preferable.
  • vinyl cyanide compound examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile and the like. These compounds can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Examples include cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and the like. These compounds can be used alone or in combination of two or more.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N- (4-methyl Phenyl) maleimide, N- (2,6-dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N- (4-hydroxyphenyl) ) Maleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like.
  • N-phenylmaleimide is preferred. Moreover, these compounds can be used individually or in combination of 2 or more.
  • an unsaturated dicarboxylic anhydride of maleic anhydride is copolymerized. Then, a method of imidization may be used.
  • Examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These compounds can be used alone or in combination of two or more.
  • Examples of the carboxyl group-containing unsaturated compound include (meth) acrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, cinnamic acid and the like. These compounds can be used alone or in combination of two or more.
  • hydroxyl group-containing unsaturated compound examples include 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (Meth) acrylic acid 2-hydroxybutyl, (meth) acrylic acid 3-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) acrylic (Meth) acrylic acid ester having a hydroxyl group such as a compound obtained by adding ⁇ -caprolactone to 2-hydroxyethyl acid; o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, o-hydroxy- ⁇ -Methylstyrene M-hydroxy- ⁇ -methylstyrene, p-hydroxy- ⁇ -methylstyrene, 2-hydroxymethyl- ⁇ -methyls
  • Examples of the epoxy group-containing unsaturated compound include glycidyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, vinyl glycidyl ether, allyl glycidyl ether, and methallyl glycidyl ether. These compounds can be used alone or in combination of two or more.
  • Examples of the oxazoline group-containing unsaturated compound include vinyl oxazoline.
  • the vinyl monomer (b11) preferably contains an aromatic vinyl compound and a vinyl cyanide compound, and the total amount used thereof is molding processability, chemical resistance, hydrolysis resistance, dimensions.
  • the content is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total amount of the vinyl monomer (b11).
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 50 to 95% by mass and 5 to 50% by mass, still more preferably 60 to 95% by mass and 5 to 40% by mass, respectively.
  • the vinyl monomer (b11) contains a maleimide compound
  • heat resistance can be imparted to the first resin layer.
  • the preferable content of the structural unit derived from the maleimide compound contained in the aromatic vinyl resin will be described later.
  • a rubber-reinforced aromatic vinyl resin obtained by polymerizing a vinyl monomer (b11) comprising an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer (a11).
  • a rubber-reinforced aroma obtained by polymerizing a vinyl monomer (b11) comprising an aromatic vinyl compound, a vinyl cyanide compound and a maleimide compound in the presence of a rubbery polymer (a11).
  • a vinyl monomer (b11) comprising an aromatic vinyl compound, a vinyl cyanide compound and a methacrylic acid ester compound in the presence of an aromatic vinyl resin [1-3] rubber polymer (a11). Rubber Reinforced Aromatic Vinyl Resin
  • the rubber-reinforced aromatic vinyl resin (I-1) can be produced by polymerizing the vinyl monomer (b11) in the presence of the rubber polymer (a11).
  • a polymerization method emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or a combination of these can be used.
  • the rubber polymer (a11) and the vinyl monomer (b11) are mixed in the reaction system with the rubber polymer.
  • A11 In the presence of the total amount, the above-mentioned vinyl monomer (b11) may be added all at once to initiate the polymerization, or the polymerization may be carried out while being divided or continuously added. Further, in the presence or absence of a part of the rubber polymer (a11), the vinyl monomer (b11) may be added all at once to initiate polymerization, or divided or continuously. May be added. At this time, the remainder of the rubbery polymer (a11) may be added in a batch, divided or continuously during the reaction.
  • the rubber-reinforced aromatic vinyl resin (I-1) is produced by emulsion polymerization, a polymerization initiator, a chain transfer agent (molecular weight regulator), an emulsifier, water and the like are used.
  • the polymerization initiator a redox in which an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide and the like, and a reducing agent such as a sugar-containing pyrophosphate formulation and a sulfoxylate formulation are combined.
  • BPO benzoyl peroxide
  • the amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the vinyl monomer (b11).
  • the polymerization initiator can be added to the reaction system all at once or continuously.
  • chain transfer agent examples include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, tert-tetradecyl mercaptan; and ⁇ -methylstyrene dimer. These can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually 0.05 to 2.0% by mass with respect to the total amount of the vinyl monomer (b11).
  • the chain transfer agent can be added to the reaction system all at once or continuously.
  • Examples of the emulsifier include anionic surfactants and nonionic surfactants.
  • Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates, aliphatic phosphates, etc. Is mentioned.
  • Examples of nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds. These can be used alone or in combination of two or more.
  • the amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the vinyl monomer (b11).
  • Emulsion polymerization can be carried out under known conditions depending on the type of vinyl monomer (b11), polymerization initiator, and the like.
  • the latex obtained by this emulsion polymerization is usually purified by coagulation with a coagulant to form a polymer component in powder form, and then washing and drying the polymer component.
  • a coagulant inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid are used.
  • the resins may be isolated from each latex and then mixed.
  • the method there is a method of coagulating a latex mixture containing each resin.
  • the rubber reinforced aromatic vinyl resin (I-1) includes butadiene rubber reinforced aromatic vinyl resin, acrylic rubber reinforced aromatic vinyl resin, silicone rubber reinforced styrene resin, and silicone / acrylic composite rubber reinforced.
  • Commercial products having a configuration such as styrene resin can be used.
  • a rubber-reinforced aromatic vinyl resin using a silicone / acrylic composite rubber as the rubber polymer (a11) is a commercial product obtained by the method described in, for example, JP-A-4-239010, and is manufactured by Mitsubishi Rayon. “Metablene SX-006” (trade name) manufactured by KK
  • the graft ratio of the rubber-reinforced aromatic vinyl resin (I-1) is preferably 20 to 170%, more preferably 30 to 170%, still more preferably 40 to 150%. If this graft ratio is too low, the flexibility of the first resin layer may not be sufficient. On the other hand, when the graft ratio is too high, the viscosity of the first thermoplastic resin composition becomes high, and it may be difficult to reduce the thickness.
  • S represents 1 gram of rubber-reinforced aromatic vinyl resin (I-1) in 20 ml of acetone (acetonitrile when the rubbery polymer (a11) is an acrylic rubber), and the temperature is 25 ° C. Then, after shaking with a shaker for 2 hours, the mixture is centrifuged for 60 minutes in a centrifuge (rotation speed: 23,000 rpm) under a temperature condition of 5 ° C. to separate insoluble and soluble components.
  • the mass (g) of the insoluble matter obtained, and T is the mass (g) of the rubber-like polymer (a11) contained in 1 gram of the rubber-reinforced aromatic vinyl resin (I-1).
  • the mass of the rubbery polymer (a11) can be obtained by a method of calculating from the polymerization prescription and the polymerization conversion rate, a method of obtaining from an infrared absorption spectrum (IR), and the like.
  • the rubber-reinforced aromatic vinyl resin (I-1) can be used alone or in combination of two or more.
  • the aromatic vinyl resin was obtained by polymerizing a rubber-reinforced aromatic vinyl resin (I-1) and a vinyl monomer (b12) containing an aromatic vinyl compound ( It may be a mixture of (co) polymer (I-2).
  • the (co) polymer (I-2) may be either a homopolymer or a copolymer, or a combination thereof.
  • the vinyl monomer (b12) may be an aromatic vinyl compound alone or a combination of this aromatic vinyl compound and another monomer.
  • Other monomers include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, and epoxy group-containing unsaturated compounds.
  • Compounds, oxazoline group-containing unsaturated compounds, and the like can be used alone or in combination of two or more.
  • the compound illustrated in the said vinyl monomer (b11) is applied to each said compound.
  • the (co) polymer (I-2) is preferably a copolymer.
  • the vinyl monomer (b12) is preferably composed of an aromatic vinyl compound and another monomer. Other monomers are preferably vinyl cyanide compounds and maleimide compounds.
  • the total amount thereof is preferably 40 to 100 mass with respect to the whole vinyl monomer (b12). %, More preferably 50 to 100% by mass.
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound is 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 40 to 95% by mass and 5 to 60% by mass, still more preferably 50 to 90% by mass and 10 to 50% by mass, respectively.
  • (co) polymer (I-2) is a copolymer
  • preferred polymers are as follows. [1-4] A structural unit derived from an aromatic vinyl compound (hereinafter referred to as “structural unit (s)”) and a structural unit derived from a vinyl cyanide compound (hereinafter referred to as “structural unit (t)”). [1-5] a structural unit derived from an aromatic vinyl compound (s), a structural unit derived from a vinyl cyanide compound (t), and a structural unit derived from a maleimide compound (hereinafter referred to as a structural unit). , “Structural unit (u)”))
  • the content ratio of the structural unit (s) and the structural unit (t) is determined by molding processability, chemical resistance, hydrolysis resistance. From the viewpoints of properties, dimensional stability, molded appearance, etc., when these totals are 100% by mass, preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 40 to 95% by mass and 5 to 60% by mass, more preferably 50 to 90% by mass and 10 to 50% by mass.
  • the copolymer of the above embodiment [1-4] include acrylonitrile / styrene copolymer, acrylonitrile / ⁇ -methylstyrene copolymer, and the like.
  • the content ratio of the structural unit (s), the structural unit (t), and the structural unit (u) is determined depending on the molding processability, heat resistance, From the viewpoints of properties, chemical resistance, hydrolysis resistance, dimensional stability, flexibility, etc., when these totals are 100% by mass, preferably 20 to 90% by mass, 5 to 50% by mass, and It is 1 to 40% by mass, more preferably 25 to 85% by mass, 10 to 45% by mass and 5 to 35% by mass, still more preferably 30 to 80% by mass, 10 to 40% by mass and 10 to 30% by mass.
  • Examples of the above embodiment [1-5] include acrylonitrile / styrene / N-phenylmaleimide copolymer.
  • an acrylonitrile / styrene / methyl methacrylate copolymer can be used as the (co) polymer (I-2).
  • the (co) polymer (I-2) can be produced by polymerizing the vinyl monomer (b12) containing an aromatic vinyl compound in the presence or absence of a polymerization initiator.
  • a polymerization initiator is used as the polymerization method, solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization and the like are suitable, and these polymerization methods may be used in combination.
  • it can be set as thermal polymerization.
  • the compounds exemplified in the description of the method for producing the rubber-reinforced aromatic vinyl resin (I-1) can be used singly or in combination of two or more.
  • the amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the vinyl monomer (b12). If necessary, chain transfer agents, emulsifiers and the like that can be used in the production of the rubber-reinforced aromatic vinyl resin (I-1) can be used.
  • the polymerization may be started in a state where the entire amount of the vinyl monomer (b12) is accommodated in the reaction system. You may superpose
  • the (co) polymer (I-2) can be used alone or in combination of two or more.
  • the aromatic vinyl resin is the (co) polymer (I-2)
  • the (co) polymer (I-2) described above can be used as it is.
  • the aromatic vinyl resin is composed of rubber-reinforced aromatic vinyl resin (I-1), and rubber-reinforced aromatic vinyl resin (I-1) and (co) polymer (I-2)
  • the intrinsic viscosity [ ⁇ ] methyl ethyl ketone
  • the intrinsic viscosity [ ⁇ ] is preferably 0.1 to 2.5 dl / g, more preferably 0.2 to 1.5 dl / g, still more preferably 0.25 to 1.2 dl / g.
  • the intrinsic viscosity [ ⁇ ] can be obtained in the following manner.
  • acetone-soluble components recovered after centrifugation the rubbery polymer is an acrylic rubber.
  • acetonitrile soluble component is dissolved in methyl ethyl ketone, and five different concentrations are prepared.
  • the reduced viscosity at each concentration is measured at 30 ° C. using an Ubbelohde viscosity tube, and the intrinsic viscosity [ ⁇ ] is obtained. .
  • the graft ratio and the intrinsic viscosity [ ⁇ ] are determined by the polymerization initiator, chain transfer used in producing the rubber-reinforced aromatic vinyl resin (I-1) and the (co) polymer (I-2). It can be easily controlled by adjusting the type and amount of the agent, emulsifier, solvent and the like, and further the polymerization time, polymerization temperature and the like.
  • the intrinsic viscosity [ ⁇ ] of the aromatic vinyl resin is appropriately selected from rubber-reinforced aromatic vinyl resins (I-1) and (co) polymers (I-2) having different intrinsic viscosities [ ⁇ ]. It can also be adjusted by selecting.
  • the aromatic vinyl resin preferably includes a structural unit (u) derived from a maleimide compound.
  • This structural unit (u) may be derived from the rubber-reinforced aromatic vinyl resin (I-1) or may be derived from the (co) polymer (I-2). Moreover, you may originate in both.
  • the content of the structural unit (u) for making the first resin layer excellent in heat resistance is preferably 1 to 40% by mass, more preferably 3% when the thermoplastic resin (I) is 100% by mass. Is 35% by mass, more preferably 5-30% by mass.
  • the first resin layer may be a colored resin layer or a non-colored resin layer.
  • the first resin layer is preferably a resin layer that transmits light having a wavelength of 700 nm or more.
  • the color is not particularly limited.
  • the said 1st resin layer is a non-colored resin layer, this resin layer normally exhibits the color originating in thermoplastic resin (I).
  • the first resin layer is a colored resin layer, and is preferably an infrared transparent colored resin layer.
  • the infrared transmitting colorant contained in the first thermoplastic resin composition used for forming the infrared transmitting colored resin layer usually exhibits a color other than white, preferably black, brown, dark blue, It is a dark color system such as dark green.
  • a dark-colored infrared-transmitting colorant By using a dark-colored infrared-transmitting colorant, a solar cell module having an excellent dark-colored appearance can be obtained without impairing the adhesion between the first resin layer and the filler part embedding the solar cell element. be able to.
  • Examples of the infrared transmitting colorant include perylene pigments.
  • perylene pigments compounds represented by the following general formulas (2) to (4) can be used. [Wherein, R 2 and R 3 are the same or different from each other, and are a butyl group, a phenylethyl group, a methoxyethyl group, or a 4-methoxyphenylmethyl group.
  • R 4 and R 5 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group.
  • R 6 and R 7 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group.
  • perylene-based pigment commercially available products such as “Paliogen Black S 0084”, “Paligen Black L 0086”, “Lumogen Black FK4280”, “Lumogen Black FK4281” (all of which are trade names manufactured by BASF) are used. Can be used.
  • the infrared transmissive colorant can be used alone or in combination of two or more.
  • the content ratio of the infrared transmitting colorant in the first thermoplastic resin composition is preferably 10 with respect to 100 parts by mass of the thermoplastic resin (I) from the viewpoints of infrared transmission and visible light absorption.
  • the amount is not more than part by mass, more preferably 0.01 to 6 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • the first thermoplastic resin composition when the first resin layer is an infrared transmissive colored resin layer, the first thermoplastic resin composition is used unless it reduces the infrared transmittance of the first resin layer.
  • other colorants can be used depending on the purpose and application. Examples of the other colorant include a cyan colorant (blue color material), a magenta colorant (red color material), and a yellow colorant (yellow color material).
  • thermoplastic resin composition is usually 60 parts by mass or less, preferably 0.01 to 55 parts by mass with respect to 100 parts by mass of the infrared transmitting colorant.
  • the first thermoplastic resin composition forming the infrared transparent colored resin layer is preferably substantially free of a white colorant.
  • the content thereof Is usually 3 parts by mass, preferably 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (I).
  • the degree of coloration is not particularly limited as long as the infrared transmissive property in the first resin layer is satisfied, but the first resin layer in the solar cell backsheet.
  • the L value of the surface on the side is preferably 40 or less, more preferably 35 or less, and even more preferably 30 or less.
  • Carbon black is known as a dark colorant. Since this carbon black absorbs light having a wavelength in the infrared region, when sunlight leaks from the gap between adjacent solar cell elements to the first resin layer containing carbon black, the first resin layer stores heat. And from the 1st resin layer which stored heat, the temperature of the filler part containing a solar cell element may be raised, and power generation efficiency may be reduced. In the present invention, since the first resin layer is an infrared transmissive colored resin layer, it is possible to remarkably suppress a decrease in power generation efficiency.
  • the first thermoplastic resin composition used for forming the first resin layer is a composition containing no colorant.
  • the first thermoplastic resin composition contains an additive depending on the purpose, application, etc. Can be.
  • This additive includes antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, fluorescent brighteners, weathering agents, fillers, antistatic agents, flame retardants, antifogging agents, antibacterial agents, antifungal agents, Antifouling agents, tackifiers, silane coupling agents and the like can be mentioned. Specific compounds in these additives and their blending amounts will be described later.
  • melt-kneading method In order to obtain the first thermoplastic resin composition containing the additive, a melt-kneading method is usually used.
  • the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, and a continuous kneader.
  • the thickness of the first resin layer is usually 5 to 500 ⁇ m, preferably 8 to 400 ⁇ m.
  • the thermoplastic resin (II) contained in the second thermoplastic resin composition forming the second resin layer is not particularly limited as long as it is a resin having thermoplasticity.
  • the thermoplastic resin (II) constituting the second resin layer includes aromatic vinyl resins, polyolefin resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyvinyl acetate resins, saturated polyester resins, polycarbonate resins, acrylic resins. , Fluororesin, ethylene / vinyl acetate resin and the like. These can be used alone or in combination of two or more. Of these, aromatic vinyl resins are preferred from the viewpoints of hydrolysis resistance and dimensional stability.
  • the thermoplastic resin (II) may be the same as or different from the thermoplastic resin (I).
  • the aromatic vinyl resin is a rubber-reinforced aromatic vinyl resin obtained by polymerizing an aromatic vinyl compound in the presence of a rubbery polymer as described above; a vinyl resin containing an aromatic vinyl compound. (Co) polymers and the like using monomers.
  • the aromatic vinyl resin is preferably a rubber-reinforced aromatic vinyl resin.
  • the thermoplastic resin (II) contains a rubber-reinforced aromatic vinyl resin, a second resin layer excellent in hydrolysis resistance, dimensional stability, and impact resistance can be formed.
  • the aromatic vinyl resin examples include a rubber-reinforced aromatic vinyl resin (II-) obtained by polymerizing a vinyl monomer (b21) containing an aromatic vinyl compound in the presence of the rubber polymer (a21). 1) a (co) polymer (II-2) of a vinyl monomer (b22) containing an aromatic vinyl compound, and a rubber-reinforced aromatic vinyl resin (II-1) and (co) polymer ( And a mixture of II-2).
  • a rubber-reinforced aromatic vinyl resin obtained by polymerizing a vinyl monomer (b21) containing an aromatic vinyl compound in the presence of the rubber polymer (a21).
  • the aromatic vinyl resin preferably contains at least one rubber-reinforced aromatic vinyl resin (II-1) as described above. From the viewpoint of impact resistance and flexibility, the rubber-reinforced aromatic vinyl is preferable. A combination of one or more of the resin series (II-1) and one or more of the (co) polymer (II-2) is particularly preferred.
  • the content of the rubbery polymer (a21) in the aromatic vinyl resin is preferably 5 to 40% by mass with respect to 100% by mass of the thermoplastic resin (II) containing the aromatic vinyl resin. More preferably, it is 8 to 30% by mass, still more preferably 10 to 20% by mass, and particularly preferably 12 to 18% by mass. When the content exceeds 40% by mass, the heat resistance is not sufficient, and it may be difficult to form the second resin layer using the second thermoplastic resin composition. On the other hand, if the content is less than 5% by mass, flexibility may not be sufficient.
  • the rubbery polymer (a21) used for forming the rubber-reinforced aromatic vinyl resin (II-1) is a rubber-reinforced aromatic vinyl resin (I-) contained in the first thermoplastic resin composition.
  • the polymer illustrated as a rubbery polymer (a11) used for formation of 1) can be used.
  • the rubbery polymer (a21) is preferably an acrylic rubber, an ethylene / ⁇ -olefin rubber, a hydrogenated conjugated diene rubber, a silicone rubber and a silicone / acrylic composite rubber from the viewpoint of weather resistance, and has an impact resistance. From the viewpoint, a conjugated diene rubber is preferable.
  • the shape and volume average particle diameter of the rubber polymer (a21) can be the same as those described in the rubber polymer (a11).
  • the type, shape and volume average particle diameter of the rubber polymer (a21) may be the same as or different from the shape and volume average particle diameter of the rubber polymer (a11), respectively.
  • the vinyl monomer (b21) used for forming the rubber-reinforced aromatic vinyl resin (II-1) the rubber-reinforced aromatic vinyl resin (I) contained in the first thermoplastic resin composition is used.
  • the compounds exemplified as the vinyl monomer (b11) used for the formation of -1) can be used.
  • Preferred vinyl monomers (b21) are an aromatic vinyl compound and a vinyl cyanide compound.
  • the aromatic vinyl compound styrene and ⁇ -methylstyrene are preferable, and as the vinyl cyanide compound, acrylonitrile is preferable.
  • the vinyl monomer (b21) may be the same as or different from the vinyl monomer (b11).
  • the total amount of the aromatic vinyl compound and the vinyl cyanide compound used is from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like.
  • the amount is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total amount of the vinyl monomer (b21).
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 50 to 95% by mass and 5 to 50% by mass, still more preferably 60 to 90% by mass and 10 to 40% by mass, respectively.
  • the vinyl monomer (b21) contains a maleimide compound
  • heat resistance can be imparted to the second resin layer.
  • the preferable content of the structural unit derived from the maleimide compound contained in the aromatic vinyl resin will be described later.
  • Group vinyl resin [2-3] obtained by polymerizing a vinyl monomer (b21) comprising an aromatic vinyl compound, a vinyl cyanide compound and a methacrylic ester compound in the presence of a rubbery polymer (a21). Rubber Reinforced Aromatic Vinyl Resin
  • the method for producing the rubber-reinforced aromatic vinyl resin (II-1) is the same as the method for producing the rubber-reinforced aromatic vinyl resin (I-1).
  • the graft ratio of the rubber-reinforced aromatic vinyl resin (II-1) is preferably 20 to 170%, more preferably 30 to 170%, still more preferably 40 to 150%. If this graft ratio is too low, the flexibility of the second resin layer may not be sufficient. On the other hand, if the graft ratio is too high, the viscosity of the second thermoplastic resin composition becomes high, and it may be difficult to reduce the thickness.
  • the rubber-reinforced aromatic vinyl resin (II-1) can be used alone or in combination of two or more.
  • a preferred aromatic vinyl resin was obtained by polymerizing a rubber-reinforced aromatic vinyl resin (II-1) and a vinyl monomer (b22) containing an aromatic vinyl compound ( Co) polymer (II-2).
  • the (co) polymer (II-2) may be either a homopolymer or a copolymer, or a combination thereof.
  • the vinyl monomer (b22) may be an aromatic vinyl compound alone or a combination of this aromatic vinyl compound and another monomer.
  • Other monomers include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, and epoxy group-containing unsaturated compounds. Compounds, oxazoline group-containing unsaturated compounds, and the like. These can be used alone or in combination of two or more.
  • the compound illustrated in the said vinyl monomer (b11) is applied to each said compound.
  • the vinyl monomer (b22) was the same as the vinyl monomer (b12) used for forming the (co) polymer (I-2) contained in the first thermoplastic resin composition. May be different or different.
  • the (co) polymer (II-2) is preferably a copolymer.
  • the vinyl monomer (b22) is preferably composed of an aromatic vinyl compound and another monomer. Other monomers are preferably vinyl cyanide compounds and maleimide compounds.
  • the total amount thereof is preferably 40 to 100 mass with respect to the entire vinyl monomer (b22). %, More preferably 50 to 100% by mass.
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 40 to 95% by mass and 5 to 60% by mass, still more preferably 50 to 90% by mass and 10 to 50% by mass, respectively.
  • (co) polymer (II-2) is a copolymer
  • preferred polymers are as follows. [2-4] Copolymer comprising structural unit (s) derived from aromatic vinyl compound and structural unit (t) derived from vinyl cyanide compound [2-5] Structure derived from aromatic vinyl compound A copolymer comprising a unit (s), a structural unit (t) derived from a vinyl cyanide compound, and a structural unit (u) derived from a maleimide compound
  • the method for producing the (co) polymer (II-2) is the same as the method for producing the (co) polymer (I-2).
  • the (co) polymer (II-2) can be used alone or in combination of two or more.
  • the aromatic vinyl resin is a (co) polymer (II-2)
  • the (co) polymer (II-2) described above can be used as it is.
  • the aromatic vinyl resin is made of rubber-reinforced aromatic vinyl resin (II-1), and the rubber-reinforced aromatic vinyl resin (II-1) and (co) polymer (II-2)
  • the intrinsic viscosity [ ⁇ ] methyl ethyl ketone
  • the second thermoplastic resin composition is excellent in molding processability and the thickness accuracy of the second resin layer.
  • the aromatic vinyl resin preferably includes a structural unit (u) derived from a maleimide compound.
  • This structural unit (u) may be derived from the rubber-reinforced aromatic vinyl resin (II-1) or may be derived from the (co) polymer (II-2). Moreover, you may originate in both.
  • the content of the structural unit (u) for making the second resin layer excellent in heat resistance is preferably 1 to 50% by mass, more preferably 5%, when the thermoplastic resin (II) is 100% by mass. It is ⁇ 45 mass%, more preferably 10 to 40 mass%.
  • the infrared transparent colorant contained in the second thermoplastic resin composition includes an infrared transparent colorant contained in the first thermoplastic resin composition when the first resin layer is an infrared transparent color resin layer; They may be the same or different.
  • perylene pigments represented by the general formulas (2) to (4) are preferable.
  • the content of the infrared transmitting colorant in the second thermoplastic resin composition is preferably 10 with respect to 100 parts by mass of the thermoplastic resin (II) from the viewpoints of infrared transmission and visible light absorption.
  • the amount is not more than part by mass, more preferably 0.01 to 6 parts by mass, still more preferably 0.05 to 5 parts by mass.
  • other colorants can be used in the second thermoplastic resin composition depending on the purpose, application, etc., unless the infrared ray transmittance is lowered.
  • other colorants include a cyan colorant (blue color material), a magenta colorant (red color material), a yellow colorant (yellow color material), and the like in the second resin layer. The same configuration as that of the first resin layer using these can be employed.
  • the content ratio is usually 50 parts by mass or less, preferably 0.01 to 45, relative to 100 parts by mass of the infrared transmitting colorant. Part by mass.
  • the second thermoplastic resin composition forming the second resin layer is preferably substantially free of a white colorant. However, when the white colorant is contained, the upper limit of the content is preferred. Is usually 3 parts by mass, preferably 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (II).
  • the second thermoplastic resin composition may contain an additive depending on the purpose and application.
  • This additive includes antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, fluorescent brighteners, weathering agents, fillers, antistatic agents, flame retardants, antifogging agents, antibacterial agents, antifungal agents, Antifouling agents, tackifiers, silane coupling agents and the like can be mentioned. Specific compounds in these additives and their blending amounts will be described later.
  • the thickness of the second resin layer is usually 10 to 990 ⁇ m, preferably 20 to 500 ⁇ m.
  • thermoplastic resin (III) contained in the third thermoplastic resin composition forming the third resin layer (white resin layer) is not particularly limited as long as it is a resin having thermoplasticity.
  • examples of the thermoplastic resin (III) constituting the third resin layer include aromatic vinyl resins, polyolefin resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyvinyl acetate resins, saturated polyester resins, polycarbonate resins, and acrylic resins. , Fluororesin, ethylene / vinyl acetate resin and the like. These can be used alone or in combination of two or more. Of these, aromatic vinyl resins are preferred from the viewpoints of hydrolysis resistance and dimensional stability.
  • the thermoplastic resin (III) may be the same as or different from the thermoplastic resin (I).
  • the thermoplastic resin (III) may be the same as or different from the thermoplastic resin (II).
  • the aromatic vinyl resin is a rubber-reinforced aromatic vinyl resin obtained by polymerizing an aromatic vinyl compound in the presence of a rubbery polymer as described above; a vinyl resin containing an aromatic vinyl compound. (Co) polymers and the like using monomers.
  • the aromatic vinyl resin is preferably a rubber-reinforced aromatic vinyl resin.
  • the thermoplastic resin (III) contains a rubber-reinforced aromatic vinyl resin, a third resin layer excellent in hydrolysis resistance, dimensional stability, and impact resistance can be formed.
  • the aromatic vinyl resin examples include a rubber-reinforced aromatic vinyl resin (III-) obtained by polymerizing a vinyl monomer (b31) containing an aromatic vinyl compound in the presence of the rubber polymer (a31). 1) a (co) polymer (III-2) of a vinyl monomer (b32) containing an aromatic vinyl compound, and a rubber-reinforced aromatic vinyl resin (III-1) and (co) polymer ( And a mixture of III-2).
  • the aromatic vinyl resin preferably contains at least one rubber-reinforced aromatic vinyl resin (III-1) as described above, and one or more kinds of rubber-reinforced aromatic vinyl resin (III-1). Or a combination of one or more of rubber-reinforced aromatic vinyl resins (III-1) and one or more of (co) polymer (III-2).
  • the content of the rubbery polymer (a31) in the aromatic vinyl resin is preferably 5 to 40% by mass with respect to 100% by mass of the thermoplastic resin (III) containing the aromatic vinyl resin. More preferably, it is 8 to 30% by mass, still more preferably 10 to 20% by mass, and particularly preferably 12 to 18% by mass.
  • the content exceeds 40% by mass, the heat resistance is not sufficient, and it may be difficult to form the third resin layer using the third thermoplastic resin composition.
  • the content is less than 5% by mass, flexibility may not be sufficient.
  • the rubbery polymer (a31) used for forming the rubber-reinforced aromatic vinyl resin (III-1) is a rubber-reinforced aromatic vinyl resin (I-) contained in the first thermoplastic resin composition.
  • the polymer illustrated as a rubbery polymer (a11) used for formation of 1) can be used.
  • the rubbery polymer (a31) is preferably an acrylic rubber, an ethylene / ⁇ -olefin rubber, a hydrogenated conjugated diene rubber, a silicone rubber, or a silicone / acrylic composite rubber from the viewpoint of weather resistance. From the viewpoint, a conjugated diene rubber is preferable.
  • the shape and volume average particle diameter of the rubber polymer (a31) can be the same as those described in the rubber polymer (a11).
  • the type, shape and volume average particle diameter of the rubber polymer (a31) may be the same as or different from the shape and volume average particle diameter of the rubber polymer (a11), respectively. Further, the type, shape and volume average particle diameter of the rubber polymer (a31) may be the same as or different from the shape and volume average particle diameter of the rubber polymer (a21), respectively. Good.
  • the vinyl monomer (b31) used for forming the rubber-reinforced aromatic vinyl resin (III-1) the rubber-reinforced aromatic vinyl resin (I) contained in the first thermoplastic resin composition is used.
  • the compounds exemplified as the vinyl monomer (b11) used for the formation of -1) can be used.
  • Preferred vinyl monomers (b31) are an aromatic vinyl compound and a vinyl cyanide compound.
  • the aromatic vinyl compound styrene and ⁇ -methylstyrene are preferable, and as the vinyl cyanide compound, acrylonitrile is preferable.
  • the vinyl monomer (b31) may be the same as or different from the vinyl monomer (b11).
  • the vinyl monomer (b31) may be the same as or different from the vinyl monomer (b21).
  • the total use amount of the aromatic vinyl compound and the vinyl cyanide compound is from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like.
  • the amount is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, based on the total amount of the vinyl monomer (b31).
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 50 to 95% by mass and 5 to 50% by mass, still more preferably 60 to 90% by mass and 10 to 40% by mass, respectively.
  • the vinyl monomer (b31) contains a maleimide compound
  • heat resistance can be imparted to the third resin layer.
  • the preferable content of the structural unit derived from the maleimide compound contained in the aromatic vinyl resin will be described later.
  • the rubber-reinforced aromatic vinyl resin (III-1) preferred resins are as follows. [3-1] A rubber-reinforced aromatic vinyl resin obtained by polymerizing a vinyl monomer (b31) comprising an aromatic vinyl compound and a vinyl cyanide compound in the presence of a rubbery polymer (a31). [3-2] A rubber-reinforced aroma obtained by polymerizing a vinyl monomer (b31) comprising an aromatic vinyl compound, a vinyl cyanide compound and a maleimide compound in the presence of the rubbery polymer (a31).
  • Group vinyl resin [3-3] obtained by polymerizing a vinyl monomer (b31) comprising an aromatic vinyl compound, a vinyl cyanide compound and a methacrylic ester compound in the presence of a rubbery polymer (a31). Rubber Reinforced Aromatic Vinyl Resin
  • the method for producing the rubber-reinforced aromatic vinyl resin (III-1) is the same as the method for producing the rubber-reinforced aromatic vinyl resin (I-1).
  • the graft ratio of the rubber-reinforced aromatic vinyl resin (III-1) is preferably 20 to 170%, more preferably 30 to 170%, still more preferably 40 to 150%. If this graft ratio is too low, the flexibility of the third resin layer may not be sufficient. On the other hand, if the graft ratio is too high, the viscosity of the third thermoplastic resin composition increases, and it may be difficult to reduce the thickness.
  • the rubber-reinforced aromatic vinyl resin (III-1) can be used alone or in combination of two or more.
  • a preferred aromatic vinyl resin was obtained by polymerizing a rubber-reinforced aromatic vinyl resin (III-1) and a vinyl monomer (b32) containing an aromatic vinyl compound ( Co) polymer (III-2).
  • the (co) polymer (III-2) may be either a homopolymer or a copolymer, or a combination thereof.
  • the vinyl monomer (b32) may be only an aromatic vinyl compound or a combination of this aromatic vinyl compound and another monomer.
  • Other monomers include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, and epoxy group-containing unsaturated compounds. Compounds, oxazoline group-containing unsaturated compounds, and the like. These can be used alone or in combination of two or more.
  • the compound illustrated in the said vinyl monomer (b11) is applied to each said compound.
  • the vinyl monomer (b32) was the same as the vinyl monomer (b12) used for forming the (co) polymer (I-2) contained in the first thermoplastic resin composition. May be different or different.
  • the vinyl monomer (b32) is the same as the vinyl monomer (b22) used for forming the (co) polymer (II-2) contained in the second thermoplastic resin composition. It may be different or
  • the (co) polymer (III-2) is preferably a copolymer.
  • the vinyl monomer (b32) is preferably composed of an aromatic vinyl compound and another monomer. Other monomers are preferably vinyl cyanide compounds and maleimide compounds.
  • the total amount thereof is preferably 40 to 100 mass with respect to the whole vinyl monomer (b32). %, More preferably 50 to 100% by mass.
  • the use ratio of the aromatic vinyl compound and the vinyl cyanide compound was 100% by mass in total from the viewpoint of molding processability, chemical resistance, hydrolysis resistance, dimensional stability, molding appearance, and the like. In this case, they are preferably 5 to 95% by mass and 5 to 95% by mass, more preferably 40 to 95% by mass and 5 to 60% by mass, still more preferably 50 to 90% by mass and 10 to 50% by mass, respectively.
  • (co) polymer (III-2) is a copolymer
  • preferred polymers are as follows. [3-4] Copolymer composed of structural unit (s) derived from aromatic vinyl compound and structural unit (t) derived from vinyl cyanide compound [3-5] Structure derived from aromatic vinyl compound Copolymer comprising unit (s), structural unit (t) derived from vinyl cyanide compound, and structural unit (u) derived from maleimide compound
  • the method for producing the (co) polymer (III-2) is the same as the method for producing the (co) polymer (I-2).
  • the (co) polymer (III-2) can be used alone or in combination of two or more.
  • the aromatic vinyl resin is the (co) polymer (III-2)
  • the (co) polymer (III-2) described above can be used as it is.
  • the aromatic vinyl resin (III) is composed of a rubber-reinforced aromatic vinyl resin (III-1), and the rubber-reinforced aromatic vinyl resin (III-1) and (co) polymer (III- 2)
  • the limit of components soluble in acetone of this aromatic vinyl resin (III) (but acetonitrile in the case where the rubber polymer is an acrylic rubber)
  • Viscosity [ ⁇ ] is preferably 0.1 to 2.5 dl / g, more preferably 0.2 to 1.5 dl / g, still more preferably 0.25 to 1.2 dl. / G.
  • the third thermoplastic resin composition is excellent in molding processability and the thickness accuracy of the third resin layer is also excellent.
  • the aromatic vinyl resin preferably includes a structural unit (u) derived from a maleimide compound.
  • This structural unit (u) may be derived from the rubber-reinforced aromatic vinyl resin (III-1) or may be derived from the (co) polymer (III-2). Moreover, you may originate in both.
  • the content of the structural unit (u) for making the third resin layer excellent in heat resistance is preferably 1 to 40% by mass, more preferably 3%, when the thermoplastic resin (III) is 100% by mass. Is 35% by mass, more preferably 5-30% by mass. When there is too much content of the said structural unit (u), the flexibility of the 3rd resin layer may fall.
  • Examples of the white colorant contained in the third thermoplastic resin composition include titanium oxide, zinc oxide, calcium carbonate, barium sulfate, calcium sulfate, alumina, silica, 2PbCO 3 .Pb (OH) 2 , [ZnS + BaSO 4 ], Talc, gypsum and the like. These may be used alone or in combination of two or more.
  • the content of the white colorant is such that, particularly when light having a wavelength of 800 to 1,400 nm is radiated on the surface of the first resin layer in the solar cell backsheet, From the viewpoint of light reflectivity, the amount is preferably 1 to 45 parts by mass, more preferably 3 to 40 parts by mass, and further preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin (III).
  • the flexibility of the solar cell backsheet of this invention may fall.
  • the third thermoplastic resin composition may contain other colorants (for example, a yellow colorant, a blue colorant, etc.) depending on the purpose and application.
  • the content thereof is usually 10 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (III).
  • the third thermoplastic resin composition may contain an additive depending on the purpose and application.
  • This additive includes antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, fluorescent brighteners, weathering agents, fillers, antistatic agents, flame retardants, antifogging agents, antibacterial agents, antifungal agents, Antifouling agents, tackifiers, silane coupling agents and the like can be mentioned. Specific compounds in these additives and their blending amounts will be described later.
  • the thickness of the third resin layer is usually 5 to 500 ⁇ m, preferably 8 to 400 ⁇ m.
  • thermoplastic resin (IV) contained in the fourth thermoplastic resin composition forming the fourth resin layer (back surface protective layer) is not particularly limited as long as it is a thermoplastic resin.
  • the thermoplastic resin (IV) is, for example, a saturated polyester resin such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate; a polyolefin resin such as polyethylene or polypropylene; a polyvinyl fluoride, an ethylene / tetrafluoroethylene copolymer, or the like.
  • Fluorine resin Polycarbonate resin; Polyamide resin; Polyarylate resin; Polyethersulfone resin; Polysulfone resin; Polyacrylonitrile; Cellulose resin such as cellulose acetate; Acrylic resin; Aromatic vinyl resin such as polystyrene and ABS resin .
  • saturated polyester resins such as polyethylene terephthalate and fluororesins are preferred.
  • the fourth thermoplastic resin composition may contain an additive depending on the purpose and application. These additives include colorants, antioxidants, UV absorbers, anti-aging agents, plasticizers, optical brighteners, weathering agents, fillers, antistatic agents, flame retardants, antifogging agents, antibacterial agents, Examples include fungicides, antifouling agents, tackifiers, and silane coupling agents. Specific compounds in these additives and their blending amounts will be described later.
  • the fourth resin layer may have a single layer structure or a multilayer structure. In the latter case, films or the like made of the same composition may be laminated, or films or the like made of different compositions may be laminated. Furthermore, the layer which consists of another substance or another composition may be formed in one side or both surfaces, such as a film which consists of said 4th thermoplastic resin composition.
  • the fourth resin layer is preferably a flame retardant resin layer, may be a layer derived from a fourth thermoplastic resin composition containing a flame retardant, an aromatic ring in the molecular skeleton, It may be a layer derived from a composition containing a hetero atom, and an organic / inorganic hybrid material is provided on one side or both sides of a film made of the fourth thermoplastic resin composition (with or without flame retardant).
  • a stacked layer may also be used.
  • the flame retardancy of the fourth resin layer it is preferable that the combustibility according to the UL94 standard is a class of VTM-2 or higher.
  • a commercially available product that is a flame-retardant resin film can also be used.
  • the thickness of the fourth resin layer is usually 10 to 500 ⁇ m, preferably 15 to 400 ⁇ m, more preferably 20 to 300 ⁇ m. If the fourth resin layer is too thin, the effect of protecting the solar cell backsheet may not be sufficient. On the other hand, if it is too thick, the flexibility as a sheet tends to be insufficient.
  • the first resin layer, the second resin layer, the third resin layer, and the fourth resin layer may be continuously laminated (see FIG. 1), the first resin layer, the second resin layer, or the second resin layer.
  • the resin layer and the third resin layer may be in a continuously laminated state, and the third resin layer and the fourth resin layer may have a structure joined via an adhesive layer (not shown).
  • the configuration of the adhesive layer can be a polyurethane resin composition or the like.
  • the configuration of the adhesive layer can be a polyurethane resin composition or the like.
  • the solar cell backsheet of the present invention may be provided with a water vapor barrier layer between the third resin layer and the fourth resin layer (see FIG. 2).
  • the water vapor barrier layer has a water vapor transmission rate (also referred to as “water vapor water vapor transmission rate”) measured under conditions of a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K7129, preferably 3 g / (m 2 ⁇ day) or less. More preferably, the layer has a performance of 1 g / (m 2 ⁇ day) or less, and further preferably 0.7 g / (m 2 ⁇ day) or less.
  • the water vapor barrier layer is preferably a layer made of an electrically insulating material.
  • the water vapor barrier layer may have a single layer structure or a multilayer structure made of one kind of material, or may have a multilayer structure made of two or more kinds of materials. In this invention, it is preferable that it is a vapor deposition film by which the film
  • the water vapor barrier layer forming material may be a three-layer film in which a film made of a metal and / or a metal oxide is disposed between an upper resin layer and a lower resin layer.
  • Examples of the metal include aluminum.
  • Examples of the metal oxide include oxides of elements such as silicon, aluminum, magnesium, calcium, potassium, tin, sodium, boron, titanium, lead, zirconium, and yttrium. Of these, silicon oxide, aluminum oxide, and the like are particularly preferable from the viewpoint of water vapor barrier properties.
  • the film made of the metal and / or metal oxide may be formed by a method such as plating, vacuum deposition, ion plating, sputtering, plasma CVD, or microwave CVD. Two or more of these methods may be combined.
  • the resin layer in the vapor deposition film examples include polyester films such as polyethylene terephthalate film and polyethylene naphthalate; polyolefin films such as polyethylene and polypropylene; polyvinylidene chloride film, polyvinyl chloride film, fluororesin film, polysulfone film, polystyrene film, polyamide Examples thereof include a film, a polycarbonate film, a polyacryl nitrilo film, and a polyimide film.
  • the thickness of this resin film is preferably 5 to 50 ⁇ m, more preferably 8 to 20 ⁇ m.
  • the water vapor barrier layer may be formed using a commercially available product.
  • a commercially available product For example, “Tech Barrier AX” manufactured by Mitsubishi Plastics, “GX Film” manufactured by Toppan Printing Co., Ltd., “Ecosia VE500” manufactured by Toyobo Co., Ltd. Can do.
  • the arrangement of the water vapor barrier layer facing the third resin layer is not particularly limited.
  • a vapor deposition film is used as the water vapor barrier layer forming material, a film made of a metal and / or metal oxide may be bonded to the third resin layer, or the vapor deposition film may be on the outside (surface side). Good.
  • the thickness of the water vapor barrier layer is preferably 5 to 300 ⁇ m, more preferably 8 to 250 ⁇ m, and still more preferably 10 to 200 ⁇ m. If the water vapor barrier layer is too thin, the water vapor barrier property may be insufficient. On the other hand, when too thick, the flexibility as the solar cell backsheet of the present invention may not be sufficient.
  • an adhesive layer can be provided between the third resin layer and / or the fourth resin layer and the water vapor barrier layer.
  • the configuration of the adhesive layer can be a polyurethane resin composition, an epoxy resin composition, an acrylic resin composition, or the like.
  • the thickness of the solar cell backsheet of the present invention is preferably 50 to 1,000 ⁇ m, more preferably 60 to 800 ⁇ m, and still more preferably 80 to 600 ⁇ m, regardless of the constitution of each layer.
  • other layers such as a layer which consists of a decorative layer, a coating layer, and the recycled resin produced at the time of manufacture, as desired Can also be laminated.
  • the L value (lightness) on the surface on the fourth resin layer side is preferably 60 or more, more preferably 65 or more, and still more preferably 70 or more.
  • the thickness ( HA ) of the first resin layer, the second resin layer, and the like there is a specific relationship between the thickness (H B ) and the thickness (H C ) of the third resin layer, which is shown below. 0.4 ⁇ (H A + H C ) / H B ⁇ 2.4 (1) 0.7 ⁇ H A / H C ⁇ 1.3 (2)
  • the solar cell backsheet of the present invention is excellent in shape stability, that is, it is easy to bend and warp on the side of the first resin layer bonded to the filler part, so that the solar cell element is embedded.
  • the sheet can be efficiently arranged according to the surface shape of the material part. If the third resin layer is omitted and the second resin layer is thickened, the balance of the layer structure is not sufficient, and the excellent effect of the present invention is hardly obtained.
  • the thickness of each of the first resin layer and the third resin layer is preferably 8 to 400 ⁇ m, more preferably 10 to 300 ⁇ m, and still more preferably 15 to 200 ⁇ m.
  • the thickness of the second resin layer is preferably 20 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, and still more preferably 50 to 300 ⁇ m.
  • the thermoplastic resins contained in the first resin layer, the second resin layer, and the third resin layer are all preferably a rubber-reinforced aromatic vinyl type obtained by using a rubbery polymer containing a silicone / acrylic composite rubber. It is resin containing resin.
  • the content of the infrared transmissible colorant contained in the first resin layer and (P 1), the mass ratio of the content of the infrared transmissible coloring agent contained in the second resin layer (P 2) P 2 / P 1 is preferably 0.1 to 10, more preferably 0.2 to 8, and still more preferably 0.3 to 6.
  • the thickness of the fourth resin layer is preferably 20 to 300 ⁇ m, more preferably 50 to 200 ⁇ m, and the total thickness of the sheet is preferably 80 to 800 ⁇ m, more preferably 100 to 700 ⁇ m, still more preferably 120 ⁇ 600 ⁇ m.
  • the thickness of each of the first resin layer and the third resin layer is preferably 8 to 400 ⁇ m, more preferably 10 to 300 ⁇ m, and still more preferably 15 to 200 ⁇ m.
  • the thickness of the second resin layer is preferably 20 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, and still more preferably 50 to 300 ⁇ m.
  • the first resin layer does not contain a colorant such as an infrared transmissive colorant.
  • the thickness of the fourth resin layer is preferably 20 to 300 ⁇ m, more preferably 50 to 200 ⁇ m, and the total thickness of the sheet is preferably 80 to 800 ⁇ m, more preferably 100 to 700 ⁇ m, still more preferably 120 ⁇ 600 ⁇ m.
  • the thickness of each of the first resin layer and the third resin layer is preferably 8 to 400 ⁇ m, more preferably 10 to 300 ⁇ m, and still more preferably 15 to 200 ⁇ m.
  • the thickness of the second resin layer is preferably 20 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, and still more preferably 50 to 300 ⁇ m.
  • the mass ratio P 2 / P 1 between the content (P 1 ) of the infrared transmitting colorant contained in the first resin layer and the content (P 2 ) of the infrared transmitting colorant contained in the second resin layer is Preferably, it is 0.1 to 10, more preferably 0.2 to 8, and still more preferably 0.3 to 6.
  • the thickness of the water vapor barrier layer is preferably 10 to 200 ⁇ m, more preferably 11 to 80 ⁇ m, and the thickness of the fourth resin layer is preferably 20 to 300 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the total thickness of the sheet is preferably 80 to 800 ⁇ m, more preferably 100 to 700 ⁇ m, and still more preferably 120 to 600 ⁇ m.
  • the thickness of each of the first resin layer and the third resin layer is preferably 8 to 400 ⁇ m, more preferably 10 to 300 ⁇ m, and still more preferably 15 to 200 ⁇ m.
  • the thickness of the second resin layer is preferably 20 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, and still more preferably 50 to 300 ⁇ m.
  • the thermoplastic resins contained in the first resin layer, the second resin layer, and the third resin layer are all preferably a rubber-reinforced aromatic vinyl type obtained by using a rubbery polymer containing a silicone / acrylic composite rubber. It is resin containing resin.
  • the first resin layer does not contain a colorant such as an infrared transparent colorant.
  • the thickness of the water vapor barrier layer is preferably 10 to 200 ⁇ m, more preferably 11 to 80 ⁇ m, and the thickness of the fourth resin layer is preferably 20 to 300 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the total thickness of the sheet is preferably 80 to 800 ⁇ m, more preferably 100 to 700 ⁇ m, and still more preferably 120 to 600 ⁇ m.
  • the absorption rate in the two resin layers is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • “Absorptivity with respect to light having a wavelength of 400 to 700 nm is 60% or more” means that the absorptance of light in the wavelength region from 400 nm to 700 nm is measured every 400 nm or from 700 nm to 20 nm, and each absorptivity is used. It means that the calculated average value is 60% or more, and it does not require that the light absorption rate in the wavelength range is 60% or more.
  • the reflectance with respect to this light is preferably 50% or more, more preferably 60% or more, and further Preferably it is 70% or more.
  • the reflectance with respect to light having a wavelength of 800 to 1,400 nm is 50% or more means that the reflectance of light in the wavelength region from 800 nm to 1,400 nm is 800 nm or every 1,400 nm to 20 nm. Means that the average value calculated using each reflectance is 50% or more, and does not require that all the reflectances of light in the above-mentioned wavelength region are 50% or more.
  • the solar cell backsheet of the present invention preferably, in the first resin layer and the second resin layer, 60% or more of light having a wavelength of 400 to 700 nm is absorbed, and a wavelength of 800 to Light of 1,400 nm is transmitted, and at least in the third resin layer, light having a wavelength of 800 to 1,400 nm transmitted through the first resin layer and the second resin layer is sufficiently reflected and used for photoelectric conversion. Can do.
  • the solar cell backsheet of the present invention is excellent in heat resistance, and the dimensional change rate when the solar cell backsheet is allowed to stand at 150 ° C. for 30 minutes is preferably ⁇ 1% or less.
  • the solar cell backsheet of the present invention is excellent in scratch resistance on the back surface, that is, the surface of the fourth resin layer.
  • steam barrier layer, and the 4th resin layer is excellent in the water vapor
  • the water vapor permeability of the solar cell backsheet is measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS K7129, it is preferably 3 g / (m 2 ⁇ day) or less, more preferably 1 g / (M 2 ⁇ day) or less. Since it has the above performance, deterioration of the solar cell element due to intrusion of water, water vapor, and the like, and further reduction in power generation efficiency can be suppressed, and a solar cell module excellent in durability can be provided.
  • thermoplastic resin composition the additives contained in the first thermoplastic resin composition, the second thermoplastic resin composition, the third thermoplastic resin composition, and the fourth thermoplastic resin composition will be described.
  • antioxidants examples include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds. These can be used alone or in combination of two or more. Content of the said antioxidant is 100 mass of each thermoplastic resin contained in the said 1st thermoplastic resin composition, a 2nd thermoplastic resin composition, a 3rd thermoplastic resin composition, and a 4th thermoplastic resin composition. The amount is preferably 0.05 to 10 parts by mass with respect to parts.
  • the ultraviolet absorber examples include benzophenone compounds, benzotriazole compounds, and triazine compounds. These can be used alone or in combination of two or more. Content of the said ultraviolet absorber is 100 mass parts of each thermoplastic resin contained in the 1st thermoplastic resin composition, the 2nd thermoplastic resin composition, the 3rd thermoplastic resin composition, and the 4th thermoplastic resin composition. The amount is preferably 0.05 to 10 parts by mass.
  • the anti-aging agent examples include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, thiols. Examples thereof include bisphenol compounds, hindered phenol compounds, phosphite compounds, imidazole compounds, nickel dithiocarbamate salts, phosphoric compounds, and the like. These can be used alone or in combination of two or more.
  • the content of the antioxidant is 100 parts by mass of each thermoplastic resin contained in the first thermoplastic resin composition, the second thermoplastic resin composition, the third thermoplastic resin composition, and the fourth thermoplastic resin composition. The amount is preferably 0.05 to 10 parts by mass.
  • plasticizer examples include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di- (2-ethylhexyl) phthalate, diisooctyl phthalate, and diisodecyl phthalate; dimethyl adipate , Diisobutyl adipate, di- (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyl decyl adipate, di- (2-ethylhexyl) azelate, diisooctyl azelate, diisobutyl azelate, dibutyl sebacate, di- Fatty acid esters such as (2-ethylhexyl) se,
  • Content of the said plasticizer is 100 mass parts of each thermoplastic resin contained in the 1st thermoplastic resin composition, the 2nd thermoplastic resin composition, the 3rd thermoplastic resin composition, and the 4th thermoplastic resin composition.
  • the amount is preferably 0.05 to 10 parts by mass.
  • the manufacturing method of the solar cell backsheet of the present invention is not particularly limited, and is selected according to the constituent material of each layer, that is, each thermoplastic resin.
  • each thermoplastic resin As the method for producing the sheets of the above embodiments [f1] and [f2], (1) a method for producing a laminated sheet by a coextrusion method using each thermoplastic resin composition, and (2) each thermoplastic resin composition Four types of resin sheets prepared using materials are heat-sealed or dry-laminated. (3) A laminate composed of the first resin layer, the second resin layer, and the third resin layer is prepared by a coextrusion method or the like.
  • a method of separately bonding a film that will constitute the prepared fourth resin layer to the surface of the third resin layer by heat fusion, dry lamination, or an adhesive may be used.
  • seat of the said aspect [f3] and [f4] (1) Coextrusion using the 1st thermoplastic resin composition, the 2nd thermoplastic resin composition, and the 3rd thermoplastic resin composition
  • a laminated sheet is prepared by a method or the like, and then the surface of the third resin layer in the laminated sheet and the water vapor barrier layer forming sheet (or film) are bonded by heat fusion, dry lamination, or an adhesive.
  • thermoplastic resin composition separately prepared on the surface of the water vapor barrier layer, A method of bonding by heat fusion or dry lamination or an adhesive; (3) heat fusion or dry lamination of a film that constitutes the fourth resin layer and a water vapor barrier layer forming sheet (or film); A water vapor barrier layer is formed by bonding with an adhesive, and then a first thermoplastic resin composition, a second thermoplastic resin composition, and a third thermoplastic resin composition prepared separately from the surface of the water vapor barrier layer. For example, a method of bonding the third resin layer in the laminated sheet using the above by heat fusion, dry lamination, or an adhesive.
  • the solar cell module of the present invention includes the above-described solar cell backsheet of the present invention.
  • a schematic diagram of the solar cell module of the present invention is shown in FIG.
  • the solar cell module 2 in FIG. 3 includes, from the sunlight receiving surface side (upper side in the drawing), the front surface side transparent protective member 21, the front surface side sealing film (front surface side filler portion) 23, the solar cell element 25, and the back surface side.
  • the sealing film (back surface side filler part) 27 and the solar cell backsheet 1 of the present invention may be arranged in this order.
  • the solar cell module of this invention can also be equipped with various members as needed other than the said component as needed as needed (not shown).
  • the transparent substrate which consists of glass, resin, etc. is used normally.
  • glass is excellent in transparency and weather resistance, since impact resistance is not sufficient and heavy, when using as a solar cell mounted on the roof of a house, it is preferable to use a weather resistant transparent resin.
  • the transparent resin include a fluorine-based resin.
  • the thickness of the surface side transparent protective member 21 is usually about 1 to 5 mm when glass is used, and is usually about 0.1 to 5 mm when transparent resin is used.
  • the solar cell element 25 has a power generation function by receiving sunlight.
  • a solar cell element if it has a function as a photovoltaic power, it will not be specifically limited, A well-known thing can be used.
  • a crystalline silicon solar cell element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element; an amorphous silicon solar cell element composed of a single bond type or a tandem structure type; gallium arsenide (GaAs) or indium phosphorus ( III-V compound semiconductor solar cell elements such as InP); II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • GaAs gallium arsenide
  • III-V compound semiconductor solar cell elements such as InP
  • II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • a crystalline silicon solar cell element is preferable, and a polycrystalline silicon solar cell element is particularly preferable.
  • a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can be used.
  • the solar cell element 25 usually includes a wiring electrode and a take-out electrode.
  • the wiring electrode has an action of collecting electrons generated in the plurality of solar cell elements by receiving sunlight, for example, a solar cell element on the surface side sealing film (surface side filler part) 21 side, It connects so that the solar cell element by the side of the back surface side sealing film (back surface side filler material part) 27 side may be connected.
  • the take-out electrode has an action of taking out electrons collected by the wiring electrode or the like as a current.
  • the front-side sealing film (front-side filler part) 21 and the back-side sealing film (back-side filler part) 27 are usually the same as each other.
  • the sealing film is usually about 100 ⁇ m to 4 mm, preferably about 200 ⁇ m to 3 mm, more preferably about 300 ⁇ m to 2 mm. If the thickness is too thin, the solar cell element 25 may be damaged. On the other hand, if the thickness is too thick, the manufacturing cost increases, which is not preferable.
  • the sealing film forming material is usually a resin composition or a rubber composition.
  • the resin include an olefin resin, an epoxy resin, a polyvinyl butyral resin, and the like.
  • the rubber include silicone rubber and hydrogenated conjugated diene rubber. Of these, olefin resins and hydrogenated conjugated diene rubbers are preferred.
  • olefin resins examples include olefins such as ethylene, propylene, butadiene, and isoprene, or polymers obtained by polymerizing diolefins, and ethylene and other monomers such as vinyl acetate and acrylate esters. Copolymers, ionomers and the like can be used. Specific examples include polyethylene, polypropylene, polymethylpentene, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid ester copolymer, ethylene / vinyl alcohol copolymer, chlorine. Examples thereof include chlorinated polyethylene and chlorinated polypropylene. Among these, an ethylene / vinyl acetate copolymer and an ethylene / (meth) acrylic acid ester copolymer are preferable, and an ethylene / vinyl acetate copolymer is particularly preferable.
  • hydrogenated conjugated diene rubber examples include hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer, and the like. It is done.
  • a hydrogenated conjugated diene block copolymer having the following structure, that is, a polymer block A containing an aromatic vinyl compound unit; a conjugated diene compound having a 1,2-vinyl bond content exceeding 25 mol%
  • Polymer block B obtained by hydrogenating at least 80 mol% of a double bond portion of a polymer containing units; Polymer double containing a conjugated diene compound unit having a 1,2-vinyl bond content of 25 mol% or less
  • Polymer block C obtained by hydrogenating 80 mol% or more of the bonded portion; and a polymer block C obtained by hydrogenating 80 mol% or more of the double bond portion of the copolymer containing the aromatic vinyl compound unit and the conjugated diene compound unit.
  • It is a block copolymer having at least two selected from the combined block D.
  • the sealing film-forming material may contain a crosslinking agent, a crosslinking aid, a silane coupling agent, an ultraviolet absorber, a hindered phenol-based or phosphite-based antioxidant, a hindered amine-based light stabilizer, a light as necessary. Additives such as diffusing agents, flame retardants, and anti-discoloring agents can be contained.
  • the material for forming the front surface side sealing film (front surface side filler portion) 23 and the material for forming the back surface side sealing film (back surface side filler portion) 27 are the same or different. However, the same is preferable from the viewpoint of adhesiveness.
  • the solar cell module of the present invention includes, for example, a surface-side transparent protective member, a surface-side sealing film, a solar cell element, a back-side sealing film, and the solar cell backsheet of the present invention, which are arranged in this order.
  • the lamination temperature in this lamination method is usually about 100 ° C. to 250 ° C. from the viewpoint of adhesion of the solar cell backsheet of the present invention.
  • the laminating time is usually about 3 to 30 minutes.
  • thermoplastic resin From the composition at the time of raw material preparation for producing the thermoplastic resin composition constituting each resin layer, the total ratio of all rubber components to the total amount of thermoplastic resin in each resin layer Calculated.
  • N-Phenylmaleimide unit content in thermoplastic resin It was calculated from the composition at the time of raw material preparation for producing a thermoplastic resin composition constituting each resin layer.
  • Glass transition temperature (Tg) Based on JIS K 7121, it was measured with a differential scanning calorimeter “DSC2910” (model name) manufactured by TA Instruments. In addition, when two or more types of thermoplastic resins were included in the thermoplastic resin composition and a plurality of Tg were obtained by the DSC curve, the higher Tg was adopted.
  • Reflectance (%) for light with a wavelength of 800 to 1,400 nm A solar cell backsheet (50 mm ⁇ 50 mm, thickness is listed in the table) was used as a measurement sample, and the reflectance was measured with an ultraviolet-visible near-infrared spectrophotometer “V-670” (model name) manufactured by JASCO Corporation. . That is, light was emitted to the surface of the first resin layer of the measurement sample, the reflectance in the wavelength range from 800 nm to 1,400 nm was measured every 20 nm, and the average value of these was calculated.
  • V-670 ultraviolet-visible near-infrared spectrophotometer
  • the solar cell backsheet (thickness is listed in the table) was cut to prepare a test piece having a size of 100 mm (MD) ⁇ 100 mm (TD). Next, after bending along the symmetry axis in the MD direction, bending was performed along the symmetry axis in the TD direction.
  • the folded test piece was reciprocated twice on each crease at a speed of 5 mm / sec using a manual crimping roll (2,000 g) according to JIS Z0237. Thereafter, the folds were widened to return to the original state, and the test piece was visually observed and judged according to the following criteria. Those in which the folds are not broken are excellent in flexibility.
  • Breaking stress retention rate (%) (breaking stress after treatment for 300 hours at a temperature of 105 ° C. and humidity of 100% RH (N / 15 mm)) ⁇ (breaking stress in the initial stage (before treatment (N / 15 mm))) ⁇ 100 ⁇ : Retention rate exceeded 80% ⁇ : Retention rate was 50% to 80% ⁇ : Retention rate was less than 50%
  • Photoelectric conversion efficiency improvement rate In a room adjusted to a temperature of 25 ° C. ⁇ 2 ° C. and a humidity of 50 ⁇ 5% RH, a cell is previously prepared using Peccell Technologies' Solar Simulator “PEC-11” (model name). A glass cell with a thickness of 3 mm is placed on the surface of a 1/4 polycrystalline silicon cell whose photoelectric conversion efficiency has been measured, and a back sheet for solar cell is placed on the back side. EVA was introduced between the sheets, the silicon cell was sealed, and a solar cell module was produced. Then, in order to reduce the influence of temperature, the photoelectric conversion efficiency was measured immediately after the light irradiation.
  • Photoelectric conversion efficiency improvement rate was calculated
  • Photoelectric conversion efficiency improvement rate (%) ⁇ (Photoelectric conversion efficiency of module ⁇ Photoelectric conversion efficiency of single cell) ⁇ (Photoelectric conversion efficiency of single cell) ⁇ ⁇ 100
  • Thermal storage Backsheet for solar cell 80 mm x 80 mm, thickness is listed in the table
  • the temperature of the measurement sample is adjusted to 25 ° C ⁇ 2 ° C and humidity is adjusted to 50 ⁇ 5% RH.
  • the surface of one resin layer was irradiated with an infrared lamp (output: 100 W) from a height of 200 mm.
  • the surface temperature after 60 minutes of irradiation was measured using a surface thermometer. The unit is ° C.
  • Step 1 Irradiation 0.53 kW / m 2 , 63 ° C., 50% RH, 4 hours
  • Step 2 Irradiation + rainfall 0.53 kW / m 2 , 63 ° C., 95% RH, 1 minute
  • Step 3 Dark 0 kW / m 2 , 30 ° C., 98% RH, 4 hours
  • Step 4 Irradiation + rainfall 0.53 kW / m 2 , 63 ° C., 95% RH, 1 minute
  • ⁇ E was calculated according to the following equation from Lab (L: brightness, a: redness, b: yellowness) data using a spectrophotometer “V670” (model name) manufactured by JASCO Corporation.
  • ⁇ E ⁇ ⁇ (L 1 ⁇ L 0 ) 2 + (a 1 ⁇ a 0 ) 2 + (b 1 ⁇ b 0 ) 2 ⁇
  • L 1 , a 1 and b 1 are values after exposure
  • L 0 , a 0 and b 0 are values before exposure.
  • the smaller the value of ⁇ E the smaller the change in color and the better the weather resistance.
  • the weather resistance was determined according to the following criteria. ⁇ : ⁇ E was 10 or less ⁇ : ⁇ E exceeded 10
  • Flame retardance Solar cell backsheet (20mm x 100mm, thickness is listed in the table) is used as a test piece, this test piece is suspended vertically, and a burner for UL 94 V test is used from the burner tip to the lower end of the test piece. With the distance of 10 mm until, the lower end of the test piece was indirectly flamed for 5 seconds. After the completion of flame contact, the combustion state of the flame contact portion of the test piece was visually observed and judged according to the following criteria. ⁇ : not ignited ⁇ : ignited
  • Silicone / acrylic composite rubber reinforced styrene resin Rubber reinforced resin A1 “Metablene SX-006” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. was used. This is a resin obtained by grafting an acrylonitrile / styrene copolymer onto a silicone / acrylic composite rubber. The content of the silicone / acrylic composite rubber is 50%, the graft ratio is 80%, the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30 ° C) 0.38 dl / g, glass transition temperature (Tg) 135 ° C).
  • Silicone rubber reinforced styrene resin (rubber reinforced resin A2) 1.3 parts of p-vinylphenylmethyldimethoxysilane and 98.7 parts of octamethylcyclotetrasiloxane are mixed, and this is put into 300 parts of distilled water in which 2.0 parts of dodecylbenzenesulfonic acid is dissolved, and 3 parts by a homogenizer. The mixture was stirred and dispersed for emulsification. This emulsified dispersion was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, and heated at 90 ° C. for 6 hours while stirring.
  • the condensation rate was 93%. Thereafter, the latex was neutralized to pH 7 using an aqueous sodium carbonate solution.
  • the obtained polyorganosiloxane rubber had a volume average particle size of 300 nm.
  • a glass flask equipped with a stirrer and having an internal volume of 7 liters was charged with 100 parts of ion exchange water, 1.5 parts of potassium oleate, 0.01 parts of potassium hydroxide, 0.1 part of tert-dodecyl mercaptan, A batch polymerization component consisting of latex prepared at pH 7 containing 15 parts of organosiloxane rubber, 15 parts of styrene and 5 parts of acrylonitrile was added, and the temperature was raised while stirring.
  • the activity comprises 0.1 part of sodium ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water.
  • Aqueous agent aqueous solution and 0.1 part of diisopropylbenzene hydroperoxide were added and polymerization was carried out for 1 hour.
  • Acrylic rubber reinforced aromatic vinyl resin (rubber reinforced resin A3)
  • the reactor contains an acrylic rubbery polymer (volume average particle size: 100 nm, gel content: 90%) obtained by emulsion polymerization of 99 parts of n-butyl acrylate and 1 part of allyl methacrylate. 50 parts of latex having a solid content concentration of 40% (in terms of solid content) was added, and further diluted with 1 part of sodium dodecylbenzenesulfonate and 150 parts of ion-exchanged water.
  • the monomer composition was added to the reactor at a constant flow rate over 5 hours, and polymerization was performed at 70 ° C. to obtain a latex.
  • Magnesium sulfate was added to this latex to coagulate the resin component.
  • acrylic rubber reinforced aromatic vinyl resin (rubber reinforced resin A3) was obtained by washing with water and drying.
  • the acrylic rubbery polymer content was 50%
  • the graft ratio was 93%
  • the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30 ° C.) was 0.30 dl / g
  • the glass transition temperature (Tg) was 108 ° C.
  • butadiene rubber reinforced aromatic vinyl resin (rubber reinforced resin A4)
  • ion exchange water 75 parts of ion exchange water, 0.5 part of potassium rosinate, 0.1 part of tert-dodecyl mercaptan, polybutadiene latex (volume average particle size: 270 nm, gel content: 90%) ) 32 parts (in terms of solid content), styrene / butadiene copolymer latex (styrene unit content: 25%, volume average particle size: 550 nm, gel content: 50%) 8 parts (in terms of solid content), 15 parts of styrene and acrylonitrile 5 parts was added, and the temperature was raised with stirring in a nitrogen stream.
  • rubber reinforced resin A4 75 parts of ion exchange water, 0.5 part of potassium rosinate, 0.1 part of tert-dodecyl mercaptan, polybutadiene latex (volume average particle size: 270 nm, gel content: 90%) )
  • Carbon black “Carbon black # 45” (trade name) manufactured by Mitsubishi Chemical Corporation was used.
  • Water vapor barrier layer forming film (R-1) A transparent vapor deposition film “Tech Barrier AX” (trade name) manufactured by Mitsubishi Plastics, Inc. was used. It is a transparent film having a silica vapor deposition film on one side of a PET film, and has a thickness of 12 ⁇ m and a water vapor transmission rate (JIS K7129) of 0.15 g / (m 2 ⁇ day). 2-12.
  • Water vapor barrier layer forming film (R-2) An inorganic binary vapor barrier film “Ecosia VE500” (trade name) manufactured by Toyobo Co., Ltd. was used.
  • Water vapor barrier layer forming film (R-3) A transparent vapor deposition film “Tech Barrier LX” (trade name) manufactured by Mitsubishi Plastics, Inc. was used. It is a transparent film having a silica vapor deposition film on one side of a PET film, and has a thickness of 12 ⁇ m and a water vapor permeability (JIS K7129) of 0.2 g / (m 2 ⁇ day).
  • Film for forming the fourth resin layer (back surface protective layer) (IV-1) A PET film “Melinex 238” (trade name) manufactured by Teijin DuPont was used. The thickness is 75 ⁇ m. 2-15. Film for forming the fourth resin layer (back surface protective layer) (IV-2) SKC PET film “SR55” (trade name) was used. The thickness is 75 ⁇ m. 2-16. Film for forming fourth resin layer (back surface protective layer) (IV-3) A PET film “Lumirror X10P” (trade name) manufactured by Toray Industries, Inc. was used. The thickness is 50 ⁇ m. 2-17. Film for forming the fourth resin layer (back surface protective layer) (IV-4) A PET film “Lumirror X10S” (trade name) manufactured by Toray Industries, Inc. was used. The thickness is 50 ⁇ m.
  • thermoplastic resin composition Production Example 1-1
  • the thermoplastic resin and the colorant were mixed by a Henschel mixer at the ratio shown in Table 1. Thereafter, the mixture was melt-kneaded at a barrel temperature of 270 ° C. using a twin-screw extruder “TEX44” (model name) manufactured by Nippon Steel, Ltd. to obtain a pellet-shaped first thermoplastic resin composition (I-1) (Table 1). 1).
  • thermoplastic resin composition Production Example 2-1 The thermoplastic resin and the colorant were mixed by a Henschel mixer at the ratio shown in Table 2. Thereafter, the mixture was melt-kneaded at a barrel temperature of 270 ° C. using a twin screw extruder “TEX44” (model name) manufactured by Nippon Steel, Ltd. to obtain a pellet-shaped first thermoplastic resin composition (II-1) (Table 1). 2).
  • Production Examples 2-2 to 2-8 The pellets of the first thermoplastic resin compositions (II-2) to (II-) are the same as in Production Example 2-1, except that the thermoplastic resin and the colorant are used in the proportions shown in Table 2. 8) was obtained (see Table 2).
  • thermoplastic resin composition Production Example 3-1 The thermoplastic resin and the colorant were mixed at a ratio shown in Table 3 using a Henschel mixer. Thereafter, the mixture was melt-kneaded at a barrel temperature of 270 ° C. using a twin-screw extruder “TEX44” (model name) manufactured by Nippon Steel, Ltd. to obtain a pellet-shaped first thermoplastic resin composition (III-1) (Table 1). 3).
  • Production Examples 3-2 to 3-6 The pellets of the first thermoplastic resin compositions (III-2) to (III-) were the same as in Production Example 3-1, except that the thermoplastic resin and the colorant were used in the proportions shown in Table 3. 6) was obtained (see Table 3).
  • Example 1 A multilayer film forming machine having a T-die having a die width of 1,400 mm and a lip interval of 1.5 mm and having three extruders with a screw diameter of 65 mm was used. In each extruder, the first thermoplastic resin composition (I- 1), the second thermoplastic resin composition (II-1) and the third thermoplastic resin composition (III-1) were supplied. And each resin composition fuse
  • the thicknesses of the first resin layer, the second resin layer, and the third resin layer are as shown in Table 4.
  • a film for forming a fourth resin layer (back surface protective layer) described in Table 4 was indicated by a polyurethane-based adhesive ("PU" in the table).
  • PU polyurethane-based adhesive
  • Examples 2 to 8 and Comparative Examples 1 to 10 Using the first thermoplastic resin composition, the second thermoplastic resin composition, the third thermoplastic resin composition, and the fourth resin layer (back surface protective layer) forming film shown in Tables 4 to 8, In the same manner as in Example 1, a solar cell backsheet was obtained. These solar cell backsheets were subjected to various evaluations, and the results are also shown in Tables 4 to 8.
  • Example 9 A multilayer film forming machine having a T-die having a die width of 1,400 mm and a lip interval of 1.5 mm and having three extruders with a screw diameter of 65 mm was used. In each extruder, the first thermoplastic resin composition (I- 1), the second thermoplastic resin composition (II-1) and the third thermoplastic resin composition (III-1) were supplied. And each resin composition fuse
  • the thicknesses of the first resin layer, the second resin layer, and the third resin layer are as shown in Table 9.
  • the water vapor barrier layer-forming film was adhered to the outer surface of the third resin layer in the laminated film using a polyurethane-based adhesive so that the deposited film became the outer surface. Furthermore, the 4th resin layer (back surface protective layer) formation film of Table 9 was adhere
  • Example 10 to 11 and Comparative Example 11 The first thermoplastic resin composition, the second thermoplastic resin composition, the third thermoplastic resin composition, the fourth resin layer (back surface protective layer) forming film, and the water vapor barrier layer forming shown in Table 9 Using the film, a back sheet for solar cell was obtained in the same manner as in Example 9. These solar battery backsheets were subjected to various evaluations, and the results are also shown in Table 9.
  • the solar cell backsheet comprising the first resin layer, the second resin layer, the third resin layer, and the fourth resin layer sequentially can improve the power generation efficiency of the solar cell, Excellent heat resistance, flexibility, dimensional stability and weather resistance, and excellent scratch resistance, punching resistance, chemical resistance and flame resistance. Therefore, it is suitable for outdoor use exposed to sunlight or wind and rain for a long period of time, and not only the solar cell module constituting the solar cell used for the roof of a house, but also a flexible solar cell module. Useful as a sheet.
  • the solar cell backsheet which comprises a 1st resin layer, a 2nd resin layer, a 3rd resin layer, a water vapor
  • a sheet Useful as a sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の太陽電池用バックシート(1)は、第1樹脂層(11)、第2樹脂層(12)、第3樹脂層(13)及び第4樹脂層(15)を、順次、備え、第1樹脂層(11)及び第2樹脂層(12)のうちの少なくとも第2樹脂層(12)が赤外線透過性着色樹脂層であり、第3樹脂層(13)が白色系樹脂層であり、第4樹脂層(15)が裏面保護層であり、第1樹脂層(11)の厚さH、第2樹脂層(12)の厚さH及び第3樹脂層(13)の厚さHが、0.4≦(H+H)/H≦2.4及び0.7≦H/H≦1.3を満足する。第3樹脂層(13)及び第4樹脂層(15)の間に、水蒸気バリア層(14)を備えることができる。

Description

太陽電池用バックシート及びそれを備える太陽電池モジュール
 本発明は、暗色系外観を有し、光線が照射された場合に可視光線は吸収するが赤外線は透過して蓄熱を防止する特性を有し、光電変換効率を改良することができ、そして、耐熱性、可撓性、耐候性及び耐傷性に優れた太陽電池用バックシート及びそれを備える太陽電池モジュールに関する。
 近年、地球温暖化の原因となる二酸化炭素を形成するエネルギー源である石油に代わって、太陽電池がエネルギー供給手段として、一層の注目を浴びている。太陽電池の需要も増しており、太陽電池に含まれる太陽電池モジュールを構成する各種部材の安定供給及び低コスト化が求められるようになってきた。また、太陽電池の発電効率の改良要求も高まってきた。
 太陽電池モジュールは、板状の太陽電池素子を多数配置するとともに、これらを、直列、並列に配線し、この素子を保護するためにパッケージして、ユニット化させたものである。そして、この太陽電池モジュールは、通常、太陽電池素子における、太陽光が当たる面をガラス板で覆い、例えば、透明性が高く耐湿性に優れるエチレン・酢酸ビニル共重合体等を含む組成物を用いて、太陽電池素子の間隙を充填して充填材部とし、裏面(充填材部の下面)を、太陽電池用バックシートといわれる部材で封止させた構造となっている。
 太陽電池用バックシートとしては、太陽光の反射率を高めて太陽電池の発電効率を高めるために、ポリエステルシートの両面に白色の熱可塑性樹脂シートを積層したものが知られている(特許文献1、2参照)。
 太陽電池を、家屋の屋根等に配置する場合には、外観性の観点から、黒色等の暗色系の色に着色されることが好まれており、そのために、暗色系の色に着色された太陽電池用バックシートが求められている。
 暗色系の色に着色された太陽電池用バックシートとしては、カーボンブラックを用いてなるシートが一般的である。この態様では、カーボンブラックが太陽光を吸収して温度が上昇し、太陽電池の発電効率が低下するだけでなく、耐久性が低下するおそれがあった。
 また、他の太陽電池用バックシートとしては、熱可塑性樹脂と、赤外線反射特性を有する無機顔料とを含む低蓄熱性熱可塑性樹脂組成物からなるシートが知られている(特許文献3参照)。
 更に、ペリレン系顔料を含有させた黒色樹脂層を表面に備え、波長800~1,100nmの光の反射率を30%以上として近赤外線を反射させることにより蓄熱を防止した太陽電池用バックシートが知られている(特許文献4参照)。
 また、太陽電池用バックシートを備える太陽電池モジュールにおいて、太陽電池用バックシート側から、水、水蒸気等が侵入すると、太陽電池素子の劣化、更には、発電効率の低下をまねく場合があった。
特開2006-270025号公報 特開2007-177136号公報 特開2007-103813号公報 特開2007-128943号公報
 本発明は、暗色系外観を有し、耐熱性(寸法安定性)及び可撓性のバランス並びに意匠性、耐候性及び耐傷性に優れ、赤外線を透過して蓄熱を抑制し、光電変換効率を改良することができる太陽電池用バックシート及びそれを備える太陽電池モジュールを提供することを目的とする。
 本発明は、以下に示される。
1.第1樹脂層、第2樹脂層、第3樹脂層及び第4樹脂層を、順次、備える太陽電池用バックシートにおいて、上記第1樹脂層及び上記第2樹脂層のうちの少なくとも該第2樹脂層が赤外線透過性着色樹脂層であり、第3樹脂層が白色系樹脂層であり、上記第4樹脂層が裏面保護層であり、且つ、上記第1樹脂層の厚さ(H)、上記第2樹脂層の厚さ(H)及び上記第3樹脂層の厚さ(H)が、下記式(1)及び(2)を満足することを特徴とする太陽電池用バックシート。
 0.4≦(H+H)/H≦2.4  (1)
 0.7≦H/H≦1.3       (2)
2.上記第1樹脂層が赤外線透過性着色樹脂層である上記1に記載の太陽電池用バックシート。
3.波長400~700nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射した場合、上記光に対する吸収率が60%以上である上記1又は2に記載の太陽電池用バックシート。
4.波長800~1,400nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射した場合、上記光に対する反射率が50%以上である上記1乃至3のいずれか一項に記載の太陽電池用バックシート。
5.150℃で30分間放置したときの寸法変化率が±1%以下である上記1乃至4のいずれか一項に記載の太陽電池用バックシート。
6.上記第1樹脂層を構成する熱可塑性樹脂、上記第2樹脂層を構成する熱可塑性樹脂及び上記第3樹脂層を構成する熱可塑性樹脂が、いずれも芳香族ビニル系樹脂を含む熱可塑性樹脂である上記1乃至5のいずれか一項に記載の太陽電池用バックシート。
7.上記第1樹脂層を構成する熱可塑性樹脂のガラス転移温度、及び、上記第3樹脂層を構成する熱可塑性樹脂のガラス転移温度が、いずれも上記第2樹脂層を構成する熱可塑性樹脂のガラス転移温度よりも低い上記1乃至6のいずれか一項に記載の太陽電池用バックシート。
8.上記第4樹脂層が、難燃性を有する樹脂層である上記1乃至7のいずれか一項に記載の太陽電池用バックシート。
9.上記第3樹脂層及び上記第4樹脂層の間に、水蒸気バリア層を備える上記1乃至8のいずれか一項に記載の太陽電池用バックシート。
10.上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる上記9に記載の太陽電池用バックシート。
11.上記太陽電池用バックシートの厚さが50~1,000μmである上記1乃至10のいずれか一項に記載の太陽電池用バックシート。
12.上記1乃至11のいずれか一項に記載の太陽電池用バックシートを備えることを特徴とする太陽電池モジュール。
 本発明の太陽電池用バックシートによれば、耐熱性(寸法安定性)及び可撓性のバランス並びに意匠性、耐候性及び耐傷性に優れる。そして、第2樹脂層が赤外線透過性着色樹脂層であるので、太陽電池の使用時に、赤外線による太陽電池用バックシートの蓄熱が抑制され、このシートをはじめとする構成部材の変形及び発電効率の低下を抑制することができる。また、上記第1樹脂層及び第2樹脂層がいずれも赤外線透過性着色樹脂層である場合には、赤外線が、第1樹脂層及び第2樹脂層を透過し、第3樹脂層によって反射されて、第2樹脂層及び第1樹脂層を透過し、太陽電池素子に供給されるので、光電変換効率を改良することができる。
 波長400~700nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射したときに、上記光に対する吸収率が60%以上である場合には、暗色系外観に優れた太陽電池モジュールを提供することができ、このシートを備える太陽電池モジュールを家屋の屋根等に配置した場合に、優れた外観性、意匠性等を得ることができる。
 波長800~1,400nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射したときに、上記光に対する反射率が50%以上である場合には、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用バックシートの方へ漏れたときに、太陽電池用バックシートにおける蓄熱が抑制される。そして、反射光を太陽電池素子に入射させることができ、発電効率を向上させることができる。
 本発明の太陽電池用バックシートを、150℃で30分間放置したときの寸法変化率が±1%以下である場合には、耐熱性に優れる。
 上記第1樹脂層を構成する熱可塑性樹脂、上記第2樹脂層を構成する熱可塑性樹脂及び上記第3樹脂層を構成する熱可塑性樹脂が、いずれも芳香族ビニル系樹脂を含む熱可塑性樹脂である場合には、耐加水分解性、寸法安定性、耐衝撃性等に優れる。
 上記第1樹脂層を構成する熱可塑性樹脂のガラス転移温度、及び、上記第3樹脂層を構成する熱可塑性樹脂のガラス転移温度が、いずれも上記第2樹脂層を構成する熱可塑性樹脂のガラス転移温度よりも低い場合には、折り曲げたときに割れ等が発生するのを抑制し、耐熱性及び可撓性のバランスを計ることができる。
 上記第4樹脂層が難燃性を有する樹脂層である場合には、裏面からの耐火性により優れた太陽電池用バックシートとすることができる。
 上記第3樹脂層及び上記第4樹脂層の間に、水蒸気バリア層を備える場合には、水蒸気バリア性に優れた太陽電池用バックシートとすることができる。
上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる場合には、耐熱性(寸法安定性)及び可撓性のバランスを低下させることなく、水蒸気バリア性に優れる。また、太陽電池素子の劣化を抑制することができる。
 上記太陽電池用バックシートの厚さが50~1,000μmである場合には、可撓性に優れる。
 本発明の太陽電池モジュールによれば、上記本発明の太陽電池用バックシートを備えることから、耐熱性、耐候性、意匠性、水蒸気バリア性及び耐傷性に優れ、光電変換効率が改良された太陽電池を形成することができる。この太陽電池は、太陽光や風雨に長期間曝される屋外での使用に好適である。
太陽電池用バックシートの一例を示す概略断面図である。 太陽電池用バックシートの他の例を示す概略断面図である。 本発明の太陽電池モジュールの一例を示す概略断面図である。
1及び1’:太陽電池用バックシート
11:第1樹脂層
12:第2樹脂層
13:第3樹脂層
14:水蒸気バリア層
15:第4樹脂層
2:太陽電池モジュール
21:表面側透明保護部材
23:表面側封止膜
25:太陽電池素子
27:裏面側封止膜
 以下、本発明を詳しく説明する。本明細書において、「(共)重合」とは、単独重合及び共重合を意味する。また、「(メタ)アクリル」とは、アクリル及びメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。
 本発明の太陽電池用バックシートは、第1樹脂層、第2樹脂層、第3樹脂層及び第4樹脂層を、順次、備えるシートであり、その概略断面は、図1に例示される。即ち、図1の太陽電池用バックシート1は、第1樹脂層11、第2樹脂層12、第3樹脂層13及び第4樹脂層15を、順次、備える積層型シートである。また、本発明の太陽電池用バックシートにおいて、上記第3樹脂層及び上記第4樹脂層の間に、水蒸気バリア層を備える場合の概略断面は、図2に例示される。即ち、図2の太陽電池用バックシート1’は、第1樹脂層11、第2樹脂層12、第3樹脂層13、水蒸気バリア層14及び第4樹脂層15を、順次、備える積層型シートである。
 本発明の太陽電池用バックシートは、第1樹脂層11の表面(上面側)を、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部の露出面に接着させるために用いられる。
 本発明において、第1樹脂層及び第2樹脂層のうちの少なくとも第2樹脂層が赤外線透過性着色樹脂層である。即ち、第1樹脂層及び第2樹脂層の両方が赤外線透過性着色樹脂層であってよいし、第2樹脂層のみが赤外線透過性着色樹脂層であってもよい。
 上記第1樹脂層は、太陽電池素子を包埋する充填材部に接合される、好ましくは、熱可塑性樹脂(以下、「熱可塑性樹脂(I)」という。)を含有する熱可塑性樹脂組成物(以下、「第1熱可塑性樹脂組成物」という。)を用いて得られた樹脂層である。そして、この第1樹脂層は、着色樹脂層であってよいし、非着色樹脂層であってもよい。着色樹脂層である場合には、赤外線透過性着色剤の色に着色されており、赤外線を透過すると共に可視光線を吸収する作用を有し、シートに可撓性を付与する赤外線透過性着色樹脂層であることが好ましい。
 上記第1樹脂層が赤外線透過性着色樹脂層である場合には、上記第1熱可塑性樹脂組成物が、熱可塑性樹脂(I)と、可視光線を吸収し、赤外線を透過させる性質を有する着色剤(以下、「赤外線透過性着色剤」ともいう。)とを含有する組成物であることが好ましい。
 上記第2樹脂層は、赤外線透過性着色樹脂層であり、好ましくは、熱可塑性樹脂(以下、「熱可塑性樹脂(II)」という。)と、可視光線を吸収し、赤外線を透過させる性質を有する着色剤(赤外線透過性着色剤)とを含有する熱可塑性樹脂組成物(以下、「第2熱可塑性樹脂組成物」という。)を用いて得られた層である。そして、この第2樹脂層は、赤外線透過性着色剤の色に着色されており、本発明の太陽電池用バックシートにおける基層であり、耐熱性を有する層である。更に、この第2樹脂層は、赤外線が第1樹脂層を透過した場合に、その赤外線を透過する作用を有すると共に、可視光線が第1樹脂層を透過した場合に、その可視光線を吸収する作用を有する層である。
 本発明の太陽電池用バックシートは、主として、第2樹脂層によって、暗色系外観を有するが、これは、第1樹脂層及び第2樹脂層の両層の混色によるものであってもよい。
 上記第3樹脂層は、白色系樹脂層であり、好ましくは、熱可塑性樹脂(以下、「熱可塑性樹脂(III)」という。)と、可視光線や赤外線を反射させる性質を有する着色剤(以下、「白色系着色剤」という。)とを含有する熱可塑性樹脂組成物(以下、「第3熱可塑性樹脂組成物」という。)を用いて得られた層である。そして、この第3樹脂層は、上記第2樹脂層を透過した赤外線を反射させる作用を有し、シートに可撓性を付与する層である。
 また、上記第4樹脂層は、裏面保護層であり、好ましくは、熱可塑性樹脂(以下、「熱可塑性樹脂(IV)」という。)を含有する熱可塑性樹脂組成物(以下、「第4熱可塑性樹脂組成物」という。)を用いて得られた層である。そして、この第4樹脂層は、本発明の太陽電池用バックシートを主として保護することで、裏面からの力による衝撃や熱、化学物質等による破損、劣化等を抑制し、太陽電池用バックシートを備える太陽電池モジュールに耐久性等を付与する層である。
 尚、上記第1熱可塑性樹脂組成物、上記第2熱可塑性樹脂組成物、上記第3熱可塑性樹脂組成物及び上記第4熱可塑性樹脂組成物は、好ましくは、フィルム形成性を有する組成物である。
 上記第1熱可塑性樹脂組成物に含有される熱可塑性樹脂(I)のガラス転移温度(以下、「Tg」という。)は、本発明の太陽電池用バックシートに可撓性を付与する観点から、好ましくは90℃~200℃、より好ましくは95℃~180℃、更に好ましくは100℃~170℃、特に好ましくは105℃~160℃である。
 上記第2熱可塑性樹脂組成物に含有される熱可塑性樹脂(II)のガラス転移温度(Tg)は、本発明の太陽電池用バックシートに耐熱性を付与する観点から、好ましくは110℃~220℃、より好ましくは120℃~200℃、更に好ましくは130℃~190℃である。
 また、上記第3熱可塑性樹脂組成物に含有される熱可塑性樹脂(III)のガラス転移温度(Tg)は、本発明の太陽電池用バックシートに可撓性を付与する観点から、好ましくは90℃~200℃、より好ましくは95℃~180℃、更に好ましくは100℃~170℃、特に好ましくは105℃~160℃である。
 上記Tgは、示差走査熱量計(DSC)により測定することができる。
 本発明の太陽電池用バックシートにおいて、優れた耐熱性及び可撓性を得るための好ましい態様は、以下の通りである。即ち、熱可塑性樹脂(I)のTg、及び、熱可塑性樹脂(III)のTgは、熱可塑性樹脂(II)のTgと同じであるか、あるいは、それより低いことである。シートに十分な可撓性を付与するためには、熱可塑性樹脂(I)のTg、及び、熱可塑性樹脂(III)のTgは、熱可塑性樹脂(II)のTgより低いことが好ましい。熱可塑性樹脂(I)のTg及び熱可塑性樹脂(II)のTgの差は、好ましくは10℃以上、より好ましくは15℃以上であり、熱可塑性樹脂(II)のTg及び熱可塑性樹脂(III)のTgの差は、好ましくは10℃以上、より好ましくは15℃以上である。
 各樹脂層に熱可塑性樹脂が2種以上含まれて、DSC曲線で複数のTgが得られた場合、より高い方のTgを採用するものとする。
 以下、各層を順に説明する。
 上記第1樹脂層を形成する第1熱可塑性樹脂組成物に含有される熱可塑性樹脂(I)は、熱可塑性を有する樹脂であれば、特に限定されない。上記第1樹脂層を構成する熱可塑性樹脂(I)としては、芳香族ビニル系樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂(例えば、(メタ)アクリル酸エステル化合物の(共)重合体等)、フッ素樹脂、エチレン・酢酸ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、上記のうち、耐加水分解性及び寸法安定性の観点から、芳香族ビニル系樹脂が好ましい。
 上記芳香族ビニル系樹脂は、ゴム質重合体の存在下に、芳香族ビニル化合物等を重合して得られたゴム強化芳香族ビニル系樹脂;アクリロニトリル・スチレン共重合体等の、芳香族ビニル化合物を含むビニル系単量体を用いてなる(共)重合体等である。本発明において、上記芳香族ビニル系樹脂は、好ましくは、ゴム強化芳香族ビニル系樹脂である。上記熱可塑性樹脂(I)がゴム強化芳香族ビニル系樹脂を含むことにより、耐加水分解性、寸法安定性及び耐衝撃性に優れた第1樹脂層を形成することができる。
 上記芳香族ビニル系樹脂としては、ゴム質重合体(a11)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b11)を重合させてなるゴム強化芳香族ビニル系樹脂(I-1)、芳香族ビニル化合物を含むビニル系単量体(b12)の(共)重合体(I-2)、並びに、ゴム強化芳香族ビニル系樹脂(I-1)及び(共)重合体(I-2)の混合物が挙げられる。
 上記ゴム強化芳香族ビニル系樹脂(I-1)には、通常、芳香族ビニル化合物を含むビニル系単量体(b11)がゴム質重合体(a11)にグラフト共重合した共重合樹脂と、ゴム質重合体(a11)にグラフトしていない未グラフト成分、即ち、残部のビニル系単量体(b11)による(共)重合体とが含まれる。
 上記芳香族ビニル系樹脂は、上記のように、ゴム強化芳香族ビニル系樹脂(I-1)を少なくとも1種含むことが好ましく、ゴム強化芳香族ビニル系樹脂(I-1)の1種以上、又は、ゴム強化芳香族ビニル系樹脂(I-1)の1種以上及び上記(共)重合体(I-2)の1種以上の組合せ、が特に好ましい。これらの場合、上記芳香族ビニル系樹脂におけるゴム質重合体(a11)の含有量は、芳香族ビニル系樹脂を含む熱可塑性樹脂(I)100質量%に対して、好ましくは5~40質量%、より好ましくは8~30質量%、更に好ましくは10~20質量%、特に好ましくは12~18質量%である。上記含有量が40質量%を超えると、耐熱性が十分でなく、第1熱可塑性樹脂組成物を用いた第1樹脂層の形成が困難となる場合がある。一方、上記含有量が5質量%未満となると、可撓性が十分でない場合がある。
 上記ゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるゴム質重合体(a11)は、室温でゴム質であれば、特に限定されず、単独重合体及び共重合体のいずれでもよい。また、このゴム質重合体(a11)は、架橋重合体及び非架橋重合体のいずれでもよい。
 上記ゴム質重合体(a11)としては、特に限定されないが、共役ジエン系ゴム、水添共役ジエン系ゴム、エチレン・α-オレフィン系共重合体ゴム、アクリル系ゴム、シリコーンゴム、シリコーン・アクリル複合ゴム等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記のうち、耐衝撃性の観点から、共役ジエン系ゴムが好ましく、耐候性の観点から、アクリル系ゴム、シリコーンゴム、シリコーン・アクリル複合ゴム、エチレン・α-オレフィン系共重合体ゴム及び水添共役ジエン系ゴムが好ましい。
 上記ゴム質重合体(a11)の形状は、特に限定されず、粒子状(球状、略球状)、直線状、曲線状等とすることができる。粒子状である場合、その体積平均粒子径は、好ましくは5~2,000nmであり、より好ましくは10~1,800nmであり、更に好ましくは50~1,500nmである。体積平均粒子径が上記の範囲にあれば、第1熱可塑性樹脂組成物の加工性及び得られる第1樹脂層の耐衝撃性等に優れる。尚、上記体積平均粒子径は、電子顕微鏡写真を用いた画像解析、レーザー回折法、光散乱法等により測定することができる。
 上記共役ジエン系ゴムとしては、ポリブタジエン、ブタジエン・スチレンランダム共重合体、ブタジエン・スチレンブロック共重合体、ブタジエン・アクリロニトリル共重合体等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 本発明においては、上記共役ジエン系ゴムは、可撓性、低温衝撃性等の観点から、そのガラス転移温度が-20℃以下であることが好ましい。
 上記アクリル系ゴムとしては、アルキル基の炭素数が2~8のアクリル酸アルキルエステルに由来する構造単位を、上記アクリル系ゴムを構成する構造単位の全量に対して80質量%以上含む(共)重合体が好ましい。
 アルキル基の炭素数が2~8のアクリル酸アルキルエステルとしては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル等が挙げられる。これらは単独で又は2つ以上を用いることができる。好ましいアクリル酸アルキルエステルは、アクリル酸n-ブチル、アクリル酸イソブチル及びアクリル酸2-エチルヘキシルである。
 上記アクリル系ゴムが、他の単量体に由来する構造単位を含む場合、他の単量体としては、塩化ビニル、塩化ビニリデン、アクリロニトリル、ビニルエステル、メタクリル酸アルキルエステル、(メタ)アクリル酸、スチレン等の単官能性単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のモノ又はポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート、ジアリルマレエート、ジアリルサクシネート、トリアリルトリアジン等のジ又はトリアリル化合物、アリル(メタ)アクリレート等のアリル化合物、1,3-ブタジエン等の共役ジエン系化合物等の架橋性単量体等が挙げられる。
 本発明においては、上記アクリル系ゴムは、可撓性、低温衝撃性等の観点から、そのガラス転移温度が-10℃以下であることが好ましい。上記ガラス転移温度を有するアクリル系ゴムは、通常、上記架橋性単量体に由来する構造単位を含む共重合体である。
 好ましいアクリル系ゴムを構成する、架橋性単量体に由来する構造単位の含有量は、構造単位の全量に対して、好ましくは0.01~10質量%、より好ましくは0.05~8質量%、更に好ましくは0.1~5質量%である。
 上記アクリル系ゴムの体積平均粒子径は、可撓性、低温衝撃性等の観点から、好ましくは5~500nm、より好ましくは10~450nm、更に好ましくは20~400nmである。
 上記アクリル系ゴムは、公知の方法で製造されるが、好ましい製造方法は、乳化重合法である。
 上記シリコーンゴムとしては、ゴム強化芳香族ビニル系樹脂(I-1)の製造に好適な方法である乳化重合を容易なものとするために、ラテックスに含まれるゴムであることが好ましい。従って、このシリコーンゴムは、例えば、米国特許第2,891,920号明細書、同第3,294,725号明細書等に記載された方法により製造されたポリオルガノシロキサン系ゴム等とすることができる。
 上記ポリオルガノシロキサン系ゴムは、例えば、ホモミキサー又は超音波混合機を使用し、アルキルベンゼンスルホン酸、アルキルスルホン酸等のスルホン酸系乳化剤の存在下に、オルガノシロキサンと水とを剪断混合し、その後、縮合する方法により得られたラテックスに含まれるシリコーンゴムであることが好ましい。アルキルベンゼンスルホン酸は、オルガノシロキサンの乳化剤として作用するとともに、重合開始剤としても作用するので好適である。この際、アルキルベンゼンスルホン酸金属塩、アルキルスルホン酸金属塩等を併用すると、ゴム強化芳香族ビニル系樹脂(I-1)を製造する際に、シリコーンゴムを安定に維持する効果があるので好ましい。尚、上記ポリオルガノシロキサン系ゴムの重合体末端は、例えば、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。また、必要により、本発明の目的の性能を損なわない範囲で、グラフト交叉剤及び/又は架橋剤を共縮合させてもよい。これらを用いることにより、耐衝撃性を改良することができる。
 上記反応に用いるオルガノシロキサンは、例えば、下記一般式(1)で表される構造単位を有する化合物である。
  〔R SiO(4-m)/2〕     (1)
(式中、Rは置換又は非置換の1価の炭化水素基であり、mは0~3の整数を示す。)
 上記一般式(1)で表される化合物の構造は、直鎖状、分岐状又は環状であるが、上記化合物は、好ましくは環状構造を有するオルガノシロキサンである。このオルガノシロキサンが有するR、即ち、1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基;及び、これら炭化水素基における炭素原子に結合した水素原子の一部がハロゲン原子、シアノ基等で置換された基;並びにアルキル基の水素原子の少なくとも1個がメルカプト基で置換された基等が挙げられる。
 上記オルガノシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等の環状化合物の他に、直鎖状又は分岐状のオルガノシロキサンを用いることができる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。
 尚、上記オルガノシロキサンは、予め縮合された、例えば、Mwが500~10,000程度のポリオルガノシロキサンであってもよい。また、オルガノシロキサンがポリオルガノシロキサンである場合、その分子鎖末端は、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。
 上記グラフト交叉剤は、通常、炭素-炭素不飽和結合とアルコキシシリル基とを有する化合物であり、例えば、p-ビニルフェニルメチルジメトキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン、3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシラン等が挙げられる。
 上記グラフト交叉剤の使用量は、オルガノシロキサン、グラフト交叉剤及び架橋剤の合計を100質量%とした場合、通常、10質量部以下、好ましくは0.2~10質量部、更に好ましくは0.5~5質量部である。上記グラフト交叉剤の使用量が多すぎると、グラフト共重合体の分子量が低下し、その結果、十分な耐衝撃性が得られない場合がある。また、グラフト化後のポリオルガノシロキサン系ゴムの二重結合より酸化劣化が進行し易く、耐候性の良好なゴム強化芳香族ビニル系樹脂が得られない場合がある。
 上記架橋剤としては、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、エチルトリエトキシシラン等の3官能性架橋剤、テトラエトキシシラン等の4官能性架橋剤等が挙げられる。尚、これらの化合物を予め縮重合させてなる架橋性プレポリマーを使用してもよい。これらは、単独で用いてよいし、2つ以上を組み合わせて用いることができる。
 上記架橋剤の使用量は、オルガノシロキサン、グラフト交叉剤及び架橋剤の合計を100質量%とした場合、通常、10質量部以下、好ましくは5質量部以下、更に好ましくは0.01~5質量部である。上記架橋剤の使用量が多すぎると、得られるポリオルガノシロキサン系ゴムの柔軟性が損なわれ、シートの可撓性が低下する場合がある。
 上記シリコーンゴムの体積平均粒子径は、通常、5~500nm、好ましくは10~400nm、更に好ましくは50~400nmである。この体積平均粒子径は、製造時に用いる乳化剤及び水の量、ホモミキサー又は超音波混合機を使用して混合したときの分散の程度又はオルガノシロキサンのチャージ方法によって、容易に制御することができる。体積平均粒子径が500nmを超えると、光沢が低下する等、外観性が劣る場合がある。
 上記シリコーン・アクリル複合ゴムは、ポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレート系ゴムを含有するゴム質重合体である。好ましいシリコーン・アクリル複合ゴムは、ポリオルガノシロキサンゴム及びポリアルキル(メタ)アクリレート系ゴムが分離できないように相互に絡み合った構造を有する複合ゴムである。
 上記ポリオルガノシロキサン系ゴムとしては、好ましくは、オルガノシロキサンを共重合したものを用いることができる。上記オルガノシロキサンとしては、3員環以上の各種の還元体が挙げられ、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等が好ましい。そして、これらのオルガノシロキサンは、単独であるいは2つ以上を組み合せて用いることができる。
 上記ポリオルガノシロキサン系ゴムを構成する、オルガノシロキサンに由来する構造単位の含有量は、構造単位の全量に対して、好ましくは50質量%以上、より好ましくは70質量%以上である。
 上記アクリル系ゴムとしては、好ましくは、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート、エトキシエトキシエチルアクリレート、メトキシトリプロピレングリコールアクリレート、4-ヒドロキシブチルアクリレート、ラウリルメタクリレート、ステアリルメタクリレート等の(メタ)アクリル酸アルキルエステル化合物を含む単量体を(共)重合して得られたゴムである。これらの(メタ)アクリル酸アルキルエステル化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 また、上記単量体は、(メタ)アクリル酸アルキルエステル化合物以外に、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;メタクリル酸変性シリコーン、フッ素含有ビニル化合物等の各種のビニル系単量体を30質量%以下の範囲で共重合成分として含んでいてもよい。
 上記アクリル系ゴムは、シートに十分な可撓性を付与することができることから、2つ以上のガラス転移温度を有する共重合体であることが好ましい。
 上記シリコーン・アクリル複合ゴムは、例えば、特開平4-239010号公報、特開平4-100812号公報等に記載された方法により製造されたものを用いることができる。
 上記シリコーン・アクリル複合ゴムの体積平均粒子径は、可撓性、低温衝撃性等の観点から、好ましくは5~500nm、より好ましくは10~450nm、更に好ましくは20~400nmである。
 上記エチレン・α-オレフィン系共重合体ゴムは、エチレン単位と、炭素数3以上のα-オレフィンからなる単位を含む共重合体であり、エチレン・α-オレフィン共重合体、エチレン・α-オレフィン・非共役ジエン共重合体等が挙げられる。
 上記エチレン・α-オレフィン共重合体としては、エチレン・プロピレン共重合体、エチレン・ブテン-1共重合体等が挙げられる。また、上記エチレン・α-オレフィン・非共役ジエン共重合体としては、エチレン・プロピレン・非共役ジエン共重合体、エチレン・ブテン-1・非共役ジエン共重合体等が挙げられる。
 上記α-オレフィンとしては、好ましくは、炭素数3~20のα-オレフィンであり、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-エイコセン等が挙げられる。上記α-オレフィンにおいて、より好ましい炭素数は3~12であり、更に好ましくは3~8である。
 上記エチレン・α-オレフィン系共重合体ゴムを構成する、エチレン単位及びα-オレフィン単位の割合は、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~90質量%及び10~50質量%、更に好ましくは60~88質量%及び12~40質量%、特に好ましくは70~85質量%及び15~30質量%である。上記α-オレフィン単位の含有割合が多すぎると、可撓性が低下する場合がある。
 上記エチレン・α-オレフィン系共重合体ゴムが、エチレン・α-オレフィン・非共役ジエン共重合体である場合、非共役ジエンとしては、5-エチリデン-2-ノルボルネン等のアルケニルノルボルネン;ジシクロペンタジエン等の環状ジエン;脂肪族ジエン等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記非共役ジエンに由来する構造単位の含有量は、上記エチレン・α-オレフィン・非共役ジエン共重合体を構成する構造単位の全量に対して、好ましくは1~30質量%、より好ましくは2~20質量%である。非共役ジエン単位の含有割合が多すぎると、成形外観性及び耐侯性が低下する場合がある。
 上記エチレン・α-オレフィン系共重合体ゴムにおける不飽和基量は、ヨウ素価に換算して4~40であることが好ましい。
 また、上記エチレン・α-オレフィン系共重合体ゴムのムーニー粘度(ML1+4、100℃;JIS K6300に準拠)は、好ましくは5~80、より好ましくは10~65、更に好ましくは15~45である。ムーニー粘度が上記範囲にあると、耐衝撃性及び可撓性に優れる。
 上記水添共役ジエン系ゴムは、共役ジエン系化合物に由来する構造単位を含む(共)重合体を水素添加してなる(共)重合体であれば、特に限定されない。
 上記水添共役ジエン系ゴムとしては、下記の構造を有する共役ジエンブロック共重合体の水素添加物が挙げられる。即ち、芳香族ビニル化合物に由来する構造単位からなる重合体ブロックA;1,2-ビニル結合含量が25モル%を超える共役ジエン系化合物に由来する構造単位からなる重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックB;1,2-ビニル結合含量が25モル%以下の共役ジエン系化合物に由来する構造単位からなる重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックC;並びに、芳香族ビニル化合物に由来する構造単位と共役ジエン系化合物に由来する構造単位とからなる共重合体の二重結合部分を95モル%以上水素添加してなる重合体ブロックDのうち、2種以上を組み合わせたものからなるブロック共重合体である。
 上記ブロック共重合体の分子構造は、分岐状、放射状又はこれらの組み合わせでもよい。また、ブロック構造は、ジブロック、トリブロックもしくはマルチブロック又はこれらの組み合わせでもよい。
 上記ブロック共重合体の構造としては、A-(B-A)n、(A-B)n、A-(B-C)n、C-(B-C)n、(B-C)n、A-(D-A)n、(A-D)n、A-(D-C)n、C-(D-C)n、(D-C)n、A-(B-C-D)n、(A-B-C-D)n〔但し、nは1以上の整数である。〕等が挙げられ、好ましくは、A-B-A、A-B-A-B、A-B-C、A-D-C、C-B-Cである。
 上記ブロック共重合体を構成する重合体ブロックA及びDの形成に用いられる芳香族ビニル化合物としては、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、メチルスチレン、ビニルキシレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、フルオロスチレン、p-tert-ブチルスチレン、エチルスチレン、ビニルナフタレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、スチレンが好ましい。
 上記ブロック共重合体を構成する重合体ブロックAの含有割合は、重合体の全体に対して、好ましくは0~65質量%、より好ましくは10~40質量%である。重合体ブロックAの含有量が多すぎると、耐衝撃性が十分でない場合がある。
 上記重合体ブロックB、C及びDは、共役ジエン系化合物及び芳香族ビニル化合物を用いて得られた水素添加前ブロック共重合体を水素添加することにより形成される。上記重合体ブロックB、C及びDの形成に用いられる共役ジエン系化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、クロロプレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、工業的に利用でき、物性に優れることから、1,3-ブタジエン及びイソプレンが好ましい。
 上記重合体ブロックB、C及びDの水素添加率は、いずれも95モル%以上であり、好ましくは96モル%以上である。
 上記重合体ブロックBにおける1,2-ビニル結合含量は、好ましくは25モル%を超え90モル%以下、より好ましくは30~80モル%である。この1,2-ビニル結合含量が25モル%以下であると、ゴム的性質が失われ、耐衝撃性が十分でない場合がある。一方、90モル%を超えると、耐薬品性が十分でない場合がある。
 また、上記重合体ブロックCにおける1,2-ビニル結合含量は、好ましくは25%モル以下、より好ましくは20モル%以下である。
 上記重合体ブロックDにおける1,2-ビニル結合含量は、好ましくは25~90モル%、より好ましくは30~80モル%である。この1,2-ビニル結合含量が25モル%未満であると、ゴム的性質が失われ、耐衝撃性が十分でない場合がある。一方、90モル%を超えると、耐薬品性が十分でない場合がある。
 また、上記重合体ブロックDにおける芳香族ビニル化合物単位量は、好ましくは25質量%以下、より好ましくは20質量%以下である。この芳香族ビニル化合物単位量が25質量%を超えると、ゴム的性質が失われ耐衝撃性が十分でない場合がある。
 上記水添共役ジエン系ゴムとしては、水添ポリブタジエン、水添スチレン・ブタジエンゴム、スチレン・エチレンブチレン・オレフィン結晶ブロックポリマー、オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー、スチレン・エチレンブチレン・スチレンブロックポリマー、ブタジエン・アクリロニトリル共重合体の水素添加物等が挙げられる。
 上記水添共役ジエン系ゴムの重量平均分子量(Mw)は、好ましくは1万~100万、より好ましくは3万~80万、更に好ましくは5万~50万である。Mwが上記範囲にあると、可撓性に優れる。
 次に、上記ゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるビニル系単量体(b11)は、芳香族ビニル化合物を含む。即ち、このビニル系単量体(b11)は、芳香族ビニル化合物のみからなるものであってよいし、芳香族ビニル化合物及びこの化合物と共重合可能な他の単量体からなるものであってもよい。他の単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記芳香族ビニル化合物は、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、スチレン及びα-メチルスチレンが好ましく、スチレンが特に好ましい。
 上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、アクリロニトリルが好ましい。
 上記(メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記マレイミド系化合物としては、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-ベンジルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらのうち、N-フェニルマレイミドが好ましい。また、これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。尚、上記ゴム強化芳香族ビニル系樹脂(I-1)に、マレイミド系化合物に由来する構造単位を導入する他の方法としては、例えば、無水マレイン酸の不飽和ジカルボン酸無水物を共重合し、その後イミド化する方法でもよい。
 上記不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記カルボキシル基含有不飽和化合物としては、(メタ)アクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記ヒドロキシル基含有不飽和化合物としては、(メタ)アクリル酸2-ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸2-ヒドロキシエチルにε-カプロラクトンを付加して得られた化合物等のヒドロキシル基を有する(メタ)アクリル酸エステル;o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、o-ヒドロキシ-α-メチルスチレン、m-ヒドロキシ-α-メチルスチレン、p-ヒドロキシ-α-メチルスチレン、2-ヒドロキシメチル-α-メチルスチレン、3-ヒドロキシメチル-α-メチルスチレン、4-ヒドロキシメチル-α-メチルスチレン、4-ヒドロキシメチル-1-ビニルナフタレン、7-ヒドロキシメチル-1-ビニルナフタレン、8-ヒドロキシメチル-1-ビニルナフタレン、4-ヒドロキシメチル-1-イソプロペニルナフタレン、7-ヒドロキシメチル-1-イソプロペニルナフタレン、8-ヒドロキシメチル-1-イソプロペニルナフタレン、p-ビニルベンジルアルコール、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記エポキシ基含有不飽和化合物としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸3,4-オキシシクロヘキシル、ビニルグリシジルエーテル、アリルグリシジルエーテル、メタリルグリシジルエーテル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記オキサゾリン基含有不飽和化合物としては、ビニルオキサゾリン等が挙げられる。
 本発明において、上記ビニル系単量体(b11)は、芳香族ビニル化合物及びシアン化ビニル化合物を含むことが好ましく、その合計使用量は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、ビニル系単量体(b11)全量に対し、好ましくは70~100質量%、より好ましくは80~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~95質量%及び5~50質量%、更に好ましくは60~95質量%及び5~40質量%である。
 また、上記ビニル系単量体(b11)がマレイミド系化合物を含むことにより、第1樹脂層に、耐熱性を付与することができる。上記芳香族ビニル系樹脂に含まれる、マレイミド系化合物に由来する構造単位の好ましい含有量は後述される。
 上記ゴム強化芳香族ビニル系樹脂(I-1)として、好ましい樹脂は、以下の通りである。
[1-1]ゴム質重合体(a11)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物からなるビニル系単量体(b11)を重合して得られたゴム強化芳香族ビニル系樹脂
[1-2]ゴム質重合体(a11)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びマレイミド系化合物からなるビニル系単量体(b11)を重合して得られたゴム強化芳香族ビニル系樹脂
[1-3]ゴム質重合体(a11)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びメタクリル酸エステル化合物からなるビニル系単量体(b11)を重合して得られたゴム強化芳香族ビニル系樹脂
 上記ゴム強化芳香族ビニル系樹脂(I-1)は、上記ゴム質重合体(a11)の存在下に、上記ビニル系単量体(b11)を重合することにより製造することができる。重合方法としては、乳化重合、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合法とすることができる。
 尚、上記ゴム強化芳香族ビニル系樹脂(I-1)の製造の際には、ゴム質重合体(a11)及び上記ビニル系単量体(b11)は、反応系において、上記ゴム質重合体(a11)全量の存在下に、上記ビニル系単量体(b11)を一括添加して重合を開始してよいし、分割して又は連続的に添加しながら重合を行ってもよい。また、上記ゴム質重合体(a11)の一部存在下、又は、非存在下に、上記ビニル系単量体(b11)を一括添加して重合を開始してよいし、分割して又は連続的に添加してもよい。このとき、上記ゴム質重合体(a11)の残部は、反応の途中で、一括して、分割して又は連続的に添加してもよい。
 乳化重合によりゴム強化芳香族ビニル系樹脂(I-1)を製造する場合には、重合開始剤、連鎖移動剤(分子量調節剤)、乳化剤、水等が用いられる。
 上記重合開始剤としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物と、含糖ピロリン酸処方、スルホキシレート処方等の還元剤とを組み合わせたレドックス系開始剤;過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキサイド(BPO)、ラウロイルパーオキサイド、tert-ブチルパーオキシラウレイト、tert-ブチルパーオキシモノカーボネート等の過酸化物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、上記重合開始剤の使用量は、上記ビニル系単量体(b11)全量に対し、通常、0.1~1.5質量%である。
 尚、上記重合開始剤は、反応系に一括して、又は、連続的に添加することができる。
 上記連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ヘキシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、tert-テトラデシルメルカプタン等のメルカプタン類;ターピノーレン類、α-メチルスチレンのダイマー等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記連鎖移動剤の使用量は、上記ビニル系単量体(b11)全量に対し、通常、0.05~2.0質量%である。
 尚、上記連鎖移動剤は、反応系に一括して、又は、連続的に添加することができる。
 上記乳化剤としては、アニオン系界面活性剤及びノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩;高級脂肪族カルボン酸塩、脂肪族リン酸塩等が挙げられる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、アルキルエーテル型化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記乳化剤の使用量は、上記ビニル系単量体(b11)全量に対し、通常、0.3~5.0質量%である。
 乳化重合は、ビニル系単量体(b11)、重合開始剤等の種類に応じ、公知の条件で行うことができる。この乳化重合により得られたラテックスは、通常、凝固剤により凝固させ、重合体成分を粉末状とし、その後、これを水洗、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸等の有機酸等が用いられる。
 尚、上記芳香族ビニル系樹脂に、ゴム強化芳香族ビニル系樹脂(I-1)を2種以上含有させる場合には、各ラテックスから樹脂を単離した後、混合してもよいが、他の方法として、各樹脂をそれぞれ含むラテックスの混合物を凝固する等の方法がある。
 溶液重合、塊状重合及び塊状-懸濁重合によるゴム強化芳香族ビニル系樹脂(I-1)の製造方法は、公知の方法を適用することができる。
 尚、上記ゴム強化芳香族ビニル系樹脂(I-1)としては、ブタジエンゴム強化芳香族ビニル系樹脂、アクリル系ゴム強化芳香族ビニル系樹脂、シリコーンゴム強化スチレン系樹脂、シリコーン・アクリル複合ゴム強化スチレン系樹脂等の構成を有する市販品を用いることができる。例えば、ゴム質重合体(a11)としてシリコーン・アクリル複合ゴムを用いてなるゴム強化芳香族ビニル系樹脂は、例えば、特開平4-239010号公報に記載された方法による市販品であり、三菱レイヨン社製「メタブレンSX-006」(商品名)等が挙げられる。
 上記ゴム強化芳香族ビニル系樹脂(I-1)のグラフト率は、好ましくは20~170%であり、より好ましくは30~170%、更に好ましくは40~150%である。このグラフト率が低すぎると、第1樹脂層の可撓性が十分でない場合がある。一方、グラフト率が高すぎると、第1熱可塑性樹脂組成物の粘度が高くなり、薄肉化が困難になる場合がある。
 上記グラフト率は、下記式により求めることができる。
  グラフト率(%)={(S-T)/T}×100
 上記式中、Sはゴム強化芳香族ビニル系樹脂(I-1)1グラムをアセトン(ゴム質重合体(a11)がアクリル系ゴムの場合、アセトニトリル)20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(g)であり、Tはゴム強化芳香族ビニル系樹脂(I-1)1グラムに含まれるゴム質重合体(a11)の質量(g)である。このゴム質重合体(a11)の質量は、重合処方及び重合転化率から算出する方法、赤外線吸収スペクトル(IR)により求める方法等により得ることができる。
 上記ゴム強化芳香族ビニル系樹脂(I-1)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記のように、上記芳香族ビニル系樹脂は、ゴム強化芳香族ビニル系樹脂(I-1)、及び、芳香族ビニル化合物を含むビニル系単量体(b12)を重合して得られた(共)重合体(I-2)の混合物であってもよい。この場合、上記(共)重合体(I-2)は、単独重合体及び共重合体のいずれでもよく、これらの組合せでもよい。
 上記ビニル系単量体(b12)は、芳香族ビニル化合物のみであってよいし、この芳香族ビニル化合物と、他の単量体との組合せであってもよい。他の単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記の各化合物は、上記ビニル系単量体(b11)において例示した化合物が適用される。
 上記(共)重合体(I-2)は、好ましくは共重合体である。本発明においては、上記ビニル系単量体(b12)は、芳香族ビニル化合物と、他の単量体とからなることが好ましい。他の単量体は、好ましくはシアン化ビニル化合物及びマレイミド系化合物である。
 上記ビニル系単量体(b12)が、芳香族ビニル化合物及びシアン化ビニル化合物を含む場合、これらの合計量は、上記ビニル系単量体(b12)全体に対して、好ましくは40~100質量%、より好ましくは50~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記(共)重合体(I-2)が共重合体である場合、好ましい重合体は以下の通りである。
[1-4]芳香族ビニル化合物に由来する構造単位(以下、「構造単位(s)」という。)と、シアン化ビニル化合物に由来する構造単位(以下、「構造単位(t)」という。)とからなる共重合体
[1-5]芳香族ビニル化合物に由来する構造単位(s)と、シアン化ビニル化合物に由来する構造単位(t)と、マレイミド系化合物に由来する構造単位(以下、「構造単位(u)」という。)とからなる共重合体
 上記(共)重合体(I-2)が、上記態様[1-4]の場合、構造単位(s)及び構造単位(t)の含有割合は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記態様[1-4]の共重合体としては、アクリロニトリル・スチレン共重合体、アクリロニトリル・α-メチルスチレン共重合体等が挙げられる。
 上記(共)重合体(I-2)が、上記態様[1-5]の場合、構造単位(s)、構造単位(t)及び構造単位(u)の含有割合は、成形加工性、耐熱性、耐薬品性、耐加水分解性、寸法安定性、可撓性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは20~90質量%、5~50質量%及び1~40質量%、より好ましくは25~85質量%、10~45質量%及び5~35質量%、更に好ましくは30~80質量%、10~40質量%及び10~30質量%である。
 上記態様[1-5]としては、アクリロニトリル・スチレン・N-フェニルマレイミド共重合体等が挙げられる。
 その他、上記(共)重合体(I-2)として、アクリロニトリル・スチレン・メタクリル酸メチル共重合体等を用いることができる。
 上記(共)重合体(I-2)は、重合開始剤の存在下又は非存在下に、芳香族ビニル化合物を含むビニル系単量体(b12)を重合することにより製造することができる。重合方法は、重合開始剤を用いる場合には、溶液重合、塊状重合、乳化重合、懸濁重合等が好適であり、これらの重合方法を組み合わせて用いてもよい。また、重合開始剤を用いない場合は、熱重合とすることができる。
 上記重合開始剤としては、上記ゴム強化芳香族ビニル系樹脂(I-1)の製造方法の説明にて例示した化合物を、1種単独であるいは2種以上を組み合わせて用いることができる。上記重合開始剤の使用量は、上記ビニル系単量体(b12)全量に対し、通常、0.1~1.5質量%である。
 尚、必要に応じて、上記ゴム強化芳香族ビニル系樹脂(I-1)の製造時に使用可能な連鎖移動剤、乳化剤等を用いることができる。
 上記(共)重合体(I-2)の製造の際には、ビニル系単量体(b12)の全量を反応系に収容した状態で重合を開始してよいし、任意に選択した単量体成分を分割添加又は連続添加して重合を行ってもよい。更に、上記重合開始剤を用いる場合には、反応系に一括して又は連続的に添加することができる。
 上記(共)重合体(I-2)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 尚、上記芳香族ビニル系樹脂が、(共)重合体(I-2)である場合、上記記載の(共)重合体(I-2)をそのまま用いることができる。
 上記芳香族ビニル系樹脂が、ゴム強化芳香族ビニル系樹脂(I-1)からなる場合、並びに、ゴム強化芳香族ビニル系樹脂(I-1)及び(共)重合体(I-2)の混合物からなる場合、のいずれにおいても、この芳香族ビニル系樹脂のアセトン(但し、ゴム質重合体がアクリル系ゴムである場合には、アセトニトリル)に可溶な成分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、好ましくは0.1~2.5dl/g、より好ましくは0.2~1.5dl/g、更に好ましくは0.25~1.2dl/gである。この極限粘度[η]が上記範囲内であると、上記第1熱可塑性樹脂組成物の成形加工性に優れ、第1樹脂層の肉厚精度にも優れる。
 ここで、極限粘度[η]は、以下の要領で求めることができる。
 上記芳香族ビニル系樹脂(ゴム強化芳香族ビニル系樹脂(I-1)を含む)におけるグラフト率を求める際に、遠心分離後に回収されたアセトン可溶分(ゴム質重合体がアクリル系ゴムの場合、アセトニトリル可溶分)をメチルエチルケトンに溶解させ、濃度の異なるものを5点調製し、ウベローデ粘度管を用いて、30℃で各濃度の還元粘度を測定し、極限粘度[η]が求められる。
 上記のグラフト率及び極限粘度[η]は、上記ゴム強化芳香族ビニル系樹脂(I-1)及び上記(共)重合体(I-2)を製造する際に用いる、重合開始剤、連鎖移動剤、乳化剤、溶剤等の種類や量、更には重合時間、重合温度等を調整することにより、容易に制御することができる。
 また、上記芳香族ビニル系樹脂の極限粘度[η]は、極限粘度[η]が互いに異なるゴム強化芳香族ビニル系樹脂(I-1)及び(共)重合体(I-2)を、適宜、選択することにより調整することもできる。
 上記第1樹脂層に十分な耐熱性を付与する場合には、上記芳香族ビニル系樹脂は、マレイミド系化合物に由来する構造単位(u)を含むことが好ましい。この構造単位(u)は、ゴム強化芳香族ビニル系樹脂(I-1)に由来するものであってよいし、(共)重合体(I-2)に由来するものであってもよい。また、両方に由来するものであってもよい。
 耐熱性に優れた第1樹脂層とするための構造単位(u)の含有量は、上記熱可塑性樹脂(I)を100質量%とした場合、好ましくは1~40質量%、より好ましくは3~35質量%、更に好ましくは5~30質量%である。構造単位(u)の含有量が上記範囲にあると、耐熱性及び可撓性のバランスに優れた太陽電池用バックシートとすることができる。特に、太陽電池モジュールを製造する場合には、太陽電池用バックシートを取扱う際の不具合がなく、表面側透明保護部材、表面側封止膜、太陽電池素子、裏面側封止膜及びバックシートを接合する際に、100℃以上の温度で加熱しても、変形の発生を伴うことなく、加圧圧着することができる。尚、上記熱可塑性樹脂(I)に含まれる構造単位(u)の含有量が多すぎると、第1樹脂層の可撓性が低下する場合がある。
 上記第1樹脂層は、上記のように、着色樹脂層であってよいし、非着色樹脂層であってもよい。この第1樹脂層は、波長700nm以上の光を透過する樹脂層であることが好ましい。上記第1樹脂層が着色樹脂層である場合、その色は、特に限定されない。また、上記第1樹脂層が非着色樹脂層である場合、この樹脂層は、通常、熱可塑性樹脂(I)に由来する色を呈している。
 本発明においては、上記第1樹脂層は、着色樹脂層であって、赤外線透過性着色樹脂層であることが好ましい。
 上記赤外線透過性着色樹脂層の形成に用いられる、第1熱可塑性樹脂組成物に含まれる赤外線透過性着色剤は、通常、白色以外の有色を呈しており、好ましくは黒色、褐色、濃青色、深緑色等の暗色系である。暗色系の赤外線透過性着色剤を用いることにより、第1樹脂層と、太陽電池素子を包埋する充填材部との接着性を損なうことなく、優れた暗色系外観を有する太陽電池モジュールを与えることができる。
 上記赤外線透過性着色剤としては、ペリレン系顔料等が挙げられる。このペリレン系顔料としては、下記一般式(2)~(4)で表される化合物等を用いることができる。
Figure JPOXMLDOC01-appb-C000001
〔式中、R及びRは、互いに同一又は異なって、ブチル基、フェニルエチル基、メトキシエチル基又は4-メトキシフェニルメチル基である。〕
Figure JPOXMLDOC01-appb-C000002
〔式中、R及びRは、互いに同一又は異なって、フェニレン基、3-メトキシフェニレン基、4-メトキシフェニレン基、4-エトキシフェニレン基、炭素数1~3のアルキルフェニレン基、ヒドロキシフェニレン基、4,6-ジメチルフェニレン基、3,5-ジメチルフェニレン基、3-クロロフェニレン基、4-クロロフェニレン基、5-クロロフェニレン基、3-ブロモフェニレン基、4-ブロモフェニレン基、5-ブロモフェニレン基、3-フルオロフェニレン基、4-フルオロフェニレン基、5-フルオロフェニレン基、ナフチレン基、ナフタレンジイル基、ピリジレン基、2,3-ピリジンジイル基、3,4-ピリジンジイル基、4-メチル-2,3-ピリジンジイル基、5-メチル-2,3-ピリジンジイル基、6-メチル-2,3-ピリジンジイル基、5-メチル-3,4-ピリジンジイル基、4-メトキシ-2,3-ピリジンジイル基又は4-クロロ-2,3-ピリジンジイル基である。〕
Figure JPOXMLDOC01-appb-C000003
〔式中、R及びRは、互いに同一又は異なって、フェニレン基、3-メトキシフェニレン基、4-メトキシフェニレン基、4-エトキシフェニレン基、炭素数1~3のアルキルフェニレン基、ヒドロキシフェニレン基、4,6-ジメチルフェニレン基、3,5-ジメチルフェニレン基、3-クロロフェニレン基、4-クロロフェニレン基、5-クロロフェニレン基、3-ブロモフェニレン基、4-ブロモフェニレン基、5-ブロモフェニレン基、3-フルオロフェニレン基、4-フルオロフェニレン基、5-フルオロフェニレン基、ナフチレン基、ナフタレンジイル基、ピリジレン基、2,3-ピリジンジイル基、3,4-ピリジンジイル基、4-メチル-2,3-ピリジンジイル基、5-メチル-2,3-ピリジンジイル基、6-メチル-2,3-ピリジンジイル基、5-メチル-3,4-ピリジンジイル基、4-メトキシ-2,3-ピリジンジイル基又は4-クロロ-2,3-ピリジンジイル基である。〕
 また、上記ペリレン系顔料としては、「Paliogen Black S 0084」、「Paliogen Black L 0086」、「Lumogen Black FK4280」、「Lumogen Black FK4281」(以上、いずれもBASF社製商品名)等の市販品を用いることができる。
 上記赤外線透過性着色剤は、単独であるいは2つ以上を組み合わせて用いることができる。
 上記第1熱可塑性樹脂組成物における赤外線透過性着色剤の含有割合は、赤外線の透過性及び可視光線の吸収性の観点から、上記熱可塑性樹脂(I)100質量部に対して、好ましくは10質量部以下、より好ましくは0.01~6質量部、更に好ましくは0.05~5質量部である。
 本発明の太陽電池用バックシートにおいて、上記第1樹脂層が赤外線透過性着色樹脂層である場合、第1樹脂層における赤外線の透過性を低下させるものでなければ、上記第1熱可塑性樹脂組成物は、目的、用途等に応じて、他の着色剤を用いることができる。
 他の着色剤としては、シアン系着色剤(青色系色材)、マゼンタ系着色剤(赤色系色材)、イエロー系着色剤(黄色系色材)等が挙げられる。
 例えば、赤外線透過性着色剤以外の他の着色剤として、黄色系顔料、青色系顔料等を用い、下記のような組合せにより、種々の外観を有する太陽電池モジュールとすることができる。
[1]黒色系赤外線透過性着色剤及び黄色系顔料の組合せによる褐色着色
[2]黒色系赤外線透過性着色剤及び青色系顔料の組合せによる濃青色着色
 他の着色剤を用いる場合、上記第1熱可塑性樹脂組成物における含有割合は、上記赤外線透過性着色剤100質量部に対して、通常、60質量部以下、好ましくは0.01~55質量部である。
 尚、上記赤外線透過性着色樹脂層を形成する第1熱可塑性樹脂組成物は、実質的に、白色系着色剤を含まないことが好ましいが、この白色系着色剤を含有させる場合、その含有量の上限は、上記熱可塑性樹脂(I)100質量部に対して、通常、3質量部、好ましくは1質量部である。
 上記第1樹脂層が赤外線透過性着色樹脂層である場合、その着色の程度は、第1樹脂層における赤外線透過性を充足する限り、特に限定されないが、太陽電池用バックシートにおける第1樹脂層側の表面のL値が、好ましくは、40以下であり、より好ましくは35以下であり、更に好ましくは30以下となる程度に着色されていればよい。
 尚、暗色系の着色剤としては、カーボンブラックが知られている。このカーボンブラックは、赤外線領域の波長の光を吸収するため、太陽光が、隣り合う太陽電池素子の隙間から、カーボンブラックを含む第1樹脂層へ漏れると、この第1樹脂層が蓄熱する。そして、蓄熱した第1樹脂層から、太陽電池素子を含む充填材部の温度を上昇させることがあり、発電効率を低下させる場合がある。本発明において、上記第1樹脂層が赤外線透過性着色樹脂層であることにより、発電効率の低下を著しく抑制することができる。
 上記第1樹脂層が非着色樹脂層である場合、その形成に用いる第1熱可塑性樹脂組成物は、着色剤を含まない組成物である。
 上記第1樹脂層が着色樹脂層である場合、及び、非着色樹脂層である場合、のいずれにおいても、上記第1熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその配合量は、後述する。
 上記添加剤を含有する第1熱可塑性樹脂組成物とするには、通常、溶融混練法が用いられる。溶融混練に用いる装置としては、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、連続ニーダー等が挙げられる。
 上記第1樹脂層の厚さは、通常、5~500μm、好ましくは8~400μmである。
 上記第2樹脂層(赤外線透過性着色樹脂層)を形成する第2熱可塑性樹脂組成物に含有される熱可塑性樹脂(II)は、熱可塑性を有する樹脂であれば、特に限定されない。上記第2樹脂層を構成する熱可塑性樹脂(II)としては、芳香族ビニル系樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、エチレン・酢酸ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせてアロイとして用いることができる。また、上記のうち、耐加水分解性及び寸法安定性の観点から、芳香族ビニル系樹脂が好ましい。
 上記熱可塑性樹脂(II)は、上記熱可塑性樹脂(I)と同一であってよいし、異なってもよい。
 上記芳香族ビニル系樹脂は、上記のように、ゴム質重合体の存在下に、芳香族ビニル化合物等を重合して得られたゴム強化芳香族ビニル系樹脂;芳香族ビニル化合物を含むビニル系単量体を用いてなる(共)重合体等である。本発明において、上記芳香族ビニル系樹脂は、好ましくは、ゴム強化芳香族ビニル系樹脂である。上記熱可塑性樹脂(II)がゴム強化芳香族ビニル系樹脂を含むことにより、耐加水分解性、寸法安定性及び耐衝撃性に優れた第2樹脂層を形成することができる。
 上記芳香族ビニル系樹脂としては、ゴム質重合体(a21)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b21)を重合させてなるゴム強化芳香族ビニル系樹脂(II-1)、芳香族ビニル化合物を含むビニル系単量体(b22)の(共)重合体(II-2)、並びに、ゴム強化芳香族ビニル系樹脂(II-1)及び(共)重合体(II-2)の混合物が挙げられる。
 上記芳香族ビニル系樹脂は、上記のように、ゴム強化芳香族ビニル系樹脂(II-1)を少なくとも1種含むことが好ましく、耐衝撃性及び可撓性の観点から、ゴム強化芳香族ビニル系樹脂(II-1)の1種以上及び上記(共)重合体(II-2)の1種以上の組合せ、が特に好ましい。この場合、上記芳香族ビニル系樹脂におけるゴム質重合体(a21)の含有量は、芳香族ビニル系樹脂を含む熱可塑性樹脂(II)100質量%に対して、好ましくは5~40質量%、より好ましくは8~30質量%、更に好ましくは10~20質量%、特に好ましくは12~18質量%である。上記含有量が40質量%を超えると、耐熱性が十分でなく、第2熱可塑性樹脂組成物を用いた第2樹脂層の形成が困難となる場合がある。一方、上記含有量が5質量%未満となると、可撓性が十分でない場合がある。
 上記ゴム強化芳香族ビニル系樹脂(II-1)の形成に用いられるゴム質重合体(a21)としては、上記第1熱可塑性樹脂組成物に含有されるゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるゴム質重合体(a11)として例示した重合体を用いることができる。このゴム質重合体(a21)は、耐候性の観点から、アクリル系ゴム、エチレン・α-オレフィン系ゴム、水添共役ジエン系ゴム、シリコーンゴム及びシリコーン・アクリル複合ゴムが好ましく、耐衝撃性の観点から、共役ジエン系ゴムが好ましい。
 上記ゴム質重合体(a21)の形状及び体積平均粒子径は、上記ゴム質重合体(a11)における記載と同様とすることができる。
 上記ゴム質重合体(a21)の種類、形状及び体積平均粒子径は、上記ゴム質重合体(a11)の形状及び体積平均粒子径と、それぞれ、同一であってよいし、異なってもよい。
 上記ゴム強化芳香族ビニル系樹脂(II-1)の形成に用いられるビニル系単量体(b21)としては、上記第1熱可塑性樹脂組成物に含有されるゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるビニル系単量体(b11)として例示した化合物を用いることができる。好ましいビニル系単量体(b21)は、芳香族ビニル化合物及びシアン化ビニル化合物であり、芳香族ビニル化合物としては、スチレン及びα-メチルスチレンが好ましく、シアン化ビニル化合物としては、アクリロニトリルが好ましい。
 上記ビニル系単量体(b21)は、上記ビニル系単量体(b11)と同一であってよいし、異なってもよい。
 上記ビニル系単量体(b21)において、芳香族ビニル化合物及びシアン化ビニル化合物の合計使用量は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、ビニル系単量体(b21)全量に対し、好ましくは70~100質量%、より好ましくは80~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~95質量%及び5~50質量%、更に好ましくは60~90質量%及び10~40質量%である。
 また、上記ビニル系単量体(b21)がマレイミド系化合物を含むことにより、第2樹脂層に、耐熱性を付与することができる。上記芳香族ビニル系樹脂に含まれる、マレイミド系化合物に由来する構造単位の好ましい含有量は後述される。
 上記ゴム強化芳香族ビニル系樹脂(II-1)として、好ましい樹脂は、以下の通りである。
[2-1]ゴム質重合体(a21)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物からなるビニル系単量体(b21)を重合して得られたゴム強化芳香族ビニル系樹脂
[2-2]ゴム質重合体(a21)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びマレイミド系化合物からなるビニル系単量体(b21)を重合して得られたゴム強化芳香族ビニル系樹脂
[2-3]ゴム質重合体(a21)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びメタクリル酸エステル化合物からなるビニル系単量体(b21)を重合して得られたゴム強化芳香族ビニル系樹脂
 上記ゴム強化芳香族ビニル系樹脂(II-1)の製造方法は、上記ゴム強化芳香族ビニル系樹脂(I-1)の製造方法と同様である。
 上記ゴム強化芳香族ビニル系樹脂(II-1)のグラフト率は、好ましくは20~170%であり、より好ましくは30~170%、更に好ましくは40~150%である。このグラフト率が低すぎると、第2樹脂層の可撓性が十分でない場合がある。一方、グラフト率が高すぎると、第2熱可塑性樹脂組成物の粘度が高くなり、薄肉化が困難になる場合がある。
 上記ゴム強化芳香族ビニル系樹脂(II-1)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記のように、好ましい芳香族ビニル系樹脂は、ゴム強化芳香族ビニル系樹脂(II-1)、及び、芳香族ビニル化合物を含むビニル系単量体(b22)を重合して得られた(共)重合体(II-2)の混合物である。この場合、上記(共)重合体(II-2)は、単独重合体及び共重合体のいずれでもよく、これらの組合せでもよい。
 上記ビニル系単量体(b22)は、芳香族ビニル化合物のみであってよいし、この芳香族ビニル化合物と、他の単量体との組合せであってもよい。他の単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記の各化合物は、上記ビニル系単量体(b11)において例示した化合物が適用される。
 上記ビニル系単量体(b22)は、上記第1熱可塑性樹脂組成物に含有される(共)重合体(I-2)の形成に用いられるビニル系単量体(b12)と同一であってよいし、異なってもよい。
 上記(共)重合体(II-2)は、好ましくは共重合体である。本発明においては、上記ビニル系単量体(b22)は、芳香族ビニル化合物と、他の単量体とからなることが好ましい。他の単量体は、好ましくはシアン化ビニル化合物及びマレイミド系化合物である。
 上記ビニル系単量体(b22)が、芳香族ビニル化合物及びシアン化ビニル化合物を含む場合、これらの合計量は、上記ビニル系単量体(b22)全体に対して、好ましくは40~100質量%、より好ましくは50~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記(共)重合体(II-2)が共重合体である場合、好ましい重合体は以下の通りである。
[2-4]芳香族ビニル化合物に由来する構造単位(s)と、シアン化ビニル化合物に由来する構造単位(t)とからなる共重合体
[2-5]芳香族ビニル化合物に由来する構造単位(s)と、シアン化ビニル化合物に由来する構造単位(t)と、マレイミド系化合物に由来する構造単位(u)とからなる共重合体
 上記(共)重合体(II-2)の製造方法は、上記(共)重合体(I-2)の製造方法と同様である。
 上記(共)重合体(II-2)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 尚、上記芳香族ビニル系樹脂が、(共)重合体(II-2)である場合、上記記載の(共)重合体(II-2)をそのまま用いることができる。
 上記芳香族ビニル系樹脂が、ゴム強化芳香族ビニル系樹脂(II-1)からなる場合、並びに、ゴム強化芳香族ビニル系樹脂(II-1)及び(共)重合体(II-2)の混合物からなる場合、のいずれにおいても、この芳香族ビニル系樹脂のアセトン(但し、ゴム質重合体がアクリル系ゴムである場合には、アセトニトリル)に可溶な成分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、好ましくは0.1~2.5dl/g、より好ましくは0.2~1.5dl/g、更に好ましくは0.25~1.2dl/gである。この極限粘度[η]が上記範囲内であると、上記第2熱可塑性樹脂組成物は成形加工性に優れ、第2樹脂層の肉厚精度にも優れる。
 上記第2樹脂層に十分な耐熱性を付与する場合には、上記芳香族ビニル系樹脂は、マレイミド系化合物に由来する構造単位(u)を含むことが好ましい。この構造単位(u)は、ゴム強化芳香族ビニル系樹脂(II-1)に由来するものであってよいし、(共)重合体(II-2)に由来するものであってもよい。また、両方に由来するものであってもよい。
 耐熱性に優れた第2樹脂層とするための構造単位(u)の含有量は、上記熱可塑性樹脂(II)を100質量%とした場合、好ましくは1~50質量%、より好ましくは5~45質量%、更に好ましくは10~40質量%である。構造単位(u)の含有量が上記範囲にあると、耐熱性及び可撓性のバランスに優れた太陽電池用バックシートとすることができる。特に、太陽電池モジュールを製造する場合には、太陽電池用バックシートを取扱う際の不具合がなく、表面側透明保護部材、表面側封止膜、太陽電池素子、裏面側封止膜及びバックシートを接合する際に、100℃以上の温度で加熱しても、変形の発生を伴うことなく、加圧圧着することができる。尚、上記熱可塑性樹脂(II)に含まれる上記構造単位(u)の含有量が多すぎると、第2樹脂層の可撓性が低下する場合がある。
 上記第2熱可塑性樹脂組成物に含まれる赤外線透過性着色剤は、上記第1樹脂層が赤外線透過性着色樹脂層である場合に第1熱可塑性樹脂組成物に含まれる赤外線透過性着色剤と同一であってよいし、異なってもよい。
 上記赤外線透過性着色剤としては、上記一般式(2)~(4)で表されるペリレン系顔料が好ましい。
 上記第2熱可塑性樹脂組成物における赤外線透過性着色剤の含有量は、赤外線の透過性及び可視光線の吸収性の観点から、上記熱可塑性樹脂(II)100質量部に対して、好ましくは10質量部以下、より好ましくは0.01~6質量部、更に好ましくは0.05~5質量部である。
 本発明の太陽電池用バックシートにおいて、赤外線の透過性を低下させるものでなければ、上記第2熱可塑性樹脂組成物は、目的、用途等に応じて、他の着色剤を用いることができる。
 他の着色剤としては、シアン系着色剤(青色系色材)、マゼンタ系着色剤(赤色系色材)、イエロー系着色剤(黄色系色材)等が挙げられ、第2樹脂層においても、これらを用いた第1樹脂層の態様と同様の構成とすることができる。
 上記第2熱可塑性樹脂組成物が他の着色剤を含有する場合、その含有割合は、上記赤外線透過性着色剤100質量部に対して、通常、50質量部以下、好ましくは0.01~45質量部である。
 尚、上記第2樹脂層を形成する第2熱可塑性樹脂組成物は、実質的に、白色系着色剤を含まないことが好ましいが、この白色系着色剤を含有させる場合、その含有量の上限は、上記熱可塑性樹脂(II)100質量部に対して、通常、3質量部、好ましくは1質量部である。
 上記第2熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその配合量は、後述する。
 上記第2樹脂層の厚さは、通常、10~990μm、好ましくは20~500μmである。
 上記第3樹脂層(白色系樹脂層)を形成する第3熱可塑性樹脂組成物に含有される熱可塑性樹脂(III)は、熱可塑性を有する樹脂であれば、特に限定されない。上記第3樹脂層を構成する熱可塑性樹脂(III)としては、芳香族ビニル系樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、エチレン・酢酸ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせてアロイとして用いることができる。また、上記のうち、耐加水分解性及び寸法安定性の観点から、芳香族ビニル系樹脂が好ましい。
 上記熱可塑性樹脂(III)は、上記熱可塑性樹脂(I)と同一であってよいし、異なってもよい。また、上記熱可塑性樹脂(III)は、上記熱可塑性樹脂(II)と同一であってよいし、異なってもよい。
 上記芳香族ビニル系樹脂は、上記のように、ゴム質重合体の存在下に、芳香族ビニル化合物等を重合して得られたゴム強化芳香族ビニル系樹脂;芳香族ビニル化合物を含むビニル系単量体を用いてなる(共)重合体等である。本発明において、上記芳香族ビニル系樹脂は、好ましくは、ゴム強化芳香族ビニル系樹脂である。上記熱可塑性樹脂(III)がゴム強化芳香族ビニル系樹脂を含むことにより、耐加水分解性、寸法安定性及び耐衝撃性に優れた第3樹脂層を形成することができる。
 上記芳香族ビニル系樹脂としては、ゴム質重合体(a31)の存在下に、芳香族ビニル化合物を含むビニル系単量体(b31)を重合させてなるゴム強化芳香族ビニル系樹脂(III-1)、芳香族ビニル化合物を含むビニル系単量体(b32)の(共)重合体(III-2)、並びに、ゴム強化芳香族ビニル系樹脂(III-1)及び(共)重合体(III-2)の混合物が挙げられる。
 上記芳香族ビニル系樹脂は、上記のように、ゴム強化芳香族ビニル系樹脂(III-1)を少なくとも1種含むことが好ましく、ゴム強化芳香族ビニル系樹脂(III-1)の1種以上、又は、ゴム強化芳香族ビニル系樹脂(III-1)の1種以上及び上記(共)重合体(III-2)の1種以上の組合せ、が特に好ましい。これらの場合、上記芳香族ビニル系樹脂におけるゴム質重合体(a31)の含有量は、芳香族ビニル系樹脂を含む熱可塑性樹脂(III)100質量%に対して、好ましくは5~40質量%、より好ましくは8~30質量%、更に好ましくは10~20質量%、特に好ましくは12~18質量%である。上記含有量が40質量%を超えると、耐熱性が十分でなく、第3熱可塑性樹脂組成物を用いた第3樹脂層の形成が困難となる場合がある。一方、上記含有量が5質量%未満となると、可撓性が十分でない場合がある。
 上記ゴム強化芳香族ビニル系樹脂(III-1)の形成に用いられるゴム質重合体(a31)としては、上記第1熱可塑性樹脂組成物に含有されるゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるゴム質重合体(a11)として例示した重合体を用いることができる。このゴム質重合体(a31)は、耐候性の観点から、アクリル系ゴム、エチレン・α-オレフィン系ゴム、水添共役ジエン系ゴム、シリコーンゴム及びシリコーン・アクリル複合ゴムが好ましく、耐衝撃性の観点から、共役ジエン系ゴムが好ましい。
 上記ゴム質重合体(a31)の形状及び体積平均粒子径は、上記ゴム質重合体(a11)における記載と同様とすることができる。
 上記ゴム質重合体(a31)の種類、形状及び体積平均粒子径は、上記ゴム質重合体(a11)の形状及び体積平均粒子径と、それぞれ、同一であってよいし、異なってもよい。また、上記ゴム質重合体(a31)の種類、形状及び体積平均粒子径は、上記ゴム質重合体(a21)の形状及び体積平均粒子径と、それぞれ、同一であってよいし、異なってもよい。
 上記ゴム強化芳香族ビニル系樹脂(III-1)の形成に用いられるビニル系単量体(b31)としては、上記第1熱可塑性樹脂組成物に含有されるゴム強化芳香族ビニル系樹脂(I-1)の形成に用いられるビニル系単量体(b11)として例示した化合物を用いることができる。好ましいビニル系単量体(b31)は、芳香族ビニル化合物及びシアン化ビニル化合物であり、芳香族ビニル化合物としては、スチレン及びα-メチルスチレンが好ましく、シアン化ビニル化合物としては、アクリロニトリルが好ましい。
 上記ビニル系単量体(b31)は、上記ビニル系単量体(b11)と同一であってよいし、異なってもよい。また、上記ビニル系単量体(b31)は、上記ビニル系単量体(b21)と同一であってよいし、異なってもよい。
 上記ビニル系単量体(b31)において、芳香族ビニル化合物及びシアン化ビニル化合物の合計使用量は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、ビニル系単量体(b31)全量に対し、好ましくは70~100質量%、より好ましくは80~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは50~95質量%及び5~50質量%、更に好ましくは60~90質量%及び10~40質量%である。
 また、上記ビニル系単量体(b31)がマレイミド系化合物を含むことにより、第3樹脂層に、耐熱性を付与することができる。上記芳香族ビニル系樹脂に含まれる、マレイミド系化合物に由来する構造単位の好ましい含有量は後述される。
 上記ゴム強化芳香族ビニル系樹脂(III-1)として、好ましい樹脂は、以下の通りである。
[3-1]ゴム質重合体(a31)の存在下に、芳香族ビニル化合物及びシアン化ビニル化合物からなるビニル系単量体(b31)を重合して得られたゴム強化芳香族ビニル系樹脂
[3-2]ゴム質重合体(a31)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びマレイミド系化合物からなるビニル系単量体(b31)を重合して得られたゴム強化芳香族ビニル系樹脂
[3-3]ゴム質重合体(a31)の存在下に、芳香族ビニル化合物、シアン化ビニル化合物及びメタクリル酸エステル化合物からなるビニル系単量体(b31)を重合して得られたゴム強化芳香族ビニル系樹脂
 上記ゴム強化芳香族ビニル系樹脂(III-1)の製造方法は、上記ゴム強化芳香族ビニル系樹脂(I-1)の製造方法と同様である。
 上記ゴム強化芳香族ビニル系樹脂(III-1)のグラフト率は、好ましくは20~170%であり、より好ましくは30~170%、更に好ましくは40~150%である。このグラフト率が低すぎると、第3樹脂層の可撓性が十分でない場合がある。一方、グラフト率が高すぎると、第3熱可塑性樹脂組成物の粘度が高くなり、薄肉化が困難になる場合がある。
 上記ゴム強化芳香族ビニル系樹脂(III-1)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記のように、好ましい芳香族ビニル系樹脂は、ゴム強化芳香族ビニル系樹脂(III-1)、及び、芳香族ビニル化合物を含むビニル系単量体(b32)を重合して得られた(共)重合体(III-2)の混合物である。この場合、上記(共)重合体(III-2)は、単独重合体及び共重合体のいずれでもよく、これらの組合せでもよい。
 上記ビニル系単量体(b32)は、芳香族ビニル化合物のみであってよいし、この芳香族ビニル化合物と、他の単量体との組合せであってもよい。他の単量体としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記の各化合物は、上記ビニル系単量体(b11)において例示した化合物が適用される。
 上記ビニル系単量体(b32)は、上記第1熱可塑性樹脂組成物に含有される(共)重合体(I-2)の形成に用いられるビニル系単量体(b12)と同一であってよいし、異なってもよい。また、上記ビニル系単量体(b32)は、上記第2熱可塑性樹脂組成物に含有される(共)重合体(II-2)の形成に用いられるビニル系単量体(b22)と同一であってよいし、異なってもよい。
 上記(共)重合体(III-2)は、好ましくは共重合体である。本発明においては、上記ビニル系単量体(b32)は、芳香族ビニル化合物と、他の単量体とからなることが好ましい。他の単量体は、好ましくはシアン化ビニル化合物及びマレイミド系化合物である。
 上記ビニル系単量体(b32)が、芳香族ビニル化合物及びシアン化ビニル化合物を含む場合、これらの合計量は、上記ビニル系単量体(b32)全体に対して、好ましくは40~100質量%、より好ましくは50~100質量%である。また、芳香族ビニル化合物及びシアン化ビニル化合物の使用比率は、成形加工性、耐薬品性、耐加水分解性、寸法安定性、成形外観性等の観点から、これらの合計を100質量%とした場合、それぞれ、好ましくは5~95質量%及び5~95質量%、より好ましくは40~95質量%及び5~60質量%、更に好ましくは50~90質量%及び10~50質量%である。
 上記(共)重合体(III-2)が共重合体である場合、好ましい重合体は以下の通りである。
[3-4]芳香族ビニル化合物に由来する構造単位(s)と、シアン化ビニル化合物に由来する構造単位(t)とからなる共重合体
[3-5]芳香族ビニル化合物に由来する構造単位(s)と、シアン化ビニル化合物に由来する構造単位(t)と、マレイミド系化合物に由来する構造単位(u)とからなる共重合体
 上記(共)重合体(III-2)の製造方法は、上記(共)重合体(I-2)の製造方法と同様である。
 上記(共)重合体(III-2)は、1種単独であるいは2種以上を組み合わせて用いることができる。
 尚、上記芳香族ビニル系樹脂が、(共)重合体(III-2)である場合、上記記載の(共)重合体(III-2)をそのまま用いることができる。
 上記芳香族ビニル系樹脂(III)が、ゴム強化芳香族ビニル系樹脂(III-1)からなる場合、並びに、ゴム強化芳香族ビニル系樹脂(III-1)及び(共)重合体(III-2)の混合物からなる場合、のいずれにおいても、この芳香族ビニル系樹脂(III)のアセトン(但し、ゴム質重合体がアクリル系ゴムである場合には、アセトニトリル)に可溶な成分の極限粘度[η](メチルエチルケトン中、30℃で測定)は、好ましくは0.1~2.5dl/g、より好ましくは0.2~1.5dl/g、更に好ましくは0.25~1.2dl/gである。この極限粘度[η]が上記範囲内であると、上記第3熱可塑性樹脂組成物の成形加工性に優れ、第3樹脂層の肉厚精度にも優れる。
 上記第3樹脂層に十分な耐熱性を付与する場合には、上記芳香族ビニル系樹脂は、マレイミド系化合物に由来する構造単位(u)を含むことが好ましい。この構造単位(u)は、ゴム強化芳香族ビニル系樹脂(III-1)に由来するものであってよいし、(共)重合体(III-2)に由来するものであってもよい。また、両方に由来するものであってもよい。
 耐熱性に優れた第3樹脂層とするための構造単位(u)の含有量は、上記熱可塑性樹脂(III)を100質量%とした場合、好ましくは1~40質量%、より好ましくは3~35質量%、更に好ましくは5~30質量%である。上記構造単位(u)の含有量が多すぎると、第3樹脂層の可撓性が低下する場合がある。
 上記第3熱可塑性樹脂組成物に含有される白色系着色剤としては、酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、シリカ、2PbCO・Pb(OH)、[ZnS+BaSO]、タルク、石膏等が挙げられる。これらは、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
 上記白色系着色剤の含有量は、特に、太陽電池用バックシートにおける第1樹脂層の表面に、波長800~1,400nmの光が放射された場合、上記第1樹脂層の表面における、この光に対する反射性の観点から、上記熱可塑性樹脂(III)100質量部に対して、好ましくは1~45質量部、より好ましくは3~40質量部、更に好ましくは5~30質量部である。この白色系着色剤の含有量が多すぎると、本発明の太陽電池用バックシートの可撓性が低下する場合がある。
 尚、太陽電池用バックシートにおける第1樹脂層の表面に、波長800~1,400nmの光が放射された場合、上記第1樹脂層の表面における、この光に対する反射率を大きく低下させるものでなければ、上記第3熱可塑性樹脂組成物は、目的、用途等に応じて、他の着色剤(例えば、黄色系着色剤、青色系着色剤等)を含んでもよい。他の着色剤を用いる場合、その含有量は、上記熱可塑性樹脂(III)100質量部に対して、通常、10質量部以下である。
 上記第3熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその配合量は、後述する。
 上記第3樹脂層の厚さは、通常、5~500μm、好ましくは8~400μmである。
 次に、上記第4樹脂層(裏面保護層)を形成する第4熱可塑性樹脂組成物に含有される熱可塑性樹脂(IV)は、熱可塑性を有する樹脂であれば、特に限定されない。そして、この熱可塑性樹脂(IV)は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等の飽和ポリエステル樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリビニルフルオライド、エチレン・テトラフルオロエチレン共重合体等のフッ素樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ポリアリレート樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリアクリロニトリル;セルロースアセテート等のセルロース樹脂;アクリル樹脂;ポリスチレン、ABS樹脂等の芳香族ビニル系樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、ポリエチレンテレフタレート等の飽和ポリエステル樹脂及びフッ素樹脂が好ましい。
 上記第4熱可塑性樹脂組成物は、目的、用途等に応じて、添加剤を含有したものとすることができる。この添加剤としては、着色剤、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤、シランカップリング剤等が挙げられる。これらの添加剤における具体的な化合物及びその配合量は、後述する。
 尚、上記第4樹脂層は、単層構造であってよいし、多層構造であってもよい。後者の場合、互いに同一の組成物からなるフィルム等が積層されてなるものであってよいし、互いに異なる組成物からなるフィルム等が積層されてなるものであってもよい。更には、上記第4熱可塑性樹脂組成物からなるフィルム等の一面側又は両面に、他の物質又は他の組成物からなる層が形成されてなるものであってもよい。
 上記第4樹脂層は、難燃性を有する樹脂層であることが好ましく、難燃剤を含有する第4熱可塑性樹脂組成物に由来する層であってよいし、分子骨格内に芳香環や、ヘテロ原子を含む組成物に由来する層であってよいし、上記第4熱可塑性樹脂組成物(難燃剤の有無を問わず)からなるフィルム等の一面側又は両面に、有機・無機ハイブリッド材料が積層された層であってもよい。
 上記第4樹脂層の難燃性は、UL94規格に準ずる燃焼性がVTM-2のクラスか又はそれ以上のクラスであることが好ましい。
 上記第4樹脂層の形成に際しては、難燃性を有する樹脂フィルムである市販品を用いることもできる。例えば、帝人デュポン社製「Melinex238」(商品名)、SKC社製「SR55」(商品名)、東レ社製「ルミラーS10」、「ルミラーH10」、「ルミラーX10P」、「ルミラーZV10」、「ルミラーX10S」、「ルミラーE20」(以上、商品名)等を用いることができる。
 上記第4樹脂層の厚さは、通常、10~500μm、好ましくは15~400μm、より好ましくは20~300μmである。上記第4樹脂層が薄すぎると、太陽電池用バックシートを保護する効果が十分でない場合がある。一方、厚すぎると、シートとしての柔軟性が不十分になりやすい。
 上記第1樹脂層、上記第2樹脂層、上記第3樹脂層及び上記第4樹脂層は、連続的な積層状態であってよいし(図1参照)、上記第1樹脂層、上記第2樹脂層及び上記第3樹脂層が連続的な積層状態であり且つ上記第3樹脂層及び上記第4樹脂層が接着層を介して接合されてなる構造を有してもよい(図示せず)。後者の場合、接着層の構成は、ポリウレタン樹脂組成物等とすることができる。
 更に、上記第1樹脂層及び上記第2樹脂層の間、上記第2樹脂層及び上記第3樹脂層の間には、各樹脂層を接合する接着層を有してもよい(図示せず)。この場合、接着層の構成は、ポリウレタン樹脂組成物等とすることができる。
 本発明の太陽電池用バックシートは、上記のように、上記第3樹脂層及び上記第4樹脂層の間に、水蒸気バリア層を備える態様とすることができる(図2参照)。
 上記水蒸気バリア層は、JIS K7129に準じて、温度40℃及び湿度90%RHの条件で測定した透湿度(「水蒸気透湿度」ともいう。)が、好ましくは3g/(m・day)以下、より好ましくは1g/(m・day)以下、更に好ましくは0.7g/(m・day)以下である性能を有する層である。
 上記水蒸気バリア層は、好ましくは、電気絶縁性を有する材料からなる層である。
 上記水蒸気バリア層は、1種の材料からなる単層構造又は多層構造であってよいし、2種以上の材料からなる多層構造であってもよい。本発明においては、その表面に金属及び/又は金属酸化物からなる膜が形成されてなる蒸着フィルムであることが好ましい。金属及び金属酸化物は、いずれも、単一物質であってよいし、2種以上であってもよい。
 上記水蒸気バリア層形成用材料は、金属及び/又は金属酸化物からなる膜が、上層側樹脂層と、下層側樹脂層の間に配された3層型フィルムであってもよい。
 上記金属としては、アルミニウム等が挙げられる。
 また、上記金属酸化物としては、ケイ素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、ホウ素、チタン、鉛、ジルコニウム、イットリウム等の元素の酸化物が挙げられる。これらのうち、水蒸気バリア性の観点から、酸化珪素、酸化アルミニウム等が特に好ましい。
 上記金属及び/又は金属酸化物からなる膜は、メッキ、真空蒸着、イオンプレーティング、スパッタリング、プラズマCVD、マイクロウェーブCVD等の方法により形成されたものとすることができる。これらのうちの2つ以上の方法を組み合わせてもよい。
 上記蒸着フィルムにおける樹脂層としては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート等のポリエステルフィルム;ポリエチレン、ポリプロピレン等のポリオレフィンフィルム;ポリ塩化ビニリデンフィルム、ポリ塩化ビニルフィルム、フッ素樹脂フィルム、ポリスルホンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリアクリルニトリロフィルム、ポリイミドフィルム等が挙げられる。この樹脂膜の厚さは、好ましくは5~50μm、より好ましくは8~20μmである。
 上記水蒸気バリア層は、市販品を用いて形成されたものとすることができる。例えば、三菱樹脂社製「テックバリアAX」、凸版印刷社製「GXフィルム」、東洋紡社製「エコシアールVE500」(以上、商品名)等を、水蒸気バリア層形成用シート(又はフィルム)として用いることができる。
 上記第3樹脂層に面する水蒸気バリア層の配置は、特に限定されない。水蒸気バリア層形成用材料として蒸着フィルムを用いた場合、金属及び/又は金属酸化物からなる膜が、第3樹脂層に接合されていてよいし、蒸着膜が外側(表面側)にあってもよい。
 上記水蒸気バリア層の厚さは、好ましくは5~300μm、より好ましくは8~250μm、更に好ましくは10~200μmである。上記水蒸気バリア層が薄すぎると、水蒸気バリア性が不十分になる場合がある。一方、厚すぎると、本発明の太陽電池用バックシートとしての柔軟性が十分でない場合がある。
 本発明の太陽電池用バックシートが、水蒸気バリア層を備える場合、上記第3樹脂層及び/又は上記第4樹脂層と、上記水蒸気バリア層との間に、接着層を備えることができる。接着層の構成は、ポリウレタン樹脂組成物、エポキシ樹脂組成物、アクリル系樹脂組成物等とすることができる。
 本発明の太陽電池用バックシートの厚さは、各層の構成に関わらず、好ましくは50~1,000μm、より好ましくは60~800μm、更に好ましくは80~600μmである。
 尚、本発明の太陽電池用バックシートにおける各層の間には、本発明の効果を損なわない範囲で、所望により、可飾層、塗布層、製造時に生じるリサイクル樹脂からなる層等の他の層を積層することもできる。
 本発明の太陽電池用バックシートにおいて、第4樹脂層側の表面におけるL値(明度)は、好ましくは60以上、より好ましくは65以上、更に好ましくは70以上である。
 本発明においては、本発明の太陽電池用バックシートの耐熱性及び可撓性のバランス、並びに、形状安定性の観点から、上記第1樹脂層の厚さ(H)、上記第2樹脂層の厚さ(H)及び上記第3樹脂層の厚さ(H)の間に特定の関係があり、以下に示される。
 0.4≦(H+H)/H≦2.4  (1)
 0.7≦H/H≦1.3       (2)
 上記式(1)を満たすことにより、本発明の太陽電池用バックシートにおける耐熱性及び可撓性のバランスに優れる。本発明において、(H+H)/H<0.4であると、可撓性が劣る。一方、(H+H)/H>2.4であると、耐熱性が劣る。尚、本発明において、上記式(1)は、
 0.5≦(H+H)/H≦2.2
であることが好ましい。
 また、上記式(2)を満たすことにより、本発明の太陽電池用バックシートにおける形状安定性に優れる。本発明において、H/H<0.7であると、熱が加わると、第4樹脂層側にカールする(第1樹脂層側が反る)傾向にある。一方、H/H>1.3であると、熱が加わると、第1樹脂層側にカールする(第4樹脂層側が反る)傾向にある。尚、本発明において、上記式(2)は、
 0.75≦H/H≦1.25
であることが好ましい。
 本発明において、上記第1樹脂層、上記第2樹脂層及び上記第3樹脂層の厚さが、上記好ましい範囲にあり、各厚さの関係が上記式(1)及び(2)を満たすと、本発明の太陽電池用バックシートは形状安定性に優れるため、即ち、上記充填材部に接着される第1樹脂層側における曲げ及び反りが容易であるため、太陽電池素子を包埋する充填材部の表面形状に応じてシートを効率よく配設することができる。上記第3樹脂層を省略して上記第2樹脂層を肉厚にすると、層構成のバランスが十分ではなく、本発明による優れた効果が得られにくくなる。
 本発明の太陽電池用バックシートは、以下に例示される。
[f1]第1樹脂層(赤外線透過性着色樹脂層)と、第2樹脂層(赤外線透過性着色樹脂層)と、第3樹脂層(白色系樹脂層)と、第4樹脂層(裏面保護層)とを、順次、備えるシート
[f2]第1樹脂層(非着色樹脂層)と、第2樹脂層(赤外線透過性着色樹脂層)と、第3樹脂層(白色系樹脂層)と、第4樹脂層(裏面保護層)とを、順次、備えるシート
[f3]第1樹脂層(赤外線透過性着色樹脂層)と、第2樹脂層(赤外線透過性着色樹脂層)と、第3樹脂層(白色系樹脂層)と、水蒸気バリア層と、第4樹脂層(裏面保護層)とを、順次、備えるシート
[f4]第1樹脂層(非着色樹脂層)と、第2樹脂層(赤外線透過性着色樹脂層)と、第3樹脂層(白色系樹脂層)と、水蒸気バリア層と、第4樹脂層(裏面保護層)とを、順次、備えるシート
 上記態様[f1]において、好ましい性能を備える構成について説明する。第1樹脂層及び第3樹脂層の厚さは、いずれも、好ましくは8~400μm、より好ましくは10~300μm、更に好ましくは15~200μmである。また、第2樹脂層の厚さは、好ましくは20~500μm、より好ましくは30~400μm、更に好ましくは50~300μmである。第1樹脂層、第2樹脂層及び第3樹脂層に含まれる熱可塑性樹脂は、いずれも、好ましくはシリコーン・アクリル複合ゴムを含むゴム質重合体を用いて得られたゴム強化芳香族ビニル系樹脂を含む樹脂である。そして、第1樹脂層に含まれる赤外線透過性着色剤の含有量(P)と、第2樹脂層に含まれる赤外線透過性着色剤の含有量(P)との質量比P/Pは、好ましくは0.1~10、より好ましくは0.2~8、更に好ましくは0.3~6である。
 また、第4樹脂層の厚さは、好ましくは20~300μm、より好ましくは50~200μmであり、シート全体の厚さは、好ましくは80~800μm、より好ましくは100~700μm、更に好ましくは120~600μmである。
 上記態様[f2]において、好ましい性能を備える構成について説明する。第1樹脂層及び第3樹脂層の厚さは、いずれも、好ましくは8~400μm、より好ましくは10~300μm、更に好ましくは15~200μmである。また、第2樹脂層の厚さは、好ましくは20~500μm、より好ましくは30~400μm、更に好ましくは50~300μmである。第1樹脂層には、赤外線透過性着色剤等の着色剤は含まれていない。
 また、第4樹脂層の厚さは、好ましくは20~300μm、より好ましくは50~200μmであり、シート全体の厚さは、好ましくは80~800μm、より好ましくは100~700μm、更に好ましくは120~600μmである。
 上記態様[f3]において、好ましい性能を備える構成について説明する。第1樹脂層及び第3樹脂層の厚さは、いずれも、好ましくは8~400μm、より好ましくは10~300μm、更に好ましくは15~200μmである。また、第2樹脂層の厚さは、好ましくは20~500μm、より好ましくは30~400μm、更に好ましくは50~300μmである。第1樹脂層に含まれる赤外線透過性着色剤の含有量(P)と、第2樹脂層に含まれる赤外線透過性着色剤の含有量(P)との質量比P/Pは、好ましくは0.1~10、より好ましくは0.2~8、更に好ましくは0.3~6である。
 また、水蒸気バリア層の厚さは、好ましくは10~200μm、より好ましくは11~80μmであり、第4樹脂層の厚さは、好ましくは20~300μm、より好ましくは50~100μmである。シート全体の厚さは、好ましくは80~800μm、より好ましくは100~700μm、更に好ましくは120~600μmである。
 上記態様[f4]において、好ましい性能を備える構成について説明する。第1樹脂層及び第3樹脂層の厚さは、いずれも、好ましくは8~400μm、より好ましくは10~300μm、更に好ましくは15~200μmである。また、第2樹脂層の厚さは、好ましくは20~500μm、より好ましくは30~400μm、更に好ましくは50~300μmである。第1樹脂層、第2樹脂層及び第3樹脂層に含まれる熱可塑性樹脂は、いずれも、好ましくはシリコーン・アクリル複合ゴムを含むゴム質重合体を用いて得られたゴム強化芳香族ビニル系樹脂を含む樹脂である。そして、第1樹脂層には、赤外線透過性着色剤等の着色剤は含まれていない。
 また、水蒸気バリア層の厚さは、好ましくは10~200μm、より好ましくは11~80μmであり、第4樹脂層の厚さは、好ましくは20~300μm、より好ましくは50~100μmである。シート全体の厚さは、好ましくは80~800μm、より好ましくは100~700μm、更に好ましくは120~600μmである。
 本発明において、波長400~700nmの光を、太陽電池用バックシートにおける第1樹脂層の表面に放射した場合、この光に対する、太陽電池用バックシートの吸収率、並びに、第1樹脂層及び第2樹脂層における吸収率は、いずれも、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上である。この吸収率が高いほど、太陽電池用バックシートの明度が低下し、暗色系の太陽電池用バックシートが形成されることとなる。これにより、太陽電池モジュールを、家屋の屋根等に配設したとき、外観性及び意匠性に優れる。尚、「波長400~700nmの光に対する吸収率が60%以上」とは、400nmから700nmまでの波長域における光の吸収率を、400nm又は700nmから20nm毎に測定し、各吸収率を用いて算出される平均値が60%以上であることを意味し、上記波長域における光の吸収率が全て60%以上であることを要求するものではない。
 また、波長800~1,400nmの光を、太陽電池用バックシートにおける第1樹脂層の表面に放射した場合、この光に対する反射率は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上である。この反射率が高いほど、少なくとも上記波長を有する光を、太陽電池素子の方へ反射させることができ、光電変換効率を向上させることができる。
 本発明において、「波長800~1,400nmの光に対する反射率が50%以上である」とは、800nmから1,400nmまでの波長域における光の反射率を、800nm又は1,400nmから20nm毎に測定し、各反射率を用いて算出される平均値が50%以上であることを意味し、上記波長域における光の反射率が全て50%以上であることを要求するものではない。
 これらの性能を備えることにより、本発明の太陽電池用バックシートにおいては、好ましくは、第1樹脂層及び第2樹脂層において、波長400~700nmの光の60%以上が吸収され、波長800~1,400nmの光が透過し、少なくとも第3樹脂層において、上記第1樹脂層及び第2樹脂層を透過した、波長800~1,400nmの光を十分に反射させ、光電変換に利用することができる。
 本発明の太陽電池用バックシートは、耐熱性に優れ、太陽電池用バックシートを、150℃で30分間放置したときの寸法変化率は、好ましくは±1%以下である。
 また、本発明の太陽電池用バックシートは、裏面、即ち、第4樹脂層の表面における耐傷性に優れる。
 また、本発明において、第1樹脂層、第2樹脂層、第3樹脂層、水蒸気バリア層及び第4樹脂層を備える太陽電池用バックシートは、第4樹脂層側からの水蒸気バリア性に優れ、太陽電池用バックシートの水蒸気透湿度を、JIS K7129に準じて、温度40℃及び湿度90%RHの条件で測定した場合、好ましくは3g/(m・day)以下、より好ましくは1g/(m・day)以下とすることができる。上記性能を有することから、水、水蒸気等の侵入に伴う太陽電池素子の劣化、更には、発電効率の低下を抑制することができ、耐久性に優れた太陽電池モジュールを与えることができる。
 次に、上記の第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物、第3熱可塑性樹脂組成物及び第4熱可塑性樹脂組成物に含有される添加剤について説明する。
 上記酸化防止剤としては、ヒンダードアミン系化合物、ハイドロキノン系化合物、ヒンダードフェノール系化合物、含硫黄化合物、含リン化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記酸化防止剤の含有量は、上記第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物、第3熱可塑性樹脂組成物及び第4熱可塑性樹脂組成物に含まれる各熱可塑性樹脂100質量部に対して、好ましくは0.05~10質量部である。
 上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記紫外線吸収剤の含有量は、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物、第3熱可塑性樹脂組成物及び第4熱可塑性樹脂組成物に含まれる各熱可塑性樹脂100質量部に対して、好ましくは0.05~10質量部である。
 上記老化防止剤としては、ナフチルアミン系化合物、ジフェニルアミン系化合物、p-フェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフェノール系化合物、ビスフェノール系化合物、トリスフェノール系化合物、ポリフェノール系化合物、チオビスフェノール系化合物、ヒンダードフェノール系化合物、亜リン酸エステル系化合物、イミダゾール系化合物、ジチオカルバミン酸ニッケル塩系化合物、リン酸系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記老化防止剤の含有量は、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物、第3熱可塑性樹脂組成物及び第4熱可塑性樹脂組成物に含まれる各熱可塑性樹脂100質量部に対して、好ましくは0.05~10質量部である。
 上記可塑剤としては、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジオクチルフタレート、ブチルオクチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジイソオクチルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ジメチルアジペート、ジイソブチルアジペート、ジ-(2-エチルヘキシル)アジペート、ジイソオクチルアジペート、ジイソデシルアジペート、オクチルデシルアジペート、ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジイソブチルアゼレート、ジブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソオクチルセバケート等の脂肪酸エステル類;トリメリット酸イソデシルエステル、トリメリット酸オクチルエステル、トリメリット酸n-オクチルエステル、トリメリット酸イソノニルエステル等のトリメリット酸エステル類;ジ-(2-エチルヘキシル)フマレート、ジエチレングリコールモノオレート、グリセリルモノリシノレート、トリラウリルホスフェート、トリステアリルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、エポキシ化大豆油等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記可塑剤の含有量は、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物、第3熱可塑性樹脂組成物及び第4熱可塑性樹脂組成物に含まれる各熱可塑性樹脂100質量部に対して、好ましくは0.05~10質量部である。
 本発明の太陽電池用バックシートの製造方法は、各層の構成材料、即ち、各熱可塑性樹脂によって選択され、特に限定されない。
 上記態様[f1]及び[f2]のシートの製造方法としては、(1)各熱可塑性樹脂組成物を用いた共押出法等により、積層シートを作製する方法、(2)各熱可塑性樹脂組成物を用いて作製した4種の樹脂シートを、熱融着又はドライラミネートする方法、(3)第1樹脂層、第2樹脂層及び第3樹脂層からなる積層物を共押出法等により作製した後、別途、準備した第4樹脂層を構成することとなるフィルムを、第3樹脂層の表面に熱融着又はドライラミネート若しくは接着剤により接合する方法等が挙げられる。
 また、上記態様[f3]及び[f4]のシートの製造方法としては、(1)第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物を用いた共押出法等により、積層シートを作製し、その後、積層シートにおける第3樹脂層の表面と、水蒸気バリア層形成用シート(又はフィルム)と、を熱融着又はドライラミネート若しくは接着剤により接合させて水蒸気バリア層を形成し、次いで、第4熱可塑性樹脂組成物を用いて、水蒸気バリア層の表面に、第4樹脂層を形成する方法、(2)第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物を用いて、上記のようにして積層シートを作製し、その後、この積層シートにおける第3樹脂層の表面と、水蒸気バリア層形成用シート(又はフィルム)と、を熱融着又はドライラミネート若しくは接着剤により接合させて水蒸気バリア層を形成し、次いで、水蒸気バリア層の表面に、別途、準備した、第4熱可塑性樹脂組成物を用いてなるフィルムを、熱融着又はドライラミネート若しくは接着剤により接合する方法、(3)第4樹脂層を構成することとなるフィルムと、水蒸気バリア層形成用シート(又はフィルム)と、を熱融着又はドライラミネート若しくは接着剤により接合させて水蒸気バリア層を形成し、その後、水蒸気バリア層の表面と、別途、準備した、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物を用いてなる積層シートにおける第3樹脂層とを、熱融着又はドライラミネート若しくは接着剤により接合する方法等が挙げられる。
 本発明の太陽電池モジュールは、上記本発明の太陽電池用バックシートを備えることを特徴とする。本発明の太陽電池モジュールの概略図は、図3に示される。
 図3の太陽電池モジュール2は、太陽光の受光面側(図面で上側)から、表面側透明保護部材21、表面側封止膜(表面側充填材部)23、太陽電池素子25、裏面側封止膜(裏面側充填材部)27、及び上記本発明の太陽電池用バックシート1が、この順で配設されたものとすることができる。尚、本発明の太陽電池モジュールは、必要に応じて、上記構成要素以外に、適宜、必要に応じて、各種部材を備えることもできる(図示せず)。
 上記表面側透明保護部材21としては、水蒸気バリア性に優れた材料からなるものが好ましく、通常、ガラス、樹脂等からなる透明基板が使用される。尚、ガラスは、透明性及び耐候性に優れるが、耐衝撃性が十分ではなく、重いため、家屋の屋根に載せる太陽電池とする場合には、耐候性の透明樹脂を用いることが好ましい。透明樹脂としては、フッ素系樹脂等が挙げられる。
 上記表面側透明保護部材21の厚さは、ガラスを使用した場合は、通常、1~5mm程度であり、透明樹脂を使用した場合は、通常、0.1~5mm程度である。
 上記太陽電池素子25は、太陽光の受光により発電機能を有するものである。このような太陽電池素子としては、光起電力としての機能を有するものであれば、特に限定されることなく、公知のものを用いることができる。例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電池素子;シングル結合型若しくはタンデム構造型等からなるアモルファスシリコン太陽電池素子;ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子;カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等のII-VI族化合物半導体太陽電池素子等が挙げられる。これらのうち、結晶シリコン太陽電池素子が好ましく、多結晶シリコン型太陽電池素子が特に好ましい。尚、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子とのハイブリッド素子等を用いることができる。
 図3において、図示していないが、上記太陽電池素子25は、通常、配線電極及び取り出し電極を備える。配線電極は、太陽光の受光により、複数の太陽電池素子において生じた電子を集める作用を有するものであり、例えば、表面側封止膜(表面側充填材部)21側の太陽電池素子と、裏面側封止膜(裏面側充填材部)27側の太陽電池素子とを連結するように接続される。また、取り出し電極は、上記配線電極等により集められた電子を電流として取り出す作用を有するものである。
 上記表面側封止膜(表面側充填材部)21及び上記裏面側封止膜(裏面側充填材部)27(以下、これらを併せて「封止膜」という。)は、通常、互いに同一又は異なる封止膜形成材料を用いて、予め、シート状又はフィルム状の封止膜とした後、上記表面側透明保護部材21及び太陽電池用バックシート1の間において、太陽電池素子25等を熱圧着して形成される。
 各封止膜(充填材部)の厚さは、通常、100μm~4mm程度、好ましくは200μm~3mm程度、より好ましくは300μm~2mm程度である。厚さが薄すぎると、太陽電池素子25が損傷する場合があり、一方、厚さが厚すぎると、製造コストが高くなり好ましくない。
 上記封止膜形成材料は、通常、樹脂組成物又はゴム組成物である。樹脂としては、オレフィン系樹脂、エポキシ樹脂、ポリビニルブチラール樹脂等が挙げられる。また、ゴムとしては、シリコーンゴム、水添共役ジエン系ゴム等が挙げられる。これらのうち、オレフィン系樹脂及び水添共役ジエン系ゴムが好ましい。
 オレフィン系樹脂としては、エチレン、プロピレン、ブタジエン、イソプレン等のオレフィン、又は、ジオレフィンを重合して得られた重合体等のほか、エチレンと、酢酸ビニル、アクリル酸エステル等の他のモノマーとの共重合体、アイオノマー等を用いることができる。具体例としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン・塩化ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸エステル共重合体、エチレン・ビニルアルコール共重合体、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらのうち、エチレン・酢酸ビニル共重合体及びエチレン・(メタ)アクリル酸エステル共重合体が好ましく、エチレン・酢酸ビニル共重合体が特に好ましい。
 また、水添共役ジエン系ゴムとしては、水添スチレン・ブタジエンゴム、スチレン・エチレンブチレン・オレフィン結晶ブロックポリマー、オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー、スチレン・エチレンブチレン・スチレンブロックポリマー等が挙げられる。好ましくは、下記の構造を有する共役ジエンブロック共重合体の水素添加物、即ち、芳香族ビニル化合物単位を含む重合体ブロックA;1,2-ビニル結合含量が25モル%を超える共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックB;1,2-ビニル結合含量が25モル%以下の共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックC;並びに芳香族ビニル化合物単位及び共役ジエン系化合物単位を含む共重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックD、から選ばれた少なくとも2種を有するブロック共重合体である。
 上記封止膜形成材料は、必要に応じて、架橋剤、架橋助剤、シランカップリング剤、紫外線吸収剤、ヒンダードフェノール系やホスファイト系の酸化防止剤、ヒンダードアミン系の光安定剤、光拡散剤、難燃剤、変色防止剤等の添加剤を含有することができる。
 上記のように、表面側封止膜(表面側充填材部)23を形成する材料と、裏面側封止膜(裏面側充填材部)27を形成する材料は、同一であっても異なってもよいが、接着性の点から同じであることが好ましい。
 本発明の太陽電池モジュールは、例えば、表面側透明保護部材、表面側封止膜、太陽電池素子、裏面側封止膜及び上記本発明の太陽電池用バックシートを、この順に配置した後、これらを一体として、真空吸引しながら加熱圧着する、ラミネーション法等により製造することができる。
 このラミネーション法におけるラミネート温度は、上記本発明の太陽電池用バックシートの接着性の観点から、通常、100℃~250℃程度である。また、ラミネート時間は、通常、3~30分程度である。
 以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明はかかる実施例に限定されるものではない。尚、下記において、部及び%は、特に断らない限り、質量基準である。
1.評価方法
 各種評価項目の測定方法を以下に示す。
1-1.熱可塑性樹脂中のゴム含有率
 各樹脂層を構成する熱可塑性樹脂組成物を製造するための原料仕込み時の組成から、各樹脂層における熱可塑性樹脂の全量に対する、全てのゴム成分の合計割合を計算した。
1-2.熱可塑性樹脂中のN-フェニルマレイミド単位含有量
 各樹脂層を構成する熱可塑性樹脂組成物を製造するための原料仕込み時の組成から算出した。
1-3.ガラス転移温度(Tg)
 JIS K 7121に準拠して、TA Instruments社製示差走査熱量計「DSC2910」(型式名)により測定した。尚、熱可塑性樹脂組成物に、熱可塑性樹脂が2種以上含まれて、DSC曲線で複数のTgが得られた場合、より高い方のTgを採用した。
1-4.波長400~700nmの光に対する吸収率(%)
 太陽電池用バックシート(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、透過率及び反射率を測定した。即ち、測定試料の第1樹脂層表面に、光を放射し、400nmから700nmまでの波長域における透過率及び反射率を、20nm毎に測定し、これらの平均値を算出した。吸収率は、透過率の平均値及び反射率の平均値を用いて、下記式により算出した。
  吸収率(%)=100-{透過率(%)+反射率(%)}
1-5.波長800~1,400nmの光に対する反射率(%)
 太陽電池用バックシート(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、反射率を測定した。即ち、測定試料の第1樹脂層表面に、光を放射し、800nmから1,400nmまでの波長域における反射率を、20nm毎に測定し、これらの平均値を算出した。
1-6.L値
 東洋精機製作所社製分光光度計「TCS-II」(型式名)を用いて、太陽電池用バックシート(50mm×50mm、厚さは表に記載)における第1樹脂層側表面及び第4樹脂層側表面のL値を測定した。
1-7.耐熱性
 太陽電池用バックシート(厚さは表に記載)を切削加工し、120mm(MD;樹脂押出方向)×120mm(TD;MDに対して直交方向)の大きさの試験片を作製した。次いで、この試験片の中央に、100mm(MD)×100mm(TD)の正方形の標線を引き、恒温槽中、150℃で30分間放置した。その後、冷却して、上記標線における長さを測定し、寸法変化率を下記式より算出した。
Figure JPOXMLDOC01-appb-M000004
 また、処理後の試験片の形状を目視観察し、下記基準で判定した。
○:変形がなかった
△:ごくわずかに変形していた
×:変形があった
1-8.可撓性
 太陽電池用バックシート(厚さは表に記載)を切削加工し、100mm(MD)×100mm(TD)の大きさの試験片を作製した。次いで、MD方向の対称軸に沿って折り曲げた後、TD方向の対称軸に沿って折り曲げた。折り曲げた試験片を、JIS Z0237に準拠し手動式圧着ロール(2,000g)を用い、5mm/秒の速度で各折り目上を2往復させた。その後、折り目を広げて元の状態に戻し、試験片を目視にて観察し、下記基準で判定した。折り目が割れていないものが可撓性に優れる。
○:折り目が割れておらず、再度、折り曲げても広げても折り目が割れていない。
△:折り目が割れていないが、再度折り曲げて広げたら折り目が割れている。
×:折り目が割れている。
1-9.耐加水分解性(破断応力の保持)
 太陽電池用バックシート(厚さは表に記載)を切削加工し、200mm(MD)×200mm(TD)の大きさの試験片を作製した。次いで、この試験片を、温度105℃、及び、湿度100%RHの条件下で、300時間放置した後、長さ200mm×巾15mmの短冊状に切り出し、JIS K7127に準じて、島津製作所社製精密万能材料試験機「オートグラフAG2000」(型式名)を用いて、破断応力を測定した。測定用サンプルセット時のチャック間距離は100mm、引張速度は300mm/分であった。得られた破断応力の測定値から、下記式により破断応力の保持率を求めた。
 破断応力保持率(%)=(温度105℃、湿度100%RHで300時間処理後の破断応力(N/15mm))÷(初期(処理前)の破断応力(N/15mm))×100
○:保持率が80%を超えた
△:保持率が50%~80%であった
×:保持率が50%未満であった
1-10.耐加水分解性(変形状態の測定)
 上記1-9における高温高湿処理後の試験片を目視にて観察し、下記基準で判定した。
○:変形がなかった
△:ごくわずかに変形していた
×:変形があった
1-11.光電変換効率向上率
 温度25℃±2℃、及び、湿度50±5%RHに調整された室において、ペクセル・テクノロジーズ社製Solar Simulator「PEC-11」(型式名)を用いて、予め、セル単体の光電変換効率を測定した1/4多結晶シリコンセルの表面に、厚さ3mmのガラスを、裏面に、太陽電池用バックシートを配置して、シリコンセルを挟み、ガラス及び太陽電池用バックシートの間にEVAを導入してシリコンセルを封止し太陽電池モジュールを作製した。その後、温度の影響を低減させるために、光を照射後すぐに光電変換効率を測定した。得られた光電変換効率と、セル単体の光電変換効率とを用いて、光電変換効率向上率を求めた。
 光電変換効率向上率(%)={(モジュールの光電変換効率-セル単体の光電変換効率)÷(セル単体の光電変換効率)}×100
1-12.蓄熱性
 太陽電池用バックシート(80mm×80mm、厚さは表に記載)を測定試料とし、温度25℃±2℃、及び、湿度50±5%RHに調整された室において、測定試料における第1樹脂層側の表面に、高さ200mmから赤外線ランプ(出力100W)を照射した。60分照射後の表面温度を、表面温度計を用いて測定した。単位は℃である。
1-13.耐候性
 太陽電池用バックシート(厚さは表に記載)を切削加工し、500mm(MD)×30mm(TD)の大きさの試験片を作製した。次いで、この試験片における第1樹脂層側の表面に対し、以下に示すステップ1~4の条件を繰り返して暴露試験に供し、暴露前及び暴露100時間後の色調変化値ΔEを算出した。処理装置は、スガ試験機社製メタリングウェザーメーター「MV3000」(型式名)である。
 ステップ1:照射0.53kW/m、63℃、50%RH、4時間
 ステップ2:照射+降雨0.53kW/m、63℃、95%RH、1分間
 ステップ3:暗黒0kW/m、30℃、98%RH、4時間
 ステップ4:照射+降雨0.53kW/m、63℃、95%RH、1分間
 ΔEは、日本分光社製スペクトロフォトメーター「V670」(型式名)を用いたLab(L:明度、a:赤色度、b:黄色度)データから次式により算出した。
 ΔE=√{(L-L+(a-a+(b-b
(式中、L、a、bは暴露後の値であり、L、a、bは暴露前の値である。)
 ΔEの値が小さいほど、色の変化が小さく、耐候性が優れていることを示す。耐候性を、下記基準で判定した。
○:ΔEが10以下であった
×:ΔEが10超えた
1-14.難燃性
 太陽電池用バックシート(20mm×100mm、厚さは表に記載)を試験片とし、この試験片を縦長に吊るし、UL94のVテスト用のバーナーを用いて、バーナー先端から試験片下端まで10mm離した状態で、試験片の下端を5秒間接炎した。接炎終了後、試験片の接炎部分の燃焼状態を目視で観察し、下記基準で判定した。
○:着火しなかった
×:着火した
1-15.水蒸気バリア性
 温度40℃、及び、湿度90%RHの条件下、MOCON社製水蒸気透過率測定装置「PERMATRAN W3/31」(型式名)を用いて、JIS K7129Bに準じて、水蒸気透湿度を測定した。尚、透過面として、太陽電池用バックシートにおける第4樹脂層側の表面を水蒸気側に配置した。
1-16.耐傷性
 太陽電池用バックシートにおける第4樹脂層側の表面を、東測精密工業株式会社製往復動摩擦試験機を用いて、綿帆布かなきん3号、垂直荷重500gで500往復摩擦させた。その後の表面を目視で観察し、下記基準で判定した。
○:傷が観察されなかった
△:傷がわずかに観察された
×:傷が明確に観察された
2.太陽電池用バックシートの製造原料
2-1.シリコーン・アクリル複合ゴム強化スチレン系樹脂(ゴム強化樹脂A1)
 三菱レイヨン社製「メタブレン SX-006」(商品名)を用いた。これは、シリコーン・アクリル複合ゴムにアクリロニトリル・スチレン共重合体をグラフトさせてなる樹脂であり、シリコーン・アクリル複合ゴムの含有量50%、グラフト率80%、極限粘度[η](メチルエチルケトン中、30℃)0.38dl/g、ガラス転移温度(Tg)135℃)である。
2-2.シリコーンゴム強化スチレン系樹脂(ゴム強化樹脂A2)
 p-ビニルフェニルメチルジメトキシシラン1.3部及びオクタメチルシクロテトラシロキサン98.7部を混合し、これを、ドデシルベンゼンスルホン酸2.0部を溶解した蒸留水300部中に入れ、ホモジナイザーにより3分間攪拌して乳化分散させた。この乳化分散液を、コンデンサー、窒素導入口及び攪拌機を備えたセパラブルフラスコに移し、攪拌しながら、90℃で6時間加熱した。次いで、5℃で24時間保持し、縮合を完結させ、ポリオルガノシロキサン系ゴムを含むラテックスを得た。縮合率は93%であった。その後、このラテックスを、炭酸ナトリウム水溶液を用いてpH7に中和した。得られたポリオルガノシロキサン系ゴムの体積平均粒子径は300nmであった。
 次に、攪拌機を備えた内容積7リットルのガラス製フラスコに、イオン交換水100部、オレイン酸カリウム1.5部、水酸化カリウム0.01部、tert-ドデシルメルカプタン0.1部、上記ポリオルガノシロキサン系ゴム40部を含む、pH7に調製されたラテックス、スチレン15部及びアクリロニトリル5部からなるバッチ重合成分を加え、攪拌しながら昇温した。温度が45℃に達した時点で、エチレンジアミン四酢酸ナトリウム0.1部、硫酸第1鉄0.003部、ホルムアルデヒドナトリウムスルホキシラート・二水塩0.2部及びイオン交換水15部よりなる活性剤水溶液、並びにジイソプロピルベンゼンハイドロパーオキサイド0.1部を添加し、1時間重合を行った。
 その後、上記反応系に、イオン交換水50部、オレイン酸カリウム1部、水酸化カリウム0.02部、tert-ドデシルメルカプタン0.1部、ジイソプロピルベンゼンハイドロパーオキサイド0.2部、スチレン30部及びアクリロニトリル10部よりなるインクレメント重合成分を、3時間に渡って連続的に添加し、重合を続けた。添加終了後、更に攪拌を継続した。1時間後、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加し、重合を終了し、シリコーンゴム強化スチレン系樹脂(ゴム強化樹脂A2)を含むラテックスを得た。次いで、上記ラテックスに、硫酸1.5部を加えて、樹脂成分を90℃で凝固させ、その後、樹脂成分の水洗、脱水及び乾燥を行って、シリコーンゴム強化スチレン系樹脂(ゴム強化樹脂A2)を得た。ガラス転移温度(Tg)は108℃、ポリオルガノシロキサン系ゴムの含有量40%、グラフト率は84%、極限粘度[η](メチルエチルケトン中、30℃)は0.60dl/gであった。
2-3.アクリル系ゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A3)
 反応器に、アクリル酸n-ブチル99部と、アリルメタアクリレート1部とを乳化重合して得られたアクリル系ゴム質重合体(体積平均粒子径:100nm、ゲル含率:90%)を含む固形分濃度40%のラテックス50部(固形分換算)を入れ、更に、ドデシルベンゼンスルホン酸ナトリウム1部及びイオン交換水150部を入れて希釈した。その後、反応器内を窒素ガスで置換し、エチレンジアミン四酢酸二ナトリウム0.02部、硫酸第一鉄0.005部及びホルムアルデヒドスルホキシル酸ナトリウム0.3部を加え、撹拌しながら、60℃まで昇温した。
 一方、容器に、スチレン37.5部及びアクリロニトリル12.5部の混合物50部と、ターピノーレン1.0部及びクメンハイドロパーオキサイド0.2部とを入れ、容器内を窒素ガスで置換し、単量体組成物を得た。
 次いで、上記単量体組成物を、5時間かけて、一定流量で上記反応器に添加し、70℃で重合を行い、ラテックスを得た。このラテックスに、硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗、乾燥することにより、アクリル系ゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A3)を得た。アクリル系ゴム質重合体の含有量50%、グラフト率は93%、極限粘度[η](メチルエチルケトン中、30℃)は0.30dl/g、ガラス転移温度(Tg)は108℃であった。
2-4.ブタジエンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A4)
 撹拌機を備えたガラス製反応容器に、イオン交換水75部、ロジン酸カリウム0.5部、tert-ドデシルメルカプタン0.1部、ポリブタジエンラテックス(体積平均粒子径:270nm、ゲル含率:90%)32部(固形分換算)、スチレン・ブタジエン共重合ラテックス(スチレン単位量:25%、体積平均粒子径:550nm、ゲル含率:50%)8部(固形分換算)、スチレン15部及びアクリロニトリル5部を入れ、窒素気流中、攪拌しながら昇温した。内温が45℃に達した時点で、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部及びブドウ糖0.2部をイオン交換水20部に溶解した水溶液を加えた。その後、クメンハイドロパーオキサイド0.07部を加え、70℃で重合を開始し、1時間重合させた。
 その後、イオン交換水50部、ロジン酸カリウム0.7部、スチレン30部、アクリロニトリル10部、tert-ドデシルメルカプタン0.05部及びクメンハイドロパーオキサイド0.01部を3時間かけて連続的に添加し、重合を継続した。1時間重合させた後、2,2’-メチレンビス(4-エチレン-6-tert-ブチルフェノール)0.2部を添加し、重合を完結させ、ラテックスを得た。
 次いで、このラテックスに硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗及び乾燥することにより、ブタジエンゴム強化芳香族ビニル系樹脂(ゴム強化樹脂A4)を得た。ブタジエンゴムの含有量40%、グラフト率は72%、アセトン可溶分の極限粘度[η]は0.47dl/g、ガラス転移温度(Tg)は108℃であった。
2-5.アクリロニトリル・スチレン共重合体
 テクノポリマー社製AS樹脂「SAN-H」(商品名)を用いた。ガラス転移温度(Tg)は、108℃である。
2-6.アクリロニトリル・スチレン・N-フェニルマレイミド共重合体
 日本触媒社製アクリロニトリル・スチレン・N-フェニルマレイミド共重合体「ポリイミレックス PAS1460」(商品名)を用いた。N-フェニルマレイミド単位量は40%、スチレン単位量は51%、GPCによるポリスチレン換算のMwは120,000である。ガラス転移温度(Tg)は、173℃である。
2-7.白色系着色剤
 石原産業社製酸化チタン「タイペークCR-50-2」(商品名)を用いた。平均一次粒子径は0.25μmである。
2-8.赤外線透過性着色剤
 BASF社製ペリレン系黒色顔料「Lumogen BLACK FK4280」(商品名)を用いた。
2-9.黄色系着色剤
 BASF社製キノフタロン系黄色顔料「Paliotol Yellow K0961HD」(商品名)を用いた。
2-10.カーボンブラック
 三菱化学社製「カーボンブラック#45」(商品名)を用いた。
2-11.水蒸気バリア層形成用フィルム(R-1)
 三菱樹脂社製透明蒸着フィルム「テックバリアAX」(商品名)を用いた。PETフィルムの片面にシリカ蒸着膜を有する透明フィルムであり、厚さは12μm、水蒸気透湿度(JIS K7129)は0.15g/(m・day)である。
2-12.水蒸気バリア層形成用フィルム(R-2)
 東洋紡社製無機2元蒸着バリアフィルム「エコシアールVE500」(商品名)を用いた。PETフィルムの片面に(シリカ/アルミナ)の蒸着を施した透明フィルムであり、厚さは12μm、水蒸気透湿度は0.5g/(m・day)である。
2-13.水蒸気バリア層形成用フィルム(R-3)
 三菱樹脂社製透明蒸着フィルム「テックバリアLX」(商品名)を用いた。PETフィルムの片面にシリカ蒸着膜を有する透明フィルムであり、厚さは12μm、水蒸気透湿度(JIS K7129)は0.2g/(m・day)である。
2-14.第4樹脂層(裏面保護層)形成用フィルム(IV-1)
 帝人デュポン社製PETフィルム「Melinex238」(商品名)を用いた。厚さは75μmである。
2-15.第4樹脂層(裏面保護層)形成用フィルム(IV-2)
 SKC社製PETフィルム「SR55」(商品名)を用いた。厚さは75μmである。
2-16.第4樹脂層(裏面保護層)形成用フィルム(IV-3)
 東レ社製PETフィルム「ルミラーX10P」(商品名)を用いた。厚さは50μmである。
2-17.第4樹脂層(裏面保護層)形成用フィルム(IV-4)
 東レ社製PETフィルム「ルミラーX10S」(商品名)を用いた。厚さは50μmである。
3.第1熱可塑性樹脂組成物の調製
  製造例1-1
 熱可塑性樹脂と、着色剤とを、表1に示す割合で、ヘンシェルミキサーにより混合した。その後、日本製鋼所製二軸押出機「TEX44」(型式名)を用いて、バレル温度270℃で溶融混練し、ペレット状の第1熱可塑性樹脂組成物(I-1)を得た(表1参照)。
  製造例1-2~1-8
 熱可塑性樹脂と、着色剤とを、表1に示す割合で用いた以外は、製造例1-1と同様にして、ペレット状の第1熱可塑性樹脂組成物(I-2)~(I-8)を得た(表1参照)。
Figure JPOXMLDOC01-appb-T000005
4.第2熱可塑性樹脂組成物の調製
  製造例2-1
 熱可塑性樹脂と、着色剤とを、表2に示す割合で、ヘンシェルミキサーにより混合した。その後、日本製鋼所製二軸押出機「TEX44」(型式名)を用いて、バレル温度270℃で溶融混練し、ペレット状の第1熱可塑性樹脂組成物(II-1)を得た(表2参照)。
  製造例2-2~2-8
 熱可塑性樹脂と、着色剤とを、表2に示す割合で用いた以外は、製造例2-1と同様にして、ペレット状の第1熱可塑性樹脂組成物(II-2)~(II-8)を得た(表2参照)。
Figure JPOXMLDOC01-appb-T000006
5.第3熱可塑性樹脂組成物の調製
  製造例3-1
 熱可塑性樹脂と、着色剤とを、表3に示す割合で、ヘンシェルミキサーにより混合した。その後、日本製鋼所製二軸押出機「TEX44」(型式名)を用いて、バレル温度270℃で溶融混練し、ペレット状の第1熱可塑性樹脂組成物(III-1)を得た(表3参照)。
  製造例3-2~3-6
 熱可塑性樹脂と、着色剤とを、表3に示す割合で用いた以外は、製造例3-1と同様にして、ペレット状の第1熱可塑性樹脂組成物(III-2)~(III-6)を得た(表3参照)。
Figure JPOXMLDOC01-appb-T000007
6.太陽電池用バックシートの製造及び評価(1)
  実施例1
 ダイ幅1,400mm及びリップ間隔1.5mmのTダイを有し、スクリュー径65mmの押出機3機を備える多層フィルム成形機を用い、各押出機に、第1熱可塑性樹脂組成物(I-1)、第2熱可塑性樹脂組成物(II-1)及び第3熱可塑性樹脂組成物(III-1)を供給した。そして、Tダイから、温度270℃で溶融させた、各樹脂組成物を吐出させ、3層型軟質フィルムとした。その後、この3層型軟質フィルムを、エアーナイフにより、表面温度が95℃に制御されたキャストロールに面密着させ、冷却固化し、厚さ75μmの積層フィルムを得た。尚、第1樹脂層、第2樹脂層及び第3樹脂層の厚さは、表4に記載の通りである。フィルムの厚さは、ミツトヨ社製シックネスゲージ「ID-C1112C」(型式名)を用い、フィルムの製造開始から1時間経過後のフィルムを切り取り、フィルム幅方向の中心、及び、中心より両端に向けて、10mm間隔で厚さを測定し(n=107)、その平均値とした。フィルムの端部から20mmの範囲にある測定点の値は、上記平均値の計算から除去した。
 次に、上記積層フィルムにおける第3樹脂層の外表面に、表4に記載の第4樹脂層(裏面保護層)形成用フィルムをポリウレタン系の接着剤(表にて「PU」で示した。)を用いて接着させ、太陽電池用バックシートを得た。そして、この太陽電池用バックシートについて、各種評価を行い、その結果を表4に併記した。
  実施例2~8及び比較例1~10
 表4~表8に示した、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物と、第4樹脂層(裏面保護層)形成用フィルムとを用い、実施例1と同様にして、太陽電池用バックシートを得た。そして、これらの太陽電池用バックシートについて、各種評価を行い、その結果を表4~表8に併記した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
7.太陽電池用バックシートの製造及び評価(2)
  実施例9
 ダイ幅1,400mm及びリップ間隔1.5mmのTダイを有し、スクリュー径65mmの押出機3機を備える多層フィルム成形機を用い、各押出機に、第1熱可塑性樹脂組成物(I-1)、第2熱可塑性樹脂組成物(II-1)及び第3熱可塑性樹脂組成物(III-1)を供給した。そして、Tダイから、温度270℃で溶融させた、各樹脂組成物を吐出させ、3層型軟質フィルムとした。その後、この3層型軟質フィルムを、エアーナイフにより、表面温度が95℃に制御されたキャストロールに面密着させ、冷却固化し、厚さ75μmの積層フィルムを得た。尚、第1樹脂層、第2樹脂層及び第3樹脂層の厚さは、表9に記載の通りである。フィルムの厚さは、ミツトヨ社製シックネスゲージ「ID-C1112C」(型式名)を用い、フィルムの製造開始から1時間経過後のフィルムを切り取り、フィルム幅方向の中心、及び、中心より両端に向けて、10mm間隔で厚さを測定し(n=107)、その平均値とした。フィルムの端部から20mmの範囲にある測定点の値は、上記平均値の計算から除去した。
 次に、上記積層フィルムにおける第3樹脂層の外表面に、水蒸気バリア層形成用フィルムを、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させた。更に、水蒸気バリア層における蒸着膜の表面に、表9に記載の第4樹脂層(裏面保護層)形成用フィルムをポリウレタン系の接着剤を用いて接着させ、太陽電池用バックシートを得た。そして、この太陽電池用バックシートについて、各種評価を行い、その結果を表9に併記した。
  実施例10~11及び比較例11
 表9に示した、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物と、第4樹脂層(裏面保護層)形成用フィルムと、水蒸気バリア層形成用フィルムとを用い、実施例9と同様にして、太陽電池用バックシートを得た。そして、これらの太陽電池用バックシートについて、各種評価を行い、その結果を表9に併記した。
Figure JPOXMLDOC01-appb-T000013
8.太陽電池用バックシートの製造及び評価(3)
  実施例12~14及び比較例12
 表10に示した、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物と、第4樹脂層(裏面保護層)形成用フィルムとを用い、実施例1と同様にして、太陽電池用バックシートを得た。そして、これらの太陽電池用バックシートについて、各種評価を行い、その結果を表10に併記した。
Figure JPOXMLDOC01-appb-T000014
9.太陽電池用バックシートの製造及び評価(4)
  実施例15~16
 表11に示した、第1熱可塑性樹脂組成物、第2熱可塑性樹脂組成物及び第3熱可塑性樹脂組成物と、第4樹脂層(裏面保護層)形成用フィルムと、水蒸気バリア層形成用フィルムとを用い、実施例9と同様にして、太陽電池用バックシートを得た。そして、これらの太陽電池用バックシートについて、各種評価を行い、その結果を表11に併記した。
Figure JPOXMLDOC01-appb-T000015
 本発明において、第1樹脂層、第2樹脂層、第3樹脂層及び第4樹脂層を、順次、備える太陽電池用バックシートは、太陽電池の発電効率を改良することができ、意匠性、耐熱性、可撓性、寸法安定性及び耐候性に優れ、更に、耐傷性、耐突き抜き性、耐薬品性及び難燃性にも優れる。従って、太陽光や風雨に長期間曝される屋外での使用に好適であり、家屋の屋根等に用いられる太陽電池を構成する太陽電池モジュールはもちろんのこと、柔軟性を有する太陽電池モジュールにおけるバックシートとして有用である。
 また、本発明において、第1樹脂層、第2樹脂層、第3樹脂層、水蒸気バリア層及び第4樹脂層を、順次、備える太陽電池用バックシートは、太陽電池の発電効率を改良することができ、意匠性、耐熱性、可撓性、水蒸気バリア性、耐傷性、耐加水分解性、寸法安定性及び耐候性に優れ、更に、耐突き抜き性、耐薬品性及び難燃性にも優れる。従って、太陽光や風雨に長期間曝される屋外での使用に好適であり、家屋の屋根等に用いられる太陽電池を構成する太陽電池モジュールはもちろんのこと、柔軟性を有する太陽電池モジュールにおけるバックシートとして有用である。

Claims (12)

  1.  第1樹脂層、第2樹脂層、第3樹脂層及び第4樹脂層を、順次、備える太陽電池用バックシートにおいて、上記第1樹脂層及び上記第2樹脂層のうちの少なくとも該第2樹脂層が赤外線透過性着色樹脂層であり、第3樹脂層が白色系樹脂層であり、上記第4樹脂層が裏面保護層であり、且つ、上記第1樹脂層の厚さ(H)、上記第2樹脂層の厚さ(H)及び上記第3樹脂層の厚さ(H)が、下記式(1)及び(2)を満足することを特徴とする太陽電池用バックシート。
     0.4≦(H+H)/H≦2.4  (1)
     0.7≦H/H≦1.3       (2)
  2.  上記第1樹脂層が赤外線透過性着色樹脂層である請求項1に記載の太陽電池用バックシート。
  3.  波長400~700nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射した場合、上記光に対する吸収率が60%以上である請求項1又は2に記載の太陽電池用バックシート。
  4.  波長800~1,400nmの光を、上記太陽電池用バックシートにおける上記第1樹脂層の表面に放射した場合、上記光に対する反射率が50%以上である請求項1乃至3のいずれか一項に記載の太陽電池用バックシート。
  5.  150℃で30分間放置したときの寸法変化率が±1%以下である請求項1乃至4のいずれか一項に記載の太陽電池用バックシート。
  6.  上記第1樹脂層を構成する熱可塑性樹脂、上記第2樹脂層を構成する熱可塑性樹脂及び上記第3樹脂層を構成する熱可塑性樹脂が、いずれも芳香族ビニル系樹脂を含む熱可塑性樹脂である請求項1乃至5のいずれか一項に記載の太陽電池用バックシート。
  7.  上記第1樹脂層を構成する熱可塑性樹脂のガラス転移温度、及び、上記第3樹脂層を構成する熱可塑性樹脂のガラス転移温度が、いずれも上記第2樹脂層を構成する熱可塑性樹脂のガラス転移温度よりも低い請求項1乃至6のいずれか一項に記載の太陽電池用バックシート。
  8.  上記第4樹脂層が、難燃性を有する樹脂層である請求項1乃至7のいずれか一項に記載の太陽電池用バックシート。
  9.  上記第3樹脂層及び上記第4樹脂層の間に、水蒸気バリア層を備える請求項1乃至8のいずれか一項に記載の太陽電池用バックシート。
  10.  上記水蒸気バリア層が、その表面に、金属及び/又は金属酸化物を含む膜が形成されてなる蒸着フィルムからなる請求項9に記載の太陽電池用バックシート。
  11.  上記太陽電池用バックシートの厚さが50~1,000μmである請求項1乃至10のいずれか一項に記載の太陽電池用バックシート。
  12.  請求項1乃至11のいずれか一項に記載の太陽電池用バックシートを備えることを特徴とする太陽電池モジュール。
PCT/JP2009/071000 2009-01-28 2009-12-16 太陽電池用バックシート及びそれを備える太陽電池モジュール WO2010087085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801542781A CN102271914A (zh) 2009-01-28 2009-12-16 太阳能电池用背板及具备其的太阳能电池模块
EP09839272.3A EP2383116A4 (en) 2009-01-28 2009-12-16 REPLACEMENT FILM FOR A SOLAR BATTERY AND SOLAR BATTERY MODULE THEREWITH
US13/133,858 US20110247683A1 (en) 2009-01-28 2009-12-16 Back sheet for solar battery, and solar battery module comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009017333 2009-01-28
JP2009-017333 2009-01-28

Publications (1)

Publication Number Publication Date
WO2010087085A1 true WO2010087085A1 (ja) 2010-08-05

Family

ID=42395351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071000 WO2010087085A1 (ja) 2009-01-28 2009-12-16 太陽電池用バックシート及びそれを備える太陽電池モジュール

Country Status (6)

Country Link
US (1) US20110247683A1 (ja)
EP (1) EP2383116A4 (ja)
JP (1) JP2010199555A (ja)
KR (1) KR20110114531A (ja)
CN (1) CN102271914A (ja)
WO (1) WO2010087085A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199551A (ja) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010199552A (ja) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
WO2012063946A1 (ja) * 2010-11-12 2012-05-18 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに、太陽電池モジュール
US20140138734A1 (en) * 2012-11-20 2014-05-22 Kuo Hsin Technology Co., Ltd. Module structure

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421890B2 (ja) * 2010-11-09 2014-02-19 富士フイルム株式会社 光電変換素子の製造方法
US20120285501A1 (en) * 2010-12-29 2012-11-15 E.I. Du Pont De Nemours And Company Integrated back-sheet for back contact photovoltaic module
WO2012096290A1 (ja) * 2011-01-14 2012-07-19 テクノポリマー株式会社 太陽電池用裏面保護フィルム及び太陽電池モジュール
US9082900B2 (en) 2011-03-11 2015-07-14 Intellectual Discovery Co., Ltd. Photovoltaic module and manufacturing method thereof
JP5614360B2 (ja) * 2011-03-31 2014-10-29 大日本印刷株式会社 太陽電池モジュール用裏面保護シート
JPWO2013015259A1 (ja) * 2011-07-26 2015-02-23 東レ株式会社 積層シートおよびその製造方法
TR201909846T4 (tr) * 2012-05-16 2019-07-22 Borealis Ag Polimer tabaka.
TWI627875B (zh) * 2012-07-18 2018-06-21 鐘化股份有限公司 導電層一體型軟性印刷基板
TWI586230B (zh) * 2012-07-18 2017-06-01 鐘化股份有限公司 補強板一體型軟性印刷基板
US20140140012A1 (en) * 2012-11-20 2014-05-22 Kuo Hsin Technology Co., Ltd. Module structure
CN103856163A (zh) * 2012-12-04 2014-06-11 杜邦公司 用于背接触式光伏模块的组件
JP6260412B2 (ja) * 2014-04-01 2018-01-17 三菱ケミカル株式会社 ガスバリア性フィルム
CN105489685B (zh) * 2014-10-03 2017-05-10 财团法人工业技术研究院 板材与模组结构体
JP6745089B2 (ja) * 2015-01-16 2020-08-26 株式会社カネカ 太陽電池モジュール
JP6707332B2 (ja) * 2015-10-29 2020-06-10 株式会社トッパンインフォメディア 情報記録媒体
DE102016001628A1 (de) * 2016-02-15 2017-08-17 Hochschule Luzern Technik & Architektur Farbiges Abdeckglas für Photovoltaikmodul
DE102017212142A1 (de) * 2017-07-14 2019-01-17 Sig Technology Ag Flächenförmiger Verbund, insbesondere zum Herstellen formstabiler Nahrungsmittelbehälter, beinhaltend eine Polymerschicht P mit einem L-Wert
JP6627998B1 (ja) * 2019-04-26 2020-01-08 大日本印刷株式会社 太陽電池モジュール用裏面保護シート及び太陽電池モジュール
US20220165897A1 (en) * 2019-04-26 2022-05-26 Dai Nippon Printing Co., Ltd. Backside protective sheet for solar cell modules and solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128943A (ja) * 2005-11-01 2007-05-24 Toray Ind Inc 太陽電池用バックシートおよび太陽電池モジュール
JP2007208179A (ja) * 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用プラスチックフィルムおよび太陽電池裏面保護膜
JP2008028294A (ja) * 2006-07-25 2008-02-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
WO2009054450A1 (ja) * 2007-10-25 2009-04-30 Techno Polymer Co., Ltd. 赤外線反射性積層体
WO2009142191A1 (ja) * 2008-05-19 2009-11-26 テクノポリマー株式会社 積層体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041145A (ja) * 2001-07-27 2003-02-13 Yokohama Tlo Co Ltd 黒色ペリレン系顔料およびその製造方法
US20070012352A1 (en) * 2005-07-18 2007-01-18 Bp Corporation North America Inc. Photovoltaic Modules Having Improved Back Sheet
US8319093B2 (en) * 2006-07-08 2012-11-27 Certainteed Corporation Photovoltaic module
ATE518255T1 (de) * 2006-08-30 2011-08-15 Keiwa Inc Benutzung einer rückplatte für photovoltaikmodule und photovoltaikmodule damit
EP2066708B1 (en) * 2006-09-28 2016-03-02 Korea Kumho Petrochemical Co., Ltd. A continuous polymerization process for producing maleimide-alpha-alkylstyrene-based tetrapolymer with low molten viscosity
WO2010038875A1 (ja) * 2008-10-03 2010-04-08 テクノポリマー株式会社 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
CN102239568B (zh) * 2008-12-16 2013-10-16 大科能树脂有限公司 太阳能电池用背板及具备其的太阳能电池模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128943A (ja) * 2005-11-01 2007-05-24 Toray Ind Inc 太陽電池用バックシートおよび太陽電池モジュール
JP2007208179A (ja) * 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd 太陽電池裏面保護膜用プラスチックフィルムおよび太陽電池裏面保護膜
JP2008028294A (ja) * 2006-07-25 2008-02-07 Toppan Printing Co Ltd 太陽電池裏面封止用シート
WO2009054450A1 (ja) * 2007-10-25 2009-04-30 Techno Polymer Co., Ltd. 赤外線反射性積層体
WO2009142191A1 (ja) * 2008-05-19 2009-11-26 テクノポリマー株式会社 積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383116A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199551A (ja) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010199552A (ja) * 2008-12-16 2010-09-09 Techno Polymer Co Ltd 太陽電池用バックシート及びそれを備える太陽電池モジュール
WO2012063946A1 (ja) * 2010-11-12 2012-05-18 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに、太陽電池モジュール
US20140138734A1 (en) * 2012-11-20 2014-05-22 Kuo Hsin Technology Co., Ltd. Module structure
US9412921B2 (en) * 2012-11-20 2016-08-09 Industrial Technology Research Institute Module structure

Also Published As

Publication number Publication date
US20110247683A1 (en) 2011-10-13
KR20110114531A (ko) 2011-10-19
JP2010199555A (ja) 2010-09-09
EP2383116A1 (en) 2011-11-02
CN102271914A (zh) 2011-12-07
EP2383116A4 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2010087085A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
WO2010071032A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP5178452B2 (ja) 赤外線反射性積層体
WO2010038875A1 (ja) 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
WO2010058695A1 (ja) 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
JP5193616B2 (ja) 太陽電池用バックシート
JP5276052B2 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP2009135457A (ja) 太陽電池用バックシート
JP5276049B2 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP5173911B2 (ja) 積層シート及びそれを備える太陽電池モジュール
JP2010199552A (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010177386A (ja) 太陽電池用バックシート
JP2010109349A (ja) 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
WO2010087086A1 (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP5385640B2 (ja) 積層シート及びそれを備える太陽電池モジュール
JP2010177384A (ja) 太陽電池用バックシート
JP2010199551A (ja) 太陽電池用バックシート及びそれを備える太陽電池モジュール
JP2010195028A (ja) 積層体
WO2011132588A1 (ja) 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
JP2013058798A (ja) 太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュール
JP2013201385A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2010234573A (ja) 積層シート及びそれを備える太陽電池モジュール
JP2010177385A (ja) 太陽電池用バックシート
JP2013201384A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール
JP2013201383A (ja) 太陽電池用裏面保護フィルム及び太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154278.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011927

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009839272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13133858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE