WO2010087084A1 - Image pickup lens, image pickup apapratus, and portable terminal - Google Patents

Image pickup lens, image pickup apapratus, and portable terminal Download PDF

Info

Publication number
WO2010087084A1
WO2010087084A1 PCT/JP2009/070893 JP2009070893W WO2010087084A1 WO 2010087084 A1 WO2010087084 A1 WO 2010087084A1 JP 2009070893 W JP2009070893 W JP 2009070893W WO 2010087084 A1 WO2010087084 A1 WO 2010087084A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
block
imaging
lens block
image
Prior art date
Application number
PCT/JP2009/070893
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 川崎
泰成 福田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010087084A1 publication Critical patent/WO2010087084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +

Definitions

  • the present invention relates to an imaging lens, an imaging device, and a portable terminal. More specifically, for example, including a wafer-scale lens suitable for mass production, an image sensor (for example, a solid-state image sensor such as a charge coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor).
  • CMOS complementary metal-oxide semiconductor
  • the present invention relates to an imaging device having an imaging lens that forms an optical image on a light receiving surface, an imaging device that captures an optical image formed by the imaging lens and the imaging lens, and a mobile terminal equipped with the imaging device.
  • Compact and thin imaging devices are now installed in portable terminals (for example, mobile phones and PDAs (Personal Digital Assistants), etc.) that are compact and thin electronic devices. Is possible not only for audio information but also for image information.
  • a solid-state image pickup device such as a CCD image sensor or a CMOS image sensor is used.
  • the pixel pitch of the image sensor has been reduced, and higher resolution and higher performance have been achieved by increasing the number of pixels.
  • the image sensor has been reduced in size by maintaining the number of pixels.
  • an imaging lens including a plastic lens is used in an imaging device with a built-in portable terminal.
  • an imaging lens having three plastic lenses, a three-lens imaging lens including one glass lens and two plastic lenses is used in an imaging device with a built-in portable terminal.
  • lens elements lens parts
  • a large number of lens elements are simultaneously formed on a parallel plate several inch wafer by a replica method, and these wafers are combined with a sensor wafer, and then separated into lenses.
  • Techniques for mass production have been proposed.
  • a lens manufactured by such a manufacturing method is called a “wafer scale lens”, and a lens module is called a “wafer scale lens module”.
  • a method for mounting a lens module on a substrate at a low cost and in large quantities has recently been proposed.
  • a reflow process heating process
  • the lens module is mounted together with an IC (Integrated Circuit) chip and other electronic components. Since the electronic component and the lens module can be simultaneously mounted on the substrate by melting the solder in the reflow process, an imaging lens excellent in heat resistance that can withstand the reflow process is required.
  • Patent Documents 1 to 6 propose an imaging lens composed of two lens blocks (two-block configuration). Among them, the imaging lens described in Patent Document 3 has a diffractive surface on the lens substrate. Has been.
  • Patent Documents 4 and 5 propose an imaging lens (three-block configuration) composed of three lens blocks for the purpose of improving aberration correction capability.
  • the imaging lenses proposed in Patent Documents 1 and 2 have insufficient aberration correction capability and cannot cope with an increase in the number of pixels of a solid-state imaging device.
  • a diffractive surface is applied on a lens substrate to correct chromatic aberration.
  • the manufacturing difficulty increases, and in addition, the diffraction efficiency decreases at wavelengths other than the design wavelength and unnecessary order diffracted light is generated.
  • the imaging lenses proposed in Patent Documents 4 and 5 are composed of three lens blocks for the purpose of improving aberration correction capability, but the ratio of the lens to the entire length is small. For this reason, when a lens is miniaturized due to miniaturization of a sensor (imaging device), the lens substrate and the lens portion become extremely thin. As a result, the production becomes extremely difficult, the mass productivity is lacking, and the possibility of breakage when heated in a reflow furnace increases. Further, when the lens part is made thick enough to be manufactured, the total length becomes large. In the case of the imaging lens proposed in Patent Document 6, since the final lens block is close to the imaging element, it is difficult to insert a cover glass or an IR cut filter.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a compact imaging lens that has good aberration performance and is suitable for mass production at low cost, and an imaging apparatus and a portable terminal including the imaging lens. Is to provide.
  • a parallel plate lens substrate A lens portion formed of a material different from that of the lens substrate on at least one of the object side surface and the image side surface of the lens substrate, and having a positive or negative power;
  • An imaging lens including three lens blocks each including The lens block is a first lens block having a positive power, a second lens block having a negative power, and a third lens block having a positive or negative power in order from the object side.
  • the image side surface of the second lens block is an aspherical surface having a paraxial and concave surface shape on the image side
  • the object side surface of the third lens block is an aspherical surface having a paraxial and convex surface shape on the object side.
  • An image pickup lens wherein the image side surface of the third lens block is aspheric.
  • the aspherical shape of the image side surface of the second lens block is an aspherical shape in which the negative power is weakened or the positive power is increased with increasing distance from the optical axis in the paraxial concave shape.
  • an object side surface of the second lens block has a concave surface shape on the object side.
  • the lens block is manufactured by a manufacturing method including a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member in the sealing step. 18.
  • the imaging lens according to any one of items 1 to 17.
  • An image pickup apparatus comprising: an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal.
  • a portable terminal comprising the imaging device according to 19.
  • the present invention it is possible to reduce the overall length while minimizing the miniaturization of the lens element, and it is possible to reduce the overall length of the lens element.
  • the compact imaging lens having good aberration performance and suitable for mass production at a low cost is provided.
  • An apparatus and a portable terminal can be achieved.
  • FIG. 1st Embodiment (Example 1) of the imaging lens of this invention. It is an optical block diagram of 2nd Embodiment (Example 2) of the imaging lens of this invention. It is an optical block diagram of 3rd Embodiment (Example 3) of the imaging lens of this invention. It is an optical block diagram of 4th Embodiment (Example 4) of the imaging lens of this invention. It is an optical block diagram of 5th Embodiment (Example 5) of the imaging lens of this invention. It is an optical block diagram of 6th Embodiment (Example 6) of the imaging lens of this invention. It is an optical block diagram of 7th Embodiment (Example 7) of the imaging lens of this invention.
  • FIG. 1st Embodiment (Example 1) of the imaging lens of this invention. It is an optical block diagram of 2nd Embodiment (Example 2) of the imaging lens of this invention. It is an optical block diagram of 3rd Embodiment (Example 3)
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is an aberration diagram of Example 3.
  • FIG. 6 is an aberration diagram of Example 4.
  • FIG. 6 is an aberration diagram of Example 5.
  • FIG. 6 is an aberration diagram of Example 6.
  • FIG. 10 is an aberration diagram of Example 7. It is a figure which shows in a schematic cross section the example of schematic structure of the portable terminal carrying an imaging device provided with the imaging lens of this invention. It is a schematic sectional drawing which shows an example of the manufacturing process of the imaging lens of this invention.
  • the imaging lens according to the present invention includes three lens blocks.
  • the “lens block” refers to an optical element that includes a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power.
  • the lens substrate and the lens portion assumed here are different in material.
  • the first lens block has a positive power
  • the second lens block has a negative power
  • the third lens block has a positive or negative power.
  • the image side surface of the second lens block is an aspherical surface having a paraxial and concave surface shape on the image side
  • the object side surface of the third lens block is an aspherical surface having a paraxial and convex surface shape on the object side. Yes, the image side surface of the third lens block is aspheric.
  • the axial chromatic aberration generated in the first lens block is reduced to the second lens block.
  • the distance from the second lens block to the imaging device can be easily ensured as compared with the case where the power arrangement of the first lens block and the second lens block continues positive and positive.
  • a lens block can be further accommodated in the arrangement
  • the image side surface of the second lens block a paraxial and concave surface on the image side
  • the light beam jumps up and is positioned away from the optical axis with respect to the third lens block as the final lens block.
  • a light beam can be incident.
  • the object side surface of the third lens block a convex shape on the paraxial side on the paraxial side
  • the light beam can be returned to the sensor side to enhance telecentricity. The effect is enhanced by making the image side surface of the second lens block and both surfaces of the third lens block aspherical.
  • the lens substrates it is important how the lens substrates can be brought close to each other when the overall length is shortened. In order to shorten the overall length, for example, when the lens substrates are not brought close to each other, it is necessary to reduce the thickness of the lens substrates, resulting in a decrease in yield.
  • the lens substrates In order to shorten the overall length, when the image side surface of the second lens block is concave on the image side with the paraxial axis and the object side surface of the third lens block is convex with the paraxial axis toward the object side, the lens substrates should be close to each other. However, the lens surfaces do not interfere with each other, and the aspheric sag amount can be maintained. For this reason, the overall length can be shortened while preventing performance degradation. When trying to shorten the overall length by bringing the lens substrates closer together with the convex and convex surfaces facing each other, it is necessary to reduce the amount of sag of the aspheric surface so that the lens surfaces do not contact each other, and sufficient aberration performance Is difficult to get.
  • an imaging device provided with the imaging lens is used for digital equipment, such as a portable terminal, it can contribute to the compactness, cost reduction, high performance, etc.
  • the conditions for achieving such effects in a well-balanced manner and achieving higher optical performance, shortening the overall length, improving manufacturability, etc. will be described below.
  • Conditional expression (1) defines a preferable condition range for appropriately setting the radius of curvature at the surface vertex of the image side surface of the second lens block. If the lower limit of conditional expression (1) is exceeded, the radius of curvature does not become too large, and the effect of jumping up the light beam can be obtained effectively. On the other hand, if the upper limit of conditional expression (1) is not reached, the radius of curvature does not become too small, and it is possible to prevent the rays from jumping up too much. That is, if the upper limit of conditional expression (1) is exceeded, the angle of the chief ray with respect to the sensor becomes too tight due to the light beam jumping too much, making it difficult for the third lens block to bend the light beam toward the sensor.
  • conditional expression (1a) defines a more preferable conditional range based on the above viewpoints, etc., among the conditional ranges defined by the conditional expression (1).
  • chromatic aberration can be favorably corrected while keeping the Petzval sum small.
  • the aspherical shape of the image side surface of the second lens block is an aspherical shape in which the negative power is weakened or the positive power is increased as the paraxial concave shape is moved away from the optical axis.
  • the telecentricity can be enhanced by preventing the light beam focused on the periphery of the screen from jumping up too much.
  • a surface shape with a small sag amount can be obtained. This is effective in reducing the overall length and maintaining the optical performance while the thickness is limited as in the lens substrate.
  • the third lens block Since the third lens block is closest to the sensor and the axial ray passes through a position where the height from the optical axis is low, if the lower limit of conditional expression (2) is exceeded, there is no effect on the power or spherical aberration of the entire system, and the oblique The traveling direction of the light beam can be bent. On the other hand, if the upper limit of conditional expression (2) is not reached, the Petzval sum can be reduced without affecting the power of the entire system, spherical aberration, and the like.
  • conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2). Since the third lens block is closest to the sensor and the axial ray passes through a position where the height from the optical axis is low, the Petzval sum does not become too large by satisfying conditional expression (2a) to exceed the lower limit. Can be.
  • H the height of the light beam from the optical axis off the most axis of the axial light beam passing through the image side surface of the second lens block
  • Y ′ maximum image height
  • conditional expression (3) If the lower limit of conditional expression (3) is exceeded, the negative power applied to the entire system does not become too small, and a sufficient back focus can be secured. On the other hand, below the upper limit of conditional expression (3), the negative power can be increased while reducing the influence on other aberrations, and the Petzval sum can be reduced.
  • the object side surface of the third lens block is preferably an aspherical surface having at least one inflection point.
  • the light beam bounced up by the second lens block is incident on the object side surface of the third lens block.
  • a surface shape with a small sag amount by making the object side surface of the third lens block into a surface shape that has a convex shape near the paraxial axis but has an inflection point that loosens the convex shape as it moves away from the optical axis. It can be. This is effective in reducing the overall length and maintaining the optical performance while the thickness is limited as in the lens substrate.
  • the image side surface of the third lens block has a paraxial concave shape on the image side and has at least one inflection point.
  • the lens block located closest to the image side is close to the image sensor, and the light beam is separated and enters the lens block. Therefore, an aspherical effect can be obtained effectively.
  • the negative power can be weakened or the positive power can be increased around the lens, and the luminous flux around the screen , The telecentricity can be improved and the distortion can be corrected with a good balance.
  • the power of the second lens block does not become too weak compared to the power of the first lens block, and the spherical aberration, field curvature aberration, etc. generated in the first lens block are second.
  • the lens block can be effectively corrected.
  • the power of the second lens block does not become too strong compared to the power of the first lens block, and the spherical aberration, field curvature aberration, etc. Excessive correction in the second lens block can be prevented.
  • conditional expression (4a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (4).
  • the first lens block has a meniscus shape with a convex surface facing the object side.
  • the object side surface of the second lens block has a concave surface shape on the object side.
  • the third lens block which is the final lens block, may also serve as a cover glass before the sensor (imaging device) (that is, a structure without a cover glass).
  • the lens portion includes the substrate glass, and the third lens block can also serve as the cover glass before the sensor. Thereby, cost reduction is attained.
  • conditional expression (5) the gas content contained between the lens blocks is reduced.
  • the imaging lens is placed in a high temperature environment of 250 ° C. to 280 ° C. during the reflow process, the gas contained between the lens blocks expands and a large pressure is applied to the sealed camera module. If the conditional expression (5) is satisfied, the lens block can be prevented from being damaged by the pressure.
  • conditional expression (6) the longitudinal chromatic aberration generated on the object side surface of the first lens block can be effectively corrected on the image side surface of the first lens block.
  • the aperture stop is preferably disposed on the lens substrate of the first lens block.
  • Arranging the aperture stop on the lens substrate means arranging the aperture stop between the lens portion and the lens substrate. According to this configuration, the number of optical members can be reduced, and the aperture stop can also be formed by the vapor deposition process at the same time when performing the IR (InfraRed) cut coat or AR (Anti-Reflection) coat deposition process on the lens substrate portion. It becomes possible. Therefore, cost reduction can be achieved and mass productivity can be improved.
  • the aperture is arranged in the lens substrate, the principal ray passes through the first lens surface so as to be concentric, and the declination angle with respect to the surface is reduced, thereby reducing performance deterioration due to decentration.
  • the aperture stop is more preferably disposed on the object side surface of the lens substrate of the first lens block.
  • all lens substrates are parallel plates. Since all lens substrates are parallel plates, processing becomes easy, and since all lens substrates do not have power at the interface with the lens unit, the influence of surface accuracy on the focal position on the image plane is reduced. Can do.
  • all lens substrates are parallel plates with the same thickness.
  • the lens substrate is preferably made of a glass material. Since glass has a higher softening temperature than resin, if the lens substrate is made of glass, it is not easily deformed even if reflow treatment is performed, and the cost can be reduced. More preferably, the lens substrate is made of glass having a high softening temperature.
  • the lens part is preferably made of resin material.
  • a resin material has better processability than a glass material and can be reduced in cost.
  • the resin material is preferably a curable resin material.
  • the curable resin material refers to an energy curable resin material such as a resin material that is cured by heat and a resin material that is cured by light.
  • energy curable resin material such as a resin material that is cured by heat
  • resin material that is cured by light Various means for applying energy such as heat and light are used for the curing. It can be used.
  • the curable resin material it is desirable to use a UV curable resin material. If a UV curable resin material is used, mass productivity can be improved by shortening the curing time. In recent years, curable resin materials with excellent heat resistance have been developed. By using heat-resistant resins, camera modules that can withstand reflow processing can be used, and a more inexpensive camera module can be provided. Can do.
  • the reflow process here refers to printing solder paste on a printed circuit board (circuit board), placing a component (lens module) on it, then applying heat to melt the solder, sensor external terminals and circuit board This is a process of automatic welding.
  • the resin material contains inorganic fine particles of 30 nanometers or less in a dispersed state.
  • inorganic fine particles of 30 nanometers or less By dispersing inorganic fine particles of 30 nanometers or less in a lens portion made of a resin material, it is possible to reduce performance deterioration and image point position fluctuation even when the temperature changes.
  • the size of the fine particles is made smaller than the wavelength of the transmitted light beam. In this way, scattering can be substantially prevented from occurring.
  • the resin material has a disadvantage that the refractive index is lower than that of the glass material, but it has been found that the refractive index can be increased by dispersing inorganic particles having a high refractive index in the resin material as a base material. .
  • a material having an arbitrary temperature dependency is provided by dispersing inorganic particles of 30 nanometers or less, desirably 20 nanometers or less, and more desirably 15 nanometers or less in a resin material as a base material. can do.
  • the refractive index of the resin material decreases as the temperature rises
  • inorganic particles whose refractive index increases as the temperature rises are dispersed in the resin material as the base material, these properties cancel each other. It is known that the refractive index change with respect to the temperature change can be reduced. On the other hand, it is also known that when the inorganic particles whose refractive index decreases as the temperature rises are dispersed in the resin material as the base material, the refractive index change with respect to the temperature change can be increased.
  • a material having an arbitrary temperature dependency is provided by dispersing inorganic particles of 30 nanometers or less, desirably 20 nanometers or less, and more desirably 15 nanometers or less in a resin material as a base material.
  • a resin material having a high refractive index can be obtained, and the refractive index change with respect to temperature can be reduced. Can do.
  • the temperature change A of the refractive index is expressed by the following formula (FA) by differentiating the refractive index n by the temperature t based on the Lorentz-Lorentz formula.
  • the contribution of the second term is generally smaller than the first term in the formula (FA) and can be almost ignored.
  • the contribution of the second term of the formula (FA) is substantially increased so that the change due to the linear expansion of the first term can be counteracted. ing. Specifically, it is desirable to suppress the change of about ⁇ 1.2 ⁇ 10 ⁇ 4 in the past to an absolute value of less than 8 ⁇ 10 ⁇ 5 .
  • the contribution of the second term can be further increased to have a temperature characteristic opposite to that of the resin material of the base material. In other words, it is possible to obtain a material whose refractive index increases instead of decreasing the refractive index as the temperature increases.
  • the mixing ratio can be appropriately increased or decreased in order to control the rate of change of the refractive index with respect to the temperature, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
  • the imaging lens includes a step of sealing the lens substrates together via a lattice-shaped spacer member, and a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member
  • the lens block is manufactured.
  • a process of sealing lens substrates with a lattice-shaped spacer member in a manufacturing method for manufacturing a plurality of imaging lenses for forming a subject image or an imaging device including the imaging lens, a process of sealing lens substrates with a lattice-shaped spacer member And a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member, thereby enabling easy production.
  • mass production of an inexpensive imaging lens becomes possible.
  • a reflow method or a replica method is used as a manufacturing method for manufacturing a plurality of imaging lenses.
  • a low softening point glass film is formed by the CVD (Chemical Vapor Deposition) method, fine processing is performed by lithography and dry etching, and glass reflow is performed by heat treatment, so that a large number of lenses are simultaneously formed on the glass substrate. Is done.
  • the replica method a large number of lenses are simultaneously formed on a lens wafer by transferring a large amount of lens shapes with a mold using a curable resin. In any method, a large number of lenses can be manufactured at the same time, so that the cost can be reduced.
  • the first Lens block when different lenses manufactured by the above-described method (two lenses having different lens parts manufactured by producing lens parts on a lens substrate and separated one by one) are bonded to each other, the first Lens block, a first parallel flat plate, a second parallel flat plate, and a second lens unit.
  • FIG. 16 is a schematic sectional view showing an example of the manufacturing process of the imaging lens.
  • the first lens block C1 includes a parallel-plate first lens substrate L12, a plurality of first o lens portions L11 formed on one plane, a plurality of first i lens portions L13 formed on the other plane, It consists of
  • the first lens substrate L12 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above.
  • the second lens block C2 includes a second lens substrate L22 made of a parallel plate, a plurality of second o lens portions L21 formed on one plane, and a plurality of second i lens portions L23 formed on the other plane.
  • the second lens substrate L22 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above.
  • the third lens block (not shown) is also configured in the same manner as the first and second lens blocks C1 and C2.
  • the grid-like spacer member B1 defines a distance between the lens blocks and keeps the lens block constant.
  • the grid-like spacer member B1 is a three-stage grid, and each lens portion is disposed in a hole portion of the grid.
  • the substrate B2 is a wafer level sensor chip size package including a microlens array, or a parallel plane plate (corresponding to the parallel plane plate PT in FIG. 15) such as a sensor cover glass or an IR cut filter.
  • the lens substrates are sealed on the substrate B2 via the spacer member B1, and the first lens substrate L12, the second lens substrate L22, the third lens substrate (not shown), and the spacer member B1 integrated with each other are separated from the spacer member B1.
  • a plurality of imaging lenses having a three-lens configuration are obtained by cutting at a lattice frame (position of broken line Q). In this way, if the imaging lens is separated from a state where a plurality of first lens blocks C1, second lens blocks C2, and third lens blocks (not shown) are assembled, adjustment and assembly of the lens interval is performed for each imaging lens. Therefore, mass production is possible.
  • the spacer member B1 into a lattice shape, it can be used as a mark when separating it. This is in accordance with the gist of the present technical field, and can contribute to mass production of an inexpensive lens system.
  • the imaging lens according to the present invention is suitable for use in a digital device (for example, a portable terminal) with an image input function. By combining this with an imaging device or the like, an image of a subject is optically captured and an electrical signal is obtained. Can be configured.
  • the imaging device is an optical device that is a main component of a camera used for still image shooting or moving image shooting of a subject. For example, an imaging lens that forms an optical image of an object in order from the object (subject) side, and the imaging thereof And an imaging device that converts an optical image formed by the lens into an electrical signal.
  • an imaging lens having the above-described characteristic configuration is arranged so that an optical image of a subject is formed on the light receiving surface of the imaging element, and an imaging device having high performance at low cost and the same are provided.
  • a digital device for example, a portable terminal
  • the camera examples include a digital camera, a video camera, a surveillance camera, an in-vehicle camera, a videophone camera, and the like, and also a personal computer, a mobile terminal (for example, a mobile phone, a mobile computer, etc., small and portable information) Apparatus terminals), peripheral devices (scanners, printers, etc.), cameras incorporated in or external to other digital devices, and the like.
  • a mobile terminal for example, a mobile phone, a mobile computer, etc., small and portable information Apparatus terminals
  • peripheral devices scanners, printers, etc.
  • cameras incorporated in or external to other digital devices and the like.
  • a digital device with an image input function such as a mobile phone with a camera can be configured.
  • FIG. 15 is a schematic cross-sectional view showing a schematic configuration example of a mobile terminal CU as an example of a digital device with an image input function.
  • the imaging device LU mounted on the mobile terminal CU shown in FIG. 15 includes, in order from the object (subject) side, an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object, and a parallel plane.
  • an imaging lens LN AX: optical axis
  • image plane image
  • IM optical image
  • IM optical image
  • parallel plane Formed on the light-receiving surface SS by a face plate PT (optical filters such as an optical low-pass filter and an infrared cut filter arranged as necessary; corresponding to a cover glass of the image sensor SR) and an imaging lens LN.
  • an image sensor SR that converts the optical image IM into an electrical signal.
  • the imaging device LU When a mobile terminal CU having an image input function is configured by the imaging device LU, the imaging device LU is usually arranged inside the body. However, when realizing the camera function, a form as necessary is adopted. It is possible.
  • the unitized imaging device LU can be configured to be detachable or rotatable with respect to the main body of the mobile terminal CU.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the imaging lens LN is provided so that an optical image IM of the subject is formed on the light receiving surface SS of the imaging element SR, the optical image IM formed by the imaging lens LN is electrically converted by the imaging element SR. Converted to a signal.
  • the mobile terminal CU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, the signal is transmitted to another device through a cable or converted into an infrared signal.
  • the control unit 2 has a microcomputer, and performs function control such as a photographing function and an image reproduction function, and a lens moving mechanism for focusing.
  • the control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 includes operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by an operator to the control unit 2.
  • the imaging lens LN includes three lens blocks as described above, and is configured to form the optical image IM on the light receiving surface SS of the imaging element SR.
  • the optical image to be formed by the imaging lens LN is, for example, an optical low-pass filter (corresponding to the parallel flat plate PT in FIG. 15) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. By passing, the spatial frequency characteristic is adjusted so that so-called aliasing noise generated when converted into an electrical signal is minimized. Thereby, generation
  • the focus of the imaging lens LN may move the entire lens unit in the optical axis AX direction using an actuator, or may move a part of the lens in the optical axis AX direction.
  • the actuator can be downsized.
  • the focus function may be realized by performing a process of increasing the depth of focus by software from the information recorded in the image sensor SR without focusing the lens by moving the lens in the optical axis direction. In that case, the actuator is not necessary, and the miniaturization and the cost reduction can be realized at the same time.
  • FIGS. 1 to 7 show the lens configurations of the first to seventh embodiments of the imaging lens LN in optical sections, respectively.
  • the imaging lens LN of each embodiment is a single focus lens for imaging (for example, for a portable terminal) that forms an optical image IM with respect to the imaging element SR (FIG. 15).
  • the imaging lens LN is configured by three lens blocks of the first lens block C1, the second lens block C2, and the third lens block C3. Yes.
  • the lens blocks C1 to C3 are configured as follows in order from the object side.
  • the first lens block C1 the first o lens portion L11, the first lens substrate L12, and the first i lens portion L13 are arranged in this order.
  • the second lens block C2 the second o lens portion L21, the second lens substrate L22, and the second i lens portion L23 are arranged in this order.
  • the third lens block C3 the third o lens portion L31, the third lens substrate L32, and the third i lens portion L33 are arranged in this order.
  • both surfaces of the nth lens block Cn are aspheric surfaces, and the no lens portion
  • the refractive index is different between Ln1 and the nth lens substrate Ln2, and the refractive index is different between the nth lens substrate Ln2 and the nith lens portion Ln3.
  • the power arrangement of the first to third lens blocks C1 to C3 is positive or negative. Since both have the positive and negative power arrangement on the most object side, the above-described aberration correction effect can be obtained.
  • the image side surface of the second lens block C2 has a paraxial shape and a concave surface shape on the image side, the light beam jumps up so that the light beam is separated from the optical axis AX with respect to the third lens block C3. It can be made incident.
  • the object side surface of the third lens block C3 has a paraxial and convex surface shape on the object side, thereby improving telecentricity. The effect is enhanced by making the image side surface of the second lens block C2 and both surfaces of the third lens block C3 aspherical.
  • the aspherical shape of the image side surface of the second lens block C2 decreases the negative power as the paraxial and concave surface shape moves away from the optical axis AX, or increases the positive power. It has an aspheric shape that is strengthened. Thereby, high telecentricity can be obtained, and shortening of the overall length and maintenance of optical performance can be effectively achieved. Further, the object side surface of the second lens block C2 has a concave shape on the object side, thereby reducing the Petzval sum.
  • the object side surface of the third lens block C3 is an aspherical surface having an inflection point, thereby effectively reducing the overall length and maintaining the optical performance.
  • the image side surface of the third lens block C3 has a paraxial and concave shape on the image side, and has an inflection point, thereby effectively obtaining an aspherical effect. Further, by weakening the negative power or increasing the positive power around the periphery of the lens, the light flux around the screen is converged, and the telecentricity is improved and the correction of the distortion aberration is realized in a well-balanced manner.
  • the aperture stop ST is disposed on the object side surface of the first lens substrate L12 constituting the first lens block C1.
  • an aperture stop ST is disposed on the image side surface of the first lens substrate L12 constituting the first lens block C1.
  • disposing the aperture stop ST on the object side surface of the lens substrate L12 is effective for improving the telecentricity.
  • Examples 1 to 7 listed here are numerical examples corresponding to the first to seventh embodiments, respectively, and are optical configuration diagrams showing the first to seventh embodiments (FIGS. 1 to 7). 7) shows the lens configurations of the corresponding Examples 1 to 7, respectively.
  • surface data in order from the left column, surface number, radius of curvature r (mm), surface distance on axis d (mm), d line (587.56 nm, Reference Wave Length) Represents the refractive index nd and the Abbe number ⁇ d for the d-line.
  • the surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following formula (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. .
  • the F number, half angle of view, and back focus are effective values at the entire lens length and object distance ( ⁇ ).
  • the back focus expresses the distance from the last lens surface to the paraxial image surface in terms of air length, and the total lens length is the distance from the front lens surface to the last lens surface plus the back focus.
  • the focal length of each lens block is shown as lens block data, and the values of the examples corresponding to the respective conditional expressions are shown in Table 1.
  • FIG. 8 to 14 are aberration diagrams of Examples 1 to 7.
  • FIG. 8 to 14 in order from the left, are a spherical aberration diagram (LONGITUDINAL SPHERICAL ABER.), An astigmatism diagram (ASTIGMATIC FIELD CURVES), and a distortion aberration diagram (DISTORTION).
  • the spherical aberration diagram shows the amount of spherical aberration with respect to the d line (wavelength 587.56 nm) indicated by the solid line, the amount of spherical aberration with respect to the C line (wavelength 656.28 nm) indicated by the short broken line, and the g line (wavelength 435.84 nm) indicated by the long broken line.
  • the amount of spherical aberration with respect to is expressed as the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: -0.500 to 0.500 mm), and the vertical axis is incident on the pupil.
  • a value obtained by normalizing the height by the maximum height (relative pupil height) is represented.
  • the broken line Y indicates the tangential image plane with respect to the d line
  • the solid line X indicates the sagittal image plane with respect to the d line
  • the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: -0.50 to 0.50 mm)
  • the vertical axis represents the image height (IMG HT, unit: mm).
  • the horizontal axis represents distortion with respect to the d-line (unit:%, horizontal axis scale: -10.0 to 10.0%)
  • the vertical axis represents image height (IMG HT, unit: mm). Represents.
  • the maximum value of the image height IMG HT corresponds to the maximum image height y′max on the imaging surface (half the diagonal length of the light receiving surface SS of the image sensor SR).
  • the imaging lenses LN of Examples 1, 2, 4 to 7 are arranged in order from the object side, the first o lens portion L11 convex to the object side, the aperture stop ST, the first A first lens block C1 including a lens substrate L12 and a first i lens portion L13 concave on the image side, a second o lens portion L21, a second lens substrate L22 concave on the object side, and a second i lens concave on the image side
  • the surfaces of all lens portions in contact with air have an aspheric shape, and at least both surfaces of the third lens block C3 are aspheric surfaces having inflection points.
  • the imaging lens LN of Example 3 includes, in order from the object side, a first o lens unit L11 that is convex on the object side, a first lens substrate L12, an aperture stop ST, and a first i lens unit L13 that is concave on the image side.
  • a first lens block C1 comprising: a second o lens part L21, a second lens substrate L22 concave on the object side, and a second lens block C2 comprising a second i lens part L23 concave on the image side; and convex on the object side
  • the surfaces of all lens portions in contact with air have an aspheric shape, and at least both surfaces of the third lens block C3 are aspheric surfaces having inflection points.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is a compact image pickup lens which has improved aberration characteristics and which is suitable for mass production at a low cost.  The image pickup lens comprises three lens blocks, each having a parallel-plate lens substrate and a lens portion of a positive or negative power which is provided on at least one of an object side surface and an image side surface of the lens substrate and which is formed of a material different from the lens substrate.  The lens blocks consist of a first lens block having a positive power, a second lens block having a negative power, and a third lens block having a positive or negative power, arranged in this order from the object side.  The image side surface of the second lens block is defined by an aspherical surface having a paraxial concave surface on the image side.  The object side surface of the third lens block is defined by an aspherical surface having a paraxial convex surface on the object side.  The image side surface of the third lens block is defined by an aspherical surface.

Description

撮像レンズ、撮像装置及び携帯端末Imaging lens, imaging device, and portable terminal
 本発明は撮像レンズ、撮像装置及び携帯端末に関するものである。更に詳しくは、例えば大量生産に適したウェハスケールのレンズを含み、撮像素子(例えば、CCD(Charge Coupled Device)型イメージセンサ、CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子)の受光面上に光学像を形成する撮像レンズと、この撮像レンズと撮像レンズにより形成される光学像を取り込む撮像素子とを有する撮像装置と、撮像装置を搭載した携帯端末と、に関するものである。 The present invention relates to an imaging lens, an imaging device, and a portable terminal. More specifically, for example, including a wafer-scale lens suitable for mass production, an image sensor (for example, a solid-state image sensor such as a charge coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor). The present invention relates to an imaging device having an imaging lens that forms an optical image on a light receiving surface, an imaging device that captures an optical image formed by the imaging lens and the imaging lens, and a mobile terminal equipped with the imaging device.
 コンパクトで薄型の撮像装置が、コンパクトで薄型の電子機器である携帯端末(例えば、携帯電話機やPDA(Personal Digital Assistant)等)に搭載されるようになり、現在では遠隔地との相互の情報伝送が音声情報だけでなく画像情報についても可能となっている。撮像装置に搭載される撮像素子としては、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が使用されている。近年では撮像素子の画素ピッチの小型化が進み、高画素化により高解像・高性能化が図られ、その一方で、画素数を維持することにより撮像素子の小型化も図られている。 Compact and thin imaging devices are now installed in portable terminals (for example, mobile phones and PDAs (Personal Digital Assistants), etc.) that are compact and thin electronic devices. Is possible not only for audio information but also for image information. As an image pickup device mounted on the image pickup apparatus, a solid-state image pickup device such as a CCD image sensor or a CMOS image sensor is used. In recent years, the pixel pitch of the image sensor has been reduced, and higher resolution and higher performance have been achieved by increasing the number of pixels. On the other hand, the image sensor has been reduced in size by maintaining the number of pixels.
 撮像素子上に被写体像を形成するための撮像レンズには、大量生産に適した樹脂で形成されるレンズ素子が、更なる低コスト化のために用いられるようになってきている。樹脂のレンズ素子は加工性が良いので、非球面の形成が容易であるため、非球面形状の採用により高性能化の要求にも応えることができる。こういった観点から、携帯端末内蔵の撮像装置にはプラスチックレンズを含む撮像レンズが用いられている。そのような撮像レンズとして一般的によく知られているのが、プラスチックレンズ3枚構成の撮像レンズ、ガラスレンズ1枚とプラスチックレンズ2枚とから成る3枚構成の撮像レンズ等である。しかしながら、これらの光学系の更なるコンパクト化と携帯端末に求められる量産性とを両立させることは困難である。 In an imaging lens for forming a subject image on an imaging element, a lens element formed of a resin suitable for mass production has been used for further cost reduction. Since the resin lens element has good workability, it is easy to form an aspherical surface. Therefore, the use of an aspherical shape can meet the demand for higher performance. From such a viewpoint, an imaging lens including a plastic lens is used in an imaging device with a built-in portable terminal. Generally known as such an imaging lens are an imaging lens having three plastic lenses, a three-lens imaging lens including one glass lens and two plastic lenses. However, it is difficult to achieve both compactness of these optical systems and mass productivity required for portable terminals.
 このような問題点を克服するため、平行平板の数インチのウェハ上にレプリカ法によってレンズ要素(レンズ部)を同時に大量に成形し、それらのウェハをセンサウェハと組み合わせた後に切り離して、レンズモジュールを大量生産する手法が提案されている。こうした製法によって製造されたレンズは「ウェハスケールレンズ」と呼ばれており、また、レンズモジュールは「ウェハスケールレンズモジュール」と呼ばれている。 In order to overcome such problems, a large number of lens elements (lens parts) are simultaneously formed on a parallel plate several inch wafer by a replica method, and these wafers are combined with a sensor wafer, and then separated into lenses. Techniques for mass production have been proposed. A lens manufactured by such a manufacturing method is called a “wafer scale lens”, and a lens module is called a “wafer scale lens module”.
 また、レンズモジュールを大量生産する手法と共に、基板に対するレンズモジュールの実装を低コストかつ大量に行う手法も近年提案されている。その方法では、予め半田がポッティングされた基板に対し、レンズモジュールがIC(Integrated Circuit)チップやその他の電子部品と共に載置されたままリフロー処理(加熱処理)が施される。リフロー処理で半田を溶融させることにより、電子部品とレンズモジュールとを基板に同時実装することができるため、リフロー処理に耐え得る耐熱性に優れた撮像レンズが求められている。 In addition to the method for mass-producing lens modules, a method for mounting a lens module on a substrate at a low cost and in large quantities has recently been proposed. In this method, a reflow process (heating process) is performed on a substrate on which solder has been potted in advance while the lens module is mounted together with an IC (Integrated Circuit) chip and other electronic components. Since the electronic component and the lens module can be simultaneously mounted on the substrate by melting the solder in the reflow process, an imaging lens excellent in heat resistance that can withstand the reflow process is required.
 上記の要求に応えるため、ウェハスケールレンズを含む様々なタイプの撮像レンズが特許文献1~6で提案されている。特許文献1~3には2枚のレンズブロックで構成された撮像レンズ(2ブロック構成)が提案されており、そのなかでも特許文献3に記載の撮像レンズにはレンズ基板上に回折面が適用されている。特許文献4、5には、収差補正能力の向上を目的として、3枚のレンズブロックで構成された撮像レンズ(3ブロック構成)が提案されている。 In order to meet the above requirements, various types of imaging lenses including a wafer scale lens have been proposed in Patent Documents 1 to 6. Patent Documents 1 to 3 propose an imaging lens composed of two lens blocks (two-block configuration). Among them, the imaging lens described in Patent Document 3 has a diffractive surface on the lens substrate. Has been. Patent Documents 4 and 5 propose an imaging lens (three-block configuration) composed of three lens blocks for the purpose of improving aberration correction capability.
特許第3929479号公報Japanese Patent No. 3929479 特許第3976781号公報Japanese Patent No. 3976781 特開2006-323365号公報JP 2006-323365 A 特許第3946245号公報Japanese Patent No. 3946245 特許第3976782号公報Japanese Patent No. 3977782 国際公開2008/102775号International Publication No. 2008/102775
 特許文献1、2で提案されている撮像レンズでは、収差補正能力が不足しており、固体撮像素子の高画素化に対応することができない。特許文献3で提案されている撮像レンズでは、色収差を補正するためにレンズ基板上に回折面が適用されている。回折面を適用すると製造難度が高くなり、その上、設計波長以外の波長での回折効率低下や不要次数の回折光が発生してしまうため、ゴーストの発生が問題となる。 The imaging lenses proposed in Patent Documents 1 and 2 have insufficient aberration correction capability and cannot cope with an increase in the number of pixels of a solid-state imaging device. In the imaging lens proposed in Patent Document 3, a diffractive surface is applied on a lens substrate to correct chromatic aberration. When a diffraction surface is applied, the manufacturing difficulty increases, and in addition, the diffraction efficiency decreases at wavelengths other than the design wavelength and unnecessary order diffracted light is generated.
 特許文献4、5で提案されている撮像レンズでは、収差補正能力の向上を目的として、3枚のレンズブロックで構成されているが、全長に対してレンズの占める割合が小さくなっている。このため、センサ(撮像素子)の小型化によってレンズが小型化されていくと、レンズ基板及びレンズ部が極めて薄くなってしまう。その結果、製造が極めて困難になり、量産性に欠けることになり、また、リフロー炉で熱をかけた際に破損してしまう可能性が高くなってしまう。また、レンズ部を製造可能な程度にまで厚くしていくと、全長が大きくなってしまう。特許文献6で提案されている撮像レンズの場合は、最終レンズブロックが撮像素子に近接しているため、カバーガラスやIRカットフィルタを挿入することが困難である。 The imaging lenses proposed in Patent Documents 4 and 5 are composed of three lens blocks for the purpose of improving aberration correction capability, but the ratio of the lens to the entire length is small. For this reason, when a lens is miniaturized due to miniaturization of a sensor (imaging device), the lens substrate and the lens portion become extremely thin. As a result, the production becomes extremely difficult, the mass productivity is lacking, and the possibility of breakage when heated in a reflow furnace increases. Further, when the lens part is made thick enough to be manufactured, the total length becomes large. In the case of the imaging lens proposed in Patent Document 6, since the final lens block is close to the imaging element, it is difficult to insert a cover glass or an IR cut filter.
 上記のように、画素ピッチの小型化に伴って撮像素子の小型化が進んでくると、既存のウェハスケールレンズを利用しようとすると、レンズ部等の厚みが薄くなりすぎる。この結果、リフロー炉での破損や製造難易度の上昇といった、収率を低下させてしまう要因が増えてしまい、ウェハスケールレンズは大量生産に向かないものになってしまう。本発明はこのような状況に鑑みてなされたものであって、その目的は、良好な収差性能を有するとともに低コストで大量生産に適したコンパクトな撮像レンズ、それを備えた撮像装置及び携帯端末を提供することにある。 As described above, if the image pickup device is downsized as the pixel pitch is downsized, the thickness of the lens portion or the like becomes too thin when an existing wafer scale lens is used. As a result, factors that reduce the yield, such as breakage in the reflow furnace and increase in manufacturing difficulty, increase, and the wafer scale lens becomes unsuitable for mass production. The present invention has been made in view of such a situation, and an object of the present invention is to provide a compact imaging lens that has good aberration performance and is suitable for mass production at low cost, and an imaging apparatus and a portable terminal including the imaging lens. Is to provide.
 上記の課題は、以下の構成により解決される。 The above problem is solved by the following configuration.
 1.平行平板のレンズ基板と、
 前記レンズ基板の物体側面及び像側面のうちの少なくとも一方に、前記レンズ基板と異なる材料で形成され、正又は負のパワーを有するレンズ部と、
 を備えるレンズブロックを3ブロック含む撮像レンズであって、
 前記レンズブロックは、物体側から順に、正のパワーを有する第1レンズブロック、負のパワーを有する第2レンズブロック、及び正又は負のパワーを有する第3レンズブロックであり、
 前記第2レンズブロックの像側面が近軸で像側に凹の面形状を有する非球面であり、前記第3レンズブロックの物体側面が近軸で物体側に凸の面形状を有する非球面であり、前記第3レンズブロックの像側面が非球面であることを特徴とする撮像レンズ。
1. A parallel plate lens substrate;
A lens portion formed of a material different from that of the lens substrate on at least one of the object side surface and the image side surface of the lens substrate, and having a positive or negative power;
An imaging lens including three lens blocks each including
The lens block is a first lens block having a positive power, a second lens block having a negative power, and a third lens block having a positive or negative power in order from the object side.
The image side surface of the second lens block is an aspherical surface having a paraxial and concave surface shape on the image side, and the object side surface of the third lens block is an aspherical surface having a paraxial and convex surface shape on the object side. An image pickup lens, wherein the image side surface of the third lens block is aspheric.
 2.以下の条件式(1)を満足することを特徴とする前記1記載の撮像レンズ。
0<f/R2i<2.5 …(1)
 ただし、
f:全系の合成焦点距離
R2i:第2レンズブロックの像側面の面頂点での曲率半径
 3.前記第2レンズブロックの像側面の非球面形状が、近軸で凹の面形状を光軸から離れるにつれて負のパワーを弱めるか又は正のパワーを強めるようにした非球面形状であることを特徴とする前記1又は2記載の撮像レンズ。
2. 2. The imaging lens as described in 1 above, wherein the following conditional expression (1) is satisfied.
0 <f / R2i <2.5 (1)
However,
f: Total focal length R2i of the entire system: radius of curvature at the apex of the image side surface of the second lens block The aspherical shape of the image side surface of the second lens block is an aspherical shape in which the negative power is weakened or the positive power is increased with increasing distance from the optical axis in the paraxial concave shape. The imaging lens according to 1 or 2 above.
 4.以下の条件式(2)を満足することを特徴とする前記1から3のいずれか1項に記載の撮像レンズ。
0.4<R3o/R3i<1.3 …(2)
 ただし、
R3o:第3レンズブロックの物体側面の面頂点での曲率半径
R3i:第3レンズブロックの像側面の面頂点での曲率半径
 5.以下の条件式(3)を満足することを特徴とする前記1から4のいずれか1項に記載の撮像レンズ。
0.05<H/Y’<0.20 …(3)
 ただし、
H:第2レンズブロックの像側面を通る軸上光束の最軸外での光軸からの光線高さ
Y’:最大像高
 6. 前記第3レンズブロックの物体側面が、少なくとも1つの変曲点を有する非球面であることを特徴とする前記1から5のいずれか1項に記載の撮像レンズ。
4). 4. The imaging lens according to any one of 1 to 3, wherein the following conditional expression (2) is satisfied.
0.4 <R3o / R3i <1.3 (2)
However,
4. R3o: radius of curvature at the surface vertex of the object side surface of the third lens block R3i: radius of curvature at the surface vertex of the image side surface of the third lens block 5. The imaging lens according to any one of 1 to 4, wherein the following conditional expression (3) is satisfied.
0.05 <H / Y ′ <0.20 (3)
However,
H: Ray height from the optical axis off the most axis of the axial light beam passing through the image side surface of the second lens block Y ′: Maximum image height 6. The imaging lens according to any one of 1 to 5, wherein an object side surface of the third lens block is an aspheric surface having at least one inflection point.
 7.前記第3レンズブロックの物体側面が有する非球面は、光軸から離れるにつれて前記凸の面形状を緩めるような変曲点を有することを特徴とする前記6に記載の撮像レンズ。 7. The imaging lens according to item 6, wherein the aspherical surface of the object side surface of the third lens block has an inflection point that loosens the convex surface shape as the distance from the optical axis increases.
 8.前記第3レンズブロックの像側面が有する非球面は、近軸で像側に凹の面形状を有し、少なくとも1つの変曲点を有することを特徴とする前記1から7のいずれか1項に記載の撮像レンズ。 8. Any one of 1 to 7 above, wherein the aspherical surface of the image side surface of the third lens block has a paraxial and concave surface shape on the image side, and has at least one inflection point. The imaging lens described in 1.
 9.以下の条件式(4)を満足することを特徴とする前記1から8のいずれか1項に記載の撮像レンズ。
0.45<|f1/f2|<1.60 …(4)
 ただし、
f1:第1レンズブロックの合成焦点距離
f2:第2レンズブロックの合成焦点距離
 10.前記第1レンズブロックが物体側に凸面を向けたメニスカス形状を成すことを特徴とする前記1から9のいずれか1項に記載の撮像レンズ。
9. The imaging lens according to any one of 1 to 8, wherein the following conditional expression (4) is satisfied.
0.45 <| f1 / f2 | <1.60 (4)
However,
f1: Composite focal length of the first lens block f2: Composite focal length of the second lens block 10. The imaging lens according to any one of 1 to 9, wherein the first lens block has a meniscus shape with a convex surface facing the object side.
 11.前記第2レンズブロックの物体側面が、物体側に凹の面形状を有することを特徴とする前記1から10のいずれか1項に記載の撮像レンズ。 11. 11. The imaging lens according to claim 1, wherein an object side surface of the second lens block has a concave surface shape on the object side.
 12.前記第1レンズブロックのレンズ基板上に開口絞りが配置されることを特徴とする前記1から11のいずれか1項に記載の撮像レンズ。 12. The imaging lens according to any one of 1 to 11, wherein an aperture stop is disposed on a lens substrate of the first lens block.
 13.前記レンズ基板が全て同じ厚みの平行平板であることを特徴とする前記1から12のいずれか1項に記載の撮像レンズ。 13. 13. The imaging lens according to any one of 1 to 12, wherein the lens substrates are all parallel flat plates having the same thickness.
 14.前記レンズ基板がガラス材料から成ることを特徴とする前記1から13のいずれか1項に記載の撮像レンズ。 14. 14. The imaging lens according to any one of 1 to 13, wherein the lens substrate is made of a glass material.
 15.前記レンズ部が樹脂材料から成ることを特徴とする前記1から14のいずれか1項に記載の撮像レンズ。 15. The imaging lens according to any one of 1 to 14, wherein the lens portion is made of a resin material.
 16.前記樹脂材料が硬化型樹脂材料であることを特徴とする前記15記載の撮像レンズ。 16. 16. The imaging lens according to 15, wherein the resin material is a curable resin material.
 17.前記樹脂材料は、分散された状態の30ナノメートル以下の無機微粒子を含んでいることを特徴とする前記15又は16記載の撮像レンズ。 17. 17. The imaging lens according to 15 or 16, wherein the resin material contains inorganic fine particles of 30 nanometers or less in a dispersed state.
 18.格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、
 前記シールする工程で、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることを特徴とする前記1から17のいずれか1項に記載の撮像レンズ。
18. Sealing the lens substrates with each other via a lattice-shaped spacer member;
The lens block is manufactured by a manufacturing method including a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member in the sealing step. 18. The imaging lens according to any one of items 1 to 17.
 19.前記1から18のいずれか1項に記載の撮像レンズと、
 前記撮像レンズにより受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備えていることを特徴とする撮像装置。
19. The imaging lens according to any one of 1 to 18,
An image pickup apparatus comprising: an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal.
 20.前記19に記載の撮像装置を備えていることを特徴とする携帯端末。 20. 20. A portable terminal comprising the imaging device according to 19.
 本発明によれば、レンズ素子の小型化を最小限に抑えつつ全長を短縮することができ、良好な収差性能を有するとともに低コストで大量生産に適したコンパクトな撮像レンズ、それを備えた撮像装置及び携帯端末を達成することができる。 According to the present invention, it is possible to reduce the overall length while minimizing the miniaturization of the lens element, and it is possible to reduce the overall length of the lens element. The compact imaging lens having good aberration performance and suitable for mass production at a low cost is provided. An apparatus and a portable terminal can be achieved.
本発明の撮像レンズの第1の実施の形態(実施例1)の光学構成図である。It is an optical block diagram of 1st Embodiment (Example 1) of the imaging lens of this invention. 本発明の撮像レンズの第2の実施の形態(実施例2)の光学構成図である。It is an optical block diagram of 2nd Embodiment (Example 2) of the imaging lens of this invention. 本発明の撮像レンズの第3の実施の形態(実施例3)の光学構成図である。It is an optical block diagram of 3rd Embodiment (Example 3) of the imaging lens of this invention. 本発明の撮像レンズの第4の実施の形態(実施例4)の光学構成図である。It is an optical block diagram of 4th Embodiment (Example 4) of the imaging lens of this invention. 本発明の撮像レンズの第5の実施の形態(実施例5)の光学構成図である。It is an optical block diagram of 5th Embodiment (Example 5) of the imaging lens of this invention. 本発明の撮像レンズの第6の実施の形態(実施例6)の光学構成図である。It is an optical block diagram of 6th Embodiment (Example 6) of the imaging lens of this invention. 本発明の撮像レンズの第7の実施の形態(実施例7)の光学構成図である。It is an optical block diagram of 7th Embodiment (Example 7) of the imaging lens of this invention. 実施例1の収差図である。FIG. 6 is an aberration diagram of Example 1. 実施例2の収差図である。FIG. 6 is an aberration diagram of Example 2. 実施例3の収差図である。FIG. 6 is an aberration diagram of Example 3. 実施例4の収差図である。FIG. 6 is an aberration diagram of Example 4. 実施例5の収差図である。FIG. 6 is an aberration diagram of Example 5. 実施例6の収差図である。FIG. 6 is an aberration diagram of Example 6. 実施例7の収差図である。FIG. 10 is an aberration diagram of Example 7. 本発明の撮像レンズを備える撮像装置を搭載した携帯端末の概略構成例を模式的断面で示す図である。It is a figure which shows in a schematic cross section the example of schematic structure of the portable terminal carrying an imaging device provided with the imaging lens of this invention. 本発明の撮像レンズの製造工程の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing process of the imaging lens of this invention.
 以下、本発明に係る撮像レンズ、撮像装置及び携帯端末等を、図面を参照しつつ説明する。本発明に係る撮像レンズは、レンズブロックを3ブロック含むものである。ただし、「レンズブロック」とは、平行平板であるレンズ基板と、その物体側面及び像側面のうちの少なくとも一方に形成され、正又は負のパワーを有するレンズ部と、を備える光学要素をいう。なお、ここで想定しているレンズ基板とレンズ部とは材料が異なっている。 Hereinafter, an imaging lens, an imaging device, a portable terminal, and the like according to the present invention will be described with reference to the drawings. The imaging lens according to the present invention includes three lens blocks. However, the “lens block” refers to an optical element that includes a lens substrate that is a parallel plate and a lens unit that is formed on at least one of the object side surface and the image side surface and has positive or negative power. The lens substrate and the lens portion assumed here are different in material.
 撮像レンズは、レンズブロックを3ブロック含んでいるので、物体側から像側に向かってn番目(n=1、2、3)のレンズブロックを第nレンズブロックとすると、物体側から順に、第1レンズブロック、第2レンズブロック及び第3レンズブロックを有する。そして、第1レンズブロックが正のパワーを有し、第2レンズブロックが負のパワーを有し、第3レンズブロックが正又は負のパワーを有している。第2レンズブロックの像側面は、近軸で像側に凹の面形状を有する非球面であり、第3レンズブロックの物体側面は、近軸で物体側に凸の面形状を有する非球面であり、第3レンズブロックの像側面は非球面である。 Since the imaging lens includes three lens blocks, assuming that the nth (n = 1, 2, 3) lens block from the object side to the image side is the nth lens block, One lens block, a second lens block, and a third lens block. The first lens block has a positive power, the second lens block has a negative power, and the third lens block has a positive or negative power. The image side surface of the second lens block is an aspherical surface having a paraxial and concave surface shape on the image side, and the object side surface of the third lens block is an aspherical surface having a paraxial and convex surface shape on the object side. Yes, the image side surface of the third lens block is aspheric.
 上記のように、第1レンズブロックが正のパワーを有し、第2レンズブロックが負のパワーを有するパワー配置とすることにより、第1レンズブロックで発生した軸上色収差を、第2レンズブロックで効果的に補正することができる。また、第1レンズブロックと第2レンズブロックのパワー配置が正、正と続く場合と比較すると、第2レンズブロックから撮像素子までの距離を容易に確保することができる。このため、第2レンズブロック以降のセンサ(撮像素子)に近い配置にレンズブロックを更に収めることができ、分離した光線に対して効果的に補正の効果を得ることができる。 As described above, with the power arrangement in which the first lens block has positive power and the second lens block has negative power, the axial chromatic aberration generated in the first lens block is reduced to the second lens block. Can be corrected effectively. In addition, the distance from the second lens block to the imaging device can be easily ensured as compared with the case where the power arrangement of the first lens block and the second lens block continues positive and positive. For this reason, a lens block can be further accommodated in the arrangement | positioning near the sensor (imaging element) after a 2nd lens block, and the effect of correction | amendment can be effectively acquired with respect to the isolate | separated light beam.
 また、第2レンズブロックの像側面を近軸で像側に凹の面形状とすることにより、光線を跳ね上げて、最終レンズブロックである第3レンズブロックに対し、光軸から離れた位置に光線を入射させることができる。さらに、第3レンズブロックの物体側面を近軸で物体側に凸の面形状にすることにより、光線をセンサ側に戻してテレセントリック性を高めることができる。そして、第2レンズブロックの像側面と第3レンズブロックの両面を非球面にすることにより、その効果を高めている。 In addition, by making the image side surface of the second lens block a paraxial and concave surface on the image side, the light beam jumps up and is positioned away from the optical axis with respect to the third lens block as the final lens block. A light beam can be incident. Furthermore, by making the object side surface of the third lens block a convex shape on the paraxial side on the paraxial side, the light beam can be returned to the sensor side to enhance telecentricity. The effect is enhanced by making the image side surface of the second lens block and both surfaces of the third lens block aspherical.
 また、レンズ基板を備える本発明に係る撮像レンズにおいて、全長短縮化を図る際には、いかにレンズ基板同士を近づけることができるかが重要となる。全長短縮化を図るため、例えば、レンズ基板同士を近づけない場合は、レンズ基板の厚みを減少させていく必要があり、収率の低下を招く。 Further, in the imaging lens according to the present invention including the lens substrate, it is important how the lens substrates can be brought close to each other when the overall length is shortened. In order to shorten the overall length, for example, when the lens substrates are not brought close to each other, it is necessary to reduce the thickness of the lens substrates, resulting in a decrease in yield.
 全長短縮化のため、第2レンズブロックの像側面を近軸で像側に凹、第3レンズブロックの物体側面を近軸で物体側に凸の面形状にする場合、レンズ基板どうしを近づけてもレンズ面同士が干渉せず、非球面のサグ量を維持できる。このため、性能劣化を防止しつつ全長短縮化を図ることができる。凸面と凸面とを向かい合わせの状態で、レンズ基板同士を近づけて全長短縮化を図ろうとする場合、レンズ面同士が接触しないように、非球面のサグ量を減らす必要があり、十分な収差性能を得ることが困難である。 In order to shorten the overall length, when the image side surface of the second lens block is concave on the image side with the paraxial axis and the object side surface of the third lens block is convex with the paraxial axis toward the object side, the lens substrates should be close to each other. However, the lens surfaces do not interfere with each other, and the aspheric sag amount can be maintained. For this reason, the overall length can be shortened while preventing performance degradation. When trying to shorten the overall length by bringing the lens substrates closer together with the convex and convex surfaces facing each other, it is necessary to reduce the amount of sag of the aspheric surface so that the lens surfaces do not contact each other, and sufficient aberration performance Is difficult to get.
 上記特徴的構成によると、良好な収差性能を有するとともに低コストでの大量生産に適したコンパクトな撮像レンズ及びそれを備えた撮像装置を実現することが可能である。そして、その撮像レンズを備えた撮像装置を携帯端末等のデジタル機器に用いれば、そのコンパクト化、低コスト化、高性能化等に寄与することができる。こういった効果をバランス良く得るとともに、更に高い光学性能、全長の短縮、製造性の向上等を達成するための条件等を以下に説明する。 According to the above characteristic configuration, it is possible to realize a compact imaging lens having good aberration performance and suitable for mass production at a low cost, and an imaging apparatus including the same. And if an imaging device provided with the imaging lens is used for digital equipment, such as a portable terminal, it can contribute to the compactness, cost reduction, high performance, etc. The conditions for achieving such effects in a well-balanced manner and achieving higher optical performance, shortening the overall length, improving manufacturability, etc. will be described below.
 以下の条件式(1)を満足することが望ましい。
0<f/R2i<2.5 …(1)
 ただし、
f:全系の合成焦点距離、
R2i:第2レンズブロックの像側面の面頂点での曲率半径、
である。
It is desirable to satisfy the following conditional expression (1).
0 <f / R2i <2.5 (1)
However,
f: total focal length of the entire system,
R2i: radius of curvature at the apex of the image side surface of the second lens block,
It is.
 条件式(1)は、第2レンズブロックの像側面の面頂点での曲率半径を適切に設定するための好ましい条件範囲を規定している。条件式(1)の下限を上回ると、曲率半径が大きくなりすぎず、光線を跳ね上げる効果を効果的に得ることが可能となる。一方、条件式(1)の上限を下回ると、曲率半径が小さくなりすぎず、光線の跳ね上げすぎを抑えることができる。つまり、条件式(1)の上限を上回ると、光線を跳ね上げすぎることによってセンサに対する主光線の角度がきつくなり、第3レンズブロックで光線をセンサ側に曲げることが困難になる。 Conditional expression (1) defines a preferable condition range for appropriately setting the radius of curvature at the surface vertex of the image side surface of the second lens block. If the lower limit of conditional expression (1) is exceeded, the radius of curvature does not become too large, and the effect of jumping up the light beam can be obtained effectively. On the other hand, if the upper limit of conditional expression (1) is not reached, the radius of curvature does not become too small, and it is possible to prevent the rays from jumping up too much. That is, if the upper limit of conditional expression (1) is exceeded, the angle of the chief ray with respect to the sensor becomes too tight due to the light beam jumping too much, making it difficult for the third lens block to bend the light beam toward the sensor.
 以下の条件式(1a)を満足することが更に望ましい。
0<f/R2i<1.5 …(1a)
 この条件式(1a)は、上記条件式(1)が規定している条件範囲のなかでも、上記観点等に基づいた更に好ましい条件範囲を規定しており、条件式(1a)をその上限を下回るように満たすことによって、ペッツバール和を小さく保ちながら色収差を良好に補正することができる。
It is more desirable to satisfy the following conditional expression (1a).
0 <f / R2i <1.5 (1a)
This conditional expression (1a) defines a more preferable conditional range based on the above viewpoints, etc., among the conditional ranges defined by the conditional expression (1). By satisfying the lower limit, chromatic aberration can be favorably corrected while keeping the Petzval sum small.
 第2レンズブロックの像側面の非球面形状は、近軸で凹の面形状を光軸から離れるにつれて負のパワーを弱めるか又は正のパワーを強めるようにした非球面形状であることが望ましい。上記の非球面形状にすると、画面周辺に結像する光束を跳ね上げすぎないようにして、テレセントリック性を高めることができる。また、そのような非球面形状を採用することにより、サグ量の小さな面形状にすることができる。これは、レンズ基板のような厚みの制約が生じつつも、全長の短縮と光学性能の維持を図る上で効果的である。 It is desirable that the aspherical shape of the image side surface of the second lens block is an aspherical shape in which the negative power is weakened or the positive power is increased as the paraxial concave shape is moved away from the optical axis. When the above aspherical shape is used, the telecentricity can be enhanced by preventing the light beam focused on the periphery of the screen from jumping up too much. Further, by adopting such an aspherical shape, a surface shape with a small sag amount can be obtained. This is effective in reducing the overall length and maintaining the optical performance while the thickness is limited as in the lens substrate.
 以下の条件式(2)を満足することが望ましい。
0.4<R3o/R3i<1.3 …(2)
 ただし、
R3o:第3レンズブロックの物体側面の面頂点での曲率半径、
R3i:第3レンズブロックの像側面の面頂点での曲率半径、
である。
It is desirable to satisfy the following conditional expression (2).
0.4 <R3o / R3i <1.3 (2)
However,
R3o: radius of curvature at the surface vertex of the object side surface of the third lens block,
R3i: radius of curvature at the apex of the image side surface of the third lens block,
It is.
 第3レンズブロックは最もセンサに近く、軸上光線は光軸からの高さが低い位置を通るので、条件式(2)の下限を上回ると、全系のパワーや球面収差に影響なく、斜光束の進行方向を曲げることができる。一方で、条件式(2)の上限を下回ると、全系のパワーや球面収差等には影響せずに、ペッツバール和を小さくすることができる。 Since the third lens block is closest to the sensor and the axial ray passes through a position where the height from the optical axis is low, if the lower limit of conditional expression (2) is exceeded, there is no effect on the power or spherical aberration of the entire system, and the oblique The traveling direction of the light beam can be bent. On the other hand, if the upper limit of conditional expression (2) is not reached, the Petzval sum can be reduced without affecting the power of the entire system, spherical aberration, and the like.
 以下の条件式(2a)を満足することが更に望ましい。
0.7<R3o/R3i<1.3 …(2a)
 この条件式(2a)は、上記条件式(2)が規定している条件範囲のなかでも、上記観点等に基づいた更に好ましい条件範囲を規定している。第3レンズブロックは最もセンサに近く、軸上光線は光軸からの高さが低い位置を通るので、条件式(2a)をその下限を上回るように満たすことによって、ペッツバール和が大きくなりすぎないようにすることができる。
It is more desirable to satisfy the following conditional expression (2a).
0.7 <R3o / R3i <1.3 (2a)
The conditional expression (2a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (2). Since the third lens block is closest to the sensor and the axial ray passes through a position where the height from the optical axis is low, the Petzval sum does not become too large by satisfying conditional expression (2a) to exceed the lower limit. Can be.
 以下の条件式(3)を満足することが望ましい。
0.05<H/Y’<0.20 …(3)
 ただし、
H:第2レンズブロックの像側面を通る軸上光束の最軸外での光軸からの光線高さ、
Y’:最大像高、
である。
It is desirable to satisfy the following conditional expression (3).
0.05 <H / Y ′ <0.20 (3)
However,
H: the height of the light beam from the optical axis off the most axis of the axial light beam passing through the image side surface of the second lens block,
Y ′: maximum image height,
It is.
 条件式(3)の下限を上回ると、全系に与える負のパワーが小さくなりすぎず、バックフォーカスを十分に確保することができる。一方、条件式(3)の上限を下回ると、他の収差に対する影響を小さくしつつ負のパワーを強めることができ、ペッツバール和を小さくすることができる。 If the lower limit of conditional expression (3) is exceeded, the negative power applied to the entire system does not become too small, and a sufficient back focus can be secured. On the other hand, below the upper limit of conditional expression (3), the negative power can be increased while reducing the influence on other aberrations, and the Petzval sum can be reduced.
 第3レンズブロックの物体側面は、少なくとも1つの変曲点を有する非球面であることが望ましい。第3レンズブロックの物体側面には、第2レンズブロックで跳ね上げられた光線が入射する。第3レンズブロックの物体側面を、近軸付近では凸形状を成しつつ光軸から離れるにつれて凸形状を緩めるような変曲点を有するような面形状にすることによって、サグ量の小さな面形状とすることができる。これは、レンズ基板のような厚みの制約が生じつつも、全長の短縮と光学性能の維持を図る上で効果的である。 The object side surface of the third lens block is preferably an aspherical surface having at least one inflection point. The light beam bounced up by the second lens block is incident on the object side surface of the third lens block. A surface shape with a small sag amount by making the object side surface of the third lens block into a surface shape that has a convex shape near the paraxial axis but has an inflection point that loosens the convex shape as it moves away from the optical axis. It can be. This is effective in reducing the overall length and maintaining the optical performance while the thickness is limited as in the lens substrate.
 第3レンズブロックの像側面は、近軸で像側に凹の面形状を有し、少なくとも1つの変曲点を有することが望ましい。最も像側に位置するレンズブロックは撮像素子に近接しており、光線束が分離してレンズブロックに入射する。そのため、効果的に非球面の効果を得ることができる。また、近軸光線付近で凹面形状を有し、かつ、変曲点を有する面形状とすることで、レンズ周辺にかけて負のパワーを弱めるか又は正のパワーを強めることができ、画面周辺の光束を収束させ、テレセントリック性の向上と共に歪曲収差の補正をバランス良く実現することができる。 It is desirable that the image side surface of the third lens block has a paraxial concave shape on the image side and has at least one inflection point. The lens block located closest to the image side is close to the image sensor, and the light beam is separated and enters the lens block. Therefore, an aspherical effect can be obtained effectively. In addition, by forming a concave shape near the paraxial ray and having an inflection point, the negative power can be weakened or the positive power can be increased around the lens, and the luminous flux around the screen , The telecentricity can be improved and the distortion can be corrected with a good balance.
 以下の条件式(4)を満足することが望ましい。
0.45<|f1/f2|<1.60 …(4)
 ただし、
f1:第1レンズブロックの合成焦点距離、
f2:第2レンズブロックの合成焦点距離、
である。
It is desirable to satisfy the following conditional expression (4).
0.45 <| f1 / f2 | <1.60 (4)
However,
f1: Composite focal length of the first lens block,
f2: Composite focal length of the second lens block,
It is.
 条件式(4)の下限を上回ると、第1レンズブロックのパワーに比べて第2レンズブロックのパワーが弱くなりすぎず、第1レンズブロックで発生した球面収差、像面湾曲収差等を第2レンズブロックで効果的に補正することができる。一方、条件式(4)の上限を下回ると、第1レンズブロックのパワーに比べて第2レンズブロックのパワーが強くなりすぎず、第1レンズブロックで発生した球面収差、像面湾曲収差等の、第2レンズブロックでの過剰な補正を防止することができる。 When the lower limit of conditional expression (4) is exceeded, the power of the second lens block does not become too weak compared to the power of the first lens block, and the spherical aberration, field curvature aberration, etc. generated in the first lens block are second. The lens block can be effectively corrected. On the other hand, below the upper limit of conditional expression (4), the power of the second lens block does not become too strong compared to the power of the first lens block, and the spherical aberration, field curvature aberration, etc. Excessive correction in the second lens block can be prevented.
 以下の条件式(4a)を満足することが更に望ましい。
0.45<|f1/f2|<1.00 …(4a)
 この条件式(4a)は、上記条件式(4)が規定している条件範囲のなかでも、上記観点等に基づいた更に好ましい条件範囲を規定している。条件式(4a)をその上限を下回るように満たすことによって、第2レンズブロックのパワーを第1レンズブロックのパワーに対して同等以下とすることができ、第1レンズブロックから入射した光線を第2レンズブロックが発散させすぎず、第1レンズブロックと第2レンズブロックの相対的な偏心による性能劣化を防止することができる。
It is more desirable to satisfy the following conditional expression (4a).
0.45 <| f1 / f2 | <1.00 (4a)
The conditional expression (4a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (4). By satisfying the conditional expression (4a) so as to fall below the upper limit, the power of the second lens block can be made equal to or less than the power of the first lens block, and the light rays incident from the first lens block The two lens blocks do not diverge too much, and performance degradation due to the relative decentration of the first lens block and the second lens block can be prevented.
 第1レンズブロックは、物体側に凸面を向けたメニスカス形状を成すことが望ましい。第1レンズブロックを、その全体で物体側に凸形状を成す正のメニスカスレンズとすることにより、主点位置を物体側へ離すことができ、空気間隔をあけることなく、負の第2レンズブロックとの主点間隔を大きくすることができる。これにより、全長のより短縮化を達成することができる。 It is desirable that the first lens block has a meniscus shape with a convex surface facing the object side. By making the first lens block a positive meniscus lens having a convex shape on the object side as a whole, the principal point position can be separated to the object side, and the negative second lens block can be separated without leaving an air gap. And the principal point interval can be increased. Thereby, shortening of the full length can be achieved.
 第2レンズブロックの物体側面は、物体側に凹の面形状を有することが望ましい。第2レンズブロックの物体側面を凹面形状にすることにより、第1レンズブロックにおいて軸上光線が光軸から低い位置を通る所で負のパワーを持たせることができる。したがって、ペッツバール和を小さくすることができる。 It is desirable that the object side surface of the second lens block has a concave surface shape on the object side. By making the object side surface of the second lens block concave, it is possible to give negative power where the axial ray passes through a low position from the optical axis in the first lens block. Therefore, the Petzval sum can be reduced.
 最終レンズブロックである第3レンズブロックがセンサ(撮像素子)前のカバーガラスを兼ねた構成(つまり、カバーガラスが無い構成)にしてもよい。本発明では、レンズ部に基板ガラスを含み、第3レンズブロックをセンサ前のカバーガラスに兼ねることができる。これにより、低コスト化が可能となる。 The third lens block, which is the final lens block, may also serve as a cover glass before the sensor (imaging device) (that is, a structure without a cover glass). In the present invention, the lens portion includes the substrate glass, and the third lens block can also serve as the cover glass before the sensor. Thereby, cost reduction is attained.
 以下の条件式(5)を満足することが望ましい。
Ar/TL<0.5 …(5)
 ただし、
Ar:撮像レンズのレンズ全長における軸上空気間隔の総和(カバーガラスが入っている場合には、空気換算した厚みで計算した値)、
TL:撮像レンズのレンズ全長、
である。
It is desirable to satisfy the following conditional expression (5).
Ar / TL <0.5 (5)
However,
Ar: Sum of axial air distances in the entire lens length of the imaging lens (in the case where a cover glass is included, a value calculated by the thickness in terms of air),
TL: total lens length of the imaging lens,
It is.
 条件式(5)を満足することにより、レンズブロック間に含まれる気体の含有量が低減される。リフロー処理時に250℃~280℃といった高い温度環境に撮像レンズが置かれた場合、レンズブロック間に含まれる気体が膨張し、密閉されたカメラモジュールに大きな圧力がかかってしまう。条件式(5)を満たせば、その圧力によってレンズブロックが破損するのを防ぐことができる。 By satisfying conditional expression (5), the gas content contained between the lens blocks is reduced. When the imaging lens is placed in a high temperature environment of 250 ° C. to 280 ° C. during the reflow process, the gas contained between the lens blocks expands and a large pressure is applied to the sealed camera module. If the conditional expression (5) is satisfied, the lens block can be prevented from being damaged by the pressure.
 第1レンズブロックが全体として物体側に凸のメニスカス形状を成している場合、以下の条件式(6)を満足することが望ましい。
10<ν1o-ν1i<40 …(6)
 ただし、
ν1o:第1レンズブロックの物体側面を構成するレンズ部のアッベ数、
ν1i:第1レンズブロックの像側面を構成するレンズ部のアッベ数、
である。
When the first lens block as a whole has a convex meniscus shape on the object side, it is desirable to satisfy the following conditional expression (6).
10 <ν1o−ν1i <40 (6)
However,
v1o: Abbe number of the lens part constituting the object side surface of the first lens block,
ν1i: Abbe number of the lens part constituting the image side surface of the first lens block,
It is.
 条件式(6)を満足することにより、第1レンズブロックの物体側面で発生した軸上色収差を、第1レンズブロックの像側面で効果的に補正することができる。 By satisfying conditional expression (6), the longitudinal chromatic aberration generated on the object side surface of the first lens block can be effectively corrected on the image side surface of the first lens block.
 開口絞りは、第1レンズブロックのレンズ基板上に配置されることが望ましい。開口絞りをレンズ基板上に配置することは、レンズ部とレンズ基板との間に開口絞りを配置することである。この構成によると、光学部材を削減できると共に、レンズ基板部へのIR(InfraRed)カットコートやAR(Anti-Reflection)コートの蒸着処理を行う際に、開口絞りも同時に蒸着処理で形成することが可能となる。したがって、低コスト化を達成することができるとともに量産性を向上させることができる。また、絞りをレンズ基板内に配置すれば、第1レンズ面に対してコンセントリックとなるように主光線が通るようになり、面に対する偏角が小さくなるため、偏心に対する性能劣化を低減させることができるようになる。なお、開口絞りは、第1レンズブロックのレンズ基板の物体側面上に配置することがより望ましい。撮像レンズ内の最も物体側に配置することで、射出瞳位置を撮像素子から離すことができ、テレセントリック性の向上が可能になる。 The aperture stop is preferably disposed on the lens substrate of the first lens block. Arranging the aperture stop on the lens substrate means arranging the aperture stop between the lens portion and the lens substrate. According to this configuration, the number of optical members can be reduced, and the aperture stop can also be formed by the vapor deposition process at the same time when performing the IR (InfraRed) cut coat or AR (Anti-Reflection) coat deposition process on the lens substrate portion. It becomes possible. Therefore, cost reduction can be achieved and mass productivity can be improved. In addition, if the aperture is arranged in the lens substrate, the principal ray passes through the first lens surface so as to be concentric, and the declination angle with respect to the surface is reduced, thereby reducing performance deterioration due to decentration. Will be able to. The aperture stop is more preferably disposed on the object side surface of the lens substrate of the first lens block. By disposing the lens on the most object side in the imaging lens, the exit pupil position can be separated from the imaging device, and telecentricity can be improved.
 全てのレンズ基板は平行平板であることが望ましい。全てのレンズ基板が平行平板であることによって加工が容易になり、更に全てのレンズ基板がレンズ部との界面においてパワーを持たないため、像面での焦点位置に対する面精度の影響を低減することができる。 It is desirable that all lens substrates are parallel plates. Since all lens substrates are parallel plates, processing becomes easy, and since all lens substrates do not have power at the interface with the lens unit, the influence of surface accuracy on the focal position on the image plane is reduced. Can do.
 レンズ基板は全て同じ厚みの平行平板であることが望ましい。各レンズブロックのレンズ基板の厚みを同一にすることで、ガラス基板の研磨等の製造を同じ条件で行うことが可能となる。したがって、低コストでの大量生産が可能となる。 It is desirable that all lens substrates are parallel plates with the same thickness. By making the thickness of the lens substrate of each lens block the same, it becomes possible to manufacture the glass substrate under the same conditions. Therefore, mass production at low cost becomes possible.
 レンズ基板はガラス材料から成ることが望ましい。ガラスは樹脂に比べて軟化温度が高いため、レンズ基板をガラスで構成すると、リフロー処理を行っても容易に変形せず、また低コスト化が可能である。高軟化温度のガラスでレンズ基板を構成することが、更に望ましい。 The lens substrate is preferably made of a glass material. Since glass has a higher softening temperature than resin, if the lens substrate is made of glass, it is not easily deformed even if reflow treatment is performed, and the cost can be reduced. More preferably, the lens substrate is made of glass having a high softening temperature.
 レンズ部は樹脂材料から成ることが望ましい。レンズ部に使用する材料として、樹脂材料はガラス材料に比べて加工成形性が良く、また低コスト化も可能である。 ¡The lens part is preferably made of resin material. As a material used for the lens portion, a resin material has better processability than a glass material and can be reduced in cost.
 前記樹脂材料は硬化型樹脂材料であることが望ましい。レンズ部を硬化型の樹脂材料で構成することにより、ウェハ状のレンズ基板に対し金型で大量のレンズ部を同時に硬化させ形成することが可能となる。したがって、量産性を向上させることができる。ここでいう硬化型樹脂材料とは、熱によって硬化する樹脂材料、光によって硬化する樹脂材料等のエネルギー硬化型の樹脂材料を指し、その硬化には熱、光等のエネルギーを与える種々の手段が使用可能である。 The resin material is preferably a curable resin material. By configuring the lens portion with a curable resin material, it becomes possible to simultaneously cure and form a large number of lens portions with a mold on a wafer-like lens substrate. Therefore, mass productivity can be improved. Here, the curable resin material refers to an energy curable resin material such as a resin material that is cured by heat and a resin material that is cured by light. Various means for applying energy such as heat and light are used for the curing. It can be used.
 硬化型の樹脂材料としては、UV硬化型の樹脂材料を用いることが望ましい。UV硬化型の樹脂材料を用いれば、硬化時間の短縮により量産性を改善することができる。また、近年では耐熱性に優れた硬化型の樹脂材料が開発されており、耐熱性の樹脂を用いることでリフロー処理に耐えるカメラモジュールに対応することができ、より安価なカメラモジュールを提供することができる。ここでいうリフロー処理とは、プリント基板(回路基板)上にペースト状のはんだを印刷し、その上に部品(レンズモジュール)を載せてから熱を加えてはんだを溶かし、センサ外部端子と回路基板とを自動溶接する処理のことである。 As the curable resin material, it is desirable to use a UV curable resin material. If a UV curable resin material is used, mass productivity can be improved by shortening the curing time. In recent years, curable resin materials with excellent heat resistance have been developed. By using heat-resistant resins, camera modules that can withstand reflow processing can be used, and a more inexpensive camera module can be provided. Can do. The reflow process here refers to printing solder paste on a printed circuit board (circuit board), placing a component (lens module) on it, then applying heat to melt the solder, sensor external terminals and circuit board This is a process of automatic welding.
 樹脂材料は、30ナノメートル以下の無機微粒子を分散された状態で含むことが望ましい。樹脂材料にて構成されるレンズ部に30ナノメートル以下の無機微粒子を分散させることで、温度が変化しても性能の劣化や像点位置変動を低減させることが可能となる。しかも、光透過率を低下させることなく、環境変化に関わらず優れた光学特性を有する撮像レンズを得ることができる。一般に透明な樹脂材料に微粒子を混合させると、光の散乱が生じて透過率が低下するため、光学材料として使用することは困難であるが、微粒子の大きさを透過光束の波長よりも小さくすることにより、散乱が実質的に発生しないようにすることができる。 It is desirable that the resin material contains inorganic fine particles of 30 nanometers or less in a dispersed state. By dispersing inorganic fine particles of 30 nanometers or less in a lens portion made of a resin material, it is possible to reduce performance deterioration and image point position fluctuation even when the temperature changes. In addition, it is possible to obtain an imaging lens having excellent optical characteristics regardless of environmental changes without reducing the light transmittance. Generally, when fine particles are mixed in a transparent resin material, light scattering occurs and the transmittance decreases, so it is difficult to use as an optical material. However, the size of the fine particles is made smaller than the wavelength of the transmitted light beam. In this way, scattering can be substantially prevented from occurring.
 また、樹脂材料はガラス材料に比べて屈折率が低いことが欠点であったが、屈折率の高い無機粒子を、母材となる樹脂材料に分散させると、屈折率を高くできることがわかってきた。具体的には、母材となる樹脂材料に30ナノメートル以下、望ましくは20ナノメートル以下、更に望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供することができる。 In addition, the resin material has a disadvantage that the refractive index is lower than that of the glass material, but it has been found that the refractive index can be increased by dispersing inorganic particles having a high refractive index in the resin material as a base material. . Specifically, a material having an arbitrary temperature dependency is provided by dispersing inorganic particles of 30 nanometers or less, desirably 20 nanometers or less, and more desirably 15 nanometers or less in a resin material as a base material. can do.
 さらに、樹脂材料は温度が上昇することにより屈折率が低下してしまうが、温度が上昇すると屈折率が上昇する無機粒子を、母材となる樹脂材料に分散させると、これらの性質を打ち消し合うように作用するので、温度変化に対する屈折率変化を小さくできることも知られている。また、逆に、温度が上昇すると屈折率が低下する無機粒子を母材となる樹脂材料に分散させると、温度変化に対する屈折率変化を大きくできることも知られている。具体的には、母材となる樹脂材料に30ナノメートル以下、望ましくは20ナノメートル以下、更に望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供することができる。例えば、アクリル系樹脂に酸化アルミニウム(Al)やニオブ酸リチウム(LiNbO)の微粒子を分散させることにより、高い屈折率の樹脂材料が得られるとともに、温度に対する屈折率変化を小さくすることができる。 Furthermore, although the refractive index of the resin material decreases as the temperature rises, if inorganic particles whose refractive index increases as the temperature rises are dispersed in the resin material as the base material, these properties cancel each other. It is known that the refractive index change with respect to the temperature change can be reduced. On the other hand, it is also known that when the inorganic particles whose refractive index decreases as the temperature rises are dispersed in the resin material as the base material, the refractive index change with respect to the temperature change can be increased. Specifically, a material having an arbitrary temperature dependency is provided by dispersing inorganic particles of 30 nanometers or less, desirably 20 nanometers or less, and more desirably 15 nanometers or less in a resin material as a base material. can do. For example, by dispersing fine particles of aluminum oxide (Al 2 O 3 ) or lithium niobate (LiNbO 3 ) in an acrylic resin, a resin material having a high refractive index can be obtained, and the refractive index change with respect to temperature can be reduced. Can do.
 次に、屈折率の温度変化Aについて詳細に説明する。屈折率の温度変化Aは、ローレンツ・ローレンツの式に基づいて、屈折率nを温度tで微分することにより、以下の式(FA)で表される。 Next, the temperature change A of the refractive index will be described in detail. The temperature change A of the refractive index is expressed by the following formula (FA) by differentiating the refractive index n by the temperature t based on the Lorentz-Lorentz formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ・・・(FA)
 ただし、式(FA)中、
α:線膨張係数、
[R]:分子屈折、
である。
... (FA)
However, in formula (FA),
α: linear expansion coefficient,
[R]: molecular refraction,
It is.
 樹脂材料の場合は、一般に式(FA)中の第1項に比べ第2項の寄与が小さく、ほぼ無視できる。例えば、PMMA(Polymethyl Methacrylate)樹脂の場合、線膨張係数αは7×10-5であり、上記式(FA)に代入すると、dn/dt=-1.2×10-4[/℃]となり、実測値とおおむね一致する。 In the case of a resin material, the contribution of the second term is generally smaller than the first term in the formula (FA) and can be almost ignored. For example, in the case of PMMA (Polymethyl Methacrylate) resin, the linear expansion coefficient α is 7 × 10 −5 , and if it is substituted into the above formula (FA), dn / dt = −1.2 × 10 −4 [/ ° C.] This is almost the same as the measured value.
 ここで、微粒子、望ましくは無機微粒子を樹脂材料中に分散させることにより、実質的に式(FA)の第2項の寄与を大きくし、第1項の線膨張による変化と打ち消し合うようにさせている。具体的には、従来は-1.2×10-4程度であった変化を、絶対値で8×10-5未満に抑えることが望ましい。また、第2項の寄与を更に大きくして、母材の樹脂材料とは逆の温度特性を持たせることも可能である。つまり、温度が上昇することによって屈折率が低下するのではなく、逆に、屈折率が上昇するような素材を得ることもできる。混合させる割合は、屈折率の温度に対する変化の割合をコントロールするために、適宜増減できるし、複数種類のナノサイズの無機粒子をブレンドして分散させることも可能である。 Here, by dispersing fine particles, desirably inorganic fine particles, in the resin material, the contribution of the second term of the formula (FA) is substantially increased so that the change due to the linear expansion of the first term can be counteracted. ing. Specifically, it is desirable to suppress the change of about −1.2 × 10 −4 in the past to an absolute value of less than 8 × 10 −5 . In addition, the contribution of the second term can be further increased to have a temperature characteristic opposite to that of the resin material of the base material. In other words, it is possible to obtain a material whose refractive index increases instead of decreasing the refractive index as the temperature increases. The mixing ratio can be appropriately increased or decreased in order to control the rate of change of the refractive index with respect to the temperature, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
 撮像レンズは、格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることが望ましい。例えば、全てのレンズがレンズブロックから成る撮像レンズでは、被写体像を形成する撮像レンズ又はそれを含む撮像装置を複数製造する製造方法において、格子状のスペーサ部材を介してレンズ基板同士をシールする工程と、一体化されたレンズ基板及びスペーサ部材をそのスペーサ部材の格子枠で切断する工程と、を備えることにより、容易に生産することが可能となる。これにより、安価な撮像レンズの量産が可能となる。 The imaging lens includes a step of sealing the lens substrates together via a lattice-shaped spacer member, and a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member Thus, it is preferable that the lens block is manufactured. For example, in an imaging lens in which all lenses are lens blocks, in a manufacturing method for manufacturing a plurality of imaging lenses for forming a subject image or an imaging device including the imaging lens, a process of sealing lens substrates with a lattice-shaped spacer member And a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member, thereby enabling easy production. Thereby, mass production of an inexpensive imaging lens becomes possible.
 撮像レンズを複数製造する製造方法には、例えばリフロー法やレプリカ法が用いられる。リフロー法では、CVD(Chemical Vapor Deposition)法による低軟化点ガラス成膜を行い、リソグラフィーとドライエッチングによる微細加工を行い、熱処理によるガラスリフローを行うことにより、ガラス基板上に多数のレンズが同時に作製される。レプリカ法では、レンズウェハ上に硬化性の樹脂を用いて金型で同時に大量のレンズ形状を転写することにより、多数のレンズが同時に作製される。いずれの方法によっても、多数のレンズを同時に作製することができるので、低コスト化が可能である。例えば、上述の方法で製造した異なるレンズ(レンズ基板上にレンズ部を作製して、1個ずつ切り離したもので、レンズ部が異なる2つのレンズ)を、平板部分同士で貼り合わせると、第1のレンズ部、第1の平行平板、第2の平行平板、第2のレンズ部の順に配列されたレンズブロックとなる。 For example, a reflow method or a replica method is used as a manufacturing method for manufacturing a plurality of imaging lenses. In the reflow method, a low softening point glass film is formed by the CVD (Chemical Vapor Deposition) method, fine processing is performed by lithography and dry etching, and glass reflow is performed by heat treatment, so that a large number of lenses are simultaneously formed on the glass substrate. Is done. In the replica method, a large number of lenses are simultaneously formed on a lens wafer by transferring a large amount of lens shapes with a mold using a curable resin. In any method, a large number of lenses can be manufactured at the same time, so that the cost can be reduced. For example, when different lenses manufactured by the above-described method (two lenses having different lens parts manufactured by producing lens parts on a lens substrate and separated one by one) are bonded to each other, the first Lens block, a first parallel flat plate, a second parallel flat plate, and a second lens unit.
 図16に、撮像レンズの製造工程の一例を概略断面図で示す。ただし、ここでは説明を簡単にするために、第3レンズブロックを省略して示す。第1レンズブロックC1は、平行平板の第1レンズ基板L12と、その一方の平面に形成された複数の第1oレンズ部L11と、他方の平面に形成された複数の第1iレンズ部L13と、で構成されている。第1レンズ基板L12は1枚の平行平板で構成してもよく、上述したように2枚の平行平板を貼り合わせて構成してもよい。第2レンズブロックC2は、平行平板から成る第2レンズ基板L22と、その一方の平面に形成された複数の第2oレンズ部L21と、他方の平面に形成された複数の第2iレンズ部L23と、で構成されている。第1レンズ基板L12と同様、第2レンズ基板L22は1枚の平行平板で構成してもよく、上述したように2枚の平行平板を貼り合わせて構成してもよい。第3レンズブロック(不図示)に関しても、第1、第2レンズブロックC1、C2と同様にして構成される。 FIG. 16 is a schematic sectional view showing an example of the manufacturing process of the imaging lens. However, in order to simplify the description, the third lens block is omitted here. The first lens block C1 includes a parallel-plate first lens substrate L12, a plurality of first o lens portions L11 formed on one plane, a plurality of first i lens portions L13 formed on the other plane, It consists of The first lens substrate L12 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above. The second lens block C2 includes a second lens substrate L22 made of a parallel plate, a plurality of second o lens portions L21 formed on one plane, and a plurality of second i lens portions L23 formed on the other plane. , Is composed of. Similar to the first lens substrate L12, the second lens substrate L22 may be constituted by one parallel flat plate, or may be constituted by bonding two parallel flat plates as described above. The third lens block (not shown) is also configured in the same manner as the first and second lens blocks C1 and C2.
 格子状のスペーサ部材B1は、各レンズブロック間隔を規定して一定に保つものであり、3段格子になっていて、格子の穴の部分に各レンズ部分が配置されている。基板B2は、マイクロレンズアレイを含むウェハレベルのセンサーチップサイズパッケージ、あるいはセンサーカバーガラス又はIRカットフィルタ等の平行平面板(図15中の平行平面板PTに相当するもの)である。基板B2上でスペーサ部材B1を介してレンズ基板同士をシールし、一体化された第1レンズ基板L12、第2レンズ基板L22、第3レンズ基板(不図示)及びスペーサ部材B1を、スペーサ部材B1の格子枠(破線Qの位置)で切断すると、3枚玉構成の撮像レンズが複数得られる。このように、第1レンズブロックC1、第2レンズブロックC2及び第3レンズブロック(不図示)が複数組まれた状態から撮像レンズを切り離すようにすれば、レンズ間隔の調整や組み立てを撮像レンズ毎に行う必要が無いので大量生産が可能となる。しかも、スペーサ部材B1を格子形状にすることにより、それを切り離す際の印とすることができる。これは本技術分野における趣旨に添うものであり、安価なレンズ系の量産に寄与することができる。 The grid-like spacer member B1 defines a distance between the lens blocks and keeps the lens block constant. The grid-like spacer member B1 is a three-stage grid, and each lens portion is disposed in a hole portion of the grid. The substrate B2 is a wafer level sensor chip size package including a microlens array, or a parallel plane plate (corresponding to the parallel plane plate PT in FIG. 15) such as a sensor cover glass or an IR cut filter. The lens substrates are sealed on the substrate B2 via the spacer member B1, and the first lens substrate L12, the second lens substrate L22, the third lens substrate (not shown), and the spacer member B1 integrated with each other are separated from the spacer member B1. A plurality of imaging lenses having a three-lens configuration are obtained by cutting at a lattice frame (position of broken line Q). In this way, if the imaging lens is separated from a state where a plurality of first lens blocks C1, second lens blocks C2, and third lens blocks (not shown) are assembled, adjustment and assembly of the lens interval is performed for each imaging lens. Therefore, mass production is possible. In addition, by making the spacer member B1 into a lattice shape, it can be used as a mark when separating it. This is in accordance with the gist of the present technical field, and can contribute to mass production of an inexpensive lens system.
 本発明に係る撮像レンズは、画像入力機能付きデジタル機器(例えば携帯端末)への使用に適しており、これを撮像素子等と組み合わせることにより、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像装置を構成することができる。撮像装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(被写体)側から順に、物体の光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を備えることにより構成される。そして、撮像素子の受光面上に被写体の光学像が形成されるように、前述した特徴的構成を有する撮像レンズが配置されることにより、低コストで高い性能を有する撮像装置やそれを備えたデジタル機器(例えば、携帯端末)を実現することができる。 The imaging lens according to the present invention is suitable for use in a digital device (for example, a portable terminal) with an image input function. By combining this with an imaging device or the like, an image of a subject is optically captured and an electrical signal is obtained. Can be configured. The imaging device is an optical device that is a main component of a camera used for still image shooting or moving image shooting of a subject. For example, an imaging lens that forms an optical image of an object in order from the object (subject) side, and the imaging thereof And an imaging device that converts an optical image formed by the lens into an electrical signal. Then, an imaging lens having the above-described characteristic configuration is arranged so that an optical image of a subject is formed on the light receiving surface of the imaging element, and an imaging device having high performance at low cost and the same are provided. A digital device (for example, a portable terminal) can be realized.
 カメラの例としては、デジタルカメラ、ビデオカメラ、監視カメラ、車載カメラ、テレビ電話用カメラ等が挙げられ、また、パーソナルコンピュータ、携帯端末(例えば、携帯電話、モバイルコンピュータ等の小型で携帯可能な情報機器端末)、これらの周辺機器(スキャナー、プリンター等)、その他のデジタル機器等に内蔵又は外付けされるカメラが挙げられる。これらの例から分かるように、撮像装置を用いることによりカメラを構成することができるだけでなく、各種機器に撮像装置を搭載することによりカメラ機能を付加することが可能である。例えば、カメラ付き携帯電話等の画像入力機能付きデジタル機器を構成することが可能である。 Examples of the camera include a digital camera, a video camera, a surveillance camera, an in-vehicle camera, a videophone camera, and the like, and also a personal computer, a mobile terminal (for example, a mobile phone, a mobile computer, etc., small and portable information) Apparatus terminals), peripheral devices (scanners, printers, etc.), cameras incorporated in or external to other digital devices, and the like. As can be seen from these examples, it is possible not only to configure a camera by using an imaging device, but also to add a camera function by mounting the imaging device on various devices. For example, a digital device with an image input function such as a mobile phone with a camera can be configured.
 図15に、画像入力機能付きデジタル機器の一例として、携帯端末CUの概略構成例を模式的断面で示す。図15に示す携帯端末CUに搭載されている撮像装置LUは、物体(被写体)側から順に、物体の光学像(像面)IMを形成する撮像レンズLN(AX:光軸)と、平行平面板PT(必要に応じて配置される光学的ローパスフィルタ、赤外カットフィルタ等の光学フィルタ;撮像素子SRのカバーガラス等に相当する。)と、撮像レンズLNにより受光面SS上に形成された光学像IMを電気的な信号に変換する撮像素子SRと、を備えている。 FIG. 15 is a schematic cross-sectional view showing a schematic configuration example of a mobile terminal CU as an example of a digital device with an image input function. The imaging device LU mounted on the mobile terminal CU shown in FIG. 15 includes, in order from the object (subject) side, an imaging lens LN (AX: optical axis) that forms an optical image (image plane) IM of the object, and a parallel plane. Formed on the light-receiving surface SS by a face plate PT (optical filters such as an optical low-pass filter and an infrared cut filter arranged as necessary; corresponding to a cover glass of the image sensor SR) and an imaging lens LN. And an image sensor SR that converts the optical image IM into an electrical signal.
 この撮像装置LUで画像入力機能付きの携帯端末CUを構成する場合、通常そのボディ内部に撮像装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像装置LUを携帯端末CUの本体に対して着脱自在又は回動自在に構成することが可能である。 When a mobile terminal CU having an image input function is configured by the imaging device LU, the imaging device LU is usually arranged inside the body. However, when realizing the camera function, a form as necessary is adopted. It is possible. For example, the unitized imaging device LU can be configured to be detachable or rotatable with respect to the main body of the mobile terminal CU.
 撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が用いられる。撮像レンズLNは、撮像素子SRの受光面SS上に被写体の光学像IMが形成されるように設けられているので、撮像レンズLNによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。 As the image sensor SR, for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used. Since the imaging lens LN is provided so that an optical image IM of the subject is formed on the light receiving surface SS of the imaging element SR, the optical image IM formed by the imaging lens LN is electrically converted by the imaging element SR. Converted to a signal.
 携帯端末CUは、撮像装置LUの他に、信号処理部1、制御部2、メモリ3、操作部4、表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリ3(半導体メモリ,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。 The mobile terminal CU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) In some cases, the signal is transmitted to another device through a cable or converted into an infrared signal.
 制御部2はマイクロコンピュータを有しており、撮影機能、画像再生機能等の機能制御、フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影、動画撮影のうちの少なくとも一方を行うように、制御部2により撮像装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリ3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン)、操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The control unit 2 has a microcomputer, and performs function control such as a photographing function and an image reproduction function, and a lens moving mechanism for focusing. For example, the control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 includes operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by an operator to the control unit 2.
 撮像レンズLNは、前述したようにレンズブロックを3ブロック含み、撮像素子SRの受光面SS上に光学像IMを形成する構成になっている。撮像レンズLNで形成されるべき光学像は、例えば、撮像素子SRの画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルタ(図15中の平行平面板PTに相当する。)を通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。これにより、色モアレの発生を抑えることができる。ただし、解像限界周波数周辺の性能を抑えてやれば、光学的ローパスフィルタを用いなくてもノイズの発生を懸念する必要がなく、また、ノイズがあまり目立たない表示系(例えば、携帯電話の液晶画面等)を用いてユーザーが撮影や鑑賞を行う場合には、光学的ローパスフィルタを用いる必要はない。 The imaging lens LN includes three lens blocks as described above, and is configured to form the optical image IM on the light receiving surface SS of the imaging element SR. The optical image to be formed by the imaging lens LN is, for example, an optical low-pass filter (corresponding to the parallel flat plate PT in FIG. 15) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. By passing, the spatial frequency characteristic is adjusted so that so-called aliasing noise generated when converted into an electrical signal is minimized. Thereby, generation | occurrence | production of a color moire can be suppressed. However, if the performance around the resolution limit frequency is suppressed, there is no need to worry about the generation of noise without using an optical low-pass filter, and a display system in which noise is not so noticeable (for example, a liquid crystal of a mobile phone) When a user performs shooting or viewing using a screen or the like, it is not necessary to use an optical low-pass filter.
 撮像レンズLNのフォーカスは、アクチュエータを用いてレンズユニット全体を光軸AX方向に移動させてもよいし、レンズの一部を光軸AX方向に移動させてもよい。例えば、第1レンズブロックC1のみでフォーカスしてやれば、アクチュエータの小型化が可能である。また、レンズを光軸方向に移動させてフォーカスさせなくても、撮像素子SRに記録された情報から、ソフトウェアによって焦点深度を深くする処理等を行うことによって、フォーカス機能を実現してもよい。その場合、アクチュエータは必要なく、小型化と低コスト化を同時に実現することができる。 The focus of the imaging lens LN may move the entire lens unit in the optical axis AX direction using an actuator, or may move a part of the lens in the optical axis AX direction. For example, if focusing is performed only with the first lens block C1, the actuator can be downsized. Further, the focus function may be realized by performing a process of increasing the depth of focus by software from the information recorded in the image sensor SR without focusing the lens by moving the lens in the optical axis direction. In that case, the actuator is not necessary, and the miniaturization and the cost reduction can be realized at the same time.
 次に、第1~第7の実施の形態を挙げて、撮像レンズLNの具体的な光学構成を更に詳しく説明する。図1~図7に、撮像レンズLNの第1~第7の実施の形態のレンズ構成をそれぞれ光学断面で示す。各実施の形態の撮像レンズLNはいずれも、撮像素子SR(図15)に対して光学像IMを形成する撮像用(例えば携帯端末用)の単焦点レンズである。 Next, the specific optical configuration of the imaging lens LN will be described in more detail with reference to the first to seventh embodiments. FIGS. 1 to 7 show the lens configurations of the first to seventh embodiments of the imaging lens LN in optical sections, respectively. The imaging lens LN of each embodiment is a single focus lens for imaging (for example, for a portable terminal) that forms an optical image IM with respect to the imaging element SR (FIG. 15).
 第1~第7の実施の形態では、物体側から順に、第1レンズブロックC1と、第2レンズブロックC2と、第3レンズブロックC3と、の3つのレンズブロックで撮像レンズLNが構成されている。 In the first to seventh embodiments, in order from the object side, the imaging lens LN is configured by three lens blocks of the first lens block C1, the second lens block C2, and the third lens block C3. Yes.
 第1~第7の実施の形態において、各レンズブロックC1~C3は、物体側から順に以下のように構成されている。第1レンズブロックC1では、第1oレンズ部L11、第1レンズ基板L12及び第1iレンズ部L13の順に配列されている。第2レンズブロックC2では、第2oレンズ部L21、第2レンズ基板L22及び第2iレンズ部L23の順に配列されている。第3レンズブロックC3では、第3oレンズ部L31、第3レンズ基板L32及び第3iレンズ部L33の順に配列されている。 In the first to seventh embodiments, the lens blocks C1 to C3 are configured as follows in order from the object side. In the first lens block C1, the first o lens portion L11, the first lens substrate L12, and the first i lens portion L13 are arranged in this order. In the second lens block C2, the second o lens portion L21, the second lens substrate L22, and the second i lens portion L23 are arranged in this order. In the third lens block C3, the third o lens portion L31, the third lens substrate L32, and the third i lens portion L33 are arranged in this order.
 また、物体側から像側に向かってn番目(n=1、2、3)のレンズブロックを第nレンズブロックCnとすると、第nレンズブロックCnは両面とも非球面であり、第noレンズ部Ln1と第nレンズ基板Ln2とで屈折率が異なっており、第nレンズ基板Ln2と第niレンズ部Ln3とで屈折率が異なっている。 If the nth lens block (n = 1, 2, 3) from the object side to the image side is an nth lens block Cn, both surfaces of the nth lens block Cn are aspheric surfaces, and the no lens portion The refractive index is different between Ln1 and the nth lens substrate Ln2, and the refractive index is different between the nth lens substrate Ln2 and the nith lens portion Ln3.
 第1~第7の実施の形態において、第1~第3レンズブロックC1~C3のパワー配置は、正負正である。いずれも最も物体側に正、負のパワー配置を有しているため、前述した収差補正効果が得られる。また、第2レンズブロックC2の像側面が近軸で像側に凹の面形状を有しているため、光線を跳ね上げて第3レンズブロックC3に対し光軸AXから離れた位置に光線を入射させることができる。さらに、第3レンズブロックC3の物体側面が近軸で物体側に凸の面形状を有することにより、テレセントリック性を高めている。そして、第2レンズブロックC2の像側面と第3レンズブロックC3の両面を非球面にすることにより、その効果を高めている。 In the first to seventh embodiments, the power arrangement of the first to third lens blocks C1 to C3 is positive or negative. Since both have the positive and negative power arrangement on the most object side, the above-described aberration correction effect can be obtained. In addition, since the image side surface of the second lens block C2 has a paraxial shape and a concave surface shape on the image side, the light beam jumps up so that the light beam is separated from the optical axis AX with respect to the third lens block C3. It can be made incident. Furthermore, the object side surface of the third lens block C3 has a paraxial and convex surface shape on the object side, thereby improving telecentricity. The effect is enhanced by making the image side surface of the second lens block C2 and both surfaces of the third lens block C3 aspherical.
 第1~第7の実施の形態において、第2レンズブロックC2の像側面の非球面形状は、近軸で凹の面形状を光軸AXから離れるにつれて負のパワーを弱めるか又は正のパワーを強めるようにした非球面形状を成している。これにより、高いテレセントリック性が得られ、また、全長の短縮と光学性能の維持が効果的に達成される。また、第2レンズブロックC2の物体側面は物体側に凹の面形状を有しており、これによりペッツバール和を小さくしている。 In the first to seventh embodiments, the aspherical shape of the image side surface of the second lens block C2 decreases the negative power as the paraxial and concave surface shape moves away from the optical axis AX, or increases the positive power. It has an aspheric shape that is strengthened. Thereby, high telecentricity can be obtained, and shortening of the overall length and maintenance of optical performance can be effectively achieved. Further, the object side surface of the second lens block C2 has a concave shape on the object side, thereby reducing the Petzval sum.
 第1~第7の実施の形態において、第3レンズブロックC3の物体側面は変曲点を有する非球面であり、これにより、全長の短縮と光学性能の維持が効果的に達成される。また、第3レンズブロックC3の像側面は近軸で像側に凹の面形状を有し、かつ、変曲点を有しており、これにより、非球面の効果が効果的に得られる。また、レンズ周辺にかけて負のパワーを弱めるか又は正のパワーを強めることにより、画面周辺の光束を収束させ、テレセントリック性の向上と共に歪曲収差の補正をバランス良く実現している。 In the first to seventh embodiments, the object side surface of the third lens block C3 is an aspherical surface having an inflection point, thereby effectively reducing the overall length and maintaining the optical performance. Further, the image side surface of the third lens block C3 has a paraxial and concave shape on the image side, and has an inflection point, thereby effectively obtaining an aspherical effect. Further, by weakening the negative power or increasing the positive power around the periphery of the lens, the light flux around the screen is converged, and the telecentricity is improved and the correction of the distortion aberration is realized in a well-balanced manner.
 第1、第2、第4~第7の実施の形態では、第1レンズブロックC1を構成している第1レンズ基板L12の物体側面上に開口絞りSTが配置されている。第3の実施の形態では、第1レンズブロックC1を構成している第1レンズ基板L12の像側面上に開口絞りSTが配置されている。いずれも第1レンズブロックC1のレンズ基板L12上に絞り位置が設定されているため、前述したように量産性の向上や低コスト化の達成に効果があり、偏心に対する性能劣化の低減も可能となる。また、第1、第2、第4~第7の実施の形態のように、レンズ基板L12の物体側面上に開口絞りSTを配置することは、テレセントリック性の向上により有効である。 In the first, second, and fourth to seventh embodiments, the aperture stop ST is disposed on the object side surface of the first lens substrate L12 constituting the first lens block C1. In the third embodiment, an aperture stop ST is disposed on the image side surface of the first lens substrate L12 constituting the first lens block C1. In any case, since the aperture position is set on the lens substrate L12 of the first lens block C1, as described above, there is an effect in improving mass productivity and achieving cost reduction, and it is possible to reduce performance deterioration due to eccentricity. Become. Further, as in the first, second, and fourth to seventh embodiments, disposing the aperture stop ST on the object side surface of the lens substrate L12 is effective for improving the telecentricity.
 以下、本発明を実施した撮像レンズの構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~7は、前述した第1~第7の実施の形態にそれぞれ対応する数値実施例であり、第1~第7の実施の形態を表す光学構成図(図1~図7)は、対応する実施例1~7のレンズ構成をそれぞれ示している。 Hereinafter, the configuration and the like of the imaging lens embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 to 7 listed here are numerical examples corresponding to the first to seventh embodiments, respectively, and are optical configuration diagrams showing the first to seventh embodiments (FIGS. 1 to 7). 7) shows the lens configurations of the corresponding Examples 1 to 7, respectively.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号、曲率半径r(mm)、軸上での面間隔d(mm)、d線(587.56nm、Reference Wave Length)に関する屈折率nd、d線に関するアッベ数νdを示す。面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x、y、z)を用いた以下の式(AS)で定義される。 In the construction data of each example, as surface data, in order from the left column, surface number, radius of curvature r (mm), surface distance on axis d (mm), d line (587.56 nm, Reference Wave Length) Represents the refractive index nd and the Abbe number νd for the d-line. The surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following formula (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. .
 非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、全てのデータに関して、標記e-nは、×10-nを示す。
z=(c×h)/[1+{1-(1+K)×c×h1/2]+Σ(Aj×h) …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h=x+y
z:高さhの位置での光軸AX方向のサグ量(面頂点基準)
c:面頂点での曲率(曲率半径rの逆数)
K:円錐定数
Aj:j次の非球面係数
である。
As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each example is 0, and for all the data, the notation en indicates x10 −n .
z = (c × h 2 ) / [1+ {1− (1 + K) × c 2 × h 2 } 1/2 ] + Σ (Aj × h j ) (AS)
However,
h: height in the direction perpendicular to the z-axis (optical axis AX) (h 2 = x 2 + y 2 )
z: Sag amount in the direction of the optical axis AX at the position of the height h (based on the surface vertex)
c: curvature at the surface vertex (the reciprocal of the radius of curvature r)
K: conic constant Aj: j-th order aspheric coefficient.
 各種データとして、焦点距離(f,mm)、Fナンバー(Fno.)、半画角(ω,°)、像高(y’max,mm)、レンズ全長(TL,mm)、バックフォーカス(BF,mm)を示す。Fナンバー、半画角及びバックフォーカスは、レンズ全長及び物体距離(∞)における実効値である。また、バックフォーカスは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており、レンズ全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。さらに、レンズブロックデータとして、各レンズブロックの焦点距離を示し、また、各条件式に対応する実施例の値を表1に示す。 As various data, focal length (f, mm), F number (Fno.), Half angle of view (ω, °), image height (y'max, mm), total lens length (TL, mm), back focus (BF) , Mm). The F number, half angle of view, and back focus are effective values at the entire lens length and object distance (∞). The back focus expresses the distance from the last lens surface to the paraxial image surface in terms of air length, and the total lens length is the distance from the front lens surface to the last lens surface plus the back focus. . Furthermore, the focal length of each lens block is shown as lens block data, and the values of the examples corresponding to the respective conditional expressions are shown in Table 1.
 図8~図14は実施例1~実施例7の収差図である。図8~図14において左から順に、球面収差図(LONGITUDINAL SPHERICAL ABER.)、非点収差図(ASTIGMATIC FIELD CURVES)、歪曲収差図(DISTORTION)である。球面収差図は、実線で示すd線(波長587.56nm)に対する球面収差量、短い破線で示すC線(波長656.28nm)に対する球面収差量、長い破線で示すg線(波長435.84nm)に対する球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量(単位:mm、横軸スケール:-0.500~0.500mm)で表しており、縦軸は瞳への入射高さをその最大高さで規格化した値(相対瞳高さ)を表している。非点収差図において、破線Yはd線に対するタンジェンシャル像面、実線Xはd線に対するサジタル像面を、近軸像面からの光軸AX方向のズレ量(単位:mm、横軸スケール:-0.50~0.50mm)で表しており、縦軸は像高(IMG HT、単位:mm)を表している。歪曲収差図において、横軸はd線に対する歪曲(単位:%、横軸スケール:-10.0~10.0%)を表しており、縦軸は像高(IMG HT、単位:mm)を表している。なお、像高IMG HTの最大値は、結像面における最大像高y’max(撮像素子SRの受光面SSの対角長の半分)に相当する。 8 to 14 are aberration diagrams of Examples 1 to 7. FIG. 8 to 14, in order from the left, are a spherical aberration diagram (LONGITUDINAL SPHERICAL ABER.), An astigmatism diagram (ASTIGMATIC FIELD CURVES), and a distortion aberration diagram (DISTORTION). The spherical aberration diagram shows the amount of spherical aberration with respect to the d line (wavelength 587.56 nm) indicated by the solid line, the amount of spherical aberration with respect to the C line (wavelength 656.28 nm) indicated by the short broken line, and the g line (wavelength 435.84 nm) indicated by the long broken line. The amount of spherical aberration with respect to is expressed as the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: -0.500 to 0.500 mm), and the vertical axis is incident on the pupil. A value obtained by normalizing the height by the maximum height (relative pupil height) is represented. In the astigmatism diagram, the broken line Y indicates the tangential image plane with respect to the d line, the solid line X indicates the sagittal image plane with respect to the d line, and the amount of deviation in the optical axis AX direction from the paraxial image plane (unit: mm, horizontal axis scale: -0.50 to 0.50 mm), and the vertical axis represents the image height (IMG HT, unit: mm). In the distortion diagram, the horizontal axis represents distortion with respect to the d-line (unit:%, horizontal axis scale: -10.0 to 10.0%), and the vertical axis represents image height (IMG HT, unit: mm). Represents. Note that the maximum value of the image height IMG HT corresponds to the maximum image height y′max on the imaging surface (half the diagonal length of the light receiving surface SS of the image sensor SR).
 実施例1、2、4~7(図1、図2、図4~図7)の撮像レンズLNは、物体側から順に、物体側に凸の第1oレンズ部L11、開口絞りST、第1レンズ基板L12、及び像側に凹の第1iレンズ部L13から成る第1レンズブロックC1と、物体側に凹の第2oレンズ部L21、第2レンズ基板L22、及び像側に凹の第2iレンズ部L23から成る第2レンズブロックC2と、物体側に凸の第3oレンズ部L31、第3レンズ基板L32、及び像側に凹の第3iレンズ部L33から成る第3レンズブロックC3と、で構成されている。空気と接する全てのレンズ部の面は非球面形状を成しており、少なくとも第3レンズブロックC3の両面は変曲点を有する非球面である。 The imaging lenses LN of Examples 1, 2, 4 to 7 (FIGS. 1, 2, and 4 to 7) are arranged in order from the object side, the first o lens portion L11 convex to the object side, the aperture stop ST, the first A first lens block C1 including a lens substrate L12 and a first i lens portion L13 concave on the image side, a second o lens portion L21, a second lens substrate L22 concave on the object side, and a second i lens concave on the image side A second lens block C2 including a portion L23, a third lens block C3 including a third o lens portion L31, a third lens substrate L32 convex toward the object side, and a third i lens portion L33 concave toward the image side. Has been. The surfaces of all lens portions in contact with air have an aspheric shape, and at least both surfaces of the third lens block C3 are aspheric surfaces having inflection points.
 実施例3(図3)の撮像レンズLNは、物体側から順に、物体側に凸の第1oレンズ部L11、第1レンズ基板L12、開口絞りST、及び像側に凹の第1iレンズ部L13から成る第1レンズブロックC1と、物体側に凹の第2oレンズ部L21、第2レンズ基板L22、及び像側に凹の第2iレンズ部L23から成る第2レンズブロックC2と、物体側に凸の第3oレンズ部L31、第3レンズ基板L32、及び像側に凹の第3iレンズ部L33から成る第3レンズブロックC3と、で構成されている。空気と接する全てのレンズ部の面は非球面形状を成しており、少なくとも第3レンズブロックC3の両面は変曲点を有する非球面である。 The imaging lens LN of Example 3 (FIG. 3) includes, in order from the object side, a first o lens unit L11 that is convex on the object side, a first lens substrate L12, an aperture stop ST, and a first i lens unit L13 that is concave on the image side. A first lens block C1 comprising: a second o lens part L21, a second lens substrate L22 concave on the object side, and a second lens block C2 comprising a second i lens part L23 concave on the image side; and convex on the object side The third o lens unit L31, the third lens substrate L32, and the third lens block C3 including the third i lens unit L33 that is concave on the image side. The surfaces of all lens portions in contact with air have an aspheric shape, and at least both surfaces of the third lens block C3 are aspheric surfaces having inflection points.
 (実施例1)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞    ∞
1*   0.759   0.270  1.51000   56.00
2(絞り)  ∞    0.300  1.47000   65.00
3     ∞    0.050  1.60000   30.00
4*   1.788   0.310
5*   -6.486   0.050  1.60000   30.00
6     ∞    0.300  1.47000   65.00
7     ∞    0.140  1.51000   56.00
8*   2.664   0.190
9*   1.790   0.100  1.57000   34.00
10    ∞    0.300  1.47000   65.00
11    ∞    0.290  1.60000   30.00
12*   2.266   0.200
13    ∞    0.500  1.51633   64.14
14    ∞    0.096
像面   ∞
 非球面データ
第1面
K= 7.44931e-002,
A4=-1.32337e-002, A6= 1.16785e-001, A8=-3.20181e-001,
A10= 1.03751e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.11782e+001,
A4= 4.11186e-002, A6=-3.33511e-001, A8= 8.03013e-001,
A10= 3.60813e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 7.72057e+000,
A4=-4.92174e-001, A6= 2.48189e-001, A8=-8.49764e+000,
A10= 4.17459e+001, A12=-9.67575e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K=-2.97697e+001,
A4=-4.00102e-001, A6= 4.41770e-001, A8=-3.21213e-001,
A10= 1.06105e-001, A12=-1.43845e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-3.05436e-001,
A4=-5.19641e-001, A6= 2.93716e-001, A8=-2.86891e-002,
A10=-2.64521e-002, A12= 6.95086e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-1.76515e-001,
A4=-2.40767e-001, A6= 6.06504e-002, A8=-1.16177e-002,
A10=-2.52116e-003, A12= 1.64488e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.795
FナンバーFno. 2.880
半画角ω 31.911
像高y’max 1.750
レンズ全長TL 2.925
バックフォーカスBF 0.625
 レンズブロックデータ
ブロック  面  焦点距離
1     1- 4  2.327
2     5- 8  -3.451
3     9-12  10.926
 (実施例2)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞    ∞
1*   0.778   0.243  1.52000   58.00
2(絞り)  ∞    0.300  1.47000   56.00
3     ∞    0.050  1.52000   58.00
4*   1.793   0.402
5*   -2.138   0.050  1.52000   58.00
6     ∞    0.300  1.47000   56.00
7     ∞    0.291  1.52000   58.00
8*   8.347   0.119
9*   1.160   0.149  1.52000   58.00
10    ∞    0.300  1.47000   56.00
11    ∞    0.107  1.52000   58.00
12*   1.292   0.150
13    ∞    0.500  1.51633   64.14
14    ∞    0.060
像面   ∞
 非球面データ
第1面
K= 3.23567e-001,
A4=-1.05108e-001, A6= 3.83614e-001, A8=-2.34736e+000,
A10= 3.00367e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.10306e+001
A4= 1.24874e-001, A6=-7.21116e-001, A8= 3.58118e+000,
A10=-6.60857e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.35566e+001,
A4=-6.52691e-002, A6=-1.37373e+000, A8= 9.63152e-001,
A10= 1.19175e+001, A12=-4.56108e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K=-3.00000e+001,
A4=-4.65568e-001, A6= 2.68836e-001, A8= 2.44610e-002,
A10=-1.11520e-001, A12= 7.28891e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-1.00693e+000,
A4=-6.31327e-001, A6= 3.35554e-001, A8=-5.32393e-003,
A10=-5.26638e-002, A12= 1.24660e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-2.00527e+000,
A4=-2.73156e-001, A6= 9.33394e-002, A8=-2.76667e-002,
A10= 9.34125e-003, A12=-1.60447e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.619
FナンバーFno. 2.880
半画角ω 33.051
像高y’max 1.750
レンズ全長TL 2.852
バックフォーカスBF 0.540
 レンズブロックデータ
ブロック  面  焦点距離
1     1- 4  2.198
2     5- 8  -3.205
3     9-12  8.842
 (実施例3)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞    ∞
1*   0.783   0.234  1.52000   58.00
2     ∞    0.300  1.47000   56.00
3(絞り)  ∞    0.050  1.52000   58.00
4*   1.901   0.322
5*   -2.223   0.050  1.52000   58.00
6     ∞    0.300  1.47000  56.00
7     ∞    0.280  1.52000  58.00
8*   7.154    0.093
9*   1.086    0.165  1.52000  58.00
10    ∞    0.300  1.47000  56.00
11    ∞    0.119  1.52000  58.00
12*   1.329    0.188
13    ∞    0.500  1.51633  64.14
14    ∞    0.064
像面   ∞
 非球面データ
第1面
K= 3.34161e-001,
A4=-9.77745e-002, A6= 3.72479e-001, A8=-2.39567e+000,
A10= 3.68161e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.12131e+001,
A4= 1.62848e-001, A6=-7.83651e-001, A8= 3.47722e+000,
A10=-1.25865e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.55869e+001,
A4=-5.06016e-003, A6=-1.38575e+000, A8= 2.04518e-001,
A10= 1.05509e+001, A12=-4.71410e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K= 1.02730e+001,
A4=-4.88088e-001, A6= 2.54478e-001, A8= 5.47177e-002,
A10=-1.10700e-001, A12= 1.58895e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-1.07357e+000,
A4=-6.32133e-001, A6= 3.35553e-001, A8=-4.28992e-003,
A10=-5.19582e-002, A12= 1.22086e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-1.52456e+000,
A4=-2.87911e-001, A6= 8.76228e-002, A8=-2.46211e-002,
A10= 9.77158e-003, A12=-1.82570e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.479
FナンバーFno. 2.880
半画角ω 35.068
像高y’max 1.750
レンズ全長TL 2.795
バックフォーカスBF 0.582
 レンズブロックデータ
ブロック  面  焦点距離
1     1- 4  2.166
2     5- 8  -3.187
3     9-12  6.231
 (実施例4)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞    ∞
1*   0.761   0.241  1.51000   56.00
2(絞り)  ∞    0.300  1.47000  65.00
3     ∞    0.050  1.51000   56.00
4*   1.765   0.380
5*   -2.445   0.050  1.51000   56.00
6     ∞    0.300  1.47000   65.00
7     ∞    0.213  1.51000   56.00
8*   1.133   0.050
9*   0.721   0.220  1.51000  56.00
10    ∞    0.300  1.47000   65.00
11    ∞    0.138  1.51000   56.00
12*   1.508   0.164
13    ∞    0.500  1.51633   64.14
14    ∞    0.119
像面   ∞
 非球面データ
第1面
K= 3.18781e-001,
A4=-1.12312e-001, A6= 4.14654e-001, A8=-2.38113e+000,
A10= 2.56891e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.06819e+001,
A4= 1.69653e-001, A6=-7.79750e-001, A8= 3.67649e+000,
A10= 1.28822e-001, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.80567e+001,
A4=-2.14776e-001, A6=-1.50819e+000, A8= 1.80174e+000,
A10= 1.44525e+001, A12=-5.89379e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K=-1.06877e+001,
A4=-6.90043e-001, A6= 4.23248e-001, A8= 5.70619e-002,
A10=-1.21561e-001, A12=-2.54184e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-3.17546e+000,
A4=-5.68960e-001, A6= 3.44348e-001, A8=-4.72248e-003,
A10=-5.27232e-002, A12= 1.20794e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-1.00461e+000,
A4=-2.90540e-001, A6= 8.34789e-002, A8=-2.55475e-002,
A10= 9.85685e-003, A12=-1.54286e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.702
FナンバーFno. 2.880
半画角ω 33.505
像高y’max 1.750
レンズ全長TL 2.854
バックフォーカスBF 0.613
 レンズブロックデータ
ブロック  面  焦点距離
1     1- 4  2.183
2     5- 8  -1.440
3     9-12  2.108
 (実施例5)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞     ∞
1*   0.775   0.238  1.51000   56.00
2(絞り) ∞    0.300  1.47000  65.00
3    ∞    0.050  1.60000   30.00
4*   2.108   0.294
5*  -2.320   0.050  1.51000   56.00
6    ∞    0.300  1.47000   65.00
7    ∞    0.194  1.51000   56.00
8*   6.901   0.129
9*   1.151   0.147  1.51000  56.00
10    ∞    0.300  1.47000   65.00
11    ∞    0.216  1.51000   56.00
12*  1.348   0.183
13    ∞    0.500  1.51633   64.14
14    ∞    0.127
像面   ∞
 非球面データ
第1面
K= 3.32701e-001,
A4=-9.19438e-002, A6= 3.85802e-001, A8=-2.26822e+000,
A10= 3.27964e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.46979e+001,
A4= 1.47239e-001, A6=-8.05875e-001, A8= 2.60997e+000,
A10= 2.01079e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.83466e+001,
A4= 8.40371e-003, A6=-1.48698e+000, A8= 2.95248e-001,
A10= 1.27209e+001, A12=-3.96371e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K= 1.03568e+001,
A4=-4.84833e-001,A6= 2.63232e-001,A8= 8.18751e-002,
A10=-1.00685e-001,A12=-6.42723e-003,A14= 0.00000e+000,
A16= 0.00000e+000,A18= 0.00000e+000,A20= 0.00000e+000,
第9面
K=-1.13433e+000,
A4=-6.34233e-001, A6= 3.41178e-001, A8=-6.26291e-003,
A10=-5.22014e-002, A12= 1.25465e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-1.04099e+000,
A4=-3.01707e-001, A6= 7.03058e-002, A8=-2.05232e-002,
A10= 1.04040e-002, A12=-2.16959e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.589
FナンバーFno. 2.880
半画角ω 34.300
像高y’max 1.750
レンズ全長TL 2.858
バックフォーカスBF 0.639
 レンズブロックデータ
ブロック  面   焦点距離
1     1- 4   2.239
2     5- 8  -3.337
3     9-12   7.189
 (実施例6)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞     ∞
1*   0.759    0.243  1.51000  56.00
2(絞り)  ∞    0.300  1.47000  65.00
3     ∞    0.050  1.60000  30.00
4*   1.998    0.308
5*   -2.313    0.050  1.51000  56.00
6     ∞    0.300  1.47000  65.00
7     ∞    0.178  1.60000  30.00
8*   8.708    0.146
9*   1.291    0.125  1.51000  56.00
10    ∞    0.300  1.47000  65.00
11    ∞    0.236  1.51000  56.00
12*   1.471    0.165
13    ∞    0.500  1.51633  64.14
14    ∞     0.129
像面 ∞
 非球面データ
第1面
K= 3.20159e-001,
A4=-9.07512e-002, A6= 3.46612e-001, A8=-2.25717e+000,
A10= 3.04311e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.45611e+001,
A4= 1.10094e-001, A6=-6.88351e-001, A8= 2.61934e+000,
A10=-1.22899e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.82412e+001,
A4=-9.27219e-002, A6=-1.53171e+000, A8= 8.25970e-001,
A10= 1.40241e+001, A12=-5.35283e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K= 2.57279e+001,
A4=-4.28438e-001, A6= 2.56453e-001, A8= 6.43865e-002,
A10=-1.03792e-001, A12= 8.99988e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-1.08092e+000,
A4=-6.26930e-001, A6= 3.46745e-001, A8=-5.00214e-003,
A10=-5.22801e-002, A12= 1.24183e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-8.42110e-001,
A4=-2.90623e-001, A6= 5.81149e-002, A8=-2.06185e-002,
A10= 1.09906e-002, A12=-1.89537e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.636
FナンバーFno. 2.880
半画角ω 33.814
像高y’max 1.750
レンズ全長TL 2.859
バックフォーカスBF 0.624
 レンズブロックデータ
ブロック  面   焦点距離
1     1- 4   2.239
2     5- 8  -3.337
3     9-12   7.189
 (実施例7)
単位:mm
 面データ
面番号  r    d   nd    νd
物面   ∞    ∞
1*   0.760   0.255  1.51000   6.00
2(絞り)  ∞    0.300  1.47000   65.00
3     ∞    0.050  1.51000   56.00
4*   1.817   0.283
5*   -2.141   0.050  1.51000   56.00
6     ∞    0.300  1.47000   65.00
7     ∞    0.222  1.51000   56.00
8*   10.119   0.131
9*   1.441   0.109  1.51000   56.00
10    ∞    0.300  1.47000   65.00
11    ∞    0.254  1.51000   56.00
12*   1.742   0.147
13    ∞    0.500  1.51633   64.14
14    ∞    0.119
像面   ∞
 非球面データ
第1面
K= 2.38138e-001,
A4=-7.90940e-002, A6= 3.77414e-001, A8=-1.83568e+000,
A10= 2.29905e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第4面
K= 1.19929e+001,
A4= 9.24485e-002, A6=-7.45136e-001, A8= 2.94291e+000,
A10=-6.23720e+000, A12= 0.00000e+000, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第5面
K= 1.68288e+001,
A4=-1.28560e-001, A6=-1.45012e+000, A8= 8.43644e-001,
A10= 1.74244e+001, A12=-7.76426e+001, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第8面
K=-2.89278e+001,
A4=-4.82224e-001, A6= 2.97329e-001, A8= 6.97461e-002,
A10=-1.08173e-001, A12=-2.62066e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第9面
K=-7.94709e-001,
A4=-6.11098e-001, A6= 3.41188e-001, A8=-6.55587e-003,
A10=-5.22544e-002, A12= 1.27899e-002, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
第12面
K=-5.32381e-001,
A4=-2.41995e-001, A6= 3.78648e-002, A8=-2.15248e-002,
A10= 1.12326e-002, A12=-1.46434e-003, A14= 0.00000e+000,
A16= 0.00000e+000, A18= 0.00000e+000, A20= 0.00000e+000,
 各種データ
焦点距離f 2.589
FナンバーFno. 2.600
半画角ω 34.104
像高y’max 1.750
レンズ全長TL 2.849
バックフォーカスBF 0.596
 レンズブロックデータ
ブロック  面  焦点距離
1     1- 4  2.144
2     5- 8  -3.410
3     9-12  9.320
Example 1
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.759 0.270 1.51000 56.00
2 (Aperture) ∞ 0.300 1.47000 65.00
3 ∞ 0.050 1.60000 30.00
4 * 1.788 0.310
5 * -6.486 0.050 1.60000 30.00
6 ∞ 0.300 1.47000 65.00
7 ∞ 0.140 1.51000 56.00
8 * 2.664 0.190
9 * 1.790 0.100 1.57000 34.00
10 ∞ 0.300 1.47000 65.00
11 ∞ 0.290 1.60000 30.00
12 * 2.266 0.200
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.096
Image plane ∞
Aspheric data 1st surface
K = 7.44931e-002,
A4 = -1.32337e-002, A6 = 1.16785e-001, A8 = -3.20181e-001,
A10 = 1.03751e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.11782e + 001,
A4 = 4.11186e-002, A6 = -3.33511e-001, A8 = 8.03013e-001,
A10 = 3.60813e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 7.72057e + 000,
A4 = -4.92174e-001, A6 = 2.48189e-001, A8 = -8.49764e + 000,
A10 = 4.17459e + 001, A12 = -9.67575e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = -2.97697e + 001,
A4 = -4.00102e-001, A6 = 4.41770e-001, A8 = -3.21213e-001,
A10 = 1.06105e-001, A12 = -1.43845e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -3.05436e-001,
A4 = -5.19641e-001, A6 = 2.93716e-001, A8 = -2.86891e-002,
A10 = -2.64521e-002, A12 = 6.95086e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -1.76515e-001,
A4 = -2.40767e-001, A6 = 6.06504e-002, A8 = -1.16177e-002,
A10 = -2.52116e-003, A12 = 1.64488e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal lengths f 2.795
F number Fno. 2.880
Half angle of view ω 31.911
Statue height y'max 1.750
Total lens length TL 2.925
Back focus BF 0.625
Lens block data block surface Focal length
1 1- 4 2.327
2 5- 8 -3.451
3 9-12 10.926
(Example 2)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.778 0.243 1.52000 58.00
2 (Aperture) ∞ 0.300 1.47000 56.00
3 ∞ 0.050 1.52000 58.00
4 * 1.793 0.402
5 * -2.138 0.050 1.52000 58.00
6 ∞ 0.300 1.47000 56.00
7 ∞ 0.291 1.52000 58.00
8 * 8.347 0.119
9 * 1.160 0.149 1.52000 58.00
10 ∞ 0.300 1.47000 56.00
11 ∞ 0.107 1.52000 58.00
12 * 1.292 0.150
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.060
Image plane ∞
Aspheric data 1st surface
K = 3.23567e-001,
A4 = -1.05108e-001, A6 = 3.83614e-001, A8 = -2.34736e + 000,
A10 = 3.00367e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.10306e + 001
A4 = 1.24874e-001, A6 = -7.21116e-001, A8 = 3.58118e + 000,
A10 = -6.60857e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.35566e + 001,
A4 = -6.52691e-002, A6 = -1.37373e + 000, A8 = 9.63152e-001,
A10 = 1.19175e + 001, A12 = -4.56108e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = -3.00000e + 001,
A4 = -4.65568e-001, A6 = 2.68836e-001, A8 = 2.44610e-002,
A10 = -1.11520e-001, A12 = 7.28891e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -1.00693e + 000,
A4 = -6.31327e-001, A6 = 3.35554e-001, A8 = -5.32393e-003,
A10 = -5.26638e-002, A12 = 1.24660e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -2.00527e + 000,
A4 = -2.73156e-001, A6 = 9.33394e-002, A8 = -2.76667e-002,
A10 = 9.34125e-003, A12 = -1.60447e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal lengths f 2.619
F number Fno. 2.880
Half angle of view ω 33.051
Statue height y'max 1.750
Total lens length TL 2.852
Back focus BF 0.540
Lens block data block surface Focal length
1 1- 4 2.198
2 5- 8 -3.205
3 9-12 8.842
(Example 3)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.783 0.234 1.52000 58.00
2 ∞ 0.300 1.47000 56.00
3 (Aperture) ∞ 0.050 1.52000 58.00
4 * 1.901 0.322
5 * -2.223 0.050 1.52000 58.00
6 ∞ 0.300 1.47000 56.00
7 ∞ 0.280 1.52000 58.00
8 * 7.154 0.093
9 * 1.086 0.165 1.52000 58.00
10 ∞ 0.300 1.47000 56.00
11 ∞ 0.119 1.52000 58.00
12 * 1.329 0.188
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.064
Image plane ∞
Aspheric data 1st surface
K = 3.34161e-001,
A4 = -9.77745e-002, A6 = 3.72479e-001, A8 = -2.39567e + 000,
A10 = 3.68161e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.12131e + 001,
A4 = 1.62848e-001, A6 = -7.83651e-001, A8 = 3.47722e + 000,
A10 = -1.25865e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.55869e + 001,
A4 = -5.06016e-003, A6 = -1.38575e + 000, A8 = 2.04518e-001,
A10 = 1.05509e + 001, A12 = -4.71410e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = 1.02730e + 001,
A4 = -4.88088e-001, A6 = 2.54478e-001, A8 = 5.47177e-002,
A10 = -1.10700e-001, A12 = 1.58895e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -1.07357e + 000,
A4 = -6.32133e-001, A6 = 3.35553e-001, A8 = -4.28992e-003,
A10 = -5.19582e-002, A12 = 1.22086e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -1.52456e + 000,
A4 = -2.87911e-001, A6 = 8.76228e-002, A8 = -2.46211e-002,
A10 = 9.77158e-003, A12 = -1.82570e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal lengths f 2.479
F number Fno. 2.880
Half angle of view ω 35.068
Statue height y'max 1.750
Total lens length TL 2.795
Back focus BF 0.582
Lens block data block surface Focal length
1 1- 4 2.166
2 5- 8 -3.187
3 9-12 6.231
Example 4
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.761 0.241 1.51000 56.00
2 (Aperture) ∞ 0.300 1.47000 65.00
3 ∞ 0.050 1.51000 56.00
4 * 1.765 0.380
5 * -2.445 0.050 1.51000 56.00
6 ∞ 0.300 1.47000 65.00
7 ∞ 0.213 1.51000 56.00
8 * 1.133 0.050
9 * 0.721 0.220 1.51000 56.00
10 ∞ 0.300 1.47000 65.00
11 ∞ 0.138 1.51000 56.00
12 * 1.508 0.164
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.119
Image plane ∞
Aspheric data 1st surface
K = 3.18781e-001,
A4 = -1.12312e-001, A6 = 4.14654e-001, A8 = -2.38113e + 000,
A10 = 2.56891e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.06819e + 001,
A4 = 1.69653e-001, A6 = -7.79750e-001, A8 = 3.67649e + 000,
A10 = 1.28822e-001, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.80567e + 001,
A4 = -2.14776e-001, A6 = -1.50819e + 000, A8 = 1.80174e + 000,
A10 = 1.44525e + 001, A12 = -5.89379e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = -1.06877e + 001,
A4 = -6.90043e-001, A6 = 4.23248e-001, A8 = 5.70619e-002,
A10 = -1.21561e-001, A12 = -2.54184e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -3.17546e + 000,
A4 = -5.68960e-001, A6 = 3.44348e-001, A8 = -4.72248e-003,
A10 = -5.27232e-002, A12 = 1.20794e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -1.00461e + 000,
A4 = -2.90540e-001, A6 = 8.34789e-002, A8 = -2.55475e-002,
A10 = 9.85685e-003, A12 = -1.54286e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal length f 2.702
F number Fno. 2.880
Half angle of view ω 33.505
Statue height y'max 1.750
Total lens length TL 2.854
Back focus BF 0.613
Lens block data block surface Focal length
1 1- 4 2.183
2 5- 8 -1.440
3 9-12 2.108
(Example 5)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.775 0.238 1.51000 56.00
2 (Aperture) ∞ 0.300 1.47000 65.00
3 ∞ 0.050 1.60000 30.00
4 * 2.108 0.294
5 * -2.320 0.050 1.51000 56.00
6 ∞ 0.300 1.47000 65.00
7 ∞ 0.194 1.51000 56.00
8 * 6.901 0.129
9 * 1.151 0.147 1.51000 56.00
10 ∞ 0.300 1.47000 65.00
11 ∞ 0.216 1.51000 56.00
12 * 1.348 0.183
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.127
Image plane ∞
Aspheric data 1st surface
K = 3.32701e-001,
A4 = -9.19438e-002, A6 = 3.85802e-001, A8 = -2.26822e + 000,
A10 = 3.27964e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.46979e + 001,
A4 = 1.47239e-001, A6 = -8.05875e-001, A8 = 2.60997e + 000,
A10 = 2.01079e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.83466e + 001,
A4 = 8.40371e-003, A6 = -1.48698e + 000, A8 = 2.95248e-001,
A10 = 1.27209e + 001, A12 = -3.96371e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = 1.03568e + 001,
A4 = -4.84833e-001, A6 = 2.63232e-001, A8 = 8.18751e-002,
A10 = -1.00685e-001, A12 = -6.42723e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -1.13433e + 000,
A4 = -6.34233e-001, A6 = 3.41178e-001, A8 = -6.26291e-003,
A10 = -5.22014e-002, A12 = 1.25465e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -1.04099e + 000,
A4 = -3.01707e-001, A6 = 7.03058e-002, A8 = -2.05232e-002,
A10 = 1.04040e-002, A12 = -2.16959e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal lengths f 2.589
F number Fno. 2.880
Half angle of view ω 34.300
Statue height y'max 1.750
Total lens length TL 2.858
Back focus BF 0.639
Lens block data block surface Focal length
1 1- 4 2.239
2 5- 8 -3.337
3 9-12 7.189
(Example 6)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.759 0.243 1.51000 56.00
2 (Aperture) ∞ 0.300 1.47000 65.00
3 ∞ 0.050 1.60000 30.00
4 * 1.998 0.308
5 * -2.313 0.050 1.51000 56.00
6 ∞ 0.300 1.47000 65.00
7 ∞ 0.178 1.60000 30.00
8 * 8.708 0.146
9 * 1.291 0.125 1.51000 56.00
10 ∞ 0.300 1.47000 65.00
11 ∞ 0.236 1.51000 56.00
12 * 1.471 0.165
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.129
Image plane ∞
Aspheric data 1st surface
K = 3.20159e-001,
A4 = -9.07512e-002, A6 = 3.46612e-001, A8 = -2.25717e + 000,
A10 = 3.04311e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.45611e + 001,
A4 = 1.10094e-001, A6 = -6.88351e-001, A8 = 2.61934e + 000,
A10 = -1.22899e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.82412e + 001,
A4 = -9.27219e-002, A6 = -1.53171e + 000, A8 = 8.25970e-001,
A10 = 1.40241e + 001, A12 = -5.35283e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = 2.57279e + 001,
A4 = -4.28438e-001, A6 = 2.56453e-001, A8 = 6.43865e-002,
A10 = -1.03792e-001, A12 = 8.99988e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -1.08092e + 000,
A4 = -6.26930e-001, A6 = 3.46745e-001, A8 = -5.00214e-003,
A10 = -5.22801e-002, A12 = 1.24183e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -8.42110e-001,
A4 = -2.90623e-001, A6 = 5.81149e-002, A8 = -2.06185e-002,
A10 = 1.09906e-002, A12 = -1.89537e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal length f 2.636
F number Fno. 2.880
Half angle of view ω 33.814
Statue height y'max 1.750
Total lens length TL 2.859
Back focus BF 0.624
Lens block data block surface Focal length
1 1- 4 2.239
2 5- 8 -3.337
3 9-12 7.189
(Example 7)
Unit: mm
Surface data surface number r d nd νd
Object ∞ ∞
1 * 0.760 0.255 1.51000 6.00
2 (Aperture) ∞ 0.300 1.47000 65.00
3 ∞ 0.050 1.51000 56.00
4 * 1.817 0.283
5 * -2.141 0.050 1.51000 56.00
6 ∞ 0.300 1.47000 65.00
7 ∞ 0.222 1.51000 56.00
8 * 10.119 0.131
9 * 1.441 0.109 1.51000 56.00
10 ∞ 0.300 1.47000 65.00
11 ∞ 0.254 1.51000 56.00
12 * 1.742 0.147
13 ∞ 0.500 1.51633 64.14
14 ∞ 0.119
Image plane ∞
Aspheric data 1st surface
K = 2.38138e-001,
A4 = -7.90940e-002, A6 = 3.77414e-001, A8 = -1.83568e + 000,
A10 = 2.29905e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
4th page
K = 1.19929e + 001,
A4 = 9.24485e-002, A6 = -7.45136e-001, A8 = 2.94291e + 000,
A10 = -6.23720e + 000, A12 = 0.00000e + 000, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
5th page
K = 1.68288e + 001,
A4 = -1.28560e-001, A6 = -1.45012e + 000, A8 = 8.43644e-001,
A10 = 1.74244e + 001, A12 = -7.76426e + 001, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
8th page
K = -2.89278e + 001,
A4 = -4.82224e-001, A6 = 2.97329e-001, A8 = 6.97461e-002,
A10 = -1.08173e-001, A12 = -2.62066e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
9th page
K = -7.94709e-001,
A4 = -6.11098e-001, A6 = 3.41188e-001, A8 = -6.55587e-003,
A10 = -5.22544e-002, A12 = 1.27899e-002, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
12th page
K = -5.32381e-001,
A4 = -2.41995e-001, A6 = 3.78648e-002, A8 = -2.15248e-002,
A10 = 1.12326e-002, A12 = -1.46434e-003, A14 = 0.00000e + 000,
A16 = 0.00000e + 000, A18 = 0.00000e + 000, A20 = 0.00000e + 000,
Various data focal lengths f 2.589
F number Fno. 2.600
Half angle of view ω 34.104
Statue height y'max 1.750
Total lens length TL 2.849
Back focus BF 0.596
Lens block data block surface Focal length
1 1- 4 2.144
2 5- 8 -3.410
3 9-12 9.320
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 CU 携帯端末
 LU 撮像装置
 LN 撮像レンズ
 Cn 第nレンズブロック(n=1、2、3)
 Ln1 第noレンズ部(n=1、2、3)
 Ln2 第nレンズ基板(n=1、2、3)
 Ln3 第niレンズ部(n=1、2、3)
 ST 開口絞り(絞り)
 SR 撮像素子
 SS 受光面
 IM 像面(光学像)
 AX 光軸
 B1 スペーサ部材
 1 信号処理部
 2 制御部
 3 メモリ
 4 操作部
 5 表示部
CU mobile terminal LU imaging device LN imaging lens Cn nth lens block (n = 1, 2, 3)
Ln1 No. lens part (n = 1, 2, 3)
Ln2 nth lens substrate (n = 1, 2, 3)
Ln3 ni lens unit (n = 1, 2, 3)
ST Aperture stop
SR Image sensor SS Light-receiving surface IM Image surface (optical image)
AX optical axis B1 spacer member 1 signal processing unit 2 control unit 3 memory 4 operation unit 5 display unit

Claims (20)

  1.  平行平板のレンズ基板と、
     前記レンズ基板の物体側面及び像側面のうちの少なくとも一方に、前記レンズ基板と異なる材料で形成され、正又は負のパワーを有するレンズ部と、
     を備えるレンズブロックを3ブロック含む撮像レンズであって、
     前記レンズブロックは、物体側から順に、正のパワーを有する第1レンズブロック、負のパワーを有する第2レンズブロック、及び正又は負のパワーを有する第3レンズブロックであり、
     前記第2レンズブロックの像側面が近軸で像側に凹の面形状を有する非球面であり、前記第3レンズブロックの物体側面が近軸で物体側に凸の面形状を有する非球面であり、前記第3レンズブロックの像側面が非球面であることを特徴とする撮像レンズ。
    A parallel plate lens substrate;
    A lens portion formed of a material different from that of the lens substrate on at least one of the object side surface and the image side surface of the lens substrate, and having a positive or negative power;
    An imaging lens including three lens blocks each including
    The lens block is a first lens block having a positive power, a second lens block having a negative power, and a third lens block having a positive or negative power in order from the object side.
    The image side surface of the second lens block is an aspherical surface having a paraxial and concave surface shape on the image side, and the object side surface of the third lens block is an aspherical surface having a paraxial and convex surface shape on the object side. An image pickup lens, wherein the image side surface of the third lens block is aspheric.
  2.  以下の条件式(1)を満足することを特徴とする請求項1記載の撮像レンズ。
    0<f/R2i<2.5 ・・・(1)
     ただし、
    f:全系の合成焦点距離
    R2i:第2レンズブロックの像側面の面頂点での曲率半径
    The imaging lens according to claim 1, wherein the following conditional expression (1) is satisfied.
    0 <f / R2i <2.5 (1)
    However,
    f: Total focal length R2i of the entire system: radius of curvature at the apex of the image side surface of the second lens block
  3.  前記第2レンズブロックの像側面の非球面形状が、近軸で凹の面形状を光軸から離れるにつれて負のパワーを弱めるか又は正のパワーを強めるようにした非球面形状であることを特徴とする請求項1又は2記載の撮像レンズ。 The aspherical shape of the image side surface of the second lens block is an aspherical shape in which the negative power is weakened or the positive power is increased with increasing distance from the optical axis in the paraxial concave shape. The imaging lens according to claim 1 or 2.
  4.  以下の条件式(2)を満足することを特徴とする請求項1から3のいずれか1項に記載の撮像レンズ。
    0.4<R3o/R3i<1.3 …(2)
     ただし、
    R3o:第3レンズブロックの物体側面の面頂点での曲率半径
    R3i:第3レンズブロックの像側面の面頂点での曲率半径
    The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression (2) is satisfied.
    0.4 <R3o / R3i <1.3 (2)
    However,
    R3o: radius of curvature at the surface vertex of the object side surface of the third lens block R3i: radius of curvature at the surface vertex of the image side surface of the third lens block
  5.  以下の条件式(3)を満足することを特徴とする請求項1から4のいずれか1項に記載の撮像レンズ。
    0.05<H/Y’<0.20 …(3)
     ただし、
    H:第2レンズブロックの像側面を通る軸上光束の最軸外での光軸からの光線高さ
    Y’:最大像高
    The imaging lens according to any one of claims 1 to 4, wherein the following conditional expression (3) is satisfied.
    0.05 <H / Y ′ <0.20 (3)
    However,
    H: Light height from the optical axis off the most axis of the axial light beam passing through the image side surface of the second lens block Y ′: Maximum image height
  6.  前記第3レンズブロックの物体側面が、少なくとも1つの変曲点を有する非球面であることを特徴とする請求項1から5のいずれか1項に記載の撮像レンズ。 6. The imaging lens according to claim 1, wherein the object side surface of the third lens block is an aspheric surface having at least one inflection point.
  7.  前記第3レンズブロックの物体側面が有する非球面は、光軸から離れるにつれて前記凸の面形状を緩めるような変曲点を有することを特徴とする請求項6に記載の撮像レンズ。 The imaging lens according to claim 6, wherein the aspherical surface of the object side surface of the third lens block has an inflection point that loosens the convex surface shape away from the optical axis.
  8.  前記第3レンズブロックの像側面が有する非球面は、近軸で像側に凹の面形状を有し、少なくとも1つの変曲点を有することを特徴とする請求項1から7のいずれか1項に記載の撮像レンズ。 The aspherical surface of the image side surface of the third lens block has a paraxial concave shape on the image side, and has at least one inflection point. The imaging lens described in the item.
  9.  以下の条件式(4)を満足することを特徴とする請求項1から8のいずれか1項に記載の撮像レンズ
    0.45<|f1/f2|<1.60 …(4)
     ただし、
    f1:第1レンズブロックの合成焦点距離
    f2:第2レンズブロックの合成焦点距離
    9. The imaging lens according to claim 1, wherein the following conditional expression (4) is satisfied: 0.45 <| f1 / f2 | <1.60 (4)
    However,
    f1: Composite focal length of the first lens block f2: Composite focal length of the second lens block
  10.  前記第1レンズブロックが物体側に凸面を向けたメニスカス形状を成すことを特徴とする請求項1から9のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 9, wherein the first lens block has a meniscus shape with a convex surface facing the object side.
  11.  前記第2レンズブロックの物体側面が、物体側に凹の面形状を有することを特徴とする請求項1から10のいずれか1項に記載の撮像レンズ。 11. The imaging lens according to claim 1, wherein an object side surface of the second lens block has a concave surface shape on the object side.
  12.  前記第1レンズブロックのレンズ基板上に開口絞りが配置されることを特徴とする請求項1から11のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 11, wherein an aperture stop is disposed on a lens substrate of the first lens block.
  13.  前記レンズ基板が全て同じ厚みの平行平板であることを特徴とする請求項1から12のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 12, wherein all the lens substrates are parallel flat plates having the same thickness.
  14.  前記レンズ基板がガラス材料から成ることを特徴とする請求項1から13のいずれか1項に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the lens substrate is made of a glass material.
  15.  前記レンズ部が樹脂材料から成ることを特徴とする請求項1から14のいずれか1項に記載の撮像レンズ。 The imaging lens according to claim 1, wherein the lens portion is made of a resin material.
  16.  前記樹脂材料が硬化型樹脂材料であることを特徴とする請求項15記載の撮像レンズ。 The imaging lens according to claim 15, wherein the resin material is a curable resin material.
  17.  前記樹脂材料は、30ナノメートル以下の無機微粒子を分散された状態で含むことを特徴とする請求項15又は16記載の撮像レンズ。 The imaging lens according to claim 15 or 16, wherein the resin material contains inorganic fine particles of 30 nanometers or less in a dispersed state.
  18.  格子状のスペーサ部材を介して前記レンズ基板同士をシールする工程と、
     前記シールする工程で、一体化された前記レンズ基板及び前記スペーサ部材を前記スペーサ部材の格子枠で切断する工程と、を含む製造方法により、前記レンズブロックが製造されることを特徴とする請求項1から17のいずれか1項に記載の撮像レンズ。
    Sealing the lens substrates with each other via a lattice-shaped spacer member;
    The lens block is manufactured by a manufacturing method including a step of cutting the integrated lens substrate and the spacer member with a lattice frame of the spacer member in the sealing step. The imaging lens according to any one of 1 to 17.
  19.  請求項1から18のいずれか1項に記載の撮像レンズと、
     前記撮像レンズにより受光面上に形成された光学像を電気的な信号に変換する撮像素子と、を備えていることを特徴とする撮像装置。
    The imaging lens according to any one of claims 1 to 18,
    An image pickup apparatus comprising: an image pickup element that converts an optical image formed on a light receiving surface by the image pickup lens into an electrical signal.
  20.  請求項19に記載の撮像装置を備えていることを特徴とする携帯端末。 A portable terminal comprising the imaging device according to claim 19.
PCT/JP2009/070893 2009-01-29 2009-12-15 Image pickup lens, image pickup apapratus, and portable terminal WO2010087084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-017609 2009-01-29
JP2009017609 2009-01-29

Publications (1)

Publication Number Publication Date
WO2010087084A1 true WO2010087084A1 (en) 2010-08-05

Family

ID=42395350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070893 WO2010087084A1 (en) 2009-01-29 2009-12-15 Image pickup lens, image pickup apapratus, and portable terminal

Country Status (1)

Country Link
WO (1) WO2010087084A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
CN116009221A (en) * 2023-03-24 2023-04-25 联创电子科技股份有限公司 Optical lens and camera module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119647A1 (en) * 2006-04-14 2007-10-25 Konica Minolta Opto, Inc. Imaging lens and imaging apparatus
JP2008185687A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
WO2008102776A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
WO2008102774A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
JP2008233222A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens and photographing device using the same
JP2008233221A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119647A1 (en) * 2006-04-14 2007-10-25 Konica Minolta Opto, Inc. Imaging lens and imaging apparatus
JP2008185687A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
WO2008102776A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
WO2008102774A1 (en) * 2007-02-19 2008-08-28 Konica Minolta Opto, Inc. Imaging lens, imaging device, portable terminal and method for manufacturing imaging lens
JP2008233222A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens and photographing device using the same
JP2008233221A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147841A1 (en) * 2011-04-26 2012-11-01 ソニー株式会社 Image pickup device and electronic apparatus
JP2012237966A (en) * 2011-04-26 2012-12-06 Sony Corp Image pickup device and electronic apparatus
US10330888B2 (en) 2011-04-26 2019-06-25 Sony Corporation Imaging device and electronic apparatus
CN116009221A (en) * 2023-03-24 2023-04-25 联创电子科技股份有限公司 Optical lens and camera module
CN116009221B (en) * 2023-03-24 2023-07-25 联创电子科技股份有限公司 Optical lens and camera module

Similar Documents

Publication Publication Date Title
JP5321954B2 (en) Imaging lens, imaging device, and portable terminal
JP4831222B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP5212354B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP5553253B2 (en) Imaging lens, imaging device, and portable terminal
JP5391806B2 (en) Imaging lens, imaging optical device, and digital device
WO2010010891A1 (en) Image pickup lens, image pickup device and portable terminal device
JP5293614B2 (en) Imaging lens, imaging device, portable terminal, and manufacturing method of imaging lens
JP2011017764A (en) Imaging lens, imaging apparatus and portable terminal
WO2009101928A1 (en) Lens unit, image capturing lens, image capturing device, and portable terminal
JP5311043B2 (en) An imaging lens, an imaging device, a portable terminal, an imaging lens manufacturing method, and an imaging device manufacturing method.
JP5434093B2 (en) Imaging lens, imaging device, and portable terminal
JP2012203234A (en) Imaging optical system, imaging apparatus and digital instrument
JP2011227362A (en) Imaging lens capable of shifting image, imaging optical device, and digital equipment
JP2011164562A (en) Image-capturing lens, image-capturing device, and portable terminal
JP2011028213A (en) Image pickup lens, image pickup device and mobile terminal device
WO2012160983A1 (en) Imaging lens, imaging device, and mobile terminal
JPWO2009069467A1 (en) Imaging lens, imaging device, and portable terminal
WO2009101971A1 (en) Imaging lens, imaging device and portable terminal
JPWO2011062076A1 (en) Zoom lens and imaging device
JP2010266815A (en) Imaging lens, image capturing apparatus and mobile terminal
JP5391822B2 (en) Imaging lens, imaging device, and portable terminal
WO2010087084A1 (en) Image pickup lens, image pickup apapratus, and portable terminal
WO2010140415A1 (en) Image taking lens, image taking device, and portable terminal
WO2010134376A1 (en) Image pickup lens, image pickup device, and portable terminal
WO2010146899A1 (en) Image taking lens, image taking device, and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP