WO2010081408A1 - 一种生物活性组织再生膜及其制备方法 - Google Patents

一种生物活性组织再生膜及其制备方法 Download PDF

Info

Publication number
WO2010081408A1
WO2010081408A1 PCT/CN2010/070133 CN2010070133W WO2010081408A1 WO 2010081408 A1 WO2010081408 A1 WO 2010081408A1 CN 2010070133 W CN2010070133 W CN 2010070133W WO 2010081408 A1 WO2010081408 A1 WO 2010081408A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk fibroin
bioactive
tissue
tissue regeneration
factor
Prior art date
Application number
PCT/CN2010/070133
Other languages
English (en)
French (fr)
Inventor
张玉峰
刘朝阳
马兆成
Original Assignee
武汉本药康华生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉本药康华生物科技有限公司 filed Critical 武汉本药康华生物科技有限公司
Publication of WO2010081408A1 publication Critical patent/WO2010081408A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/005Ingredients of undetermined constitution or reaction products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices

Definitions

  • the invention relates to a biomedical engineering material and a preparation method thereof, in particular to a three-dimensional tissue repairing material capable of inducing tissue regeneration and a preparation method thereof, and belongs to the technical field of biomedical materials.
  • Membrane materials can be mainly divided into absorbable and non-absorbable films.
  • Non-absorbable non-degradable film material represented by polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the film has the characteristics of stable physical and chemical properties, low friction coefficient, no stickiness, hydrophobicity, heat resistance, corrosion resistance, bio-aging resistance, and easy sterilization. At the same time, it has good biocompatibility and does not affect the regeneration process. Therefore, it has been widely used and has been regarded as the "gold standard". However, its clinical application is time-consuming and difficult. After 4 to 6 weeks of placement, it requires secondary surgery to remove the tissue that has been repaired. The removal time is not easy to determine. At the same time, it causes secondary trauma to the patient, and it has been used less frequently.
  • biodegradable biofilms There are two main types of biodegradable biofilms reported in the literature: one is collagen membrane made of animal collagen or collagen fiber, and the other is membrane made of polylactic acid and medical plasticizer or collagen fiber. Most of these biodegradable biofilms are composed of collagen and polylactic acid. However, when they are implanted into the body, they are prone to acid production during the degradation process, which may lead to an inflammatory reaction in the implanted area, and there is a risk of rejection in the body.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a bioactive tissue regeneration membrane which is biocompatible, degradable in vivo and has a barrier function, and also has tissue-induced regenerability and a preparation method thereof.
  • the bioactive tissue regeneration membrane is a two-layer composite structure, and the smooth dense layer is a cell closure layer, which can prevent unwanted soft tissue mucosal cells from invading into the transplant defect area; the proximal transplantation area is a loose multi-space structure, which can bind organisms. Active factor, which can promote tissue regeneration.
  • a bioactive tissue regeneration membrane which is a two-layer composite structure, characterized in that: one layer is a tissue isolation layer composed of silk fibroin, and its appearance The surface is smooth and dense, the inner surface is a scratched rough surface; the other layer is a tissue inducing layer composed of a mixture of silk fibroin or silk fibroin and biologically active factors attached to the rough surface of the tissue separation layer.
  • the outer surface is loose and long and empty.
  • the mixture of the silk fibroin and the biologically active factor has a bioactive factor content of 3-10 mg/ml, and the bioactive factor is bone morphogenetic protein, platelet-derived growth factor, insulin-like growth factor, fibroblast growth factor or transformation. Growth factor.
  • the present invention also provides a method for preparing the above bioactive tissue regeneration membrane, which comprises the steps of:
  • the scratch roughening treatment is performed by sharpening a side of the tissue separation layer composed of silk fibroin to form a staggered scratch having a depth of 1 to 10 ⁇ m.
  • the 10 ⁇ 30% silk fibroin solution mixed with the bioactive factor has a bioactive factor content of 3-10 mg/ml, and the bioactive factors are bone morphogenetic protein, platelet-derived growth factor, insulin-like growth factor, and One or more of fibroblast growth factor or transforming growth factor.
  • the smooth layer of the bioactive tissue regeneration membrane provided by the present invention is a cell closure layer, which can prevent unwanted soft tissue mucosal cells from invading into the transplant defect area, and can also serve as a platform for supporting tissue repair to assist wound recovery.
  • the bioactive tissue regeneration membrane allows blood vessels to grow inward into the protein fiber space, thereby promoting blood vessel density at the transplant site.
  • the rough surface of the bioactive tissue regeneration membrane is composed of a large number of nano-scale protein bundles, with a large space between the protein bundles, which can fix the tissue to heal early blood clots and support new tissue regeneration. Tissue growth is better promoted by the addition of growth factors.
  • the biologically active tissue is re
  • the biofilm can be digested into natural amino acids. Unlike films made from polylactic acid and polyglycolide, a large amount of acid is produced during the degradation process, thereby damaging the repaired tissue.
  • the bioactive bone-inducing regenerative membrane provided by the invention has wide application range and can be widely used in orthopedics, cranial and maxillofacial surgery, ophthalmology, general, extrathoracic, dental implant, periodontal surgery and reconstructive surgery. A number of clinical disciplines such as neurosurgery.
  • the preparation method provided by the invention is simple, the process is mature and easy to control.
  • Figure 1 is a scanning electron micrograph of the bioactive tissue regeneration membrane section
  • Figure 2 is a scanning electron micrograph of cells cultured on the surface of bioactive tissue regeneration membrane.
  • Example 1 Bioactive tissue regeneration membrane for periodontal tissue regeneration
  • the silk fibroin was dissolved in deionized water to prepare a 10% silk fibroin solution, and then the solution was uniformly coated on the scratched film surface which was formed, and then placed in a -80 ° C refrigerator. After freezing for 10 hours, it was dried in a vacuum freeze dryer and released into a mold. According to the clinical requirements, it is cut into a suitable size and packaged, and then sterilized by ethylene oxide for use.
  • the silk fibroin film may be first cross-linked and then scratched before the scratch-roughening treatment with the probe.
  • Example 2 Bioactive tissue regeneration membrane for bone tissue regeneration (1)
  • the clean and impurity-removed silk was selected in a 0.5% Na 2 CO 3 aqueous solution, and the gel was degummed twice at 100 ° C for 1 hour each time, and the bath ratio was 1:50.
  • the degummed silk fibroin was dried to dryness in a drying oven at 80 °C.
  • 10 g of the silk fibroin fiber after degumming was dissolved in 100 ml of a calcium chloride I ethanol I water ternary solution (molar ratio of 1:2:8), and dissolved by magnetic stirring at 70 ° C under constant temperature.
  • the silk fibroin solution obtained above is subjected to dialysis, desalting and purification to obtain a water-soluble silk fibroin solution having a concentration of 2.5 to 3.5%, and concentrated and dried to obtain silk fibroin.
  • the silk fibroin is dissolved in deionized water to prepare a silk fibroin solution having a concentration of 30%, and then electrospinning is performed, and the spun film surface is sprayed according to a conventional condition, that is, A nanostructure-like staggered silk protein bundle was formed on the film surface, and then it was frozen in a refrigerator at -70 ° C for 10 hours, and then vacuum-dried in a vacuum freeze dryer to release the mold. According to the clinical requirements, it is cut into a suitable size and packaged, and then sterilized by ethylene oxide for use.
  • Example 3 Growth factor composite bioactive tissue regeneration membrane for bone tissue regeneration
  • the flat plate can be selected from non-stick plates such as glass plates and polytetrafluoroethylene plates, and the specifications can be based on clinical needs. As a result, there is no effect on the effects of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Description

说 明 书
一种生物活性组织再生膜及其制备方法 技术领域
本发明涉及一种生物医学工程材料及其制备方法, 特别涉及一种可诱导组织 再生的三维组织修复材料及其制备方法, 属生物医用材料技术领域。
背景技术
引导组织再生术是目前临床上对组织缺损修复的最佳方法, 其原理是利用生 物膜的物理屏障功能将骨缺损区与周围组织隔离,创造一个相对封闭的组织环境, 从而使骨组织的再生功能得到最大程度的发挥。 它的应用为牙周病的治疗, 牙种 植区骨量不足及其它骨缺损的修复、 骨折的愈合提供了一个新的有效途径。
膜材料主要可分为可吸收性和不可吸收性膜两种。 ①不可吸收性非降解膜材 料, 以聚四氟乙烯 (PTFE) 为代表。这种膜具有理化性能稳定、摩擦系数小、无黏 性、 疏水、 耐热、 耐腐蚀、 耐生物老化、 消毒杀菌容易等特点。 同时生物相容性 好, 不影响再生过程, 因此应用广泛, 曾被奉为 "金标准"。 但其临床应用操作费 时而且困难, 放置 4〜6 周后需二次手术摘除, 易损坏已经修复好的组织, 取出 时间也不易确定, 同时给患者造成二次创伤, 现在已较少应用。 ②可吸收性降解 膜材料。 由于这些材料植入体内后不需取出, 减少了患者的痛苦和手术难度, 因 此得到较广泛的应用。 目前文献报道的可降解生物膜主要有两种: 一种为动物胶 原蛋白或胶原纤维制成的胶原膜, 另一种为以聚乳酸和医用增塑剂或胶原纤维制 成的膜。 这些可降解生物膜大多由胶原及聚乳酸等构成, 但将它们植入体内后, 在降解过程中容易产酸从而可能导致植入区发生炎症反应, 同时存在着体内排斥 反应的风险。
发明内容
本发明的目的在于克服现有技术存在的不足, 提供一种生物相容性好、 能在 体内降解和具有分隔屏障作用, 同时还具有组织诱导再生性的生物活性组织再生 膜及其制备方法。 该种生物活性组织再生膜为双层复合结构, 其平滑的致密层是 细胞闭合层, 可以阻止不需要的软组织粘膜细胞侵袭到移植缺陷区; 近移植区则 为疏松多空结构, 可结合生物活性因子, 能够很好的促进组织再生。
为实现上述目的, 本发明采用的技术方案是: 一种生物活性组织再生膜, 该 膜为双层复合结构, 其特征在于: 一层为由丝素蛋白构成的组织隔离层, 其外表 面呈光滑致密状, 内表面为有划痕的粗糙面; 另一层为附着在组织隔离层粗糙面 上的由丝素蛋白或丝素蛋白与生物活性因子的混合物构成的组织诱导层, 其外表 面呈疏松多空结构。
所述丝素蛋白与生物活性因子的混合物中, 生物活性因子的含量为 3-10mg/ml, 生物活性因子为骨形成蛋白、血小板衍生生长因子、胰岛素样生长因 子、 成纤维细胞生长因子或转化生长因子。
本发明还提供了上述生物活性组织再生膜的制备方法, 其特征在于包括以下 步骤:
(1)将丝素蛋白溶于去离子水配成浓度范围为 10~30%的丝素蛋白溶液备用;
(2)将浓度为 10~30%的丝素蛋白溶液在室温下充分溶胀后, 搅拌至丝素蛋白 完全溶解、 脱泡, 然后倒入平板模上流延成膜, 再室温挥发、 于 50~70°C真空干 燥制成由丝素蛋白构成的组织隔离层;
(3)在已制成的组织隔离层一面进行划痕粗化处理, 再将 10~30%的丝素蛋白 溶液或者混有生物活性因子的 10~30%的丝素蛋白溶液, 均匀涂布或者采用静电 纺丝方法喷涂在有划痕的粗糙面上;
(4)在 -40~-80°C条件下冷冻 8~12小时, 然后在真空冷冻干燥器中真空干燥, 脱模即可。
所述的划痕粗化处理, 是在由丝素蛋白构成的组织隔离层的一面上用尖状物 刻划, 使表面形成深度为 1~10 微米的交错状划痕。 所述混有生物活性因子的 10~30%的丝素蛋白溶液中, 生物活性因子的含量为 3-10mg/ml, 生物活性因子为 骨形成蛋白、 血小板衍生生长因子、 ***、 成纤维细胞生长因子或 转化生长因子的一种或几种。
本发明具有以下优点:
1. 本发明提供的生物活性组织再生膜平滑的致密层是细胞闭合层,可以阻止 不需要的软组织粘膜细胞侵袭到移植缺陷区, 也可作为一个支持组织修复的平台 辅助创面恢复。 当这些软组织细胞生长至闭合时, 生物活性组织再生膜允许血管 向内生长到蛋白纤维空间中, 所以能促进移植点的血管密集。
生物活性组织再生膜的粗糙面是由大量的纳米级别的蛋白束构成, 在蛋白束 之间具有大量的空间, 可以固定组织愈合早期的血凝块以及支持新的组织再生。 加入生长因子后更能很好的促进组织再生。 在组织再生完全后, 生物活性组织再 生膜可以被酶解为天然的氨基酸。 不像聚乳酸和聚乙交酯制成的膜在降解过程中 会产生大量的酸, 从而伤害修复的组织。
2. 本发明提供的这种生物活性骨诱导再生膜适用范围广, 可广泛用于骨科、 颅、 颌面外科、 眼科、 普外、 胸外、 牙种植科、 牙周外科和修复重建外科及神经 外科等多个临床学科。
3. 本发明提供的制备方法简单, 工艺成熟, 易于控制。
附图说明
图 1为生物活性组织再生膜切面的扫描电镜图
图 2为生物活性组织再生膜表面培养细胞后的扫描电镜图
具体实施方式
下面通过具体实施例对本发明的技术方案做进一步说明, 其目的在于帮助更 好的理解本发明的内容, 但这些具体实施方案不以任何方式限制本发明的保护范 围。 本实施方案中所用的原料可在市场上购得, 或可用本领域已知的方法得到。 本实施方案中所说的浓度均为质量百分比浓度。
实施例 1 : 用于牙周组织再生的生物活性组织再生膜
(1) 选取干净除杂的蚕丝于 0.5% Na2CO3水溶液中, 100°C脱胶两次, 每次 1 小时, 浴比 1 : 50。 脱胶后的丝素置于 80°C的干燥箱中干燥至干。 取脱胶后的丝 素纤维 10克溶于 100ml的氯化钙 I乙醇 I水三元溶液 (摩尔比为 1 : 2 : 8) 中, 在 70°C恒温磁力搅拌溶解。 将上述获得的丝素溶液进行透析、 脱盐、 纯化, 得到 浓度为 2.5~3.5%的水溶性丝素溶液, 浓缩干燥即可得丝素蛋白。
(2)用天平称取 6g丝素蛋白, 加入到 20ml的去离子水中, 搅拌溶解 1~3小 时至丝素蛋白完全溶解,脱泡 1~3小时至溶液中无气泡后,倒入 5x5cm的平板模, 本实施例选用的是平板玻璃模上平淌流延成膜,室温下挥发 1~2天后于 70°C下真 空干燥 8小时至膜干燥成型。 此时用探针进行划痕粗化处理, 使该膜的一面上形 成深度为 1~10微米的交错状划痕。 将丝素蛋白溶解到去离子水中, 配成 10%的 丝素蛋白溶液, 然后将该溶液均匀涂布在已制成的有划痕的膜面上, 然后将其放 入 -80°C冰箱冷冻 10小时后, 放入真空冷冻干燥器中干燥, 脱模即成。 根据临床 要求裁剪成适当大小的块状后封装, 经环氧乙烷消毒备用。 在用探针进行划痕粗 化处理之前, 还可对丝素蛋白膜先进行交联处理, 再划痕。
实施例 2: 用于骨组织再生的生物活性组织再生膜 (1) 选取干净除杂的蚕丝于 0.5%Na2CO3水溶液中, 100°C脱胶两次, 每次 1 小时, 浴比 1 : 50。 脱胶后的丝素置于 80°C的干燥箱中干燥至干。 取脱胶后的丝 素纤维 10g溶于 100ml的氯化钙 I乙醇 I水三元溶液(摩尔比为 1 : 2 : 8)中, 在 70°C恒温磁力搅拌溶解。 将上述获得的丝素溶液进行透析、 脱盐、 纯化, 得到浓 度为 2.5~3.5%的水溶性丝素溶液, 浓缩干燥即可得丝素蛋白。
(2) 用天平称取 6g丝素蛋白, 加入到 30ml的去离子水中, 搅拌溶解 1~3小 时至丝素蛋白完全溶解,脱泡 1~3小时至溶液中无气泡后,倒入 5x5cm的平板模, 本实施例选用的是平板玻璃模上平淌流延成膜, 挥发 2天后于 50°C下真空干燥 7 小时至膜干燥成型。此时用探针划痕粗化处理, 使该膜的一面上形成深度为 1~10 微米的交错状划痕。 将丝素蛋白溶解在去离子水中, 配成浓度为 30%的丝素蛋白 溶液,然后采用静电纺丝法,按照常规条件在已制成的有划痕的膜面上进行喷纺, 即在膜面上形成纳米结构样的交错状蚕丝蛋白束,然后将其放入冰箱中在 -70°C下 冷冻 10小时后, 放入真空冷冻干燥器中真空干燥, 脱模即成。根据临床要求裁剪 成适当大小的块状后封装, 经环氧乙烷消毒备用。
实施例 3 : 用于骨组织再生的生长因子复合生物活性组织再生膜
(1) 选取干净除杂的蚕丝于 0.5% Na2CO3水溶液中, 100°C脱胶两次, 每次 1 小时, 浴比 1 : 50。 脱胶后的丝素置于 80°C的干燥箱中干燥至干。 取 10g脱胶后 的丝素纤维溶于 100ml的氯化钙 I乙醇 I水三元溶液(摩尔比为 1: 2: 8)中, 在 70°C恒温磁力搅拌溶解。 将上述获得的丝素溶液进行透析、 脱盐、 纯化, 得到浓 度为 2.5~3.5%的水溶性丝素溶液, 浓缩干燥即可得丝素蛋白。
(2) 用天平称取 6g丝素蛋白, 加入到 40ml的去离子水中, 搅拌溶解 1~3小 时至丝素蛋白完全溶解,脱泡 1~3小时至溶液中无气泡后,倒入 5x5cm的平板模, 本实施例选用的是平板玻璃模上平淌流延成膜, 挥发 1天后于 60°C下真空干燥 8 小时。 此时用探针划痕粗化处理, 使膜面上形成深度为 1~10微米的交错状划痕。
(3) 将 0.5g生物活性因子重组人基因骨形成蛋白的冻干粉, 加入到用丝素蛋 白与去离子水配成的 30%丝素蛋白液中混合均匀, 再采用静电纺丝法, 按照常规 条件进行喷纺, 即在膜面上形成携带生长因子的蛋白束, 然后将其放入冰箱中在 -50°C下冷冻 12小时后, 放入真空冷冻干燥器中真空干燥, 脱模即成。 根据临床 要求裁剪成适当大小的块状后封装, 经环氧乙烷消毒备用。
其中, 平板模可选用玻璃板、 聚四氟乙烯板等不粘板, 其规格可根据临床需 要而定, 对本发明的效果没有影响

Claims

权 利 要 求 书
1. 一种生物活性组织再生膜, 该膜为双层复合结构, 其特征在于: 一层为由丝 素蛋白构成的组织隔离层, 其表面呈光滑致密状; 另一层为附着在组织隔离 层粗糙面上的由丝素蛋白束或丝素蛋白与生物活性因子的混合物构成的组织 诱导层, 其表面呈疏松多空结构。
2. 根据权利要求 1所述的生物活性组织再生膜, 其特征在于: 再生组织面为粗 糙多孔。
3. 根据权利要求 1所述的生物活性组织再生膜, 其特征在于: 所述丝素蛋白与 生物活性因子的混合物中, 生物活性因子的含量为 3-10mg/ml。
4. 根据权利要求 1所述的生物活性组织再生膜, 其特征在于: 所述生物活性因 子为骨形成蛋白、 血小板衍生生长因子、 ***、 成纤维细胞生 长因子或转化生长因子中的一种或几种。
5. 一种权利要求 1所述的生物活性组织再生膜的制备方法, 其特征在于包括以 下步骤:
(5)将丝素蛋白溶于去离子水配成浓度范围为 10~30%的丝素蛋白溶液备用;
(6)将浓度为 10~30%的丝素蛋白溶液在室温下溶胀后, 搅拌至丝素蛋白完全 溶解、 脱泡, 然后倒入平板模上流延成膜, 再室温挥发、 于 50~70°C真空干燥制 成由丝素蛋白构成的组织隔离层;
(7)在已制成的组织隔离层一面进行划痕粗化处理, 再将 10~30%的丝素蛋白 溶液或者混有生物活性因子的 10~30%的丝素蛋白溶液, 均匀涂布或者采用静电 纺丝方法喷涂在有划痕的粗糙面上;
(8)在 -40~-80°C条件下冷冻 8~12小时, 然后在真空冷冻干燥器中真空干燥, 脱模即可。
6. 根据权利要求 5所述的生物活性组织再生膜的制备方法, 其特征在于: 所述 划痕粗化处理, 是在由丝素蛋白构成的组织隔离层的一面上用尖状物刻划, 使表面形成深度为 1~10微米的交错状划痕。
7. 根据权利要求 5所述的生物活性组织再生膜的制备方法, 其特征在于: 采用 静电纺丝方法将丝素蛋白喷涂在有划痕的粗糙面上。
8. 根据权利要求 5所述的生物活性组织再生膜的制备方法, 其特征在于: 所述 混有生物活性因子的 10~30%的丝素蛋白溶液中, 生物活性因子的含量为 3- 10mg/ml o
9. 根据权利要求 5所述的生物活性组织再生膜的制备方法, 其特征在于: 所述 生物活性因子为骨形成蛋白、 血小板衍生生长因子、 ***、 成 纤维细胞生长因子或转化生长因子中的一种或几种。
PCT/CN2010/070133 2009-01-13 2010-01-12 一种生物活性组织再生膜及其制备方法 WO2010081408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910060497 CN101474430B (zh) 2009-01-13 2009-01-13 一种生物活性组织再生膜及其制备方法
CN200910060497.5 2009-01-13

Publications (1)

Publication Number Publication Date
WO2010081408A1 true WO2010081408A1 (zh) 2010-07-22

Family

ID=40835257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070133 WO2010081408A1 (zh) 2009-01-13 2010-01-12 一种生物活性组织再生膜及其制备方法

Country Status (2)

Country Link
CN (1) CN101474430B (zh)
WO (1) WO2010081408A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148639A1 (en) * 2009-08-21 2012-06-14 Kyoto University Substrate for feeding cells and/or tissues, cell/tissue-feeder and method for the production of the same, method for the regeneration of tissues, and method for the production of porous bodies
CN113041392A (zh) * 2021-04-01 2021-06-29 浙江理工大学 一种负载胰岛素微粒的丝素蛋白-明胶生物活性复合水凝胶的制备方法
CN113398338A (zh) * 2021-06-30 2021-09-17 华东理工大学 一种引导组织再生的双层修复膜及其制备方法
CN114028619A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种双层人工骨膜及其制备方法和应用
CN114028620A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种矿化人工骨膜及其制备方法和应用
CN114028611A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种可吸收双层人工骨膜及其制备方法和应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474430B (zh) * 2009-01-13 2013-01-09 武汉大学 一种生物活性组织再生膜及其制备方法
CN101829025A (zh) * 2010-04-27 2010-09-15 马兆成 一种生物活性面膜及其制备方法
TWI424861B (zh) * 2010-07-30 2014-02-01 Univ Central Taiwan Sci & Tech And a method for producing the regenerated film and the method for producing the regenerated film
GB201118000D0 (en) * 2011-10-19 2011-11-30 Orthox Ltd An implantable repair device
CN102847194A (zh) * 2012-09-17 2013-01-02 浙江星月生物科技股份有限公司 一种难溶于水的支架型丝素蛋白膜及其制备与应用
CN103007364B (zh) * 2012-12-20 2014-05-14 北京市意华健科贸有限责任公司 脂肪族聚酯双层不对称引导组织再生膜的制备方法
CN103223193B (zh) * 2013-04-10 2014-12-10 浙江大学 高强度丝素骨修复支架材料的制备方法
KR101573838B1 (ko) * 2014-06-13 2015-12-07 대한민국 누에고치를 이용한 인공 생체막 및 이의 제조방법
CN104474589B (zh) * 2014-12-23 2019-03-12 山东国际生物科技园发展有限公司 一种引导组织再生膜及其制备方法与应用
CN104667349B (zh) * 2015-02-06 2017-01-25 福州大学 负载生长因子的丝素蛋白/胶原蛋白支架材料及制备方法
CN104707180B (zh) * 2015-02-06 2017-01-25 福州大学 负载bmp丝素蛋白/胶原蛋白支架材料及其制备方法
CN106552294B (zh) * 2015-09-25 2021-06-01 上海市东方医院 一种用于心脏修复的生物补片材料
CN105327401B (zh) * 2015-11-17 2018-07-17 上海纳米技术及应用国家工程研究中心有限公司 丝素蛋白双层仿骨膜材料的制备方法
CN105524472A (zh) * 2015-12-22 2016-04-27 傅泽红 一种角蛋白/丝素蛋白共混膜及其制备方法
CN106236326B (zh) * 2016-08-26 2018-08-10 天津市赛宁生物工程技术有限公司 大阶段骨修复***
CN106361468B (zh) * 2016-08-26 2019-01-15 天津市赛宁生物工程技术有限公司 一种大阶段骨缺损的骨修复***
CN106668940A (zh) * 2016-12-27 2017-05-17 上海纳米技术及应用国家工程研究中心有限公司 一种丝素蛋白双层膜及制备方法和应用
CN107812248A (zh) * 2017-10-26 2018-03-20 锡山区东港玉英家电经营部 一种改善骨折愈合的三层尖型复合膜的w模型制作方法
CN107551324B (zh) * 2017-10-27 2020-02-18 北京华信佳音医疗科技发展有限责任公司 一种可缝合硬膜修补材料的制备及其应用
CN108904885B (zh) * 2018-09-25 2021-02-09 清华大学深圳研究生院 可控降解生物水凝膜及其制作方法和应用
CN109291550B (zh) * 2018-10-15 2020-05-01 南通纺织丝绸产业技术研究院 复合屏障膜及其制备方法
CN109876193B (zh) * 2019-04-01 2020-05-19 西安交通大学 一种基于光交联水凝胶的双层复合牙周缺损修复材料及其制备方法
CN111298198B (zh) * 2019-04-18 2022-03-01 上海交通大学医学院附属第九人民医院 一种双层可吸收仿生屏障膜及其制备方法和应用
CN111617320B (zh) * 2020-04-20 2022-03-08 广州迈普再生医学科技股份有限公司 骨诱导再生膜及其制备方法和应用
CN112190771A (zh) * 2020-10-23 2021-01-08 扬子江药业集团广州海瑞药业有限公司 骨组织再生引导膜及其制备方法
CN112402703A (zh) * 2020-10-27 2021-02-26 北京幸福益生高新技术有限公司 一种含有生物活性矿物质材料的双层多孔复合生物膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000915A2 (en) * 2002-06-24 2003-12-31 Tufts University Silk biomaterials and methods of use thereof
US20060095137A1 (en) * 2004-10-29 2006-05-04 Seoul National University Industry Foundation Nanofibrous nonwoven membrane of silk fibroin for guided bone tissue regeneration and manufacturing method thereof
CN101036802A (zh) * 2006-12-30 2007-09-19 苏州大学 柞蚕丝素蛋白生物医用材料及其制备方法
WO2008103017A1 (en) * 2007-02-23 2008-08-28 Pusan National University Industry-University Cooperation Foundation Biodegradable porous composite and hybrid composite of biopolymers and bioceramics
CN101474430A (zh) * 2009-01-13 2009-07-08 武汉大学 一种生物活性组织再生膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000915A2 (en) * 2002-06-24 2003-12-31 Tufts University Silk biomaterials and methods of use thereof
US20060095137A1 (en) * 2004-10-29 2006-05-04 Seoul National University Industry Foundation Nanofibrous nonwoven membrane of silk fibroin for guided bone tissue regeneration and manufacturing method thereof
US20080292667A1 (en) * 2004-10-29 2008-11-27 Seoul National University Industry Foundation Nonwoven Nanofibrous Membranes of Silk Fibroin for Guided Bone Tissue Regeneration and Their Preparation Method
CN101036802A (zh) * 2006-12-30 2007-09-19 苏州大学 柞蚕丝素蛋白生物医用材料及其制备方法
WO2008103017A1 (en) * 2007-02-23 2008-08-28 Pusan National University Industry-University Cooperation Foundation Biodegradable porous composite and hybrid composite of biopolymers and bioceramics
CN101474430A (zh) * 2009-01-13 2009-07-08 武汉大学 一种生物活性组织再生膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIRKER-HEAD, C. ET AL.: "BMP-silk composite matrices heal critically sized femoral defects", BONE, vol. 41, no. 6, August 2007 (2007-08-01), pages 247 - 255 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148639A1 (en) * 2009-08-21 2012-06-14 Kyoto University Substrate for feeding cells and/or tissues, cell/tissue-feeder and method for the production of the same, method for the regeneration of tissues, and method for the production of porous bodies
US9440005B2 (en) * 2009-08-21 2016-09-13 National Institute Of Agrobiological Sciences Substrate for feeding cells and/or tissues, cell/tissue-feeder and method for the production of the same, method for the regeneration of tissues, and method for the production of porous bodies
CN113041392A (zh) * 2021-04-01 2021-06-29 浙江理工大学 一种负载胰岛素微粒的丝素蛋白-明胶生物活性复合水凝胶的制备方法
CN113398338A (zh) * 2021-06-30 2021-09-17 华东理工大学 一种引导组织再生的双层修复膜及其制备方法
CN114028619A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种双层人工骨膜及其制备方法和应用
CN114028620A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种矿化人工骨膜及其制备方法和应用
CN114028611A (zh) * 2021-11-02 2022-02-11 武汉亚洲生物材料有限公司 一种可吸收双层人工骨膜及其制备方法和应用

Also Published As

Publication number Publication date
CN101474430A (zh) 2009-07-08
CN101474430B (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2010081408A1 (zh) 一种生物活性组织再生膜及其制备方法
JP5406915B2 (ja) 生体適合性インプラント
JP2008531171A (ja) 多層構造を有する軟骨様構造および骨軟骨代替物、ならびにその使用
WO2011021712A1 (ja) 細胞・組織供給用支持体、細胞・組織供給体及びその製造方法、組織再生方法、並びに多孔質体の製造方法
JP2010273847A (ja) 高密度多孔質複合体
CN112587729A (zh) 一种骨修复材料
KR101429857B1 (ko) 골 지혈작용을 위한 복합이중층 섬유매트의 제조방법
CN112076350B (zh) 具有纳米-微米复合结构和高矿物质密度的仿生矿化水凝胶及其制备方法与及应用
KR102422432B1 (ko) 실리케이트-쉘화된 하이드로겔 섬유상 스케폴드 및 이의 제조 방법
CN1210071C (zh) 生物活性骨组织诱导再生膜及其制备方法
JP2018536451A (ja) 絹マトリクスを用いた血管用パッチ及びその製造方法
CN113633825B (zh) 一种负载bFGF的肝素化脱细胞脂肪材料的制备方法及应用
CN111228578A (zh) 载药丝素蛋白骨修复螺钉及其制备方法
JP2005213449A (ja) ゼラチンスポンジ
Wang et al. Development of a rapid-shaping and user-friendly membrane with long-lasting space maintenance for guided bone regeneration
Tan et al. Research on the osteogenesis and biosafety of ECM–Loaded 3D–Printed Gel/SA/58sBG scaffolds
RU2740132C2 (ru) Способ нанесения коллагеностимулирующего покрытия на эндопротез
CN102671243A (zh) 一种负载季铵化壳聚糖/siRNA复合粒子的皮肤再生材料及其制备方法
Wang et al. Comparison of the Effects of 3D Printing Bioactive Porous Titanium Alloy Scaffolds and Nano-biology for Direct Treatment of Bone Defects
Li et al. 3D printed hydroxyapatite/silk fibroin/polycaprolactone artificial bone scaffold and bone tissue engineering materials constructed with double-transfected bone morphogenetic protein-2 and vascular endothelial growth factor mesenchymal stem cells to repair rabbit radial bone defects
US20190374676A1 (en) A cross-linked structure for tissue regeneration and engineering and the method for synthesising same
Kuevda et al. Application of recellularized non-woven materials from collagen-enriched polylactide for creation of tissue-engineered diaphragm constructs
JP4671596B2 (ja) 多孔質骨修復材料およびその製造方法
JP5229937B2 (ja) 骨再生剤及び骨を再生する方法
CN108498861A (zh) 一种羟基磷灰石-丝素-二氧化钛生物材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731042

Country of ref document: EP

Kind code of ref document: A1