WO2010081398A1 - 帧结构的构建方法及帧结构的构建指示方法及网络*** - Google Patents

帧结构的构建方法及帧结构的构建指示方法及网络*** Download PDF

Info

Publication number
WO2010081398A1
WO2010081398A1 PCT/CN2010/070047 CN2010070047W WO2010081398A1 WO 2010081398 A1 WO2010081398 A1 WO 2010081398A1 CN 2010070047 W CN2010070047 W CN 2010070047W WO 2010081398 A1 WO2010081398 A1 WO 2010081398A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
receiving
station
frame
relay station
Prior art date
Application number
PCT/CN2010/070047
Other languages
English (en)
French (fr)
Inventor
梁文亮
卢磊
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010081398A1 publication Critical patent/WO2010081398A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method for constructing a frame structure, a method for constructing a frame structure, and a network system. Background technique
  • Full access (Worldwide Interoperability for Microwave Access; WiMAX) is a wireless metropolitan area network technology based on the IEEE 802.16 standard.
  • the IEEE 802.16 air interface consists of a physical layer (PHY) and a medium access control (MAC) layer.
  • the MAC layer is further divided into three sub-layers, namely, Service-specific Convergence Sublayer (Service-specific CS), MAC Common Part Sublayer (MAC CPS), and Security Sub-layer.
  • Figure 1 is a schematic diagram of the logical structure of an existing WiMAX air interface. In the figure, "BS" indicates a base station, "RS” indicates a relay station, and "MS” indicates a mobile station.
  • the 802.16 physical layer protocol addresses issues related to operating frequency, bandwidth, data transmission rate, modulation scheme, error correction techniques, and transceiver synchronization.
  • 802.16 supports 10-66 GHz and 2-l lGHz frequency ranges in the physical layer and supports both time division duplex (TDD) and frequency division duplex (FDD) duplex modes.
  • TDD time division duplex
  • FDD frequency division duplex
  • different physical layer technologies correspond to each other: single carrier (SC), Orthogonal Frequency Division Multiplexing (hereinafter referred to as OFDM) (256 points) and orthogonal frequency division Orthogonal Frequency Division Multiple Access (hereinafter referred to as OFDMA).
  • SC single carrier
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA orthogonal frequency division Orthogonal Frequency Division Multiple Access
  • 10 ⁇ 66GHz Fixed wireless broadband access systems mainly use single-carrier modulation technology.
  • OFDM and OFDMA are the core technologies of the WiMAX physical layer because of the high spectrum utilization of OFDM and OFDMA, and the ability to resist multipath, frequency selective weakening and narrowband interference.
  • IEEE 802.16e differs from OFDMA in IEEE 802.16d: In 802.16d, OFDMA is specified to be 2048 points, which is fixed. In 802.16e, OFDMA is scalable, supporting 2048 points, 1024 points, 512 points and 128 points, which can adapt to the channel bandwidth difference from 20MHz to 1.25MHz in different geographical areas, which makes mobility possible.
  • IEEE 802.16e physical layer uses 256-point OFDM or 2048-point OFDMA, IEEE 802.16e is backward compatible with the physical layer of 802.16d.
  • the IEEE 802.16 protocol adopts adaptive modulation and coding, providing Binary Phase Shift Keying (BPSK), Quadrature Phase Shift (Quarature Phase Shift). Keying; abbreviations: QPSK) and 4/16/64/256 Quadrature Amplitude Modulation (QAM) modulation schemes enable the transceiver to dynamically select the modulation scheme based on channel quality and user service requirements. An effective combination of speed and efficiency.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift
  • QAM Quadrature Amplitude Modulation
  • the 802.16 physical layer also has the following features: Flexible channel width, forward error correction of "Reed-Solomon” code and convolutional concatenated code, Adaptive Antenna System (AAS) can improve communication distance, increase system capacity, dynamic frequency Selection (DFS) can help reduce interference, and Space Time Coding (STC) can improve performance in fading environments through spatial diversity.
  • AAS Adaptive Antenna System
  • DFS dynamic frequency Selection
  • STC Space Time Coding
  • the transparent frame structure of the transparent relay mode in the existing 802.16j has the following characteristics: In the transparent mode, the RS does not send its own "preamble" signal, DL_MAP, UL MAP and other management messages, and can only exist in the centralized mode. In the scheduling scenario, the RS processes the "preamble" signal, the DL-MAP, and the UL MAP message of the BS in a transparent manner in the processing of the corresponding synchronization signal and the management message, so the MS directly parses the data from the RS.
  • the RS receives the data from the BS on the "DL Access Zone", and in the "Optional Transparent Zone” Forward and down, and receive data from the subordinate station on the "UL Access Zone", and forward it to the upper station on the "UL Relay Zone”; in the specific frame structure design, the RS and the BS are separated in frequency or time. To avoid the corresponding interference.
  • the existing 802.16j non-transparent mode relay frame structure has the following characteristics: only the frame structure in the 2-hop scene is defined; the frame structure is a relay frame structure in the non-transparent mode, that is, the RS can use different frequencies to the BS and MS communicates; RS in non-transparent mode has its own "preamble" synchronization signal, DL-MAP, UL-MAP, downlink channel descriptor (DCD), uplink channel descriptor (UCD) and other management messages; RS under BS When the MS enters the network, it will synchronize the "Preamble" signal of the BS and obtain the corresponding information.
  • the RS and the MS under the BS will analyze the DL-MAP, UL-MAP and DCD messages of the BS after synchronizing with the BS. Corresponding resource allocation and corresponding parameters; at this time, the RS and the MS will know the frame length of the BS, the length of the DL subframe, the length of the uplink subframe, and the "Access Zone” and "Relay Zone” in the downlink subframe and the uplink subframe. The length, and the values of parameters such as TTG and RTG; after that, the MS under the BS will still obtain the synchronization with the BS by receiving the "preamble" signal of the BS, and the RS under the BS will be synchronized every few frames.
  • the "R-amble” signal is used to synchronize with the BS.
  • Obtaining the real-time parameter change of the BS by obtaining a relay link channel descriptor (RCD) message; the RS will inform the R-TTG and the value of the R-RTG to the BS in the subsequent capability negotiation; after the RS is initialized, the RS is initialized.
  • the "Preamble" synchronization signal will be generated simultaneously with the BS, the BS will select one for the RS in the "Preamble" sequence, and then inform the RS of the sequence number; the RS determines according to the parameters obtained from the BS and its own resource scheduling capability.
  • each corresponding zone is such that the conversion time of each zone corresponds to the BS; the MS under RS de-synchronizes the RS according to the "Preamble" signal of the received RS, and determines the management message such as DL-MAP and UL-MAP of the RS. Resource allocation.
  • the existing relay frame structure in 802.16m has the following features: Support for multi-hop scenarios, corresponding frames The structure is defined by parity; the frame structure in transparent and non-transparent mode is supported; each "DL Transmit Zone” and “UL Receive Zone” of the RS is divided into two blocks for "Subordinate RS" under RS and The MS communicates.
  • the BS needs to transmit two sets of synchronization signals "Preamble" in order to keep the RS and the MS under it synchronized. And "R-amble".
  • the MS under the BS is synchronized with the BS by timing the "Preamble” signal
  • the RS under the BS is synchronized with the BS by timing "R-amble”.
  • the two sets of synchronization signals sent by the BS to indicate that the MS and the RS are synchronized are occupied with more resources, resulting in waste of resources.
  • the BS needs to send two sets of broadcast messages in order to allocate resources to the RS and MS under it, resulting in waste of resources.
  • the TTG time interval represents the time interval required for the BS/RS to be used from the transmitting state to the receiving state.
  • the RS does not have a transmission-to-reception conversion process before and after the TTG time interval, this structure causes waste of resources.
  • the RS needs to adjust the size of the length equal to the length of the "UL Subframe” to re-allocate the MS under it, resulting in flexibility in resource allocation. The reduction.
  • the embodiment of the invention provides a method for constructing a frame structure, a method for constructing a frame structure, and a network system, which are used to solve the problem that the frame structure stipulated by the protocol is unreasonable in the prior art. Waste, low resource utilization and other defects, to achieve effective use of network resources.
  • An embodiment of the present invention provides a method for constructing a frame structure, including:
  • the relay station frame includes a sending subframe and a receiving subframe
  • the sending subframe includes mutually connected first sending regions for transmitting data to the mobile station.
  • the receiving subframe includes a first receiving area for receiving data transmitted by the mobile station and receiving data sent by the base station The second receiving area.
  • the embodiment of the invention provides a method for constructing a frame structure, which includes:
  • the transmitting subframe includes a first transmitting area for transmitting data to the mobile station and a second transmitting area for transmitting data to the base station, the receiving subframe including interconnecting for receiving the mobile station a first receiving area of the transmitted data and a second receiving area for receiving data transmitted by the base station.
  • An embodiment of the present invention provides a relay station device, including:
  • a first receiving module configured to receive, by the base station, management information used to indicate that the relay station performs resource allocation
  • a building module configured to construct the relay station frame according to the management information, where the relay station frame includes a sending subframe and a receiving subframe, and the sending subframe includes interconnecting data for transmitting data to the mobile station a transmitting area and a second transmitting area for transmitting data to the base station, where the receiving subframe includes mutually connected first receiving areas for receiving data transmitted by the mobile station and for receiving the base station The second receiving area of the transmitted data.
  • An embodiment of the present invention provides a base station device, including: a second sending module, configured to send, to a relay station, offset information for identifying a frame of a relay station relative to the frame of the base station, and management for indicating that the relay station constructs a frame of the relay station Information, the relay station
  • the frame includes a transmitting subframe and a receiving subframe, the transmitting subframe includes a first transmitting area for transmitting data to the mobile station and a second sending area for transmitting data to the base station, the receiving The subframe includes a first receiving area for receiving data transmitted by the mobile station and a second receiving area for receiving data transmitted by the base station.
  • the embodiment of the invention provides a network system, including:
  • a base station configured to send, to the relay station, offset information for identifying a frame of the relay station relative to the frame of the base station, and management information for indicating that the relay station constructs a frame of the relay station;
  • a relay station configured to receive the management information, and construct the relay station frame according to the management information
  • the relay station frame includes a sending subframe and a receiving subframe
  • the sending subframe includes interconnecting a first transmission area for transmitting data by the mobile station and a second transmission area for transmitting data to the base station
  • the receiving subframe includes mutually connected first receiving areas for receiving data transmitted by the mobile station and a second receiving area for receiving data transmitted by the base station.
  • the method for constructing a frame structure and the method for constructing a frame structure provided by this embodiment are as follows: In the network system, since the RS connects two areas for transmitting data, the two areas of the received data are connected, so that the RS is used for sending The time between conversion and receiving data is reduced, and resource utilization is improved. DRAWINGS
  • Figure 1 is a schematic diagram of the logical structure of an existing WiMAX air interface
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for constructing a frame structure according to the present invention
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a frame structure of a BS frame and an RS frame according to the present invention
  • FIG. 4 is a flowchart of Embodiment 1 of a method for performing network coding based on an RS frame according to the present invention
  • FIG. 5 is a schematic diagram of a frame structure of a BS frame and an RS frame when the RS performs network coding according to the present invention
  • FIG. 6 is a schematic diagram of a first embodiment of a superframe structure in a relay system
  • FIG. 7 is a schematic diagram of Embodiment 2 of a superframe structure in a relay system
  • 8 is a schematic diagram of a second embodiment of a frame structure of a BS frame and an RS frame according to the present invention
  • FIG. 9 is a flowchart of a second embodiment of a network coding method for a BS frame and an RS frame according to the present invention.
  • Embodiment 11 is a schematic structural diagram of Embodiment 2 of a relay station device according to the present invention.
  • FIG. 12 is a schematic structural diagram of an embodiment of a base station device according to the present invention.
  • FIG. 13 is a schematic structural diagram of an embodiment of a network system according to the present invention. detailed description
  • the BS and the RS in the network each maintain a frame for resource allocation and data allocation, and perform corresponding operations according to the corresponding time in the frame structure of the frame.
  • the RS learns according to the frame structure of the RS frame for a certain period of time.
  • For transmitting data to the BS when the time is reached, an operation of transmitting data to the BS or the like is performed.
  • the method for creating a frame structure is provided on the premise that the performance of the frame system is not affected, and the The frame structure under the TDD of the OFDMA physical layer is appropriately improved to improve system resource utilization and improve system resource allocation flexibility.
  • the relay system there are two modes, transparent and non-transparent. The following describes the distributed scheduling in non-transparent mode as an example.
  • Step 100 Receive management information sent by a base station to instruct a relay station to perform resource allocation; and the RS receives management information sent by the BS,
  • the RS frame is constructed to implement resource allocation of the RS.
  • there is a certain offset between the BS frame and the RS frame that is, the start time of the RS frame lags behind the start time of the BS frame, and the offset time of the segment may be notified by the BS in advance.
  • RS determines the offset time, that is, determines the start time of the RS frame, according to the offset information sent by the received BS for identifying the relay station frame relative to the base station frame.
  • the offset information sent by the BS may be sent by using a relay station configuration command message, and the offset configuration information may be used to identify the offset information of the relay station frame relative to the base station frame.
  • the RS is in the region of the previous RS frame for receiving the data transmitted by the BS, so the RS can learn the resource allocation broadcast message in advance and adjust the resource allocation immediately before the end of the previous RS frame.
  • the BS performs synchronization.
  • the RS receives the management information sent by the BS within the offset time, and the RS can adjust the allocation of the RS's own resources according to the management information.
  • Step 101 Construct the relay station frame according to the management information.
  • FIG. 3 is a schematic diagram of a frame structure of a BS frame and an RS frame according to the present invention, as shown in FIG.
  • the RS frame includes a transmission subframe (DL Subframe) and a receiving subframe (UL Subframe), and the RS divides the "DL Subframe" into a first transmission area (DL Access Zone) and a second transmission area (UL Relay Zone).
  • the "DL Access Zone” is used for the RS to send data to the MS that is accessed, the "UL Relay Zone” is used for the RS to send data to the BS, and the "DL Access Zone” is connected to the "UL Relay Zone”; the RS will be "UL Subframe” “Divided into a first receiving area (UL Access Zone) and a second receiving area (DL Relay Zone), wherein “UL Access Zone” is used to receive MS transmission data, “DL Relay Zone” is used to receive BS data, and "” The UL Access Zone is connected to the "DL Relay Zone".
  • the Zone is connected to each other, and the "UL Access Zone” and the “DL Relay Zone” are connected to each other, so the RS frame includes only one time from the state of transmitting data to the state of receiving data (TTG), and one is switched from receiving data state to transmitting.
  • TTG state of receiving data
  • the time of the data state (RTG) avoids unnecessary switching in the existing RS frame, resulting in the presence of multiple TTGs and RTGs in one RS frame, improving resource utilization.
  • the offset of the RS frame relative to the BS frame in the method for constructing the frame structure provided by this embodiment, The delay caused by the RS relay BS transmitting data to the MS is greatly reduced; since the RS connects the "DL Access Zone” for transmitting data with the "UL Relay Zone", the "UL Access Zone” that will receive data is received. "Connected with the DL Relay Zone", so that the time for the RS to convert between the transmitted and received data is reduced, and the resource utilization is improved.
  • the BS can fully utilize the RS frame relative to the BS frame.
  • the offset flexibly allocates resources on the downlink.
  • the MS and the RS under it can be notified in time in the management message for resource allocation.
  • the BS then allocates the remaining resources allocated to the RS resources to the MS for use, breaking the fixed "DL Access Zone" limit.
  • the operation of synchronizing with the BS and the network coding negotiation may be included.
  • the BS may send a "preamble" signal for instructing the RS to synchronize at the head of the BS frame (the dotted line frame portion), and the RS receives the "preamble” signal from the BS within the offset time to obtain the sum. Synchronization of the BS.
  • the RS receives the management information from the BS, and the management information includes downlink management information (DL-MAP) and uplink management information (UL-MAP) to obtain a related resource allocation situation, where the uplink management information includes the first sending.
  • Configuration information of the area and the second transmission area where the downlink management information includes configuration information of the first receiving area and the second receiving area, and a relay link special management message IE, that is, "R-link specific IE" information
  • the configuration information includes length information of "DL-Subfmme", "UL-Subframe”, "DL Access Zone”, “DL Relay Zone”, "UL Access Zone", and "UL Relay Zone".
  • the method provided in this embodiment combines an R-MAP message with a DL-MAP and a UL-MAP message.
  • the R-MAP message sent by the BS is mainly for notifying the RS of the change of its resource allocation, mainly related to the change of related information in "DL-MAP IE", "UL-MAP IE” and "R-link specific IE”. Case; and "DL-MAP IE", "UL-MAP IE” and DL-MAP in the R-MAP message, IE in the UL-MAP message
  • the structure is the same, so the information contained therein can be fully communicated through DL-MAP and UL-MAP messages.
  • the modified DL-MAP message format is shown in Table 1.
  • the IE to be included in the "R-Link specific IE” is the same as the IE included in the "R-Link specific IE” in the R-map.
  • the RS will receive DCD, UCD and RCD messages from the BS to obtain the relevant parameters. Number information.
  • the BS puts the RCD message into the first area of the header of the BS frame and transmits it simultaneously with the DCD and UCD messages.
  • the RS can receive DCD, UCD, and RCD messages within the offset time.
  • the RS informs the BS whether it has network coding capability and/or frame structure offset capability through a capability negotiation message, that is, an SBC message, and the SBC message includes an identifier for identifying the RS network and/or a frame structure bias.
  • a capability negotiation message that is, an SBC message
  • the SBC message includes an identifier for identifying the RS network and/or a frame structure bias.
  • the attribute information of the ability to move For example, you can add the "Network Coding Capability" item to the "Extended Capability" attribute in the TLV of the SBC-REQ. See Table 2 for details.
  • the RS will then proceed with the registration process.
  • the BS will send a relay station configuration command message, ie "RS_Config_CMD" message to the RS, and the "RS_Config_CMD” message will contain the offset of the RS frame start time from the BS frame start time.
  • the information, the RS determines the start time of the RS frame by using the value.
  • Table 3 The format of the "RS_Config_CMD" message in the embodiment of the method is as shown in Table 3.
  • RS will continue to initialize the rest of the network until the initial network access process is completed.
  • the RS will construct the frame structure of the RS frame according to the information obtained during the initialization process, and the BS will also reallocate the downlink and uplink resources due to the RS access.
  • the specific process is as follows:
  • the BS will then re-divide the "DL Subframe” and the "UL Subframe”.
  • the BS divides "DL Subframe” into “DL Access Zone” and "DL Relay Zone”.
  • the "DL Access Zone” is used by the BS to send data to the accessed MS, and the “DL Relay Zone” is used by the BS to send data to the accessed RS.
  • BS divides "UL Subframe” into “UL Access Zone” and "UL Relay Zone”.
  • the "UL Access Zone” is used to receive data from the MS, and the "UL Relay Zone” is used to receive data from the RS.
  • RS "divide DL Subframe” into "DL Access Zone and "UL Relay Zone”.
  • DL Access Zone is used for RS to send data to the MS that is accessed
  • UL Relay Zone is used for RS to send data to the BS.
  • UL Subframe is divided into “UL Access Zone” and “DL Relay Zone”.
  • UL Access Zone is used to receive MS transmission data
  • DL Relay Zone is used to receive data of BS. Since RS frame and BS frame There is a certain offset in time.
  • the BS transmits the "Preamble” signal and sends broadcast messages for resource allocation such as DCD, UCD and RCD messages, the RS is in the "DL Relay Zone" of the previous frame. So for the RS It can be used to sense changes in related resource allocations in advance, and to make adjustments in its own resource allocation in a timely manner.
  • the RS controls the start time of each frame according to the offset of the RS frame obtained from the "RS_Config_CMD" message, so that the RS Each frame lags the BS every frame "No symbols.RS Frame Offset” for a long time.
  • the RS uses this offset time to receive the "Preamble" signal at the front end of the BS frame to maintain synchronization with the BS frame.
  • the RS can also receive the DL-MAP, UL-MAP, DCD, UCD, and RCD messages in each frame of the BS through the offset time, and then periodically obtain corresponding parameters and resource allocation information.
  • the RS connects the "DL Access Zone” for transmitting data with the "UL Relay Zone", and connects the "UL Access Zone” and the "DL Relay Zone” that receive data.
  • the time for the RS to convert between the transmitting and receiving data is reduced, and the resource utilization is improved.
  • the BS can fully utilize the offset of the RS frame relative to the BS frame to flexibly allocate the downlink. Resources.
  • the MS and the RS under it can be notified in time in the management message for resource allocation.
  • the BS then allocates the remaining resources allocated to the RS resources to the MS, breaking the fixed "DL Access Zone" limit.
  • NC Network Coding
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for performing network coding based on an RS frame according to the present invention. As shown in FIG. 4, the method includes:
  • Step 200 The RS logically packs the data packets with the same CID among the several data packets sent by the received MS, obtains the mobile station network coding logical data packet, and has the same number of data packets sent by the received BS.
  • the data packet of the CID is logically packaged to obtain a base station network coding logical data packet;
  • the BS finds that a certain service flow on the uplink of the MS is suitable for network coding with a downlink service flow, or the BS finds that the service flow on a downlink is suitable for a certain uplink.
  • the service code on the link performs network coding
  • the RS and the MS are notified in the DSA-RSQ message in the DSA-REQ or the service flow establishment response, that is, the DSA-RSQ message, and the RS is in the RS frame relative to the base station.
  • the network coding resource configuration indication sent by the BS is received within the offset time of the frame, and the size information of the network coding area, the location information, and two connection identifier (CID) information for network coding are obtained therefrom.
  • CID connection identifier
  • the specific judgment basis in this embodiment may be two scheduling types of service flows that need to be network coded. If the scheduling type is an active authorization service (UGS) or an extended real-time polling service (ertPS), the BS considers these two. The service flow satisfies the conditions of the network coding, and sends a network coding resource configuration indication to the RS, and the RS learns the size of the resource block "NC-Zone" that can be used by the RS itself for network coding according to the network coding resource configuration indication, and can use To construct the location of the resource block of the broadcast message, and also to know the values of the two CIDs used for network coding.
  • UMS active authorization service
  • ertPS extended real-time polling service
  • the RS can correctly parse the header information of the Medium Access Control Layer (MAC) PDU, whether it is centralized security or distributed security. Therefore, the NC process can be implemented at the MAC layer.
  • This embodiment is based on a group of PDUs. The unit is introduced.
  • the specific scheme of the NC of the RS is as follows. This embodiment only relates to the process before the RS encrypts the NC bit stream to be transmitted:
  • the RS receives the data packet (hereinafter referred to as PDU) sent by the MS and the BS, due to the MS and the BS.
  • PDU data packet
  • the CID is applied for identification. Therefore, the RS can logically pack the data packets with the same CID among the data packets sent by the MS and the BS, and the RS logically packs the PDUs with the same CID.
  • a set of mobile station network coding logical data packets is "MS-NC-PDU"; the RS logically packs the received PDUs of the BS with the same CID to form a group of base station network coding logical data packets, ie "BS-NC-"PDU".
  • Step 201 The RS obtains two corresponding data packets in the mobile station network coding logical data packet and the base station network coding logical data packet according to the network coding resource configuration indication sent by the BS, and performs network coding to obtain the relay station network coding logical data packet.
  • the RS finds two sets of PDUs in the "MS-NC-PDUs" and "BS-NC-PDUs" for network coding, for example, XOR operation can be performed. If the lengths of the two PDUs are inconsistent, the end of the PDU with a smaller length can be padded. That is, the end of the PDU with a smaller length needs to be filled with "0" to make the length equal to a larger one. That PDU.
  • Step 202 The RS encapsulates the relay network coded logical data packet, and sends the encapsulated network code of the relay station network including the configuration information to the MS and the BS according to the network coding resource configuration indication.
  • the new PDU is referred to as a "RS-NC-PDU" of the relay network coded logical data packet.
  • "RS_NC_PDU” needs to encapsulate an "NC header”.
  • the "NC header” does not perform network encoding operations.
  • the "NC header” header needs to contain the value of the construction information NSN of "RS_NC_PDU”, and the format of "RS_NC_PDU” is shown in Table 5.
  • RS ⁇ requires the network coding of the received PDU, and constructs a corresponding network coded message, "R-NC-MAP", to indicate the resource allocation in the "NC-Zone", and sends it to the MS and the BS.
  • the relay network coded logical data packet that is encapsulated and includes construction information.
  • the "R-NC-MAP" message does not require a MAC header and message type. If the RS is in a certain frame for some reason If there is no data to be sent to the MS or BS, the RS will fill in the corresponding redundant information when the network is encoded.
  • the RS then divides the different regional sub-blocks, "burst", in the "NC-Zone” according to the RS-to-MS link channel condition.
  • the specific division of "burst” will be given in the "R-NC-MAP” message.
  • the division principle of each "burst” may be divided according to modulation coding mode, or may have similar channel quality according to MS and BS to RS, and use the same "subcarrier allocation" method for uplink and downlink in a zone. .
  • FIG. 5 is a schematic diagram of a frame structure of a BS frame and an RS frame when the RS performs network coding according to the present invention.
  • the RS shown in FIG. 5 may be in the network area indicated by the head region of the RS frame or other network coding resource configuration.
  • a region sending, to the MS and the BS, a network coded message constructed by the relay station, that is, an "R_NC_MAP" message, where the "R_NC_MAP” message includes a network coding region, that is, "NC-Zone", for example, according to a modulation and coding method.
  • the RS informs the MS and the serial number NSN of the "RS_NC_PDU" in each "burst" in the "R-NC_MAP” and the CID_BS_NC_PDU, CID MS NC PDU, MS NC PDU.
  • Type is 2x3 or lx6)) ⁇
  • the BS or MS After receiving the data of "NC-Zone", the BS or MS will parse the data of the entire "NC-Zone” according to the indication of the "R-NC-MAP" message, which is different from the corresponding PDU saved by itself. Or operation, you can parse the data contained in the entire resource.
  • the RS is encoded by the network so that the RS can combine the data that needs to be sent in the two areas "Zone" into one "Zone" to be transmitted, so that the RS can be transmitted in the same time period. More resources are given to the MS, which greatly improves the efficiency of the network without affecting other network performance.
  • each superframe "superframe” is composed of four “frames", and each "frame” is composed of eight "subframes”. There are 5 “subframes” for the MRBS to transmit data, and 3 “subframes” for the MRBS to receive data.
  • the common management message of each superframe is located at the forefront of the superframe.
  • each "superframe” consists of 4 "frames”
  • each "frame” consists of 8 "subframes”
  • there are 5 "subframes” for RS to send data which are used for RS receiving data.
  • each superframe of the RS has a certain offset with respect to the start position of the superframe of the BS, and the RS uses this offset to receive data from the MRBS.
  • TTG and RTG There is only one TTG and RTG in each "frame" of the MRBS.
  • TTG and RTG There is only one TTG and RTG in each "frame” of the RS.
  • the RS After receiving the data from the BS, the RS first performs network coding with the received data from the MS. If the data packet sent by the base station is not suitable for network coding, the network may encode the redundant data packet. The transmission in the first transmission area causes the remaining data from the BS to be filled in the "DL Access Zone" and transmitted to the MS. After receiving the NC data, the BS and the MS decode the data according to the negotiated process and get the data they need. The network coding process is as described above and will not be described again.
  • Embodiment 7 is a schematic diagram of Embodiment 2 of a superframe structure in a relay system, as shown in FIG. 7, in the previous implementation.
  • this embodiment proposes another superframe structure embodiment, as can be seen from Figure 7:
  • the "superframe” consists of two “frames”, each of which consists of 16 “subframes”, of which there are 10 "subframes” for MRBS to send data, and 6 "subframes” for MRBS to receive data.
  • the public management message for each superframe is at the very front end of the superframe.
  • each "superframe” consists of two “frames”, each of which consists of 16 "subframes”, of which there are 10 "subframes” for RS to send data.
  • each superframe of the RS has a certain offset with respect to the start position of the superframe of the BS, and the RS uses this offset to receive data from the MRBS. There is only one TTG and RTG in each "frame" of the MRBS. There is only one TTG and RTG in each "frame” of the RS.
  • the RS After receiving the data from the BS, the RS first performs network coding with the received data from the MS, if the number of the base station network coded logical data packets is larger than the number of the mobile station network coded logical data packets.
  • the BS and the MS After receiving the NC data, the BS and the MS decode the data according to the negotiated process and get the data they need.
  • the network coding process is as described above and will not be described again.
  • FIG. 8 is a schematic diagram of the second embodiment of the frame structure of the BS frame and the RS frame according to the present invention
  • FIG. 9 is the second embodiment of the network coding method for the BS frame and the RS frame according to the present invention.
  • the RS does not send management messages such as its own "preamble" signal, DL_MAP, UL MAP, etc., and can only use the centralized scheduling resource scheduling method, and the MS under RS directly Receiving the synchronization signal sent by the BS and the management messages such as DL_MAP, UL_MAP, etc.
  • the RS receives the data from the BS on the "DL Access Zone” and on the "Optional Transparent Zone” Forwarding, and receiving data from the subordinate station on the "UL Access Zone", and forwarding it to the upper station on the "UL Relay Zone"; if there is a certain pair of service flows that satisfy the NC, the BS sends a network coding resource configuration indication to the RS.
  • the RS receives the network coding resource configuration indication sent by the BS in the DL Access Zone of the RS frame, and the network coding resource configuration indication includes configuration information of the network coding area, that is, "NC Zone" and two CID information for network coding.
  • the BS will specify an "NC Zone” in the "UL Relay Zone” of the RS for the data after the RS sends the NC.
  • the specific method refers to the implementation process of the non-transparent RS. In the specific RS frame structure design, the RS and the BS are in the frequency. Or separate in time to avoid the corresponding interference.
  • the RS does not construct the network coding indication information itself, but receives the network coding indication information sent by the BS, and sends the encapsulated relay station network coding logical data to the MS and the BS according to the network coding indication information sent by the BS. package.
  • the network coding indication information sent by the BS includes configuration information for indicating the division mode information of the RS in the network coding region, for example, dividing the plurality of regional sub-blocks according to the modulation and coding manner, and the relay station network coding logical data packet corresponding to the regional sub-block, and The relay station network encodes two CID information corresponding to the logical data packet.
  • the RS connects the "DL Access Zone” for transmitting data with the "UL Relay Zone", and connects the "UL Access Zone” and the "DL Relay Zone” that receive data. .
  • the MS and the RS under it can be informed in time in the management message for resource allocation.
  • the BS then allocates the remaining resources allocated to the RS resources to the MS, breaking the fixed "DL Access Zone" limit.
  • the RS also encodes the network so that the RS can combine the data that needs to be sent in the two areas "Zone" into one "Zone” to send more resources to the MS in the same time period. Under the premise of not affecting other performance of the network, the efficiency of the network is greatly improved.
  • An embodiment of the present invention further provides a method for constructing a frame structure, where the method includes: Transmitting the offset information for identifying the RS frame relative to the BS frame and the management information for indicating the RS constructing the RS frame, the RS frame includes a sending subframe and a receiving subframe, and the sending subframe includes interconnecting a first transmission area for transmitting data to the MS and a second transmission area for transmitting data to the BS, the receiving subframe including the first receiving area for receiving data transmitted by the MS and for transmitting by the receiving BS The second receiving area of the data.
  • the offset information is a time indicating that the start time of the RS frame constructed by the RS lags behind the BS frame, and the RS may determine the start time of the RS frame according to the offset information.
  • the BS uses the offset time to send, to the RS, management information for instructing the RS to construct the RS frame, and the management information includes downlink management information (DL-MAP) and uplink management information (UL-MAP) to obtain related resource allocation. .
  • DL-MAP downlink management information
  • UL-MAP uplink management information
  • the uplink management information includes configuration information of the first sending area and the second sending area, where the downlink management information includes configuration information of the first receiving area and the second receiving area, and a relay link special management message IE, ie, "R-link specific” IE" information, the configuration information includes the length information of "DL-Subfmme”, "UL-Subframe”, "DL Access Zone”, “DL Relay Zone”, “UL Access Zone” and "UL Relay Zone”. .
  • the RS can construct the RS frame as shown in FIG.
  • the RS frame includes a transmitting subframe (DL Subframe) and a receiving subframe (UL Subframe), and the RS divides the "DL Subframe” into the first transmitting region ( DL Access Zone) and the second transmission zone (UL Relay Zone), where "DL Access Zone” is used for the RS to send data to the accessed MS, “UL Relay Zone” is used for the RS to send data to the BS, and “DL Access Zone” “Interconnect with “UL Relay Zone”; RS divides "UL Subframe” into a first receiving area (UL Access Zone) and a second receiving area (DL Relay Zone), where "UL Access Zone” is used to receive MS transmission data
  • the "DL Relay Zone” is used to receive data from the BS, and the "UL Access Zone” and the “DL Relay Zone” are connected to each other.
  • the method for constructing a frame structure is to connect the "DL Access Zone” and the "UL Relay Zone” of the transmitted data by the offset of the RS frame with respect to the BS frame, and receive data.
  • the "UL Access Zone” is connected to the "DL Relay Zone", which reduces the time for the RS to convert between sending and receiving data, and improves resource utilization.
  • the BS re-divides the frame structure of the BS frame and constructs a BS frame as shown in FIG. 3, and the BS frame includes a transmitting subframe and a receiving subframe, and the transmitting subframe includes interconnections. a third transmission area for transmitting data to the RS and a fourth transmission area for transmitting data to the MS, the reception subframe includes a third reception area for receiving data transmitted by the BS and for receiving the MS transmission The fourth receiving area of the data.
  • the BS may also send a message such as DCD, UCD, and RCD to the RS in the header area of the BS frame, so that the RS obtains related parameter information, and the BS may also send the RS to indicate the RS within the offset time.
  • the sync signal that is synchronized is the "preamble" signal.
  • the network coding resource configuration indication is sent to the RS to instruct the RS to perform network coding.
  • the network coding resource configuration indication includes information such as the size of the "NC-Zone" and two CIDs used for network coding.
  • the RS After the network coding of the PDU sent by the BS and the MS, the RS sends the network-encoded PDU to the BS and the MS in the same area, and the BS receives the relay station network coding logical data packet sent by the RS, and the relay station network coding logical data packet is the RS.
  • the mobile station network coding logical data packet is the relay station to the mobile station Obtained by logically packing the data packets having the same CID among the sent data packets
  • the base station network coding logical data packet is performed by the relay station for the data packets having the same CID among the plurality of data packets sent by the base station Obtained by logical packing; after receiving the relay network coded logical data packet, the BS parses it, and parses the data of the entire "NC-Zone" according to the indication of the network coded message "R-NC-MAP" message, according to The XOR operation is performed on the corresponding PDU saved by itself, and the data contained in the entire resource can be parsed.
  • the "R-NC-MAP" message is sent to the BS and the MS after the RS is constructed.
  • the "R-NC-MAP" message is built by the BS itself and sent to the RS and MS.
  • the "R-NC-MAP” message shall include the division mode information of the plurality of regional sub-blocks divided by the modulation coding method in the network coding region, and the relay station network coding logic corresponding to each regional sub-block. The configuration information of the data packet, and the two CID information corresponding to the relay station network coding logical data packet.
  • the BS instructs the RS to perform network coding, and the RS performs network coding so that the RS can merge the data that needs to be sent in the two areas "Zone" into one "Zone" to be transmitted, thereby being the same.
  • the time period more resources can be delivered to the MS, and the efficiency of the network is greatly improved without affecting other performance of the network.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a relay station device according to the present invention.
  • the relay station device includes a first receiving module 11 and a building module 12, where the first receiving module 11 is configured to receive, by the BS, an indication of the RS.
  • the management module 12 is configured to construct the RS frame according to the management information, where the RS frame includes a sending subframe and a receiving subframe, and the sending subframe includes interconnecting data for sending to the MS. a first transmission area and a second transmission area for transmitting data to the BS, the receiving subframe includes a first receiving area for receiving data transmitted by the MS and a data for receiving data transmitted by the BS Two receiving areas.
  • the RS may be in the time of receiving the data of the last RS frame for receiving the data of the BS, that is, the offset time of the RS frame and the BS frame, and the first receiving module 11 knows the broadcast message of the resource allocation in advance for resource allocation. Adjustment.
  • the first receiving module 11 receives the management information sent by the BS within the offset time, and the RS may adjust and allocate the resources of the RS according to the management information. After receiving the management information sent by the BS, the first receiving module 11 will re-distribute the resources.
  • the allocation that is, the frame structure of the RS frame is adjusted by the construction module 12, wherein the RS frame in the constructed RS frame includes a transmission subframe (DL Subframe) and a reception subframe (UL Subframe), and the RS will "DL Subframe”. Divided into a first transmission area (DL Access Zone) and a second transmission area (UL Relay Zone), where "DL Access Zone” is used for the RS to send data to the accessed MS, and "UL Relay Zone” is used for the RS to send to the BS.
  • RS divides "UL Subframe” into a first receiving area (UL Access Zone) and a second receiving area (DL Relay Zone), where "UL Access Zone”"For receiving MS transmission data, "DL Relay Zone” is used to receive data from the BS, and "UL Access Zone” is connected to "DL Relay Zone”.
  • the RS frame includes only one TTG and one RTG, which avoids unnecessary switching in the existing RS frame and causes multiple TTGs and RTGs in one RS frame, thereby improving resources. Utilization.
  • the RS is offset by the RS frame relative to the BS frame, so that the delay generated when the RS relay BS transmits data to the MS is greatly reduced; because the RS will be used to transmit data "DL"
  • the Access Zone is connected to the "UL Relay Zone” to connect the "UL Access Zone” and the "DL Relay Zone” that receive data, so that the time for the RS to convert between sending and receiving data is reduced, and resource utilization is improved.
  • the relay station device includes a first receiving module 11 and a building module 12, and further includes network coding for transmitting a plurality of data packets sent by the MS and the BS.
  • Network coding module 13 When the BS finds that a certain service flow on the uplink of the MS is suitable for network coding with a downlink service flow, or the BS finds that the service flow on a downlink is more suitable for the service on an uplink.
  • Liu instructs the RS to perform network coding, and the RS completes the network coding operation of the data packet through the network coding module 13.
  • the network coding module 13 includes a first coding sub-module 131 and a second coding sub-module 132. And a third encoding sub-module 133, wherein the first encoding sub-module 131 logically packs the data packets having the same CID among the plurality of data packets sent by the received MS, obtains the mobile station network coding logical data packet, and receives the data packet The data packets with the same CID among the several data packets sent by the BS are logically packaged to obtain the base station network coding logical data packet. Subsequently, the second coding sub-module 132 performs network coding on the mobile station according to the network coding resource configuration indication sent by the BS.
  • Corresponding two sets of data packets are obtained in the logical data packet and the base station network coding logical data packet, and the network coding is performed to obtain the relay station network coding logical data packet; finally, the third coding sub-module 133 encapsulates the relay station network coding logical data packet, according to the The network coding resource configuration indication is sent to the MS and the BS to transmit the relay network coded logical data packet including the configuration information.
  • the relay station device RS provided in this embodiment further includes a first sending module 14 configured to send, to the MS and the BS, a network coded message constructed by the relay station, where the network coded message includes, for example, dividing a plurality of regions according to a modulation and coding manner in a network coding region. Blocking mode information of the block and configuration information of the relay station network coding logical data packet corresponding to the area sub-block, and two CID information corresponding to the relay station network coding logical data packet.
  • the first sending module 14 also sends a capability negotiation message to the BS in the network negotiation process, where the capability negotiation message includes attribute information for identifying the RS network coding capability and/or attribute information of the frame structure offset capability.
  • the RS can receive the synchronization signal at the forefront of the BS frame by offset time to maintain synchronization with the BS frame.
  • the RS can also receive messages such as DL-MAP, UL-MAP, DCD, UCD, and RCD in each frame of the BS through the offset time, and then obtain corresponding parameters and resource allocation information at regular intervals.
  • the RS connects the "DL Access Zone” for transmitting data with the "UL Relay Zone", and connects the "UL Access Zone” and the "DL Relay Zone” that receive data. The time for the RS to convert between transmitting and receiving data is reduced, and resource utilization is improved.
  • RS uses network coding to enable RS to send numbers that would otherwise need to be sent in two regions "Zone" According to the merger into a "Zone" to send, so that more resources can be delivered to the MS in the same period of time, without affecting the other performance of the network, greatly improving the efficiency of the network.
  • the base station device BS includes a second sending module 21, configured to send, to the RS, offset information for identifying an RS frame relative to a BS frame, and Instructing the RS to construct management information of the RS frame, the BS indicating that the RS frame structure constructed by the RS includes a transmitting subframe and a receiving subframe, and the transmitting subframe includes mutually connected first transmitting regions for transmitting data to the MS.
  • a second transmission area for transmitting data to the BS, the receiving subframe includes a first receiving area connected to receive data transmitted by the MS and a second receiving area for receiving data transmitted by the BS.
  • the base station device provided in this embodiment further includes a building module 22.
  • the BS also adjusts the frame structure of the BS frame, and the BS frame constructed by the constructing module 22 includes a transmitting subframe and a receiving subframe, and the transmitting subframe includes interconnected signals for transmitting data to the RS.
  • a third transmission area and a fourth transmission area for transmitting data to the MS the receiving subframe includes a third receiving area for receiving data transmitted by the BS and a fourth for receiving data transmitted by the MS Pick up 4 history areas i or.
  • the BS in this embodiment may also send an RCD message and a synchronization signal, such as a "preamble" signal, for instructing the RS to synchronize to the RS through the second transmitting module 21 within the offset time.
  • a synchronization signal such as a "preamble" signal
  • the RS is sent to the BS, and the second receiving module 23 in the BS is configured to receive the relay network coded logical data packet sent by the RS, where the relay network coded logical data packet is sent by the relay station according to the base station.
  • the network coding resource configuration indication is obtained by performing network coding on the mobile station network coding logical data packet and the base station network coding logical data packet, where the mobile station network coding logical data packet is the same as the RS data transmission to the MS
  • the data packet of the CID is obtained by logically packing, and the base station network coding logical data packet is a phase in a plurality of data packets sent by the RS to the base station.
  • the data packet of the CID is logically packaged.
  • the parsing module 24 in the BS is configured to parse the relay network coded logical data packet to obtain a data packet sent by the MS to the BS.
  • the BS can fully utilize the offset of the RS frame with respect to the BS frame to flexibly allocate resources on the downlink.
  • the MS and the RS under it can be notified in time in the management message for resource allocation.
  • the BS then allocates the remaining resources allocated to the RS resources to the MS, breaking the fixed "DL Access Zone" limit.
  • FIG. 13 is a schematic structural diagram of an embodiment of a network system according to the present invention.
  • the system includes a base station 1 and a relay station 2, where BS1 is configured to send, to RS2, offset information for identifying an RS frame relative to the BS frame.
  • the management information used to instruct the RS2 to construct the RS frame;
  • the RS2 is configured to receive the management information within an offset time determined by the offset information, and construct the RS frame according to the management information
  • the RS frame includes a transmitting subframe and a receiving subframe, and the transmitting subframe includes a first transmitting area for transmitting data to the mobile station and a second sending area for transmitting data to the BS1.
  • the receiving subframe includes a first receiving area for receiving data transmitted by the mobile station and a second receiving area for receiving data transmitted by the BS.
  • the RS2 is further configured to logically pack the data packets with the same CID among the plurality of data packets sent by the received mobile station, obtain the mobile station network coding logical data packet, and have the data packets sent by the received BS.
  • the data packets of the same CID are logically packaged to obtain the BS1 network coding logical data packet. According to the network coding resource configuration indication sent by the BS1, the corresponding two are obtained in the mobile station network coding logical data packet and the BS1 network coding logic data packet.
  • the relay station network encodes the logical data packet of the information; the BS 1 is further configured to receive the relay station network coded logical data packet sent by the RS2, and parse the relay station network coded logical data packet to obtain the data packet sent by the mobile station to the BS1.
  • the system also includes a mobile station, MS3, for receiving relay station network coding logic for RS2 transmission.
  • the data packet is parsed by the relay station network coding logical data packet to obtain a data packet sent by the BS1 to the mobile station.
  • the base station and the relay station involved in the system may use the base station and the relay station provided in the foregoing embodiments, and details are not described herein again.
  • the RS controls the start time of each frame according to the offset information sent by the BS, so that each frame of the RS lags the BS by an offset time per frame.
  • the RS uses this offset time to receive the synchronization signal at the forefront of the BS frame to maintain synchronization with the BS frame.
  • the RS can also receive the broadcast message sent by the BS through the offset time, and then periodically obtain the corresponding parameters and resource allocation information.
  • the RS connects the "DL Access Zone” for sending data and the "UL Relay Zone” to connect the "UL Access Zone” and "DL Relay Zone” that receive data.
  • the RS is used to reduce the time between the transmission and reception of data to improve the resource utilization; the BS can fully utilize the offset of the RS frame relative to the BS frame to flexibly allocate resources on the downlink.
  • the MS and the RS under it can be notified in time in the management message for resource allocation.
  • the BS then allocates the remaining resources allocated to the RS resources to the MS, breaking the fixed "DL Access Zone" limit.
  • the BS instructs the RS to perform network coding, and the RS performs network coding so that the RS can combine the data originally transmitted in the two areas "Zone" into one "Zone" to be transmitted, thereby being in the same time period. More resources can be delivered to the MS, greatly improving the efficiency of the network without affecting other network performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

帧结构的构建方法及帧结构的构建指示方法及网络*** 本申请要求了 2009年 1月 14日提交的, 申请号为 200910001235.1发明 名称为 "帧结构的构建方法及帧结构的构建指示方法及网络***" 的中国申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种帧结构的构建方法及帧 结构的构建指示方法及网络***。 背景技术
全求接入 [敖波互操作生 (Worldwide Interoperability for Microwave Access; 简称: WiMAX)是一种基于 IEEE 802.16标准的无线城域网技术。 IEEE 802.16的空中接口由物理层 ( PHY ) 和媒体接入控制 (MAC )层组 成。 MAC层又分成了三个子层,分别是特定业务汇聚子层( Service-specific Convergence Sublayer; 简称: Service-specific CS ) 、 MAC公共部分子层 ( MAC Common Part Sublayer; 简称: MAC CPS ) 和安全子层 ( Security Sublayer; 简称: SS ) 。 图 1为现有 WiMAX空口接口逻辑结构示意图, 图中 "BS" 表示基站, "RS" 表示中继站, "MS" 表示移动台。
802.16物理层协议主要解决与工作频率、 带宽、 数据传输率、 调制方 式、 纠错技术以及收发信机同步有关的问题。 802.16 在物理层使用 10-66GHZ 和 2-l lGHz 的频率范围, 支持时分双工 ( TDD ) 和频分双工 ( FDD )两种双工模式。 根据频段的不同分别有不同的物理层技术与之相 对应: 单载波(SC ) 、 正交频分复用技术 (Orthogonal Frequency Division Multiplexing; 以下简称: OFDM) ( 256点) 和正交频分多址 (Orthogonal Frequency Division Multiple Access;以下简称: OFDMA )。其中, 10~66GHz 固定无线宽带接入***主要采用单载波调制技术, 对于 2~l lGHz频段的 ***, 主要采用 OFDM和 OFDMA技术。 由于 OFDM和 OFDMA具有较 高的频谱利用率, 而且具有良好的抵抗多径效应、 频率选择性衰弱和窄带 干扰上的能力, 所以 OFDM和 OFDMA是 WiMAX物理层的核心技术。 但是, IEEE802.16e和 IEEE 802.16d中的 OFDMA有所不同: 在 802.16d 中, 规定了 OFDMA是 2048点, 是固定的。 802.16e中, OFDMA是可分 级, 支持 2048点、 1024点、 512点和 128点, 这样可以适应不同地理区 域从 20MHz到 1.25MHz的信道带宽差异, 这样使移动性成为了可能。 当 802.16e物理层采用 256点 OFDM或 2048点 OFDMA时, IEEE802.16e向 后兼容 802.16d的物理层。
同时, 为了保证高速数据的传输质量, IEEE 802.16协议采用了自适 应调制和编码, 提供了二相相移键控 (Binary Phase Shift Keying ; 简称: BPSK), 正交移相键控( Quadrature Phase Shift Keying; 简称: QPSK )和 4/16/64/256正交调幅 ( Quadrature Amplitude Modulation; 简称: QAM ) 等调制方式,使收发信机可以根据信道质量和用户业务需求来动态选择调 制方式, 实现了速率和效率的有效结合。 802.16物理层还具备以下一些特 点: 灵活的信道宽度, "Reed-Solomon" 码与卷积级联码的前向纠错, 自 适应天线***(AAS )可以改善通信距离, 提高***容量, 动态频率选择 ( DFS ) 可以帮助减小干扰, 空时编码 (STC ) 可以通过空间分集提高在 衰落环境下的性能。
现有 802.16j 中透明模式下透明中继站 (relay ) 帧结构有如下特点: 透明模式下 RS不发送属于自身的 "preamble"信号、 DL— MAP、 UL MAP 等管理消息, 且只能存在于集中式调度的场景下; 在相应同步信号以及管 理消息的处理上, RS对 BS的 "preamble" 信号、 DL— MAP、 UL MAP f 理消息采取透传得方式去处理, 因此 RS下的 MS直接解析来自 BS的同 步信号以及管理消息; 在相应的调度方式上, BS通过 "RS access map" 和 "RS relay map"去告知 RS需要如何调度收到来自 BS以及 MS的资源; 在具体的帧结构设计上, RS在 "DL Access Zone"上接收来自 BS的数据, 并在 "Optional Transparent Zone" 上向下转发, 同时在 "UL Access Zone" 上接收来自下级站的数据, 在 "UL Relay Zone"上向上级站转发; 在具体 的帧结构设计上, RS与 BS在频率或者时间上分开, 以避免相应的干扰。
现有 802.16j中非透明模式下 relay帧结构有如下特点:只定义了 2跳 场景下的帧结构; 该帧结构为非透明模式下 relay帧结构, 即 RS可以用不 同的频率去与 BS 以及 MS 进行通信; 非透明模式下的 RS 具有自己的 "preamble" 同步信号、 DL-MAP、 UL-MAP、 下行信道描述符( DCD ) 、 上行信道描述符(UCD )等管理消息; BS下的 RS和 MS在入网的时候都 会去同步 BS的 "Preamble" 信号, 并获取相应信息; BS下的 RS和 MS 在与 BS同步以后将会去解析 BS的 DL-MAP、 UL-MAP以及 DCD消息得 知相应的资源分配情况以及相应的参数; 此时 RS 以及 MS将会知道 BS 的帧长, DL子帧长,上行子帧长,下行子帧和上行子帧中的 "Access Zone"、 "Relay Zone" 的长度, 以及 TTG、 RTG等参数的值; 此后 BS下的 MS 将仍然通过接收 BS的 "preamble" 信号去获得与 BS的同步, 而 BS下的 RS将会在每几帧中去同步一次 BS的 "R-amble" 信号以获得与 BS的同 步。 通过获得中继链路信道描述符 (RCD ) 消息去感知 BS的实时参数变 化; RS在之后的能力协商中将会告知其 R-TTG以及 R-RTG的值给 BS; RS在初始化入网结束后, 将会与 BS同时产生 "Preamble" 同步信号, BS 将会在 "Preamble" 序列中为 RS选择一个, 然后将序列号告知 RS; RS 根据从 BS处获得的参数以及自身的资源调度能力,确定相应的各个 Zone 的大小, 使得各个 Zone的转换时间与 BS相对应; RS下的 MS根据接收 RS的 "Preamble" 信号去同步 RS, 通过接收 RS的 DL-MAP、 UL-MAP 等管理消息去确定资源分配情况。
现有 802.16m中的 relay帧结构有如下特点: 支持多跳场景, 相应帧 结构按奇偶跳定义; 支持透明、 非透明模式下的帧结构; RS的每个 "DL Transmit Zone" 和 "UL Receive Zone" 又被分成两块, 分别用于与 RS下 的 "Subordinate RS" 以及 MS进行通信。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 802.16j所拟定的帧结构中, BS为了使得其下的 RS以及 MS与其保 持同步, 需要发送两组同步信号 "Preamble" 和 "R-amble" 。 其中 BS下 的 MS通过定时获得 "Preamble" 信号与 BS保持同步, 而 BS下的 RS通 过定时获得 "R-amble" 信号与 BS保持同步。 BS下发的用于指示 MS和 RS保持同步的两组同步信号占用了较多的资源, 造成资源的浪费。
还有, 802.16j所定义的帧结构中, BS为了对其下的 RS和 MS进行 资源上的分配, 需要发送两组广播消息, 造成资源的浪费。
再有, 802.16j和 802.16m所拟定的帧结构中, RS都存在一个 TTG时 间间隔, TTG时间间隔表示的是 BS/RS用于从发送状态到接收状态所需 要的时间间隔。但由于 RS在 TTG时间间隔的前后并不存在发送向接收的 转换过程, 因此该种结构造成资源的浪费。
另夕卜, 802.16j和 802.16m所拟定的帧结构中, 当 BS在某一帧中对与 RS以及 MS的资源分配情况相关的 "DL Access Zone" 以及 "DL Relay Zone"或者 "UL Access Zone" 以及 "UL Relay Zone" 的大小进行改变后, RS需要通过大小等于 "UL Subframe"长度的一段时间去进行相应的调整, 重新对其下的 MS进行资源分配, 造成了资源分配的灵活性上的降低。
综上所述, 现有 802.16 协议中所拟定的帧结构会造成资源的浪费, 资源利用率较低、 资源分配的灵活性差。 发明内容
本发明实施例提供一种帧结构的构建方法及帧结构的构建指示方法及网 络***, 用以解决现有技术中由于协议所拟定的帧结构不合理而造成的资源 浪费, 资源利用率低等缺陷, 实现网络资源的有效利用。
本发明实施例提供一种帧结构的构建方法, 包括:
接收基站发送的用于指示中继站进行资源分配的管理信息;
才艮据所述管理信息构建所述中继站帧, 所述中继站帧包括发送子讯框和 接收子讯框, 所述发送子讯框包括相互连接的用于向移动台发送数据的第一 发送区域和用于向所述基站发送数据的第二发送区域, 所述接收子讯框包括 相互连接的用于接收所述移动台发送的数据的第一接收区域和用于接收所述 基站发送的数据的第二接收区域。
本发明实施例提供一种帧结构的构建指示方法, 包括:
向中继站发送用于标识中继站帧相对于所述基站帧的偏移量信息和用于 指示所述中继站构建中继站帧的管理信息, 所述中继站帧包括发送子讯框和 接收子讯框, 所述发送子讯框包括相互连接的用于向移动台发送数据的第一 发送区域和用于向基站发送数据的第二发送区域, 所述接收子讯框包括相互 连接的用于接收所述移动台发送的数据的第一接收区域和用于接收所述基站 发送的数据的第二接收区域。
本发明实施例提供一种中继站设备, 包括:
第一接收模块, 用于接收基站发送的用于指示中继站进行资源分配的管 理信息;
构建模块, 用于根据所述管理信息构建所述中继站帧, 所述中继站帧包 括发送子讯框和接收子讯框, 所述发送子讯框包括相互连接的用于向移动台 发送数据的第一发送区域和用于向所述基站发送数据的第二发送区域, 所述 接收子讯框包括相互连接的用于接收所述移动台发送的数据的第一接收区域 和用于接收所述基站发送的数据的第二接收区域。
本发明实施例提供一种基站设备, 包括: 第二发送模块, 用于向中继站发送用于标识中继站帧相对于所述基站帧 的偏移量信息和用于指示所述中继站构建中继站帧的管理信息, 所述中继站 帧包括发送子讯框和接收子讯框, 所述发送子讯框包括相互连接的用于向移 动台发送数据的第一发送区域和用于向基站发送数据的第二发送区域, 所述 接收子讯框包括相互连接的用于接收所述移动台发送的数据的第一接收区域 和用于接收所述基站发送的数据的第二接收区域。
本发明实施例提供一种网络***, 包括:
基站, 用于向中继站发送用于标识中继站帧相对于所述基站帧的偏移量 信息和用于指示所述中继站构建中继站帧的管理信息;
中继站, 用于接收所述管理信息, 并根据所述管理信息构建所述中继站 帧, 所述中继站帧包括发送子讯框和接收子讯框, 所述发送子讯框包括相互 连接的用于向移动台发送数据的第一发送区域和用于向所述基站发送数据的 第二发送区域, 所述接收子讯框包括相互连接的用于接收所述移动台发送的 数据的第一接收区域和用于接收所述基站发送的数据的第二接收区域。
本实施例提供的帧结构的构建方法及帧结构的构建指示方法及网络*** 中由于 RS将用于发送数据的两个区域连接起来, 将接收数据的两个区域连 接起来, 使得 RS 用于发送和接收数据之间相互转换的时间减少, 提高资源 利用率。 附图说明
图 1为现有 WiMAX空口接口逻辑结构示意图;
图 2为本发明帧结构的构建方法实施例一流程图;
图 3为本发明 BS帧和 RS帧的帧结构实施例一示意图;
图 4为本发明 RS基于 RS帧进行网络编码方法实施例一的流程图; 图 5为本发明 RS进行网络编码时 BS帧和 RS帧的帧结构实施例示意 图;
图 6为 relay***中超帧结构实施例一示意图;
图 7为 relay***中超帧结构实施例二示意图; 图 8为本发明 BS帧和 RS帧的帧结构实施例二示意图; 图 9为本发明 BS帧和 RS帧进行网络编码方法实施例二的流程图; 图 10为本发明中继站设备实施例一结构示意图;
图 11为本发明中继站设备实施例二结构示意图;
图 12为本发明基站设备实施例结构示意图;
图 13为本发明网络***实施例结构示意图。 具体实施方式
下面结合附图和具体实施例进一步说明本发明实施例的技术方案。 网络中的 BS和 RS各自维护一个帧用于数据接收和发送的资源分配, 并且均按照该帧的帧结构中对应的时间做相应的操作, 例如 RS根据 RS 帧的帧结构获知某一段时间是用于向 BS发送数据, 则在到达该时间时, 则执行向 BS发送数据的操作等等。 鉴于现有技术中由于帧结构构建不合 理造成资源浪费, 资源分配的灵活性差等缺陷, 本发明实施例提供一种帧 结构的创建方法, 在不影响 relay ***其他性能的前提下, 通过对基于 OFDMA物理层的 TDD下的帧结构进行适当的改进, 以提升***资源利 用率以及提高***资源分配灵活性。 在 relay***中, 存在透明和非透明 两种模式, 以下将以非透明模式下分布式调度为例进行详细说明。
图 2为本发明帧结构的构建方法实施例一流程图,如图 2所示,包括: 步骤 100,接收基站发送的用于指示中继站进行资源分配的管理信息; RS接收 BS发送的管理信息, 进行 RS帧的构建以实现 RS的资源分 配。 为了提高资源分配的灵活性和资源利用效率, BS帧和 RS帧存在一定 的偏移, 即 RS帧的起始时间要落后于 BS帧的起始时间, 该段偏移时间 可以是 BS预先告知 RS的, RS根据接收到的 BS发送的、 用于标识中继 站帧相对于基站帧的偏移量信息确定该偏移时间即确定 RS 帧的起始时 间。 BS 下发偏移量信息可以是通过中继站配置命令消息下发, 在该中继 站配置命令消息中可以包括用于标识中继站帧相对于基站帧的偏移量信 息。 该偏移时间内, RS正好处于上一个 RS帧中用于接收 BS发送数据的 区域, 因此 RS可以在上一 RS帧结束之前, 提前获知资源分配的广播消 息即时进行资源分配调整, 同时可以与 BS进行同步。 RS在该偏移时间内 接收 BS发送的管理信息, RS可以根据管理信息对 RS 自身的资源作分配 调整。
步骤 101, 根据所述管理信息构建所述中继站帧。
RS在接收到 BS发送的管理信息后, 将重新进行资源分配, 即对 RS 帧的帧结构进行调整, 图 3为本发明 BS帧和 RS帧的帧结构实施例一示 意图, 如图 3所示, RS帧包括发送子讯框( DL Subframe )和接收子讯框 ( UL Subframe ), RS将 "DL Subframe"划分成第一发送区域( DL Access Zone ) 和第二发送区域(UL Relay Zone ) , 其中 "DL Access Zone" 用 于 RS向接入的 MS发送数据, "UL Relay Zone" 用于 RS向 BS发送数 据, 并且 "DL Access Zone" 与 "UL Relay Zone" 相互连接; RS将 "UL Subframe" 划分成第一接收区域( UL Access Zone )和第二接收区域( DL Relay Zone ),其中 "UL Access Zone"用于接收 MS发送数据, "DL Relay Zone "用于接收 BS的数据,并且 "UL Access Zone"与 "DL Relay Zone " 相互连接。
从图 3中可以看出在 RS帧中, 由于 "DL Access Zone"与 "UL Relay
Zone" 相互连接, "UL Access Zone" 与 "DL Relay Zone" 相互连接, 因 此 RS 帧中仅包括一个从发送数据状态切换到接收数据状态的时间 ( TTG ), 以及一个从接收数据状态切换到发送数据状态的时间(RTG ), 避免了现有 RS帧中不必要的切换造成一个 RS帧中存在多个 TTG和 RTG, 提高了资源的利用率。
本实施例提供的帧结构的构建方法中通过 RS帧相对 BS帧的偏移, 使得 RS中继 BS传给 MS的数据时所产生的时延大为减少; 由于 RS将用 于发送数据的 "DL Access Zone" 和 "UL Relay Zone" 连接起来, 将接 收数据的 "UL Access Zone" 和 "DL Relay Zone" 连接起来, 使得 RS用 于发送和接收数据之间相互转换的时间减少, 提高资源利用率; 在本实施 例中, BS可以充分利用 RS帧相对于 BS帧的这段偏移灵活地分配下行链 路上的资源。 当 BS发送给 RS的数据较少时, 可以在用于资源分配的管 理消息中及时地告知其下的 MS以及 RS。 之后 BS会将分配给 RS资源之 后的剩余资源分配给 MS使用, 打破了固定的 "DL Access Zone" 的限制。
在上述方法实施例中, RS建立 RS帧之前还将包括与 BS进行同步、 网络编码协商等操作, 以下将以图 3的场景为例, 对 RS初始化过程进行 伴细介绍:^下:
当 RS初始化入网时, BS可以在 BS帧的头部 (虚线框部分)发送用 于指示 RS进行同步的 "preamble" 信号, RS在偏移时间内接收来自 BS 的 "preamble" 信号, 以获得和 BS的同步。
随后, RS会接收到来自 BS的管理信息, 该管理信息包括下行管理信 息 ( DL-MAP ) 和上行管理信息 (UL-MAP ) , 以获得相关的资源分配情 况, 该上行管理信息包括第一发送区域和第二发送区域的配置信息, 该下 行管理信息包括第一接收区域和第二接收区域的配置信息以及中继链路 特殊管理消息 IE 即 "R-link specific IE" 信息, 所述的各配置信息具体包 括 "DL-Subfmme" 、 "UL-Subframe" 、 "DL Access Zone" 、 "DL Relay Zone" 、 "UL Access Zone" 和 "UL Relay Zone" 的长度信息。
本实施例提供的方法相比现有的协议,是将 R-MAP消息与 DL-MAP、 UL-MAP消息进行了合并。 BS所发送的 R-MAP消息主要是为了通知 RS 其资源分配的变化情况, 主要涉及了 "DL-MAP IE" 、 "UL-MAP IE" 以 及 "R-link specific IE" 中的相关信息的变化情况; 而 R-MAP 消息中的 "DL-MAP IE" 、 "UL-MAP IE" 和 DL-MAP、 UL-MAP消息中的 IE的 结构是相同的,因此其中所包含的信息完全可以通过 DL-MAP和 UL-MAP 消息来传达。 因此在消息合并后, 只需要在 DL-MAP消息中包含 RS需要 接收的 "R-link specific IE" 所涉及的信息即可, 而不需要对 UL-MAP消 息进行修改。修改后的 DL-MAP消息格式表 1所示。这里 "R-Link specific IE" 所需要包含的 IE与 R-map中 "R-Link specific IE" 所包含的 IE的一 致。
表 1
Figure imgf000012_0001
随后, RS会接收到来自 BS的 DCD、 UCD和 RCD消息以获得相关的参 数信息。 本实施例方法中相比现有的协议, BS是将 RCD消息放入 BS帧的 头部第一个区域中与 DCD、 UCD消息同时发送。 RS可以在偏移时间内接收 DCD、 UCD和 RCD消息。 之后 RS将会进行测距过程, 在测距过程完成后, RS会进行基本能力的协商。
在能力协商过程中, RS通过能力协商消息即 SBC消息告知 BS其是否具 有网络编码的能力和 /或帧结构偏移能力,该 SBC消息中包括用于标识 RS网 络编码能力和 /或帧结构偏移能力的属性信息。 例如可以在 SBC-REQ的 TLV 中的 "Extended Capability" 属性中加入 "Network Coding Capability" 一项, 具体详见表 2。
表 2
Figure imgf000013_0001
之后 RS将进行注册过程。 在注册过程中, BS会发送中继站配置命令消 息即 "RS— Config— CMD" 消息给 RS, "RS— Config— CMD" 消息中将包含 RS 帧起始时间相对 BS帧起始时间的偏移量信息, RS通过该值进而确定 RS帧 的开始时间, 本方法实施例中 "RS— Config— CMD" 消息格式如表 3所示。 表 3
RS—Config-CMD— Message— Format {
Management Message Type = 74 8 bits
Transaction ID 16bits
Frame Number Action 8 bit
No symbols. RS Frame Offset 5 bit RS帧需要的偏移量
TLV Encoded Information variable
之后 RS会继续进行初始化入网的剩余过程, 直到初始化入网过程完成。
RS的初始化过程完成之后, RS将会根据在初始化过程所获得相关信息去构 建 RS帧的帧结构, 同时 BS也会因 RS的入网去重新分配下行以及上行的资 源。 具体过程如下:
由于 RS的入网, BS这时会将 "DL Subframe" 以及 "UL Subframe" 进 行重新划分。 BS将 "DL Subframe"划分成 "DL Access Zone"以及 "DL Relay Zone"。 "DL Access Zone"用于 BS向接入的 MS发送数据, "DL Relay Zone" 用于 BS向接入的 RS发送数据。 BS将" UL Subframe"划分成 "UL Access Zone" 以及 "UL Relay Zone"。 "UL Access Zone" 用于接收 MS的数据, "UL Relay Zone" 用于接收 RS的数据。 RS "将 DL Subframe" 划分成 "DL Access Zone 以及 "UL Relay Zone"。 "DL Access Zone" 用于 RS向接入的 MS发送数据, "UL Relay Zone" 用于 RS向 BS发送数据。 RS将 "UL Subframe" 划分成 "UL Access Zone" 以及 "DL Relay Zone"。 "UL Access Zone" 用于接收 MS 发送数据, "DL Relay Zone" 用于接收 BS的数据。 由于 RS的帧与 BS的帧 在时间上存在一定的偏移, BS在发送 "Preamble" 信号以及发送用于资源分 配的广播消息例如 DCD、 UCD和 RCD消息时, RS处于上一帧的 "DL Relay Zone"。 因此对于 RS来说, 它能够提前感知相关的资源分配的变化, 同时可 以及时进行自身资源分配上的调整。
本实施例提供的帧结构的构建方法中, RS根据从 "RS— Config— CMD" 消息中所获得的 RS帧的偏移量, 去控制每一帧的起始时间, 使得 RS的 每帧滞后 BS每帧 "No symbols.RS Frame Offset" 长时间。 RS通过这段偏 移时间去接收 BS帧最前端的 "Preamble" 信号去保持与 BS帧的同步。 RS 还可以通过这段偏移时间去接收 BS每帧中的 DL-MAP、 UL-MAP、 DCD、 UCD和 RCD消息, 进而定时获得相应的参数以及资源分配信息。 RS将用于发送数据的 "DL Access Zone" 和 "UL Relay Zone" 连接起来, 将接收数据的 "UL Access Zone" 和 "DL Relay Zone" 连接起来。 使得 RS 用于发送和接收数据之间相互转换的时间减少, 提高资源利用率; 在 本实施例中, BS可以充分利用 RS帧相对于 BS帧的这段偏移灵活地分配 下行链路上的资源。 当 BS发送给 RS的数据较少时, 可以在用于资源分 配的管理消息中及时地告知其下的 MS以及 RS。 之后 BS会将分配给 RS 资源之后的剩余资源分配给 MS使用, 打破了固定的 "DL Access Zone" 的限制。
网络编码(Network Coding; 以下简称: NC )是通信网络中信息处理 和传输理论研究上的重大突破,允许网络节点对传输信息进行编码处理。 运用网络编码能够提升网络吞吐量、 均衡网络负载和提高网络带宽利用 率。 以下各实施例在对基于 OFDMA物理层的 TDD下的帧结构进行适当 的改进的基础上, 同时将网络编码技术应用到该***的中继过程中去, 以 进一步提升***资源利用率以及提高***资源分配灵活性。
图 4为本发明 RS基于 RS帧进行网络编码方法实施例一的流程图,如图 4所示, 该方法包括:
步骤 200, RS将接收到的 MS发送的数个数据包中具有相同 CID的数据 包进行逻辑打包, 获得移动台网络编码逻辑数据包, 并将接收到的 BS发送 的数个数据包中具有相同 CID的数据包进行逻辑打包, 获得基站网络编码逻 辑数据包;
当 BS发现 MS上行链路上的某条服务流比较适合与某条下行的服务流进 行网络编码时, 或者 BS发现某条下行链路上的服务流比较适合于某条上行 链路上的服务刘进行网络编码时, 则在网络编码资源配置指示例如服务流建 立请求即 DSA-REQ或者服务流建立响应即 DSA-RSP消息中通知 RS 以及 MS, RS在 RS帧相对于基站帧的偏移时间内接收 BS发送的网络编码资源配 置指示, 并从中获知网络编码区域的大小信息、 位置信息和用于网络编码的 两个连接标识符 (CID )信息。 本实施例中具体的判断依据可以是两条需要 进行网络编码的服务流的调度类型, 如若调度类型是主动授权服务( UGS ) 或者扩展的实时轮询服务(ertPS ), BS则会认为这两条服务流满足网络编码 的条件, 并向 RS发送网络编码资源配置指示, RS根据网络编码资源配置指 示获知能够被 RS本身用来进行网络编码的资源块 " NC— Zone"的大小, 以及 能够用来构造广播消息的资源块的位置, 同时还会获知进行网络编码所用的 两个 CID的值。
表 4
Figure imgf000016_0001
无论是集中式安全还是分布式安全, RS均能正确的解析出媒体接入控制 层(MAC ) PDU的头部信息, 因此 NC过程可以在 MAC层进行实施, 本实 施例以一组 PDU为基本单位进行介绍。 RS的 NC具体方案如下, 本实施例 仅涉及 RS对需要发送的 NC比特流进行加密之前的过程:
RS接收 MS和 BS发送的数据包(以下称为 PDU )后, 由于 MS和 BS 发送 PDU时将应用 CID进行标识, 因此 RS可以分别对 MS和 BS发送的数 个数据包中具有相同 CID的数据包进行逻辑打包, RS将具有同样的 CID的 PDU 在逻辑上进行逻辑打包, 构成一组移动台网络编码逻辑数据包即 "MS— NC— PDU" ; RS将收到的 BS的具有相同的 CID的 PDU进行逻辑打 包, 构成一组基站网络编码逻辑数据包即 "BS— NC— PDU" 。
步骤 201, RS根据 BS发送的网络编码资源配置指示, 在移动台网络编 码逻辑数据包和基站网络编码逻辑数据包中获取对应的两组数据包, 进行网 络编码获得中继站网络编码逻辑数据包;
RS按照 BS的指示, 分别在 "MS— NC— PDUs" 和 "BS— NC— PDUs" 中找 出两组 PDU进行网络编码, 例如可以进行异或运算。 若找出的两个 PDU长 度不一致,则可以对长度较小的 PDU进行末尾补位即编码前需要将长度较小 的那一个 PDU的末尾填 "0" , 以使其的长度等于较大的那个 PDU。
步骤 202, RS对中继站网络编码逻辑数据包进行封装, 据网络编码资 源配置指示,向 MS和 BS发送经过封装的且包括构造信息的中继站网络编码 £辑数据包。
编码后,将新的 PDU称为中继站网络编码逻辑数据包即 "RS— NC— PDU"。 "RS_NC_PDU" 需要封装一个 "NC header" 。 "NC header" 并不进行网络 编码操作。 "NC header" 头里面需要包含 "RS_NC_PDU" 的构造信息 NSN 的值, "RS— NC— PDU" 的格式具体见表 5所示。
Figure imgf000017_0001
RS ^居要求对接收到的 PDU进行网络编码后, 并构造相应的网络编码 消息即 "R— NC— MAP" 去指示这块 "NC— Zone" 中的资源分配情况, 并向 MS和 BS发送经过封装的且包括构造信息的中继站网络编码逻辑数据包。
"R— NC— MAP" 消息无需 MAC头以及消息类型。 如果 RS在某一帧中因故 没有需要发送给 MS或者 BS的数据, 则 RS会在网络编码的时候填充进相应 的冗余信息。
然后 RS根据 RS到 MS的链路信道情况, 在 "NC— Zone" 中划分不同的 区域子块即 "burst" 。 "burst" 的具体划分方式将会在 "R— NC— MAP" 消息 中给出。 这里每个 "burst" 的划分原则可以是按照调制编码方式进行划分, 或可以根据 MS和 BS到 RS具有类似的信道质量, 以及在区域( zone ) 内上 下行使用相同的 "subcarrier allocation" 方式划分。
图 5为本发明 RS进行网络编码时 BS帧和 RS帧的帧结构实施例示意图, 如图 5所示的 RS可以在 RS帧的头部区域内或其它网络编码资源配置所指示 的网络编码的区域, 向 MS 和 BS发送所述中继站构建的网络编码消息即 "R— NC— MAP"消息,该 "R— NC— MAP"消息包括网络编码区域即 "NC— Zone" 中例如按照调制编码方式划分数个区域子块的划分方式信息和各区域子块对 应的中继站网络编码逻辑数据包的构造信息, 以及中继站网络编码逻辑数据 包对应的两个 CID信息。 具体地, RS在 "R— NC— MAP" 里面告知 MS以及 BS每个 "burst" 中 "RS— NC— PDU" 的序号 NSN以及 CID— BS— NC— PDU 、 CID MS NC PDU 、 MS NC PDU SN B 、 MS— NC— PDU— SN— E 、 BS— NC— PDU— SN— B、 BS— NC— PDU— SN— E 、 "LEN— BS— NC— PDU" 、 和 "LEN— MS— NC— PDU"的值。 "R— NC— MAP"消息格式见如表 6和表 7所示。
表 6
Figure imgf000018_0001
If! (byte boundary)!
Padding Nibble
}
}
表 7
R— NC— MAP— IE{
DIUC 4 bits
OFDMA Symbol offset 8 bits
N— RS— NC— PDU 8 bits 这个 burs t中 RS-NC-PDU的个数
If( (Permutation = Ob 11 and
(AMC
type is 2x3 or lx6)){
Subchannel offset 8 bits
No. OFDMA triple symbol 5 bits
No. Subchannels 6 bits
}else{
Subchannel offset 6 bits
No. OFDMA Symbols 7 bits
No. Subchannels 6 bits
}
for(NSN==l ;i<=
N_RS_NC_PDU;i++){
CID— BS— NC— PDU 16 bits
CID— MS— NC— PDU 16 bits
MS— NC— PDU— SN— B 11 bits
MS— NC— PDU— SN— E
BS— NC— PDU— SN— B 11 bits
BS— NC— PDU— SN— E
LEN— BS— NC— PDU 11 bits
LEN— MS— NC— PDU 11 bits
}
If! (byte boundary) {
Padding Nibble }
}
BS或 MS会在收到 "NC— Zone" 的数据后, 会按照 "R— NC— MAP" 消息 的指示去解析整个 "NC— Zone" 的数据, 按照与自己保存的相对应的 PDU进 行异或运算, 便可以解析出整块资源中所包含的数据。
本实施例提供的方法中, RS通过网络编码使得 RS能够将原本需要放在 两个区域 "Zone" 中发送的数据合并到一个 "Zone" 中去发送, 从而在相同 的时间段内可以传递更多的资源给 MS,在不影响网络其他性能的前提下, 大 大提高了网络的效率。
图 6为 relay***中超帧结构实施例一示意图,如图 6所示,对于 MRBS, 每个超帧 "superframe"由 4个 "frame"组成,每个 "frame"由 8个 "subframe" 组成, 其中用于 MRBS发送数据的有 5个 "subframe" , 用于 MRBS接收数 据的有 3 个 "subframe" , 每个超帧的公共管理消息位于超帧的最前端。 对 于 RS,每个 "superframe"由 4个 "frame"组成,每个 "frame"由 8个 "subframe" 组成, 其中用于 RS发送数据的有 5个 "subframe" , 用于 RS接收数据的有 3个 "subframe" , 每个超帧的公共管理消息位于超帧的最前端。 RS的每个 超帧的起始位置相对于 BS的超帧的起始位置存在一定的偏移量, RS利用这 个偏移量接收来自 MRBS的数据。 MRBS的每个 "frame"中只存在一个 TTG 以及 RTG。 RS的每个 "frame" 中只存在一个 TTG以及 RTG。
RS在收到来自 BS的数据后, 会首先与收到的来自 MS的数据进行网络 编码, 若所述基站发送的数据包不适合进行网络编码, 则可以将网络编码后 多余的所述数据包在所述第一发送区域内进行发送即将剩余的来自 BS 的数 据填入 "DL Access Zone" 中传输给 MS。 BS和 MS在收到 NC的数据后, 会根据实现协商好的过程来进行解码, 得到自己需要的数据。 网络编码流程 如前所述, 不再赘述。
图 7为 relay***中超帧结构实施例二示意图, 如图 7所示, 在上一实施 例中, 可以看出每个 "superframe" 中存在 4个 TTG和 4个 RTG时间间隔。 如果每个 TTG或者 RTG占用一个 "symbol" 的时隙, 那么一帧中存在 8个
"symbol" 是无法被利用的, 这样对***的资源利用率会产生一定的影响, 针对上述问题, 本实施例提出另一个超帧结构实施例, 从图 7中可以看出: 对于 MRBS, 每个 "superframe" 由 2个 "frame" 组成, 每个 "frame" 由 16个 "subframe"组成,其中用于 MRBS发送数据的有 10个 "subframe" , 用于 MRBS接收数据的有 6个 "subframe" , 每个超帧的公共管理消息位于 超帧的最前端。对于 RS,每个 "superframe"由 2个 "frame"组成,每个 "frame" 由 16个 "subframe" 组成, 其中用于 RS发送数据的有 10个 "subframe" , 用于 RS接收数据的有 6个 "subframe" , 每个超帧的公共管理消息位于超帧 的最前端。 RS的每个超帧的起始位置相对于 BS的超帧的起始位置存在一定 的偏移量, RS利用这个偏移量接收来自 MRBS的数据。 MRBS的每个 "frame" 中只存在一个 TTG以及 RTG。 RS的每个 "frame" 中只存在一个 TTG以及 RTG。 RS在收到来自 BS的数据后, 会首先与收到的来自 MS的数据进行网 络编码, 若所述基站网络编码逻辑数据包的个数比所述移动台网络编码逻辑 数据包的个数多, 则将多余的所述基站网络编码逻辑数据包在所述第一发送 区域内进行发送即将剩余的来自 BS的数据填入 "DL Access Zone" 中传输给 MS。 BS和 MS在收到 NC的数据后, 会根据实现协商好的过程来进行解码, 得到自己需要的数据。 网络编码流程如前所述, 不再赘述。
以上均是 relay***中非透明模式下的实施例,图 8为本发明 BS帧和 RS 帧的帧结构实施例二示意图, 图 9为本发明 BS帧和 RS帧进行网络编码方法 实施例二的流程图, 如图 8和图 9所示对于透明模式集中式调度下 RS帧结 构的设计方案, RS进行初始化以及进行网络编码等内容基本相同, 与非透明 模式的不同之处包括:
透明模式下, RS不发送属于自身的 "preamble"信号、 DL—MAP、 UL MAP 等管理消息,且只能采用集中式调度的资源调度方法,并且 RS下的 MS直接 接收 BS发送的同步信号以及 DL— MAP、 UL— MAP等管理消息,在具体的 RS 帧结构设计上, RS在 "DL Access Zone"上接收来自 BS的数据,并在 "Optional Transparent Zone" 上向下转发, 同时在 "UL Access Zone" 上接收来自下级 站的数据, 在 "UL Relay Zone" 上向上级站转发; 如果存在满足 NC的某对 服务流时, BS向 RS发送网络编码资源配置指示。 RS在 RS帧的 DL Access Zone内, 接收 BS发送的网络编码资源配置指示, 网络编码资源配置指示包 括网络编码区域即 "NC Zone" 的配置信息和用于网络编码的两个 CID信息。 BS会在 RS的 "UL Relay Zone" 中指定一个 "NC Zone" 用于 RS发送 NC 后的数据,具体方式参考非透明 RS的实施过程;在具体的 RS帧结构设计上, RS与 BS在频率或者时间上分开, 以避免相应的干扰。
在在集中式调度下, RS不是本身构建网络编码指示信息, 而是接收 BS 发送的网络编码指示信息, 并根据 BS发送的网络编码指示信息, 向 MS和 BS发送经过封装的中继站网络编码逻辑数据包。 BS发送的网络编码指示信 息包括用于指示 RS在网络编码区域中例如按照调制编码方式划分数个区域 子块的划分方式信息和该区域子块对应的中继站网络编码逻辑数据包的构造 信息, 以及中继站网络编码逻辑数据包对应的两个 CID信息。
本实施例提供的帧结构的构建方法中, RS将用于发送数据的 "DL Access Zone" 和 "UL Relay Zone" 连接起来, 将接收数据的 "UL Access Zone" 和 "DL Relay Zone" 连接起来。 使得 RS用于发送和接收数据之间相互转换的 时间减少, 提高资源利用率。 当 BS发送给 RS的数据较少时, 可以在用于资 源分配的管理消息中及时地告知其下的 MS以及 RS。之后 BS会将分配给 RS 资源之后的剩余资源分配给 MS使用, 打破了固定的 "DL Access Zone" 的限 制。 RS还通过网络编码使得 RS能够将原本需要放在两个区域 "Zone" 中发 送的数据合并到一个 "Zone" 中去发送, 从而在相同的时间段内可以传递更 多的资源给 MS, 在不影响网络其他性能的前提下, 大大提高了网络的效率。
本发明实施例还提供一种帧结构的构建指示方法, 该方法包括: 向 RS 发送用于标识 RS帧相对于 BS帧的偏移量信息和用于指示 RS构建 RS帧的 管理信息, RS帧包括发送子讯框和接收子讯框, 该发送子讯框包括相互连接 的用于向 MS发送数据的第一发送区域和用于向 BS发送数据的第二发送区 域, 该接收子讯框包括相互连接的用于接收 MS发送的数据的第一接收区域 和用于接收 BS发送的数据的第二接收区域。
其中, 偏移量信息是指示 RS所构建的 RS帧的起始时间要滞后于 BS 帧的时间, RS可以根据偏移量信息确定 RS帧的开始时间。 BS利用这段 偏移时间, 向 RS发送用于指示 RS构建 RS帧的管理信息, 管理信息包括 下行管理信息 (DL-MAP ) 和上行管理信息 (UL-MAP ) , 以获得相关的 资源分配情况。该上行管理信息包括第一发送区域和第二发送区域的配置 信息,该下行管理信息包括第一接收区域和第二接收区域的配置信息以及 中继链路特殊管理消息 IE 即 "R-link specific IE" 信息, 所述的各配置信 息具体包括 "DL-Subfmme" 、 "UL-Subframe" 、 "DL Access Zone" 、 "DL Relay Zone" 、 "UL Access Zone"和 "UL Relay Zone"的长度信息。 RS可以根据上述信息构建如图 3所示的 RS帧, 即 RS帧包括发送子讯框 ( DL Subframe ) 和接收子讯框( UL Subframe ) , RS将 "DL Subframe" 划分成第一发送区域( DL Access Zone )和第二发送区域( UL Relay Zone ) , 其中 "DL Access Zone"用于 RS向接入的 MS发送数据, "UL Relay Zone" 用于 RS向 BS发送数据, 并且 "DL Access Zone" 与 "UL Relay Zone" 相互连接; RS将 "UL Subframe" 划分成第一接收区域( UL Access Zone ) 和第二接收区域(DL Relay Zone ) , 其中 "UL Access Zone" 用于接收 MS发送数据, "DL Relay Zone" 用于接收 BS的数据, 并且 "UL Access Zone" 与 "DL Relay Zone" 相互连接。
本实施例提供的帧结构的构建指示方法, 通过 RS帧相对 BS帧的偏移, 发送数据的 "DL Access Zone" 和 "UL Relay Zone" 连接起来, 将接收数据 的 "UL Access Zone" 和 "DL Relay Zone"连接起来, 使得 RS用于发送和接 收数据之间相互转换的时间减少, 提高资源利用率。
由于 RS的入网, BS会将 BS帧的帧结构进行重新划分, 并构建出如图 3 所示的 BS帧, BS帧包括发送子讯框和接收子讯框, 发送子讯框包括相互连 接的用于向 RS发送数据的第三发送区域和用于向 MS发送数据的第四发送区 域, 接收子讯框包括相互连接的用于接收 BS发送的数据的第三接收区域和 用于接收 MS发送的数据的第四接收区域。
BS还可以在 BS帧的头部区域内即利用偏移时间,向 RS发送 DCD、 UCD 和 RCD等消息以使得 RS获得相关的参数信息, BS还可以在偏移时间内向 RS发送用于指示 RS进行同步的同步信号即 "preamble" 信号。
当 BS发现 MS上行链路上的某条服务流比较适合与某条下行的服务流进 行网络编码时, 或者 BS发现某条下行链路上的服务流比较适合于某条上行 链路上的服务刘进行网络编码时, 则向 RS发送网络编码资源配置指示指示 RS进行网络编码, 所述网络编码资源配置指示包括 "NC— Zone" 的大小和网 络编码所用的两个 CID等信息。 RS对 BS和 MS发送的 PDU进行网络编码 后, 在同一区域内同时向 BS和 MS发送网络编码后的 PDU, BS接收 RS发 送的中继站网络编码逻辑数据包, 该中继站网络编码逻辑数据包为 RS根据 BS发送的网络编码资源配置指示,对移动台网络编码逻辑数据包和基站网络 编码逻辑数据包进行网络编码而获得的, 所述移动台网络编码逻辑数据包为 所述中继站对所述移动台发送的数个数据包中具有相同 CID的数据包进行逻 辑打包而获得的, 所述基站网络编码逻辑数据包为所述中继站对所述基站发 送的数个数据包中具有相同 CID的数据包进行逻辑打包而获得的; BS在接收 到中继站网络编码逻辑数据包后, 对其进行解析, 按照网络编码消息即 "R— NC— MAP" 消息的指示去解析整个 "NC— Zone" 的数据, 按照与自己保 存的相对应的 PDU进行异或运算, 便可以解析出整块资源中所包含的数据。 其中, 在非透明模式下, "R— NC— MAP" 消息是 RS构建后发送给 BS和 MS 的; 在透明模式下, "R— NC— MAP" 消息是 BS 自己构建的, 并发送给 RS 和 MS的。 无论在何种模式下, "R— NC— MAP" 消息均应包括网络编码区域 中例如按照调制编码方式划分数个区域子块的划分方式信息和各个区域子块 对应的所述中继站网络编码逻辑数据包的构造信息, 以及所述中继站网络编 码逻辑数据包对应的两个 CID信息。
本实施例提供的方法中, BS指示 RS进行网络编码, RS通过网络编码使 得 RS能够将原本需要放在两个区域" Zone"中发送的数据合并到一个 "Zone" 中去发送,从而在相同的时间段内可以传递更多的资源给 MS,在不影响网络 其他性能的前提下, 大大提高了网络的效率。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM,磁碟或者光盘等各种可以存储程序代码的介 质。
图 10为本发明中继站设备实施例一结构示意图, 如图 10所示, 该中继 站设备包括第一接收模块 11和构建模块 12, 其中第一接收模块 11用于接收 BS发送的用于指示 RS进行资源分配的管理信息;构建模块 12用于根据管理 信息构建所述 RS帧, 该 RS帧包括发送子讯框和接收子讯框, 所述发送子讯 框包括相互连接的用于向 MS发送数据的第一发送区域和用于向 BS发送数据 的第二发送区域, 所述接收子讯框包括相互连接的用于接收 MS发送的数据 的第一接收区域和用于接收 BS发送的数据的第二接收区域。
具体地, RS可以在处于上一个 RS帧的用于接收 BS发送数据的区域 时, 即 RS帧与 BS帧的偏移时间内, 第一接收模块 11提前获知资源分配 的广播消息即时进行资源分配调整。 第一接收模块 11在该偏移时间内接 收 BS发送的管理信息, RS可以根据管理信息对 RS 自身的资源作分配调 整。 第一接收模块 11在接收到 BS发送的管理信息后,将重新进行资源分 配, 即对通过构建模块 12对 RS帧的帧结构进行调整, 所构建的 RS帧中 RS帧包括发送子讯框 ( DL Subframe ) 和接收子讯框 ( UL Subframe ) , RS将 "DL Subframe" 划分成第一发送区域( DL Access Zone ) 和第二发 送区域(UL Relay Zone ) , 其中 "DL Access Zone" 用于 RS向接入的 MS发送数据, "UL Relay Zone"用于 RS向 BS发送数据,并且" DL Access Zone" 与 "UL Relay Zone"相互连接; RS将 "UL Subframe" 划分成第一 接收区域( UL Access Zone ) 和第二接收区域( DL Relay Zone ) , 其中 "UL Access Zone" 用于接收 MS发送数据, "DL Relay Zone" 用于接收 BS的数据, 并且 "UL Access Zone" 与 "DL Relay Zone" 相互连接。
由于 "DL Access Zone" 与 "UL Relay Zone"相互连接, "UL Access
Zone" 与 "DL Relay Zone"相互连接, 因此 RS帧中仅包括一个 TTG, 以 及一个 RTG, 避免了现有 RS帧中不必要的切换造成一个 RS帧中存在多 个 TTG和 RTG, 提高了资源的利用率。
本实施例提供的中继站设备中, RS通过 RS帧相对 BS帧的偏移, 使 得 RS中继 BS传给 MS的数据时所产生的时延大为减少; 由于 RS将用于 发送数据的 "DL Access Zone" 和 "UL Relay Zone" 连接起来, 将接收数 据的 "UL Access Zone" 和 "DL Relay Zone" 连接起来, 使得 RS用于发 送和接收数据之间相互转换的时间减少, 提高资源利用率。
图 11为本发明中继站设备实施例二结构示意图, 基于上述实施例, 该中 继站设备包括第一接收模块 11和构建模块 12,还包括用于对 MS和 BS发送 的数个数据包进行网络编码的网络编码模块 13。 当 BS发现 MS上行链路上 的某条服务流比较适合与某条下行的服务流进行网络编码时, 或者 BS发现 某条下行链路上的服务流比较适合于某条上行链路上的服务刘进行网络编码 时,则指示 RS进行网络编码, RS通过网络编码模块 13完成数据包的网络编 码操作。
具体地,网络编码模块 13包括第一编码子模块 131、第二编码子模块 132 和第三编码子模块 133,其中第一编码子模块 131将接收到的 MS发送的数个 数据包中具有相同 CID的数据包进行逻辑打包, 获得移动台网络编码逻辑数 据包, 并将接收到的 BS发送的数个数据包中具有相同 CID的数据包进行逻 辑打包, 获得基站网络编码逻辑数据包; 随后, 第二编码子模块 132根据 BS 发送的网络编码资源配置指示, 在移动台网络编码逻辑数据包和基站网络编 码逻辑数据包中获取对应的两组数据包, 进行网络编码获得中继站网络编码 逻辑数据包; 最后, 第三编码子模块 133对中继站网络编码逻辑数据包进行 封装,根据所述网络编码资源配置指示, 向 MS和 BS发送经过封装的且包括 构造信息的中继站网络编码逻辑数据包。
本实施例提供的中继站设备 RS中还包括第一发送模块 14, 用于向 MS 和 BS发送中继站构建的网络编码消息, 该网络编码消息包括网络编码区域 中例如按照调制编码方式划分数个区域子块的划分方式信息和所述区域子块 对应的所述中继站网络编码逻辑数据包的构造信息, 以及所述中继站网络编 码逻辑数据包对应的两个 CID信息。 第一发送模块 14还在网络协商过程中, 向 BS发送能力协商消息,该能力协商消息包括用于标识 RS网络编码能力的 属性信息和 /或帧结构偏移能力的属性信息。
本实施例提供的中继站设备, RS可以通过偏移时间去接收 BS帧最前端 的同步信号去保持与 BS帧的同步。 RS还可以通过这段偏移时间去接收 BS 每帧中的 DL-MAP、 UL-MAP、 DCD、 UCD和 RCD等消息, 进而定时获得 相应的参数以及资源分配信息。 RS将用于发送数据的 "DL Access Zone" 和 "UL Relay Zone"连接起来, 将接收数据的 "UL Access Zone"和 "DL Relay Zone" 连接起来。 使得 RS用于发送和接收数据之间相互转换的时间减少, 提高资源利用率。 当 BS发送给 RS的数据较少时, 可以在用于资源分配的管 理消息中及时地告知其下的 MS以及 RS。 之后 BS会将分配给 RS资源之后 的剩余资源分配给 MS使用, 打破了固定的 "DL Access Zone" 的限制。 RS 还通过网络编码使得 RS 能够将原本需要放在两个区域 "Zone" 中发送的数 据合并到一个 "Zone" 中去发送, 从而在相同的时间段内可以传递更多的资 源给 MS, 在不影响网络其他性能的前提下, 大大提高了网络的效率。
图 12为本发明基站设备实施例结构示意图, 如图 12所示, 该基站设备 BS包括第二发送模块 21用于向 RS发送用于标识 RS帧相对于 BS帧的偏移 量信息和用于指示 RS构建 RS帧的管理信息, BS指示 RS构建的 RS帧结构 如下包括发送子讯框和接收子讯框, 所述发送子讯框包括相互连接的用于向 MS发送数据的第一发送区域和用于向 BS发送数据的第二发送区域, 所述接 收子讯框包括相互连接的用于接收 MS发送的数据的第一接收区域和用于接 收 BS发送的数据的第二接收区域。
本实施例提供的基站设备中还包括构建模块 22。 由于 RS的入网, BS也 会对 BS帧的帧结构进行调整, 构建模块 22构建的 BS帧包括发送子讯框和 接收子讯框, 发送子讯框包括相互连接的用于向 RS发送数据的第三发送区 域和用于向 MS发送数据的第四发送区域, 所述接收子讯框包括相互连接的 用于接收 BS发送的数据的第三接收区域和用于接收 MS发送的数据的第四接 4史区 i或。
本实施例中的 BS还可以在偏移时间内通过第二发送模块 21向 RS发送 RCD消息和用于指示 RS进行同步的同步信号例如 "preamble" 信号。 当 BS 发现 MS上行链路上的某条服务流比较适合与某条下行的服务流进行网络编 码时, 或者 BS发现某条下行链路上的服务流比较适合于某条上行链路上的 服务刘进行网络编码时, 指示 RS进行网络编码。 RS完成网络编码后, 将编 码结果发送给 BS, BS中的第二接收模块 23用于接收 RS发送的中继站网络 编码逻辑数据包, 所述中继站网络编码逻辑数据包为所述中继站根据基站发 送的网络编码资源配置指示, 对移动台网络编码逻辑数据包和基站网络编码 逻辑数据包进行网络编码而获得的, 所述移动台网络编码逻辑数据包为 RS 对 MS发送的数个数据包中具有相同 CID的数据包进行逻辑打包而获得的, 所述基站网络编码逻辑数据包为 RS对所述基站发送的数个数据包中具有相 同 CID的数据包进行逻辑打包而获得的; BS中的解析模块 24用于对所述中 继站网络编码逻辑数据包进行解析, 获得 MS发送给 BS的数据包。
本实施例提供的基站设备, BS可以充分利用 RS帧相对于 BS帧的这段 偏移灵活地分配下行链路上的资源。 当 BS发送给 RS的数据较少时, 可以在 用于资源分配的管理消息中及时地告知其下的 MS以及 RS。 之后 BS会将分 配给 RS 资源之后的剩余资源分配给 MS使用, 打破了固定的 "DL Access Zone" 的限制。
图 13为本发明网络***实施例结构示意图, 如图 13所示, 该***包括 基站 1和中继站 2, 其中 BS1用于向 RS2发送用于标识 RS帧相对于所述 BS 帧的偏移量信息和用于指示 RS2构建 RS帧的管理信息; RS2用于在 ^居所 述偏移量信息确定的偏移时间内, 接收所述管理信息, 并根据所述管理信息 构建所述 RS帧, 所述 RS帧包括发送子讯框和接收子讯框, 所述发送子讯框 包括相互连接的用于向移动台发送数据的第一发送区域和用于向 BS1发送数 据的第二发送区域, 所述接收子讯框包括相互连接的用于接收所述移动台发 送的数据的第一接收区域和用于接收 BS发送的数据的第二接收区域。
RS2还用于将接收到的移动台发送的数个数据包中具有相同 CID的数据 包进行逻辑打包, 获得移动台网络编码逻辑数据包, 并将接收到的 BS发送 的数个数据包中具有相同 CID的数据包进行逻辑打包,获得 BS1网络编码逻 辑数据包; 根据 BS1发送的网络编码资源配置指示, 在所述移动台网络编码 逻辑数据包和 BS 1网络编码逻辑数据包中获取对应的两组数据包, 进行网络 编码获得中继站网络编码逻辑数据包; 对所述中继站网络编码逻辑数据包进 行封装, 根据所述网络编码资源配置指示, 向所述移动台和 BS1发送经过封 装的且包括构造信息的中继站网络编码逻辑数据包; BS 1还用于接收 RS2发 送的中继站网络编码逻辑数据包, 并对所述中继站网络编码逻辑数据包进行 解析, 获得所述移动台发送给 BS1的数据包。
该***还包括移动台即 MS3,用于接收 RS2发送的中继站网络编码逻辑 数据包, 并对所述中继站网络编码逻辑数据包进行解析, 获得 BS1发送给所 述移动台的数据包。
本***中涉及的基站和中继站可以采用上述各实施例提供的基站和中继 站, 此处不再赘述。
本实施例提供的网络***中, RS根据 BS发送的偏移量信息, 去控制每 一帧的起始时间, 使得 RS的每帧滞后 BS每帧一段偏移时间。 RS通过这段 偏移时间去接收 BS帧最前端的同步信号去保持与 BS帧的同步。 RS还可以 通过这段偏移时间去接收 BS发送的广播消息, 进而定时获得相应的参数以 及资源分配信息。 RS将用于发送数据的 "DL Access Zone"和 "UL Relay Zone" 连接起来, 将接收数据的 "UL Access Zone" 和 "DL Relay Zone" 连接起来。 使得 RS 用于发送和接收数据之间相互转换的时间减少, 提高资源利用率; BS可以充分利用 RS帧相对于 BS帧的这段偏移灵活地分配下行链路上的资 源。 当 BS发送给 RS的数据较少时, 可以在用于资源分配的管理消息中及时 地告知其下的 MS以及 RS。 之后 BS会将分配给 RS资源之后的剩余资源分 配给 MS使用, 打破了固定的 "DL Access Zone" 的限制。 本***中, BS指 示 RS进行网络编码, RS通过网络编码使得 RS能够将原本需要放在两个区 域 "Zone" 中发送的数据合并到一个 "Zone" 中去发送, 从而在相同的时间 段内可以传递更多的资源给 MS,在不影响网络其他性能的前提下, 大大提高 了网络的效率。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种帧结构的构建方法, 其特征在于, 包括:
接收基站发送的用于指示中继站进行资源分配的管理信息;
才艮据所述管理信息构建所述中继站帧, 所述中继站帧包括发送子讯框和 接收子讯框, 所述发送子讯框包括相互连接的用于向移动台发送数据的第一 发送区域和用于向所述基站发送数据的第二发送区域, 所述接收子讯框包括 相互连接的用于接收所述移动台发送的数据的第一接收区域和用于接收所述 基站发送的数据的第二接收区域。
2、 根据权利要求 1所述的帧结构的构建方法, 其特征在于, 所述接收基 站发送的用于指示中继站进行资源分配的管理信息包括:
在中继站帧相对于基站帧的偏移时间内, 接收所述基站发送的用于指示 中继站进行资源分配的管理信息。
3、 根据权利要求 2所述的帧结构的构建方法, 其特征在于, 所述方法还 包括:
接收所述基站发送的、 用于标识中继站帧相对于所述基站帧的偏移量信 息, 并根据所述偏移量信息确定所述偏移时间。
4、 根据权利要求 1或 2所述的帧结构的构建方法, 其特征在于, 所述管 理信息包括上行管理信息和下行管理信息, 所述上行管理信息包括所述第一 发送区域和所述第二发送区域的配置信息, 所述下行管理信息包括所述第一 接收区域和所述第二接收区域的配置信息以及中继链路特殊管理消息。
5、 根据权利要求 2所述的帧结构的构建方法, 其特征在于, 所述在中继 站帧相对于基站帧的偏移时间内, 接收所述基站发送的用于指示中继站进行 资源分配的管理信息还包括:
在所述中继站帧相对于基站帧的偏移时间内, 接收所述基站发送的用于 指示所述中继站进行同步的同步信号。
6、 根据权利要求 2所述的帧结构的构建方法, 其特征在于, 所述方法还 包括:
在所述中继站帧相对于基站帧的偏移时间内, 接收所述基站发送的中继 链路信道描述符消息。
7、 根据权利要求 1或 2所述的帧结构的构建方法, 其特征在于, 所述方 法还包括:
向所述基站发送能力协商消息, 所述能力协商消息包括用于标识所述中 继站网络编码能力的属性信息和 /或帧结构偏移能力的属性信息。
8、 根据权利要求 2所述的帧结构的构建方法, 其特征在于, 所述方法还 包括:
将接收到的所述移动台发送的数个数据包中具有相同连接标识符的数据 包进行逻辑打包, 获得移动台网络编码逻辑数据包, 并将接收到的所述基站 发送的数个数据包中具有相同连接标识符的数据包进行逻辑打包, 获得基站 网络编码逻辑数据包;
根据所述基站发送的网络编码资源配置指示, 在所述移动台网络编码逻 辑数据包和基站网络编码逻辑数据包中获取对应的两组数据包, 进行网络编 码获得中继站网络编码逻辑数据包;
对所述中继站网络编码逻辑数据包进行封装, 向所述移动台和所述基站 发送经过封装的且包括构造信息的中继站网络编码逻辑数据包。
9、 根据权利要求 8所述的帧结构的构建方法, 其特征在于, 所述向所述 移动台和所述基站发送经过封装的且包括构造信息的中继站网络编码逻辑数 据包, 包括:
根据所述中继站构建的网络编码消息, 向所述移动台和所述基站发送经 过封装的且包括构造信息的中继站网络编码逻辑数据包。
10、 根据权利要求 9所述的帧结构的构建方法, 其特征在于, 所述方法 还包括:
向所述移动台和所述基站发送所述中继站构建的网络编码消息, 所述网 络编码消息包括网络编码区域中数个区域子块的划分方式信息和所述区域子 块对应的所述中继站网络编码逻辑数据包的构造信息, 以及所述中继站网络 编码逻辑数据包对应的两个连接标识符信息。
11、 根据权利要求 8所述的帧结构的构建方法, 其特征在于, 所述向所 述移动台和所述基站发送经过封装的且包括构造信息的中继站网络编码逻辑 数据包, 包括:
根据所述基站发送的网络编码消息, 向所述移动台和所述基站发送经过 封装的且包括构造信息的中继站网络编码逻辑数据包。
12、 根据权利要求 11所述的帧结构的构建方法, 其特征在于, 所述方法 还包括:
接收所述基站发送的网络编码指示, 所述网络编码消息包括用于指示所 述中继站在网络编码区域中数个区域子块的划分方式信息和所述区域子块对 应的所述中继站网络编码逻辑数据包的构造信息, 以及所述中继站网络编码 逻辑数据包对应的两个连接标识符信息。
13、 根据权利要求 9或 10所述的帧结构的构建方法, 其特征在于, 所述 方法还包括:
在所述中继站帧相对于基站帧的偏移时间内, 接收所述基站发送的网络 编码资源配置指示, 所述网络编码资源配置指示包括所述网络编码区域的大 小信息、 用于构建所述网络编码消息的资源块的位置信息和用于网络编码的 两个连接标识符信息。
14、 根据权利要求 11或 12所述的帧结构的构建方法, 其特征在于, 所 述方法还包括:
在所述中继站帧相对于基站帧的偏移时间内, 接收所述基站发送的网络 编码资源配置指示, 所述网络编码资源配置指示包括所述网络编码区域的大 小信息和用于网络编码的两个连接标识符信息。
15、 一种帧结构的构建指示方法, 其特征在于, 包括: 向中继站发送用于标识中继站帧相对于所述基站帧的偏移量信息和用于 指示所述中继站构建中继站帧的管理信息, 所述中继站帧包括发送子讯框和 接收子讯框, 所述发送子讯框包括相互连接的用于向移动台发送数据的第一 发送区域和用于向基站发送数据的第二发送区域, 所述接收子讯框包括相互 连接的用于接收所述移动台发送的数据的第一接收区域和用于接收所述基站 发送的数据的第二接收区域。
16、 根据权利要求 15所述的帧结构的构建指示方法, 其特征在于, 所述 方法还包括:
构建所述基站帧, 所述基站帧包括发送子讯框和接收子讯框, 所述发送 子讯框包括相互连接的用于向所述中继站发送数据的第三发送区域和用于向 移动台发送数据的第四发送区域, 所述接收子讯框包括相互连接的用于接收 所述基站发送的数据的第三接收区域和用于接收所述移动台发送的数据的第 四接 J]史区 i或。
17、 一种中继站设备, 其特征在于, 包括:
第一接收模块, 用于接收基站发送的用于指示中继站进行资源分配的管 理信息;
构建模块, 用于根据所述管理信息构建所述中继站帧, 所述中继站帧包 括发送子讯框和接收子讯框, 所述发送子讯框包括相互连接的用于向移动台 发送数据的第一发送区域和用于向所述基站发送数据的第二发送区域, 所述 接收子讯框包括相互连接的用于接收所述移动台发送的数据的第一接收区域 和用于接收所述基站发送的数据的第二接收区域。
18、 根据权利要求 17所述的中继站设备, 其特征在于, 还包括网络编码 模块, 所述网络编码模块包括:
第一编码子模块, 将接收到的所述移动台发送的数个数据包中具有相同 连接标识符的数据包进行逻辑打包, 获得移动台网络编码逻辑数据包, 并将 接收到的所述基站发送的数个数据包中具有相同连接标识符的数据包进行逻 辑打包, 获得基站网络编码逻辑数据包;
第二编码子模块, 根据所述基站发送的网络编码资源配置指示, 在所述 移动台网络编码逻辑数据包和基站网络编码逻辑数据包中获取对应的两组数 据包, 进行网络编码获得中继站网络编码逻辑数据包;
第三编码子模块, 对所述中继站网络编码逻辑数据包进行封装, 根据所 述网络编码资源配置指示, 向所述移动台和所述基站发送经过封装的且包括 构造信息的中继站网络编码逻辑数据包。
19、 根据权利要求 18所述的中继站设备, 其特征在于, 还包括: 第一发送模块, 用于向所述移动台和所述基站发送所述中继站构建的网 络编码消息, 所述网络编码消息包括网络编码区域中数个区域子块的划分方 式信息和所述区域子块对应的所述中继站网络编码逻辑数据包的构造信息, 以及所述中继站网络编码逻辑数据包对应的两个连接标识符信息。
20、 一种基站设备, 其特征在于, 包括:
第二发送模块, 用于向中继站发送用于标识中继站帧相对于所述基站帧 的偏移量信息和用于指示所述中继站构建中继站帧的管理信息, 所述中继站 帧包括发送子讯框和接收子讯框, 所述发送子讯框包括相互连接的用于向移 动台发送数据的第一发送区域和用于向基站发送数据的第二发送区域, 所述 接收子讯框包括相互连接的用于接收所述移动台发送的数据的第一接收区域 和用于接收所述基站发送的数据的第二接收区域。
21、 根据权利要求 20所述的基站设备, 其特征在于, 还包括: 构建模块, 用于构建所述基站帧, 所述基站帧包括发送子讯框和接收子 讯框, 所述发送子讯框包括相互连接的用于向所述中继站发送数据的第三发 送区域和用于向移动台发送数据的第四发送区域, 所述接收子讯框包括相互 连接的用于接收所述基站发送的数据的第三接收区域和用于接收所述移动台 发送的数据的第四接收区域。
22、 根据权利要求 20所述的基站设备, 其特征在于, 还包括: 第二接收模块,用于接收所述中继站发送的中继站网络编码逻辑数据包, 所述中继站网络编码逻辑数据包为所述中继站根据基站发送的网络编码资源 配置指示, 对移动台网络编码逻辑数据包和基站网络编码逻辑数据包进行网 络编码而获得的, 所述移动台网络编码逻辑数据包为所述中继站对所述移动 台发送的数个数据包中具有相同连接标识符的数据包进行逻辑打包而获得 的, 所述基站网络编码逻辑数据包为所述中继站对所述基站发送的数个数据 包中具有相同连接标识符的数据包进行逻辑打包而获得的;
解析模块, 用于对所述中继站网络编码逻辑数据包进行解析, 获得所述 移动台发送给所述基站的数据包。
23、 一种网络***, 其特征在于, 包括:
基站, 用于向中继站发送用于标识中继站帧相对于所述基站帧的偏移量 信息和用于指示所述中继站构建中继站帧的管理信息;
中继站, 用于接收所述管理信息, 并根据所述管理信息构建所述中继站 帧, 所述中继站帧包括发送子讯框和接收子讯框, 所述发送子讯框包括相互 连接的用于向移动台发送数据的第一发送区域和用于向所述基站发送数据的 第二发送区域, 所述接收子讯框包括相互连接的用于接收所述移动台发送的 数据的第一接收区域和用于接收所述基站发送的数据的第二接收区域。
24、 根据权利要求 23所述的网络***, 其特征在于, 还包括:
所述中继站还用于, 将接收到的移动台发送的数个数据包中具有相同连 接标识符的数据包进行逻辑打包, 获得移动台网络编码逻辑数据包, 并将接 收到的所述基站发送的数个数据包中具有相同连接标识符的数据包进行逻辑 打包, 获得基站网络编码逻辑数据包; 根据所述基站发送的网络编码资源配 置指示, 在所述移动台网络编码逻辑数据包和基站网络编码逻辑数据包中获 取对应的两组数据包, 进行网络编码获得中继站网络编码逻辑数据包; 对所 述中继站网络编码逻辑数据包进行封装, 根据所述网络编码资源配置指示, 向所述移动台和所述基站发送经过封装的且包括构造信息的中继站网络编码 逻辑数据包;
所述基站还用于接收所述中继站发送的中继站网络编码迻辑数据包, 并 对所述中继站网络编码逻辑数据包进行解析, 获得所述移动台发送给所述基 站的数据包。
PCT/CN2010/070047 2009-01-14 2010-01-07 帧结构的构建方法及帧结构的构建指示方法及网络*** WO2010081398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910001235.1 2009-01-14
CN 200910001235 CN101777948B (zh) 2009-01-14 2009-01-14 帧结构的构建方法及帧结构的构建指示方法及网络***

Publications (1)

Publication Number Publication Date
WO2010081398A1 true WO2010081398A1 (zh) 2010-07-22

Family

ID=42339446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070047 WO2010081398A1 (zh) 2009-01-14 2010-01-07 帧结构的构建方法及帧结构的构建指示方法及网络***

Country Status (2)

Country Link
CN (1) CN101777948B (zh)
WO (1) WO2010081398A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356832B2 (en) * 2015-05-11 2019-07-16 Qualcomm Incorporated Introduction of powered relay for device-to-device communication
WO2019105434A1 (zh) * 2017-11-30 2019-06-06 华为技术有限公司 一种资源分配方法、终端以及基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881965A (zh) * 2005-06-01 2006-12-20 株式会社Ntt都科摩 通信中继设备和通信接收机
CN1929334A (zh) * 2005-09-09 2007-03-14 华为技术有限公司 无线信号中继处理方法及装置
US20070081603A1 (en) * 2005-09-28 2007-04-12 Samsung Electronics Co., Ltd. Apparatus and method for transmitting data using relay station in a broadband wireless communication system
CN101174873A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 中继站设备及其实现的通信转发方法
WO2008084748A1 (en) * 2007-01-08 2008-07-17 Mitsubishi Electric Corporation Method for accessing channels in an orthogonal frequency division multiple access(ofdma) mobile multihop relay wireless network
WO2008108559A1 (en) * 2007-03-02 2008-09-12 Samsung Electronics Co., Ltd. Apparatus and method for negotiating frame offset between base station and relay station in broadband wireless communication system using multi-hop relay scheme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881965A (zh) * 2005-06-01 2006-12-20 株式会社Ntt都科摩 通信中继设备和通信接收机
CN1929334A (zh) * 2005-09-09 2007-03-14 华为技术有限公司 无线信号中继处理方法及装置
US20070081603A1 (en) * 2005-09-28 2007-04-12 Samsung Electronics Co., Ltd. Apparatus and method for transmitting data using relay station in a broadband wireless communication system
CN101174873A (zh) * 2006-10-30 2008-05-07 华为技术有限公司 中继站设备及其实现的通信转发方法
WO2008084748A1 (en) * 2007-01-08 2008-07-17 Mitsubishi Electric Corporation Method for accessing channels in an orthogonal frequency division multiple access(ofdma) mobile multihop relay wireless network
WO2008108559A1 (en) * 2007-03-02 2008-09-12 Samsung Electronics Co., Ltd. Apparatus and method for negotiating frame offset between base station and relay station in broadband wireless communication system using multi-hop relay scheme

Also Published As

Publication number Publication date
CN101777948A (zh) 2010-07-14
CN101777948B (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
US12022455B2 (en) Efficient multiplexing of control information in transport block
US11109401B2 (en) Method and apparatus for efficient packet duplication transmission in mobile communication system
CA2772100C (en) Mac packet data unit construction for wireless systems
JP4413900B2 (ja) システム情報媒体アクセス制御プロトコルメッセージの伝送方法、媒体アクセス制御ユニットおよびコンピュータプログラムの要素
EP2194674B1 (en) Wireless resource allocation method, wireless mobile station and wireless base station in wireless communication system
CN101199186B (zh) 多载波cdma***
JP6959331B2 (ja) データ送信ノード、データ受信ノード、データ受信ノードにデータを送信するための方法、および、データ送信ノードからデータを受信するための方法
WO2016050042A1 (zh) 数据同步处理方法及装置
WO2013152743A1 (zh) 传输信号的方法和装置
JP2013503541A (ja) 単一のrlcエンティティについての拡張された多重化
WO2010003275A1 (zh) 无线网络中处理协议数据单元的方法和装置
WO2010081398A1 (zh) 帧结构的构建方法及帧结构的构建指示方法及网络***
JP4871784B2 (ja) 無線通信装置
EP4301042A1 (en) Method and device which minimize interrupt during handover in integrated access backhaul system and which are for first connection in multiple mobile terminals
Ahmadi Overview of IEEE 802.16 m Radio Access Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731032

Country of ref document: EP

Kind code of ref document: A1