WO2010079531A1 - 無線通信装置 - Google Patents

無線通信装置 Download PDF

Info

Publication number
WO2010079531A1
WO2010079531A1 PCT/JP2009/000029 JP2009000029W WO2010079531A1 WO 2010079531 A1 WO2010079531 A1 WO 2010079531A1 JP 2009000029 W JP2009000029 W JP 2009000029W WO 2010079531 A1 WO2010079531 A1 WO 2010079531A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase rotation
signal
wireless communication
rotation amount
pseudo
Prior art date
Application number
PCT/JP2009/000029
Other languages
English (en)
French (fr)
Inventor
三上純矢
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2009/000029 priority Critical patent/WO2010079531A1/ja
Publication of WO2010079531A1 publication Critical patent/WO2010079531A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a radio communication apparatus in a mobile radio system, and more particularly to a technique of a radio communication apparatus that transmits a unique identification signal for each apparatus.
  • LTE Long, a next generation mobile communication system that evolved from the 3rd generation mobile phone system) Term Revolution
  • 3GPP 3rd Generation Partnership Project
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM is one of multi-carrier transmission schemes, and transmits data in parallel on a plurality of carrier waves (subcarriers).
  • subcarriers By utilizing the orthogonality between the subcarriers, each subcarrier can be separated on the receiving side even if a part of the frequency band of the subcarriers is overlapped, so that the frequency can be used efficiently and high-speed transmission is possible.
  • the base station For synchronization between the base station and the mobile station, the base station multiplexes and transmits PSC (Primary Synchronization Code) and SSC (Secondary Synchronization Code) as synchronization signals in the downlink frame.
  • a cell identification signal (cell ID) is detected (cell search) from the received signal.
  • the mobile station performs handover for switching the connection when the connection with the base station in communication becomes inappropriate due to movement and there is a more appropriate base station. Therefore, the mobile station needs to detect neighboring base stations in addition to the communicating base station, and performs a neighboring cell search.
  • FIG. 1 is a diagram showing a downlink radio frame format in the LTE standard.
  • one radio frame of 10 ms is composed of 10 subframes, and PSC and SSC are stored in subframe # 0 and subframe # 5, respectively.
  • FIG. 1B shows a subframe including PSC and SSC.
  • a 1 ms subframe is composed of 14 OFDM symbols, SSC is stored in OFDM symbol # 5, and PSC is stored in OFDM symbol # 6.
  • the OFDM symbol is composed of signals having the number of subcarriers corresponding to the system band, and PSC and SSC use 72 subcarriers in the center of the band regardless of the system bandwidth. Therefore, PSC and SSC are transmitted in a 5 ms period.
  • PSC is generated from three Zadoff-Chu sequence signals, and SSC is generated using a signal obtained by scrambled a signal obtained by cyclically shifting two types of binary sequence signals. Is transmitted as a combination of PSC and SSC.
  • the mobile station on the receiving side creates the SSC replica signal corresponding to all the cell IDs that may be received, and correlates with the received SSC to detect the cell ID of the base station to communicate with. .
  • Japanese Patent Laid-Open No. 2004-228688 despreads a received spread signal using a plurality of unique code group identification codes for identifying a group to which a unique code belongs to each communication station, so that a plurality of communication stations can receive signals from the same path.
  • a wireless communication apparatus capable of detecting each unique code when reception spread signals overlap is disclosed.
  • a mobile station that receives signals from a plurality of base stations receives a radio wave composed of a plurality of signals.
  • a signal from another base station becomes an interference wave with respect to the signal to be detected, and a desired signal is attenuated depending on the phase difference.
  • the state of the propagation path always changes, so that even if a desired signal may be attenuated by the interference wave, it can be expected to recover over time.
  • the phase difference between the desired wave and the interference wave may continue to be constant, and when the phase difference stops while the desired wave is attenuated, the desired wave Wave cell ID detection characteristics deteriorate.
  • FIG. 2 is a diagram illustrating a state in which the mobile station receives signals from a plurality of base stations.
  • the desired wave (signal to be detected) is a signal from a base station (base station 2) different from the base station (base station 1) that is communicating,
  • base station 2 different from the base station (base station 1) that is communicating
  • base station 1 a signal from a high communication base station (base station 1) becomes an interference wave, and in this case, the influence of the interference is large.
  • an object of the present disclosure is to provide a wireless communication apparatus that prevents deterioration of cell ID detection characteristics in cell search.
  • a first configuration of a wireless communication device for achieving the above object is that a wireless communication device that transmits a signal based on unique identification information at a constant transmission period changes with time in a different pattern for each identification information.
  • a calculation unit that obtains a phase rotation amount for each transmission cycle of the signal, and a phase rotation unit that performs phase rotation processing on the signal according to the phase rotation amount obtained for each transmission cycle by the calculation unit.
  • the calculation unit obtains a phase rotation amount for each transmission period by selecting one of a plurality of predetermined phase rotation amounts. Is a requirement.
  • the calculation unit in the second configuration, the calculation unit generates a pseudo-random number sequence, selects a pseudo-random number having a predetermined length at a different position for each transmission cycle, and It is a requirement to obtain a phase rotation amount corresponding to the selected pseudo-random number among the phase rotation amounts.
  • the calculation unit in the second configuration, the calculation unit generates a pseudo random number different for each identification information, selects a pseudo random number having a predetermined length at a different position for each transmission cycle, and It is a requirement to obtain a phase rotation amount corresponding to the selected pseudo-random number from a plurality of predetermined phase rotation amounts.
  • the pseudo-random number sequence that differs for each identification information has a length longer than the predetermined length, and the calculation unit has a position that differs for each transmission period. It is a requirement that a pseudo-random number having a predetermined length is periodically and repeatedly selected.
  • the calculation unit includes a CAZAC (Constant Amplitude Zero) having a different sequence number for each identification information. The requirement is to obtain the amount of phase rotation based on the Auto-Correlation) sequence.
  • the seventh configuration of the wireless communication device is that, in the first configuration, the calculation unit obtains a phase rotation amount obtained by adding a different value for each identification information for each transmission cycle.
  • this wireless communication device by transmitting a signal after performing phase rotation processing with a phase rotation amount that changes with time according to a different pattern for each unique identification information (cell ID), Since the phase difference of the signal changes, even when the device (mobile terminal) that receives the signal is stationary, the state in which signals from a plurality of wireless communication devices interfere with each other does not continue. It is possible to prevent the deterioration of the cell ID detection characteristic (cell search characteristic).
  • FIG. 2 is a diagram illustrating a configuration example of a synchronization signal generation unit 10.
  • FIG. 6 is a diagram illustrating a first configuration example of a rotation amount calculation unit 118.
  • FIG. It is a figure which shows the example of allocation for every cell ID of a PN15 signal.
  • FIG. 6 is a diagram illustrating a second configuration example of a rotation amount calculation unit 118.
  • FIG. 8 is a diagram illustrating a third configuration example of a rotation amount calculation unit 118. It is a figure which shows the 4th structural example of the rotation amount calculating part.
  • the wireless communication apparatus applies random phase rotation to the synchronization signals PSC and SSC.
  • the amount of phase rotation changes with time, and the pattern of the change is different for each base station (wireless communication apparatus).
  • the cell ID detection is performed because the phase difference between the transmission signal (desired wave) from the adjacent base station and the transmission signal (interference wave) from the communicating base station changes.
  • the phase difference state in which the characteristic is deteriorated does not continue, and the deterioration of the cell ID detection characteristic is prevented.
  • FIG. 3 is a diagram schematically showing a transmission signal including a synchronization signal having a different phase rotation amount for each time and base station.
  • the phase at the timing of the synchronization signal can be determined by randomly adding phase rotation to the synchronization signals (PSC and SSC) every 5 ms.
  • the phase difference can be different (the phase difference may coincide by chance, but the case does not continue).
  • the phase rotation amount to be applied is selected from four types of 0 degree, 90 degrees, 180 degrees, and 270 degrees, and is randomly selected from the four types for each base station.
  • FIG. 4 is a diagram illustrating a configuration example of the wireless communication apparatus according to the present embodiment, and illustrates a configuration example of a main part of the transmission function unit.
  • the synchronization signal generation unit 10 generates PSC and SSC, which are synchronization signals, from the cell ID and the frame timing.
  • the pilot signal generation unit 20 generates a pilot signal from the cell ID and the frame timing.
  • the encoder 30 encodes transmission data using a convolutional code or a turbo code.
  • the encoder 30 also performs rate matching and interleaving processing as necessary.
  • the modulator 40 performs processing such as QPSK modulation and QAM modulation on the encoded data.
  • An encoder 30 and a modulator 40 are provided for each physical channel of transmission data.
  • the OFDM multiple mapping unit 50 maps a plurality of physical channels, synchronization signals, and pilot signals to subcarriers.
  • the IFFT unit 60 performs fast inverse Fourier transform on the subcarrier mapped data and converts it into a time domain signal.
  • a GI (guard interval) adding unit 70 adds GI to the output signal from IFFT 60.
  • the radio transmission unit 80 performs radio frequency processing such as up-conversion and filtering, and outputs a transmission signal from the antenna.
  • FIG. 5 is a diagram illustrating a configuration example of the synchronization signal generation unit 10.
  • the PSC number calculation unit 102 calculates and determines the PSC number from the cell ID.
  • the PSC number table 104 holds the PSC signal calculated in advance as a table, and outputs the PSC signal according to the PSC number.
  • the SSC number calculation 106 calculates and determines the numbers of two binary sequences and scramble sequences of SSC from the cell ID and the frame timing.
  • the two binary sequence generation units 108 generate binary signals of the determined binary sequence.
  • the two scramble sequence generation units 110 generate scramble signals of the determined scramble sequence.
  • the scramble unit 112 scrambles the binary signal by performing an exclusive OR operation on the scramble signal.
  • the multiplexing unit 114 multiplexes the two types of scrambled binary signals.
  • Modulation section 116 performs BPSK modulation on the multiplexed binary signal and outputs it as an SSC signal.
  • the rotation amount calculation unit 118 calculates a phase rotation amount based on the cell ID and the frame timing. As will be described later, the phase rotation amount calculation processing includes not only processing for actually calculating the phase rotation amount but also processing for selecting a predetermined phase rotation amount from the table.
  • the PSC phase rotation unit 120 performs phase rotation on the PSC signal based on the calculated phase rotation amount, and outputs it.
  • the SSC phase rotation unit 122 performs phase rotation on the SSC signal based on the calculated phase rotation amount, and outputs it.
  • FIG. 6 is a diagram illustrating a first configuration example of the rotation amount calculation unit 118.
  • the pseudo random number generator 1181 generates pseudo random numbers.
  • PN Pulde Random Number
  • the PN15 signal is divided by 2 bits, and 20 sets (40 bits in total) are assigned to one cell ID.
  • FIG. 7 is a diagram showing an example of assignment of each PN15 signal for each cell ID.
  • the initial value of the 40-bit pseudo random number bit string assigned to each cell ID is the first 15 bits when the pseudo random number is PN15.
  • the initial value table 1182 stores an initial value for each cell ID, and outputs an initial value corresponding to the input cell ID to the pseudo-random number generation unit 1181.
  • the 40-digit counter 1183 is a counter that increments by 2 for each subframe timing and returns to 0 when 39 is exceeded.
  • the pseudo random number generator 1181 receives the initial value corresponding to the cell ID from the initial value table 1812, receives the counter value from the 40-digit counter 1183, and is a counter of the 40-bit pseudo random number bit string determined from the initial value.
  • the corresponding phase rotation amount identification value ⁇ is output as the value. When there are four types of phase rotation amounts of 0 degree, 90 degrees, 180 degrees, and 270 degrees, the phase rotation amount identification value ⁇ is sufficient with 2 bits and is output as a 2-bit value.
  • FIG. 8 is a diagram illustrating an example of the rotation amount table 1184. A phase rotation amount corresponding to the 2-bit value ⁇ is associated.
  • the rotation amount table 1184 indicates the rotation amount (or the corresponding rotation factor) corresponding to the 2-bit value ⁇ from the pseudo random number generation unit 1181 as the PSC phase rotation unit 120 (FIG. 5) and the SSC phase rotation unit 122 (FIG. 5). Output to.
  • the pseudorandom number generator 1181 has a 2-bit value ⁇ (Cid , t) can be obtained by the following equation (1).
  • the PSC phase rotation unit 120 and the SSC phase rotation unit 22 perform phase rotation processing by multiplying the PSC signal and the SSC signal, respectively, by multiplying the PSC signal and the SSC signal by the complex factor represented by the following equation (3). .
  • An example of the PN15 signal is shown in the following equation (4).
  • the initial values R (0) to R (14) are arbitrary values that are not “all 0”.
  • FIG. 9 is a diagram illustrating a second configuration example of the rotation amount calculation unit 118.
  • the second configuration example is a configuration in which the first configuration example is simplified, and the phase rotation amount identification value ⁇ is determined only by the frame timing without using the cell ID.
  • the pseudorandom number generator 1181 obtains the 2-bit value ⁇ (Cid, t) by the following arithmetic expression (5).
  • phase rotation amount (rotation angle) ⁇ and the corresponding rotation factor r are expressed by equations (2) and (3), respectively. Further, the rotation amount table 1184 is also shown in FIG.
  • FIG. 10 is a diagram illustrating a third configuration example of the rotation amount calculation unit 118.
  • CAZAC Constant Amplitude Zero
  • the Zadoff-Chu sequence which is one of the Auto-Correlation sequences, is used.
  • the CAZAC sequence is always zero (Zero) for a time lag with a constant amplitude in both time and frequency domains and a periodic autocorrelation value other than zero.
  • Auto-Correlation Auto-Correlation
  • the Zadoff-Chu sequence is an expression representing the twiddle factor r, and the cell ID is Cid from the correspondence between Expression (3) and Expression (6).
  • the DSP 1185 directly calculates the phase rotation amount (rotation angle ⁇ ) without using the phase rotation amount identification value ⁇ .
  • the DSP (arithmetic unit) 1185 calculates the phase rotation amount based on the cell ID from the formulas (6) and (7) and writes it to the rotation amount table 1186.
  • the rotation amount table 1186 stores the phase rotation based on the frame timing. Outputs the rotation amount ⁇ .
  • the phase rotation process is performed by the complex rotation factor r (formula (3)) to be multiplied in the PSC phase rotation unit 120 and the SSC phase rotation unit 122.
  • FIG. 11 is a diagram illustrating a fourth configuration example of the rotation amount calculation unit 118.
  • the adder 1187 obtains the rotation amount identification value ⁇ by the following equation (8) at each frame timing.
  • the cell ID is Cid
  • the time in units of 5 ms is t.
  • phase rotation amount (rotation angle ⁇ ) is expressed by the following equation (9).
  • the phase rotation amount after 5 ms is obtained by adding a certain angle to the current phase rotation amount, and is different for each cell ID. Therefore, in different cell IDs, the phase difference changes with time.
  • the adder 1187 adds the cell ID in the equation (8) every frame timing of 5 ms. However, if the value after addition is greater than or equal to N, the remainder is N. By setting N to a power of 2, a simple adder can be used by ignoring overflow.
  • phase rotation amount in units of 2 ⁇ / N is obtained in advance and stored in the rotation amount table 1818, and the phase rotation amount corresponding to the calculation result (rotation amount identification value ⁇ ) from the adder 1187 is the rotation amount. Output from the table 1188.
  • the PSC phase rotation unit 120 and the SSC phase rotation unit 122 perform phase rotation processing according to Expression (3) based on the phase rotation amount expressed by Expression (9).
  • a mobile radio system it can be used for a radio communication apparatus that transmits an identification signal unique to the apparatus, and is applied to an identification signal unique to a radio base station included in a downlink signal from the radio base station to the mobile station, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信装置は、装置固有の識別情報(セルID)毎に異なるパターンによって、時間とともに変化する位相回転量で、信号を位相回転処理して送信する。これにより、複数の無線通信装置からの信号の位相差が変化するため、信号を受信する装置(移動端末)が静止している状態であっても、複数の無線通信装置からの信号が互いに干渉する状態が継続せず、移動端末におけるセルIDの検出特性(セルサーチ特性)の劣化を防止する。

Description

無線通信装置
本発明は、移動無線システムにおける無線通信装置に関し、特に、装置毎に固有の識別信号を送信する無線通信装置の技術に関する。
 第3世代携帯電話方式を進化させた次世代移動通信方式であるLTE(Long
Term Revolution)は、現在3GPP(3rd Generation Partnership Project)によりその標準化が進められている。
 3GPPにおいて現在策定されているLTE規格(3GPP
TS36.211)では、下り方向の変調方式として、OFDM(Orthogonal Frequency Division Multiplexing)が採用されている。OFDMは、マルチキャリア伝送方式の一つであって、複数の搬送波(サブキャリア)でデータを並列に伝送する。サブキャリア間の直交性を利用することで、サブキャリアの周波数帯域の一部を重ねても、受信側で各サブキャリアを分離できることから、周波数を効率よく利用でき、高速伝送を可能とする。
また、基地局と移動局間の同期のために、基地局は、下りフレーム内に同期信号としてのPSC(Primary Synchronization Code)及びSSC(Secondary Synchronization Code)を多重して送信し、移動局は、受信信号からセル識別信号(セルID)の検出(セルサーチ)を行う。移動局が基地局との通信を開始する際に、移動局が存在するエリアの基地局のセルIDを検出する動作を初期セルサーチと称し、基地局と通信中の移動局が隣接するエリアの基地局のセルIDを検出する動作を周辺セルサーチと称す。
 移動局は、移動によって通信中の基地局との接続が不適切となり、より適切な基地局がある場合に、接続を切り替えるハンドオーバーを行う。そのため、移動局は、通信中の基地局以外にも周辺の基地局を検出しておく必要があり、周辺セルサーチを行う。
 図1は、LTE規格における下り無線フレームフォーマットを示す図である。図1(a)に示すように、10msの1無線フレームは10のサブフレームから構成され、PSCとSSCは、サブフレーム#0、サブフレーム#5にそれぞれ格納される。図1(b)は、PSC及びSSCを含むサブフレームを示し、1msのサブフレームは14個のOFDMシンボルで構成され、OFDMシンボル#5にSSCが格納され、OFDMシンボル#6にPSCが格納される。OFDMシンボルは、周波数領域では、システム帯域に応じたサブキャリア数の信号で構成され、PSC及びSSCは、システム帯域幅にかかわらず、帯域中央の72サブキャリアが用いられる。従って、PSC及びSSCは5ms周期に送信される。
 PSCは3系列のZadoff-Chu系列信号から生成され、SSCは2種類のバイナリ系列信号をサイクリックシフトした信号にスクランブルをかけた信号を使用して生成され、セルID
はPSCとSSCの組合せとして伝送される。受信側の移動局では、受信する可能性のある全てのセルIDに対応するSSCのレプリカ信号を作成し、受信されたSSCと相関を取ることで、通信するべき基地局のセルIDを検出する。
 特許文献1は、通信局毎に固有なコードが属するグループを識別するための複数の固有コードグループ識別コードを用いて受信拡散信号を逆拡散することで、同一パス内に複数の通信局からの受信拡散信号が重なった場合に、各固有コードを検出することができる無線通信装置について開示している。
特開平2003-188807号公報
 複数の基地局からの信号を受信する移動局は、複数の信号を合成した電波を受けていることになる。検出したい信号に対して、他の基地局からの信号は干渉波となり、その位相差によっては所望の信号を減衰させてしまう。
 移動局が移動している場合には、伝播路の状況が常に変化するため、干渉波によって所望の信号が減衰するような場合があったとしても、時間経過と共に回復することが期待できる。しかしながら、移動局が静止している場合には、所望波と干渉波の位相差が一定の状態が続く場合があり、その位相差が所望波を減衰させる状態のままで止まった場合に、所望波のセルID検出特性が劣化する。
 図2は、移動局が複数の基地局から信号を受信している状態を示す図である。周辺セルサーチを行う場合は、所望波(検出すべき信号)は、通信中の基地局(基地局1)とは別の基地局(基地局2)からの信号となるため、より受信レベルの高い通信中基地局(基地局1)からの信号が干渉波となる場合が多く、この場合は干渉による影響は大きい。
 そこで、本開示の目的は、セルサーチにおけるセルID検出特性の劣化を防止する無線通信装置を提供することにある。
 上記目的を達成するための無線通信装置の第一の構成は、固有の識別情報に基づいた信号を一定の送信周期で送信する無線通信装置において、前記識別情報毎に異なるパターンで時間的に変化する位相回転量を前記信号の送信周期毎に求める演算部と、前記演算部により送信周期毎に求められる位相回転量に応じて、前記信号を位相回転処理する位相回転部とを備えることを要件とする。
 無線通信装置の第二の構成は、第一の構成において、前記演算部は、あらかじめ決められた複数の位相回転量のうちの一つを選択することにより、送信周期毎の位相回転量を求めることを要件とする。
 無線通信装置の第三の構成は、第二の構成において、前記演算部は擬似乱数系列を生成し、送信周期毎に異なる位置の所定長の擬似乱数を選択し、前記あらかじめ決められた複数の位相回転量のうち、該選択された擬似乱数に対応する位相回転量を求めることを要件とする。
 無線通信装置の第四の構成は、第二の構成において、前記演算部は、前記識別情報毎に異なる擬似乱数を生成し、送信周期毎に異なる位置の所定長の擬似乱数を選択し、前記あらかじめ決められた複数の位相回転量のうち、該選択された擬似乱数に対応する位相回転量を求めることを要件とする。
 無線通信装置の第五の構成は、第四の構成において、前記識別情報毎に異なる擬似乱数系列は前記所定長よりも長い長さを有し、前記演算部は、前記送信周期毎に異なる位置の所定長の擬似乱数を周期的に繰り返し選択することを要件とする。
 無線通信装置の第六の構成は、第一の構成において、前記演算部は、前記識別情報毎に異なる系列番号のCAZAC(Constant Amplitude Zero
Auto-Correlation)系列に基づいて位相回転量を求めることを要件とする。
 無線通信装置の第七の構成は、第一の構成において、前記演算部は、送信周期毎に前記識別情報毎に異なる値を加算した位相回転量を求めることを要件とする。
 本無線通信装置によれば、固有の識別情報(セルID)毎に異なるパターンによって、時間とともに変化する位相回転量で、信号を位相回転処理して送信することにより、複数の無線通信装置からの信号の位相差が変化するため、信号を受信する装置(移動端末)が静止している状態であっても、複数の無線通信装置からの信号が互いに干渉する状態が継続しないので、移動端末におけるセルIDの検出特性(セルサーチ特性)の劣化を防ぐことができる。
LTE規格における下り無線フレームフォーマットを示す図である。 移動局が複数の基地局から信号を受信している状態を示す図である。 時間及び基地局毎に位相回転量が異なる同期信号を含む送信信号を模式的に示す図である。 本実施の形態における無線通信装置の構成例を示す図であり、その送信機能部の要部構成例を示す。 同期信号生成部10の構成例を示す図である。 回転量演算部118の第一の構成例を示す図である。 PN15信号のセルID毎の割り当て例を示す図である。 回転量テーブル1184の例を示す図である。 回転量演算部118の第二の構成例を示す図である。 回転量演算部118の第三の構成例を示す図である。 回転量演算部118の第四の構成例を示す図である。
符号の説明
 10:同期信号生成部、20:パイロット信号生成部、30:符号器、40:変調器、50:OFDM多重マッピング部、60:IFFT部、70:GI付加部、80:無線送信部、102:PSC番号演算部、104:PSC信号テーブル、106:SSC番号演算部、108:バイナリ系列生成部、110:スクランブル系列生成部、112:スクランブル部、114:多重部、116:変調部、118:回転量演算部、120:PSC位相回転部、122:SSC位相回転部、1181:擬似乱数生成部、1182:初期値テーブル、1183:40進カウンタ、1184:回転量テーブル、1185:DSP、1186:回転量テーブル、1187:加算器、1188:回転量テーブル
 以下、図面を参照して本開示の装置の実施の形態について説明する。しかしながら、かかる実施の形態例が、本開示の装置の技術的範囲を限定するものではない。
 本実施の形態における無線通信装置は、同期信号であるPSCとSSCにランダムな位相回転を加える。位相回転量は、時間と共に変化し、その変化のパターンは、基地局(無線通信装置)毎に異なるものとする。移動局が静止している状況であっても、隣接基地局からの送信信号(所望波)と、通信中の基地局からの送信信号(干渉波)の位相差が変化するため、セルID検出特性が劣化するような位相差状態が継続せず、セルID検出特性の劣化が防止される。
 図3は、時間及び基地局毎に位相回転量が異なる同期信号を含む送信信号を模式的に示す図である。基地局1と基地局2からの送信信号が同相で入力され、それが継続する状況でも、5ms毎の同期信号(PSC及びSSC)に位相回転をランダムに加えることで、同期信号のタイミングにおける位相差を異ならせることができる(位相差が偶然一致する場合もあるが、一致する場合が継続することはない)。図3の例では、加えられる位相回転量は、0度、90度、180度、270度の4種類から選択され、4種類の中から基地局毎にランダムに選択される。
 図4は、本実施の形態における無線通信装置の構成例を示す図であり、その送信機能部の要部構成例を示す。同期信号生成部10は、セルIDとフレームタイミングから同期信号であるPSCとSSCを生成する。パイロット信号生成部20は、セルIDとフレームタイミングからパイロット信号を生成する。符号器30は、送信データを畳み込み符号又はターボ符号により符号化する。符号器30は、必要に応じてレートマッチングやインターリーブ処理も行う。変調器40は、符号化後のデータに対して、QPSK変調やQAM変調などの処理を行う。符号器30及び変調器40は、送信データの各物理チャネルに対してそれぞれ設けられる。OFDM多重マッピング部50は、複数の物理チャネル、同期信号、パイロット信号をサブキャリアにマッピングする。IFFT部60は、サブキャリアマッピングされたデータを高速逆フーリエ変換し、時間領域信号に変換する。GI(ガードインターバル)付加部70は、IFFT60からの出力信号にGIを付加する。無線送信部80は、アップコンバート、フィルタリングなどの無線周波数処理を行い、送信信号をアンテナから出力する。
 図5は、同期信号生成部10の構成例を示す図である。PSC番号演算部102は、セルIDからPSC番号を演算し、決定する。PSC番号テーブル104は、PSC信号を予め計算したものをテーブルとして保持し、PSC番号に従ったPSC信号を出力する。SSC番号演算106は、セルIDとフレームタイミングからSSCのそれぞれ2つのバイナリ系列及びスクランブル系列の番号を演算し、決定する。2つバイナリ系列生成部108は、決定されたバイナリ系列のバイナリ信号を生成する。2つのスクランブル系列生成部110は、決定されたスクランブル系列のスクランブル信号を生成する。スクランブル部112は、バイナリ信号にスクランブル信号の排他的論理和演算を行うことでスクランブルを行う。多重部114は、スクランブル後の2種類のバイナリ信号を多重する。変調部116は、多重後のバイナリ信号に対してBPSK変調を行い、SSC信号として出力する。
 回転量演算部118は、セルIDとフレームタイミングに基づいた位相回転量を演算する。後述するように、位相回転量の演算処理は、位相回転量を実際に計算する処理のみならず、テーブルから所定の位相回転量を選択する処理も含む。
PSC位相回転部120は、演算された位相回転量に基づいて、PSC信号に対して位相回転を行い、出力する。SSC位相回転部122は、演算された位相回転量に基づいて、SSC信号に対して位相回転を行い、出力する。
 図6は、回転量演算部118の第一の構成例を示す図である。初期値テーブル1181は、擬似乱数生成部1181は、擬似乱数を生成する。擬似乱数は例えばPN(Pseude Random Number)15を用いる。PN15信号を2ビットずつ区切り、さらに20組(合計40ビット)を一つのセルIDに割り当てる。
 図7は、PN15信号のセルID毎の割り当て例を示す図である。PN15信号の最初の40ビットをセルID=0に割り当て、次の40ビットをセルID=1に割り当て、同様に、順次40ビットをセルIDに割り当てる。各セルIDに割り当てられる40ビット擬似乱数ビット列の初期値は、擬似乱数がPN15の場合は、先頭の15ビットとなる。図6において、初期値テーブル1182は、各セルID毎の初期値を格納し、入力されたセルIDに対応する初期値を擬似乱数生成部1181に出力する。
 40進カウンタ1183は、サブフレームのタイミング毎に2ずつカウントアップし、39を超えたら0に戻るカウンタである。擬似乱数生成部1181は、初期値テーブル1812からセルIDに対応する初期値を受信し、40進カウンタ1183からカウンタ値を受信し、初期値から決定される40ビットの擬似乱数ビット列のうちのカウンタ値に対応位相回転量識別値αを出力する。位相回転量を0度、90度、180度、270度の4種類とする場合、位相回転量識別値αは2ビットで足り、2ビット値として出力される。
図8は、回転量テーブル1184の例を示す図である。2ビット値αに対応する位相回転量が対応付けられている。回転量テーブル1184は、擬似乱数生成部1181からの2ビット値αに対応する回転量(又はそれに対応する回転因子)をPSC位相回転部120(図5)とSSC位相回転部122(図5)に出力する。
 PN15系列(系列長=215-1のM系列)の信号をR(k)、セルIDをCid、5ms単位での時間をtとすると、擬似乱数生成部1181は、2ビット値α(Cid,t)を次の演算式(1)により求めることができる。
Figure JPOXMLDOC01-appb-I000001
 ここで、%演算は剰余演算を示すものとする。
回転角(ラジアン)φ(Cid, t)は、αが90度(=π/2ラジアン)単位での回転を示すことから、次の式(2)で示される。
Figure JPOXMLDOC01-appb-I000002
 2ビット値αの取りうる値は{0,1,2,3}の4種類の値になるので、図8に示すように、これを実際の位相回転量に対応付ける。
 PSC位相回転部120及びSSC位相回転部22は、次式(3)で示される複素数で表現された回転因子rをそれぞれPSC信号及びSSC信号に乗算することを乗算することで位相回転処理を行う。
Figure JPOXMLDOC01-appb-I000003
   
 PN15信号は215-1=32767の系列長を持つため、1セルに40ビットずつ割り当てた場合、819種類のセルIDに対応できる。PN15信号の例を次式(4)に示す。
Figure JPOXMLDOC01-appb-I000004
なお、初期値R(0)~R(14)は、「全て0」ではない任意の値である。
 図9は、回転量演算部118の第二の構成例を示す図である。第二の構成例は、第一の構成例を簡略化した構成であり、セルIDを用いずに、フレームタイミングのみで位相回転量識別値αを決定する構成である。
 具体的には、第一の構成例と同様に、PN15系列(系列長=215-1のM系列)の信号をR(k)、セルIDをCid、5ms単位での時間をtとすると、擬似乱数生成部1181は、2ビット値α(Cid,t)を次の演算式(5)により求める。
Figure JPOXMLDOC01-appb-I000005
 式(5)では、剰余演算がなく、基地局のセルIDに関係なく連続したPN15系列を使用する。式(5)にセルID(Cid)が現れないが、5ms単位での時間tが基地局毎に独立である場合には(各基地局でのt=0となる時刻が異なる場合)、疑似乱数は異なるパターンを示すことになる。第二の構成例では、各基地局でのt=0となる時刻が一致すると、偶然にも複数の基地局で疑似乱数の位相が一致してしまうことが極稀に起こりうるが、位相回転量の演算が簡単になるため、演算回路規模を小さくできる。
 位相回転量(回転角)φ及びそれに対応する回転因子rは、それぞれ式(2)、(3)で表される。また、回転量テーブル1184も図8に示されるものとなる。
 図10は、回転量演算部118の第三の構成例を示す図である。第三の構成例では、位相回転量の演算に、CAZAC (Constant Amplitude Zero
Auto-Correlation)系列の1つであるZadoff-Chu系列を使用する。CAZAC系列は、時間及び周波数両領域において一定振幅(Constant Amplitude)でかつ周期的自己相関値が0以外の時間ずれに対して、常に0(Zero
Auto-Correlation)となる系列である。
 ここで、Zadoff-Chu系列は以下の式(6)で表される。
Figure JPOXMLDOC01-appb-I000006
 式(3)と式(6)との比較から明らかなように、Zadoff-Chu系列は回転因子rを表す式となり、式(3)と式(6)との対応関係から、セルIDをCid、5ms単位での時間をtとすると、5ms×20=100ms周期の位相回転量(回転角φ)は、式(7)で表される。
Figure JPOXMLDOC01-appb-I000007
 ここで、%演算は剰余演算を示すものとする。Nは系列長を示す。例えばN=31とする。
 第三の構成例では、DSP1185が、位相回転量識別値αを介さずに、位相回転量(回転角φ)を直接演算により求める。
 DSP(演算部)1185は、式(6)、(7)から、セルIDに基づいた位相回転量を演算して、回転量テーブル1186に書き込み、回転量テーブル1186は、フレームタイミングに基づいた位相回転量φを出力する。
 PSC位相回転部120及びSSC位相回転部122において乗算すべき複素数の回転因子r(式(3))により、位相回転処理を行う。
 図11は、回転量演算部118の第四の構成例を示す図である。第四の構成例では、フレームタイミング毎に、加算器1187が回転量識別値αを次式(8)により求める。
Figure JPOXMLDOC01-appb-I000008
上記各構成例と同様に、セルIDをCid、5ms単位での時間をtとする。
 位相回転量(回転角φ)は次式(9)で表される。
Figure JPOXMLDOC01-appb-I000009
 NはセルIDの最大数より大きな値であり、例えば、N=512とする。5ms後の位相回転量は、現在の位相回転量に一定の角度を加算したものとなり、それはセルID毎に異なる。従って異なるセルIDにおいては、位相差が時間と共に変化することになる。
 加算器1187は5msのフレームタイミング毎に、式(8)において、セルIDを加算する。ただし、加算後の値がN以上になったらNの剰余とする。Nを2のべき乗にしておくことで、オーバーフローを無視することで単純な加算器を使用できる。
 2π/N単位での位相回転量をあらかじめ演算により求め、それを回転量テーブル1818に格納しておき、加算器1187からの演算結果(回転量識別値α)に応じた位相回転量が回転量テーブル1188から出力される。
 PSC位相回転部120及びSSC位相回転部122は、式(9)で表される位相回転量に基づいて、式(3)により位相回転処理を行う。
 移動無線システムにおいて、装置に固有の識別信号を送信する無線通信装置に利用可能であり、例えば、無線基地局から移動局への下り信号に含まれる無線基地局固有の識別信号に適用される。

Claims (9)

  1.  固有の識別情報に基づいた信号を一定の送信周期で送信する無線通信装置において、
    前記識別情報毎に異なるパターンで時間的に変化する位相回転量を前記信号の送信周期毎に求める演算部と、
     前記演算部により送信周期毎に求められる位相回転量に応じて、前記信号を位相回転処理する位相回転部とを備えることを特徴とする無線通信装置。
  2.  請求項1において、
     前記演算部は、あらかじめ決められた複数の位相回転量のうちの一つを選択することにより、送信周期毎の位相回転量を求めることを特徴とする無線通信装置。
  3.  請求項2において、
     前記演算部は擬似乱数系列を生成し、送信周期毎に異なる位置の所定長の擬似乱数を選択し、前記あらかじめ決められた複数の位相回転量のうち、該選択された擬似乱数に対応する位相回転量を求めることを特徴とする無線通信装置。
  4.  請求項2において、
     前記演算部は、前記識別情報毎に異なる擬似乱数を生成し、送信周期毎に異なる位置の所定長の擬似乱数を選択し、前記あらかじめ決められた複数の位相回転量のうち、該選択された擬似乱数に対応する位相回転量を求めることを特徴とする無線通信装置。
  5.  請求項4において、
     前記識別情報毎に異なる擬似乱数系列は前記所定長よりも長い長さを有し、前記演算部は、前記送信周期毎に異なる位置の所定長の擬似乱数を周期的に繰り返し選択することを特徴とする無線通信装置。
  6.  請求項1において、
     前記演算部は、前記識別情報毎に異なる系列番号のCAZAC(Constant Amplitude Zero Auto-Correlation)系列に基づいて位相回転量を求めることを特徴とする無線通信装置。
  7.  請求項1において、
     前記演算部は、送信周期毎に前記識別情報毎に異なる値を加算した位相回転量を求めることを特徴とする無線通信装置。
  8.  請求項1において、
     前記信号は、移動通信方式のLTE(Long
    Term Revolution)規格に従って移動端末装置と同期を取るためのPSC(Primary
    Synchronization Code)信号及びSSC(Secondary
    Synchronization Code)信号であることを特徴とする無線通信装置。
  9.  固有の識別情報に基づいた信号を一定の送信周期で送信する無線通信方法において、
     前記識別情報毎に異なるパターンで時間的に変化する位相回転量を前記信号の送信周期毎に求める演算ステップと、
     前記演算ステップにより送信周期毎に求められる位相回転量に応じて、前記信号を位相回転処理する位相回転ステップと、
     前記位相回転処理された前記信号を送信する送信ステップとを備えることを特徴とする無線通信方法。
PCT/JP2009/000029 2009-01-07 2009-01-07 無線通信装置 WO2010079531A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000029 WO2010079531A1 (ja) 2009-01-07 2009-01-07 無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000029 WO2010079531A1 (ja) 2009-01-07 2009-01-07 無線通信装置

Publications (1)

Publication Number Publication Date
WO2010079531A1 true WO2010079531A1 (ja) 2010-07-15

Family

ID=42316312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000029 WO2010079531A1 (ja) 2009-01-07 2009-01-07 無線通信装置

Country Status (1)

Country Link
WO (1) WO2010079531A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001285244A (ja) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Ofdm送信システム
JP2002517941A (ja) * 1998-06-01 2002-06-18 タンティビ・コミュニケーションズ・インコーポレーテッド 高速可変データ転送速度を得るためのトラフィックチャネルの高速取得
JP2008508803A (ja) * 2004-07-27 2008-03-21 ゼットティーイー・サン・ディエゴ・インコーポレーテッド Ofdmaまたはofdm通信システムにおける基準プリアンブル信号の送信及び受信

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517941A (ja) * 1998-06-01 2002-06-18 タンティビ・コミュニケーションズ・インコーポレーテッド 高速可変データ転送速度を得るためのトラフィックチャネルの高速取得
JP2001285244A (ja) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Ofdm送信システム
JP2008508803A (ja) * 2004-07-27 2008-03-21 ゼットティーイー・サン・ディエゴ・インコーポレーテッド Ofdmaまたはofdm通信システムにおける基準プリアンブル信号の送信及び受信

Similar Documents

Publication Publication Date Title
US11700076B2 (en) Radio communication apparatus and radio communication method
US8279909B2 (en) Method for transmitting information using sequence
KR100938758B1 (ko) 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
JP6856736B2 (ja) 通信装置、通信方法、及び集積回路
KR101090530B1 (ko) 다상 cazac 시퀀스들에서 루트 인덱스들의 선택
JP5443317B2 (ja) 移動端末装置及び無線通信方法
JP4904398B2 (ja) 基地局装置、移動局装置、通信システムおよび通信方法
JP2008141741A (ja) 高速セルサーチを行なう方法及び装置
US10455571B2 (en) Terminal device, base station device, and communication method
JP2007221743A (ja) 送信装置、受信装置、移動通信システムおよび同期チャネル送信方法
AU2008264555A1 (en) Base station apparatus, mobile station apparatus, and method of transmitting synchronization channels
JP2007336499A (ja) 基地局装置
JP2010219820A (ja) 移動端末装置及び無線通信方法
EP3249824B1 (en) Data transmission method and apparatus
KR20110052669A (ko) 유저장치 및 셀서치 방법
US10158446B2 (en) Transmitting and receiving devices in cellular system
KR20090065414A (ko) 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
WO2010079531A1 (ja) 無線通信装置
JP2014078998A (ja) 移動端末装置、無線通信方法及び無線通信システム
KR20060010309A (ko) 직교 주파수 분할 다중 접속 방식의 무선 통신 시스템에서프리앰블 생성 시스템 및 방법
RU2434330C2 (ru) Способ осуществления поиска ячейки в беспроводной системе связи
KR20090004352A (ko) 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
KR20090004353A (ko) 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
JP2011193537A (ja) 移動局及び移動局の通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP