WO2010076983A2 - Non-freezing storage unit and refrigerator including the same - Google Patents

Non-freezing storage unit and refrigerator including the same Download PDF

Info

Publication number
WO2010076983A2
WO2010076983A2 PCT/KR2009/007393 KR2009007393W WO2010076983A2 WO 2010076983 A2 WO2010076983 A2 WO 2010076983A2 KR 2009007393 W KR2009007393 W KR 2009007393W WO 2010076983 A2 WO2010076983 A2 WO 2010076983A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
drawer
freezing
outer casing
freezing storage
Prior art date
Application number
PCT/KR2009/007393
Other languages
French (fr)
Korean (ko)
Other versions
WO2010076983A3 (en
Inventor
윤덕현
오상호
이훈봉
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080137369A external-priority patent/KR101052701B1/en
Priority claimed from KR1020080137367A external-priority patent/KR101210148B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/128,377 priority Critical patent/US20110219805A1/en
Publication of WO2010076983A2 publication Critical patent/WO2010076983A2/en
Publication of WO2010076983A3 publication Critical patent/WO2010076983A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the present invention relates to a freezer storage for freezing foods at freezing temperatures without freezing and to refrigerators having the same.
  • Subcooling means a phenomenon that no change occurs even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
  • Each substance has a stable state corresponding to the temperature at that time, so that the temperature can be gradually changed so that members of the substance can keep up with the temperature change while maintaining the stable state at each temperature.
  • the member cannot afford to change to the stable state according to each temperature, so that the state remains stable at the starting point temperature, or a portion thereof changes to the state at the end point temperature.
  • This technique uses a supercooling phenomenon, which refers to a phenomenon in which the melt or solid does not change even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
  • Such a technique includes the electrostatic field treatment method, the electrostatic field treatment apparatus, and electrodes used in them, which are disclosed in Korean Laid-Open Patent Publication No. 2000-0011081.
  • the metal shelf 7 installed in the interior of the storehouse has a two-stage structure, and on each stage, objects for thawing or freshness maintenance and ripening of vegetables, meat and fish are mounted.
  • the metal shelf 7 is insulated from the bottom of the furnace by the insulator 9.
  • the high voltage generator 3 can generate direct current and alternating voltage up to 0 to 5000 V, and the inside of the heat insulating material 2 is covered with an insulating plate 2a such as vinyl chloride.
  • the high voltage cable 4 for outputting the voltage of the high voltage generator 3 is connected to the metal shelf 7 through the outer wall 5 and the heat insulator 2.
  • FIG. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3.
  • AC 100V is supplied to the primary side of the voltage regulating transformer 15.
  • Reference numeral 11 denotes a power supply lamp
  • reference numeral 19 denotes a lamp indicating an operating state.
  • the relay 14 operates when the above-mentioned door 6 is closed and the safety switch 13 is turned on. This state is indicated by the relay operation lamp 12.
  • the relay contact ( 14a, 14b, and 14c are closed, and an AC 100V power source is applied to the primary side of the voltage regulating transformer 15.
  • the applied voltage is adjusted by the adjusting knob 15a on the secondary side of the voltage adjusting transformer 15, and the adjusted voltage value is displayed on the voltmeter.
  • the adjusting knob 15a is connected to the primary side of the secondary boosting transformer 17 of the voltage adjusting transformer 15.
  • the boosting voltage is boosted at a ratio of 1:50, for example.
  • One end O 1 of the secondary output of the boosting transformer 17 is connected to the metal shelf 7 insulated from the cold storage via the high voltage cable 4, and the other end O 2 of the output is earthed.
  • the outer wall 5 is earthed, even if the user of the cold storage 1 contacts the outer wall of the cold storage, electric shock will not occur.
  • the metal shelf 7 is exposed in the furnace in FIG. 1, since the metal shelf 7 needs to be kept insulated in the furnace, it is necessary to separate it from the walls of the furnace (air acts as an insulation). .
  • the object 8 protrudes from the metal shelf 7 and contacts the inner wall, current flows to the ground through the high wall.
  • an object of this invention is to provide the freezing storage which can hold
  • an object of the present invention is to provide a freezing storage that can selectively perform the supercooled state control and the frozen state control for the storage.
  • an object of the present invention is to provide a non-freezing storage having a side mounted control unit for performing the supercooling state control and the freezing state control from the storage space of the storage.
  • An object of the present invention is to provide a thermostatic chamber having a thermoelectric element, which can be used for cold / warm switching without additionally providing an evaporator in a refrigerator.
  • an object of the present invention is to provide a variable temperature chamber that can serve as a non-freezing chamber capable of storing food in a non-freezing, supercooled state by controlling the temperature of the thermoelectric element.
  • the present invention is an outer casing having one side open, a drawer that can be pulled out and detached through an open side of the outer casing, located on one side of the outer casing, and a sensor for sensing the temperature of food placed in the drawer, the drawer facing the sensor. It is installed on one side, including a heat conducting member for transferring the temperature of the food in the drawer to the sensor and a heater installed in the outer casing, it is located in the cooling space, characterized in that it can be stored in the freezing state food freezing at subzero temperatures Provide a freeze free storage.
  • a freezing storage characterized in that the heat insulating material is filled in the outer casing.
  • the heat conduction member is located in the bottom surface of the drawer, characterized in that it comprises a metal plate and a contact portion for transmitting the temperature change between the metal plate and the sensor to which the temperature change of food is transmitted To provide.
  • the contact portion provides a freezing storage, characterized in that protrudes downward from the bottom surface of the drawer.
  • an open side of an outer casing and a side of a drawer corresponding to the present invention provide a freezing storage device, characterized in that a handle is used for withdrawing the drawer.
  • the handle is provided with a grip portion and a hook portion moving in conjunction with the grip portion, the outer casing provides a freezing storage, characterized in that the hook portion is provided with a hook portion.
  • an open side of the outer casing and a side of the corresponding drawer provide a freezing storage, characterized in that a gasket for sealing the inner space is provided.
  • the outer casing and the drawer are each provided with guides for guiding the movement of the drawer, and the guides, when the drawer is fully inserted into the outer casing, move the position of the drawer in the outer casing when the drawer is moved. It provides a freezing storage, characterized in that guided to be positioned below the position of the drawer.
  • a freezing storage device characterized in that the sensor and the heat conducting member are in contact with each other when the drawer is inserted into the outer casing and moved downward by the guide portion.
  • a freezing storage characterized in that it further comprises a fan installed in the outer casing, the air flowing in the air.
  • the heater provides a freezing storage, characterized in that it comprises an upper heater installed on the upper surface in the outer case and a lower heater installed on the lower surface in the outer case.
  • a freezing storage characterized in that it is installed on top of the outer casing, and further comprises a temperature sensor for detecting the temperature of the air in the drawer.
  • a freezing storage characterized in that the heating value of the upper heater is adjusted by the temperature measured by the temperature sensor, and the heating value of the lower heater by the temperature measured by the sensor.
  • a freezing storage characterized in that the heating values of the upper heater and the lower heater are controlled such that the temperature of the upper part of the refrigerator is approximately 1 to 2 ° C higher than the temperature of the lower part of the refrigerator.
  • At least one of the upper heater and the lower heater includes a plurality of individual heaters, at least one of the plurality of individual heaters is constantly operated, and the remaining individual heaters are turned on according to the temperature in the refrigerator.
  • a freezing storage characterized in that it further comprises a side casing positioned on the side of the outer casing, the front portion having a display portion and a button portion.
  • a freezing storage device further comprising a control panel installed in the side casing, interworking with the display unit, the button unit and the sensor, and controlling the electrical equipment in the refrigerator.
  • the heater provides a freezing storage, characterized in that the thermoelectric element capable of controlling the temperature in the freezing storage by adjusting the current and voltage flowing.
  • the present invention provides a refrigerator characterized by a cooling space which is cooled by any one freezing storage and a freezing cycle described in claims 1 to 18, and has a freezing storage therein.
  • the freezing storage After raising the temperature to room temperature, again provides a refrigerator characterized in that the food is stored at a temperature of about -2 °C ⁇ -4 °C.
  • variable temperature room of the refrigerator implements a variable temperature room by using a thermoelectric element, and thus does not require the installation of a damper, etc., when the food is stored at a temperature lower than the temperature of the refrigerating room, and thus does not require the installation of a damper. Can be simplified.
  • the temperature changing room of the refrigerator since the temperature changing room of the refrigerator according to the present invention enables the heating in the temperature changing room using a thermoelectric element, there is no need to install two or more evaporators in order to utilize the heating function.
  • the temperature changing room of the refrigerator according to the present invention can adjust the temperature regardless of the operating conditions of the refrigerator compartment and the freezer compartment.
  • the freezing storage provided by the present invention allows the drawer to be completely detached from the outer casing, which can be used more conveniently.
  • the non-freezing storage provided by the present invention can detect the temperature of the food more sensitively while the sensor is installed in the outer casing, thereby increasing the freezing stability and easily determining that the freezing state is terminated.
  • non-freezing storage provided by the present invention, the control panel and a separate control panel and the refrigerator is provided on one side can easily control the function of the non-freezing storage.
  • the non-freezing storage provided by the present invention is provided with a plurality of heaters when performing the non-freezing function, the temperature in the non-freezing storage according to the heating value of the heater by controlling the amount of heat generated by the remaining heater in the state that at least one heater is always operated. It is possible to reduce the fluctuation range of the sensor, and furthermore, it is possible to reduce the influence of the heating value of the heater on the sensor, thereby improving the sensitivity of the sensor to the termination of the freezing state.
  • FIG. 1 is a view showing an embodiment of a thawing and freshness holding device according to the prior art
  • FIG. 2 is a circuit diagram showing a circuit configuration of a high voltage generator
  • FIG. 3 is a view showing a process of generating ice tuberculosis in the liquid being cooled
  • FIG. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention
  • FIG. 5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
  • FIG. 7 is an exploded perspective view of a freezing storage according to an embodiment of the present invention.
  • FIG. 8 is a perspective view of a freezing storage according to an embodiment of the present invention.
  • FIG. 9 is a view showing a cross section of the freezing storage according to an embodiment of the present invention.
  • FIG. 10 is a view showing a metal plate installed in the drawer of the freezing storage according to an embodiment of the present invention.
  • FIG. 11 is a view showing that a metal plate is installed in the drawer of the freezing storage according to an embodiment of the present invention
  • FIG. 12 is a view illustrating a process in which a drawer of a freezing storage of the present invention is inserted into an outer casing
  • FIG. 13 is a view showing a state in which the contact portion and the sensor installation portion of the non-freezing storage of the present invention in contact with,
  • FIG. 14 is an exploded perspective view illustrating a front part of a drawer included in a freezing storage according to an embodiment of the present invention
  • FIG. 15 is an exploded perspective view of a side casing provided by a freezing storage according to an embodiment of the present invention.
  • 16 is a graph showing the temperature change of the food detected by the sensor when the box fan is not installed
  • 17 is a graph showing the temperature change of the food detected by the sensor when the box fan is installed.
  • FIGS. 18 to 20 are views showing a freezing storage of the refrigerator according to the second embodiment of the present invention.
  • FIG. 21 is a view showing a refrigerator having a freezing storage device according to a first or second embodiment of the present invention.
  • FIG. 22 is a side cross-sectional view of a refrigerator freezing storage provided according to a first or second embodiment of the present invention.
  • 23 and 24 illustrate a refrigerator having a freezing storage and a freezing storage according to a third embodiment of the present invention.
  • FIG. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled. As shown in FIG. 3, the container C which accommodates the liquid L (or the thing) is cooled in the storage S in which the cooling space was formed.
  • the cooling temperature of the cooling space is, for example, cooled from room temperature to 0 degrees (phase transition temperature of water) or below the phase transition temperature of the liquid L.
  • phase transition temperature of water for example, the temperature of the maximum ice crystal formation zone (-1 to -7 ° C) or less of the liquid (L) of water at which the maximum ice crystals are produced at about -1 to -7 ° C
  • the cooling temperature reaches or passes the temperature of the maximum ice crystal generation zone of the liquid L, it is formed as freeze tuberculosis F2 on the inner wall of the container or freeze tuberculosis F1 in the gas Lg.
  • condensation takes place at a portion where the surface Ls of the liquid L and the inner wall of the container C (which is substantially coincident with the cooling temperature of the cooling space) and such condensed liquid L are ice crystals.
  • Tuberculosis (F3) may be formed.
  • FIG. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
  • the temperature of the gas Lg or the surface Ls of the liquid L is applied to be higher than the temperature of the maximum ice crystal generation zone of the liquid L. More preferably, the phase transition temperature of the liquid L is equal to or higher than that of the liquid L. . In addition, the temperature of the surface Ls of the liquid L is set to the temperature of the maximum ice crystal generation zone of the liquid L so that the surface Ls of the liquid L does not freeze even if it contacts the inner wall of the container C. More preferably, the phase transition temperature of the liquid L is equal to or higher than that.
  • the liquid L in the container C is maintained in the supercooled state at or below the phase transition temperature or below the maximum ice crystal generation temperature of the liquid L.
  • the liquid L which is an object
  • the liquid L may be subjected to a supercooling state simply by applying energy only to the upper portion of the container C. Since it may not be able to hold
  • the energy applied to the upper portion of the vessel C is relatively larger than the energy applied to the lower portion of the vessel C, so that the upper temperature of the vessel C can be maintained higher than the phase transition temperature or the temperature of the maximum ice crystal generation zone. .
  • Receptacles herein can include meat, vegetables, fruits, other foods, and the like, as well as liquids.
  • the energy applied to the present invention may be applied to thermal energy, electric or magnetic energy, ultrasonic energy, light energy and the like.
  • FIG. 5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
  • the supercooling apparatus of FIG. 5 is mounted in a storage S in which cooling is performed, a case Sr having a storage space therein, a heating coil H1 mounted inside an upper surface of the case Sr, and generating heat;
  • the temperature sensor C1 for sensing the temperature of the upper portion of the storage space, the heating coil H2 mounted inside the lower surface of the case Sr to generate heat, and the temperature of the lower portion or the storage object P of the storage space. It is provided with a temperature sensor (C2) for sensing.
  • the supercooling device is installed in the storage S and, as cooling is performed, senses the temperature from the temperature sensor C1 and C2 so that the heating coils H1 and H2 perform the on operation.
  • heat is supplied to the storage space from the upper and lower portions of the storage space.
  • the amount of heat supplied is adjusted to control the upper portion of the storage space (or the air on the object P) to be higher than the maximum ice crystal generation temperature, more preferably higher than the phase transition temperature.
  • the positions of the heating coils H1 and H2 of FIG. 5 may be determined to be suitable positions for supplying heat (or energy) to the enclosure P and the storage space, and may be inserted into the side surface of the case Sr. Can be.
  • FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5.
  • the graphs of FIG. 6 are temperature graphs measured with the principle according to FIGS. 4 and 5 applied when the liquid L is water.
  • line I is the cooling temperature curve of the cooling space
  • line II is the temperature curve of the gas Lg (air) on the water surface in the vessel C or the case Sr (or the vessel C).
  • the line III is the temperature of the lower portion of the container (C) or the case (Sr)
  • the temperature of the outer surface of the container (C) or the case (Sr) is the container (C) or It is substantially the same as the temperature of the water in the case Sr.
  • the temperature of the gas Lg on the water surface in the vessel C is about higher than the temperature of the maximum ice crystal generation zone of the water.
  • the supercooled state in which the liquid state is maintained stably is maintained for a long time while the temperature of the water in the vessel C is maintained at about -11 ° C, which is equal to or less than the temperature of the maximum ice crystal generation zone of the water. At this time, heat is supplied by the heating coils H1 and H2.
  • Figure 7 is an exploded perspective view of a non-freezing storage according to an embodiment of the present invention
  • Figure 8 is a perspective view of a non-freezing storage according to an embodiment of the present invention
  • Figure 9 is a freezing storage according to an embodiment of the present invention The cross section of FIG.
  • the freezing storage largely includes an outer casing 100, a drawer 200 and the side casing (300).
  • the drawer 200 may be inserted into and withdrawn from the outer casing 100, and since the electronic device is not attached to the drawer 200, the drawer 200 may be completely detached from the outer casing 100 and detachable.
  • the outer casing 100 includes a heat insulator 110 to insulate the freezing storage from other areas in the refrigerator where the freezing storage is located.
  • the drawer 200 and the side casing 300 may also include heat insulating materials 210 and 310, respectively, to insulate portions where heat insulation is not sufficiently performed by only the heat insulating material 110 of the outer casing 100.
  • the heater 140 is installed inside the outer casing 100, and the heat generation amount of the heater 140 is controlled by a controller (not shown) to control the temperature of the freezing storage.
  • the heater 140 includes an upper heater 142 and a lower heater 144, and the calorific values of the upper heater 142 and the lower heater 144 are respectively adjusted by a controller (not shown).
  • an upper temperature sensor 132 for measuring the temperature of the freezing storage is installed on the upper side of the outer casing (100). In order to minimize the influence of the heat of the heater 140 on the temperature sensor 132 in the interior of the high temperature sensor 132, the heater 140 is located close to the position, and the heater 140 and the temperature in the interior A separate insulating member (not shown) may be further provided between the detection sensors 132.
  • the lower portion of the outer casing 100 is provided with sensors 134, 136 for detecting the temperature of the food.
  • the sensors 134 and 136 measure the temperature of the food located in the drawer 200, and if the food is widely distributed in the drawer 200, the sensor 134, 136 may be configured to better reflect the temperature of the food in the operation of the freezing storage. It is preferable to be provided in plural at intervals of. In the embodiment, two sensors 134 and 136 are provided, but three or more sensors may be provided.
  • the sensors 134 and 136 are not installed in the drawer 200 in contact with the food, but are installed in the outer casing 100, thereby transferring power to the sensors 134 and 136 to the drawer 200 and transmitting temperature sensing information.
  • the drawer 200 can be completely withdrawn from the outer casing 100. If the drawer 200 is not fully withdrawn from the outer casing 100, it is inconvenient to put food in or out of the drawer 200, and it is quite inconvenient to clean the drawer 200.
  • the sensors 134 and 136 are attached to the lower surfaces of the sensor mounting portions 134a and 136a of the metal sheet that are attached to the lower surfaces of the outer casing 100 so that the sensors 134 and 136 are exposed to the outside of the outer casing 100. Prevent it.
  • FIG. 10 illustrates a metal plate installed in a drawer of a non-freezing storage according to an embodiment of the present invention
  • FIG. 11 is a view illustrating a metal plate installed in a drawer of a freezing storage according to an embodiment of the present invention.
  • the temperature change of the metal plate 232 and the metal plate 232 to which the temperature change of the food distributed in the drawer 200 is transmitted is transferred to the sensors 134 and 136.
  • Contact portions 234 and 236 are provided. The contact portions 234 and 236 penetrate the bottom surface of the basket 230 and protrude downward. When the drawer 200 is fully inserted into the outer casing 100, the sensor installation portions 134a and 136a and the contact portion 234 are provided. 236 can be contacted without a gap to better convey the temperature of the food to the sensors 134, 136.
  • FIG. 12 is a view illustrating a process in which a drawer of a freezing storage of the present invention is inserted into an outer casing
  • FIG. 13 is a view showing a state in which a contact portion and a sensor installation portion of the freezing storage of the present invention are in contact with each other.
  • the drawer 200 included in the freezing storage according to the embodiment of the present invention includes contact portions 234 and 236 protruding downward from the bottom surface of the basket 230, and the contact portions 234 and 236 are sensors.
  • the sensors 134 and 136 may better sense the temperature of the food only when the contacts 134a and 136a are contacted without a gap.
  • the contact portions 234, 236 keep in contact with the outer casing 100 and cause friction while the drawer 200 moves within the outer casing 100, the contact portions 234, 236 and the outer casing 100 are frictional. There is a problem that excessive force is required at the time of abrasion, noise due to friction, and insertion and withdrawal. Accordingly, the contact portions 234 and 236 form a predetermined interval with the lower surface of the outer casing 100 when the drawer 200 moves in the outer casing 100, and the drawer 200 moves into the outer casing 100. When fully inserted, the contact portions 234 and 236 preferably contact the sensor mounting portions 134a and 136a. To this end, the outer casing 100 and the drawer 200 are provided with guides 120 and 220 (shown in FIG. 9) for guiding a moving position of the drawer 200 in the outer casing 100 at positions corresponding to each other. do.
  • the guides 120 and 220 include rails 122 and 222 and rollers 124 and 224, respectively.
  • the outer casing 100 and the drawer 200 of the drawer 200 are first formed.
  • the rollers 124, 224 contact each other, and then the roller 224 of the drawer 200 rolls over the rail 122 of the outer casing 100 and at the same time the drawer 200 over the roller 124 of the outer casing 100.
  • the rail 222 of the roll rolls the drawer 200 is inserted into the outer casing 100.
  • the rail 122 of the outer casing 100 is obliquely inclined downward so that the drawer 200 is positioned downward from the rear of the outer casing 100, and the roller 224 of the drawer 200 is inclined due to the inclined portion.
  • the rear portion is blocked with a width that can accommodate the roller 224.
  • the front of the rail 222 of the drawer 200 is the outer casing 124 to avoid interference with the roller 124 of the outer casing 100.
  • the step is formed to accommodate the roller 124 of the). Therefore, referring to the drawing, in the process of the drawer 200 is inserted into the outer casing 100 to move the contact portion 234, 236 at a predetermined distance from the lower surface of the outer casing 100 to move without interference and friction Can be.
  • the drawer 200 is moved downward by the guide parts 120 and 220, and the contact parts 234 and 236 are provided with the sensor installation part 134a,. 136a) is in full contact.
  • FIG. 14 is an exploded perspective view illustrating a front part of a drawer included in a freezing storage device according to an embodiment of the present invention.
  • the front portion of the drawer 200 forms a skeleton of the front portion of the drawer 200 and connects the front frame 240 and the front of the front frame 240 to the basket 230.
  • the cover 150 is attached to the rear of the front frame 240, the gasket 260 to seal between the outer casing 100 and the drawer 200 when the drawer 200 is closed, the drawer 200 is closed
  • the drawer 200 is closed
  • the elastic member 274 and the hook portion 272 to apply an elastic force to the hook portion 272 can be unlocked.
  • Grip 276 the heat insulating material 210 of the drawer 200 is filled in the front frame 240.
  • the handle 252 is a shape for easily withdrawing the drawer 200 from the outer casing 100, and any shape may be used. However, while releasing the locking state of the hook portion 272 by squeezing the grip portion 276, the handle 252 is a groove shape that is formed in the front lower side of the cover 250 so that the drawer 200 can be pulled out at the same time. It will be more convenient. However, if the position of the grip part 276 is changed, the position of the handle 252 may also be changed to a position where the grip part 276 may be gripped and the drawer 200 may be pulled out at the same time.
  • the freezing store needs to be reliably insulated from other areas in the refrigerator to maintain the freezing state of the food as described above.
  • the portion where the heat exchange or heat leakage is most likely to occur with other areas in the refrigerator is a gap between the drawer 200 and the outer casing 100 located in front.
  • the gasket 260 is attached to a portion in contact with the front portion of the outer casing 100 at the rear portion of the front frame 240 to more ensure the insulation of the drawer 200 and the outer casing 100.
  • the gasket 260 is made of an elastic material such as natural rubber or synthetic rubber, and the drawer 200 and the outer casing 100 receive deformation from the drawer 200 and the outer casing 100 between the drawer 200 and the drawer ( The gap between the outer casing 200 and the outer casing 100 is sealed.
  • the drawer 200 is guided to move downwards when the guides 120, 220 (shown in FIG. 11) are fully inserted into the outer casing 100, and the guides 120, 220: shown in FIG. Since it is inclined obliquely in the rear, it is forced backward and downward by its own weight. Accordingly, when the drawer 200 is fully inserted, the gasket 260 may deform and seal the gap between the drawer 200 and the outer casing 100 by the weight of the drawer 200.
  • the non-freezing storage according to the embodiment of the present invention further includes a hook portion 172 and a hook portion 272 for locking the outer casing 100 and the drawer 200 in order to seal more securely.
  • the grip portion 276 In order to manipulate the hook portion 272, the grip portion 276 is positioned inside the handle 252 of the cover 250, and the grip portion 276 is rotatably coupled to the front frame 240. When the user grasps the grip 252 together with the grip 276 while holding the grip 276, the grip part 276a is positioned on both sides of the grip 276 and is coupled to the cover 250. As the 276 rotates, the upper portion of the grip portion 276 pushes the lower portion of the hook portion 272.
  • the hook portion 272 also rotates around the coupling portion 272a coupled to the cover 250, while the upper portion of the hook portion 272 is lifted from the hook portion 172 of the outer casing 100, and the hook portion 272 and the engaging portion 172 is released so that the user can draw the drawer 200 from the outer casing (100).
  • the upper portion of the hook portion 272 is elastically fixed at both ends by the hook portion 272 and the cover 250 so that the upper portion of the hook portion 272 can be firmly fixed while pressing the locking portion 172 of the outer casing 100.
  • Member 274 is included. When the grip part 276 is gripped, the upper part of the hook part 272 is lifted and the elastic member 274 is deformed.
  • 15 is an exploded perspective view of the side casing provided in the freezing storage according to an embodiment of the present invention.
  • a heat insulating material 310 In the side casing 300, a heat insulating material 310, a control panel (not shown), a control panel mounting part 320, an operation panel (not shown), and an operation panel mounting part 330 are installed.
  • the operation panel (not shown) includes button portions 315a, 315b, 315c, and 315d for inputting a function of the non-freezing storage, and a display portion 316 for displaying the selected functions.
  • the side casing 300 is preferably provided with a window (hole) in a corresponding position so that the button portion (315a, 315b, 315c, 315d) and the display portion 316 of the PCB control board can be exposed to the outside. Since the button portions 315a, 315b, 315c, and 315d and the display portion 316 are located in the side casing 300 instead of the drawer 200, the drawer 200 is completely detachable from the outer casing 100.
  • the button sections 315a, 315b, 315c, and 315d have a button 315a for selecting a thin ice function, a button 315b for selecting a freezing function, a button 315c for selecting a supercooling function, and a power supply for the freezing storage.
  • the display unit 316 displays an on / off state of the power supply of the non-freezing storage 100 and a function currently being performed in the non-freezing storage.
  • the control panel receives an input signal from the button 315a and displays the display unit 316. Indicates that the refrigeration function has been selected.
  • the control panel adjusts the calorific value of the heater 140 installed in the outer casing 100 (shown in FIG. 8) so that the temperature in the freezing storage is within a temperature range of approximately -5 ° C to -8 ° C. .
  • the control panel adjusts the heat output of the heater 140 through the internal temperature sensor 132 and the sensors 134 and 136 to control the temperature in the freezing storage to be within a desired temperature range. For example, if you use meat free mode to store meat in an unfrozen vault, you can easily chop meat with slightly frozen ice.
  • the control panel turns off all the heaters 140, and allows food to be stored at the same temperature as other areas of the refrigerator without separate temperature control.
  • the control panel may control the sensors 132, 134, and 136 so that the temperature in the non-freezing storage maintains a temperature of approximately -2 ° C to -4 ° C.
  • the control panel may control the sensors 132, 134, and 136 so that the temperature in the non-freezing storage maintains a temperature of approximately -2 ° C to -4 ° C.
  • the control panel uses the internal temperature sensor 132 and the sensors 134 and 136, and the temperature in the refrigerator is -2 ° C to -4 ° C through a predetermined algorithm.
  • the amount of heat generated by the heater 140 may be adjusted to maintain the temperature of the heater 140.
  • the sensor 134 , 136 may be used to control the calorific value of the lower heater 144 to simply control the temperature of the lower part in the freezing storage to be maintained at approximately -3 °C ⁇ -4 °C.
  • a box fan in an inner space of one side of the outer casing 100 (for example, a rear portion of the outer casing) or the inner side of the side casing 300 without interference between the outer casing 100 and the drawer 200. It can be installed to form a forced flow in the freezing storage. If a box fan (not shown) is formed in the inner space of the side casing 300, the side casing 300 and the side casing 300 may be forced to flow inside the outer casing 100 where the basket 230 is located. A flow hole (not shown) should be further formed between the outer casings 100.
  • FIG. 16 is a graph illustrating a temperature change of food detected by a sensor when a box fan is not installed
  • FIG. 17 is a graph illustrating a temperature change of food detected by a sensor when a box fan is installed. Comparing the two graphs, when the box fan is not installed, the temperature measured by the sensors 134 and 136 continuously fluctuates within the range where the fluctuation range is not large. It can be seen that temperature fluctuations are clearly divided into very large intervals.
  • each of the upper heater 142 and the lower heater 144 may include a plurality of heaters.
  • each of the plurality of upper heaters 142 and the lower heaters 144 is operated with at least one heater always turned on, and the remaining heaters have the internal temperature sensing sensor 132. And on / off in accordance with the measurement temperatures of the sensors 134, 136.
  • the fluctuation range of the internal temperature according to the amount of heat generated by the heater is small compared to turning on / off a single heater.
  • the small fluctuation in temperature not only increases the supercooling stability but also increases the freshness of the food.
  • the non-freezing storage 100 has a drawer shape, and an outer casing 110 having one surface (front) opened in a rectangular parallelepiped shape and one open surface of the outer casing 110 (front in FIGS. 18 to 20). It includes a drawer 120, removable from the outer casing 110 through).
  • the outer casing 110 is filled with a heat insulating material 113 to insulate the freezing storage 100 from the cooling space, such as the refrigerator compartment, the freezer compartment of the refrigerator.
  • the freezing storage 100 may be used at the same temperature as the refrigerating compartment and the freezing compartment, but is usually used at a specific temperature different from the operating conditions of the refrigerating compartment and the freezing compartment, and the temperature is transferred between the freezing storage 100 and the refrigerating compartment or the freezing compartment. If this is not done, the loss due to heat exchange can be minimized.
  • thermoelectric element 111 is installed inside the outer casing 110, and one side of the thermoelectric element 111 cools while the temperature drops according to the direction of the applied current, and one side generates heat while the temperature rises.
  • the non-freezing storage 100 of the present invention instead of controlling the temperature in the non-freezing storage 100 by using the cold air of a common heating heater and a refrigerator or a freezer, the non-freezing storage 100 using the thermoelectric element 111. Adjust the temperature.
  • the current direction of the thermoelectric element 111 is adjusted so that the temperature change of the cooling side can be transferred into the freezing storage 100, and the freezing storage 100
  • the current direction of the thermoelectric element 111 is adjusted so that the temperature change of the heating side can be transferred into the freezing storage 100. Since the temperature in the non-freezing storage 100 is adjusted through the thermoelectric element 111, even when the non-freezing storage 100 is installed in the refrigerating compartment, the temperature in the non-freezing storage 100 can be adjusted to a lower temperature than the refrigerating compartment. .
  • the non-freezing storage 100 further includes a conductor 112 in contact with the thermoelectric element 111 in order to evenly transfer the temperature change of the thermoelectric element 111 into the non-freezing storage 100.
  • the conductor 112 is preferably formed to cover the entire inner surface of the outer casing 110.
  • the relative installation positions of the outer casing 110, the thermoelectric element 111 and the conductor 112 will be described.
  • the thermoelectric element 111 may be first installed on the inner surface of the outer casing 110, and the thermoelectric element 111 may be installed to cover the conductor 112.
  • the temperature change of one side of the thermoelectric element 111 in contact with the conductor 112 is conducted through the conductor 112 and evenly transferred into the freezing storage 100, and the temperature change of the other side of the thermoelectric element 111 is the outer casing 110. Insulated by the heat insulator 113 is limited to the freezing compartment or the freezing compartment where the freezing storage 100 is located.
  • thermoelectric elements 111 may be installed on the inner surface of the outer casing 110, and a plurality of thermoelectric elements may be installed on the upper side, and may be installed on the upper side and the lower side, respectively, or a plurality of the upper and lower sides may be installed. It may be.
  • the thermoelectric element 111 is connected to a control unit (not shown), and the control unit (not shown) is a current flowing in the thermoelectric element 111 to maintain the set temperature input by the user or the set temperature preset by the control unit (not shown). Direction, adjust the magnitude of the current.
  • the conductor 112 may be installed on the inner surface of the outer casing 110, and then the thermoelectric element 111 may be in contact with the conductor 112. At this time, one side of the thermoelectric element 111 is in contact with the conductor 112, the other side is exposed to the freezing storage 100. As shown in FIG. 19, the area exposed by the conductor 112 into the freezing storage 100 is greater than the area of one side exposed into the freezing storage 100 of the thermoelectric element 111. Since the transfer of the temperature change between the thermoelectric element 111 and the conductor 112 is conducted by conduction, the transfer is performed at a very high speed, and the temperature of one side of the thermoelectric element 111 and the conductor 112 is almost the same. can see.
  • the temperature in the freezing storage 100 is a temperature change of the conductor 112, that is, the conductors. It can be seen that the temperature of one side of the thermoelectric element 111 in contact with 112 has a greater influence than the temperature of the other side exposed in the freezing storage 100. For example, when the freezing storage 100 is cooled, one side of the thermoelectric element 111 in contact with the conductor 112 acts as a cooling side, and the other side exposed into the non-freezing storage 100 acts as a heat generating side.
  • the direction of the current applied to the thermoelectric element 111 may be adjusted, and the direction of the current applied to the thermoelectric element 111 may be reversed when the non-freezing storage 100 is used as a greenhouse.
  • the other side of the thermoelectric element 111 By exposing the other side of the thermoelectric element 111 causing the temperature change in the opposite direction to the change direction of the temperature of the freezing storage 100 to be adjusted, it can cause a temperature change slowly in the freezing storage 100
  • the other side of the thermoelectric element 111 is exposed in the non-freezing storage 100, when using the non-freezing storage 100 having a common cold and warming function, it takes a long time to switch between cold and warming in terms of energy efficiency. It can be a bit of damage.
  • the freezing storage 100 performs the freezing function of storing the food without freezing at the freezing temperature, the temperature change gradually occurs, which means that the stability of staying in a predetermined temperature range is excellent. Making it a very good driving condition.
  • a sensor 114 capable of measuring the temperature of the freezing storage 100 or the temperature of food being stored is required. 18 and 19, a sensor 114 is installed below the inner surface of the outer casing 110 to measure the temperature of food. It is difficult to accurately detect the temperature of the food simply by installing the sensor 114 below the inner surface of the outer casing 110, that is, close to the position of the food. Therefore, it is preferable that the medium 124 for transmitting the temperature of the food to the sensor 114 is installed. The medium 124 protrudes downward on the bottom surface of the drawer 120 to be in contact with the sensor 114.
  • a conductor (not shown) is installed on the lower surface of the drawer 120 in contact with the food, the medium 124 is a conductor (not shown) And the sensor 114, it is desirable to transfer the temperature (temperature change) from the conductor (not shown) to the sensor 114.
  • the periphery of the sensor 114 is insulated by the sensor insulation (115). The sensor 114 receives power through the cable 114a and transmits temperature information sensed by a controller (not shown).
  • the controller adjusts the direction and intensity of the current applied to the thermoelectric element 111 according to the temperature information detected by the sensor 114.
  • the control unit may be provided with a control unit (not shown) separate from the refrigerator main body in the outer casing 110 or the refrigerator body separately to control the function of the non-freezing storage 100, or the control unit of the refrigerator body ( Not shown) may also serve as a control unit for controlling the function of the freezing storage 100.
  • the operation units 115a, 115b, 115c, and 115d and the display unit 116 are installed at one front side of the outer casing 110 rather than the drawer 120. It is preferable.
  • the operation unit 115a, 115b, 115c, 115d and the display unit 116 may be installed in the drawer 120. Although it may be installed, there is a disadvantage that the manufacturing cost increases.
  • the operation units 115a, 115b, 115c, and 115d provide power to the operation unit 115a for selecting the refrigerating function, the operation unit 115b for selecting the refrigerating function, the operation unit 115c for selecting the supercooling function, and the freezing storage 100.
  • the operation part 115d which turns on / off is included.
  • the display unit 116 displays an on / off state of the power supply of the non-freezing storage 100 and a function currently being performed in the non-freezing storage.
  • the control unit receives an input signal from the operation unit 115a and displays the display unit ( 116) indicates that the refrigeration function has been selected.
  • the controller selects the direction of the current flowing in the thermoelectric element 111 such that the side contacting the conductor 112 through the cable 111a becomes the cooling side.
  • the direction of the current flowing through the thermoelectric element 111 is selected so that the side contacting the conductor 112 becomes the heat generating side.
  • the control unit (not shown) to the thermoelectric element 111 so that the temperature in the non-freezing storage 100 maintains the temperature of approximately -2 °C ⁇ -4 °C Select the direction of current flowing and the magnitude of the current.
  • the temperature in the freezing storage 100 is -2 ° C. by appropriately controlling the direction of the current and the magnitude of the current in response to the detected food temperature. Maintain ⁇ -4 °C. If the meat is stored without freezing at subzero temperatures due to the freezing function, ice crystals are formed in the meat, and the fiber of the meat is destroyed to prevent the deterioration of taste.
  • the non-freezing storage 100 by selecting the non-freezing function, there is a case where a shock is applied or a partial imbalance occurs in the temperature, thereby breaking the non-freezing state. Even when ice crystals form in some portions, freezing is likely to spread throughout the meat. In addition, when the freezing is started, the temperature is rapidly increased to near the phase transition temperature of 0 °C, when a sudden temperature change is detected through the sensor 114, it is determined that the stored food, such as meat is frozen, and freezing storage ( 100) After thawing the food in the food, the food is again stored freeze.
  • the temperature In order to thaw the food in the freezing storage 100, it is preferable to raise the temperature to a temperature of at least about 2 ° C at room temperature, and to keep the temperature for a predetermined time to thaw it sufficiently, and then store it in a freezing state again.
  • FIG. 21 is a view showing an example in which a freezing storage according to the first or second embodiment of the present invention is applied to a conventional refrigerator.
  • the refrigerator 1000 is divided into a freezing compartment 1100 and a refrigerating compartment 1200, and a freezing storage 2000 is installed in the freezing compartment 1100.
  • cold air for cooling the freezing compartment 1100 may be cooled around the freezing storage 2000 to store meat in the freezing storage 2000 at a low temperature.
  • the temperature in the freezer compartment 1100 is maintained at a temperature lower than the temperature for freezing the meat at a temperature between -8 ° C and -18 ° C, but the temperature sensor 132 and the sensor in the control panel (not shown)
  • a predetermined algorithm 134, 1366 to adjust the amount of heat of the heater 140 (see Fig. 9) so that the temperature in the non-freezing storage 2000 is maintained at a temperature of -2 °C ⁇ -4 °C no meat Can be stored frozen.
  • the temperature may be the same as the temperature of the freezer compartment 1100 without turning on the heater 140 (see FIG. 9) or the thermoelectric element 111 (see FIG. 18) according to a user's selection.
  • FIG. 19 is a side sectional view showing that the freezing storage according to the first or second embodiment of the present invention is applied to a conventional refrigerator.
  • the freezing compartment 1100 and the refrigerating compartment are arranged long left and right, respectively, and the freezing storage 2000 may be installed between the shelves of the freezing compartment 1100, the top of the shelf, or the bottom of the shelf.
  • the evaporator 1300 is positioned on the rear surface of the freezing chamber 1100, and the evaporator 1300 and the ambient air exchange heat to generate cold air.
  • the cold air flows into the freezing compartment 1100 to maintain the refrigerator 1000 at a low temperature.
  • the cold air heat exchanged with the evaporator 1300 is introduced into the freezing chamber 1200 through the cold air inlet hole 2420 through the duct 1600.
  • the temperature in the freezing storage 2000 located in the cooling compartment 1200 is also maintained at the same temperature as the freezing chamber 1200 unless the heater 140 (see FIG. 9) is operated.
  • the heater is operated under the control of a control panel (not shown)
  • the meat may be stored in the freezing state while the temperature in the freezing storage 2000 is maintained at a temperature of -2 ° C to -4 ° C.
  • the non-freezing storage 2000 may be in the form of being able to open and close only the drawer forward while being fixed to the freezing compartment 1100, or may be of a form in which the freezing storage 2000 itself can be separated from the freezing compartment 1100. .
  • a terminal capable of transmitting electricity to the freezing compartment 1100 and the non-freezing storage 2000, respectively.
  • FIG. 21 and 22 are views illustrating a refrigerator having a freezing storage and a freezing storage according to a third embodiment of the present invention.
  • the freezing storage according to the second embodiment of the present invention is installed in the refrigerator in the form of a so-called home bar.
  • the refrigerator 1000 is divided by a partition wall and includes a refrigerating chamber 1300 in which food is mainly stored in a temperature range of about 2 ° C. to 10 ° C. and a freezing chamber 1400 which keeps food at a temperature of about ⁇ 18 ° C. .
  • the refrigerating compartment door 1100 for opening and closing the refrigerating compartment 1300 and the freezing compartment door 1200 for opening and closing the freezing compartment 1400 are provided.
  • the freezing storage 100 is formed in the refrigerating compartment door 1100 or the freezing compartment door 1200.
  • 21 to 22 illustrate an example in which the freezing compartment 100 is formed in the refrigerating compartment door 1100, and the non-freezing compartment 100 is freezing outside of the refrigerator 1000 when the refrigerating compartment door 1100 is closed.
  • a freezing storage door 130 capable of opening and closing the storage 100 is provided.
  • the casing 110 defining the freezing storage 100 may be separately formed and then installed in the refrigerating compartment door 1100, but may be integrally formed with the refrigerating compartment door 1100.
  • thermoelectric element 111 is installed, as in the first embodiment of the present invention.
  • the thermoelectric element 111 may be installed anywhere in the upper, lower, and side portions of the casing 110, and a single thermoelectric element 111 may be provided, or a plurality of thermoelectric elements 111 may be provided.
  • thermoelectric element 111 in contact with the thermoelectric element 111 is installed in order to transfer the temperature change occurring in the thermoelectric element 111 into the freezing storage 100 well.
  • the installation relationship between the thermoelectric element 111, the conductor 112, and the casing 110 is similar to the first embodiment in which the thermoelectric element 111 is installed in the casing 110, and then the conductor 112 is covered to cover the thermoelectric element 111. ) May be installed, or the conductor 112 may be installed in the casing 110 first, and then the thermoelectric element 111 may be installed on the conductor 112.
  • the display unit (not shown) and the operation unit (not shown) may be formed on any one side of the freezing storage door 130, and the display unit (not shown) on the freezing storage door 130.
  • an operation unit (not shown) and an operation unit (not shown) may be formed.
  • the display unit (not shown) and the operation unit (not shown) are formed in the non-freezer door 130, the display unit (not shown) and the operation unit (not shown) are connected through the hinges (not shown) of the non-freezer door 130. It is preferable that a cable (not shown) for supplying power and receiving a signal is guided.
  • the sensor 117 measuring the temperature of the non-freezing storage 100 and / or the sensor 114 measuring the temperature of food stored in the non-freezing storage 100 are installed in the freezing storage 100.
  • the sensor 114 transmits the temperature information detected by the controller (not shown), and the controller (not shown) according to the temperature information detected by the sensor 114 controls the direction and intensity of the current applied to the thermoelectric element 111.
  • Adjust The controller (not shown) may be provided with a control unit (not shown) separate from the refrigerator main body in the casing 110 or in the refrigerator main body to control the function of the non-freezing storage 100, or the control unit of the refrigerator main body (not shown). H) may also serve as a control unit for controlling the function of the freezing storage 100.
  • the controller (not shown) may control the function of the non-freezing storage 100 in the same manner as in the first or second embodiment.

Abstract

The present invention relates to a non-freezing storage unit which can store food at a temperature below 0 ˚C without freezing the food, and a refrigerator including the same. The non-freezing storage unit includes an outer casing with one open surface, a drawer which can be pulled out and detached through the open surface of the outer casing, a sensor located on one surface of the outer casing and sensing a temperature of food located in the drawer, a thermal conductive member installed on one surface of the drawer facing the sensor and transferring the temperature of the food in the drawer to the sensor, and a heater installed in the outer casing. The non-freezing storage unit is located in a cooling space to store food in a non-frozen state at a temperature below 0˚C.

Description

무동결 보관고 및 이를 구비하는 냉장고Freeze storage and refrigerators with same
본 발명은 영하의 온도에서 식품을 동결시키지 않고 보관하는 무동결 보관고 및 이를 구비하는 냉장고에 관한 것이다. The present invention relates to a freezer storage for freezing foods at freezing temperatures without freezing and to refrigerators having the same.
과냉각이란, 용융체 또는 고체가 평형상태에서의 상전이 온도 이하까지 냉각되어도 변화를 일으키지 않는 현상을 의미한다. 물질에는 각각 그때의 온도에 따른 안정상태가 있어서, 온도를 서서히 변화시켜 가면 이에 따라 그 물질의 구성원자가 각 온도에서 안정상태를 유지하면서 온도의 변화를 따라갈 수가 있다. 그러나 온도가 갑자기 변하면 구성원자가 각 온도에 따른 안정상태로 변화할 만한 여유가 없기 때문에, 출발점 온도에서의 안정상태를 그대로 지니거나, 또는 일부분이 종점 온도에서의 상태로 변화하다가 마는 현상이 일어난다. Subcooling means a phenomenon that no change occurs even when the melt or solid is cooled to below the phase transition temperature at equilibrium. Each substance has a stable state corresponding to the temperature at that time, so that the temperature can be gradually changed so that members of the substance can keep up with the temperature change while maintaining the stable state at each temperature. However, if the temperature suddenly changes, the member cannot afford to change to the stable state according to each temperature, so that the state remains stable at the starting point temperature, or a portion thereof changes to the state at the end point temperature.
예를 들어, 물을 서서히 냉각하면, 0℃ 이하의 온도가 되어도 일시적으로 응고하지 않는다. 그러나, 물체가 과냉각상태로 되면 일종의 준안정 상태가 되어, 사소한 자극에 의해서도 그 불안정한 평형상태가 깨져서 보다 안정된 상태로 옮아가기 쉽다. 즉, 과냉각된 액체에 그 물질의 작은 조각을 투입하거나, 액체를 갑자기 흔들면 즉시 응고하기 시작하여 액체의 온도가 응고점까지 올라가고, 그 온도에서 안정된 평형상태를 유지하게 된다.  For example, if water is gradually cooled, it will not temporarily solidify even if it reaches a temperature of 0 ° C or lower. However, when the object is in the supercooled state, it becomes a kind of metastable state, and the unstable equilibrium state is broken even by a slight stimulus, and it is easy to move to a more stable state. That is, when a small piece of material is added to the supercooled liquid or the liquid is suddenly shaken, the liquid starts to solidify immediately and the temperature of the liquid rises to the freezing point, thereby maintaining a stable equilibrium at that temperature.
종래에 정전장 분위기를 냉장고 내에 만들고, 이 냉장고 내에서 육류, 어류의 해동을 마이너스 온도에서 하는 것이 행해지고 있다. 또, 육류, 어류에 더하여 과일류의 선도를 유지하는 것이 행해지고 있다. BACKGROUND ART Conventionally, an electrostatic field atmosphere is created in a refrigerator, and thawing of meat and fish in the refrigerator is performed at a negative temperature. In addition to meat and fish, freshness of fruits is maintained.
이러한 기술은 과냉각(supercooling) 현상을 이용한 것으로, 이 과냉각 현상은 용융체 또는 고체가 평형상태에서의 상전이 온도 이하까지 냉각되어도 변화를 일으키지 않는 현상을 지칭한다.  This technique uses a supercooling phenomenon, which refers to a phenomenon in which the melt or solid does not change even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
이러한 기술로서는, 국내공개특허공보 특2000-0011081호인 정전장 처리 방법, 정전장 처리장치 및 이들에 사용되는 전극이 있다.  Such a technique includes the electrostatic field treatment method, the electrostatic field treatment apparatus, and electrodes used in them, which are disclosed in Korean Laid-Open Patent Publication No. 2000-0011081.
도 1은 종래 기술에 의한 해동 및 선도유지장치의 실시의 형태를 나타낸 도면으로서, 보냉고(1)는 단열재(2), 외벽(5)에 의해 구성되고, 고내 온도조절기구(도시하지 않음)가 설치되어 있다. 고내에 설치된 금속선반(7)은 2단 구조이고, 각 단에 야채류, 육류, 어개류의 해동 또는 선도 유지 및 숙성 대상물이 탑재된다. 금속선반(7)은 절연체(9)에 의해 고의 바닥면으로부터 절연되어 있다. 그리고, 고전압 발생장치(3)는 직류 및 교류전압을 0∼5000V까지 발생시킬 수 있어, 단열재(2)의 내측은 염화 비닐 등의 절연판(2a)으로 피복되어 있다. 상기 고전압 발생장치(3)의 전압을 출력하는 고압 케이블(4)은 외벽(5), 단열재(2)를 관통하여 금속선반(7)에 접속되어 있다.  1 is a view showing an embodiment of a thawing and freshness holding device according to the prior art, wherein the cold storage 1 is constituted by a heat insulator 2 and an outer wall 5, and the internal temperature control mechanism (not shown). Is installed. The metal shelf 7 installed in the interior of the storehouse has a two-stage structure, and on each stage, objects for thawing or freshness maintenance and ripening of vegetables, meat and fish are mounted. The metal shelf 7 is insulated from the bottom of the furnace by the insulator 9. The high voltage generator 3 can generate direct current and alternating voltage up to 0 to 5000 V, and the inside of the heat insulating material 2 is covered with an insulating plate 2a such as vinyl chloride. The high voltage cable 4 for outputting the voltage of the high voltage generator 3 is connected to the metal shelf 7 through the outer wall 5 and the heat insulator 2.
보냉고(1)의 앞면에 설치된 도어(6)를 열면, 도시하지 않은 안전스위치(13)(도 2 참조)가 오프되어, 고전압 발생장치(3)의 출력이 차단되도록 되어 있다. When the door 6 provided on the front side of the cold storage 1 is opened, the safety switch 13 (refer FIG. 2) which is not shown in figure is turned off, and the output of the high voltage generator 3 is interrupted | blocked.
도 2는 고전압 발생장치(3)의 회로 구성을 나타낸 회로도이다. 전압조정트랜스(15)의 1차측에는 AC 100V가 공급된다. 부호 (11)은 전원램프, 부호 (19)는 작동상태를 나타낸 램프이다. 전술한 도어(6)가 닫혀 있고 안전스위치(13)가 온상태에서는 릴레이(14)가 작동하고 있으며, 이 상태가 릴레이동작램프(12)에 의해 표시되고 있다, 릴레이의 동작에 의해 릴레이 접점(14a,14b,14c)이 닫히고, AC 100V 전원이 전압조정트랜스(15)의 1차측에 인가된다. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3. AC 100V is supplied to the primary side of the voltage regulating transformer 15. Reference numeral 11 denotes a power supply lamp, and reference numeral 19 denotes a lamp indicating an operating state. The relay 14 operates when the above-mentioned door 6 is closed and the safety switch 13 is turned on. This state is indicated by the relay operation lamp 12. The relay contact ( 14a, 14b, and 14c are closed, and an AC 100V power source is applied to the primary side of the voltage regulating transformer 15.
인가전압은 전압조정트랜스(15)의 2차측의 조정노브(15a)에 의해 조정되고, 조정된 전압치는 전압계에 표시된다. 조정노브(15a)는 전압조정트랜스(15)의 2차측 승압트랜스(17)의 1차측에 접속되고, 이 승압트랜스(17)에서는, 예를 들면 1 : 50의 비율로 승압되어, 예를 들면 60V의 전압이 가해지면 3000V로 승압된다. The applied voltage is adjusted by the adjusting knob 15a on the secondary side of the voltage adjusting transformer 15, and the adjusted voltage value is displayed on the voltmeter. The adjusting knob 15a is connected to the primary side of the secondary boosting transformer 17 of the voltage adjusting transformer 15. In this boosting transformer 17, the boosting voltage is boosted at a ratio of 1:50, for example. When a voltage of 60V is applied, it is stepped up to 3000V.
승압트랜스(17)의 2차측 출력의 일단(O1)은 고압 케이블(4)을 통해 보냉고로부터 절연되어 있는 금속선반(7)에 접속되고, 출력의 타단(O2)는 어스된다. 또, 외벽(5)은 어스되므로, 보냉고(1)의 사용자가 보냉고의 외벽에 접촉해도 감전되는 것이 아니다. 또, 금속선반(7)은 도 1에서는 고내에서 노출되어 있으면,금속선반(7)은 고내에서 절연상태로 유지될 필요가 있으므로, 고내 벽으로부터 이간시킬 필요가 있다(공기가 절연작용을 함). 또, 금속선반(7)으로부터 대상물(8)이 돌출하여 고내 벽에 접하면 전류가 고벽을 통해 그라운드로 흐르므로, 상기 절연판(2a)을 내벽에 붙이면 인가되는 전압의 드롭이 방지된다. 그리고, 상기 금속선반(7)을 고내에서 노출시키지 않고 염화 비닐재 등으로 피복해도 고내 전체가 전장 분위기로 된다. One end O 1 of the secondary output of the boosting transformer 17 is connected to the metal shelf 7 insulated from the cold storage via the high voltage cable 4, and the other end O 2 of the output is earthed. Moreover, since the outer wall 5 is earthed, even if the user of the cold storage 1 contacts the outer wall of the cold storage, electric shock will not occur. In addition, if the metal shelf 7 is exposed in the furnace in FIG. 1, since the metal shelf 7 needs to be kept insulated in the furnace, it is necessary to separate it from the walls of the furnace (air acts as an insulation). . In addition, when the object 8 protrudes from the metal shelf 7 and contacts the inner wall, current flows to the ground through the high wall. Therefore, when the insulating plate 2a is attached to the inner wall, the drop of applied voltage is prevented. And even if the said metal shelf 7 is coat | covered with vinyl chloride material etc. without exposing in the inside, the whole inside of an interior becomes an electric field atmosphere.
이러한 종래 기술의 경우, 냉각 수납되는 수납물에 전기장 또는 자기장을 인가하여, 수납물이 과냉각 상태에 진입하도록 하기 때문에, 수납물의 과냉각 상태에서의 보관을 위해, 전기장 또는 자기장을 생성하기 위한 복잡한 장치가 구비되어야 하며, 이러한 전기장 또는 자기장의 생성을 위한 높은 전력소비가 요구된다. 또한, 이러한, 전기장 또는 자기장을 생성하는 장치는 고전력으로 인하여, 전기장 또는 자기장의 생성시, 차단시에 사용자의 안전을 위한 장치(예를 들면, 전기장 또는 자기장 차폐구조, 차단 장치 등)가 추가적으로 구비되어야 한다. In the prior art, since an electric field or a magnetic field is applied to an object to be cooled and stored so that the object enters a supercooled state, a complicated device for generating an electric field or a magnetic field for storage in the supercooled state of the object is provided. High power consumption is required for the generation of such electric or magnetic fields. In addition, such a device for generating an electric field or a magnetic field is additionally provided with a device (for example, an electric field or magnetic field shielding structure, a blocking device, etc.) for the safety of the user when the electric field or the magnetic field is generated, when the electric field or magnetic field is generated due to the high power. Should be.
본 발명은 서랍을 외부 케이싱으로부터 완전히 인출할 수 있는 무동결 보관고를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a freezing storage which can draw a drawer completely out of an outer casing.
또한, 본 발명은 냉각만이 이루어지는 공간 내에서도, 전원의 공급만으로 수납물을 과냉각 상태로 유지할 수 있는 무동결 보관고를 제공하는 것을 목적으로 한다. Moreover, an object of this invention is to provide the freezing storage which can hold | maintain an object in a supercooled state only by supply of electric power, even in the space which only cooling is performed.
또한, 본 발명은 수납물에 대한 과냉각 상태 제어 및 냉동 상태 제어를 선택적으로 수행할 수 있는 무동결 보관고를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a freezing storage that can selectively perform the supercooled state control and the frozen state control for the storage.
또한, 본 발명은 수납물의 수납의 편리성과, 수납물 온도의 정확한 감지를 성취하는 무동결 보관고를 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a freezing storage that achieves the convenience of storage of an enclosure and the accurate sensing of the enclosure temperature.
또한, 본 발명은 수납물의 수납공간으로부터 과냉각 상태 제어 및 냉동 상태 제어를 수행하는 제어부를 측면으로 분리장착한 무동결 보관고를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a non-freezing storage having a side mounted control unit for performing the supercooling state control and the freezing state control from the storage space of the storage.
본 발명은 열전소자를 구비하여, 냉장고 내에서 증발기를 추가로 구비하지 않고 냉/온장 절환 사용할 수 있는 변온실을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION An object of the present invention is to provide a thermostatic chamber having a thermoelectric element, which can be used for cold / warm switching without additionally providing an evaporator in a refrigerator.
또한 본 발명은 열전소자를 온도를 조절하여 무동결, 과냉각 상태로 음식물을 저장할 수 있는 무동결실을 겸할 수 있는 변온실을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a variable temperature chamber that can serve as a non-freezing chamber capable of storing food in a non-freezing, supercooled state by controlling the temperature of the thermoelectric element.
본 발명은 일면이 개방된 외부 케이싱, 외부 케이싱의 개방된 일면을 통해 인출 및 탈착 가능한 서랍, 외부 케이싱의 일면에 위치하며, 서랍 내에 위치된 식품의 온도를 감지하는 센서, 센서와 마주하는 서랍의 일면에 설치되며, 서랍 내의 식품의 온도를 센서로 전달하는 열 전도 부재 및 외부 케이싱 내에 설치되는 히터를 포함하여, 냉각 공간에 위치되어 영하의 온도에서 음식물을 무동결 상태로 보관할 수 있는 것을 특징으로 하는 무동결 보관고를 제공한다.The present invention is an outer casing having one side open, a drawer that can be pulled out and detached through an open side of the outer casing, located on one side of the outer casing, and a sensor for sensing the temperature of food placed in the drawer, the drawer facing the sensor. It is installed on one side, including a heat conducting member for transferring the temperature of the food in the drawer to the sensor and a heater installed in the outer casing, it is located in the cooling space, characterized in that it can be stored in the freezing state food freezing at subzero temperatures Provide a freeze free storage.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱 내에 단열재가 충전된 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage, characterized in that the heat insulating material is filled in the outer casing.
또한 본 발명의 다른 일 태양으로서, 열 전도 부재는 서랍의 바닥면에 위치하여 식품의 온도 변화가 전달되는 금속판 및 금속판과 센서 사이에서 온도 변화를 전달하는 접점부를 구비하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, the heat conduction member is located in the bottom surface of the drawer, characterized in that it comprises a metal plate and a contact portion for transmitting the temperature change between the metal plate and the sensor to which the temperature change of food is transmitted To provide.
또한 본 발명의 다른 일 태양으로서, 접점부는 서랍의 바닥면에서 하방으로 돌출된 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, the contact portion provides a freezing storage, characterized in that protrudes downward from the bottom surface of the drawer.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱의 개방된 일면과 대응하는 서랍의 일면은, 서랍의 인출을 위해 이용되는 손잡이가 구비되는 것을 특징으로 하는 무동결 보관고를 제공한다.In still another aspect of the present invention, an open side of an outer casing and a side of a drawer corresponding to the present invention provide a freezing storage device, characterized in that a handle is used for withdrawing the drawer.
또한 본 발명의 다른 일 태양으로서, 손잡이는 그립부 및 그립부와 연동하여 움직이는 후크부를 구비하고, 외부 케이싱은, 후크부가 걸리는 걸림부를 구비하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, the handle is provided with a grip portion and a hook portion moving in conjunction with the grip portion, the outer casing provides a freezing storage, characterized in that the hook portion is provided with a hook portion.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱의 개방된 일면과 대응하는 서랍의 일면은 내부 공간의 밀폐를 위한 가스켓이 구비되는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, an open side of the outer casing and a side of the corresponding drawer provide a freezing storage, characterized in that a gasket for sealing the inner space is provided.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱 및 서랍은 각각 서랍의 이동을 안내하기 위해 서로 안내부를 구비하고, 안내부는, 서랍이 외부 케이싱 내에 완전히 삽입되면 외부 케이싱 내에서 서랍의 위치가 이동 시의 서랍의 위치보다 아래에 위치하도록 안내하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, the outer casing and the drawer are each provided with guides for guiding the movement of the drawer, and the guides, when the drawer is fully inserted into the outer casing, move the position of the drawer in the outer casing when the drawer is moved. It provides a freezing storage, characterized in that guided to be positioned below the position of the drawer.
또한 본 발명의 다른 일 태양으로서, 서랍이 외부 케이싱에 삽입되어 안내부에 의해 하방으로 이동하면, 센서와 열 전도 부재가 접촉하는 것을 특징으로 하는 무동결 보관고를 제공한다.In another aspect of the present invention, there is provided a freezing storage device, characterized in that the sensor and the heat conducting member are in contact with each other when the drawer is inserted into the outer casing and moved downward by the guide portion.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱 내에 설치되며, 고 내의 공기를 유동시키는 팬을 더 포함하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage, characterized in that it further comprises a fan installed in the outer casing, the air flowing in the air.
또한 본 발명의 다른 일 태양으로서, 히터는 외부 케이스 내 상면에 설치되는 상부 히터 및 외부 케이스 내 하면에 설치되는 하부 히터를 포함하는 것을 특징으로 하는 무동결 보관고를 제공한다. In addition, as another aspect of the present invention, the heater provides a freezing storage, characterized in that it comprises an upper heater installed on the upper surface in the outer case and a lower heater installed on the lower surface in the outer case.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱의 상부에 설치되며, 서랍 내 공기의 온도를 감지하는 고내 온도 감지 센서를 더 포함하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage, characterized in that it is installed on top of the outer casing, and further comprises a temperature sensor for detecting the temperature of the air in the drawer.
또한 본 발명의 다른 일 태양으로서, 고내 온도 감지 센서를 통해 측정된 온도에 의해 상부 히터의 발열량을 조절하고, 센서를 통해 측정된 온도에 의해 하부 히터의 발열량을 조절하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, a freezing storage, characterized in that the heating value of the upper heater is adjusted by the temperature measured by the temperature sensor, and the heating value of the lower heater by the temperature measured by the sensor. To provide.
또한 본 발명의 다른 일 태양으로서, 고내 하부의 온도보다 고내 상부의 온도가 대략 1 ~ 2℃ 높도록 상부 히터 및 하부 히터의 발열량이 제어되는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage, characterized in that the heating values of the upper heater and the lower heater are controlled such that the temperature of the upper part of the refrigerator is approximately 1 to 2 ° C higher than the temperature of the lower part of the refrigerator.
또한 본 발명의 다른 일 태양으로서, 상부 히터 및 하부 히터 중 적어도 어느 하나는, 복수 개의 개별 히터를 구비하고, 복수 개의 개별 히터 중 적어도 하나는 상시 가동되며, 나머지 개별 히터는 고내의 온도에 따라 온/오프되는 것을 특징으로 하는 무동결 보관고를 제공한다.In still another aspect of the present invention, at least one of the upper heater and the lower heater includes a plurality of individual heaters, at least one of the plurality of individual heaters is constantly operated, and the remaining individual heaters are turned on according to the temperature in the refrigerator. Provides a freezing storage, characterized in that the on / off.
또한 본 발명의 다른 일 태양으로서, 외부 케이싱의 측면에 위치하며, 전방에 디스플레이부 및 버튼부를 구비하는 측부 케이싱을 더 포함하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage, characterized in that it further comprises a side casing positioned on the side of the outer casing, the front portion having a display portion and a button portion.
또한 본 발명의 다른 일 태양으로서, 측부 케이싱 내에 설치되며, 디스플레이부, 버튼부 및 센서와 연동하며, 고내의 전장품을 제어하는 제어 패널을 더 포함하는 것을 특징으로 하는 무동결 보관고를 제공한다. In another aspect of the present invention, there is provided a freezing storage device further comprising a control panel installed in the side casing, interworking with the display unit, the button unit and the sensor, and controlling the electrical equipment in the refrigerator.
또한 본 발명의 다른 일 태양으로서, 히터는, 흐르는 전류 및 전압이 조절되어 무동결 보관고 내의 온도를 조절할 수 잇는 열전소자인 것을 특징으로 하는 무동결 보관고를 제공한다.In another aspect of the present invention, the heater provides a freezing storage, characterized in that the thermoelectric element capable of controlling the temperature in the freezing storage by adjusting the current and voltage flowing.
또한 본 발명은, 제1항 내지 제18항에 기술된 어느 한 무동결 보관고 및 냉동 싸이클에 의해 냉각되며, 내부에 무동결 보관고가 구비되는 냉각 공간을 포함하는 것을 특징으로 하는 냉장고를 제공한다. In another aspect, the present invention provides a refrigerator characterized by a cooling space which is cooled by any one freezing storage and a freezing cycle described in claims 1 to 18, and has a freezing storage therein.
또한 본 발명의 다른 일 태양으로서, 무동결 보관고 내의 온도를 대략 -2℃ ~ -4℃ 내외로 유지하고, 센서가 감지한 식품의 온도 변화에 의해 식품이 동결된 것으로 판단되면, 무동결 보관고 내의 온도를 상온으로 상승시킨 다음, 다시 -2℃ ~ -4℃ 내외의 온도로 식품을 저장하는 것을 특징으로 하는 냉장고를 제공한다. In another aspect of the present invention, if the temperature in the freezing storage is maintained at about -2 ℃ to -4 ℃ and the food is judged to be frozen by the temperature change of the food sensed by the sensor, the freezing storage After raising the temperature to room temperature, again provides a refrigerator characterized in that the food is stored at a temperature of about -2 ℃ ~ -4 ℃.
본 발명에 따른 냉장고의 변온실은 열전소자를 이용하여 변온실을 구현함으로써, 냉장실의 온도보다 낮은 온도로 식품을 저장하고자 할 때 냉동실의 냉기를 유입하지 않아도 되므로 댐퍼 등의 설치가 불필요하여 냉장고의 구조를 간단하게 할 수 있다.The variable temperature room of the refrigerator according to the present invention implements a variable temperature room by using a thermoelectric element, and thus does not require the installation of a damper, etc., when the food is stored at a temperature lower than the temperature of the refrigerating room, and thus does not require the installation of a damper. Can be simplified.
또한 본 발명에 따른 냉장고의 변온실은 열전소자를 이용하여 변온실에서 온장이 가능하게 하므로, 온장 기능을 활용하기 위해 증발기를 두 개 이상 설치하여야 할 필요가 없다.In addition, since the temperature changing room of the refrigerator according to the present invention enables the heating in the temperature changing room using a thermoelectric element, there is no need to install two or more evaporators in order to utilize the heating function.
또한 본 발명에 따른 냉장고의 변온실은 냉장실 및 냉동실의 운전 조건과 관계없이 온도를 조절할 수 있다.In addition, the temperature changing room of the refrigerator according to the present invention can adjust the temperature regardless of the operating conditions of the refrigerator compartment and the freezer compartment.
본 발명이 제공하는 무동결 보관고는 서랍을 외부 케이싱으로부터 완전하게 착탈이 가능하여, 보다 편리하게 이용할 수 있다. The freezing storage provided by the present invention allows the drawer to be completely detached from the outer casing, which can be used more conveniently.
또한 본 발명이 제공하는 무동결 보관고는, 외부 케이싱에 센서가 설치되면서도 보다 민감하게 식품의 온도를 감지할 수 있어 무동결 안정성을 높이고, 무동결 상태가 해지된 것을 쉽게 판별할 수 있다.In addition, the non-freezing storage provided by the present invention can detect the temperature of the food more sensitively while the sensor is installed in the outer casing, thereby increasing the freezing stability and easily determining that the freezing state is terminated.
또한 본 발명이 제공하는 무동결 보관고는, 일측에 조작 패널 및 냉장고와 별도의 제어 패널이 설치되어 무동결 보관고의 기능을 쉽게 제어할 수 있다. In addition, the non-freezing storage provided by the present invention, the control panel and a separate control panel and the refrigerator is provided on one side can easily control the function of the non-freezing storage.
또한 본 발명이 제공하는 무동결 보관고는 무동결 기능 수행 시에 복수 개의 히터를 구비하며, 하나 이상의 히터를 항상 작동시킨 상태에서 나머지 히터로 발열량을 조절하여 히터의 발열량 조절에 따른 무동결 보관고 내 온도의 변동폭을 줄일 수 있고, 나아가 히터의 발열량 변화가 센서에 미치는 영향을 줄일 수 있어 무동결 상태의 해지에 대한 센서의 민감도를 향상시킬 수 있다. In addition, the non-freezing storage provided by the present invention is provided with a plurality of heaters when performing the non-freezing function, the temperature in the non-freezing storage according to the heating value of the heater by controlling the amount of heat generated by the remaining heater in the state that at least one heater is always operated. It is possible to reduce the fluctuation range of the sensor, and furthermore, it is possible to reduce the influence of the heating value of the heater on the sensor, thereby improving the sensitivity of the sensor to the termination of the freezing state.
도 1은 종래 기술에 의한 해동 및 선도유지장치의 실시의 형태를 나타낸 도면,1 is a view showing an embodiment of a thawing and freshness holding device according to the prior art;
도 2는 고전압 발생장치의 회로 구성을 나타낸 회로도,2 is a circuit diagram showing a circuit configuration of a high voltage generator;
도 3은 냉각 중인 액체에 빙결핵이 생성되는 과정을 나타내는 도면,3 is a view showing a process of generating ice tuberculosis in the liquid being cooled,
도 4는 본 발명에 따른 과냉각 장치에 적용되는 빙결핵 생성을 방지하는 과정을 나타내는 도면,4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention,
도 5는 본 발명에 따른 과냉각 장치의 개략 구성도,5 is a schematic configuration diagram of a supercooling apparatus according to the present invention;
도 6은 도 5의 과냉각 장치에 따른 물의 과냉각 상태 그래프,6 is a supercooled state graph of water according to the subcooling device of FIG. 5,
도 7은 본 발명의 일 실시예에 따른 무동결 보관고의 분해 사시도, Figure 7 is an exploded perspective view of a freezing storage according to an embodiment of the present invention,
도 8은 본 발명의 일 실시예에 따른 무동결 보관고의 사시도, 8 is a perspective view of a freezing storage according to an embodiment of the present invention,
도 9는 본 발명의 일 실시에에 따른 무동결 보관고의 단면을 도시한 도면,9 is a view showing a cross section of the freezing storage according to an embodiment of the present invention,
도 10은 본 발명의 일 실시예에 따른 무동결 보관고의 서랍에 설치되는 금속판을 도시한 도면, 10 is a view showing a metal plate installed in the drawer of the freezing storage according to an embodiment of the present invention,
도 11은 본 발명의 일 실시예에 따른 무동결 보관고의 서랍에 금속판이 설치된 것을 도시한 도면,11 is a view showing that a metal plate is installed in the drawer of the freezing storage according to an embodiment of the present invention,
도 12는 본 발명의 무동결 보관고의 서랍이 외부 케이싱 내로 삽입되는 과정을 도시한 도면, 12 is a view illustrating a process in which a drawer of a freezing storage of the present invention is inserted into an outer casing;
도 13은 본 발명의 무동결 보관고의 접점부와 센서 설치부가 접촉하고 있는 상태를 도시한 도면,13 is a view showing a state in which the contact portion and the sensor installation portion of the non-freezing storage of the present invention in contact with,
도 14는 본 발명의 일 실시예에 따른 무동결 보관고가 포함하는 서랍의 전방부분을 도시한 분해 사시도,14 is an exploded perspective view illustrating a front part of a drawer included in a freezing storage according to an embodiment of the present invention;
도 15는 본 발명의 일 실시예에 따른 무동결 보관고가 구비하는 측부 케이싱의 분해 사시도,15 is an exploded perspective view of a side casing provided by a freezing storage according to an embodiment of the present invention;
도 16은 박스팬이 설치되지 않은 경우 센서가 감지한 식품의 온도 변화를 도시한 그래프, 16 is a graph showing the temperature change of the food detected by the sensor when the box fan is not installed,
도 17은 박스팬이 설치된 경우 센서가 감지한 식품의 온도 변화를 도시한 그래프, 17 is a graph showing the temperature change of the food detected by the sensor when the box fan is installed,
도 18 내지 도 20는 본 발명의 제2 실시예에 따른 냉장고의 무동결 보관고를 도시한 도면,18 to 20 are views showing a freezing storage of the refrigerator according to the second embodiment of the present invention,
도 21은 본 발명의 제1 또는 제2 실시예에 따른 무동결 보관고를 구비하는 냉장고를 도시한 도면,FIG. 21 is a view showing a refrigerator having a freezing storage device according to a first or second embodiment of the present invention; FIG.
도 22는 본 발명의 제1 또는 제2 실시예에 따른 무동결 보관고구비되는 냉장고의 측단면도, 22 is a side cross-sectional view of a refrigerator freezing storage provided according to a first or second embodiment of the present invention;
도 23 및 도 24는 본 발명의 제3 실시예에 따른 무동결 보관고 및 무동결 보관고를 구비하는 냉장고를 도시한 도면.23 and 24 illustrate a refrigerator having a freezing storage and a freezing storage according to a third embodiment of the present invention.
이하에서, 본 발명은 그 실시예들과, 도면을 통하여 상세하게 기재된다. In the following, the invention is described in detail by way of examples and the drawings.
도 3은 냉각 중인 액체에 빙결핵이 생성되는 과정을 나타내는 도면이다. 도 3에 도시된 바와 같이, 냉각 공간이 형성된 저장고(S) 내에 액체(L)(또는 수납물)를 수용하는 용기(C)가 냉각된다. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled. As shown in FIG. 3, the container C which accommodates the liquid L (or the thing) is cooled in the storage S in which the cooling space was formed.
냉각 공간의 냉각 온도가 예를 들면, 상온에서부터 0도(물의 상전이 온도) 또는 액체(L)의 상전이 온도 이하로 냉각된다고 가정한다. 이러한 냉각이 진행될 때, 예를 들면, 물의 경우 -1 ~ -7℃ 정도에서 얼음 결정이 최대로 생성되는 물의 최대 빙결정 생성대의 온도(-1 ~ -7℃) 이하에서 또는 액체(L)의 최대 빙결정 생성대 이하에서의 냉각 온도에서도 물 또는 액체(L)(또는 수납물)의 과냉각 상태를 유지시키려 한다. It is assumed that the cooling temperature of the cooling space is, for example, cooled from room temperature to 0 degrees (phase transition temperature of water) or below the phase transition temperature of the liquid L. When such cooling proceeds, for example, in the case of water, the temperature of the maximum ice crystal formation zone (-1 to -7 ° C) or less of the liquid (L) of water at which the maximum ice crystals are produced at about -1 to -7 ° C It is intended to maintain the supercooled state of water or liquid L (or containment) even at cooling temperatures below the maximum ice crystal generation zone.
이러한 냉각 중에 액체(L)로부터 증발이 이루어져서, 수증기(W1)가 용기(C) 내의 기체(또는 공간)(Lg) 내로 유입된다. 용기(C)가 폐쇄된 경우, 증발된 수증기(W1)로 인하여, 기체(Cg)는 과포화 상태가 될 수 있다. Evaporation takes place from the liquid L during this cooling, so that the water vapor W1 flows into the gas (or space) Lg in the vessel C. When the vessel C is closed, due to the vaporized water vapor W1, the gas Cg may be in a supersaturated state.
냉각 온도가 액체(L)의 최대 빙결정 생성대의 온도에 도달하거나 통과하면서 기체(Lg) 내의 빙결핵(F1) 또는 용기의 내측벽에 빙결핵(F2)으로 형성된다. 또는, 액체(L)의 표면(Ls)과, 용기(C)의 내측벽(냉각 공간의 냉각 온도에 거의 일치함)이 접하는 부분에서 응축이 일어나고 이러한 응축된 액체(L)가 얼음 결정인 빙결핵(F3)으로 형성될 수 있다. As the cooling temperature reaches or passes the temperature of the maximum ice crystal generation zone of the liquid L, it is formed as freeze tuberculosis F2 on the inner wall of the container or freeze tuberculosis F1 in the gas Lg. Alternatively, condensation takes place at a portion where the surface Ls of the liquid L and the inner wall of the container C (which is substantially coincident with the cooling temperature of the cooling space) and such condensed liquid L are ice crystals. Tuberculosis (F3) may be formed.
예를 들면, 기체(Lg) 내의 빙결핵(F1)이 하강하여 액체(L)의 표면(Ls)을 통하여 액체(L)에 침투하게 되면, 액체(L)의 과냉각 상태가 해제되어, 액체(L)에 결빙 현상이 야기되어, 액체(L)의 과냉각이 해제된다. For example, when the frozen tuberculosis F1 in the gas Lg descends and penetrates into the liquid L through the surface Ls of the liquid L, the supercooled state of the liquid L is released and the liquid ( A freezing phenomenon is caused in L), and the supercooling of the liquid L is released.
또는, 빙결핵(F3)이 액체(L)의 표면(Ls)과 접하게 됨으로써, 액체(L)의 과냉각 상태가 해제되어, 액체(L)에 결빙 현상이 야기된다. Alternatively, when the frozen tuberculosis F3 comes into contact with the surface Ls of the liquid L, the supercooled state of the liquid L is released, thereby causing a freezing phenomenon in the liquid L. FIG.
상술된 바와 같이, 빙결핵(F1 내지 F3)이 생성되는 과정을 살펴보면, 액체(L)가 액체(L)의 최대 빙결정 생성대의 온도 이하에서 보관될 때, 액체(L)로부터 증발되어, 액체(L)의 표면(Ls) 상에 있는 수증기의 결빙과, 액체(L)의 표면(Ls) 부근의 용기(C)의 내측벽에서의 결빙으로 인하여, 액체(L)의 과냉각 상태의 해제가 야기된다. As described above, looking at the process of formation of freezing tubers F1 to F3, when the liquid L is stored below the temperature of the maximum ice crystal generation zone of the liquid L, it is evaporated from the liquid L, and the liquid Due to freezing of water vapor on the surface Ls of (L) and freezing at the inner wall of the container C near the surface Ls of the liquid L, the release of the supercooled state of the liquid L is prevented. Is caused.
도 4는 본 발명에 따른 과냉각 장치에 적용되는 빙결핵 생성을 방지하는 과정을 나타내는 도면이다. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
도 4는 기체(Lg) 내의 수증기(W1)의 결빙을 방지하여, 즉, 지속적으로 수증기(W1) 상태가 유지되도록, 적어도 기체(Lg) 또는 액체(L)의 표면(Ls) 상에 에너지를 인가하여, 기체(Lg) 또는 액체(L)의 표면(Ls)상의 온도를 액체(L)의 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 액체(L)의 상전이 온도 이상으로 한다. 또한, 액체(L)의 표면(Ls)이 용기(C)의 내측벽에 접촉하더라도 결빙이 되지 않도록, 액체(L)의 표면(Ls)의 온도를 액체(L)의 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 액체(L)의 상전이 온도 이상으로 한다. 4 shows energy at least on the surface Ls of the gas Lg or the liquid L so as to prevent the freezing of the water vapor W1 in the gas Lg, ie to maintain the water vapor W1 state continuously. The temperature of the gas Lg or the surface Ls of the liquid L is applied to be higher than the temperature of the maximum ice crystal generation zone of the liquid L. More preferably, the phase transition temperature of the liquid L is equal to or higher than that of the liquid L. . In addition, the temperature of the surface Ls of the liquid L is set to the temperature of the maximum ice crystal generation zone of the liquid L so that the surface Ls of the liquid L does not freeze even if it contacts the inner wall of the container C. More preferably, the phase transition temperature of the liquid L is equal to or higher than that.
이에 따라, 용기(C) 내의 액체(L)가 상전이 온도 이하에서, 또는 액체(L)의 최대 빙결정 생성대 온도 이하에서도 과냉각 상태를 유지하게 된다. As a result, the liquid L in the container C is maintained in the supercooled state at or below the phase transition temperature or below the maximum ice crystal generation temperature of the liquid L.
또한, 저장고(S) 내의 냉각 온도가 예를 들면, -20℃와 같이, 상당히 저온일 경우, 용기(C)의 상부에만 에너지를 인가하는 것만으로는, 수납물인 액체(L)가 과냉각 상태를 유지할 수 없을 수도 있기에, 용기(C)의 하부에도 어느 정도의 에너지를 공급할 필요가 있다. 용기(C)의 상부에 인가되는 에너지가 용기(C)의 하부에 인가되는 에너지에 비하여 상대적으로 크게 하여, 용기(C)의 상부 온도를 상전이 온도 또는 최대빙결정 생성대의 온도보다 높게 유지할 수 있다. 또한, 이러한 용기(C)의 하부에 인가되는 에너지와, 용기(C)의 상부에 인가되는 에너지에 의해 액체(L)의 과냉각 상태에서의 온도를 조절할 수 있게 된다. In addition, when the cooling temperature in the storage S is very low, for example, -20 ° C, the liquid L, which is an object, may be subjected to a supercooling state simply by applying energy only to the upper portion of the container C. Since it may not be able to hold | maintain, it is necessary to supply some energy also to the lower part of the container C. The energy applied to the upper portion of the vessel C is relatively larger than the energy applied to the lower portion of the vessel C, so that the upper temperature of the vessel C can be maintained higher than the phase transition temperature or the temperature of the maximum ice crystal generation zone. . In addition, it is possible to control the temperature in the supercooled state of the liquid (L) by the energy applied to the lower portion of the container (C) and the energy applied to the upper portion of the container (C).
상술된 도 3 및 4의 경우, 액체(L)의 경우를 예시적으로 설명하였으나, 액체를 포함하는 수납물의 경우에도 수납물 내의 액체를 지속적으로 과냉각시킴으로써 수납물의 신선한 장기 보관이 가능하게 되므로, 위의 과정을 적용하여 수납물이 상전이 온도 이하에서 과냉각 상태로 유지될 수 있다. 여기에서의 수납물은 액체 뿐만 아니라, 육류, 야채, 과일, 기타 식품 등을 포함할 수 있다. 3 and 4 described above, the case of the liquid (L) has been exemplarily described, but even in the case of the case containing the liquid, the fresh long-term storage of the object is possible by continuously supercooling the liquid in the object, By applying the process of the enclosure may be maintained in the supercooled state below the phase transition temperature. Receptacles herein can include meat, vegetables, fruits, other foods, and the like, as well as liquids.
또한, 본 발명에 적용되는 에너지는 열 에너지, 전기 또는 자기 에너지, 초음파 에너지, 광 에너지 등의 적용될 수 있다. In addition, the energy applied to the present invention may be applied to thermal energy, electric or magnetic energy, ultrasonic energy, light energy and the like.
도 5는 본 발명에 따른 과냉각 장치의 개략 구성도이다.5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
도 5의 과냉각 장치는 냉각이 이루어지는 저장고(S) 내에 장착되며, 내부에 수납 공간을 지닌 케이스(Sr)와, 케이스(Sr)의 상면 내측에 장착되어 열을 발생하는 발열 코일(H1)과, 수납 공간의 상부의 온도를 감지하는 온도센서(C1)과, 케이스(Sr)의 하면 내측에 장착되어 열을 발생하는 발열 코일(H2)과, 수납 공간의 하부 또는 수납물(P)의 온도를 감지하는 온도센서(C2)를 구비한다. The supercooling apparatus of FIG. 5 is mounted in a storage S in which cooling is performed, a case Sr having a storage space therein, a heating coil H1 mounted inside an upper surface of the case Sr, and generating heat; The temperature sensor C1 for sensing the temperature of the upper portion of the storage space, the heating coil H2 mounted inside the lower surface of the case Sr to generate heat, and the temperature of the lower portion or the storage object P of the storage space. It is provided with a temperature sensor (C2) for sensing.
과냉각 장치는 저장고(S) 내에 설치되어, 냉각이 이루어지게 됨에 따라, 온도센서(C1)과, (C2)로부터의 온도를 감지하여, 발열 코일(H1), (H2)이 온 동작을 수행하도록 하여, 열을 수납 공간의 상부 및 하부에서 수납공간으로 공급하게 된다. 이러한 열의 공급량을 조절하여, 수납 공간의 상부(또는 수납물(P)의 상의 공기)를 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 상전이 온도보다 높게 제어한다. The supercooling device is installed in the storage S and, as cooling is performed, senses the temperature from the temperature sensor C1 and C2 so that the heating coils H1 and H2 perform the on operation. Thus, heat is supplied to the storage space from the upper and lower portions of the storage space. The amount of heat supplied is adjusted to control the upper portion of the storage space (or the air on the object P) to be higher than the maximum ice crystal generation temperature, more preferably higher than the phase transition temperature.
도 5의 발열 코일(H1), (H2)의 위치는 수납물(P) 및 수납 공간에 열(또는 에너지)를 공급하기 적절한 위치로 결정될 수 있으며, 케이스(Sr)의 측면 내부에도 삽입 형성될 수 있다. The positions of the heating coils H1 and H2 of FIG. 5 may be determined to be suitable positions for supplying heat (or energy) to the enclosure P and the storage space, and may be inserted into the side surface of the case Sr. Can be.
도 6은 도 5의 과냉각 장치에 따른 물의 과냉각 상태 그래프이다. 도 6의 그래프는 액체(L)가 물인 경우에, 도 4 및 도 5에 따른 원리가 적용된 상태에서 측정된 온도 그래프들이다. FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5. The graphs of FIG. 6 are temperature graphs measured with the principle according to FIGS. 4 and 5 applied when the liquid L is water.
도 6에 도시되 바와 같이, I선은 냉각 공간의 냉각온도 곡선이고, II선은 용기(C) 또는 케이스(Sr) 내의 물 표면 상의 기체(Lg)(공기)의 온도 곡선(또는 용기(C)의 상부 온도, 케이스(Sr)의 상부 온도)이고, III선은 용기(C) 또는 케이스(Sr) 하부의 온도로, 용기(C) 또는 케이스(Sr) 외면의 온도는 용기(C) 또는 케이스(Sr)내부의 물의 온도와 실질적으로 동일하다. As shown in FIG. 6, line I is the cooling temperature curve of the cooling space, and line II is the temperature curve of the gas Lg (air) on the water surface in the vessel C or the case Sr (or the vessel C). ), The upper temperature of the case (Sr)), the line III is the temperature of the lower portion of the container (C) or the case (Sr), the temperature of the outer surface of the container (C) or the case (Sr) is the container (C) or It is substantially the same as the temperature of the water in the case Sr.
도시된 바와 같이, 냉각온도가 약 -19~ -20℃로 유지되는 경우(I선 참조), 용기(C) 내의 물 표면 상의 기체(Lg)의 온도를 물의 최대 빙결정 생성대의 온도보다 높은 약 4-6℃로 유지하면, 용기(C) 내의 물의 온도가 물의 최대 빙결정 생성대의 온도 이하인 약 -11℃를 유지하면서도, 액체 상태가 유지되는 과냉각 상태가 장시간 안정적으로 유지된다. 이때, 발열 코일(H1), (H2)에 의한 열 공급이 이루어진다. As shown, when the cooling temperature is maintained at about −19 to −20 ° C. (see line I), the temperature of the gas Lg on the water surface in the vessel C is about higher than the temperature of the maximum ice crystal generation zone of the water. When maintained at 4-6 ° C, the supercooled state in which the liquid state is maintained stably is maintained for a long time while the temperature of the water in the vessel C is maintained at about -11 ° C, which is equal to or less than the temperature of the maximum ice crystal generation zone of the water. At this time, heat is supplied by the heating coils H1 and H2.
또한, 도 6에서, 냉각이 진행됨에 따라, 물의 온도가 최대 빙결정 생성대의 온도에 도달하기 이전에, 더욱 바람직하게는, 상전이 온도에 도달하기 이전에, 물 표면 또는 표면 상의 기체(Lg) 상으로의 에너지 인가를 시작하여, 물이 보다 안정적으로 과냉각 상태로 진입하여 유지되도록 한다. In addition, in FIG. 6, as the cooling proceeds, before the temperature of the water reaches the temperature of the maximum ice crystal formation zone, more preferably, before the phase transition temperature is reached, the gas (Lg) phase on the water surface or on the surface The application of energy to the furnace is started, so that the water enters and maintains the supercooled state more stably.
도 7은 본 발명의 일 실시예에 따른 무동결 보관고의 분해 사시도이며, 도 8은 본 발명의 일 실시예에 따른 무동결 보관고의 사시도, 도 9는 본 발명의 일 실시에에 따른 무동결 보관고의 단면을 도시한 도면이다. Figure 7 is an exploded perspective view of a non-freezing storage according to an embodiment of the present invention, Figure 8 is a perspective view of a non-freezing storage according to an embodiment of the present invention, Figure 9 is a freezing storage according to an embodiment of the present invention The cross section of FIG.
본 발명의 일 실시예에 따른 무동결 보관고는 크게 외부 케이싱(100),서랍(200) 및 측부 케이싱(300)을 포함한다. 서랍(200)은 외부 케이싱(100) 내로 삽입, 인출 가능하며, 서랍(200)에는 별도의 전자 장치가 부착되지 않아 외부 케이싱(100)으로부터 완전히 분리되어 착탈가능하다. 외부 케이싱(100)은 무동결 보관고가 위치하는 냉장고 내의 다른 영역으로부터 무동결 보관고를 단열할 수 있도록 단열재(110)를 포함한다. 서랍(200) 및 측부 케이싱(300)도 각각 단열재(210, 310)를 포함하여, 외부 케이싱(100)의 단열재(110) 만으로 단열이 충분히 이루어지지 않는 부분을 단열할 수 있다. 외부 케이싱(100)의 내측에는 히터(140)가 설치되며, 제어부(미도시)에 의해 히터(140)의 발열량이 조절되어 무동결 보관고의 온도가 조절된다. 히터(140)는 상부 히터(142) 및 하부 히터(144)를 포함하며, 상부 히터(142) 및 하부 히터(144)의 발열량은 제어부(미도시)에 의해 각각 조절된다. 또한 외부 케이싱(100)의 상측에는 무동결 보관고의 온도를 측정하는 고내 온도 감지 센서(132)가 설치된다. 고내 온도 감지 센서(132)에 히터(140)의 열이 미치는 영향을 최소화하기 위해 고내 온도 감지 센서(132)에 근접한 위치에 히터(140)가 위치하는 것을 제한하고, 히터(140)와 고내 온도 감지 센서(132) 사이에 별도의 단열 부재(미도시)가 더 설치되어도 좋다. 또한 외부 케이싱(100)의 하부에는 식품의 온도를 감지하는 센서(134, 136)가 구비된다. 센서(134, 136)는 서랍(200) 내에 위치한 식품의 온도를 측정하며, 서랍(200) 내에 식품이 넓게 분포해있는 경우, 무동결 보관고의 운전에 식품의 온도를 더 잘 반영할 수 있도록 소정의 간격을 두고 복수 개 설치되는 것이 바람직하다. 실시예에서는 센서(134, 136)가 두 개 설치되어 있으나, 세 개 이상 설치되어도 좋다. 센서(134, 136)가 식품과 접촉하는 서랍(200)에 설치되지 않고 외부 케이싱(100)에 설치됨으로써, 서랍(200)으로 센서(134, 136)에 전력을 전달하고, 온도 감지 정보를 전송받기 위한 케이블을 삭제할 수 있어 서랍(200)을 외부 케이싱(100)으로부터 완전히 인출할 수 있다는 장점이 있다. 서랍(200)이 외부 케이싱(100)으로부터 완전히 인출되지 않을 경우, 식품을 서랍(200)에 넣거나, 서랍(200)으로부터 꺼내는 것이 불편하고, 서랍(200)을 청소하기 상당히 불편하다. 센서(134, 136)는 외부 케이싱(100)의 하면에 부착되는 금속 박판의 센서 설치부(134a, 136a)의 하면에 부착되어, 센서(134, 136)가 외부 케이싱(100)의 외부로 노출되는 것을 방지한다. The freezing storage according to an embodiment of the present invention largely includes an outer casing 100, a drawer 200 and the side casing (300). The drawer 200 may be inserted into and withdrawn from the outer casing 100, and since the electronic device is not attached to the drawer 200, the drawer 200 may be completely detached from the outer casing 100 and detachable. The outer casing 100 includes a heat insulator 110 to insulate the freezing storage from other areas in the refrigerator where the freezing storage is located. The drawer 200 and the side casing 300 may also include heat insulating materials 210 and 310, respectively, to insulate portions where heat insulation is not sufficiently performed by only the heat insulating material 110 of the outer casing 100. The heater 140 is installed inside the outer casing 100, and the heat generation amount of the heater 140 is controlled by a controller (not shown) to control the temperature of the freezing storage. The heater 140 includes an upper heater 142 and a lower heater 144, and the calorific values of the upper heater 142 and the lower heater 144 are respectively adjusted by a controller (not shown). In addition, an upper temperature sensor 132 for measuring the temperature of the freezing storage is installed on the upper side of the outer casing (100). In order to minimize the influence of the heat of the heater 140 on the temperature sensor 132 in the interior of the high temperature sensor 132, the heater 140 is located close to the position, and the heater 140 and the temperature in the interior A separate insulating member (not shown) may be further provided between the detection sensors 132. In addition, the lower portion of the outer casing 100 is provided with sensors 134, 136 for detecting the temperature of the food. The sensors 134 and 136 measure the temperature of the food located in the drawer 200, and if the food is widely distributed in the drawer 200, the sensor 134, 136 may be configured to better reflect the temperature of the food in the operation of the freezing storage. It is preferable to be provided in plural at intervals of. In the embodiment, two sensors 134 and 136 are provided, but three or more sensors may be provided. The sensors 134 and 136 are not installed in the drawer 200 in contact with the food, but are installed in the outer casing 100, thereby transferring power to the sensors 134 and 136 to the drawer 200 and transmitting temperature sensing information. Since the cable for receiving can be deleted, the drawer 200 can be completely withdrawn from the outer casing 100. If the drawer 200 is not fully withdrawn from the outer casing 100, it is inconvenient to put food in or out of the drawer 200, and it is quite inconvenient to clean the drawer 200. The sensors 134 and 136 are attached to the lower surfaces of the sensor mounting portions 134a and 136a of the metal sheet that are attached to the lower surfaces of the outer casing 100 so that the sensors 134 and 136 are exposed to the outside of the outer casing 100. Prevent it.
도 10은 본 발명의 일 실시예에 따른 무동결 보관고의 서랍에 설치되는 금속판을 도시한 것이며, 도 11은 본 발명의 일 실시예에 따른 무동결 보관고의 서랍에 금속판이 설치된 것을 도시한 도면이다. 상기한 바와 같이 본 발명의 일 실시예에 따른 무동결 보관고는 서랍(200)을 외부 케이싱(100)으로부터 완전히 인출하며, 분리할 수 있기 때문에, 센서(134, 136)가 서랍(200)에 위치하지 않고 외부 케이싱(100)에 위치하기 때문에 서랍(200)에 보관되는 식품의 온도를 감지하는 감지도가 떨어질 수 있다는 단점 또한 가지게 된다. 이를 보완하기 위하여, 서랍(200)의 바스켓(230) 내에는 서랍(200) 내에 분포한 식품의 온도 변화가 전달되는 금속판(232) 및 금속판(232)의 온도 변화를 센서(134, 136)로 전달하는 접점부(234, 236)가 구비되어 있다. 접점부(234, 236)는 바스켓(230)의 바닥면을 관통하여 하측으로 돌출되어, 서랍(200)이 외부 케이싱(100) 내로 완전히 삽입되면 센서 설치부(134a, 136a)와 접점부(234, 236)가 간극 없이 접촉되어 식품의 온도를 센서(134, 136)로 보다 잘 전달할 수 있게 한다. FIG. 10 illustrates a metal plate installed in a drawer of a non-freezing storage according to an embodiment of the present invention, and FIG. 11 is a view illustrating a metal plate installed in a drawer of a freezing storage according to an embodiment of the present invention. . As described above, since the freezer storage according to the embodiment of the present invention draws the drawer 200 completely from the outer casing 100 and can be detached, the sensors 134 and 136 are positioned in the drawer 200. Since it is located in the outer casing 100 without having the disadvantage that the sensitivity of sensing the temperature of the food stored in the drawer 200 may be reduced. In order to compensate for this, in the basket 230 of the drawer 200, the temperature change of the metal plate 232 and the metal plate 232 to which the temperature change of the food distributed in the drawer 200 is transmitted is transferred to the sensors 134 and 136. Contact portions 234 and 236 are provided. The contact portions 234 and 236 penetrate the bottom surface of the basket 230 and protrude downward. When the drawer 200 is fully inserted into the outer casing 100, the sensor installation portions 134a and 136a and the contact portion 234 are provided. 236 can be contacted without a gap to better convey the temperature of the food to the sensors 134, 136.
도 12는 본 발명의 무동결 보관고의 서랍이 외부 케이싱 내로 삽입되는 과정을 도시한 도면, 도 13은 본 발명의 무동결 보관고의 접점부와 센서 설치부가 접촉하고 있는 상태를 도시한 도면이다. 본 발명의 일 실시에에 따른 무동결 보관고가 포함하는 서랍(200)은 바스켓(230)의 바닥면보다 하부로 돌출된 접점부(234, 236)를 구비하며, 접점부(234, 236)는 센서 설치부(134a, 136a)와 간극 없이 접촉해야 센서(134, 136)가 식품의 온도를 보다 잘 감지할 수 있다. 그러나 서랍(200)이 외부 케이싱(100) 내에서 이동하는 동안 접점부(234, 236)가 외부 케이싱(100)과 계속 접촉하며 마찰을 일으키면, 접점부(234, 236) 및 외부 케이싱(100)의 마모, 마찰에 의한 소음 및 삽입과 인출 시에 과도한 힘이 필요하다는 문제점이 있다. 따라서, 접점부(234, 236)는 서랍(200)이 외부 케이싱(100) 내에서 이동 시에는 외부 케이싱(100)의 하면과 소정 간격을 이루다가, 서랍(200)이 외부 케이싱(100) 내로 완전히 삽입되면 접점부(234, 236)가 센서 설치부(134a, 136a)와 접촉하는 것이 바람직하다. 이를 위해 외부 케이싱(100)과 서랍(200)에는 서로 대응하는 위치에 각각 외부 케이싱(100) 내에서 서랍(200)의 이동 위치를 안내하는 안내부(120, 220 :도 9에 도시)가 구비된다. FIG. 12 is a view illustrating a process in which a drawer of a freezing storage of the present invention is inserted into an outer casing, and FIG. 13 is a view showing a state in which a contact portion and a sensor installation portion of the freezing storage of the present invention are in contact with each other. The drawer 200 included in the freezing storage according to the embodiment of the present invention includes contact portions 234 and 236 protruding downward from the bottom surface of the basket 230, and the contact portions 234 and 236 are sensors. The sensors 134 and 136 may better sense the temperature of the food only when the contacts 134a and 136a are contacted without a gap. However, if the contact portions 234, 236 keep in contact with the outer casing 100 and cause friction while the drawer 200 moves within the outer casing 100, the contact portions 234, 236 and the outer casing 100 are frictional. There is a problem that excessive force is required at the time of abrasion, noise due to friction, and insertion and withdrawal. Accordingly, the contact portions 234 and 236 form a predetermined interval with the lower surface of the outer casing 100 when the drawer 200 moves in the outer casing 100, and the drawer 200 moves into the outer casing 100. When fully inserted, the contact portions 234 and 236 preferably contact the sensor mounting portions 134a and 136a. To this end, the outer casing 100 and the drawer 200 are provided with guides 120 and 220 (shown in FIG. 9) for guiding a moving position of the drawer 200 in the outer casing 100 at positions corresponding to each other. do.
안내부(120, 220)는 각각 레일(122,222)과 롤러(124, 224)를 포함하며, 외부 케이싱(100) 내로 서랍(200)을 삽입하면, 먼저 외부 케이싱(100)과 서랍(200)의 롤러(124, 224)가 서로 접촉하고, 그 다음 외부 케이싱(100)의 레일(122) 위로 서랍(200)의 롤러(224)가 구르는 동시에 외부 케이싱(100)의 롤러(124) 위로 서랍(200)의 레일(222)이 구르면서 서랍(200)이 외부 케이싱(100) 내로 삽입된다. 외부 케이싱(100)의 레일(122)은 외부 케이싱(100)의 후방에서 서랍(200)이 하방으로 내려가서 위치하도록 하부로 비스듬하게 경사져 있으며, 경사부 때문에 서랍(200)의 롤러(224)가 외부 케이싱(100)의 레일(122)로부터 이탈하는 것을 방지하기 위해, 롤러(224)를 수용할 수 있는 너비로 후방부가 막혀있는 것이 바람직하다. 또한 서랍(200)이 외부 케이싱(100)의 후방에서 하방으로 내려갈 때, 외부 케이싱(100)의 롤러(124)와 간섭을 피하기 위해 서랍(200)의 레일(222)의 전방은 외부 케이싱(124)의 롤러(124)를 수용할 수 있도록 단차가 형성되어 있다. 따라서, 도면을 참조하면, 서랍(200)이 외부 케이싱(100)으로 삽입되어 이동하는 과정에서 접점부(234, 236)는 외부 케이싱(100)의 하면과 소정 간격을 이루며 간섭 및 마찰이 없이 이동할 수 있다. 또한, 서랍(200)이 외부 케이싱(100) 내로 완전히 삽입되면 안내부(120, 220)에 의해 서랍(200)이 하방으로 이동하게 되고, 접점부(234, 236)는 센서 설치부(134a, 136a)와 완전히 접촉하게 된다. The guides 120 and 220 include rails 122 and 222 and rollers 124 and 224, respectively. When the drawer 200 is inserted into the outer casing 100, the outer casing 100 and the drawer 200 of the drawer 200 are first formed. The rollers 124, 224 contact each other, and then the roller 224 of the drawer 200 rolls over the rail 122 of the outer casing 100 and at the same time the drawer 200 over the roller 124 of the outer casing 100. As the rail 222 of the roll rolls, the drawer 200 is inserted into the outer casing 100. The rail 122 of the outer casing 100 is obliquely inclined downward so that the drawer 200 is positioned downward from the rear of the outer casing 100, and the roller 224 of the drawer 200 is inclined due to the inclined portion. In order to prevent deviation from the rail 122 of the outer casing 100, it is preferable that the rear portion is blocked with a width that can accommodate the roller 224. In addition, when the drawer 200 descends from the rear of the outer casing 100 downward, the front of the rail 222 of the drawer 200 is the outer casing 124 to avoid interference with the roller 124 of the outer casing 100. The step is formed to accommodate the roller 124 of the). Therefore, referring to the drawing, in the process of the drawer 200 is inserted into the outer casing 100 to move the contact portion 234, 236 at a predetermined distance from the lower surface of the outer casing 100 to move without interference and friction Can be. In addition, when the drawer 200 is fully inserted into the outer casing 100, the drawer 200 is moved downward by the guide parts 120 and 220, and the contact parts 234 and 236 are provided with the sensor installation part 134a,. 136a) is in full contact.
도 14는 본 발명의 일 실시예에 따른 무동결 보관고가 포함하는 서랍의 전방부분을 도시한 분해 사시도이다. 도 7및 도 14를 참조하면, 서랍(200)의 전방 부분은, 서랍(200)의 전방 부분의 골격을 이루며 바스켓(230)과 연결되는 전방 프레임(240), 전방 프레임(240)의 전방을 덮는 커버(150), 전방 프레임(240)의 후방에 부착되며, 서랍(200)이 닫힐 때 외부 케이싱(100)과 서랍(200) 사이를 밀봉하는 개스킷(260), 서랍이(200) 닫힌 상태에서 외부 케이싱(100)과 서랍(200)을 밀착 상태로 고정시키는 후크부(272), 후크부(272)에 탄성력을 가하는 탄성 부재(274) 및 후크부(272)의 잠금 상태를 해제할 수 있는 그립부(276)를 포함한다. 또한 상기한 서랍(200)의 단열재(210)는 전방 프레임(240) 내에 충진된다. 14 is an exploded perspective view illustrating a front part of a drawer included in a freezing storage device according to an embodiment of the present invention. 7 and 14, the front portion of the drawer 200 forms a skeleton of the front portion of the drawer 200 and connects the front frame 240 and the front of the front frame 240 to the basket 230. The cover 150 is attached to the rear of the front frame 240, the gasket 260 to seal between the outer casing 100 and the drawer 200 when the drawer 200 is closed, the drawer 200 is closed At the hook portion 272 to secure the outer casing 100 and the drawer 200 in close contact, the elastic member 274 and the hook portion 272 to apply an elastic force to the hook portion 272 can be unlocked. Grip 276. In addition, the heat insulating material 210 of the drawer 200 is filled in the front frame 240.
서랍(200)을 외부 케이싱(100) 내로부터 인출하거나 삽입할 때 커버(250) 부분을 잡고 서랍(200)을 삽입하거나 인출할 수 있으며, 사용자의 편의를 위해 커버(250) 부분에 손잡이(252)가 형성된다. 손잡이(252)는 서랍(200)을 외부 케이싱(100)으로부터 용이하게 인출하기 위한 형태로서, 이용 가능한 어떠한 형태가 사용되어도 무방하다. 그러나, 그립부(276)를 쥐어 후크부(272)의 잠금 상태를 해제시키면서, 동시에 서랍(200)을 인출할 수 있도록 손잡이(252)는 커버(250)의 전면 하측에 형성되는 홈 형태인 것이 사용하기 좀 더 편리할 것이다. 그러나 그립부(276)의 위치가 변경된다면, 그립부(276)를 쥐는 것과 동시에 서랍(200)을 인출할 수 있는 위치로 손잡이(252)의 위치도 함께 변경할 수 있다. When the drawer 200 is withdrawn or inserted from the outer casing 100, the cover 250 may be grasped and the drawer 200 may be inserted or withdrawn, and the handle 252 may be disposed on the cover 250 for the user's convenience. ) Is formed. The handle 252 is a shape for easily withdrawing the drawer 200 from the outer casing 100, and any shape may be used. However, while releasing the locking state of the hook portion 272 by squeezing the grip portion 276, the handle 252 is a groove shape that is formed in the front lower side of the cover 250 so that the drawer 200 can be pulled out at the same time. It will be more convenient. However, if the position of the grip part 276 is changed, the position of the handle 252 may also be changed to a position where the grip part 276 may be gripped and the drawer 200 may be pulled out at the same time.
무동결 보관고는 상기에서 설명한 바와 같이, 식품의 무동결 상태를 안정적으로 유지하기 위해 냉장고 내의 다른 영역과 확실하게 단열되어야 할 필요가 있다. 이때, 냉장고 내의 다른 영역과 열교환 또는 열 누수가 일어나기 가장 쉬운 부분이 전방에 위치한 서랍(200)과 외부 케이싱(100)의 틈새 부분이다. 따라서 서랍(200)과 외부 케이싱(100)의 단열을 보다 확실하게 하기 위해 전방 프레임(240)의 후방 부분에서 외부 케이싱(100)의 전방 부분과 접촉하는 부분에 개스킷(260)이 부착된다. 개스킷(260)은 천연 고무, 합성 고무 등의 탄성 재질로 만들어지며, 서랍(200)과 외부 케이싱(100)이 사이에서 서랍(200)과 외부 케이싱(100)으로부터 힘을 받아 변형을 일으키며 서랍(200)과 외부 케이싱(100) 사이의 틈새를 밀봉하게 된다. The freezing store needs to be reliably insulated from other areas in the refrigerator to maintain the freezing state of the food as described above. At this time, the portion where the heat exchange or heat leakage is most likely to occur with other areas in the refrigerator is a gap between the drawer 200 and the outer casing 100 located in front. Accordingly, the gasket 260 is attached to a portion in contact with the front portion of the outer casing 100 at the rear portion of the front frame 240 to more ensure the insulation of the drawer 200 and the outer casing 100. The gasket 260 is made of an elastic material such as natural rubber or synthetic rubber, and the drawer 200 and the outer casing 100 receive deformation from the drawer 200 and the outer casing 100 between the drawer 200 and the drawer ( The gap between the outer casing 200 and the outer casing 100 is sealed.
위에서 설명한 것처럼, 서랍(200)은 외부 케이싱(100) 내로 완전히 삽입되면 안내부(120, 220: 도 11에 도시)하방으로 이동하도록 안내되며, 안내부(120, 220: 도 11에 도시)가 후방에서는 비스듬하게 기울어졌기 때문에 자중에 의해서 후방 및 하방으로 힘을 받게 된다. 따라서 서랍(200)이 완전히 삽입되면, 서랍(200)의 자중에 의해 서랍(200)과 외부 케이싱(100) 사이에서 개스킷(260)이 변형을 일으키며 틈새를 밀봉할 수 있다. 본 발명의 일 실시예에 따른 무동결 보관고는 이에 더해, 좀 더 확실하게 밀봉을 하기 위해서 외부 케이싱(100) 및 서랍(200)을 잠그는 걸림부(172) 및 후크부(272)를 포함한다. 후크부(272)를 조작하기 위해, 커버(250)의 손잡이(252) 내측으로 그립부(276)가 위치하며, 그립부(276)는 전방 프레임(240)에 회전 가능하게 결합된다. 사용자가 그립부(276)를 쥐면서 손잡이(252)를 그립부(276)과 함께 잡게되면, 그립부(276)의 양 측부에 위치하며 커버(250)에 결합되는 결합부(276a)를 축으로 그립부(276)가 회전하면서, 그립부(276)의 상부가 후크부(272)의 하부를 밀게 된다. 후크부(272) 역시, 커버(250)에 결합되는 결합부(272a)를 중심으로 회전하면서, 후크부(272)의 상부가 외부 케이싱(100)의 걸림부(172)로부터 들리게 되며, 후크부(272)와 걸림부(172)의 결합이 해제되어 사용자가 서랍(200)을 외부 케이싱(100)으로부터 인출할 수 있다. 이때, 평상 시, 후크부(272)의 상부가 외부 케이싱(100)의 걸림부(172)를 누르며 단단하게 고정될 수 있도록 후크부(272)와 커버(250)에 의해 양 단이 고정되는 탄성 부재(274)가 포함된다. 그립부(276)를 쥐게 되면, 후크부(272)의 상부가 들리며 탄성 부재(274)가 변형되며, 그립부(276)를 놓게 되면 탄성 부재(274)의 복원력에 의해 후크부(272)의 상부가 다시 아래로 이동하게 된다. 후크부(272)와 걸림부(172)에 의해 외부 케이싱(100)과 서랍(200)이 고정됨으로써, 외부 케이싱(100)과 서랍(200) 사이의 밀봉을 더 확실하게 할 수 있는 장점이 있다. As described above, the drawer 200 is guided to move downwards when the guides 120, 220 (shown in FIG. 11) are fully inserted into the outer casing 100, and the guides 120, 220: shown in FIG. Since it is inclined obliquely in the rear, it is forced backward and downward by its own weight. Accordingly, when the drawer 200 is fully inserted, the gasket 260 may deform and seal the gap between the drawer 200 and the outer casing 100 by the weight of the drawer 200. The non-freezing storage according to the embodiment of the present invention further includes a hook portion 172 and a hook portion 272 for locking the outer casing 100 and the drawer 200 in order to seal more securely. In order to manipulate the hook portion 272, the grip portion 276 is positioned inside the handle 252 of the cover 250, and the grip portion 276 is rotatably coupled to the front frame 240. When the user grasps the grip 252 together with the grip 276 while holding the grip 276, the grip part 276a is positioned on both sides of the grip 276 and is coupled to the cover 250. As the 276 rotates, the upper portion of the grip portion 276 pushes the lower portion of the hook portion 272. The hook portion 272 also rotates around the coupling portion 272a coupled to the cover 250, while the upper portion of the hook portion 272 is lifted from the hook portion 172 of the outer casing 100, and the hook portion 272 and the engaging portion 172 is released so that the user can draw the drawer 200 from the outer casing (100). At this time, the upper portion of the hook portion 272 is elastically fixed at both ends by the hook portion 272 and the cover 250 so that the upper portion of the hook portion 272 can be firmly fixed while pressing the locking portion 172 of the outer casing 100. Member 274 is included. When the grip part 276 is gripped, the upper part of the hook part 272 is lifted and the elastic member 274 is deformed. When the grip part 276 is released, the upper part of the hook part 272 is lifted by the restoring force of the elastic member 274. Will move down again. By fixing the outer casing 100 and the drawer 200 by the hook portion 272 and the locking portion 172, there is an advantage that can be more securely sealed between the outer casing 100 and the drawer 200. .
도 15는 본 발명의 일 실시예에 따른 무동결 보관고가 구비하는 측부 케이싱의 분해 사시도이다. 15 is an exploded perspective view of the side casing provided in the freezing storage according to an embodiment of the present invention.
측부 케이싱(300) 내에는 단열재(310), 제어 패널(미도시), 제어 패널 장착부(320), 조작 패널(미도시), 그리고 조작 패널 장착부(330)가 설치된다. 조작 패널(미도시)은 무동결 보관고의 기능을 입력할 수 있는 버튼부(315a, 315b, 315c, 315d) 및 선택된 기능을 표시하는 디스플레이부(316)을 포함하며, 버튼부(315a, 315b, 315c, 315d)를 통해 입력 받은 기능을 디스플레이부(316)에 표시하면서, 입력 받은 기능에 관한 정보를 제어 패널(미도시)로 전송한다. 측부 케이싱(300)은 PCB 조작 기판의 버튼부(315a, 315b, 315c, 315d) 및 디스플레이부(316)가 외부로 노출될 수 있도록 대응하는 위치에 창(홀)이 설치되는 것이 바람직하다. 버튼부(315a, 315b, 315c, 315d) 및 디스플레이부(316)가 서랍(200)이 아니라 측부 케이싱(300)에 위치함으로써, 서랍(200)이 외부케이싱(100)으로부터 완전히 탈착 가능하다. 버튼부(315a, 315b, 315c, 315d)는 살얼음 기능을 선택하는 버튼(315a), 냉동 기능을 선택하는 버튼(315b), 과냉각 기능을 선택하는 버튼(315c) 및 무동결 보관고의 전원을 온/오프하는 버튼(315d)을 포함한다. 디스플레이부(316)는 무동결 보관고(100) 전원의 온/오프 상태 및 현재 무동결 보관고에서 수행되고 있는 기능을 표시한다. 사용자가 버튼(315d)를 통해 무동결 보관고의 전원을 온 시키고, 버튼(315a)를 통해 살얼음 기능을 선택하면, 제어 패널(미도시)은 버튼(315a)로부터 입력 신호를 받아 디스플레이부(316)를 통해 냉장 기능 이 선택되었음을 표시한다. 또한 제어 패널(미도시)은 외부 케이싱(100: 도 8에 도시)에 설치된 히터(140)의 발열량을 조절하여, 무동결 보관고 내의 온도가 대략 -5℃ ~ -8℃의 온도 범위 내에 있도록 한다. 제어 패널(미도시)은 고내 온도 감지 센서(132) 및 센서(134, 136)를 통해 히터(140)의 발열량을 조절하여 무동결 보관고 내의 온도가 희망하는 온도 범위 내에 있도록 제어한다. 예를 들어 육류를 무동결 보관고에 보관할 때 살얼음 모드를 이용하면, 살짝 얼음이 얼어있는 상태로 육류를 쉽게 칼질할 수 있다. 또한 버튼(115b)를 통해 냉동 기능을 선택한 경우에는, 제어 패널(미도시)은 히터(140)를 모두 오프시키고, 별도의 온도 제어 없이 냉장고의 다른 영역과 동일한 온도로 식품이 보관되도록 한다. 한편, 버튼(115c)울 통해 무동결 기능을 선택하는 경우, 제어 패널(미도시)은 무동결 보관고 내의 온도가 대략 -2℃ ~ -4℃의 온도를 유지하도록 센서(132, 134, 136)를 통해 무동결 보관고 내의 온도와 식품의 온도를 지속적으로 감지하면서 히터(140)의 발열량을 조절한다. 무동결 기능으로 육류 등을 영하의 온도에서 동결시키지 않고 보관하면, 육류 내에 빙결정이 생성되며 육류의 섬유질이 파괴되며 일어나는 맛의 저하 등을 막을 수 있다는 장점이 있다. In the side casing 300, a heat insulating material 310, a control panel (not shown), a control panel mounting part 320, an operation panel (not shown), and an operation panel mounting part 330 are installed. The operation panel (not shown) includes button portions 315a, 315b, 315c, and 315d for inputting a function of the non-freezing storage, and a display portion 316 for displaying the selected functions. The buttons 315a, 315b, While displaying the function input through the 315c and 315d on the display unit 316, the information on the received function is transmitted to the control panel (not shown). The side casing 300 is preferably provided with a window (hole) in a corresponding position so that the button portion (315a, 315b, 315c, 315d) and the display portion 316 of the PCB control board can be exposed to the outside. Since the button portions 315a, 315b, 315c, and 315d and the display portion 316 are located in the side casing 300 instead of the drawer 200, the drawer 200 is completely detachable from the outer casing 100. The button sections 315a, 315b, 315c, and 315d have a button 315a for selecting a thin ice function, a button 315b for selecting a freezing function, a button 315c for selecting a supercooling function, and a power supply for the freezing storage. And a button 315d for turning off. The display unit 316 displays an on / off state of the power supply of the non-freezing storage 100 and a function currently being performed in the non-freezing storage. When the user turns on the freezing storage unit through the button 315d and selects the ice function through the button 315a, the control panel (not shown) receives an input signal from the button 315a and displays the display unit 316. Indicates that the refrigeration function has been selected. In addition, the control panel (not shown) adjusts the calorific value of the heater 140 installed in the outer casing 100 (shown in FIG. 8) so that the temperature in the freezing storage is within a temperature range of approximately -5 ° C to -8 ° C. . The control panel (not shown) adjusts the heat output of the heater 140 through the internal temperature sensor 132 and the sensors 134 and 136 to control the temperature in the freezing storage to be within a desired temperature range. For example, if you use meat free mode to store meat in an unfrozen vault, you can easily chop meat with slightly frozen ice. In addition, when the refrigeration function is selected through the button 115b, the control panel (not shown) turns off all the heaters 140, and allows food to be stored at the same temperature as other areas of the refrigerator without separate temperature control. On the other hand, when the non-freezing function is selected through the button 115c, the control panel (not shown) may control the sensors 132, 134, and 136 so that the temperature in the non-freezing storage maintains a temperature of approximately -2 ° C to -4 ° C. Through controlling the heat of the heater 140 while continuously detecting the temperature of the food and the temperature of the food freezing through. If the meat is stored without freezing at subzero temperatures due to the freezing function, ice crystals are formed in the meat, and the fiber of the meat is destroyed to prevent the deterioration of taste.
한편 무동결 기능을 선택하여 무동결 보관고 내에 육류를 보관하는 중에, 충격이 가해지거나 부분적으로 온도에 불균형이 생겨 무동결 상태가 깨어지는 경우가 있다. 일부에 빙결정이 생성되는 경우에도, 육류 전체로 동결이 확산되기 쉽다. 또한 동결이 시작되면, 온도가 상전이 온도인 0℃ 부근으로 급격하게 상승하게 되므로, 센서(134, 136)를 통해 급격한 온도 변화가 감지되면, 육류 등의 보관 식품이 동결된 것으로 판단하고, 무동결 보관고 내의 식품을 해동시킨 다음, 다시 식품을 무동결 상태로 보관한다. 무동결 보관고 내의 식품을 해동시키기 위해서는, 상온, 적어도 2℃ 내외의 온도까지 상승시키고, 소정 시간 이 온도를 유지하여 충분히 해동시킨 다음 다시 무동결 상태로 보관하는 것이 바람직하다. On the other hand, during the storage of meat in a non-freezing warehouse by selecting the freezing function, there is a case where the freezing condition is broken due to an impact or partial unbalance in temperature. Even when ice crystals form in some portions, freezing is likely to spread throughout the meat. In addition, when freezing is started, the temperature rises rapidly to around 0 ° C., which is a phase transition temperature. When a sudden change in temperature is detected through the sensors 134 and 136, it is determined that the stored food such as meat is frozen and freezes. Thaw the food in the vault, then store the food freeze again. In order to thaw food in a freezing store, it is preferable to raise it to normal temperature, the temperature of at least 2 degreeC, hold | maintain this temperature for a predetermined time, thaw it sufficiently, and store it in a freezing state again.
한편, 무동결 기능을 선택했을 때, 제어 패널(미도시)이 고내 온도 감지 센서(132) 및 센서(134, 136)를 이용하여 소정의 알고리즘을 통해 고내의 온도가 -2℃ ~ -4℃의 온도를 유지하도록 히터(140)의 발열량을 조절할 수 있다. 그러나, 단순히 고내 온도 감지 센서(132)에서 감지된 온도를 이용해, 상부 히터(142)의 발열량을 조절하여 무동결 보관고 내의 상부의 온도가 대략 -2℃ 내외의 온도로 유지되도록 하고, 센서(134, 136)에서 가지된 온도를 이용해 하부 히터(144)의 발열량을 조절하여 무동결 보관고 내의 하부의 온도가 대략 -3℃ ~ -4℃로 유지되도록 단순 제어할 수도 있다. On the other hand, when the non-freezing function is selected, the control panel (not shown) uses the internal temperature sensor 132 and the sensors 134 and 136, and the temperature in the refrigerator is -2 ° C to -4 ° C through a predetermined algorithm. The amount of heat generated by the heater 140 may be adjusted to maintain the temperature of the heater 140. However, simply using the temperature detected by the temperature sensor 132 in the interior, by adjusting the calorific value of the upper heater 142, so that the temperature of the upper part in the freezing storage is maintained at a temperature of approximately -2 ℃, the sensor 134 , 136 may be used to control the calorific value of the lower heater 144 to simply control the temperature of the lower part in the freezing storage to be maintained at approximately -3 ℃ ~ -4 ℃.
한편, 외부 케이싱(100)과 서랍(200)의 간섭이 없는 외부 케이싱(100)의 내부 공간 일측(예를 들면 외부 케이싱의 후방부) 또는 측부 케이싱(300) 내부 공간 내에 박스팬(미도시)을 설치하여, 무동결 보관고 내에서 강제 유동을 형성할 수 있다. 만약 박스팬(미도시)가 측부 케이싱(300)의 내부 공간에 형성될 경우, 박스팬에 의한 강제 유동이 바스켓(230)이 위치한 외부 케이싱(100) 내측에서 일어날 수 있도록 측부 케이싱(300)과 외부 케이싱(100) 사이에는 유동홀(미도시)가 더 형성되어야 한다. 박스팬(미도시)가 설치되어 강제 유동이 일어나는 경우, 무동결 보관고 내의 온도 분포가 균일해지므로, 센서(134, 136)가 무동결 상태의 해지를 감지하는 민감도가 향상된다. 도 16은 박스팬이 설치되지 않은 경우 센서가 감지한 식품의 온도 변화를 도시한 그래프, 도 17은 박스팬이 설치된 경우 센서가 감지한 식품의 온도 변화를 도시한 그래프이다. 두 그래프를 비교해 보면, 박스팬이 설치되지 않은 경우 센서(134, 136)가 측정한 온도는 변동폭의 차이가 크지 않은 범위 내에서 계속 변동되나, 박스팬이 설치된 경우 온도의 변동폭이 매우 좁은 구간과 온도의 변동폭이 매우 큰 구간으로 확실히 구분되어 있는 것을 볼 수 있다. 따라서 박스팬(미도시)가 설치된 경우 동일한 센서(134, 136)를 이용하더라도, 훨씬 신뢰성 높게 과냉각 상태를 유지하도록 히터(140)의 발열량을 제어할 수 있을 뿐만 아니라, 과냉각이 해지(즉, 동결 시작)된 것을 보다 쉽게 판단할 수 있다. Meanwhile, a box fan (not shown) in an inner space of one side of the outer casing 100 (for example, a rear portion of the outer casing) or the inner side of the side casing 300 without interference between the outer casing 100 and the drawer 200. It can be installed to form a forced flow in the freezing storage. If a box fan (not shown) is formed in the inner space of the side casing 300, the side casing 300 and the side casing 300 may be forced to flow inside the outer casing 100 where the basket 230 is located. A flow hole (not shown) should be further formed between the outer casings 100. When a box fan (not shown) is installed and forced flow occurs, the temperature distribution in the non-freezing storage becomes uniform, so that the sensitivity of the sensors 134 and 136 to detect the freezing is improved. FIG. 16 is a graph illustrating a temperature change of food detected by a sensor when a box fan is not installed, and FIG. 17 is a graph illustrating a temperature change of food detected by a sensor when a box fan is installed. Comparing the two graphs, when the box fan is not installed, the temperature measured by the sensors 134 and 136 continuously fluctuates within the range where the fluctuation range is not large. It can be seen that temperature fluctuations are clearly divided into very large intervals. Therefore, even if a box fan (not shown) is used, even if the same sensors 134 and 136 are used, not only the heating value of the heater 140 can be controlled to maintain the supercooling state more reliably, but also the supercooling is terminated (that is, freezing). It is easier to judge what has started.
한편 히터(140), 즉 상부 히터(142) 및 하부 히터(144) 각각이 복수 개의 히터를 포함할 수 있다. 무동결 보관고가 무동결 기능을 수행할 때, 복수 개의 상부 히터(142) 및 하부 히터(144)는 각각 적어도 하나의 히터가 항상 켜져 있는 상태로 운전되고, 나머지 히터들은 고내 온도 감지 센서(132) 및 센서(134, 136)의 측정 온도에 따라 온/오프 되도록 제어될 수 있다. 이렇게 상부 히터(142) 및 하부 히터(144)가 각각 복수 개의 히터로 구성되는 경우, 단일의 히터를 온/ 오프 하는 것에 비해 히터의 발열량에 따른 고내 온도의 변동폭이 작다. 따라서 히터의 온/오프에 의한 온도의 변동과 과냉각의 해지에 따른 온도의 변동을 구분하기 용이하며, 따라서 과냉각 해지를 쉽게 판단할 수 있다. 또한 온도의 변동폭이 큰 것에 비해, 온도의 변동폭이 작은 것이 과냉각 안정성이 높을 뿐 아니라, 식품의 신선도를 더욱 높일 수 있다. Meanwhile, the heater 140, that is, each of the upper heater 142 and the lower heater 144 may include a plurality of heaters. When the freezing storage performs the freezing function, each of the plurality of upper heaters 142 and the lower heaters 144 is operated with at least one heater always turned on, and the remaining heaters have the internal temperature sensing sensor 132. And on / off in accordance with the measurement temperatures of the sensors 134, 136. Thus, when the upper heater 142 and the lower heater 144 are each composed of a plurality of heaters, the fluctuation range of the internal temperature according to the amount of heat generated by the heater is small compared to turning on / off a single heater. Therefore, it is easy to distinguish between the fluctuation of the temperature due to the on / off of the heater and the fluctuation of the temperature due to the termination of the subcooling, and thus can easily determine the subcooling termination. In addition to the large fluctuation in temperature, the small fluctuation in temperature not only increases the supercooling stability but also increases the freshness of the food.
도 18 내지 도 20은 본 발명의 제2 실시예에 따른 냉장고의 무동결 보관고를 도시한 도면이다. 제1 실시예에 따른 무동결 보관고(100)는 서랍 형태로, 직육면체 형상에 일면(전면)이 개방된 외부 케이싱(110)과 외부 케이싱(110)의 개방된 일면(도 18 내지 도 20에서는 전면)을 통해 외부 케이싱(110)으로부터 인출, 탈착 가능한 서랍(120)을 포함한다. 외부 케이싱(110)은 냉장고의 냉장실, 냉동실과 같은 냉각 공간으로부터 무동결 보관고(100)를 단열하기 위해 단열재(113)가 충전된다. 무동결 보관고(100)는 냉장실 및 냉동실과 같은 온도로 이용될 수도 있으나, 보통 냉장실 및 냉동실의 운전조건과는 다른 특정한 온도로 이용되며, 무동결 보관고(100)과 냉장실 또는 냉동실 사이에 서로 온도 전달이 이루어지지 않아야 열교환에 의한 손실을 최소화할 수 있다. 18 to 20 are views illustrating a freezing storage of the refrigerator according to the second embodiment of the present invention. The non-freezing storage 100 according to the first embodiment has a drawer shape, and an outer casing 110 having one surface (front) opened in a rectangular parallelepiped shape and one open surface of the outer casing 110 (front in FIGS. 18 to 20). It includes a drawer 120, removable from the outer casing 110 through). The outer casing 110 is filled with a heat insulating material 113 to insulate the freezing storage 100 from the cooling space, such as the refrigerator compartment, the freezer compartment of the refrigerator. The freezing storage 100 may be used at the same temperature as the refrigerating compartment and the freezing compartment, but is usually used at a specific temperature different from the operating conditions of the refrigerating compartment and the freezing compartment, and the temperature is transferred between the freezing storage 100 and the refrigerating compartment or the freezing compartment. If this is not done, the loss due to heat exchange can be minimized.
외부 케이싱(110) 내측에는 열전소자(111)가 설치되며, 열전소자(111)는 가해지는 전류의 방향에 따라 일측은 온도가 떨어지며 냉각되고, 일측은 온도가 올라가며 발열한다. 본 발명의 무동결 보관고(100)는 일반적인 열선 히터와 냉장고 또는 냉동실의 냉기를 이용하여 무동결 보관고(100) 내의 온도를 조절하는 대신, 열전소자(111)를 이용하여 무동결 보관고(100) 내의 온도를 조절한다. 무동결 보관고(100) 내의 온도를 떨어뜨리고자 할 때, 냉각 측의 온도 변화가 무동결 보관고(100) 내로 전달될 수 있도록 열전소자(111)의 전류 방향을 조절하고, 무동결 보관고(100) 내의 온도를 올리고자 할 때, 발열 측의 온도 변화가 무동결 보관고(100) 내로 전달될 수 있도록 열전소자(111)의 전류 방향을 조절한다. 열전소자(111)를 통해 무동결 보관고(100) 내의 온도를 조절하기 때문에, 냉장실 내에 무동결 보관고(100)가 설치되더라도, 냉장실보다 더 낮은 온도로 무동결 보관고(100) 내의 온도를 조절할 수 있다. 무동결 보관고(100)는 열전소자(111)의 온도 변화를 무동결 보관고(100) 내로 고르게 전달하기 위하여, 열전소자(111)에 접촉하는 전도체(112)를 더 포함한다. 전도체(112)는 외부 케이싱(110)의 내면 전체를 덮는 형태로 형성되는 것이 바람직하다. The thermoelectric element 111 is installed inside the outer casing 110, and one side of the thermoelectric element 111 cools while the temperature drops according to the direction of the applied current, and one side generates heat while the temperature rises. In the non-freezing storage 100 of the present invention, instead of controlling the temperature in the non-freezing storage 100 by using the cold air of a common heating heater and a refrigerator or a freezer, the non-freezing storage 100 using the thermoelectric element 111. Adjust the temperature. When the temperature in the freezing storage 100 is to be dropped, the current direction of the thermoelectric element 111 is adjusted so that the temperature change of the cooling side can be transferred into the freezing storage 100, and the freezing storage 100 When raising the temperature inside, the current direction of the thermoelectric element 111 is adjusted so that the temperature change of the heating side can be transferred into the freezing storage 100. Since the temperature in the non-freezing storage 100 is adjusted through the thermoelectric element 111, even when the non-freezing storage 100 is installed in the refrigerating compartment, the temperature in the non-freezing storage 100 can be adjusted to a lower temperature than the refrigerating compartment. . The non-freezing storage 100 further includes a conductor 112 in contact with the thermoelectric element 111 in order to evenly transfer the temperature change of the thermoelectric element 111 into the non-freezing storage 100. The conductor 112 is preferably formed to cover the entire inner surface of the outer casing 110.
외부 케이싱(110), 열전소자(111) 및 전도체(112)의 상대적인 설치 위치에 대해서 설명한다. 외부 케이싱(110)의 내면에 열전소자(111)가 먼저 설치되고, 열전소자(111)를 전도체(112)가 덮도록 설치될 수 있다. 전도체(112)와 접촉하는 열전소자(111) 일측의 온도 변화는 전도체(112)를 통해 전도되어 무동결 보관고(100) 내로 고르게 전달되며, 열전소자(111) 타측의 온도 변화는 외부 케이싱(110)의 단열재(113)에 의해 단열되어 무동결 보관고(100)가 위치한 냉장실 또는 냉동실로 전달되는 것이 제한된다. 열전소자(111)는 외부 케이싱(110)의 내면 상측에 하나 설치될 수도 있고, 상측에 복수 개가 설치될 수도 있으며, 상측과 하측에 각각 하나씩 설치될 수도 있고, 상측과 하측에 각각 복수 개 설치될 수도 있다. 열전소자(111)는 제어부(미도시)와 연결되며, 제어부(미도시)는 사용자가 입력한 설정온도, 또는 제어부(미도시)에 기설정된 설정온도를 유지하도록 열전소자(111)에 흐르는 전류의 방향, 전류의 크기를 조절한다. The relative installation positions of the outer casing 110, the thermoelectric element 111 and the conductor 112 will be described. The thermoelectric element 111 may be first installed on the inner surface of the outer casing 110, and the thermoelectric element 111 may be installed to cover the conductor 112. The temperature change of one side of the thermoelectric element 111 in contact with the conductor 112 is conducted through the conductor 112 and evenly transferred into the freezing storage 100, and the temperature change of the other side of the thermoelectric element 111 is the outer casing 110. Insulated by the heat insulator 113 is limited to the freezing compartment or the freezing compartment where the freezing storage 100 is located. One or more thermoelectric elements 111 may be installed on the inner surface of the outer casing 110, and a plurality of thermoelectric elements may be installed on the upper side, and may be installed on the upper side and the lower side, respectively, or a plurality of the upper and lower sides may be installed. It may be. The thermoelectric element 111 is connected to a control unit (not shown), and the control unit (not shown) is a current flowing in the thermoelectric element 111 to maintain the set temperature input by the user or the set temperature preset by the control unit (not shown). Direction, adjust the magnitude of the current.
또 다른 일 예로 외부 케이싱(110)의 내면에 전도체(112)가 설치된 다음, 전도체(112)에 열전소자(111)가 접촉되도록 설치될 수도 있다. 이때 열전소자(111)의 일측은 전도체(112)와 접촉하며, 다른 일 측은 무동결 보관고(100) 내로 노출된다. 도 19에 도시된 바와 같이, 열전소자(111)의 무동결 보관고(100) 내로 노출된 일측의 면적보다 전도체(112)가 무동결 보관고(100) 내로 노출된 면적이 더 크다. 열전소자(111)와 전도체(112) 사이에서 온도 변화의 전달은 전도에 의해 행해지기 때문에 매우 빠른 속도로 전달이 이루어지며, 열전소자(111)의 일측과 전도체(112)의 온도는 거의 동일하다고 볼 수 있다. 무동결 보관고(100) 내에서 열전소자(111)가 노출된 면적보다 전도체(112)가 노출된 면적이 더 크므로, 무동결 보관고(100) 내의 온도는 전도체(112)의 온도 변화, 즉 전도체(112)와 접촉하고 있는 열전소자(111)의 일측의 온도가 무동결 보관고(100) 내에 노출된 다른 일측의 온도보다 더 큰 영향을 준다고 볼 수 있다. 예를 들어 무동결 보관고(100)를 냉각시킬 때, 전도체(112)와 접촉하는 열전소자(111)의 일측이 냉각 측으로 작용하고, 무동결 보관고(100) 내로 노출된 다른 일측이 발열 측으로 작용하도록 열전소자(111)에 가해지는 전류의 방향을 조절하고, 무동결 보관고(100)를 온장실로 이용할 때 열전소자(111)에 가해지는 전류의 방향을 이와 반대로 조절하면 된다. 조절하고자 하는 무동결 보관고(100)의 온도의 변화 방향과 반대 방향의 온도 변화를 일으키는 열전소자(111)의 다른 일 측이 노출됨으로써, 무동결 보관고(100) 내에서 온도 변화를 서서히 일으킬 수 있다는 장점이 있다. 열전소자(111)의 다른 일 측이 무동결 보관고(100) 내에 노출된 것은, 일반적인 냉, 온장 기능을 겸한 무동결 보관고(100)로 이용할 때에는 냉, 온장 절환 시간이 오래 걸리므로 에너지 효율 면에서 약간의 손해가 될 수 있다. 그러나, 무동결 보관고(100)가 영하의 온도에서 식품을 동결시키지 않고 보관하는 무동결 기능을 수행할 때, 온도 변화가 서서히 일어난다는 것은 소정 온도 영역에 머무르는 안정성이 뛰어나다는 것이며, 이는 무동결 상태를 만들기 매우 좋은 운전조건이다. As another example, the conductor 112 may be installed on the inner surface of the outer casing 110, and then the thermoelectric element 111 may be in contact with the conductor 112. At this time, one side of the thermoelectric element 111 is in contact with the conductor 112, the other side is exposed to the freezing storage 100. As shown in FIG. 19, the area exposed by the conductor 112 into the freezing storage 100 is greater than the area of one side exposed into the freezing storage 100 of the thermoelectric element 111. Since the transfer of the temperature change between the thermoelectric element 111 and the conductor 112 is conducted by conduction, the transfer is performed at a very high speed, and the temperature of one side of the thermoelectric element 111 and the conductor 112 is almost the same. can see. Since the area where the conductors 112 are exposed is larger than the area where the thermoelectric element 111 is exposed in the non-freezing storage 100, the temperature in the freezing storage 100 is a temperature change of the conductor 112, that is, the conductors. It can be seen that the temperature of one side of the thermoelectric element 111 in contact with 112 has a greater influence than the temperature of the other side exposed in the freezing storage 100. For example, when the freezing storage 100 is cooled, one side of the thermoelectric element 111 in contact with the conductor 112 acts as a cooling side, and the other side exposed into the non-freezing storage 100 acts as a heat generating side. The direction of the current applied to the thermoelectric element 111 may be adjusted, and the direction of the current applied to the thermoelectric element 111 may be reversed when the non-freezing storage 100 is used as a greenhouse. By exposing the other side of the thermoelectric element 111 causing the temperature change in the opposite direction to the change direction of the temperature of the freezing storage 100 to be adjusted, it can cause a temperature change slowly in the freezing storage 100 There is an advantage. The other side of the thermoelectric element 111 is exposed in the non-freezing storage 100, when using the non-freezing storage 100 having a common cold and warming function, it takes a long time to switch between cold and warming in terms of energy efficiency. It can be a bit of damage. However, when the freezing storage 100 performs the freezing function of storing the food without freezing at the freezing temperature, the temperature change gradually occurs, which means that the stability of staying in a predetermined temperature range is excellent. Making it a very good driving condition.
무동결 보관고(100)가 무동결 기능을 수행하기 위해서는, 무동결 보관고(100) 내의 온도 혹은 보관되는 식품의 온도를 측정할 수 있는 센서(114)가 요구된다. 도 18 및 도 19를 참조하면 센서(114)가 식품의 온도를 측정하기 위해서 외부 케이싱(110)의 내면 하측에 설치되어 있다. 단순히, 외부 케이싱(110)의 내면 하측, 즉 식품의 위치와 근접한 곳에 센서(114)가 설치되는 것만으로 식품의 온도를 정확하게 감지하기 어렵다. 따라서 식품의 온도를 센서(114)로 전달하는 매개체(124)이 설치되는 것이 바람직하다. 매개체(124)는 서랍(120)의 하면에 하측으로 돌출되어 센서(114)와 접촉하도록 설치된다. 한편 서랍(120) 내에 위치하는 식품의 온도를 보다 더 센서(114)로 전달하기 위해, 식품과 닿는 서랍(120)의 하면에 전도체(미도시)가 설치되고, 매개체(124)가 전도체(미도시) 및 센서(114)에 접촉하여, 전도체(미도시)로부터 센서(114)로 온도(온도 변화)를 전달하는 것이 바람직하다. 한편, 센서(114)의 온도 감지에 전도체(112)의 영향을 줄이기 위해, 센서(114) 주변이 센서 단열재(115)에 의해 단열되는 것이 바람직하다. 센서(114)는 케이블(114a)을 통해, 전원을 인가받고, 제어부(미도시)로 감지한 온도 정보를 전달한다. 또한 센서(114)가 감지한 온도 정보에 따라 제어부(미도시)는 열전소자(111)에 가해지는 전류의 방향 및 세기를 조절한다. 제어부(미도시)는 무동결 보관고(100)의 기능 제어를 위해 냉장고 본체와는 별도의 제어부(미도시)가 외부 케이싱(110) 내 또는 냉장고 본체에 별도로 마련될 수도 있고, 냉장고 본체의 제어부(미도시)가 무동결 보관고(100)의 기능을 제어하는 제어부를 겸할 수도 있다. In order for the freezing storage 100 to perform a freezing function, a sensor 114 capable of measuring the temperature of the freezing storage 100 or the temperature of food being stored is required. 18 and 19, a sensor 114 is installed below the inner surface of the outer casing 110 to measure the temperature of food. It is difficult to accurately detect the temperature of the food simply by installing the sensor 114 below the inner surface of the outer casing 110, that is, close to the position of the food. Therefore, it is preferable that the medium 124 for transmitting the temperature of the food to the sensor 114 is installed. The medium 124 protrudes downward on the bottom surface of the drawer 120 to be in contact with the sensor 114. On the other hand, in order to further transmit the temperature of the food located in the drawer 120 to the sensor 114, a conductor (not shown) is installed on the lower surface of the drawer 120 in contact with the food, the medium 124 is a conductor (not shown) And the sensor 114, it is desirable to transfer the temperature (temperature change) from the conductor (not shown) to the sensor 114. On the other hand, in order to reduce the influence of the conductor 112 on the temperature sensing of the sensor 114, it is preferable that the periphery of the sensor 114 is insulated by the sensor insulation (115). The sensor 114 receives power through the cable 114a and transmits temperature information sensed by a controller (not shown). In addition, the controller (not shown) adjusts the direction and intensity of the current applied to the thermoelectric element 111 according to the temperature information detected by the sensor 114. The control unit (not shown) may be provided with a control unit (not shown) separate from the refrigerator main body in the outer casing 110 or the refrigerator body separately to control the function of the non-freezing storage 100, or the control unit of the refrigerator body ( Not shown) may also serve as a control unit for controlling the function of the freezing storage 100.
한편 무동결 보관고(100)의 전방에는 무동결 보관고(100)의 기능을 제어하기 위해, 기능을 입력하는 조작부(115a, 115b, 115c, 115d) 및 무동결 보관고(100)의 작동 상태를 표시하는 디스플레이부(116)가 포함된다. 서랍(120)이 외부케이싱(110)으로부터 완전히 탈착 가능하기 위해, 조작부(115a, 115b, 115c, 115d) 및 디스플레이부(116)는 서랍(120)보다는 외부 케이싱(110)의 전방 일측에 설치되는 것이 바람직하다. 물론, 외부 케이싱(110)으로부터 서랍(120)으로 무선으로 전력 및 정보를 송수신할 수 있는 모듈이 설치되면, 서랍(120)에 조작부(115a, 115b, 115c, 115d) 및 디스플레이부(116)가 설치되어도 무방하나, 제조 비용이 증가한다는 단점이 있다. On the other hand, in front of the non-freezer 100 to control the function of the non-freezer 100, to display the operating state of the operation unit (115a, 115b, 115c, 115d) and the non-freezer 100 to input the function The display unit 116 is included. In order for the drawer 120 to be completely detachable from the outer casing 110, the operation units 115a, 115b, 115c, and 115d and the display unit 116 are installed at one front side of the outer casing 110 rather than the drawer 120. It is preferable. Of course, if a module capable of wirelessly transmitting and receiving power and information from the outer casing 110 to the drawer 120 is installed, the operation unit 115a, 115b, 115c, 115d and the display unit 116 may be installed in the drawer 120. Although it may be installed, there is a disadvantage that the manufacturing cost increases.
조작부(115a, 115b, 115c, 115d)는 냉장 기능을 선택하는 조작부(115a), 냉동 기능을 선택하는 조작부(115b), 과냉각 기능을 선택하는 조작부(115c) 및 무동결 보관고(100)의 전원을 온/오프하는 조작부(115d)를 포함한다. 디스플레이부(116)는 무동결 보관고(100) 전원의 온/오프 상태 및 현재 무동결 보관고에서 수행되고 있는 기능을 표시한다. 사용자가 조작부(115d)를 통해 무동결 보관고(100)의 전원을 온 시키고, 조작부(115a)를 통해 냉장 기능을 선택하면, 제어부(미도시)는 조작부(115a)로부터 입력 신호를 받아 디스플레이부(116)를 통해 냉장 기능이 선택되었음을 표시한다. 또한 제어부(미도시)는 케이블(111a)을 통해 전도체(112)와 맞닿는 측이 냉각 측이 되도록 열전소자(111)로 흐르는 전류의 방향을 선택한다. 조작부(115b)를 통해 온장 기능을 선택한 경우에는, 전도체(112)와 맞닿는 측이 발열 측이 되도록 열전소자(111)로 흐르는 전류의 방향을 선택한다. 한편, 조작부(115c)를 통해 무동결 기능을 선택하는 경우, 제어부(미도시)는 무동결 보관고(100) 내의 온도가 대략 -2℃ ~ -4℃의 온도를 유지하도록 열전소자(111)로 흐르는 전류의 방향 및 전류의 크기를 선택한다. 이를 위해 센서(114)가 측정하는 식품의 온도를 지속적으로 감지하면서, 감지된 식품의 온도에 대응하여 전류의 방향 및 전류의 크기를 적절하게 제어하여 무동결 보관고(100) 내의 온도가 -2℃ ~ -4℃를 유지하도록 한다. 무동결 기능으로 육류 등을 영하의 온도에서 동결시키지 않고 보관하면, 육류 내에 빙결정이 생성되며 육류의 섬유질이 파괴되며 일어나는 맛의 저하 등을 막을 수 있다는 장점이 있다. The operation units 115a, 115b, 115c, and 115d provide power to the operation unit 115a for selecting the refrigerating function, the operation unit 115b for selecting the refrigerating function, the operation unit 115c for selecting the supercooling function, and the freezing storage 100. The operation part 115d which turns on / off is included. The display unit 116 displays an on / off state of the power supply of the non-freezing storage 100 and a function currently being performed in the non-freezing storage. When the user turns on the freezing storage 100 through the operation unit 115d and selects the refrigeration function through the operation unit 115a, the control unit (not shown) receives an input signal from the operation unit 115a and displays the display unit ( 116) indicates that the refrigeration function has been selected. In addition, the controller (not shown) selects the direction of the current flowing in the thermoelectric element 111 such that the side contacting the conductor 112 through the cable 111a becomes the cooling side. When the warming function is selected through the operation unit 115b, the direction of the current flowing through the thermoelectric element 111 is selected so that the side contacting the conductor 112 becomes the heat generating side. On the other hand, in the case of selecting the non-freezing function through the operation unit 115c, the control unit (not shown) to the thermoelectric element 111 so that the temperature in the non-freezing storage 100 maintains the temperature of approximately -2 ℃ ~ -4 ℃ Select the direction of current flowing and the magnitude of the current. To this end, while the sensor 114 continuously detects the temperature of the food being measured, the temperature in the freezing storage 100 is -2 ° C. by appropriately controlling the direction of the current and the magnitude of the current in response to the detected food temperature. Maintain ~ -4 ℃. If the meat is stored without freezing at subzero temperatures due to the freezing function, ice crystals are formed in the meat, and the fiber of the meat is destroyed to prevent the deterioration of taste.
한편 무동결 기능을 선택하여 무동결 보관고(100) 내에 육류를 보관하는 중에, 충격이 가해지거나 부분적으로 온도에 불균형이 생겨 무동결 상태가 깨어지는 경우가 있다. 일부에 빙결정이 생성되는 경우에도, 육류 전체로 동결이 확산되기 쉽다. 또한 동결이 시작되면, 온도가 상전이 온도인 0℃ 부근으로 급격하게 상승하게 되므로, 센서(114)를 통해 급격한 온도 변화가 감지되면, 육류 등의 보관 식품이 동결된 것으로 판단하고, 무동결 보관고(100) 내의 식품을 해동시킨 다음, 다시 식품을 무동결 상태로 보관한다. 무동결 보관고(100) 내의 식품을 해동시키기 위해서는, 상온, 적어도 2℃ 내외의 온도까지 상승시키고, 소정 시간 이 온도를 유지하여 충분히 해동시킨 다음 다시 무동결 상태로 보관하는 것이 바람직하다. On the other hand, while the meat is stored in the non-freezing storage 100 by selecting the non-freezing function, there is a case where a shock is applied or a partial imbalance occurs in the temperature, thereby breaking the non-freezing state. Even when ice crystals form in some portions, freezing is likely to spread throughout the meat. In addition, when the freezing is started, the temperature is rapidly increased to near the phase transition temperature of 0 ℃, when a sudden temperature change is detected through the sensor 114, it is determined that the stored food, such as meat is frozen, and freezing storage ( 100) After thawing the food in the food, the food is again stored freeze. In order to thaw the food in the freezing storage 100, it is preferable to raise the temperature to a temperature of at least about 2 ° C at room temperature, and to keep the temperature for a predetermined time to thaw it sufficiently, and then store it in a freezing state again.
도 21은 종래의 냉장고에 본 발명의 제1 또는 제2 실시예에 따른 무동결 보관고가 적용된 예를 도시한 도면이다. 냉장고(1000)는 냉동실(1100)과 냉장실(1200)로 구획되어 있으며, 냉동실(1100) 내에 무동결 보관고(2000)가 설치된다. 무동결 보관고(2000)가 냉동실(1100)에 설치되면, 냉동실(1100)을 냉각하는 냉기가 무동결 보관고(2000) 주변을 냉각하여 무동결 보관고(2000)의 육류를 저온으로 보관할 수 있다. 일반적으로 냉동실(1100) 내의 온도는 -8℃ ~ -18 ℃ 사이의 온도로 육류를 무동결 보관할 수 있는 온도보다 낮은 온도로 유지되지만, 제어 패널(미도시)에서 온도 감지 센서(132) 및 센서(134, 136)를 이용하여 소정의 알고리즘을 통해 무동결 보관고(2000) 내의 온도가 -2℃ ~ -4℃의 온도를 유지하도록 히터(140: 도 9 참조)의 발열량을 조절하여 육류를 무동결 상태로 보관할 수 있다. 물론 사용자의 선택에 따라 히터(140: 도 9 참조) 또는 열전소자(111: 도 18 참조)를 켜지 않고 온도를 냉동실(1100)의 온도와 동일하게 하여 동결 보관할 수도 있다. FIG. 21 is a view showing an example in which a freezing storage according to the first or second embodiment of the present invention is applied to a conventional refrigerator. The refrigerator 1000 is divided into a freezing compartment 1100 and a refrigerating compartment 1200, and a freezing storage 2000 is installed in the freezing compartment 1100. When the freezing storage 2000 is installed in the freezing compartment 1100, cold air for cooling the freezing compartment 1100 may be cooled around the freezing storage 2000 to store meat in the freezing storage 2000 at a low temperature. In general, the temperature in the freezer compartment 1100 is maintained at a temperature lower than the temperature for freezing the meat at a temperature between -8 ° C and -18 ° C, but the temperature sensor 132 and the sensor in the control panel (not shown) By using a predetermined algorithm (134, 136) to adjust the amount of heat of the heater 140 (see Fig. 9) so that the temperature in the non-freezing storage 2000 is maintained at a temperature of -2 ℃ ~ -4 ℃ no meat Can be stored frozen. Of course, the temperature may be the same as the temperature of the freezer compartment 1100 without turning on the heater 140 (see FIG. 9) or the thermoelectric element 111 (see FIG. 18) according to a user's selection.
도 19는 본 발명의 제1 또는 제2 실시예에 따른 무동결 보관고가 종래 냉장고에 적용된 것을 도시한 측단면도이다. 냉장고(1000)에는 냉동실(1100) 및 냉장실이 좌, 우로 각각 길게 배치되어 있고, 무동결 보관고(2000)는 냉동실(1100)의 선반 사이나 선반의 최상단 또는선반의 최하단에 설치될 수 있다. 냉동실(1100)의 배면에 증발기(1300)가 위치하고, 증발기(1300)와 주변 공기가 열교환하여 냉기를 생성한다. 냉기는 냉동실(1100)로 유입되어, 냉장고(1000)를 저온으로 유지할 수 있게 한다. 증발기(1300)와 열교환한 냉기가 덕트(1600)를 통해, 냉기 유입홀(2420)을 거쳐 냉동실(1200)로 유입된다. 냉동실(1200)이 냉기에 의해 냉각되면, 냉각실(1200) 내에 위치한 무동결 보관고(2000) 내의 온도도 히터(140: 도 9 참조) 를 가동시키지 않는 한 냉동실(1200)과 같은 온도로 유지되고, 제어 패널(미도시)의 제어에 따라 히터를 가동하면 무동결 보관고(2000) 내의 온도가 -2℃ ~ -4℃의 온도를 유지하면서 육류를 무동결 상태로 보관할 수 있다. 무동결 보관고(2000)는 냉동실(1100)에 고정된 채로, 서랍만을 전방으로 개폐할 수 있는 형태일 수도 있고, 무동결 보관고(2000) 자체를 냉동실(1100)로부터 분리해낼 수 있는 형태일 수도 있다. 무동결 보관고(2000) 자체를 냉동실(1100)로부터 분리해낼 수 있는 형태로 제작하려면, 냉동실(1100)과 무동결 보관고(2000)에 각각 전기를 주고받을 수 있는 터미널이 형성되는 것이 바람직하다. 19 is a side sectional view showing that the freezing storage according to the first or second embodiment of the present invention is applied to a conventional refrigerator. In the refrigerator 1000, the freezing compartment 1100 and the refrigerating compartment are arranged long left and right, respectively, and the freezing storage 2000 may be installed between the shelves of the freezing compartment 1100, the top of the shelf, or the bottom of the shelf. The evaporator 1300 is positioned on the rear surface of the freezing chamber 1100, and the evaporator 1300 and the ambient air exchange heat to generate cold air. The cold air flows into the freezing compartment 1100 to maintain the refrigerator 1000 at a low temperature. The cold air heat exchanged with the evaporator 1300 is introduced into the freezing chamber 1200 through the cold air inlet hole 2420 through the duct 1600. When the freezing compartment 1200 is cooled by cold air, the temperature in the freezing storage 2000 located in the cooling compartment 1200 is also maintained at the same temperature as the freezing chamber 1200 unless the heater 140 (see FIG. 9) is operated. When the heater is operated under the control of a control panel (not shown), the meat may be stored in the freezing state while the temperature in the freezing storage 2000 is maintained at a temperature of -2 ° C to -4 ° C. The non-freezing storage 2000 may be in the form of being able to open and close only the drawer forward while being fixed to the freezing compartment 1100, or may be of a form in which the freezing storage 2000 itself can be separated from the freezing compartment 1100. . In order to manufacture the freezing storage 2000 itself in a form that can be separated from the freezer compartment 1100, it is preferable that a terminal capable of transmitting electricity to the freezing compartment 1100 and the non-freezing storage 2000, respectively.
도 21 및 도 22은 본 발명의 제3 실시예에 따른 무동결 보관고 및 무동결 보관고를 구비하는 냉장고를 도시한 도면이다. 본 발명의 제2 실시예에 따른 무동결 보관고은 소위 말하는 홈바 형태로 냉장고에 설치된다. 냉장고(1000)는 격벽에 의해 구분되며, 대략 2℃~10℃의 온도 영역에서 주로 식품이 보관되는 냉장실(1300)과 대략 -18℃ 내외의 온도로 식품을 보관하는 냉동실(1400)을 포함한다. 또한 냉장실(1300)을 개폐하는 냉장실 도어(1100)와 냉동실(1400)을 개폐하는 냉동실 도어(1200)가 구비된다. 본 발명의 제2 실시예에 따른 무동결 보관고(100)는 냉장실 도어(1100) 또는 냉동실 도어(1200)에 형성된다. 도 21 내지 도 22에는 냉장실 도어(1100)에 무동결 보관고(100)가 형성된 예가 도시되어 있으며, 무동결 보관고(100)는 냉장실 도어(1100)가 닫혀있을 때 냉장고(1000)의 외부에서 무동결 보관고(100)를 개폐할 수 있는 무동결 보관고 도어(130)가 구비된다. 무동결 보관고(100)를 정의하는 케이싱(110)이 별도로 형성된 다음 냉장실 도어(1100)에 설치될 수 있으나, 냉장실 도어(1100)와 일체로 형성될 수도 있다. 도 21에는 냉장실 도어(1100)와 일체로 형성되어 있으나, 편의상 무동결 보관고(100)를 정의할 수 있도록 절곡된 부분을 이하 케이싱(110)으로 칭하기로 한다. 케이싱(110) 내부는 냉장실(1300)과 무동결 보관고(100)를 단열할 수 있도록 단열재(113)가 충진된다. 케이싱(110) 내측에는 본 발명의 제1 실시예와 마찬가지로 열전소자(111)가 설치된다. 열전소자(111)는 케이싱(110) 내에서 상부, 하부, 측부 어느 곳에 설치되어도 무방하며, 단일의 열전소자(111)가 설치되어도 되고, 복수 개의 열전소자(111)가 설치되어도 된다. 또한 열전소자(111)에서 일어나는 온도변화를 무동결 보관고(100) 내로 잘 전달하기 위해 열전소자(111)와 접촉하는 전도체(112)가 설치된다. 열전소자(111), 전도체(112) 및 케이싱(110)의 설치 관계는 제1 실시예와 마찬가지로 케이싱(110)에 열전소자(111)가 설치된 다음, 열전소자(111)를 덮도록 전도체(112)가 설치될 수도 있고, 케이싱(110) 내에 전도체(112)가 먼제 설치된 다음, 전도체(112) 위에 열전소자(111)가 설치될 수도 있다. 또한 무동결 보관고 도어(130)에 대해 상,하,좌,우 어느 일 측에 디스플레이부(미도시)와 조작부(미도시)가 형성될 수도 있고, 무동결 보관고 도어(130)에 디스플레이부(미도시)와 조작부(미도시)가 형성될 수도 있다. 무동결 보관고 도어(130)에 디스플레이부(미도시)와 조작부(미도시)가 형성되는 경우, 무동결 보관고 도어(130)의 힌지(미도시)를 통해 디스플레이부(미도시)와 조작부(미도시)로 전원을 인가하고 신호를 전송받는 케이블(미도시)이 안내되는 것이 바람직하다. 21 and 22 are views illustrating a refrigerator having a freezing storage and a freezing storage according to a third embodiment of the present invention. The freezing storage according to the second embodiment of the present invention is installed in the refrigerator in the form of a so-called home bar. The refrigerator 1000 is divided by a partition wall and includes a refrigerating chamber 1300 in which food is mainly stored in a temperature range of about 2 ° C. to 10 ° C. and a freezing chamber 1400 which keeps food at a temperature of about −18 ° C. . In addition, the refrigerating compartment door 1100 for opening and closing the refrigerating compartment 1300 and the freezing compartment door 1200 for opening and closing the freezing compartment 1400 are provided. The freezing storage 100 according to the second embodiment of the present invention is formed in the refrigerating compartment door 1100 or the freezing compartment door 1200. 21 to 22 illustrate an example in which the freezing compartment 100 is formed in the refrigerating compartment door 1100, and the non-freezing compartment 100 is freezing outside of the refrigerator 1000 when the refrigerating compartment door 1100 is closed. A freezing storage door 130 capable of opening and closing the storage 100 is provided. The casing 110 defining the freezing storage 100 may be separately formed and then installed in the refrigerating compartment door 1100, but may be integrally formed with the refrigerating compartment door 1100. Although FIG. 21 is integrally formed with the refrigerating compartment door 1100, a portion bent so as to define the non-freezing storage 100 for convenience will be referred to as a casing 110 hereinafter. Inside the casing 110 is filled with a heat insulating material 113 to insulate the refrigerating chamber 1300 and the freezing storage 100. Inside the casing 110, a thermoelectric element 111 is installed, as in the first embodiment of the present invention. The thermoelectric element 111 may be installed anywhere in the upper, lower, and side portions of the casing 110, and a single thermoelectric element 111 may be provided, or a plurality of thermoelectric elements 111 may be provided. In addition, a conductor 112 in contact with the thermoelectric element 111 is installed in order to transfer the temperature change occurring in the thermoelectric element 111 into the freezing storage 100 well. The installation relationship between the thermoelectric element 111, the conductor 112, and the casing 110 is similar to the first embodiment in which the thermoelectric element 111 is installed in the casing 110, and then the conductor 112 is covered to cover the thermoelectric element 111. ) May be installed, or the conductor 112 may be installed in the casing 110 first, and then the thermoelectric element 111 may be installed on the conductor 112. In addition, the display unit (not shown) and the operation unit (not shown) may be formed on any one side of the freezing storage door 130, and the display unit (not shown) on the freezing storage door 130. Not shown) and an operation unit (not shown) may be formed. When the display unit (not shown) and the operation unit (not shown) are formed in the non-freezer door 130, the display unit (not shown) and the operation unit (not shown) are connected through the hinges (not shown) of the non-freezer door 130. It is preferable that a cable (not shown) for supplying power and receiving a signal is guided.
또한 무동결 보관고(100) 내에는 무동결 보관고의 온도를 측정하는 센서(117) 및/또는 무동결 보관고(100) 내에 저장되는 식품의 온도를 측정하는 센서(114)가 설치되는 것이 바람직하다. 센서(114)는 제어부(미도시)로 감지한 온도 정보를 전달하고, 센서(114)가 감지한 온도 정보에 따라 제어부(미도시)는 열전소자(111)에 가해지는 전류의 방향 및 세기를 조절한다. 제어부(미도시)는 무동결 보관고(100)의 기능 제어를 위해 냉장고 본체와는 별도의 제어부(미도시)가 케이싱(110) 내 또는 냉장고 본체에 별도로 마련될 수도 있고, 냉장고 본체의 제어부(미도시)가 무동결 보관고(100)의 기능을 제어하는 제어부를 겸할 수도 있다. 제어부(미도시)는 제1 또는 제2 실시예와 같은 방법으로, 무동결 보관고(100)의 기능을 제어할 수 있다. In addition, it is preferable that the sensor 117 measuring the temperature of the non-freezing storage 100 and / or the sensor 114 measuring the temperature of food stored in the non-freezing storage 100 are installed in the freezing storage 100. The sensor 114 transmits the temperature information detected by the controller (not shown), and the controller (not shown) according to the temperature information detected by the sensor 114 controls the direction and intensity of the current applied to the thermoelectric element 111. Adjust The controller (not shown) may be provided with a control unit (not shown) separate from the refrigerator main body in the casing 110 or in the refrigerator main body to control the function of the non-freezing storage 100, or the control unit of the refrigerator main body (not shown). H) may also serve as a control unit for controlling the function of the freezing storage 100. The controller (not shown) may control the function of the non-freezing storage 100 in the same manner as in the first or second embodiment.

Claims (20)

  1. 일면이 개방된 외부 케이싱;An outer casing with one side open;
    외부 케이싱의 개방된 일면을 통해 인출 및 탈착 가능한 서랍;A drawer that can be pulled out and detached through an open side of the outer casing;
    외부 케이싱의 일면에 위치하며, 서랍 내에 위치된 식품의 온도를 감지하는 센서;Located on one surface of the outer casing, the sensor for sensing the temperature of the food located in the drawer;
    센서와 마주하는 서랍의 일면에 설치되며, 서랍 내의 식품의 온도를 센서로 전달하는 열 전도 부재; 및A heat conduction member installed on one surface of the drawer facing the sensor and transferring the temperature of food in the drawer to the sensor; And
    외부 케이싱 내에 설치되는 히터;를 포함하여, 냉각 공간에 위치되어 영하의 온도에서 음식물을 무동결 상태로 보관할 수 있는 것을 특징으로 하는 무동결 보관고.Heater is installed in the outer casing; including, it is located in the cooling space freezing storage, characterized in that food can be stored in a freezing state at sub-zero temperatures.
  2. 제1항에 있어서,The method of claim 1,
    외부 케이싱 내에 단열재가 충전된 것을 특징으로 하는 무동결 보관고. A freezing storage room, characterized in that the insulation is filled in the outer casing.
  3. 제1항에 있어서, The method of claim 1,
    열 전도 부재는, 서랍의 바닥면에 위치하여 식품의 온도 변화가 전달되는 금속판 및 금속판과 센서 사이에서 온도 변화를 전달하는 접점부를 구비하는 것을 특징으로 하는 무동결 보관고. The heat conducting member has a metal plate which is located on the bottom surface of the drawer and has a contact portion for transferring the temperature change between the metal plate and the sensor to which the temperature change of the food is transmitted.
  4. 제4항에 있어서,The method of claim 4, wherein
    접점부는, 서랍의 바닥면에서 하방으로 돌출된 것을 특징으로 하는 무동결 보관고. The contact portion is freezing storage, characterized in that protruding downward from the bottom surface of the drawer.
  5. 제1항에 있어서,The method of claim 1,
    외부 케이싱의 개방된 일면과 대응하는 서랍의 일면은, 서랍의 인출을 위해 이용되는 손잡이가 구비되는 것을 특징으로 하는 무동결 보관고.The open side of the outer casing and the corresponding side of the drawer, the freezing storage, characterized in that the handle is used for withdrawal of the drawer.
  6. 제5항에 있어서,The method of claim 5,
    손잡이는, 그립부 및 그립부와 연동하여 움직이는 후크부를 구비하고,The handle has a grip portion and a hook portion that moves in conjunction with the grip portion,
    외부 케이싱은, 후크부가 걸리는 걸림부를 구비하는 것을 특징으로 하는 무동결 보관고. The outer casing, the freezing storage, characterized in that the hook portion is provided with a hook portion.
  7. 제1항에 있어서,The method of claim 1,
    외부 케이싱의 개방된 일면과 대응하는 서랍의 일면은, 내부 공간의 밀폐를 위한 가스켓이 구비되는 것을 특징으로 하는 무동결 보관고. The open side of the outer casing and the corresponding side of the drawer, the freezing storage, characterized in that the gasket for sealing the inner space is provided.
  8. 제1항에 있어서,The method of claim 1,
    외부 케이싱 및 서랍은 각각 서랍의 이동을 안내하기 위해 서로 안내부를 구비하고,The outer casing and drawer are each provided with guides to guide the movement of the drawer,
    안내부는, 서랍이 외부 케이싱 내에 완전히 삽입되면 외부 케이싱 내에서 서랍의 위치가 이동 시의 서랍의 위치보다 아래에 위치하도록 안내하는 것을 특징으로 하는 무동결 보관고. And the guide guides the drawer's position in the outer casing to be below the position of the drawer during movement when the drawer is fully inserted into the outer casing.
  9. 제8항에 있어서,The method of claim 8,
    서랍이 외부 케이싱에 삽입되어 안내부에 의해 하방으로 이동하면, 센서와 열 전도 부재가 접촉하는 것을 특징으로 하는 무동결 보관고.And the sensor is in contact with the heat conducting member when the drawer is inserted into the outer casing and moved downward by the guide.
  10. 제1항에 있어서,The method of claim 1,
    외부 케이싱 내에 설치되며, 고 내의 공기를 유동시키는 팬;을 더 포함하는 것을 특징으로 하는 무동결 보관고. And a fan installed in the outer casing and allowing air to flow in the go.
  11. 제1항에 있어서,The method of claim 1,
    히터는, 외부 케이스 내 상면에 설치되는 상부 히터 및 외부 케이스 내 하면에 설치되는 하부 히터를 포함하는 것을 특징으로 하는 무동결 보관고. The heater is a freezing storage, characterized in that it comprises an upper heater installed on the upper surface in the outer case and a lower heater installed on the lower surface in the outer case.
  12. 제11항에 있어서,The method of claim 11,
    외부 케이싱의 상부에 설치되며, 서랍 내 공기의 온도를 감지하는 고내 온도 감지 센서;를 더 포함하는 것을 특징으로 하는 무동결 보관고. It is installed on the upper casing, the inside of the drawer temperature sensing sensor for sensing the temperature of the air in the drawer; free-free storage characterized in that it further comprises.
  13. 제12항에 있어서,The method of claim 12,
    고내 온도 감지 센서를 통해 측정된 온도에 의해 상부 히터의 발열량을 조절하고,The heating value of the upper heater is controlled by the temperature measured by the internal temperature sensor,
    센서를 통해 측정된 온도에 의해 하부 히터의 발열량을 조절하는 것을 특징으로 하는 무동결 보관고. Non-freezing storage characterized in that the heating value of the lower heater is controlled by the temperature measured by the sensor.
  14. 제12항에 있어서,The method of claim 12,
    고내 하부의 온도보다 고내 상부의 온도가 대략 1 ~ 2℃ 높도록 상부 히터 및 하부 히터의 발열량이 제어되는 것을 특징으로 하는 무동결 보관고. Non-freezing storage, characterized in that the heating value of the upper heater and the lower heater is controlled so that the temperature of the upper portion of the furnace is approximately 1 ~ 2 ℃ higher than the temperature of the lower portion of the furnace.
  15. 제12항에 있어서,The method of claim 12,
    상부 히터 및 하부 히터 중 적어도 어느 하나는, 복수 개의 개별 히터를 구비하고,At least one of the upper heater and the lower heater includes a plurality of individual heaters,
    복수 개의 개별 히터 중 적어도 하나는 상시 가동되며, 나머지 개별 히터는 고내의 온도에 따라 온/오프되는 것을 특징으로 하는 무동결 보관고.At least one of the plurality of individual heaters are always running, the remaining individual heater is freezing storage, characterized in that the on / off according to the temperature in the refrigerator.
  16. 제1항에 있어서,The method of claim 1,
    외부 케이싱의 측면에 위치하며, 전방에 디스플레이부 및 버튼부를 구비하는 측부 케이싱;을 더 포함하는 것을 특징으로 하는 무동결 보관고. The side casing is located on the side of the outer casing, the front casing having a display portion and a button portion; further comprising a freezing storage.
  17. 제16항에 있어서,The method of claim 16,
    측부 케이싱 내에 설치되며, 디스플레이부, 버튼부 및 센서와 연동하며, 고내의 전장품을 제어하는 제어 패널;을 더 포함하는 것을 특징으로 하는 무동결 보관고. The control panel is installed in the side casing, and interlocked with the display unit, the button unit and the sensor, and controls the electrical equipment in the refrigerator.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 17,
    히터는, 흐르는 전류 및 전압이 조절되어 무동결 보관고 내의 온도를 조절할 수 잇는 열전소자인 것을 특징으로 하는 무동결 보관고.The heater is a freezing storage, characterized in that the thermoelectric element that can adjust the temperature in the freezing storage by controlling the current and voltage flowing.
  19. 제1항 내지 제18항에 기술된 어느 한 무동결 보관고; 및Any one of the non-freezing deposits described in claims 1 to 18; And
    냉동 싸이클에 의해 냉각되며, 내부에 무동결 보관고가 구비되는 냉각 공간;을 포함하는 것을 특징으로 하는 냉장고. And a cooling space cooled by the freezing cycle and having a freezing storage therein.
  20. 제19항에 있어서,The method of claim 19,
    무동결 보관고 내의 온도를 대략 -2℃ ~ -4℃ 내외로 유지하고,Keep the temperature in the freezing storage room around -2 ℃ ~ -4 ℃,
    센서가 감지한 식품의 온도 변화에 의해 식품이 동결된 것으로 판단되면, 무동결 보관고 내의 온도를 상온으로 상승시킨 다음, 다시 -2℃ ~ -4℃ 내외의 온도로 식품을 저장하는 것을 특징으로 하는 냉장고. When it is determined that the food is frozen by the temperature change of the food detected by the sensor, the temperature in the freezing storage is raised to room temperature, and then the food is stored at a temperature of about -2 ° C to -4 ° C. Refrigerator.
PCT/KR2009/007393 2008-12-30 2009-12-10 Non-freezing storage unit and refrigerator including the same WO2010076983A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/128,377 US20110219805A1 (en) 2008-12-30 2009-12-10 Non-freezing storage unit and refrigerator including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0137369 2008-12-30
KR1020080137369A KR101052701B1 (en) 2008-12-30 2008-12-30 Freeze Storage
KR1020080137367A KR101210148B1 (en) 2008-12-30 2008-12-30 Storing room for temperature conversion and supercooling and the refrigerator having the same
KR10-2008-0137367 2008-12-30

Publications (2)

Publication Number Publication Date
WO2010076983A2 true WO2010076983A2 (en) 2010-07-08
WO2010076983A3 WO2010076983A3 (en) 2011-01-06

Family

ID=42310312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007393 WO2010076983A2 (en) 2008-12-30 2009-12-10 Non-freezing storage unit and refrigerator including the same

Country Status (2)

Country Link
US (1) US20110219805A1 (en)
WO (1) WO2010076983A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023986A1 (en) * 2010-07-30 2012-02-02 Chae Sunam Refrigerator
CN106766487A (en) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 A kind of refrigerator and its control method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143977B1 (en) * 2008-12-16 2012-05-09 엘지전자 주식회사 Refrigerator
CN103889251B (en) * 2011-11-04 2015-12-02 阿塞里克股份有限公司 There is the refrigerator of frozen food defrosting function
JP6080385B2 (en) * 2012-05-21 2017-02-15 三菱電機株式会社 refrigerator
US10149487B2 (en) 2014-02-18 2018-12-11 Supercooler Technologies, Inc. Supercooled beverage crystallization slush device with illumination
US10302354B2 (en) 2013-10-28 2019-05-28 Supercooler Technologies, Inc. Precision supercooling refrigeration device
US9989300B1 (en) 2013-10-28 2018-06-05 Supercooler Technologies, Inc. Modular refrigeration device
JP2015183863A (en) * 2014-03-20 2015-10-22 三菱電機株式会社 refrigerator
EP2933589A1 (en) * 2014-04-14 2015-10-21 Whirlpool Corporation A method for controlling a refrigerating unit
ES2548458A1 (en) * 2014-04-15 2015-10-16 Bsh Electrodomésticos España, S.A. Domestic refrigerator appliance with two storage areas for food and an ultrasonic device, and method for operating a domestic refrigerator (Machine-translation by Google Translate, not legally binding)
WO2016050434A1 (en) 2014-10-02 2016-04-07 Arcelik Anonim Sirketi A cooling device comprising a thawing compartment and the control method thereof
JP6305305B2 (en) * 2014-10-14 2018-04-04 三菱電機株式会社 refrigerator
USD778687S1 (en) 2015-05-28 2017-02-14 Supercooler Technologies, Inc. Supercooled beverage crystallization slush device with illumination
US10357043B2 (en) * 2015-10-03 2019-07-23 Frank Davidson Rizzo Dry aging portable device
KR102373219B1 (en) * 2015-12-10 2022-03-17 삼성전자주식회사 Refrigerator
DE102016220163A1 (en) * 2016-10-14 2018-04-19 BSH Hausgeräte GmbH Refrigeration unit with dehydrating function and operating method for it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB798882A (en) * 1955-08-12 1958-07-30 Gen Electric Co Ltd Improvements in or relating to thermoelectric cooling units
US20010009100A1 (en) * 1998-09-25 2001-07-26 Keiji Ohya Refrigerator with a freezer compartment and method of using it
US6451364B1 (en) * 1997-03-17 2002-09-17 Akinori Ito Method of treating a food object in an electrostatic field
US20040183415A1 (en) * 2003-03-20 2004-09-23 Lg Electronics Inc. Drawer type door opening/closing structure of refrigerator
US20070163290A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Supercooling apparatus, refrigerator, and control method thereof
WO2007094556A2 (en) * 2006-02-15 2007-08-23 Lg Electronics, Inc. Non-freezing refrigerator
AU2007351997A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Refrigerator and frozen food preservation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562811A (en) * 1945-09-15 1951-07-31 Muffly Glenn Refrigerator
JPH0719701A (en) * 1993-07-07 1995-01-20 Matsushita Refrig Co Ltd Refrigerator
JPH0755319A (en) * 1993-08-10 1995-03-03 Matsushita Refrig Co Ltd Refrigerator
KR100213143B1 (en) * 1997-03-06 1999-08-02 윤종용 Drawer of a refrigerator
US6343477B1 (en) * 1999-02-26 2002-02-05 Maytag Corporation Refrigerator food storage temperature control system
KR100376161B1 (en) * 2001-04-24 2003-03-15 삼성전자주식회사 A storage chamber with peltier element
US8061150B2 (en) * 2006-02-15 2011-11-22 Lg Electronics Inc. Apparatus for supercooling, and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB798882A (en) * 1955-08-12 1958-07-30 Gen Electric Co Ltd Improvements in or relating to thermoelectric cooling units
US6451364B1 (en) * 1997-03-17 2002-09-17 Akinori Ito Method of treating a food object in an electrostatic field
US20010009100A1 (en) * 1998-09-25 2001-07-26 Keiji Ohya Refrigerator with a freezer compartment and method of using it
US20040183415A1 (en) * 2003-03-20 2004-09-23 Lg Electronics Inc. Drawer type door opening/closing structure of refrigerator
US20070163290A1 (en) * 2006-01-14 2007-07-19 Samsung Electronics Co., Ltd. Supercooling apparatus, refrigerator, and control method thereof
WO2007094556A2 (en) * 2006-02-15 2007-08-23 Lg Electronics, Inc. Non-freezing refrigerator
AU2007351997A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Refrigerator and frozen food preservation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023986A1 (en) * 2010-07-30 2012-02-02 Chae Sunam Refrigerator
CN106766487A (en) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 A kind of refrigerator and its control method
CN106766487B (en) * 2016-12-28 2020-05-26 青岛海尔股份有限公司 Control method of refrigerator

Also Published As

Publication number Publication date
WO2010076983A3 (en) 2011-01-06
US20110219805A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2010076983A2 (en) Non-freezing storage unit and refrigerator including the same
WO2010079945A2 (en) Supercooling system
KR101143977B1 (en) Refrigerator
WO2010079943A2 (en) Non-freezing storage unit
KR101152049B1 (en) A refrigerating apparatus
WO2010079946A2 (en) Supercooling system
KR101019886B1 (en) Supercooling store room, apparatus for supercooling and method for controlling the sames
WO2010071324A2 (en) Refrigerator
WO2010079947A2 (en) Supercooling system
KR101052701B1 (en) Freeze Storage
KR20100082261A (en) Supercooling system
WO2010079975A2 (en) Cooling apparatus
KR20110081931A (en) Storing room for temperature conversion and supercooling and the refrigerator having the same
WO2010079942A2 (en) Supercooling apparatus
KR101210148B1 (en) Storing room for temperature conversion and supercooling and the refrigerator having the same
WO2010079973A2 (en) Cooling apparatus
KR20100082260A (en) Refregerating room for supercooling and refrigerator having the same
WO2010071326A2 (en) Refrigerator
WO2010079971A2 (en) Cooling apparatus
WO2010079974A2 (en) Cooling apparatus
WO2010079969A2 (en) Cooling apparatus
WO2010079970A2 (en) Cooling apparatus
WO2010071325A2 (en) Refrigerator
WO2010071323A2 (en) Refrigerator
KR100961794B1 (en) Supercooling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836304

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13128377

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836304

Country of ref document: EP

Kind code of ref document: A2