WO2010075731A1 - 辅同步信道的配置方法和装置、子载波映射方法和装置 - Google Patents

辅同步信道的配置方法和装置、子载波映射方法和装置 Download PDF

Info

Publication number
WO2010075731A1
WO2010075731A1 PCT/CN2009/075524 CN2009075524W WO2010075731A1 WO 2010075731 A1 WO2010075731 A1 WO 2010075731A1 CN 2009075524 W CN2009075524 W CN 2009075524W WO 2010075731 A1 WO2010075731 A1 WO 2010075731A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
base station
secondary synchronization
cell
sequence set
Prior art date
Application number
PCT/CN2009/075524
Other languages
English (en)
French (fr)
Inventor
孙长印
方惠英
王文焕
曲红云
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010075731A1 publication Critical patent/WO2010075731A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for configuring a secondary synchronization channel, a method and apparatus for subcarrier mapping, and a method and apparatus for transmitting a synchronization signal of a secondary synchronization channel.
  • Orthogonal Frequency Division Multiplex is a multi-carrier transmission technology that can effectively reduce system-to-multipath by converting a high-speed data stream into a set of low-speed parallel data streams. Sensitivity of fading channel frequency selectivity; by introducing a cyclic prefix, the system can also enhance the ability of the system to resist Inter-symbol Interference (ISI); in addition, the technology also has the characteristics of high bandwidth utilization and implementation of the single-chip.
  • OFDM technology is increasingly used in wireless communication watersheds, for example, Wireless Local Area Network (WLAN) systems, 802.16e systems based on Orthogonal Frequency Division Multiple Access, and 802.16.
  • WLAN Wireless Local Area Network
  • 802.16e systems based on Orthogonal Frequency Division Multiple Access and 802.16.
  • the next generation of evolved 802.16m systems (fourth generation communication systems) and the like are all systems of OFDM technology.
  • the terminal usually needs to access the network by means of a synchronization channel.
  • the access step may include:
  • the terminal can start the subsequent access process according to the information in the broadcast message.
  • the access process is a very important process.
  • An important indicator of the access process is the access time. The shorter the access time, the higher the system performance. but, Since access needs to be implemented by means of a synchronization channel, resource occupation will constitute an overhead relative to a traffic channel transmitting user information. Therefore, if it is desired to construct a mobile communication system with excellent performance, it is necessary to balance between access performance and synchronization channel resource occupation.
  • superframe 101 is composed of 4 unit frames 102, and superframe control information 103 is located on a number of symbols at the beginning of the superframe.
  • the unit frame 102 is composed of 8 subframe units 104, and the subframe unit 104 is divided into a downlink subframe unit and an uplink subframe unit, which can be configured according to the system.
  • the subframe unit 104 is composed of six OFDM symbols 105.
  • the superframe, unit frame, and subframe three-layer frame structure adopts a layered synchronization channel design, that is, the synchronization channel is divided into a primary synchronization channel (P-SCH) and a secondary synchronization channel (Synchronization Channel, S- SCH).
  • P-SCH primary synchronization channel
  • S- SCH secondary synchronization channel
  • the type of the base station system is more diverse, and is divided into a macro base station (cell), a micro base station (cell), a home base station (Femto BS, which may also be called a sub base station, etc.), and a relay (Relay).
  • Base stations, etc., different base station systems also have different system configurations, for example, different system bandwidths, different multi-carrier modes, and the like.
  • the present invention has been made in view of the problem that the synchronization channel design scheme in the related art cannot clearly identify the cell ID information of different types of base stations and the expansion requirements of the Femto base station.
  • the main object of the present invention is to provide a configuration scheme of a secondary synchronization channel, a subcarrier mapping scheme, and a synchronization signal transmission scheme of a secondary synchronization channel.
  • a method for configuring a secondary synchronization channel for configuring a synchronization signal on a secondary synchronization channel in an orthogonal frequency division multiplexing system is provided.
  • a method for configuring a secondary synchronization channel includes: configuring a first basic sequence set for indicating each combination of a cell ID and a sector ID carried by a secondary synchronization channel of a macro base station; and/or configuring to indicate a home base station A second basic sequence set of each combination of a cell ID and a sector ID of the associated macro base station, and a home base station ID sequence set for indicating ID information of the home base station.
  • the process of configuring the first basic sequence set may include: determining a first mapping relationship table between each combination of a cell ID and a sector ID carried by the secondary synchronization channel of the macro base station and the first basic sequence set sequence.
  • the process of configuring the second basic sequence set may include: determining a second mapping relationship table of each combination of the cell ID and the sector ID of the belonging macro base station of the home base station and the second sequence set sequence, and determining A third mapping relationship table between the ID information of the home base station and the sequence sequence of the home base station ID sequence.
  • the second sequence may be searched for from the second basic sequence according to the combination of the actual cell ID and the actual sector ID of the macro base station to which the home base station belongs, and the second mapping relationship table. And searching for a corresponding third sequence from the family base station ID sequence according to the actual ID information of the home base station and the third mapping relationship table, and combining the second sequence and the third sequence to obtain a synchronization sequence of the home base station.
  • the manner of combining the second sequence and the third sequence comprises at least one of the following: dot product, frequency division combination, and interlace combination.
  • the sequence of the basic sequence set and the set of home base station ID sequences comprise at least one of the following: a pseudo random sequence, a zero correlation sequence, an orthogonal sequence, a differential sequence of a pseudo random sequence, a differential sequence of zero correlation sequences, an orthogonal sequence Differential sequence.
  • a method for configuring a secondary synchronization channel for configuring a synchronization signal on a secondary synchronization channel in an orthogonal frequency division multiplexing system is provided.
  • the method for configuring a secondary synchronization channel includes: dividing cell ID information carried in a synchronization signal into a plurality of ID subsets according to system configuration information; and configuring, for each ID subset, a type sequence for indicating a type thereof Set, and a set of basic sequences used to represent ID information within its subset.
  • the system configuration information includes base station type information and/or multi-carrier configuration information, where the base station type includes a macro base station, and/or a home base station, and/or a relay base station, and the multi-carrier configuration includes a fully configured carrier and/or a partial configuration. Carrier.
  • the plurality of ID subsets obtained by the partitioning may include at least one of the following: a macro base station cell ID subset, a home base station cell ID subset, and a relay base station cell ID subset.
  • the processing of configuring the sequence set and the basic sequence set may include at least one of the following: for the macro base station cell ID subset, dividing the cell ID into the packet information, the cell ID in the packet, and the sector ID in the packet Information, and the type sequence of the configured type sequence set respectively represents the fully configured carrier, the partial configuration carrier, and the cell ID packet number, and the basic sequence of the configured basic sequence set represents the cell ID information within the packet and the sector within the packet Various combinations of ID information;
  • the family base station cell is represented by the type sequence of the configured type sequence set, and the home base station cell ID information is represented by the basic sequence of the configured basic sequence set;
  • the relay base station is represented by the type sequence of the configured type sequence set, and the relay base station ID information is represented by the basic sequence of the configured basic sequence set.
  • the method may further include at least one of the following processes:
  • the corresponding basic sequence is selected from the configured basic sequence set according to the combination of the actual cell ID and the sector ID, and the selected basic sequence is combined with the type sequence corresponding to the macro base station in the type sequence set to obtain the secondary synchronization of the macro base station. Synchronization sequence of the channel;
  • the corresponding basic sequence is selected according to the actual home base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the family base station in the type sequence set to obtain the synchronization sequence of the secondary synchronization channel of the home base station.
  • the corresponding basic sequence is selected according to the actual relay base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the type sequence centralized relay base station to obtain the secondary synchronization of the relay base station.
  • the synchronization sequence of the channel is selected according to the actual relay base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the type sequence centralized relay base station to obtain the secondary synchronization of the relay base station.
  • the sequence in the basic sequence set and the sequence in the type sequence set include at least one of the following: a pseudo random sequence, a zero correlation sequence, an orthogonal sequence, a differential sequence of a pseudo random sequence, a differential sequence of a zero correlation sequence, an orthogonal sequence Differential sequence.
  • a seed carrier mapping method for mapping a synchronization sequence of a secondary synchronization channel in an orthogonal frequency division multiplexing system to a subcarrier.
  • the subcarrier mapping method includes: in the case where the number of useful subcarriers is L, for subcarriers whose subcarrier numbers are smaller than L/2, subcarrier mapping of different sectors is performed according to the following formula:
  • k is the sector number and u is the element number in the sequence
  • subcarrier mapping for different sectors is performed according to the following formula:
  • a secondary synchronization channel configuration apparatus for configuring a synchronization signal on a secondary synchronization channel in an orthogonal frequency division multiplexing system.
  • the apparatus for configuring a secondary synchronization channel includes: a first configuration module, configured to configure a first basic sequence set for indicating each combination of a cell ID and a sector ID carried by a secondary synchronization channel of the macro base station; and/or And a second configuration module, configured to configure a second basic sequence set for indicating each combination of a cell ID and a sector ID of the associated macro base station of the home base station, and a home base station ID sequence set for indicating ID information of the home base station.
  • a configuration apparatus for a secondary synchronization channel for configuring a synchronization signal on a secondary synchronization channel in an orthogonal frequency division multiplexing system.
  • the configuration device of the secondary synchronization channel includes: a dividing module, configured to divide the cell ID information carried in the synchronization signal into a plurality of ID subsets according to system configuration information; and a first configuration module, configured to use each ID sub- The set configuration is used to represent a type sequence set of the corresponding ID subset type; the second configuration module is configured to configure, for each ID sub-set, a basic sequence set for indicating ID information in a subset of the corresponding ID subset.
  • a seed carrier mapping apparatus for mapping a synchronization sequence of a secondary synchronization channel in an orthogonal frequency division multiplexing system to a subcarrier, wherein the number of useful subcarriers is L.
  • the subcarrier mapping apparatus includes: a first mapping module, configured to perform subcarrier mapping of different sectors on subcarriers whose subcarrier numbers are smaller than L/2 according to the following formula:
  • a second mapping module configured to perform subcarrier mapping of different sectors on subcarriers with subcarrier numbers greater than L/2 according to the following formula:
  • a synchronization signal transmission method for a secondary synchronization channel for transmitting a secondary synchronization sequence of a synchronization signal of an orthogonal frequency division multiplexing system is provided.
  • a synchronization signal transmission method of a secondary synchronization channel according to the present invention includes:
  • a synchronization signal transmitting apparatus for a secondary synchronization channel for transmitting a secondary synchronization sequence of a synchronization signal of an orthogonal frequency division multiplexing system is provided.
  • the information in the synchronization signal on the secondary synchronization channel in the orthogonal frequency division multiplexing system is mapped and the synchronization signal is generated by the sequence in the sequence set, thereby solving the synchronous channel design scheme in the related art.
  • the type and ID information of each base station can be clearly identified, and the various changes of the base station can be flexibly adapted, which is helpful. Optimize system performance.
  • FIG. 1 is a schematic diagram of a frame structure according to the related art
  • FIG. 2 is a schematic structural diagram of a P-SCH and an S-SCH according to the related art
  • 3 is a flowchart of a method for configuring a secondary synchronization channel according to Embodiment 1 of the method of the present invention
  • FIG. 4 is a schematic diagram of a method for configuring a secondary synchronization channel according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a specific example of a cell packet according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of processing of a subcarrier mapping according to an embodiment of the present invention
  • FIG. 13 is a flowchart of a method for transmitting a synchronization signal of a secondary synchronization channel according to Embodiment 3 of the method of the present invention.
  • FIG 14 is a block diagram of a synchronizing signal transmitting apparatus of a secondary synchronization channel according to a fourth embodiment of the apparatus of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The synchronization channel design scheme in the related art cannot clearly identify the cell ID information of different types of base stations, and cannot satisfy the expansion requirement of the Femto base station.
  • the present invention proposes to use the sequence-pair orthogonal frequency division multiplexing in the sequence set.
  • the information in the synchronization signal on the secondary synchronization channel in the system is mapped, and then the scheme of configuring and generating the synchronization signal can clearly identify the type and ID information of each base station, and can flexibly adapt to various changes of the base station, Helps optimize system performance.
  • FIG. 2 is a structural diagram of P-SCH and S-SCH related to the present invention.
  • P-SCH 201 and S-SCH 202 are respectively transmitted in a superframe, and P-SCH 201 is transmitted at the beginning of a 16m superframe, S -SCH 202 the second 16m single in the superframe The first symbol of the bit frame is sent.
  • P-SCH 201 is transmitted once in the superframe
  • S-SCH 202 is transmitted twice in the superframe
  • P-SCH 201 is transmitted at the beginning of the 16m superframe
  • S-SCH 202 is in The second 16m unit frame in the superframe and the first symbol of the fourth 16m unit frame are transmitted.
  • P-SCH 201 is transmitted once in the superframe
  • S-SCH 202 is transmitted three times in the superframe
  • P-SCH 201 is transmitted at the beginning of the 16m superframe
  • S-SCH 202 is The first symbol of the second 16m unit frame, the third 16m unit frame, and the fourth 16m unit frame in the superframe is transmitted.
  • a method for configuring a secondary synchronization channel for configuring a synchronization signal on an S-SCH in an orthogonal frequency division multiplexing system.
  • the configuration method of the S-SCH includes: Step S302 and Step S304. It should be noted that the steps described in the method may be performed in a computer system such as a set of computer executable instructions, and although the logical order is illustrated in FIG. 3, in some cases, may be different The steps shown or described are performed in the order herein.
  • Step S302 configuring a first basic sequence set for indicating each combination of a cell ID and a sector ID carried by the S-SCH of the macro base station;
  • Step S304 configuring a second basic sequence set for indicating each combination of the cell ID and the sector ID of the associated macro base station of the Femto base station, and a Femto base station ID sequence set for indicating the ID information of the Femto base station.
  • the process of configuring the first basic sequence set may include: determining a first mapping relationship table between each combination of the cell ID and the sector ID carried by the S-SCH of the macro base station and the first basic sequence set sequence.
  • the actual cell ID can be obtained according to the macro base station.
  • the combination with the actual sector ID and the first mapping relationship table finds the corresponding first sequence from the first basic sequence set as the synchronization sequence of the macro base station.
  • the information carried by the S-SCH of the macro base station is represented by a synchronization sequence (i.e., corresponding to the first sequence described above).
  • the information carried by the Femto base station S-SCH is carried by different sequence sets.
  • the process of configuring the second basic sequence set includes: determining a second mapping relationship table between each combination of the cell ID and the sector ID of the associated macro base station of the Femto base station and the second basic sequence set sequence, and determining the ID of the Femto base station.
  • the corresponding second sequence may be searched from the second basic sequence set according to the combination of the actual cell ID and the actual sector ID of the macro base station to which the Femto base station belongs, and the second mapping relationship table, and And searching for a corresponding third sequence from the Femto base station ID sequence according to the actual ID information of the Femto base station and the third mapping relationship table.
  • the cell ID and sector ID information of the macro base station to which the Femto base station belongs is represented by the sequence corresponding to the second sequence described above.
  • the Femto ID information of the Femto base station is represented by another Femto ID sequence set, that is, the sequence (corresponding to the above third sequence).
  • FIG. 4 is a schematic diagram showing the processing of generating a synchronization sequence of the Femto base station S-SCH in the S-SCH configuration method according to the present embodiment.
  • the manner in which the second sequence and the third sequence are combined includes a dot product, a frequency division combination, and an interlace combination.
  • the sequence in the basic sequence set and the sequence in the Femto base station ID sequence set include at least one of the following: a pseudo random sequence, a zero correlation sequence, an orthogonal sequence, a differential sequence of the pseudo random sequence, and a zero correlation sequence A differential sequence, a difference sequence of the orthogonal sequences.
  • the information carried by the S-SCH of the macro base station is cell ID and sector ID information.
  • the information carried by the S-SCH is the cell ID and sector ID information of the home macro base station and the Femto ID information.
  • the information carried by the S-SCH of the macro base station is represented by a basic sequence set, that is, the synchronization sequence ⁇ .
  • mapping relationship between the Cell ID and the sector ID carried by the S-SCH of the macro base station and the sequence number of the S-SCH basic sequence set sequence may be defined in advance, based on FIG.
  • the cell grouping, the mapping relationship table is shown in Table 1.
  • the sequence corresponding to the sequence number of the basic sequence set (corresponding to the first sequence described) is found from Table 1 as the synchronization sequence of the macro base station.
  • FIG. 6 is a schematic diagram of processing of subcarrier mapping according to an embodiment of the present invention. As shown in Figure 6, the mapping is as follows:
  • Detecting the P-SCH determining whether it is a macro base station (cell) according to the control information carried by the P-SCH; if it is a macro base station, detecting, obtaining the cell ID and the sector ID;
  • the information carried by the S-SCH contains different sequence sets.
  • the cell ID and sector ID information of the macro base station to which the Femto base station belongs is represented by a basic sequence set, that is, a sequence.
  • the Femto ID information of the Femto base station is represented by another Femto ID sequence set, that is, a sequence representation.
  • the Cell ID and the sector ID find the sequence corresponding to the sequence number in the basic sequence set from Table 1.
  • the Femto ID find the sequence corresponding to the sequence number of the Femto ID sequence set in Table 2;
  • the synchronization sequence y of the Femto base station S-SCH is generated by the sequence and sequence dot product.
  • the three groups of different 144 subcarrier positions on the subcarriers are mapped, and the subcarriers are not set to zero.
  • the subcarriers are mapped as follows:
  • the process of the terminal accessing the Femto base station includes the following steps:
  • Detecting the P-SCH determining whether it is a Femto base station according to the control information carried by the P-SCH; if it is a Femto base station, detecting and "), obtaining the cell ID and the sector ID, and the Femto ID;
  • the subcarrier mapping of the S-SCH sequence can also take the mapping mode shown in FIG.
  • FIG. 7 is a schematic diagram of a carrier mapping method according to an embodiment of the present invention.
  • the first sector S-SCH is mapped to the original second sector subcarrier position, and the second sector S-SCH is mapped to The original third sector subcarrier position, the third sector S-SCH is mapped to the original first sector subcarrier position, as shown in the following mathematical expression:
  • FIG. 8 is a flowchart of processing performed by a terminal to perform cell search according to an embodiment of the present invention. As shown in FIG. 8, after the synchronization signaling of the secondary synchronization channel is configured by the foregoing processing, when the terminal performs the cell search, the following specifically includes the following processing:
  • the terminal obtains the base station type by using the base station type information carried by the primary synchronization channel (P-SCH); if it is a macro base station, step 82 is performed; if it is a Femto base station, step 84 is performed; step 82, detecting the sequence carried by the S-SCH, And performing step 83;
  • P-SCH primary synchronization channel
  • Step 83 Obtain a Cell ID and a sector ID information of the macro base station according to the mapping relationship table 1;
  • Step 84 The terminal detects the sequence and the sequence of the ⁇ carried by the S-SCH, and performs step 85;
  • Step 85 according to the mapping relationship table 1 and Table 2, obtain the Cell ID, the sector ID, and the macro ID of the macro base station to which the Femto base station belongs. Femto ID information.
  • the type and ID information of each base station can be clearly identified, and the various changes of the base station can be flexibly adapted to help optimize the performance of the system.
  • a secondary synchronization channel configuration apparatus for configuring a synchronization signal on a secondary synchronization channel in an orthogonal frequency division multiplexing system.
  • the apparatus for configuring a secondary synchronization channel includes: a first configuration module 92 and a second configuration module 94.
  • a first configuration module 92 configured to configure a first basic sequence set for indicating each combination of a cell ID and a sector ID carried by the S-SCH of the macro base station;
  • a second configuration module 94 configured to configure a second sequence set for indicating each combination of a cell ID and a sector ID of the associated macro base station of the Femto base station, and a Femto base station ID sequence set for indicating ID information of the Femto base station .
  • the apparatus according to the present embodiment can perform the synchronization signal of the secondary synchronization channel configured in the processing shown in FIG. 3 and FIG. 4 in the case of the cell partition shown in FIG. 5, and the processing thereof is not repeated here.
  • the type and ID information of each base station can be clearly identified, and the various changes of the base station can be flexibly adapted to help optimize the performance of the system.
  • a method for configuring a secondary synchronization channel for configuring a synchronization signal on an S-SCH in an orthogonal frequency division multiplexing system.
  • the method for configuring the secondary synchronization channel includes step S1002 and step S1004.
  • the process shown in Figure 10 is as follows:
  • Step S1002 The cell ID information carried in the synchronization signal is divided into multiple ID subsets according to system configuration information.
  • Step S1004 For each ID subset, configure a type sequence set for indicating its type, and a basic sequence set for indicating the IDs in its subset.
  • each of the above ID subsets is represented by a combination of two different sequence sets, one sequence is a basic sequence set, which represents a cell ID in the subset, and the other is a type sequence set, and the type sequence is a subset identifier. Used for zone molecular sets.
  • the system configuration information includes base station type information and/or multi-carrier configuration information, where the base station type includes a macro base station, and/or a Femto base station, and/or a relay base station, and the multi-carrier configuration includes a fully configured carrier and/or a partial configuration. Carrier.
  • the divided plurality of ID subsets include at least one of the following: a macro base station cell ID subset, a Femto base station cell ID subset, and a relay base station cell ID subset.
  • the processing of configuring the sequence set and the basic sequence set includes at least one of the following:
  • the cell ID therein is divided into packet information, a cell ID in the packet, and a sector ID in the packet.
  • Information, and the type sequence of the configured type sequence set respectively represents the fully configured carrier, the partial configuration carrier, and the cell ID packet number
  • the basic sequence of the configured basic sequence set represents the cell ID information within the packet and the sector within the packet Various combinations of ID information
  • the Femto base station cell is represented by the type sequence of the configured type sequence set, and the Femto base station cell ID information is represented by the basic sequence of the configured basic sequence set;
  • the relay base station is represented by the type sequence of the configured type sequence set, and the relay base station ID information is represented by the basic sequence of the configured basic sequence set.
  • the method may further include the following At least one of the following:
  • the corresponding basic sequence is selected from the configured basic sequence set according to the combination of the actual cell ID and the sector ID, and the selected basic sequence is combined with the type sequence corresponding to the macro base station in the type sequence set to obtain the S- of the macro base station.
  • Synchronization sequence of SCH
  • the corresponding basic sequence is selected according to the actual Femto base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the Femto base station in the type sequence set to obtain the S-SCH synchronization sequence of the Femto base station.
  • the corresponding basic sequence is selected according to the actual relay base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the type sequence centralized relay base station to obtain the S- of the relay base station.
  • the synchronization sequence of the SCH is selected according to the actual relay base station cell ID from the configured basic sequence set, and the selected basic sequence is combined with the type sequence corresponding to the type sequence centralized relay base station to obtain the S- of the relay base station.
  • the sequence in the basic sequence set and the sequence in the type sequence set include at least one of: a pseudo random sequence, a zero correlation sequence, an orthogonal sequence, a differential sequence of the pseudo random sequence, a difference sequence of the zero correlation sequence, A sequence of differences of the orthogonal sequences.
  • the type and ID information of each base station can be clearly identified, and the various changes of the base station can be flexibly adapted to help optimize the performance of the system.
  • the division of the subset of cell IDs is divided into a macro cell ID subset (including a fully configured carrier and a partially configured carrier), a Femto cell ID subset, a Relay ID subset, and an extension. Reserved ID subsets, etc.
  • the number of Cell ID packets in the table is > 1 , if the number of Cell ID packets is equal to 1 means that the system does not perform Cell ID grouping. At this time, the Cell ID in the packet is the Cell ID.
  • the mapping relationship between the Cell ID (or the Cell ID in the group) and the sector information and the corresponding sequence number in the basic sequence set is as shown in Table 1.
  • the mapping relationship between the Femto ID and the corresponding sequence number in the basic sequence set is shown in Table 4.
  • Relay ID and sequence sequence corresponding to the basic sequence set The mapping table of numbers, as shown in Table 5.
  • the sequence m(i) corresponding to the type sequence set can be found from the mapping table 3.
  • the sequence corresponding to the sequence number of the basic sequence set can be found from the mapping relationship table 1.
  • the basic sequence set can be found from the mapping relationship table 4.
  • the sequence corresponding to the sequence number P « ;
  • the sequence P corresponding to the sequence number of the basic sequence set can be found from the mapping relationship table 5 (0.
  • the type and ID information of each base station can be clearly identified, and the various changes of the base station can be flexibly adapted to help optimize the performance of the system.
  • a secondary synchronization channel configuration apparatus for configuring a synchronization signal on an S-SCH in an orthogonal frequency division multiplexing system.
  • the apparatus for configuring a secondary synchronization channel includes: a division module 112, a first configuration module 114, and a second configuration module 116.
  • the dividing module 112 is configured to divide the cell ID information carried in the synchronization signal into multiple ID subsets according to system configuration information;
  • the first configuration module 114 is connected to the dividing module 112, configured to configure, for each ID subset, a type sequence set for indicating a corresponding ID subset type;
  • the second configuration module 116 is coupled to the partitioning module 112 for configuring, for each ID sub-section, a basic sequence set for indicating IDs within the subset of the corresponding ID subset.
  • the device can also perform synchronous signaling configuration of the secondary synchronization channel based on the mapping relationship shown in Table 1, Table 3, Table 4, and Table 5. The processing procedure is not repeated here.
  • a seed carrier mapping apparatus for mapping a synchronization sequence of an S-SCH in an orthogonal frequency division multiplexing system to a subcarrier, where the number of useful subcarriers is L.
  • the subcarrier mapping apparatus includes a first mapping module 122 and a second mapping module 124.
  • k is the sector number and u is the element number in the sequence
  • the second mapping module 124 is configured to perform subcarrier mapping of different sectors on the subcarriers whose subcarrier numbers are greater than L/2 according to the following formula:
  • the apparatus can perform subcarrier mapping according to the mapping manner shown in Fig. 7, thereby realizing the transmission of the synchronization signal of the secondary synchronization channel.
  • a synchronization signal transmission method for a secondary synchronization channel for transmitting a secondary synchronization sequence of a synchronization signal of an orthogonal frequency division multiplexing system.
  • the synchronization signal transmitting method of the secondary synchronization channel includes step S1302 and step S1304.
  • the length of the secondary synchronization sequence; for a system whose system bandwidth is a multiple of the base bandwidth m, the secondary synchronization sequence is configured as x mx 2 n + c , where m is a multiple;
  • Step S1304 The configured secondary synchronization sequence is transmitted by using an antenna of the transmitting end.
  • the transmission of the secondary synchronization sequence can be achieved.
  • a synchronization signal transmitting apparatus for a secondary synchronization channel for transmitting a secondary synchronization sequence of a synchronization signal of an orthogonal frequency division multiplexing system.
  • the synchronization signal transmitting apparatus of the secondary synchronization channel includes: a configuration module 142 and a transmitting module 144.
  • the transmitting module 144 is connected to the configuration module 142 for transmitting the configured secondary synchronization sequence through the antenna.
  • the transmission of the secondary synchronization sequence can be realized.
  • the information in the synchronization signal on the secondary synchronization channel in the orthogonal frequency division multiplexing system is mapped and the synchronization signal is generated by the sequence in the sequence set, thereby solving the related art.
  • the synchronization channel design scheme cannot clearly identify the cell ID information of different types of base stations and the problem that the Femto base station cannot meet the expansion requirements, and can clearly identify the type and ID information of each base station, and can flexibly adapt to each base station.
  • the changes can help optimize the performance of the system and meet the fast access requirements of the terminal in the scenario where a large number of Femto base stations are deployed.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种辅同步信道的配置方法和装置、子载波映射方法和装置,辅同步信道的配置方法包括:配置用于表示宏基站的辅同步信道携带的小区 ID和扇区 ID的各个组合的第一基本序列集;和/或配置用于表示家庭基站的所属宏基站的小区 ID和扇区 ID的各个组合的第二基本序列集,以及用于表示家庭基站的 ID信息的家庭基站 ID序列集。借助于本发明,通过序列集中的序列对正交频分复用***中辅同步信道上的同步信号中的信息进行映射并生成同步信号,能够将各个基站的类型以及 ID信息清楚地标识出来,并且能够灵活地适应基站的各种变更,有助于优化***的性能。

Description

辅同步信道的配置方法和装置、 子载波映射方法和装置 技术领域
本发明涉及通信领域, 特别地, 涉及一种辅同步信道的配置方法和装 置、 子载波映射方法和装置、 辅同步信道的同步信号发射方法和装置。 背景技术
正交频分复用 ( Orthogonal Frequency Division Multiplex, OFDM )是一 种多载波传输技术, 该技术通过将一高速传输的数据流转换为一组低速并 行传输的数据流, 能够有效降低***对多径衰落信道频率选择性的敏感度; 通过引入循环前缀, 还能够增强***抗符号间干扰 ( Inter-symbol Interference, ISI ) 的能力; 此外, 该技术还具有带宽利用率高、 实现筒单 等特点。 凭借上述优势, OFDM技术在无线通信流域的应用越来越多, 例 如, 无线局 i或网 ( Wireless Local Area Network, WLAN )***、 基于正交频 分复用多址的 802.16e***、 以及 802.16e下一代的演进 802.16m***(第 四代通信***)等都^ ϋ于 OFDM技术的***。
对于移动通信***, 终端通常需要借助同步信道接入网络, 一般来说, 接入步骤可以包括:
( 1 ) 时间、 频率同步;
( 2 ) 小区识别码(Cell ID )检测;
( 3 ) 广播消息读取。
通过采用上述步骤, 终端可以依据广播消息中的信息开始后续的接入 过程。
对于移动通信***来说, 接入过程是一个非常重要的过程。 接入过程 的一个重要指标是接入时间, 接入时间越短, 表示***性能越高。 但是, 由于接入需要借助同步信道实现, 而相对于传输用户信息的业务信道而言 , 资源占用将构成开销。 所以, 如果希望构造性能优良的移动通信***, 需 要在接入性能和同步信道资源占用之间进行平衡。
为了满足下一代宽带无线通信***中低延迟业务的应用要求, 在当前 16m 帧结构的设计中, 主要考虑了超帧、 单位帧和子帧的三层设计思路。 如图 1所示, 超帧 101由 4个单位帧 102组成, 超帧控制信息 103位于超 帧开始处的若干个符号上。 单位帧 102由 8个子帧单元 104组成, 子帧单 元 104分为下行子帧单元和上行子帧单元, 可根据***进行配置。 子帧单 元 104由 6个 OFDM符号 105构成。
通常, 超帧、 单位帧和子帧三层帧结构采用分层的同步信道设计, 即, 同步信道分为主同步信道 ( Primary Synchronization Channel, P-SCH )和辅 同步信道 ( Secondary Synchronization Channel, S-SCH )。 在***通信系 统中, 基站***的类型更为多样化, 分为宏基站(小区)、 微基站(小区)、 家庭基站(Femto BS , 也可以称为子基站等), 中继( Relay )基站等, 不同 的基站***还存在不同的***配置, 例如, 不同的***带宽、 不同的多载 波模式等。
由于一个宏基站下可能部署成百甚至上千的 Femto基站, Femto基站不 仅数量很多, 而且数量以及基站之间的相关性容易发生变化, 因此, 能够 清楚地将这些基站的类型、 小区 ID信息等信息清楚地表示出来对于实现基 站与终端之间的通信是非常重要的。 然而, 目前对于如何设计同步信道以 达到标识不同类型基站的小区 ID信息、 以及在维持同步信道设计的前提下 满足 Femto基站的扩充需求的目的, 尚未提出有效的解决方案。 发明内容
考虑到相关技术中的同步信道设计方案不能清楚地标识不同类型基站 的小区 ID信息、 以及不能满足 Femto基站的扩充需求问题而作出本发明, 为此, 本发明的主要目的在于提供一种辅同步信道的配置方案、 子载波映 射方案、 辅同步信道的同步信号发射方案。
根据本发明的一个方面, 提供了一种辅同步信道的配置方法, 用于对 正交频分复用***中辅同步信道上的同步信号进行配置。
根据本发明的辅同步信道的配置方法包括: 配置用于表示宏基站的辅 同步信道携带的小区 ID和扇区 ID的各个组合的第一基本序列集; 和 /或配 置用于表示家庭基站的所属宏基站的小区 ID和扇区 ID的各个组合的第二 基本序列集, 以及用于表示家庭基站的 ID信息的家庭基站 ID序列集。
其中, 配置第一基本序列集的处理可以包括: 确定宏基站的辅同步信 道携带的小区 ID和扇区 ID的各个组合与第一基本序列集中序列的第一映 射关系表。
并且, 在配置了第一基本序列集之后, 可以根据宏基站下实际小区 ID 和实际扇区 ID的组合、 和第一映射关系表从第一基本序列集中查找对应的 第一序列作为宏基站的同步序列。
此外, 在该方法中, 配置第二基本序列集的处理可以包括: 确定家庭 基站的所属宏基站的小区 ID和扇区 ID的各个组合与第二序列集中序列的 第二映射关系表, 以及确定家庭基站的 ID信息与家庭基站 ID序列集中序 列的第三映射关系表。
其中, 在配置了第二基本序列集之后, 可以根据家庭基站所属宏基站 的实际小区 ID和实际扇区 ID的组合、 和第二映射关系表从第二基本序列 集中查找对应的第二序列, 以及根据家庭基站的实际 ID信息和第三映射关 系表从家庭基站 ID序列集中查找对应的第三序列, 将第二序列和第三序列 进行组合得到家庭基站的同步序列。
优选地, 对第二序列与第三序列进行组合的方式包括以下至少之一: 点积、 频分组合、 交织组合。 优选地,基本序列集中的序列和家庭基站 ID序列集包括以下至少之一: 伪随机序列、 零相关序列、 正交序列、 伪随机序列的差分序列、 零相关序 列的差分序列、 正交序列的差分序列。
根据本发明的另一方面, 提供了一种辅同步信道的配置方法, 用于对 正交频分复用***中辅同步信道上的同步信号进行配置。
根据本实施例的辅同步信道的配置方法包括: 根据***配置信息将同 步信号中携带的小区 ID信息划分为多个 ID子集; 对于每个 ID子集, 配置 用于表示其类型的类型序列集, 以及用于表示其子集内 ID信息的基本序列 集。
其中, ***配置信息包括基站类型信息和 /或多载波配置信息, 其中, 基站类型包括宏基站、 和 /或家庭基站、 和 /或中继基站, 多载波配置包括全 配置载波和 /或部分配置载波。
并且, 划分得到的多个 ID子集可以包括以下至少之一:宏基站小区 ID 子集、 家庭基站小区 ID子集、 中继基站小区 ID子集。
并且, 配置类型序列集和基本序列集的处理可以包括以下至少之一: 对于宏基站小区 ID子集, 将其中的小区 ID分为分组信息、 分组内的 小区 ID、 以及分组内的扇区 ID信息,并通过配置的类型序列集的类型序列 分别表示全配置载波、 部分配置载波和小区 ID分组号, 以及通过配置的基 本序列集合的基本序列表示分组内的小区 ID信息以及分组内的扇区 ID信 息的各种组合;
对于家庭基站小区 ID子集, 通过配置的类型序列集的类型序列表示家 庭基站小区, 并通过配置的基本序列集合的基本序列表示家庭基站小区 ID 信息;
对于中继基站小区 ID子集, 通过配置的类型序列集的类型序列表示中 继基站, 并通过配置的基本序列集合的基本序列表示中继基站 ID信息。 进一步地, 在配置了类型序列集和基本序列集之后, 该方法可进一步 包括以下处理的至少之一:
对于宏基站, 根据实际的小区 ID和扇区 ID的组合从配置的基本序列 集合选择相应的基本序列, 并将选择的基本序列与类型序列集中宏基站对 应的类型序列组合得到宏基站的辅同步信道的同步序列;
对于家庭基站, 根据实际的家庭基站小区 ID从配置的基本序列集合选 择相应的基本序列, 并将选择的基本序列与类型序列集中家庭基站对应的 类型序列组合得到家庭基站的辅同步信道的同步序列;
对于中继基站, 根据实际的中继基站小区 ID从配置的基本序列集合选 择相应的基本序列, 并将选择的基本序列与类型序列集中中继基站对应的 类型序列组合得到中继基站的辅同步信道的同步序列。
优选地, 基本序列集中的序列和类型序列集中的序列包括以下至少之 一: 伪随机序列、 零相关序列、 正交序列、 伪随机序列的差分序列、 零相 关序列的差分序列、 正交序列的差分序列。
根据本发明的另一方面, 提供了一种子载波映射方法, 用于将正交频 分复用***中辅同步信道的同步序列映射到子载波。
根据本发明的子载波映射方法包括: 在有用的子载波数为 L的情况下, 对于子载波序号小于 L/2的子载波,根据以下公式进行不同扇区的子载波映 射:
x(n) = x(3u + k), k = 0,1,2. u = 0,1,2,…,
其中, k表示扇区号, u表示序列中的元素序号;
对于子载波序号大于 L/2的子载波,根据以下公式进行不同扇区的子载 波映射:
y(n) = y(3u + mod(k + round(3u/^/2))), ), k = 0,1,2. w = 0,1,2,…,
其中, mod为取余运算, round为取整运算。 根据本发明的另一方面, 提供了一种辅同步信道的配置装置, 用于对 正交频分复用***中辅同步信道上的同步信号进行配置。
根据本发明的辅同步信道的配置装置包括: 第一配置模块, 用于配置 用于表示宏基站的辅同步信道携带的小区 ID和扇区 ID的各个组合的第一 基本序列集; 和 /或第二配置模块, 用于配置用于表示家庭基站的所属宏基 站的小区 ID和扇区 ID的各个组合的第二基本序列集, 以及用于表示家庭 基站的 ID信息的家庭基站 ID序列集。
1根据本发明的另一方面,提供了一种辅同步信道的配置装置, 用于对 正交频分复用***中辅同步信道上的同步信号进行配置。
根据本发明的辅同步信道的配置装置包括: 划分模块, 用于根据*** 配置信息将同步信号中携带的小区 ID信息划分为多个 ID子集; 第一配置 模块, 用于对每个 ID子集配置用于表示相应 ID子集类型的类型序列集; 第二配置模块,用于对每个 ID子配置用于表示相应 ID子集其子集内 ID信 息的基本序列集。
根据本发明的另一方面, 提供了一种子载波映射装置, 用于将正交频 分复用***中辅同步信道的同步序列映射到子载波, 其中, 有用的子载波 数为 L。
根据本发明的子载波映射装置包括: 第一映射模块, 用于根据以下公 式对子载波序号小于 L/2的子载波进行不同扇区的子载波映射:
x(n) = x(3u + k), k = 0,1,2. u = 0,1,2,…, 其中, k表示扇区号, u表示序列中的元素序号;
第二映射模块,用于根据以下公式对子载波序号大于 L/2的子载波进行 不同扇区的子载波映射:
y(n) = y(3u + mod(k + round(3u/^/2))), ), k = 0,1,2. ½ = 0,1,2,...,
其中, mod为取余运算, round为取整运算。 根据本发明的另一方面, 提供了一种辅同步信道的同步信号发射方法, 用于发射正交频分复用***的同步信号的辅同步序列。
根据本发明的辅同步信道的同步信号发射方法包括:
根据***对辅同步序列的要求, 对于基础带宽的***, 将辅同步序列 配置为 x=2n+c, 其中, X为辅同步序列的长度, 2n小于或等于***要求的 辅同步序列的长度; 对于***带宽是基础带宽倍数的***, 将辅同步序列 配置为 x = m x 2n + c, 其中 m是倍数; 通过发射端的天线发射进行配置后 的辅同步序列。
根据本发明的另一方面, 提供了一种辅同步信道的同步信号发射装置, 用于发射正交频分复用***的同步信号的辅同步序列。
根据本发明的辅同步信道的同步信号发射装置包括: 配置模块, 用于 根据***对辅同步序列的要求, 对于基础带宽的***, 将辅同步序列配置 为 x = 2n + c, 其中, X为辅同步序列的长度, 2n小于或等于***要求的辅同 步序列的长度; 以及对于***带宽是基础带宽倍数的***, 用于将辅同步 序列配置为 x = m x 2n + c, 其中 m是倍数; 发射模块, 用于通过天线发射 进行配置后的辅同步序列。
通过本发明的上述技术方案, 通过序列集中的序列对正交频分复用系 统中辅同步信道上的同步信号中的信息进行映射并生成同步信号, 解决了 相关技术中的同步信道设计方案不能清楚地标识不同类型基站的小区 ID信 息、 以及不能满足 Femto基站的扩充需求的问题, 能够将各个基站的类型 以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助 于优化***的性能。 附图说明
图 1是根据相关技术的帧结构的示意图;
图 2是根据相关技术的 P-SCH和 S-SCH的结构示意图; 图 3是根据本发明方法实施例一的辅同步信道的配置方法的流程图; 图 4 是根据本发明方法实施例一的辅同步信道的配置方法中生成
Femto基站辅同步信道的同步序列的处理示意图;
图 5是根据本发明实施例的小区分组的一个具体实例的示意图; 图 6是根据本发明实施例的子载波映射的处理示意图;
图 7是根据本发明实施例的载波映射方法进行子载波映射的示意图; 图 8是根据本发明实施例的终端进行小区搜索的处理流程图; 图 9是根据本发明装置实施例一的辅同步信道的配置装置的框图; 图 10是根据本发明方法实施例二的辅同步信道的配置方法的流程图; 图 11是根据本发明装置实施例二的辅同步信道的配置装置的框图; 图 12是根据本发明装置实施例三的子载波映射装置的框图;
图 13是根据本发明方法实施例三的辅同步信道的同步信号发射方法的 流程图;
图 14是根据本发明装置实施例四的辅同步信道的同步信号发射装置的 框图。 具体实施方式 针对相关技术中的同步信道设计方案不能清楚地标识不同类型基站的 小区 ID信息、 以及不能满足 Femto基站的扩充需求问题, 本发明提出了利 用序列集中的序列对正交频分复用***中辅同步信道上的同步信号中的信 息进行映射, 之后配置并生成同步信号的方案, 能够将各个基站的类型以 及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助于 优化***的性能。
图 2为本发明相关的 P-SCH和 S-SCH结构图。基于图 1所示的帧结构, 如图 2中的 A部分所示, P-SCH 201和 S-SCH 202分别在超帧中发送一次, P-SCH 201在 16m超帧的起始发送, S-SCH 202在超帧中的第 2个 16m单 位帧的第一个符号发送。 如图 2的 B部分所示, P-SCH 201在超帧中发送 一次, S-SCH 202在超帧中发送两次, P-SCH 201在 16m超帧的起始发送, S-SCH 202在超帧中的第 2个 16m单位帧以及第 4个 16m单位帧的第一个 符号发送。 如图 2中的 C部分所示, P-SCH 201在超帧中发送一次, S-SCH 202在超帧中发送三次, P-SCH 201在 16m超帧的起始发送, S-SCH 202在 超帧中的第 2个 16m单位帧、第 3个 16m单位帧以及第 4个 16m单位帧的 第一个符号发送。
基于图 1所示的帧结构以及图 2所示的信道结构, 下面将详细描述本 发明的实施例。
实施例一
在本实施例中, 提供了一种辅同步信道的配置方法, 用于对正交频分 复用***中 S-SCH上的同步信号进行配置。
如图 3所示,根据本实施例的 S-SCH的配置方法包括: 步骤 S302和步 骤 S304。 需要说明的是, 在该方法中描述的步骤可以在诸如一组计算机可 执行指令的计算机***中执行, 并且, 虽然在图 3 中示出了逻辑顺序, 但 是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。
下面将描述图 3中所示的处理。
步骤 S302,配置用于表示宏基站的 S-SCH携带的小区 ID和扇区 ID的 各个组合的第一基本序列集; 和 /或
步骤 S304, 配置用于表示 Femto基站的所属宏基站的小区 ID和扇区 ID的各个组合的第二基本序列集, 以及用于表示 Femto基站的 ID信息的 Femto基站 ID序列集。
具体地, 配置第一基本序列集的处理可以包括: 确定宏基站的 S-SCH 携带的小区 ID和扇区 ID的各个组合与第一基本序列集中序列的第一映射 关系表。 在配置了第一基本序列集之后, 就可以根据宏基站下实际小区 ID 和实际扇区 ID的组合、 和第一映射关系表从第一基本序列集中查找对应的 第一序列作为宏基站的同步序列。 例如, 宏基站的 S-SCH携带的信息由同 步序列 (即, 对应于上述的第一序列)表示。
另一方面, Femto基站 S-SCH携带的信息采用不同的序列集携带。 具 体地, 配置第二基本序列集的处理包括: 确定 Femto基站的所属宏基站的 小区 ID和扇区 ID的各个组合与第二基本序列集中序列的第二映射关系表, 以及确定 Femto基站的 ID信息与 Femto基站 ID序列集中序列的第三映射 关系表。 在配置了第二基本序列集之后, 就可以根据 Femto基站所属宏基 站的实际小区 ID和实际扇区 ID的组合、 和第二映射关系表从第二基本序 列集中查找对应的第二序列, 以及根据 Femto基站的实际 ID信息和第三映 射关系表从 Femto基站 ID序列集中查找对应的第三序列。 例如, Femto基 站所归属的宏基站的小区 ID和扇区 ID信息通过序列 对应于上述第二 序列 )表示。 Femto基站的 Femto ID信息通过另一个 Femto ID序列集表示, 即序列 (对应于上述第三序列)表示。
图 4是根据本实施例的 S-SCH的配置方法中生成 Femto基站 S-SCH的 同步序列的处理示意图。 如图 4所示, 将第二序列 和第三序列^ 进行 组合, 即, 计算 y = )〇^ ( , 就能够得到 Femto基站的 S-SCH的同步序列 y(n)。
优选地, 对第二序列与第三序列进行组合的方式包括点积、 频分组合、 交织组合。
优选地,上述基本序列集中的序列和 Femto基站 ID序列集中的序列包 括以下至少之一: 伪随机序列、 零相关序列、 正交序列、 所述伪随机序列 的差分序列、 所述零相关序列的差分序列、 所述正交序列的差分序列。
通过上述处理, 能够将各个基站的类型以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助于优化***的性能。 下面将结合具体实例描述本实施例的处理过程。
图 5是根据本发明实施例的小区分组的一个具体实例的示意图。如图 5 所示, 设一个***有 126个小区 ID, 小区 ID分为 3组: i=0, 1 , 2, 每组 42个, 组内 ID j=0~41 , 每个小区分为 3个扇区: k=0, 1 , 2。
宏基站的 S-SCH携带的信息为小区 ID和扇区 ID信息。 Femto基站的
S-SCH携带的信息为归属宏基站的小区 ID和扇区 ID信息以及 Femto ID信 息。宏基站的 S-SCH携带的信息通过一个基本序列集表示,即同步序列 ^ 表示。
为了便于查找,可以预先定义宏基站的 S-SCH携带的 Cell ID和扇区 ID 与 S-SCH基本序列集中序列序号的映射关系表(对应于上述第一映射关系 表), 基于图 5所示的小区分组, 该映射关系表如表 1所示。
Figure imgf000013_0001
表 1
根据 Cell ID和扇区 ID ,从表 1中找出基本序列集中序号对应的序列(对 应于述的第一序列)作为宏基站的同步序列。
宏基站的 S-SCH序列^ ^为长度为 L=432/3=144的序列, 不同扇区的
S-SCH序列 在可用子载波1^^^ ?个子载波上的 3组不同的 144个子 载波位置映射, 不用子载波置零。 图 6是根据本发明实施例的子载波映射 的处理示意图。 如图 6所示, 映射方式如下:
x(n) = x(3u + k), k = 0,\,2.u = 0,1,2,...
在终端接入宏基站时, 执行以下处理:
检测 P-SCH, 根据 P-SCH携带的控制信息判断是否为宏基站(小区); 如果是宏基站, 检测 获得小区 ID和扇区 ID;
对于 Femto基站, S-SCH携带的信息包含不同的序列集。 Femto基站 所归属的宏基站的小区 ID和扇区 ID信息通过一个基本序列集表示, 即序 列 表示。 Femto基站的 Femto ID信息通过另一个 Femto ID序列集表示, 即序列 表示。 预先定义所归属的 Cell ID和扇区 ID与 S-SCH基本序列 集中序列序号的映射关系表, 如表 1所示, 定义 Femto ID信息和 Femto ID 序列集的映射关系表, 如表 2所示。
Figure imgf000014_0002
Figure imgf000014_0001
根据 Cell ID和扇区 ID, 从表 1 中找出基本序列集中序号对应的序列 根据 Femto ID,从表 2中找出 Femto ID序列集中序号对应的序列 ^ ;
Femto基站 S-SCH的同步序列 y由序列 和序列 点积产生。
Femto基站的 S-SCH序列 y(w)为长度为 L=432/3=144的序列 和 点积而成, 即, 图 4所示的处理, 序列 为小区组内 ID序列, 携带 Femto ID。
位于不同扇区的 Femto基站的 S-SCH序列 在可用子载波 Ν^=432 个子载波上的 3组不同的 144个子载波位置映射, 不用子载波置零, 如图 6 所示, 子载波的映射方式如下:
y(n) = y(3u + k),k = 0,1,2." = 0,1,2".. , 其中, k表示扇区序号。 终端接入 Femto基站的处理包括以下步骤:
检测 P-SCH, 根据 P-SCH携带的控制信息判断是否为 Femto基站; 如果是 Femto基站, 则检测 和 "), 获得小区 ID和扇区 ID, 以及 Femto ID;
S-SCH序列的子载波映射还可采取图 7所示的映射方式。
图 7是根据本发明实施例的载波映射方法的示意图。 如图 7所示, 在 根据本发明实施例的载波映射方法中, 将三个扇区的子载波映射在子载波 序号小于 432/2=216的部分, 根据 y(n) = ^3u + k),k = °^2m =。,12,…的方式 进行映射。
当三个扇区的子载波映射在子载波序号大于 432/2=216的部分,则第一 扇区 S-SCH映射到原第二扇区子载波位置,第二扇区 S-SCH映射到原第三 扇区子载波位置, 第三扇区 S-SCH映射到原第一扇区子载波位置, 如下述 数学表达式所示:
y(n) = y(3u + mod( k + round(3u/( L/2) ))J, k = 0,1,2.« = 0,1,2,...
式中, mod是取余运算, round是取整运算。
图 8根据本发明实施例的终端进行小区搜索的处理流程图。 如图 8所 示, 在通过上述处理配置辅同步信道的同步信令之后, 当终端进行小区搜 索时, 具体包括以下处理:
终端通过主同步信道(P-SCH )携带的基站类型信息获得基站类型; 如果是宏基站, 则执行步骤 82, 如果是 Femto基站, 则执行步骤 84; 步骤 82, 检测 S-SCH携带的 序列, 并执行步骤 83;
步骤 83 , 根据映射关系表 1获得宏基站的 Cell ID和扇区 ID信息; 步骤 84,终端检测 S-SCH携带的^^序列和^^序列,并执行步骤 85; 步骤 85, 根据映射关系表 1和表 2, 获得 Femto基站所归属宏基站的 Cell ID、 扇区 ID以及 Femto ID信息。
通过上述处理, 能够将各个基站的类型以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助于优化***的性能。
实施例二
在本实施例中, 提供了一种辅同步信道的配置装置, 用于对正交频分 复用***中辅同步信道上的同步信号进行配置。
如图 9所示, 根据本实施例的辅同步信道的配置装置包括: 第一配置 模块 92和第二配置模块 94。
图 9中各个模块的功能如下:
第一配置模块 92, 用于配置用于表示宏基站的 S-SCH携带的小区 ID 和扇区 ID的各个组合的第一基本序列集; 和 /或
第二配置模块 94, 用于配置用于表示 Femto基站的所属宏基站的小区 ID和扇区 ID的各个组合的第二序列集, 以及, 用于表示 Femto基站的 ID 信息的 Femto基站 ID序列集。
根据本实施例的装置能够在图 5所示的小区分区情况下执行图 3和图 4 所示的处理配置辅同步信道的同步信号, 其处理过程这里不再重复。
通过根据本实施例的装置, 能够将各个基站的类型以及 ID信息清楚地 标识出来, 并且能够灵活地适应基站的各种变更, 有助于优化***的性能。
实施例三
在本实施例中, 提供了一种辅同步信道的配置方法, 用于对正交频分 复用***中 S-SCH上的同步信号进行配置。
如图 10所示, 根据本实施例的辅同步信道的配置方法包括步骤 S1002 和步骤 S1004。 图 10中所示的处理过程如下:
步骤 S1002, 根据***配置信息将同步信号中携带的小区 ID信息划分 为多个 ID子集;
步骤 S1004, 对于每个 ID子集, 配置用于表示其类型的类型序列集, 以及, 用于表示其子集内 ID的基本序列集。
也就是说, 上述每个 ID子集分别通过两个不同序列集的组合表示, 一 个序列为基本序列集合, 表示子集内的小区 ID, 另一个为类型序列集合, 类型序列是子集标识, 用于区分子集。
其中, ***配置信息包括基站类型信息和 /或多载波配置信息, 其中, 基站类型包括宏基站、 和 /或 Femto基站、 和 /或中继基站, 多载波配置包括 全配置载波和 /或部分配置载波。
并且, 划分得到的多个 ID子集包括以下至少之一: 宏基站小区 ID子 集、 Femto基站小区 ID子集、 中继基站小区 ID子集。
此时, 配置类型序列集和基本序列集的处理包括以下至少之一: 对于宏基站小区 ID子集, 将其中的小区 ID分为分组信息、 分组内的 小区 ID、 以及分组内的扇区 ID信息,并通过配置的类型序列集的类型序列 分别表示全配置载波、 部分配置载波和小区 ID分组号, 以及通过配置的基 本序列集合的基本序列表示分组内的小区 ID信息以及分组内的扇区 ID信 息的各种组合;
对于 Femto基站小区 ID子集,通过配置的类型序列集的类型序列表示 Femto基站小区,并通过配置的基本序列集合的基本序列表示 Femto基站小 区 ID信息;
对于中继基站小区 ID子集, 通过配置的类型序列集的类型序列表示中 继基站, 并通过配置的基本序列集合的基本序列表示中继基站 ID信息。
在配置了类型序列集和基本序列集之后, 该方法可进一步包括以下处 理的至少之一:
对于宏基站, 根据实际的小区 ID和扇区 ID的组合从配置的基本序列 集合选择相应的基本序列, 并将选择的基本序列与类型序列集中宏基站对 应的类型序列组合得到宏基站的 S-SCH的同步序列;
对于 Femto基站,根据实际的 Femto基站小区 ID从配置的基本序列集 合选择相应的基本序列, 并将选择的基本序列与类型序列集中 Femto基站 对应的类型序列组合得到 Femto基站的 S-SCH的同步序列;
对于中继基站, 根据实际的中继基站小区 ID从配置的基本序列集合选 择相应的基本序列, 并将选择的基本序列与类型序列集中中继基站对应的 类型序列组合得到中继基站的 S-SCH的同步序列。
优选地, 基本序列集中的序列和类型序列集中的序列包括以下至少之 一: 伪随机序列、 零相关序列、 正交序列、 所述伪随机序列的差分序列、 所述零相关序列的差分序列、 所述正交序列的差分序列。
通过上述处理, 能够将各个基站的类型以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助于优化***的性能。
优选地, 根据上述***配置信息分类, 小区 ID集合子集的划分分为宏 小区 ID子集(包括全配置载波和部分配置载波)、 Femto小区 ID子集、 Relay ID子集、 以及用于扩充的预留 ID子集等。
对于各个映射关系表的配置, 处理如下:
预先定义 Cell ID分组信息和 /或基站类型和 /或多载波信息与类型序列 集中对应序列序号的映射关系表, 如表 3所示, 表中 Cell ID分组数 > 1 , 若 Cell ID分组数等于 1即表示***不进行 Cell ID分组。 此时, 分组内的 Cell ID即为 Cell ID。 Cell ID (或组内 Cell ID )和扇区信息与基本序列集中 对应序列序号的映射关系表, 如表 1所示。 Femto ID与基本序列集中对应 序列序号的映射关系表,如表 4所示。 Relay ID与基本序列集中对应序列序 号的映射关系表, 如表 5所示。
Figure imgf000019_0003
Figure imgf000019_0001
Figure imgf000019_0004
Figure imgf000019_0002
Relay ID S-SCH基本序列集的序
列序号 j
0 0
1 1
2 2
3 3
L L
表 5
并且, 根据 Cell ID分组信息和 /或基站类型和 /或多载波信息, 可从映 射关系表 3中找出类型序列集中对应的序列 m(i)。
其中, 对于宏基站, 根据 Cell ID和扇区 ID, 可从映射关系表 1中找出 基本序列集中序号对应的序列 对于 Femto基站, 根据 Femto ID, 可从 映射关系表 4中找出基本序列集中序号对应的序列 P« ; 对于 Relay站, 根 据 Relay lD, 可从映射关系表 5中找出基本序列集中序号对应的序列 P(0。 S-SCH的同步序列 S由序列 m(i)和序列 P(0点积运算如下: S = m(i) Q p( )。
通过上述处理, 能够将各个基站的类型以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各种变更, 有助于优化***的性能。
实施例四
在本实施例中, 提供了一种辅同步信道的配置装置, 用于对正交频分 复用***中 S-SCH上的同步信号进行配置。
如图 11所示, 根据本实施例的辅同步信道的配置装置包括: 划分模块 112、 第一配置模块 114、 第二配置模块 116。
图 11中各个模块的功能如下:
划分模块 112, 用于^^据***配置信息将同步信号中携带的小区 ID信 息划分为多个 ID子集;
第一配置模块 114, 连接至划分模块 112, 用于对每个 ID子集配置用 于表示相应 ID子集类型的类型序列集;
第二配置模块 116, 连接至划分模块 112, 用于对每个 ID子配置用于 表示相应 ID子集的子集内 ID的基本序列集。
该装置同样能够基于表 1、 表 3、 表 4、 表 5所示的映射关系进行辅同 步信道的同步信令配置, 其处理过程这里不再重复。
实施例五
在本实施例中, 提供了一种子载波映射装置, 用于将正交频分复用系 统中 S-SCH的同步序列映射到子载波, 其中, H殳有用的子载波数为 L。
如图 12所示, 根据本实施例的子载波映射装置包括第一映射模块 122 和第二映射模块 124。
图 12中各个模块的功能如下:
第一映射模块 122,用于根据以下公式对子载波序号小于 L/2的子载波 进行不同扇区的子载波映射: x(n) = x(3u + k), k = 0,1,2. u = 0,1,2,...
其中, k表示扇区号, u表示序列中的元素序号;
第二映射模块 124 ,用于根据以下公式对子载波序号大于 L/2的子载波 进行不同扇区的子载波映射:
y(n) = y(3u + mod(k + round((3u+ 1 /(172》 ), k = 0,1,2. u = 0,1,2".. ,
其中, mod为取余运算, round为取整运算。
该装置能够根据图 7所示的映射方式进行子载波的映射, 从而实现辅 同步信道的同步信号的发送。
实施例六
在本实施例中, 提供了一种辅同步信道的同步信号发射方法, 用于发 射正交频分复用***的同步信号的辅同步序列。
如图 13所示, 根据本实施例的辅同步信道的同步信号发射方法包括步 骤 S1302和步骤 S 1304。
图 13中所示的具体处理过程如下:
步骤 S 1302 , 根据***对辅同步序列的要求, 对于基础带宽的***, 将 辅同步序列配置为 x = 2n + c , 其中, X为辅同步序列的长度, 2n小于或等于 ***要求的辅同步序列的长度; 对于***带宽是基础带宽倍数 m的***, 将辅同步序列配置为 x = m x 2n + c , 其中 m是倍数;
步骤 S 1304 , 通过发射端的天线发射进行配置后的辅同步序列。
通过根据本实施例的方法, 能够实现辅同步序列的发送。
实施例七
在本实施例中, 提供了一种辅同步信道的同步信号发射装置, 用于发 射正交频分复用***的同步信号的辅同步序列。
如图 14所示, 根据本实施例的辅同步信道的同步信号发射装置包括: 配置模块 142和发射模块 144。 配置模块 142, 用于根据***对辅同步序列的要求, 对于基础带宽的系 统, 将辅同步序列配置为 x = 2n + c, 其中, X为辅同步序列的长度, 2n小于 或等于***要求的辅同步序列的长度; 对于***带宽是基础带宽倍数 m的 ***, 以及用于将辅同步序列配置为 x = m x 2n + c, 其中 m是倍数;
发射模块 144, 连接至配置模块 142, 用于通过天线发射进行配置后的 辅同步序列。
通过根据本实施例的装置, 能够实现辅同步序列的发送。
综上所述, 借助于本发明的上述技术方案, 通过序列集中的序列对正 交频分复用***中辅同步信道上的同步信号中的信息进行映射并生成同步 信号, 解决了相关技术中的同步信道设计方案不能清楚地标识不同类型基 站的小区 ID信息、 以及不能满足 Femto基站的扩充需求的问题, 能够将各 个基站的类型以及 ID信息清楚地标识出来, 并且能够灵活地适应基站的各 种变更, 有助于优化***的性能, 并且可以满足***部署大量 Femto基站 场景下的终端快速接入需求。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤 可以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者 分布在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执 行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来 执行, 或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特 定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1.一种辅同步信道的配置方法, 用于对正交频分复用***中辅同步信 道上的同步信号进行配置, 其特征在于, 所述方法包括:
配置用于表示宏基站的辅同步信道携带的小区 ID和扇区 ID的各个组 合的第一基本序列集; 和 /或
配置用于表示家庭基站的所属宏基站的小区 ID和扇区 ID的各个组合 的第二基本序列集, 以及用于表示所述家庭基站的 ID信息的家庭基站 ID 序列集。
2.根据权利要求 1 所述的方法, 其特征在于, 配置所述第一基本序列 集的处理包括:
确定所述宏基站的辅同步信道携带的小区 ID及扇区 ID的各个组合与 所述第一基本序列集中序列的第一映射关系表。
3.根据权利要求 2所述的方法, 其特征在于, 在配置所述第一基本序 列集之后, 进一步包括:
根据所述宏基站下实际小区 ID及实际扇区 ID的组合、 和所述第一映 射关系表, 从所述第一基本序列集中查找对应的第一序列作为所述宏基站 的同步序列。
4.根据权利要求 1 所述的方法, 其特征在于, 配置所述第二基本序列 集的处理包括:
确定家庭基站的所属宏基站的小区 ID及扇区 ID的各个组合与第二基 本序列集中序列的第二映射关系表, 以及确定所述家庭基站的 ID信息与家 庭基站 ID序列集中序列的第三映射关系表。
5.根据权利要求 4所述的方法, 其特征在于, 在配置所述第二基本序 列集之后, 进一步包括:
根据所述家庭基站所属宏基站的实际小区 ID及实际扇区 ID的组合、 和所述第二映射关系表, 从所述第二基本序列集中查找对应的第二序列; 以及根据所述家庭基站的实际 ID信息和所述第三映射关系表, 从所述家庭 基站 ID序列集中查找对应的第三序列, 将所述第二序列和所述第三序列组 合得到所述家庭基站的同步序列。
6.根据权利要求 5所述的方法, 其特征在于, 所述将所述第二序列与 所述第三序列进行组合的方式包括以下至少之一: 点积、 频分组合、 交织 组合。
7.根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述第一基 本序列集、 所述第二基本序列集和所述家庭基站 ID序列集中的序列包括以 下至少之一: 伪随机序列、 零相关序列、 正交序列、 所述伪随机序列的差 分序列、 所述零相关序列的差分序列、 所述正交序列的差分序列。
8.一种辅同步信道的配置方法, 用于对正交频分复用***中辅同步信 道上的同步信号进行配置, 其特征在于, 所述方法包括:
根据***配置信息将所述同步信号中携带的小区 ID信息划分为多个 ID子集;
对于每个 ID子集, 配置用于表示其类型的类型序列集, 以及用于表示 其子集内 ID信息的基本序列集。
9.根据权利要求 8所述的方法, 其特征在于, 所述***配置信息包括 基站类型信息和 /或多载波配置信息, 其中, 基站类型包括宏基站、 和 /或家 庭基站、 和 /或中继基站, 多载波配置包括全配置载波和 /或部分配置载波。
10.根据权利要求 9所述的方法, 其特征在于, 划分得到的所述多个 ID 子集包括以下至少之一: 宏基站小区 ID子集、 家庭基站小区 ID子集、 中 继基站小区 ID子集。
11.根据权利要求 10所述的方法, 其特征在于, 配置所述类型序列集和 所述基本序列集, 包括以下至少之一: 对于所述宏基站小区 ID子集, 将其中的小区 ID分为分组信息、 分组 内的小区 ID、 以及分组内的扇区 ID信息,并通过配置的所述类型序列集的 类型序列分别表示全配置载波、 部分配置载波和小区 ID分组号, 以及通过 配置的所述基本序列集合的基本序列表示分组内的小区 ID信息以及分组内 的扇区 ID信息的各种组合;
对于所述家庭基站小区 ID子集, 通过配置的所述类型序列集的类型序 列表示家庭基站小区, 并通过配置的所述基本序列集合的基本序列表示家 庭基站小区 ID信息;
对于所述中继基站小区 ID子集, 通过配置的所述类型序列集的类型序 列表示中继基站, 并通过配置的所述基本序列集合的基本序列表示中继基 站 ID信息。
12.根据权利要求 11所述的方法, 其特征在于, 在配置所述类型序列集 和所述基本序列集之后, 进一步包括以下处理的至少之一:
对于宏基站, 根据实际的小区 ID和扇区 ID的组合从配置的基本序列 集合选择相应的基本序列, 并将选择的基本序列与所述类型序列集中所述 宏基站对应的类型序列组合得到所述宏基站的辅同步信道的同步序列; 对于家庭基站, 根据实际的家庭基站小区 ID从配置的基本序列集合选 择相应的基本序列, 并将选择的基本序列与所述类型序列集中所述家庭基 站对应的类型序列组合得到所述家庭基站的辅同步信道的同步序列;
对于中继基站, 根据实际的中继基站小区 ID从配置的基本序列集合选 择相应的基本序列, 并将选择的基本序列与所述类型序列集中所述中继基 站对应的类型序列组合得到所述中继基站的辅同步信道的同步序列。
13.根据权利要求 8至 12任一项所述的方法, 其特征在于, 所述基本序 列集中的序列和所述类型序列集中的序列包括以下至少之一: 伪随机序列、 零相关序列、 正交序列、 所述伪随机序列的差分序列、 所述零相关序列的 差分序列、 所述正交序列的差分序列。
14.一种子载波映射方法, 用于将正交频分复用***中辅同步信道的同 步序列映射到子载波, 其特征在于, 所述方法包括:
在有用的子载波数为 L的情况下, 对于子载波序号小于 L/2的子载波, 根据以下公式进行不同扇区的子载波映射:
x(n) = x(3u + k), k = 0,1,2. u = 0,1,2,... , 其中, k表示扇区号, u表示序列中的元素序号;
对于子载波序号大于 L/2的子载波,根据以下公式进行不同扇区的子载 波映射:
y(n) = y(3u + mod(k + round(3u/^/2))), ), k = 0,1,2. M = 0,1,2,... ,
其中, mod为取余运算, round为取整运算。
15.—种辅同步信道的配置装置, 用于对正交频分复用***中辅同步信 道上的同步信号进行配置, 其特征在于, 所述装置包括:
第一配置模块, 用于配置用于表示宏基站的辅同步信道携带的小区 ID 和扇区 ID的各个组合的第一基本序列集; 和 /或
第二配置模块, 用于配置用于表示家庭基站的所属宏基站的小区 ID和 扇区 ID的各个组合的第二基本序列集, 以及用于表示所述家庭基站的 ID 信息的家庭基站 ID序列集。
16.—种辅同步信道的配置装置, 用于对正交频分复用***中辅同步信 道上的同步信号进行配置, 其特征在于, 所述装置包括:
划分模块, 用于^ ^据***配置信息将所述同步信号中携带的小区 ID信 息划分为多个 ID子集;
第一配置模块, 用于对每个 ID子集配置用于表示相应 ID子集类型的 类型序列集;
第二配置模块, 用于对所述每个 ID子配置用于表示相应 ID子集其子 集内 ID信息的基本序列集。
17.—种子载波映射装置, 用于将正交频分复用***中辅同步信道的同 步序列映射到子载波, 其中, 有用的子载波数为 L, 其特征在于, 所述装置 包括:
第一映射模块,用于根据以下公式对子载波序号小于 L/2的子载波进行 不同扇区的子载波映射:
x(n) = x(3u + k), k = 0,1,2. u = 0,1,2,... , 其中, k表示扇区号, u表示序列中的元素序号;
第二映射模块,用于根据以下公式对子载波序号大于 L/2的子载波进行 不同扇区的子载波映射:
y(n) = y(3u + mod(k + round(3u/(L/2))), ), k = 0,1,2. w = 0,1,2,…, 其中, mod为取余运算, round为取整运算。
18.—种辅同步信道的同步信号发射方法, 用于发射正交频分复用*** 的同步信号的辅同步序列, 其特征在于, 所述方法包括:
根据***对辅同步序列的要求, 对于基础带宽的***, 将辅同步序列 配置为 x = 2n + c, 其中, X为辅同步序列的长度, 2n小于或等于***要求的 辅同步序列的长度; 对于***带宽 础带宽倍数 m的***, 将辅同步序 列配置为 x = m x 2n + c;
通过发射端的天线发射进行配置后的所述辅同步序列。
19.一种辅同步信道的同步信号发射装置, 用于发射正交频分复用*** 的同步信号的辅同步序列, 其特征在于, 所述装置包括:
配置模块, 用于根据***对辅同步序列的要求, 对于基础带宽的***, 将辅同步序列配置为 x = 2n + c, 其中, X为辅同步序列的长度, 2n小于或等 于***要求的辅同步序列的长度;对于***带宽是基础带宽倍数 m的***, 将辅同步序列配置为 x = m x 2n + c; 发射模块, 用于通过天线发射进行配置后的所述辅同步序列。
PCT/CN2009/075524 2009-01-05 2009-12-11 辅同步信道的配置方法和装置、子载波映射方法和装置 WO2010075731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910000038.8A CN101772148B (zh) 2009-01-05 2009-01-05 辅同步信道的配置方法和装置、子载波映射方法和装置
CN200910000038.8 2009-01-05

Publications (1)

Publication Number Publication Date
WO2010075731A1 true WO2010075731A1 (zh) 2010-07-08

Family

ID=42309796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075524 WO2010075731A1 (zh) 2009-01-05 2009-12-11 辅同步信道的配置方法和装置、子载波映射方法和装置

Country Status (2)

Country Link
CN (1) CN101772148B (zh)
WO (1) WO2010075731A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858371B (zh) * 2013-11-11 2017-04-26 华为技术有限公司 一种多扇区同步发送信令的方法及装置
WO2019031552A1 (ja) * 2017-08-08 2019-02-14 シャープ株式会社 基地局装置および通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075946A (zh) * 2011-01-11 2011-05-25 大唐移动通信设备有限公司 一种物理小区id规划方法及装置
CN104429032A (zh) * 2013-01-28 2015-03-18 华为技术有限公司 信息传输方法、用户设备和基站
US9603030B2 (en) 2014-03-13 2017-03-21 Emprie Technology Development LLC Cell ID allocation in a heterogeneous network
EP3026967A1 (en) * 2014-08-19 2016-06-01 Huawei Technologies Co., Ltd. Synchronization signal transmitting device, receiving device, method, and system
CN106160969B (zh) * 2015-04-01 2019-04-16 南京扬舟信息科技有限公司 一种lte下行同步数据发射配置与接收方法
WO2017128048A1 (zh) 2016-01-26 2017-08-03 华为技术有限公司 通知方法、通知装置及***
CN110708266A (zh) * 2018-07-09 2020-01-17 普天信息技术有限公司 无线网络同步方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001672A1 (en) * 2004-06-25 2006-01-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving pilot signals in a communication system using an orthogonal frequency division multiplexing scheme
CN101267226A (zh) * 2007-03-14 2008-09-17 中兴通讯股份有限公司 一种辅助同步信道的信息发送方法和小区搜索方法
CN101282128A (zh) * 2007-04-03 2008-10-08 中兴通讯股份有限公司 宽带无线通信***前导增强方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132231B (zh) * 2007-08-13 2012-11-28 中兴通讯股份有限公司 无线通信下行同步信道中减少邻区干扰的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001672A1 (en) * 2004-06-25 2006-01-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving pilot signals in a communication system using an orthogonal frequency division multiplexing scheme
CN101267226A (zh) * 2007-03-14 2008-09-17 中兴通讯股份有限公司 一种辅助同步信道的信息发送方法和小区搜索方法
CN101282128A (zh) * 2007-04-03 2008-10-08 中兴通讯股份有限公司 宽带无线通信***前导增强方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858371B (zh) * 2013-11-11 2017-04-26 华为技术有限公司 一种多扇区同步发送信令的方法及装置
WO2019031552A1 (ja) * 2017-08-08 2019-02-14 シャープ株式会社 基地局装置および通信方法

Also Published As

Publication number Publication date
CN101772148B (zh) 2015-05-20
CN101772148A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
US11050539B2 (en) Pilot transmission and reception for orthogonal frequency division multiple access
WO2010075731A1 (zh) 辅同步信道的配置方法和装置、子载波映射方法和装置
RU2447600C2 (ru) Способ и устройство назначения ресурсов канала управления в системе мобильной связи с использованием мультиплексирования с ортогональным частотным разделением
US8811331B2 (en) Pilot design using costas arrays
EP2993851B1 (en) Preambles in ofdma system
US20070002958A1 (en) Apparatus and method for configuring frame in a broadband wireless communication system
CN1808961B (zh) 一种降低小区间干扰的上行多用户导频方法
US8717975B2 (en) Method for configuring a preamble and a method for searching a cell
CN104012015A (zh) 无线通信***中发送专用参考信号的控制信道发送方法及设备
CN102299892A (zh) 通信***中关键参数设置及使用方法和装置
WO2014135002A1 (zh) Pmch传输方法和设备
KR101741396B1 (ko) 무선 통신 시스템에서 비정규 시스템 대역폭을 지원하기 위한 프리앰블 시퀀스 서브블록 할당 방법 및 이를 위한 장치
KR20090128063A (ko) 주파수 오버레이를 지원하는 광대역 무선통신 시스템에서공통제어채널 송수신 장치 및 방법
WO2011025119A1 (en) Method for determining cell identity in wireless communication system and apparatus therefor
WO2014015800A1 (zh) 下行用户专用解调参考信号的传输方法和设备
WO2012003671A1 (zh) 同步前导码发送方法、同步方法、装置及***
RU2718960C2 (ru) Устройство и способ
WO2009082953A1 (fr) Procédé, système et dispositif de transmission par un canal synchrone
WO2008067721A1 (fr) Procédé de processus de synchronisation, station de base, dispositif utilisateur et système de communication
KR101792505B1 (ko) 복수의 무선통신 방식을 지원하는 무선통신 시스템에서 신호를 수신하는 방법 및 단말 장치
KR20110020715A (ko) 무선 통신 시스템에서 셀 식별자 결정 방법 및 이를 위한 장치
CN101945395A (zh) 确定子载波置换的方法以及确定小区导频模式的方法
Shukur et al. Implementing primary synchronization channel in mobile cell selection 4G LTE-A network
WO2016165099A1 (zh) 生成导频序列的方法、信道解调方法和设备
KR20110015775A (ko) 상향링크 신호를 전송하기 위한 단말 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836018

Country of ref document: EP

Kind code of ref document: A1