WO2010073586A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2010073586A1
WO2010073586A1 PCT/JP2009/007066 JP2009007066W WO2010073586A1 WO 2010073586 A1 WO2010073586 A1 WO 2010073586A1 JP 2009007066 W JP2009007066 W JP 2009007066W WO 2010073586 A1 WO2010073586 A1 WO 2010073586A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
working fluid
expander
refrigeration cycle
cycle apparatus
Prior art date
Application number
PCT/JP2009/007066
Other languages
French (fr)
Japanese (ja)
Inventor
和田賢宣
引地巧
塩谷優
尾形雄司
本間雅也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010543836A priority Critical patent/JPWO2010073586A1/en
Priority to US13/140,331 priority patent/US20110247358A1/en
Priority to CN200980151528.6A priority patent/CN102257332B/en
Priority to EP09834397.3A priority patent/EP2381190A4/en
Publication of WO2010073586A1 publication Critical patent/WO2010073586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus 500 shown in FIG. 9 is known as a refrigeration cycle apparatus including an expander that recovers power by expanding a working fluid and a second compressor that preliminarily boosts the working fluid.
  • a refrigeration cycle apparatus 500 including an expander that recovers power by expanding a working fluid and a second compressor that preliminarily boosts the working fluid.
  • the refrigeration cycle apparatus 500 includes a first compressor 1, a radiator 2, an expander 3, an evaporator 4, a second compressor 5, and a flow connecting these elements in this order.
  • a working fluid circuit 6 formed by the passages 10a to 10e is provided.
  • the second compressor 5 is connected to the expander 3 by a power recovery shaft 7 and is driven by receiving the mechanical energy recovered by the expander 3 via the power recovery shaft 7.
  • bypass path 8 that bypasses the second compressor 5 and a bypass valve 9 that controls the flow of the working fluid in the bypass path 8 are provided.
  • the upstream end of the bypass path 8 is connected to a flow path 10d that connects the outlet of the evaporator 4 and the suction port of the second compressor 5, and the downstream end of the bypass path 8 is connected to the discharge port of the second compressor 5 and the second outlet.
  • Compressor 1 is connected to a flow path 10e connecting the suction port.
  • the refrigeration cycle apparatus 500 is started according to the following procedure. First, the operation of the first compressor 1 is started and the bypass valve 9 is opened. As a result, the working fluid in the evaporator 4 is sucked into the first compressor 1 through the bypass 8 as indicated by the solid line arrow in FIG. 9. By increasing the pressure of the working fluid by the first compressor 1 and discharging it, the pressure at the suction port of the expander 3 increases. As a result, as shown in FIG. 10, a pressure difference is generated before and after the expander 3, and the expander 3 and the second compressor 5 can be started quickly.
  • bypass valve 9 is closed, and the working fluid that has flowed out of the evaporator 4 is second compressed through the flow path 10d as indicated by a dashed line arrow in FIG. Inhaled by machine 5.
  • the bypass path 8 it can shift to steady operation smoothly.
  • the second compressor 5 is a load when starting the expander 3. That is, the friction between the component parts of the second compressor 5 and the power recovery shaft 7 becomes the drive resistance of the expander 3.
  • the second compressor 5 and the expander 3 form a single-path working fluid circuit 6, and their rotational speed is a common power recovery. Since they are connected by the shaft 7, they are the same. Therefore, the volume of the second compressor 5 is set so that the mass of the working fluid to be sucked by the second compressor 5 per unit time is equal to the mass of the working fluid to be sucked by the expander 3 per unit time. And the volume of the expander 3 must be set.
  • FIG. 11 is a Mollier diagram when carbon dioxide is used as a working fluid in a conventional refrigeration cycle apparatus 500.
  • the pressure of the working fluid sucked by the second compressor 5 is 40 kg / cm 2 and its temperature is about 10 ° C. (in FIG. A)
  • the density of the working fluid at this time is 108.0 kg / m 3 .
  • the pressure of the working fluid sucked by the expander 3 is 100 kg / cm 2 , the temperature thereof is 40 ° C. (point C in FIG. 11), and the density of the working fluid at this time is 628.61 kg / m 3 .
  • the suction volume (m 3 ) of the second compressor 5 is Vc
  • the suction volume (m 3 ) of the expander 3 is Ve
  • the rotational speed (S ⁇ 1 ) of the power recovery shaft 7 per second is N.
  • the mass (kg / s) of the working fluid that can be sucked by the second compressor 5 per second and the mass (kg / s) of the working fluid that can be sucked by the expander 3 per second are expressed by (Equation 1), respectively. ) And (Formula 2).
  • the expander 3 when the refrigeration cycle apparatus 500 is activated, the expander 3 must drive the second compressor 5 having a suction volume approximately 5.8 times that of the expander 3. Further, when the ratio between the density of the working fluid to be sucked by the second compressor 5 and the density of the working fluid to be sucked by the expander 3 becomes larger, the suction volume of the second compressor 5 and the expander 3 The ratio to the suction volume is also increased. That is, the suction volume of the expander 3 is smaller than the suction volume of the second compressor 5, and the drive resistance of the expander 3 when the second compressor 5 is started is relatively large. Therefore, depending on the operating conditions of the refrigeration cycle apparatus 500, the expander 3 may not be able to drive the second compressor 5 at the time of startup. Alternatively, in order to obtain a driving force necessary for driving the second compressor 5, it is necessary to apply an excessive pressure to the suction port side of the expander 3 as compared with the steady operation, which causes a problem in safety such as a pressure resistance. May occur.
  • This invention solves the said conventional subject, and aims at providing the refrigerating-cycle apparatus which can be started stably reliably.
  • the present invention A first compressor that compresses the working fluid; a radiator that dissipates heat from the working fluid compressed by the first compressor; an expander that recovers power from the working fluid by expanding the working fluid dissipated by the radiator; An evaporator that evaporates the working fluid expanded by the expander, a second compressor that pressurizes the working fluid evaporated by the evaporator and supplies the working fluid to the first compressor, and these elements are connected in this order.
  • a working fluid circuit formed by a flow path;
  • a power recovery shaft connecting the expander and the second compressor so that the second compressor is driven by the power recovered by the expander;
  • a first bypass to communicate with, A first bypass valve that is provided in the first bypass passage and controls the flow of the working fluid in the first bypass passage;
  • a refrigeration cycle apparatus is provided.
  • a high-pressure working fluid equivalent to that supplied to the inlet of the expander can be supplied to the inlet of the second compressor at the time of startup.
  • the pressure at the discharge port of the second compressor is the same as the suction port of the first compressor, that is, a relatively low pressure. That is, a large pressure difference can be generated before and after the second compressor. Therefore, the refrigeration cycle apparatus of the present invention can be reliably and stably started regardless of operating conditions.
  • Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention Flow chart of start-up control of the refrigeration cycle apparatus in Embodiment 1 of the present invention
  • Flow chart of start control of the refrigeration cycle apparatus in Embodiment 2 of the present invention Configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. Schematic which shows the state at the time of starting of the refrigerating cycle apparatus of Embodiment 1 and 2 Schematic which shows the state at the time of starting of the refrigerating-cycle apparatus in Embodiment 3.
  • Configuration diagram of the refrigeration cycle system in the reference example Schematic showing the flow of working fluid at the time of startup of a conventional refrigeration cycle apparatus
  • Schematic showing the flow of working fluid when starting the refrigeration cycle apparatus of Embodiment 1, Embodiment 2 and Reference Example Configuration diagram of conventional refrigeration cycle equipment
  • Schematic which shows the state at the time of starting of the refrigerating cycle apparatus shown in FIG. Mollier diagram when carbon dioxide is used as working fluid in a conventional refrigeration cycle system
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 includes a first compressor 101, a radiator 102, an expander 103, an evaporator 104, and a second compressor 105 that are connected to flow paths (pipes) 106a to 106a.
  • the working fluid circuit 106 is formed by connecting them sequentially by 106e.
  • a refrigerant such as carbon dioxide can be used.
  • the first compressor 101 is configured by disposing a compression mechanism unit 101a and a motor 101b for driving the compression mechanism unit 101a in one sealed container 101c storing lubricating oil, so that the working fluid is heated to a high temperature. Compress to high pressure.
  • a scroll compressor or a rotary compressor can be used as the first compressor 101.
  • the discharge port of the first compressor 101 is connected to the inlet of the radiator 102 via the flow path 106a.
  • the heat radiator 102 radiates (cools) the high-temperature and high-pressure working fluid compressed by the first compressor 101.
  • the outlet of the radiator 102 is connected to the inlet of the expander 103 via the flow path 106b.
  • the expander 103 expands the medium-temperature and high-pressure working fluid that has flowed out of the radiator 102, converts the expansion energy (power) of the working fluid into mechanical energy, and collects it.
  • the discharge port of the expander 103 is connected to the inlet of the evaporator 104 through the flow path 106c.
  • a scroll expander or a rotary expander can be used as the expander 103.
  • a fluid pressure motor type expander can be used as the expander 103.
  • the fluid pressure motor type expander includes a process of sucking the working fluid from the radiator 102 and a process of discharging the sucked working fluid to the evaporator 104 without performing a substantial expansion process in the working chamber. This is a fluid machine that collects power from the working fluid.
  • the detailed structure and operating principle of the fluid pressure motor type expander are disclosed in, for example, International Publication No. 2008/050654.
  • the evaporator 104 heats and evaporates the low-temperature and low-pressure working fluid expanded by the expander 103.
  • the outlet of the evaporator 104 is connected to the suction port of the second compressor 105 through the flow path 106d.
  • the second compressor 105 sucks the medium-temperature and low-pressure working fluid that has flowed out of the evaporator 104, preliminarily increases the pressure, and then discharges it to the first compressor 101.
  • the discharge port of the second compressor 105 is connected to the suction port of the first compressor 101 via a flow path 106e.
  • a scroll compressor or a rotary compressor can be used as the second compressor 105.
  • a fluid pressure motor type compressor can be used as the second compressor 105.
  • the fluid pressure motor type compressor performs a process of sucking the working fluid from the evaporator 104 and a step of discharging the sucked working fluid to the first compressor 101, so that the working fluid is obtained. It is a fluid machine that boosts pressure.
  • the fluid pressure motor type compressor means a fluid machine that does not substantially change the volume of the working fluid in the working chamber.
  • the structure of the fluid pressure motor type compressor is basically the same as the structure of the fluid pressure motor type expander, and is disclosed in detail in the previous document.
  • the expander 103 and the second compressor 105 are accommodated in a single sealed container 109 that stores lubricating oil.
  • the expander 103 is connected to the second compressor 105 by a power recovery shaft 107.
  • the expander 103, the second compressor 105, and the power recovery shaft 107 transmit the mechanical energy (power) recovered by the expander 103 to the second compressor 105 via the power recovery shaft 107, so that the second compressor It functions as a power recovery system 108 that drives 105.
  • the second compressor 105 has a volume larger than that of the expander 103.
  • the ratio (Vc / Ve) of the volume Vc of the second compressor 105 to the volume Ve of the expander 103 is set in the range of 5 to 15, for example.
  • the ratio (Vc / Ve) tends to be large.
  • the larger the ratio (Vc / Ve) the larger the driving force (torque) is required to start the power recovery system 108 independently.
  • the “volume of the second compressor 105” means the confined volume, that is, the volume of the working chamber when the suction process is completed. The same applies to the expander 103.
  • the refrigeration cycle apparatus 100 further includes a first bypass passage 112 and a first bypass valve 113.
  • the first bypass path 112 connects a flow path 106 b that connects the outlet of the radiator 102 and the suction port of the expander 103, and a flow path 106 d that connects the outlet of the evaporator 104 and the suction port of the second compressor 105.
  • the first bypass valve 113 is provided in the first bypass passage 112 and controls the flow of the working fluid in the first bypass passage 112.
  • the upstream end K1 of the first bypass path 112 is connected to the flow path 106b, and the downstream end K2 of the first bypass path 112 is connected to the flow path 106d. That is, the first bypass passage 112 causes the second compressor 105 to directly suck the working fluid in the flow passage 106b bypassing the expander 103 and the evaporator 104 before the power recovery shaft 107 rotates. It is a flow path that can. *
  • the position of the upstream end K1 is not limited to the position shown in FIG. 1 as long as the pressure at the suction port of the second compressor 105 can be increased when the refrigeration cycle apparatus 100 is started. That is, a part of the working fluid circuit 106 from the discharge port of the first compressor 101 to the suction port of the expander 103, and a part of the working fluid circuit 106 from the outlet of the evaporator 104 to the suction port of the second compressor 105 , The position of the upstream end K1 of the first bypass path 112 is not particularly limited.
  • the first bypass path 112 connects the flow path 106 a connecting the discharge port of the first compressor 101 and the inlet of the radiator 102, and the outlet of the evaporator 104 and the suction port of the second compressor 105. It may be connected to the working fluid circuit 106 so as to communicate with the flow path 106d. In some cases, the first bypass path 112 may branch from the radiator 102. For example, in the case where the radiator 102 includes an upstream portion and a downstream portion, the first bypass path 112 can be easily branched from between the two portions.
  • the first bypass valve 113 is provided at the upstream end of the first bypass passage 112.
  • the "upstream end”, the part between the total length of the first bypass passage 112 when defining a L 1, and the upstream end K1, and L 1/4 advanced position towards the upstream end K1 to the downstream end K2 corresponds to.
  • the position of the first bypass valve 113 is not particularly limited, and may be provided, for example, at the downstream end of the first bypass path 112.
  • the “downstream end”, corresponds to the portion between the downstream end K2, and L 1/4 advanced position towards the downstream end K2 the upstream end K1.
  • an on-off valve is used as the first bypass valve 113, but the present invention is not limited to this.
  • a three-way valve can be used as the first bypass valve 113.
  • the use of a three-way valve has the advantage of reducing the number of pipe connections.
  • the refrigeration cycle apparatus 100 is between the outlet of the evaporator 104 and the inlet of the second compressor 105, and is closer to the evaporator 104 than the downstream end K ⁇ b> 2 of the first bypass path 112.
  • the start assist valve 114 controls the flow of the working fluid in the flow path 106d.
  • An opening / closing valve can be used as the activation assist valve 114.
  • the working fluid in the flow path 106b can flow directly to the suction port of the second compressor 105 via the first bypass path 112. At that time, by closing the start assist valve 114, it is possible to prevent the working fluid from flowing from the evaporator 104 to the second compressor 105.
  • the refrigeration cycle apparatus 100 further includes a second bypass passage 110 and a second bypass valve 111.
  • the second bypass path 110 is a flow path 106 c that connects the discharge port of the expander 103 and the inlet of the evaporator 104, and a flow path 106 e that connects the discharge port of the second compressor 105 and the suction port of the first compressor 101. Is connected to the working fluid circuit 106. That is, the second bypass passage 110 bypasses the evaporator 104 and the second compressor 105.
  • the second bypass valve 111 is provided in the second bypass passage 110 and controls the flow of the working fluid in the second bypass passage 110.
  • the upstream end H1 of the second bypass path 110 is connected to the flow path 106c, and the downstream end H2 of the second bypass path 110 is connected to the flow path 106e. That is, the second bypass passage 110 is a passage through which the working fluid in the passage 106c can be directly sucked into the first compressor 101, bypassing the evaporator 104 and the second compressor 105.
  • the position of the upstream end H1 is not limited to the position shown in FIG.
  • the upstream end H ⁇ b> 1 may be located anywhere in the section from the discharge port of the expander 103 to the downstream end K ⁇ b> 2 of the first bypass path 112. That is, the second bypass path 110 includes a part of the working fluid circuit 106 (a part of the flow path 106d) from the outlet of the evaporator 104 to the downstream end K2 of the first bypass path 112, and a discharge port of the second compressor 105.
  • the second bypass path 110 may branch from the evaporator 104.
  • the second bypass passage 110 can be easily branched from between the two portions.
  • the second bypass valve 111 is provided at the upstream end of the second bypass passage 110.
  • the second bypass valve 111 may also be provided at the downstream end of the second bypass path 111.
  • the "downstream end”, corresponds to a portion between the downstream end H2, and L 2/4 advanced position towards the downstream end H2 at the upstream end H1.
  • a check valve is used as the second bypass valve 111.
  • the present invention is not limited to this, and an on-off valve or a three-way valve may be used.
  • the second bypass valve 111 allows the working fluid in the flow path 106c to flow to the second bypass path 110. That is, the pressure in the flow path 106e is lower than the pressure in the flow path (flow path 106c, evaporator 104, flow path 106d) between the discharge port of the expander 103 and the suction port of the second compressor 105. Sometimes, the working fluid in the flow path 106 c can flow directly to the suction port of the first compressor 101 via the second bypass passage 110.
  • the refrigeration cycle apparatus 100 also includes a controller 117 that controls opening and closing of the first bypass valve 113 and the start assist valve 114.
  • the first bypass valve 113 and the startup assist valve 114 are provided with valve opening / closing means 115 and 116, respectively.
  • the valve opening / closing means 115 and 116 are typically composed of actuators such as solenoids for operating the valves, and are controlled by the controller 117.
  • the controller 117 is typically composed of a microcomputer.
  • An input device 118 provided with a start button is connected to the controller 117. When an operation command is input to the controller 117 through the input device 118, a predetermined control program stored in the internal memory of the controller 117 is executed.
  • a start command (start signal) is sent from the input device 118 to the controller 117.
  • the controller 117 executes predetermined start control described later with reference to FIG. 2 in response to obtaining the start command.
  • the controller 117 also controls the operation of the motor 101b that operates the first compressor 101.
  • the refrigeration cycle apparatus 100 includes an activation detector 119 for detecting that the second compressor 105 has been activated.
  • the activation detector 119 transmits a detection signal to the controller 117.
  • the controller 117 detects activation of the second compressor 105 based on obtaining the detection signal.
  • a temperature detector, a pressure detector, or the like can be used as the activation detector 119.
  • the activation detector 119 as a temperature detector includes a temperature detection element such as a thermocouple or a thermistor, for example, and the temperature of the working fluid to be sucked into the expander 103 and the working fluid discharged from the expander 103. A difference ⁇ T from the temperature is detected.
  • the activation detector 119 as a pressure detector includes, for example, a piezoelectric element, and detects a difference ⁇ P between the pressure of the working fluid to be sucked into the expander 103 and the pressure of the working fluid discharged from the expander 103.
  • a timer that measures the elapsed time from the start point of the first compressor 101 may be provided as the start detector 119 that detects the start of the second compressor 105.
  • a timer can also be provided by the function of the controller 117.
  • the controller 117 itself can serve as the activation detector 119.
  • a contact-type or non-contact-type displacement sensor that detects driving of the power recovery shaft 107, for example, an encoder, may be provided as the activation detector 119 that detects activation of the second compressor 105.
  • the method for detecting “the second compressor 105 has been activated” differs as follows.
  • a predetermined value T 1 obtained experimentally or theoretically is set by the controller 117.
  • the controller 117 detects that the second compressor 105 has been started when the temperature difference ⁇ T detected by the temperature detector is greater than a predetermined value T 1 .
  • a predetermined value P 1 obtained experimentally or theoretically is set by the controller 117.
  • the controller 117 detects that the second compressor 105 has been started when the pressure difference ⁇ P detected by the pressure detector is greater than a predetermined value P 1 .
  • the reason why the activation of the second compressor 105 can be detected by comparing the temperature difference ⁇ T with the predetermined value T 1 or comparing the pressure difference ⁇ P with the predetermined value P 1 is as follows.
  • the first compressor 101 When the first compressor 101 is activated, the working fluid discharged from the first compressor 101 is supplied to the suction port of the second compressor 105 through the first bypass passage 112.
  • the power recovery system 108 is activated.
  • the second compressor 105 serves as a drive source, the power recovery system 108 rotates before a large temperature difference occurs between the suction temperature of the first compressor 101 and the discharge temperature of the first compressor 101. start.
  • the pressure difference of the refrigeration cycle apparatus 100 is not sufficiently large, and the power for rotating the power recovery system 108 is small. Therefore, the rotational speed of the power recovery system 108 is also low.
  • the rotational speed of the power recovery system 108 is low, the rotational speed of the expander 103 is also low. This state corresponds to the “squeezed state” as referred to by the expansion valve. Therefore, the discharge temperature and discharge pressure of the first compressor 101 also gradually increase.
  • the power for rotating the expander 103 and the second compressor 105 also increases, and the rotational speed of the power recovery system 108 increases.
  • the rotational speed becomes high, the power recovery system 108 rotates stably due to the influence of inertial force. It is desirable to keep the first bypass path 112 open until such a stable rotation state.
  • the intake temperature of the expander 103 gradually increases from substantially the same temperature as the outside air temperature at the time of stop.
  • the discharge temperature (or discharge pressure) of the expander 103 is determined by the suction temperature (or suction pressure) of the expander 103.
  • the suction temperature of the expander 103 and the discharge temperature of the expander 103 gradually increase as described above.
  • the difference between the suction temperature and the discharge temperature also gradually increases.
  • the pressure Therefore, by setting appropriate values (for example, values slightly larger than the temperature difference and the pressure difference at the time of start-up) as the predetermined values T 1 and P 1 , the start-up of the second compressor 105 (the power recovery system 108 Can be detected.
  • the second compressor 105 it is possible to detect the start of the second compressor 105 based on the discharge temperature of the expander 103 or the discharge pressure of the expander 103 instead of the temperature difference ⁇ and the pressure difference ⁇ T.
  • the expander 103 also rotates.
  • the expander 103 sucks the working fluid and then expands and discharges the sucked working fluid. Therefore, the temperature and pressure of the working fluid discharged from the expander 103 are lower than before the suction.
  • monitoring the temperature (or pressure) at the discharge port of the expander 103 in time series it can be determined that the second compressor 105 has been activated by capturing a sudden change in temperature (or pressure).
  • the controller 117 sets a predetermined time t obtained experimentally or theoretically.
  • the controller 117 transmits a control signal to the motor 101b of the first compressor 101 and starts measuring time with a timer.
  • the controller 117 detects that “the second compressor 105 has started”.
  • Predetermined time t is described in the activation control program to be executed by the controller 117.
  • the time from the start of the first compressor 101 to the start of the second compressor 105 is actually measured under various operating conditions (outside air temperature or the like).
  • the time which can be judged that the 2nd compressor 105 started in all the operating conditions can be set as "predetermined time t”.
  • a model of the refrigeration cycle apparatus 100 is constructed, and a pressure difference necessary and sufficient to start the power recovery system 108 is estimated by computer simulation. Then, using parameters such as the volume of the first compressor 101 and the amount of working fluid in the working fluid circuit 106, the initial operation time required to create the estimated pressure difference is calculated.
  • the calculated initial movement time can be set as “predetermined time t”.
  • FIG. 2 is a flowchart of the start-up control of the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 starts steady operation after executing the startup control shown in FIG.
  • the first compressor 101 is stopped, the first bypass valve 113 is closed, the start assist valve 114 is opened, and the pressure of the working fluid in the working fluid circuit 106 is substantially uniform.
  • the fan or pump for flowing the fluid (air or water) to be exchanged with the working fluid through the radiator 102 is operated after the start control is completed.
  • the fan or pump for flowing the fluid to be exchanged with the working fluid to the evaporator 104 is also operated after the start control is completed.
  • the controller 117 In response to obtaining the activation command from the input device 118 in step S11, the controller 117 sends a control signal to the valve opening / closing means 115 and 116 so as to open the first bypass valve 113 and close the activation auxiliary valve 114. Transmit (step S12). Accordingly, the first bypass passage 112 is opened, and the flow passage 106d is closed between the outlet of the evaporator 104 and the downstream end K2 of the first bypass passage 112.
  • the controller 117 starts power supply to the motor 101b to start the first compressor 101 (step S13). Accordingly, the working fluid in the flow path 106e and the second bypass path 110 is sucked into the first compressor 101.
  • the first bypass valve 113 may be opened according to the start of the first compressor 101.
  • the start assist valve 114 may be closed in response to the start of the first compressor 101. In other words, there is no problem as long as the working fluid can flow through the first bypass passage 112 after the first compressor 101 is started and before the power recovery shaft 107 is rotated.
  • the pressure in the flow path (flow path 106a, radiator 102, flow path 106b) from the discharge port of the first compressor 101 to the suction port of the expander 103 increases.
  • the compressed working fluid also flows into the flow path 106 d between the auxiliary starting valve 114 and the suction port of the second compressor 105 through the first bypass passage 112.
  • the pressure in the flow path (a part of the flow path 106d) from the auxiliary start valve 114 to the suction port of the second compressor 105 increases.
  • the pressure at each suction port of the expander 103 and the second compressor 105 becomes relatively high, and the pressure at each discharge port of the expander 103 and the second compressor 105 is increased. Relatively low. That is, a pressure difference can be generated not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Since the pressure difference of the working fluid acts on each of the expander 103 and the second compressor 105, the power recovery system 108 can be easily activated independently.
  • the controller 117 detects that the second compressor 105 is activated through the activation detector 119 (step S14), the valve opening / closing means 115 is closed so as to close the first bypass valve 113 and open the activation auxiliary valve 114. And 116 are transmitted to the control signal (step S15). Specifically, the controller 117 receives the detection signal from the activation detector 119, detects the activation of the second compressor 105, and then closes the first bypass valve 113 and opens the activation auxiliary valve 114. As a result, the first bypass path 112 is closed and the flow path 106d is opened. After the start control ends, the refrigeration cycle apparatus 100 shifts to a steady operation in which the working fluid is circulated through the working fluid circuit 106.
  • the second bypass valve 111 that is a check valve is closed. Since the pressure in the second bypass passage 110 on the downstream side of the flow path 106e and the second bypass valve 111 is higher than the pressure in the flow path 106c, the evaporator 104, and the flow path 106d, the second bypass valve 111. Will remain closed. Thereby, the working fluid circulates through the working fluid circuit 106 during steady operation.
  • the fluid pressure motor type compressor described above can be suitably used as the second compressor 105. This is because the fluid pressure motor type compressor does not substantially change the volume of the working fluid in the working chamber, so that the suction of the liquid phase working fluid can be allowed to some extent.
  • a part of the second bypass passage 110 (portion from the second bypass valve 111 to the downstream end H2) can function as a buffer space for expanding the volume of the flow path 106e. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106e can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 100 can be improved.
  • a part of the first bypass passage 112 (a portion from the first bypass valve 113 to the downstream end K2) can function as a buffer space for expanding the volume of the flow path 106d. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106d can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 100 can be improved.
  • the rotational speed of the first compressor 101 is gradually decreased. After the first compressor 101 is stopped, the working fluid moves through the first compressor 101, the expander 103, and the second compressor 105 over a sufficient time. Therefore, the pressure difference in the working fluid circuit 106 is naturally eliminated, and becomes a substantially uniform pressure and stabilized. Thereby, the expander 103 and the 2nd compressor 105 also stop naturally.
  • the pressure in the second bypass passage 110 on the downstream side of the flow passage 106e and the second bypass valve 111 decreases.
  • the 2nd bypass valve 111 which is a check valve is opened.
  • the working fluid in the flow path from the discharge port of the expander 103 to the auxiliary start valve 114 flows into the second bypass path 110, and together with the working fluid in the second bypass path 110 and the flow path 106e, the first compressor 101 is inhaled.
  • the refrigeration cycle apparatus 100 there is a pressure difference not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Can occur. Therefore, the power recovery system 108 can be started stably and reliably, and as a result, the reliability of the refrigeration cycle apparatus 100 is improved.
  • FIG. 3 is a configuration diagram of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 200 is different from the first embodiment in that a three-way valve is used as the first bypass valve 201. That is, the first bypass valve 201 serves as both the first bypass valve 113 and the activation assist valve 114 in the first embodiment.
  • symbol is attached
  • the first bypass valve 201 is provided at the junction between the downstream end K2 of the first bypass path 112 and the flow path 106d.
  • the opening and closing of the first bypass path 112 and the opening and closing of the flow path 106d can be easily performed with one valve.
  • the flow path 106d is opened and the first bypass path 112 is closed (for example, during steady operation)
  • the first bypass path 112 is opened and the flow path 106d is
  • the path of the working fluid can be easily switched between the closed state (for example, during start-up control) at the junction with the downstream end K2 of the one bypass path 112.
  • the configuration of the refrigeration cycle apparatus 200 can be simplified.
  • the first bypass valve 201 may be provided at the joint between the upstream end K1 of the first bypass passage 112 and the flow path 106b.
  • the first bypass valve 201 is provided with a valve switching means 202.
  • the valve switching means 202 is typically composed of an actuator such as a solenoid and is controlled by the controller 117.
  • FIG. 4 is a flowchart of activation control of the refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 starts steady operation after executing the start-up control shown in FIG.
  • the first compressor 101 is stopped, the flow path 106d is opened by the first bypass valve 201, and the first bypass path 112 is closed (state (a) above).
  • the pressure of the working fluid in the working fluid circuit 106 is substantially uniform.
  • the controller 117 In response to the acquisition of the activation command from the input device 118 in step S21, the controller 117 sends a control signal to the valve control means 202 so as to switch from the state (a) described above to the state (b). Is transmitted (step S22).
  • step S23 the controller 117 starts power supply to the motor 101b to start the first compressor 101 (step S23). Accordingly, the working fluid in the flow path 106e and the second bypass path 110 is sucked into the first compressor 101.
  • the process of step S22 may be executed in response to the activation of the first compressor 101.
  • the pressure in the flow path 106e and the second bypass path 110 decreases.
  • the second bypass valve 111 is opened, and the working fluid upstream of the second bypass valve 111, that is, the flow from the discharge port of the expander 103 to the first bypass valve 201 flows into the second bypass passage 110.
  • the working fluid in the channel (the channel 106c, the evaporator 104, and part of the channel 106d) flows in.
  • the working fluid that has flowed into the second bypass passage 110 is sucked and compressed by the first compressor 101 and discharged to the flow path 106a. Accordingly, the pressure in the flow path from the discharge port of the expander 103 to the first bypass valve 201 (the flow path 106c, the evaporator 104, and a part of the flow path 106d) also decreases.
  • the pressure in the flow path (flow path 106a, radiator 102, flow path 106b) from the discharge port of the first compressor 101 to the suction port of the expander 103 increases.
  • the compressed working fluid also flows into the flow path 106 d between the first bypass valve 201 and the suction port of the second compressor 105 through the first bypass passage 112.
  • the pressure in the flow path (a part of the flow path 106d) from the first bypass valve 201 to the suction port of the second compressor 105 increases.
  • the state shown in FIG. 6A is formed, and the power recovery system 108 can be easily activated independently.
  • step S24 When the controller 117 detects that the second compressor 105 is started through the start detector 119 (step S24), the controller 117 switches the state from the state (b) described above to the state (a). A control signal is transmitted to the switching means 202 (step S25). Thereby, the first bypass valve 201 is switched and the first bypass passage 112 is closed. After the start control ends, the refrigeration cycle apparatus 200 shifts to a steady operation.
  • a part of the second bypass passage 110 (a portion from the second bypass valve 111 to the downstream end H2) can function as a buffer space for expanding the volume of the flow path 106e. Therefore, as described in the first embodiment, it is possible to expect relaxation of the pulsation width of the pressure pulsation generated in the flow path 106e, and as a result, the reliability of the operation of the refrigeration cycle apparatus 200 can be improved.
  • the first bypass path 112 can function as a buffer space for expanding the volume of the flow path 106b. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106b can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 200 can be improved.
  • the pressure in the second bypass passage 110 on the downstream side of the flow passage 106e and the second bypass valve 111 decreases.
  • the 2nd bypass valve 111 which is a check valve is opened.
  • the working fluid in the flow path from the discharge port of the expander 103 to the first bypass valve 201 flows into the second bypass path 110, and the first compression is performed together with the working fluid in the second bypass path 110 and the flow path 106e. Inhaled into machine 101.
  • the pressure loss of the working fluid to be sucked by the first compressor 101 is suppressed by avoiding the pressure loss of the working fluid by the evaporator 104 and the second compressor 105 at the time of startup. Therefore, it is possible to reduce the power with which the first compressor 101 boosts the working fluid.
  • the refrigeration cycle apparatus 200 there is a pressure difference not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Can occur. Therefore, the power recovery system 108 can be started stably and reliably, and the reliability of the refrigeration cycle apparatus 200 is also improved.
  • the second bypass passage 110 and the second bypass valve 111 are provided. However, these are not always necessary. That is, as shown in FIG. 5, a refrigeration cycle apparatus 300 having a configuration in which the second bypass passage 110 and the second bypass valve 111 are omitted can be proposed.
  • the first bypass valve 113 is opened and the activation auxiliary valve 114 is closed at the time of activation.
  • the first compressor 101 can suck only the working fluid in the flow path 106e. That is, if attention is paid to the amount of working fluid that can be sucked by the first compressor 101, the third embodiment may be more disadvantageous than the first and second embodiments.
  • a pressure difference can be generated not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105 (FIG. 6A). reference). Therefore, even if the second bypass passage 110 and the second bypass valve 111 are omitted, the power recovery system 108 can be easily and reliably activated.
  • auxiliary start valve 114 it is possible to omit the auxiliary start valve 114 from the refrigeration cycle apparatus 300.
  • a pressure difference is generated only between the suction port and the discharge port of the second compressor 105.
  • the drive resistance of the second compressor 105 is relatively larger than the drive resistance of the expander 103. Therefore, the state shown in FIG. 6B is more advantageous for starting the power recovery system 108 than the state shown in FIG.
  • the refrigeration cycle apparatus 400 shown in FIG. 7 differs from the conventional refrigeration cycle apparatus 500 (see FIG. 9) in the position of the upstream end H1 of the bypass passage 110. Specifically, the upstream end H ⁇ b> 1 of the bypass passage 110 is located on the flow path 106 c that connects the discharge port of the expander 103 and the inlet of the evaporator 104.
  • Other configurations of the refrigeration cycle apparatus 400 are the same as those of the refrigeration cycle apparatus 100 described with reference to FIG.
  • a pressure difference cannot be generated between the suction port and the discharge port of the second compressor 105.
  • the following significant effects can be obtained based on the difference in the position of the upstream end H1 of the bypass passage 110. That is, according to the refrigeration cycle apparatus 400, pressure loss of the working fluid due to the evaporator 104 and the second compressor 105 can be avoided in a certain period before and after the start, and thereby the working fluid that the first compressor 101 should suck The pressure drop can be suppressed. As a result, the power required for the first compressor 101 to increase the pressure of the working fluid can be reduced, and as a result, it becomes easier to form a stable operating state more quickly.
  • the liquid-phase working fluid tends to accumulate in a relatively downstream portion in the evaporator 4.
  • the refrigeration cycle apparatus 500 is started in a state where the liquid-phase working fluid is accumulated in the evaporator 4, the gas-phase working fluid in the flow paths 10c and 10d and the gas-phase working fluid in the evaporator 4 are separated. Then, the process proceeds through the evaporator 4 to the first compressor 1 or the second compressor 5. Since the working fluid travels a relatively long distance, the pressure loss is also relatively large. Further, there is a possibility that the liquid working fluid is sucked into the first compressor 101, and there is a possibility that the pressure loss increases due to the resistance of the liquid working fluid.
  • the gas-phase working fluid flows back through the evaporator 104 and passes through the bypass 110 to the first compressor 101. Inhaled directly.
  • the liquid-phase working fluid moves while vaporizing in the evaporator 104, and is sucked into the first compressor 101 through the bypass 110.
  • the pressure in the evaporator 104 that is, the suction pressure of the first compressor 101 is kept substantially constant.
  • the liquid-phase working fluid does not become resistive, and the pressure loss of the gas-phase working fluid is relatively small.
  • the liquid phase working fluid is unlikely to be sucked into the first compressor 101 at the time of activation, more stable activation can be realized.
  • the refrigeration cycle apparatus of the present invention is useful for equipment such as a water heater, an air conditioner, and a dryer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Turbines (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

A refrigeration cycle device (100) is provided with an operating-fluid circuit (106) and a first bypass path (112).  The operating-fluid circuit (106) comprises a first compressor (101), a heat dissipater (102), an expander (103), an evaporator (104), a second compressor (105), and flow paths (106a-106e) for connecting the abovementioned elements in the order stated.  The expander (103) and the second compressor (105) are connected by a power recovery shaft (107) so that the second compressor (105) is driven by power recovered by the expander (103).  At the time the refrigeration cycle device (100) is activated, the first bypass path (112) connects between that portion of the operating-fluid circuit (106) which extends from the discharge opening of the first compressor (101) to the suction opening of the expander (103) and that portion of the operating-fluid circuit (106) which extends from the outlet opening of the evaporator (104) to the suction opening of the second compressor (105).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus.
 従来、作動流体を膨張させることで動力回収を行う膨張機と、作動流体を予備的に昇圧する第2圧縮機とを備えた冷凍サイクル装置として、図9に示す冷凍サイクル装置500が知られている(例えば、特開2003-307358号公報参照)。図9を参照しながら、従来の冷凍サイクル装置500の構成について説明する。 Conventionally, a refrigeration cycle apparatus 500 shown in FIG. 9 is known as a refrigeration cycle apparatus including an expander that recovers power by expanding a working fluid and a second compressor that preliminarily boosts the working fluid. (For example, see Japanese Patent Application Laid-Open No. 2003-307358). The configuration of a conventional refrigeration cycle apparatus 500 will be described with reference to FIG.
 図9に示すように、冷凍サイクル装置500は、第1圧縮機1、放熱器2、膨張機3、蒸発器4、第2圧縮機5、およびこれらの要素をこの順番で接続している流路10a~10eによって形成された作動流体回路6を備えている。第2圧縮機5は、動力回収軸7により膨張機3と連結されており、膨張機3で回収した機械エネルギーを、動力回収軸7を介して受けることで、駆動される。 As shown in FIG. 9, the refrigeration cycle apparatus 500 includes a first compressor 1, a radiator 2, an expander 3, an evaporator 4, a second compressor 5, and a flow connecting these elements in this order. A working fluid circuit 6 formed by the passages 10a to 10e is provided. The second compressor 5 is connected to the expander 3 by a power recovery shaft 7 and is driven by receiving the mechanical energy recovered by the expander 3 via the power recovery shaft 7.
 さらに、第2圧縮機5を迂回するバイパス路8と、バイパス路8における作動流体の流通を制御するバイパス弁9とが設けられている。バイパス路8の上流端は、蒸発器4の出口と第2圧縮機5の吸入口とを結ぶ流路10dに接続され、バイパス路8の下流端は、第2圧縮機5の吐出口と第1圧縮機1の吸入口とを結ぶ流路10eに接続されている。 Furthermore, a bypass path 8 that bypasses the second compressor 5 and a bypass valve 9 that controls the flow of the working fluid in the bypass path 8 are provided. The upstream end of the bypass path 8 is connected to a flow path 10d that connects the outlet of the evaporator 4 and the suction port of the second compressor 5, and the downstream end of the bypass path 8 is connected to the discharge port of the second compressor 5 and the second outlet. 1 Compressor 1 is connected to a flow path 10e connecting the suction port.
 冷凍サイクル装置500は、次の手順に従って起動する。まず、第1圧縮機1の運転を開始させて、バイパス弁9を開く。これにより、蒸発器4内の作動流体は、図9中の実線矢印に示すように、バイパス路8を通じて第1圧縮機1に吸入される。作動流体を第1圧縮機1で昇圧して吐出することで、膨張機3の吸入口での圧力が上昇する。この結果、図10に示すように、膨張機3の前後で圧力差が生じ、膨張機3および第2圧縮機5は、速やかに起動することができる。膨張機3および第2圧縮機5が起動した後、バイパス弁9が閉じられ、蒸発器4から流出した作動流体は、図9中の一点鎖線矢印に示すように、流路10dを通じて第2圧縮機5に吸入される。このように、バイパス路8を設けることで、スムーズに定常運転に移行できる。 The refrigeration cycle apparatus 500 is started according to the following procedure. First, the operation of the first compressor 1 is started and the bypass valve 9 is opened. As a result, the working fluid in the evaporator 4 is sucked into the first compressor 1 through the bypass 8 as indicated by the solid line arrow in FIG. 9. By increasing the pressure of the working fluid by the first compressor 1 and discharging it, the pressure at the suction port of the expander 3 increases. As a result, as shown in FIG. 10, a pressure difference is generated before and after the expander 3, and the expander 3 and the second compressor 5 can be started quickly. After the expander 3 and the second compressor 5 are started, the bypass valve 9 is closed, and the working fluid that has flowed out of the evaporator 4 is second compressed through the flow path 10d as indicated by a dashed line arrow in FIG. Inhaled by machine 5. Thus, by providing the bypass path 8, it can shift to steady operation smoothly.
特開2003-307358号公報JP 2003-307358 A
 冷凍サイクル装置500では、膨張機3および第2圧縮機5の起動に関して、膨張機3のみが関与し、第2圧縮機5は寄与していない。むしろ、第2圧縮機5は、膨張機3を起動する際の負荷となっている。すなわち、第2圧縮機5の構成部品と動力回収軸7との摩擦などが、膨張機3の駆動抵抗となっている。 In the refrigeration cycle apparatus 500, only the expander 3 is involved in the activation of the expander 3 and the second compressor 5, and the second compressor 5 does not contribute. Rather, the second compressor 5 is a load when starting the expander 3. That is, the friction between the component parts of the second compressor 5 and the power recovery shaft 7 becomes the drive resistance of the expander 3.
 また、冷凍サイクル装置500の定常運転時、第2圧縮機5と膨張機3とは、単一経路の作動流体回路6を形成しているとともに、これらの回転数は、相互に共通の動力回収軸7で連結されているため、同一である。したがって、単位時間あたりに第2圧縮機5が吸入するべき作動流体の質量と、単位時間あたりに膨張機3が吸入するべき作動流体の質量とが等しくなるように、第2圧縮機5の容積と膨張機3の容積とを設定しなければならない。 In addition, during the steady operation of the refrigeration cycle apparatus 500, the second compressor 5 and the expander 3 form a single-path working fluid circuit 6, and their rotational speed is a common power recovery. Since they are connected by the shaft 7, they are the same. Therefore, the volume of the second compressor 5 is set so that the mass of the working fluid to be sucked by the second compressor 5 per unit time is equal to the mass of the working fluid to be sucked by the expander 3 per unit time. And the volume of the expander 3 must be set.
 図11は、従来の冷凍サイクル装置500において、二酸化炭素を作動流体として用いたときのモリエル線図である。図11に示すように、従来の冷凍サイクル装置500の定常運転において、第2圧縮機5が吸入した作動流体の圧力は40kg/cm2、その温度は約10℃であり(図11中、点A)、このときの作動流体の密度は108.0kg/m3となる。膨張機3が吸入した作動流体の圧力は100kg/cm2、その温度は40℃であり(図11中、点C)、このときの作動流体の密度は628.61kg/m3となる。 FIG. 11 is a Mollier diagram when carbon dioxide is used as a working fluid in a conventional refrigeration cycle apparatus 500. As shown in FIG. 11, in the steady operation of the conventional refrigeration cycle apparatus 500, the pressure of the working fluid sucked by the second compressor 5 is 40 kg / cm 2 and its temperature is about 10 ° C. (in FIG. A) The density of the working fluid at this time is 108.0 kg / m 3 . The pressure of the working fluid sucked by the expander 3 is 100 kg / cm 2 , the temperature thereof is 40 ° C. (point C in FIG. 11), and the density of the working fluid at this time is 628.61 kg / m 3 .
 ここで、第2圧縮機5の吸入容積(m3)をVc、膨張機3の吸入容積(m3)をVe、1秒間あたりの動力回収軸7の回転数(S-1)をNとする。1秒間あたりに第2圧縮機5が吸入できる作動流体の質量(kg/s)と、1秒間あたりに膨張機3が吸入できる作動流体の質量(kg/s)とは、それぞれ、(式1)および(式2)で表すことができる。 Here, the suction volume (m 3 ) of the second compressor 5 is Vc, the suction volume (m 3 ) of the expander 3 is Ve, and the rotational speed (S −1 ) of the power recovery shaft 7 per second is N. To do. The mass (kg / s) of the working fluid that can be sucked by the second compressor 5 per second and the mass (kg / s) of the working fluid that can be sucked by the expander 3 per second are expressed by (Equation 1), respectively. ) And (Formula 2).
(式1)
 (1秒間あたりに第2圧縮機5が吸入できる作動流体の質量)
  =108.0×Vc×N
(Formula 1)
(Mass of working fluid that can be sucked by second compressor 5 per second)
= 108.0 × Vc × N
(式2)
 (1秒間あたりに膨張機3が吸入できる作動流体の質量)
  =628.61×Ve×N
(Formula 2)
(Mass of working fluid that the expander 3 can inhale per second)
= 628.61 × Ve × N
 1秒間あたりに第2圧縮機5が吸入できる作動流体の質量と、1秒間あたりに膨張機3が吸入できる作動流体の質量とが等しくなる場合、上記(式1)および(式2)より、第2圧縮機5の吸入容積Vcは(式3)で表される。 When the mass of the working fluid that can be sucked by the second compressor 5 per second and the mass of the working fluid that can be sucked by the expander 3 per second are equal, from the above (Formula 1) and (Formula 2), The suction volume Vc of the second compressor 5 is expressed by (Equation 3).
(式3)
 Vc=(628.61/108.0)×Ve≒5.8×Ve
(Formula 3)
Vc = (628.61 / 108.0) × Ve≈5.8 × Ve
 すなわち、冷凍サイクル装置500の起動時において、膨張機3は、膨張機3の約5.8倍の吸入容積を持つ第2圧縮機5を駆動させなければならない。また、第2圧縮機5が吸入するべき作動流体の密度と、膨張機3が吸入するべき作動流体の密度との比がより大きくなると、第2圧縮機5の吸入容積と、膨張機3の吸入容積との比もより大きくなる。つまり、膨張機3の吸入容積は、第2圧縮機5の吸入容積に対してより小さくなり、第2圧縮機5の起動時における膨張機3の駆動抵抗が相対的に大きくなる。したがって、冷凍サイクル装置500の運転条件によっては、起動時に、膨張機3が第2圧縮機5を駆動できない恐れがある。あるいは、第2圧縮機5の駆動に必要な駆動力を得るために、膨張機3の吸入口側に定常運転時に比して過剰な圧力を与える必要が生じ、耐圧等の安全性に問題が生じる恐れがある。 That is, when the refrigeration cycle apparatus 500 is activated, the expander 3 must drive the second compressor 5 having a suction volume approximately 5.8 times that of the expander 3. Further, when the ratio between the density of the working fluid to be sucked by the second compressor 5 and the density of the working fluid to be sucked by the expander 3 becomes larger, the suction volume of the second compressor 5 and the expander 3 The ratio to the suction volume is also increased. That is, the suction volume of the expander 3 is smaller than the suction volume of the second compressor 5, and the drive resistance of the expander 3 when the second compressor 5 is started is relatively large. Therefore, depending on the operating conditions of the refrigeration cycle apparatus 500, the expander 3 may not be able to drive the second compressor 5 at the time of startup. Alternatively, in order to obtain a driving force necessary for driving the second compressor 5, it is necessary to apply an excessive pressure to the suction port side of the expander 3 as compared with the steady operation, which causes a problem in safety such as a pressure resistance. May occur.
 本発明は、上記従来の課題を解決するものであり、確実に、安定して起動することができる冷凍サイクル装置を提供することを目的とする。 This invention solves the said conventional subject, and aims at providing the refrigerating-cycle apparatus which can be started stably reliably.
 すなわち、本発明は、
 作動流体を圧縮する第1圧縮機、前記第1圧縮機で圧縮された作動流体を放熱させる放熱器、前記放熱器で放熱した作動流体を膨張させて作動流体から動力を回収する膨張機、前記膨張機で膨張した作動流体を蒸発させる蒸発器、前記蒸発器で蒸発した作動流体を昇圧して前記第1圧縮機に供給する第2圧縮機、およびこれらの要素をこの順番で接続している流路、によって形成された作動流体回路と、
 前記膨張機で回収された動力によって前記第2圧縮機が駆動されるように、前記膨張機と前記第2圧縮機とを連結している動力回収軸と、
 前記第1圧縮機の吐出口から前記膨張機の吸入口までの前記作動流体回路の部分と、前記蒸発器の出口から前記第2圧縮機の吸入口までの前記作動流体回路の部分と、を連絡する第1バイパス路と、
 前記第1バイパス路に設けられ、前記第1バイパス路における作動流体の流通を制御する第1バイパス弁と、
 を備えた、冷凍サイクル装置を提供する。
That is, the present invention
A first compressor that compresses the working fluid; a radiator that dissipates heat from the working fluid compressed by the first compressor; an expander that recovers power from the working fluid by expanding the working fluid dissipated by the radiator; An evaporator that evaporates the working fluid expanded by the expander, a second compressor that pressurizes the working fluid evaporated by the evaporator and supplies the working fluid to the first compressor, and these elements are connected in this order. A working fluid circuit formed by a flow path;
A power recovery shaft connecting the expander and the second compressor so that the second compressor is driven by the power recovered by the expander;
A portion of the working fluid circuit from the outlet of the first compressor to the inlet of the expander; and a portion of the working fluid circuit from the outlet of the evaporator to the inlet of the second compressor. A first bypass to communicate with,
A first bypass valve that is provided in the first bypass passage and controls the flow of the working fluid in the first bypass passage;
A refrigeration cycle apparatus is provided.
 本発明の冷凍サイクル装置によれば、起動時に、第2圧縮機の吸入口へ、膨張機の吸入口に供給されるものと同等の高圧の作動流体を供給できる。他方、第2圧縮機の吐出口での圧力は、第1圧縮機の吸入口と同じ圧力、すなわち相対的に低圧になる。つまり、第2圧縮機の前後で大きい圧力差を生じさせることができる。そのため、本発明の冷凍サイクル装置は、運転条件によらず、確実に、安定して起動できる。 According to the refrigeration cycle apparatus of the present invention, a high-pressure working fluid equivalent to that supplied to the inlet of the expander can be supplied to the inlet of the second compressor at the time of startup. On the other hand, the pressure at the discharge port of the second compressor is the same as the suction port of the first compressor, that is, a relatively low pressure. That is, a large pressure difference can be generated before and after the second compressor. Therefore, the refrigeration cycle apparatus of the present invention can be reliably and stably started regardless of operating conditions.
本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷凍サイクル装置の起動制御のフロー図Flow chart of start-up control of the refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における冷凍サイクル装置の起動制御のフロー図Flow chart of start control of the refrigeration cycle apparatus in Embodiment 2 of the present invention 本発明の実施の形態3における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. 実施の形態1および2の冷凍サイクル装置の起動時の状態を示す概略図Schematic which shows the state at the time of starting of the refrigerating cycle apparatus of Embodiment 1 and 2 実施の形態3における冷凍サイクル装置の起動時の状態を示す概略図Schematic which shows the state at the time of starting of the refrigerating-cycle apparatus in Embodiment 3. FIG. 参考例における冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle system in the reference example 従来の冷凍サイクル装置の起動時における作動流体の流れを示す概略図Schematic showing the flow of working fluid at the time of startup of a conventional refrigeration cycle apparatus 実施の形態1、実施の形態2および参考例の冷凍サイクル装置の起動時における作動流体の流れを示す概略図Schematic showing the flow of working fluid when starting the refrigeration cycle apparatus of Embodiment 1, Embodiment 2 and Reference Example 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment 図9に示す冷凍サイクル装置の起動時の状態を示す概略図Schematic which shows the state at the time of starting of the refrigerating cycle apparatus shown in FIG. 従来の冷凍サイクル装置において二酸化炭素を作動流体として用いたときのモリエル線図Mollier diagram when carbon dioxide is used as working fluid in a conventional refrigeration cycle system
 以下、本発明のいくつかの実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.
(実施の形態1)
<冷凍サイクル装置100の構成>
 図1は、本発明の実施の形態1における冷凍サイクル装置100の構成図である。図1に示すように、冷凍サイクル装置100は、第1圧縮機101と、放熱器102と、膨張機103と、蒸発器104と、第2圧縮機105とを、流路(配管)106a~106eにより順次接続することによって形成された作動流体回路106を備えている。作動流体として、例えば、二酸化炭素等の冷媒を用いることができる。
(Embodiment 1)
<Configuration of refrigeration cycle apparatus 100>
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a first compressor 101, a radiator 102, an expander 103, an evaporator 104, and a second compressor 105 that are connected to flow paths (pipes) 106a to 106a. The working fluid circuit 106 is formed by connecting them sequentially by 106e. As the working fluid, for example, a refrigerant such as carbon dioxide can be used.
 第1圧縮機101は、潤滑油を貯留した1つの密閉容器101c内に、圧縮機構部101aと、圧縮機構部101aを駆動するモータ101bとを配置することで構成されており、作動流体を高温高圧に圧縮する。第1圧縮機101としては、例えば、スクロール式圧縮機やロータリ式圧縮機を用いることができる。第1圧縮機101の吐出口は、流路106aを介して放熱器102の入口に接続されている。 The first compressor 101 is configured by disposing a compression mechanism unit 101a and a motor 101b for driving the compression mechanism unit 101a in one sealed container 101c storing lubricating oil, so that the working fluid is heated to a high temperature. Compress to high pressure. As the first compressor 101, for example, a scroll compressor or a rotary compressor can be used. The discharge port of the first compressor 101 is connected to the inlet of the radiator 102 via the flow path 106a.
 放熱器102は、第1圧縮機101により圧縮された高温高圧の作動流体を放熱させる(冷却する)。放熱器102の出口は、流路106bを介して膨張機103の吸入口に接続されている。 The heat radiator 102 radiates (cools) the high-temperature and high-pressure working fluid compressed by the first compressor 101. The outlet of the radiator 102 is connected to the inlet of the expander 103 via the flow path 106b.
 膨張機103は、放熱器102から流出した中温高圧の作動流体を膨張させ、作動流体の膨張エネルギー(動力)を機械エネルギーに変換して回収する。膨張機103の吐出口は、流路106cを介して蒸発器104の入口に接続されている。膨張機103としては、例えば、スクロール式膨張機やロータリ式膨張機を用いることができる。さらに、膨張機103として、流体圧モータ式膨張機を用いることができる。流体圧モータ式膨張機とは、作動室内で実質的な膨張工程を行なわずに、放熱器102から作動流体を吸入する工程と、吸入した作動流体を蒸発器104へ吐出する工程とを連続して行うことで、作動流体から動力を回収する流体機械である。流体圧モータ式膨張機の詳細な構造および動作原理は、例えば、国際公開2008/050654号公報に開示されている。 The expander 103 expands the medium-temperature and high-pressure working fluid that has flowed out of the radiator 102, converts the expansion energy (power) of the working fluid into mechanical energy, and collects it. The discharge port of the expander 103 is connected to the inlet of the evaporator 104 through the flow path 106c. As the expander 103, for example, a scroll expander or a rotary expander can be used. Further, a fluid pressure motor type expander can be used as the expander 103. The fluid pressure motor type expander includes a process of sucking the working fluid from the radiator 102 and a process of discharging the sucked working fluid to the evaporator 104 without performing a substantial expansion process in the working chamber. This is a fluid machine that collects power from the working fluid. The detailed structure and operating principle of the fluid pressure motor type expander are disclosed in, for example, International Publication No. 2008/050654.
 蒸発器104は、膨張機103で膨張させた低温低圧の作動流体を加熱して蒸発させる。蒸発器104の出口は、流路106dを介して第2圧縮機105の吸入口に接続されている。 The evaporator 104 heats and evaporates the low-temperature and low-pressure working fluid expanded by the expander 103. The outlet of the evaporator 104 is connected to the suction port of the second compressor 105 through the flow path 106d.
 第2圧縮機105は、蒸発器104から流出した中温低圧の作動流体を吸入し、予備的に昇圧してから第1圧縮機101へ吐出する。第2圧縮機105の吐出口は、流路106eを介して第1圧縮機101の吸入口に接続されている。第2圧縮機105としては、スクロール式圧縮機やロータリ式圧縮機を用いることができる。さらに、第2圧縮機105として、流体圧モータ式圧縮機を用いることができる。流体圧モータ式圧縮機とは、蒸発器104から作動流体を吸入する工程と、吸入した作動流体を第1圧縮機101へ吐出する工程とを実質的に連続して行うことで、作動流体を昇圧する流体機械である。言い換えれば、流体圧モータ式圧縮機とは作動室内で実質的に作動流体の体積変化を生じさせない流体機械を意味する。流体圧モータ式圧縮機の構造は、基本的に、流体圧モータ式膨張機の構造と同じであり、先の文献に詳細に開示されている。 The second compressor 105 sucks the medium-temperature and low-pressure working fluid that has flowed out of the evaporator 104, preliminarily increases the pressure, and then discharges it to the first compressor 101. The discharge port of the second compressor 105 is connected to the suction port of the first compressor 101 via a flow path 106e. As the second compressor 105, a scroll compressor or a rotary compressor can be used. Furthermore, a fluid pressure motor type compressor can be used as the second compressor 105. The fluid pressure motor type compressor performs a process of sucking the working fluid from the evaporator 104 and a step of discharging the sucked working fluid to the first compressor 101, so that the working fluid is obtained. It is a fluid machine that boosts pressure. In other words, the fluid pressure motor type compressor means a fluid machine that does not substantially change the volume of the working fluid in the working chamber. The structure of the fluid pressure motor type compressor is basically the same as the structure of the fluid pressure motor type expander, and is disclosed in detail in the previous document.
 膨張機103と第2圧縮機105とは、潤滑油を貯留した1つの密閉容器109に収容されている。膨張機103は、動力回収軸107によって第2圧縮機105に連結されている。膨張機103、第2圧縮機105および動力回収軸107は、膨張機103で回収した機械エネルギー(動力)を、動力回収軸107を介して第2圧縮機105に伝えることで、第2圧縮機105を駆動する動力回収システム108として機能する。 The expander 103 and the second compressor 105 are accommodated in a single sealed container 109 that stores lubricating oil. The expander 103 is connected to the second compressor 105 by a power recovery shaft 107. The expander 103, the second compressor 105, and the power recovery shaft 107 transmit the mechanical energy (power) recovered by the expander 103 to the second compressor 105 via the power recovery shaft 107, so that the second compressor It functions as a power recovery system 108 that drives 105.
 本実施の形態1において、第2圧縮機105は、膨張機103の容積よりも大きい容積を有する。膨張機103の容積Veに対する第2圧縮機105の容積Vcの比率(Vc/Ve)は、例えば、5~15の範囲に設定される。特に、二酸化炭素のように大きい圧力差を持った冷凍サイクルを形成する作動流体を用いる場合には、比率(Vc/Ve)も大きくなりがちである。一般には、比率(Vc/Ve)が大きければ大きいほど、動力回収システム108を自立起動させるために、より大きい駆動力(トルク)が必要となる。なお、「第2圧縮機105の容積」とは、閉じ込め容積、すなわち吸入工程の完了時における作動室の容積を意味する。このことは、膨張機103についても同じである。 In the first embodiment, the second compressor 105 has a volume larger than that of the expander 103. The ratio (Vc / Ve) of the volume Vc of the second compressor 105 to the volume Ve of the expander 103 is set in the range of 5 to 15, for example. In particular, when a working fluid that forms a refrigeration cycle having a large pressure difference such as carbon dioxide is used, the ratio (Vc / Ve) tends to be large. In general, the larger the ratio (Vc / Ve), the larger the driving force (torque) is required to start the power recovery system 108 independently. The “volume of the second compressor 105” means the confined volume, that is, the volume of the working chamber when the suction process is completed. The same applies to the expander 103.
 冷凍サイクル装置100は、さらに、第1バイパス路112および第1バイパス弁113を備えている。第1バイパス路112は、放熱器102の出口と膨張機103の吸入口とを結ぶ流路106bと、蒸発器104の出口と第2圧縮機105の吸入口とを結ぶ流路106dとを連絡するように、作動流体回路106に接続されている。第1バイパス弁113は、第1バイパス路112に設けられており、第1バイパス路112における作動流体の流通を制御する。 The refrigeration cycle apparatus 100 further includes a first bypass passage 112 and a first bypass valve 113. The first bypass path 112 connects a flow path 106 b that connects the outlet of the radiator 102 and the suction port of the expander 103, and a flow path 106 d that connects the outlet of the evaporator 104 and the suction port of the second compressor 105. To the working fluid circuit 106. The first bypass valve 113 is provided in the first bypass passage 112 and controls the flow of the working fluid in the first bypass passage 112.
 第1バイパス路112の上流端K1は流路106bに接続され、第1バイパス路112の下流端K2は流路106dに接続されている。すなわち、第1バイパス路112は、動力回収軸107の回転前において、流路106b内の作動流体を、膨張機103および蒸発器104を迂回して、直接、第2圧縮機105に吸入させることができる流路である。    The upstream end K1 of the first bypass path 112 is connected to the flow path 106b, and the downstream end K2 of the first bypass path 112 is connected to the flow path 106d. That is, the first bypass passage 112 causes the second compressor 105 to directly suck the working fluid in the flow passage 106b bypassing the expander 103 and the evaporator 104 before the power recovery shaft 107 rotates. It is a flow path that can. *
 なお、冷凍サイクル装置100の起動時に第2圧縮機105の吸入口での圧力を高めることができる限りにおいて、上流端K1の位置は図1に示す位置に限定されない。すなわち、第1圧縮機101の吐出口から膨張機103の吸入口までの作動流体回路106の部分と、蒸発器104の出口から第2圧縮機105の吸入口までの作動流体回路106の部分と、を連絡できる限りにおいて、第1バイパス路112の上流端K1の位置は特に限定されない。具体的に、第1バイパス路112は、第1圧縮機101の吐出口と放熱器102の入口とを結ぶ流路106aと、蒸発器104の出口と第2圧縮機105の吸入口とを結ぶ流路106dとを連絡するように、作動流体回路106に接続されていてもよい。場合によっては、第1バイパス路112が放熱器102から分岐していてもよい。例えば、放熱器102が上流側部分と下流側部分とで構成されている場合には、その2つの部分の間から第1バイパス路112を容易に分岐させうる。 The position of the upstream end K1 is not limited to the position shown in FIG. 1 as long as the pressure at the suction port of the second compressor 105 can be increased when the refrigeration cycle apparatus 100 is started. That is, a part of the working fluid circuit 106 from the discharge port of the first compressor 101 to the suction port of the expander 103, and a part of the working fluid circuit 106 from the outlet of the evaporator 104 to the suction port of the second compressor 105 , The position of the upstream end K1 of the first bypass path 112 is not particularly limited. Specifically, the first bypass path 112 connects the flow path 106 a connecting the discharge port of the first compressor 101 and the inlet of the radiator 102, and the outlet of the evaporator 104 and the suction port of the second compressor 105. It may be connected to the working fluid circuit 106 so as to communicate with the flow path 106d. In some cases, the first bypass path 112 may branch from the radiator 102. For example, in the case where the radiator 102 includes an upstream portion and a downstream portion, the first bypass path 112 can be easily branched from between the two portions.
 第1バイパス弁113は、第1バイパス路112の上流端部に設けられている。「上流端部」とは、第1バイパス路112の全長をL1と定義したとき、上流端K1と、上流端K1から下流端K2に向かってL1/4進んだ位置との間の部分に相当する。ただし、第1バイパス弁113の位置は特に限定されず、例えば、第1バイパス路112の下流端部に設けられていてもよい。「下流端部」とは、下流端K2と、下流端K2から上流端K1に向かってL1/4進んだ位置との間の部分に相当する。本実施の形態1においては、第1バイパス弁113として開閉弁を用いたが、これに限られることはない。第1バイパス弁113が上流端K1または下流端K2の位置に設けられている場合、第1バイパス弁113として三方弁を用いることができる。三方弁を用いると、配管の接続箇所を削減できる利点がある。 The first bypass valve 113 is provided at the upstream end of the first bypass passage 112. The "upstream end", the part between the total length of the first bypass passage 112 when defining a L 1, and the upstream end K1, and L 1/4 advanced position towards the upstream end K1 to the downstream end K2 It corresponds to. However, the position of the first bypass valve 113 is not particularly limited, and may be provided, for example, at the downstream end of the first bypass path 112. The "downstream end", corresponds to the portion between the downstream end K2, and L 1/4 advanced position towards the downstream end K2 the upstream end K1. In Embodiment 1, an on-off valve is used as the first bypass valve 113, but the present invention is not limited to this. When the first bypass valve 113 is provided at the position of the upstream end K1 or the downstream end K2, a three-way valve can be used as the first bypass valve 113. The use of a three-way valve has the advantage of reducing the number of pipe connections.
 また、冷凍サイクル装置100は、蒸発器104の出口から第2圧縮機105の吸入口までの間であって、第1バイパス路112の下流端K2よりも蒸発器104の近くにおいて作動流体回路106に設けられた起動補助弁114を備えている。起動補助弁114は、流路106dにおける作動流体の流通を制御する。起動補助弁114として、開閉弁を使用できる。 Further, the refrigeration cycle apparatus 100 is between the outlet of the evaporator 104 and the inlet of the second compressor 105, and is closer to the evaporator 104 than the downstream end K <b> 2 of the first bypass path 112. Is provided with an auxiliary starting valve 114 provided in the main body. The start assist valve 114 controls the flow of the working fluid in the flow path 106d. An opening / closing valve can be used as the activation assist valve 114.
 第1バイパス弁113を開くと、第1バイパス路112を経由して、流路106b内の作動流体を第2圧縮機105の吸入口へと直接流すことができる。その際、起動補助弁114を閉じておくことで、蒸発器104から第2圧縮機105へ作動流体が流れることを防止できる。 When the first bypass valve 113 is opened, the working fluid in the flow path 106b can flow directly to the suction port of the second compressor 105 via the first bypass path 112. At that time, by closing the start assist valve 114, it is possible to prevent the working fluid from flowing from the evaporator 104 to the second compressor 105.
 冷凍サイクル装置100は、さらに、第2バイパス路110および第2バイパス弁111を備えている。第2バイパス路110は、膨張機103の吐出口と蒸発器104の入口とを結ぶ流路106cと、第2圧縮機105の吐出口と第1圧縮機101の吸入口とを結ぶ流路106eとを連絡するように、作動流体回路106に接続されている。すなわち、第2バイパス路110は、蒸発器104および第2圧縮機105を迂回している。第2バイパス弁111は、第2バイパス路110に設けられており、第2バイパス路110における作動流体の流通を制御する。 The refrigeration cycle apparatus 100 further includes a second bypass passage 110 and a second bypass valve 111. The second bypass path 110 is a flow path 106 c that connects the discharge port of the expander 103 and the inlet of the evaporator 104, and a flow path 106 e that connects the discharge port of the second compressor 105 and the suction port of the first compressor 101. Is connected to the working fluid circuit 106. That is, the second bypass passage 110 bypasses the evaporator 104 and the second compressor 105. The second bypass valve 111 is provided in the second bypass passage 110 and controls the flow of the working fluid in the second bypass passage 110.
 第2バイパス路110の上流端H1は流路106cに接続され、第2バイパス路110の下流端H2は流路106eに接続されている。すなわち、第2バイパス路110は、流路106c内の作動流体を、蒸発器104および第2圧縮機105を迂回して、直接、第1圧縮機101に吸入させることができる流路である。 The upstream end H1 of the second bypass path 110 is connected to the flow path 106c, and the downstream end H2 of the second bypass path 110 is connected to the flow path 106e. That is, the second bypass passage 110 is a passage through which the working fluid in the passage 106c can be directly sucked into the first compressor 101, bypassing the evaporator 104 and the second compressor 105.
 ただし、冷凍サイクル装置100の起動時に蒸発器104内の作動流体を第1圧縮機101が吸入できる限りにおいて、上流端H1の位置は図1に示す位置に限定されない。上流端H1は、膨張機103の吐出口から第1バイパス路112の下流端K2までの区間のどこに位置していてもよい。すなわち、第2バイパス路110は、蒸発器104の出口から第1バイパス路112の下流端K2までの作動流体回路106の部分(流路106dの一部)と、第2圧縮機105の吐出口から第1圧縮機101の吸入口までの作動流体回路106の部分(流路106e)とを連絡するように、作動流体回路106に接続されていてもよい。場合によっては、第2バイパス路110が蒸発器104から分岐していてもよい。例えば、蒸発器104が上流側部分と下流側部分とで構成されている場合には、その2つの部分の間から第2バイパス路110を容易に分岐させうる。 However, as long as the first compressor 101 can suck the working fluid in the evaporator 104 when the refrigeration cycle apparatus 100 is started, the position of the upstream end H1 is not limited to the position shown in FIG. The upstream end H <b> 1 may be located anywhere in the section from the discharge port of the expander 103 to the downstream end K <b> 2 of the first bypass path 112. That is, the second bypass path 110 includes a part of the working fluid circuit 106 (a part of the flow path 106d) from the outlet of the evaporator 104 to the downstream end K2 of the first bypass path 112, and a discharge port of the second compressor 105. May be connected to the working fluid circuit 106 so as to communicate with a portion of the working fluid circuit 106 (flow path 106e) from the first compressor 101 to the suction port of the first compressor 101. In some cases, the second bypass path 110 may branch from the evaporator 104. For example, when the evaporator 104 includes an upstream portion and a downstream portion, the second bypass passage 110 can be easily branched from between the two portions.
 第2バイパス弁111は、第2バイパス路110の上流端部に設けられている。「上流端部」とは、第2バイパス路111の全長をL2と定義したとき、上流端H1と、上流端H1から下流端H2に向かってL2/4進んだ位置との間の部分に相当する。第2バイパス弁111は、また、第2バイパス路111の下流端部に設けられていてもよい。「下流端部」とは、下流端H2と、下流端H2から上流端H1に向かってL2/4進んだ位置との間の部分に相当する。本実施の形態1においては、第2バイパス弁111として逆止弁を用いたが、これに限られることはなく、開閉弁あるいは三方弁を用いてもよい。 The second bypass valve 111 is provided at the upstream end of the second bypass passage 110. The "upstream end", the part between the total length of the second bypass passage 111 when defining a L 2, the upstream end H1, from the upstream end H1 towards the downstream end H2 L 2/4 advanced position It corresponds to. The second bypass valve 111 may also be provided at the downstream end of the second bypass path 111. The "downstream end", corresponds to a portion between the downstream end H2, and L 2/4 advanced position towards the downstream end H2 at the upstream end H1. In the first embodiment, a check valve is used as the second bypass valve 111. However, the present invention is not limited to this, and an on-off valve or a three-way valve may be used.
 第2バイパス弁111の出口での圧力が入口での圧力よりも低いとき、第2バイパス弁111により、流路106c内の作動流体を第2バイパス路110へ流すことができる。すなわち、流路106e内の圧力が、膨張機103の吐出口と第2圧縮機105の吸入口との間の流路(流路106c、蒸発器104、流路106d)内の圧力よりも低いときに、第2バイパス路110を経由して、流路106c内の作動流体を第1圧縮機101の吸入口へと直接流すことができる。 When the pressure at the outlet of the second bypass valve 111 is lower than the pressure at the inlet, the second bypass valve 111 allows the working fluid in the flow path 106c to flow to the second bypass path 110. That is, the pressure in the flow path 106e is lower than the pressure in the flow path (flow path 106c, evaporator 104, flow path 106d) between the discharge port of the expander 103 and the suction port of the second compressor 105. Sometimes, the working fluid in the flow path 106 c can flow directly to the suction port of the first compressor 101 via the second bypass passage 110.
 冷凍サイクル装置100は、また、第1バイパス弁113および起動補助弁114の開閉を制御する制御器117を備えている。第1バイパス弁113および起動補助弁114には、それぞれ、弁開閉手段115および116が設けられている。弁開閉手段115および116は、典型的には、弁を作動させるためのソレノイド等のアクチュエータで構成されており、制御器117により制御される。制御器117は、典型的には、マイクロコンピュータで構成されている。制御器117には、起動ボタンを設けた入力装置118が接続されている。入力装置118を通じて制御器117に操作指令が入力されると、制御器117の内部メモリに格納された所定の制御プログラムが実行される。例えば、起動ボタンがオンされると、入力装置118から制御器117へと起動指令(起動信号)が送られる。制御器117は、起動指令を取得することに応じて、図2を参照して後述する所定の起動制御を実行する。また、制御器117は、第1圧縮機101を動作させるモータ101bの動作を制御する。 The refrigeration cycle apparatus 100 also includes a controller 117 that controls opening and closing of the first bypass valve 113 and the start assist valve 114. The first bypass valve 113 and the startup assist valve 114 are provided with valve opening / closing means 115 and 116, respectively. The valve opening / closing means 115 and 116 are typically composed of actuators such as solenoids for operating the valves, and are controlled by the controller 117. The controller 117 is typically composed of a microcomputer. An input device 118 provided with a start button is connected to the controller 117. When an operation command is input to the controller 117 through the input device 118, a predetermined control program stored in the internal memory of the controller 117 is executed. For example, when a start button is turned on, a start command (start signal) is sent from the input device 118 to the controller 117. The controller 117 executes predetermined start control described later with reference to FIG. 2 in response to obtaining the start command. The controller 117 also controls the operation of the motor 101b that operates the first compressor 101.
 また、冷凍サイクル装置100は、第2圧縮機105が起動したことを検出するための起動検出器119を備えている。起動検出器119は、検出信号を制御器117に送信する。制御器117は、検出信号を取得することに基づいて、第2圧縮機105の起動を検出する。起動検出器119として、温度検出器、圧力検出器などを用いることができる。温度検出器としての起動検出器119は、例えば熱電対やサーミスタのような温度検出素子を含み、膨張機103に吸入されるべき作動流体との温度と、膨張機103から吐出された作動流体の温度との差ΔTを検出する。圧力検出器としての起動検出器119は、例えば圧電素子を含み、膨張機103に吸入されるべき作動流体の圧力と、膨張機103から吐出された作動流体の圧力との差ΔPを検出する。また、第1圧縮機101の起動時点からの経過時間を計測するタイマが、第2圧縮機105の起動を検出する起動検出器119として設けられていてもよい。このようなタイマは、制御器117の機能によっても提供されうる。この場合、制御器117自身が起動検出器119の役割を担うことができる。さらに、動力回収軸107の駆動を検出する接触式または非接触式の変位センサ、例えばエンコーダが、第2圧縮機105の起動を検出する起動検出器119として設けられていてもよい。 Further, the refrigeration cycle apparatus 100 includes an activation detector 119 for detecting that the second compressor 105 has been activated. The activation detector 119 transmits a detection signal to the controller 117. The controller 117 detects activation of the second compressor 105 based on obtaining the detection signal. As the activation detector 119, a temperature detector, a pressure detector, or the like can be used. The activation detector 119 as a temperature detector includes a temperature detection element such as a thermocouple or a thermistor, for example, and the temperature of the working fluid to be sucked into the expander 103 and the working fluid discharged from the expander 103. A difference ΔT from the temperature is detected. The activation detector 119 as a pressure detector includes, for example, a piezoelectric element, and detects a difference ΔP between the pressure of the working fluid to be sucked into the expander 103 and the pressure of the working fluid discharged from the expander 103. In addition, a timer that measures the elapsed time from the start point of the first compressor 101 may be provided as the start detector 119 that detects the start of the second compressor 105. Such a timer can also be provided by the function of the controller 117. In this case, the controller 117 itself can serve as the activation detector 119. Further, a contact-type or non-contact-type displacement sensor that detects driving of the power recovery shaft 107, for example, an encoder, may be provided as the activation detector 119 that detects activation of the second compressor 105.
 起動検出器119の種類によって、「第2圧縮機105が起動したこと」を検出する手法は、以下のように異なる。 Depending on the type of the activation detector 119, the method for detecting “the second compressor 105 has been activated” differs as follows.
 温度検出器の場合は、実験的または理論的に求められた所定の値T1が制御器117により設定される。制御器117では、温度検出器によって検出された温度差△Tが所定の値T1より大きくなることで、「第2圧縮機105が起動したこと」を検出する。 In the case of the temperature detector, a predetermined value T 1 obtained experimentally or theoretically is set by the controller 117. The controller 117 detects that the second compressor 105 has been started when the temperature difference ΔT detected by the temperature detector is greater than a predetermined value T 1 .
 圧力検出器の場合は、実験的または理論的に求められた所定の値P1が制御器117により設定される。制御器117では、圧力検出器によって検出された圧力差△Pが所定の値P1より大きくなることで、「第2圧縮機105が起動したこと」を検出する。 In the case of the pressure detector, a predetermined value P 1 obtained experimentally or theoretically is set by the controller 117. The controller 117 detects that the second compressor 105 has been started when the pressure difference ΔP detected by the pressure detector is greater than a predetermined value P 1 .
 温度差△Tと所定の値T1との比較、または圧力差ΔPと所定の値P1との比較によって第2圧縮機105の起動を検出できる理由は、次の通りである。第1圧縮機101を起動させたとき、第1圧縮機101から吐出された作動流体が、第1バイパス路112を通じて第2圧縮機105の吸入口に供給される。このことにより、動力回収システム108が起動する。このとき、第2圧縮機105が駆動源となるため、第1圧縮機101の吸入温度と第1圧縮機101の吐出温度との間に大きな温度差がつく前に動力回収システム108は回転し始める。動力回収システム108の回転開始時は冷凍サイクル装置100の圧力差が十分に大きくなっておらず、動力回収システム108を回転させる動力は小さい。そのため、動力回収システム108の回転数も低い。動力回収システム108の回転数が低いと、膨張機103の回転数も低い。この状態は、膨張弁で言うところの“絞っている状態”に相当する。したがって、第1圧縮機101の吐出温度および吐出圧力も徐々に上昇する。 The reason why the activation of the second compressor 105 can be detected by comparing the temperature difference ΔT with the predetermined value T 1 or comparing the pressure difference ΔP with the predetermined value P 1 is as follows. When the first compressor 101 is activated, the working fluid discharged from the first compressor 101 is supplied to the suction port of the second compressor 105 through the first bypass passage 112. As a result, the power recovery system 108 is activated. At this time, since the second compressor 105 serves as a drive source, the power recovery system 108 rotates before a large temperature difference occurs between the suction temperature of the first compressor 101 and the discharge temperature of the first compressor 101. start. At the start of rotation of the power recovery system 108, the pressure difference of the refrigeration cycle apparatus 100 is not sufficiently large, and the power for rotating the power recovery system 108 is small. Therefore, the rotational speed of the power recovery system 108 is also low. When the rotational speed of the power recovery system 108 is low, the rotational speed of the expander 103 is also low. This state corresponds to the “squeezed state” as referred to by the expansion valve. Therefore, the discharge temperature and discharge pressure of the first compressor 101 also gradually increase.
 第1圧縮機101の吐出温度および吐出圧力が上昇すれば、膨張機103および第2圧縮機105を回転させる動力も増加し、動力回収システム108の回転数は高くなる。そして、高回転数になると、慣性力の影響で動力回収システム108は安定して回転する。このような安定回転状態まで、第1バイパス路112を開放し続けることが望ましい。 If the discharge temperature and discharge pressure of the first compressor 101 rise, the power for rotating the expander 103 and the second compressor 105 also increases, and the rotational speed of the power recovery system 108 increases. When the rotational speed becomes high, the power recovery system 108 rotates stably due to the influence of inertial force. It is desirable to keep the first bypass path 112 open until such a stable rotation state.
 一方、膨張機103の吸入温度は、停止時の外気温度と略同一温度から、徐々に上昇する。膨張機103の吸入温度(または吸入圧力)によって、膨張機103の吐出温度(または吐出圧力)が決まる。例えば、外気温度が10℃である場合、動力回収システム108の起動時および動力回収システム108の定常運転時の各々における膨張機103の吸入温度、吐出温度、吸入圧力および吐出圧力は以下の通りである。なお、下記の値は膨張比=2.0で計算したものである。 On the other hand, the intake temperature of the expander 103 gradually increases from substantially the same temperature as the outside air temperature at the time of stop. The discharge temperature (or discharge pressure) of the expander 103 is determined by the suction temperature (or suction pressure) of the expander 103. For example, when the outside air temperature is 10 ° C., the suction temperature, the discharge temperature, the suction pressure, and the discharge pressure of the expander 103 when the power recovery system 108 is started up and during the steady operation of the power recovery system 108 are as follows. is there. The following values are calculated with an expansion ratio = 2.0.
<起動時>
 吸入温度:10℃、吸入圧力:5.0MPa、
 吐出温度:-3.0℃、吐出圧力:3.2MPa
 吸入温度と吐出温度との差:13℃
 吸入圧力と吐出圧力との差:1.8MPa
<定常時>
 吸入温度:40℃、吸入圧力:10.0MPa
 吐出温度:13.4℃、吐出圧力:4.9MPa
 吸入温度と吐出温度との差:26.6℃
 吸入圧力と吐出圧力との差:5.1MPa
<At startup>
Suction temperature: 10 ° C., Suction pressure: 5.0 MPa,
Discharge temperature: -3.0 ° C, discharge pressure: 3.2 MPa
Difference between suction temperature and discharge temperature: 13 ° C
Difference between suction pressure and discharge pressure: 1.8 MPa
<Normal time>
Suction temperature: 40 ° C., Suction pressure: 10.0 MPa
Discharge temperature: 13.4 ° C., discharge pressure: 4.9 MPa
Difference between suction temperature and discharge temperature: 26.6 ° C
Difference between suction pressure and discharge pressure: 5.1 MPa
 第1圧縮機101の吐出温度および吐出圧力が低い状態で動力回収システム108が起動すると、上記のように、膨張機103の吸入温度および膨張機103の吐出温度は、それぞれ、徐々に大きくなる。吸入温度と吐出温度との差も徐々に拡大する。このことは、圧力についても同様である。ゆえに、所定の値T1およびP1として適切な値(例えば、起動時の温度差および圧力差よりも少し大きい値)を設定することにより、第2圧縮機105の起動(動力回収システム108の起動)を検出できる。 When the power recovery system 108 is activated while the discharge temperature and discharge pressure of the first compressor 101 are low, the suction temperature of the expander 103 and the discharge temperature of the expander 103 gradually increase as described above. The difference between the suction temperature and the discharge temperature also gradually increases. The same applies to the pressure. Therefore, by setting appropriate values (for example, values slightly larger than the temperature difference and the pressure difference at the time of start-up) as the predetermined values T 1 and P 1 , the start-up of the second compressor 105 (the power recovery system 108 Can be detected.
 なお、温度差Δおよび圧力差ΔTに代えて、膨張機103の吐出温度または膨張機103の吐出圧力に基づいて、第2圧縮機105の起動を検出できる可能性がある。動力回収システム108が起動すると、膨張機103も回転する。膨張機103は、作動流体を吸入した後、吸入した作動流体を膨張させて吐出する。そのため、膨張機103から吐出された作動流体の温度および圧力は、吸入前よりも低い。膨張機103の吐出口での温度(または圧力)を時系列で監視するとともに、温度(または圧力)の急変を捉えることで第2圧縮機105が起動したものと判断できる。 Note that it is possible to detect the start of the second compressor 105 based on the discharge temperature of the expander 103 or the discharge pressure of the expander 103 instead of the temperature difference Δ and the pressure difference ΔT. When the power recovery system 108 is activated, the expander 103 also rotates. The expander 103 sucks the working fluid and then expands and discharges the sucked working fluid. Therefore, the temperature and pressure of the working fluid discharged from the expander 103 are lower than before the suction. While monitoring the temperature (or pressure) at the discharge port of the expander 103 in time series, it can be determined that the second compressor 105 has been activated by capturing a sudden change in temperature (or pressure).
 タイマの場合は、実験的または理論的に求められた所定時間tが制御器117により設定される。制御器117は、第1圧縮機101のモータ101bに制御信号を送信するとともに、タイマによる時間計測を開始する。タイマによって計測された時間が所定時間tを経過することで、制御器117は、「第2圧縮機105が起動したこと」を検出する。 In the case of a timer, the controller 117 sets a predetermined time t obtained experimentally or theoretically. The controller 117 transmits a control signal to the motor 101b of the first compressor 101 and starts measuring time with a timer. When the time measured by the timer elapses the predetermined time t, the controller 117 detects that “the second compressor 105 has started”.
 「所定時間t」は、制御器117において実行されるべき起動制御プログラムに記述されている。例えば、第1圧縮機101を起動してから第2圧縮機105が起動するまでの時間を様々な運転条件(外気温度等)で実際に測定する。そして、全ての運転条件において、第2圧縮機105が起動したと判断できる時間を「所定時間t」として設定しうる。理論的には、冷凍サイクル装置100のモデルを構築し、動力回収システム108を起動するために必要十分な圧力差を計算機シミュレーションで推定する。そして、第1圧縮機101の容積、作動流体回路106の作動流体の充填量等のパラメータを用い、推定した圧力差を作り出すために必要な初動時間を算出する。算出した初動時間を「所定時間t」として設定しうる。 “Predetermined time t” is described in the activation control program to be executed by the controller 117. For example, the time from the start of the first compressor 101 to the start of the second compressor 105 is actually measured under various operating conditions (outside air temperature or the like). And the time which can be judged that the 2nd compressor 105 started in all the operating conditions can be set as "predetermined time t". Theoretically, a model of the refrigeration cycle apparatus 100 is constructed, and a pressure difference necessary and sufficient to start the power recovery system 108 is estimated by computer simulation. Then, using parameters such as the volume of the first compressor 101 and the amount of working fluid in the working fluid circuit 106, the initial operation time required to create the estimated pressure difference is calculated. The calculated initial movement time can be set as “predetermined time t”.
<冷凍サイクル装置100の動作>
 図2は、冷凍サイクル装置100の起動制御のフロー図である。冷凍サイクル装置100は、図2に示す起動制御の実行後、定常運転を開始する。運転待機状態において、第1圧縮機101は停止し、第1バイパス弁113は閉鎖、起動補助弁114は開放されており、作動流体回路106内の作動流体の圧力は略均一である。なお、作動流体と熱交換するべき流体(空気または水)を放熱器102に流すためのファンまたはポンプは、起動制御の終了後に作動させる。同様に、作動流体と熱交換するべき流体を蒸発器104に流すためのファンまたはポンプも起動制御の終了後に作動させる。
<Operation of the refrigeration cycle apparatus 100>
FIG. 2 is a flowchart of the start-up control of the refrigeration cycle apparatus 100. The refrigeration cycle apparatus 100 starts steady operation after executing the startup control shown in FIG. In the operation standby state, the first compressor 101 is stopped, the first bypass valve 113 is closed, the start assist valve 114 is opened, and the pressure of the working fluid in the working fluid circuit 106 is substantially uniform. Note that the fan or pump for flowing the fluid (air or water) to be exchanged with the working fluid through the radiator 102 is operated after the start control is completed. Similarly, the fan or pump for flowing the fluid to be exchanged with the working fluid to the evaporator 104 is also operated after the start control is completed.
 ステップS11において入力装置118から起動指令を取得することに応じて、第1バイパス弁113を開放かつ起動補助弁114を閉鎖するように、制御器117は、弁開閉手段115および116に制御信号を送信する(ステップS12)。これにより、第1バイパス路112は開通し、流路106dは蒸発器104の出口と第1バイパス路112の下流端K2との間で閉鎖される。 In response to obtaining the activation command from the input device 118 in step S11, the controller 117 sends a control signal to the valve opening / closing means 115 and 116 so as to open the first bypass valve 113 and close the activation auxiliary valve 114. Transmit (step S12). Accordingly, the first bypass passage 112 is opened, and the flow passage 106d is closed between the outlet of the evaporator 104 and the downstream end K2 of the first bypass passage 112.
 続いて、制御器117は、第1圧縮機101を起動するべく、モータ101bへの給電を開始する(ステップS13)。これにより、第1圧縮機101には、流路106eおよび第2バイパス路110内の作動流体が吸入される。なお、第1圧縮機101の起動前に第1バイパス弁113を開放する代わりに、第1圧縮機101の起動に応じて第1バイパス弁113を開放してもよい。同様に、第1圧縮機101の起動に応じて、起動補助弁114を閉鎖してもよい。すなわち、第1圧縮機101の起動後かつ動力回収軸107の回転前に、作動流体が第1バイパス路112を流通できる状態になっていれば問題ない。 Subsequently, the controller 117 starts power supply to the motor 101b to start the first compressor 101 (step S13). Accordingly, the working fluid in the flow path 106e and the second bypass path 110 is sucked into the first compressor 101. Instead of opening the first bypass valve 113 before starting the first compressor 101, the first bypass valve 113 may be opened according to the start of the first compressor 101. Similarly, the start assist valve 114 may be closed in response to the start of the first compressor 101. In other words, there is no problem as long as the working fluid can flow through the first bypass passage 112 after the first compressor 101 is started and before the power recovery shaft 107 is rotated.
 第1圧縮機101への作動流体の吸入が開始されると、流路106eおよび第2バイパス路110内の圧力が低下する。これにより、第2バイパス弁111が開放され、第2バイパス路110には、第2バイパス弁111よりも上流側の作動流体、すなわち、膨張機103の吐出口から起動補助弁114までの流路(流路106c、蒸発器104、流路106dの一部)内の作動流体が流入する。第2バイパス路110に流入した作動流体は、第1圧縮機101に吸入および圧縮されて、流路106aに吐出される。したがって、膨張機103の吐出口から起動補助弁114までの流路(流路106c、蒸発器104、流路106dの一部)内の圧力は低下する。 When the suction of the working fluid into the first compressor 101 is started, the pressure in the flow path 106e and the second bypass path 110 decreases. As a result, the second bypass valve 111 is opened, and a working fluid upstream of the second bypass valve 111, that is, a flow path from the discharge port of the expander 103 to the auxiliary start valve 114 is provided in the second bypass passage 110. The working fluid in (flow path 106c, evaporator 104, part of flow path 106d) flows in. The working fluid that has flowed into the second bypass passage 110 is sucked and compressed by the first compressor 101 and discharged to the flow path 106a. Therefore, the pressure in the flow path (flow path 106c, evaporator 104, and part of flow path 106d) from the discharge port of the expander 103 to the auxiliary start valve 114 decreases.
 一方、第1圧縮機101が起動すると、第1圧縮機101の吐出口から膨張機103の吸入口までの流路(流路106a、放熱器102、流路106b)内の圧力が上昇する。圧縮された作動流体は、第1バイパス路112を通じて、起動補助弁114と第2圧縮機105の吸入口との間の流路106dにも流入する。これにより、起動補助弁114から第2圧縮機105の吸入口までの流路(流路106dの一部)内の圧力が上昇する。 On the other hand, when the first compressor 101 is started, the pressure in the flow path (flow path 106a, radiator 102, flow path 106b) from the discharge port of the first compressor 101 to the suction port of the expander 103 increases. The compressed working fluid also flows into the flow path 106 d between the auxiliary starting valve 114 and the suction port of the second compressor 105 through the first bypass passage 112. As a result, the pressure in the flow path (a part of the flow path 106d) from the auxiliary start valve 114 to the suction port of the second compressor 105 increases.
 その結果、図6Aに示すように、膨張機103および第2圧縮機105の各吸入口での圧力が相対的に高くなり、膨張機103および第2圧縮機105の各吐出口での圧力が相対的に低くなる。すなわち、膨張機103の吸入口と吐出口との間だけでなく、第2圧縮機105の吸入口と吐出口との間にも、圧力差を生じさせることができる。作動流体の圧力差が、膨張機103および第2圧縮機105の各々に作用するので、動力回収システム108を容易に自立起動させることができる。 As a result, as shown in FIG. 6A, the pressure at each suction port of the expander 103 and the second compressor 105 becomes relatively high, and the pressure at each discharge port of the expander 103 and the second compressor 105 is increased. Relatively low. That is, a pressure difference can be generated not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Since the pressure difference of the working fluid acts on each of the expander 103 and the second compressor 105, the power recovery system 108 can be easily activated independently.
 制御器117は、起動検出器119を通じて、第2圧縮機105が起動したことを検出すると(ステップS14)、第1バイパス弁113を閉鎖かつ起動補助弁114を開放するように、弁開閉手段115および116に制御信号を送信する(ステップS15)。具体的に、制御器117は、起動検出器119からの検出信号を受けて第2圧縮機105の起動を検出し、その後、第1バイパス弁113を閉鎖かつ起動補助弁114を開放する。これにより、第1バイパス路112は閉鎖され、流路106dは開通する。起動制御の終了後、冷凍サイクル装置100は、作動流体回路106に作動流体を循環させる定常運転に移行する。 When the controller 117 detects that the second compressor 105 is activated through the activation detector 119 (step S14), the valve opening / closing means 115 is closed so as to close the first bypass valve 113 and open the activation auxiliary valve 114. And 116 are transmitted to the control signal (step S15). Specifically, the controller 117 receives the detection signal from the activation detector 119, detects the activation of the second compressor 105, and then closes the first bypass valve 113 and opens the activation auxiliary valve 114. As a result, the first bypass path 112 is closed and the flow path 106d is opened. After the start control ends, the refrigeration cycle apparatus 100 shifts to a steady operation in which the working fluid is circulated through the working fluid circuit 106.
 定常運転への移行時、第2圧縮機105の昇圧作用により、第2バイパス路110の下流端H2での圧力は、上流端H1での圧力を上回る。そのため、逆止弁である第2バイパス弁111が閉鎖される。流路106e、および、第2バイパス弁111よりも下流側における第2バイパス路110内の圧力は、流路106c、蒸発器104および流路106d内の圧力よりも高いため、第2バイパス弁111は閉鎖状態を維持する。これにより、定常運転中において、作動流体は、作動流体回路106を循環する。 During the transition to the steady operation, the pressure at the downstream end H2 of the second bypass passage 110 exceeds the pressure at the upstream end H1 due to the pressurizing action of the second compressor 105. Therefore, the second bypass valve 111 that is a check valve is closed. Since the pressure in the second bypass passage 110 on the downstream side of the flow path 106e and the second bypass valve 111 is higher than the pressure in the flow path 106c, the evaporator 104, and the flow path 106d, the second bypass valve 111. Will remain closed. Thereby, the working fluid circulates through the working fluid circuit 106 during steady operation.
 なお、外気温度等の条件にもよるが、冷凍サイクル装置100の起動時に第2圧縮機105が液相の作動流体を吸入する可能性がある。そのため、第2圧縮機105として、先に説明した流体圧モータ式圧縮機を好適に採用できる。流体圧モータ式圧縮機によると、作動室内で実質的に作動流体の体積変化を生じさせないので、液相の作動流体の吸入をある程度許容できるからである。 Although depending on conditions such as the outside air temperature, there is a possibility that the second compressor 105 sucks the liquid-phase working fluid when the refrigeration cycle apparatus 100 is started. Therefore, the fluid pressure motor type compressor described above can be suitably used as the second compressor 105. This is because the fluid pressure motor type compressor does not substantially change the volume of the working fluid in the working chamber, so that the suction of the liquid phase working fluid can be allowed to some extent.
 また、定常運転時に第1圧縮機101が作動流体を吸入する際、作動流体を圧縮機構部101aに閉じ込めることに基づいて流路106eで圧力脈動が発生する可能性がある。本実施の形態1によると、第2バイパス路110の一部(第2バイパス弁111から下流端H2までの部分)が、流路106eの容積を拡張させるバッファ空間として機能しうる。そのため、流路106eで発生した圧力脈動の脈動幅の緩和を期待でき、ひいては冷凍サイクル装置100の動作の信頼性を高めることができる。 In addition, when the first compressor 101 sucks the working fluid during steady operation, there is a possibility that pressure pulsation may occur in the flow path 106e based on confining the working fluid in the compression mechanism 101a. According to the first embodiment, a part of the second bypass passage 110 (portion from the second bypass valve 111 to the downstream end H2) can function as a buffer space for expanding the volume of the flow path 106e. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106e can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 100 can be improved.
 同様に、第2圧縮機105が作動流体を吸入する際、作動流体を第2圧縮機105の作動室に閉じ込めることに基づいて流路106dで圧力脈動が発生する可能性がある。本実施の形態1によると、第1バイパス路112の一部(第1バイパス弁113から下流端K2までの部分)が、流路106dの容積を拡張させるバッファ空間として機能しうる。そのため、流路106dで発生した圧力脈動の脈動幅の緩和を期待でき、ひいては冷凍サイクル装置100の動作の信頼性を高めることができる。 Similarly, when the second compressor 105 sucks the working fluid, pressure pulsation may occur in the flow path 106d based on the working fluid confined in the working chamber of the second compressor 105. According to the first embodiment, a part of the first bypass passage 112 (a portion from the first bypass valve 113 to the downstream end K2) can function as a buffer space for expanding the volume of the flow path 106d. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106d can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 100 can be improved.
 冷凍サイクル装置100の運転を停止するには、例えば、第1圧縮機101の回転数を漸次減少させる。第1圧縮機101の停止後、作動流体は、第1圧縮機101、膨張機103および第2圧縮機105を十分な時間をかけて移動する。そのため、作動流体回路106における圧力差は自然に解消され、略均一圧力となって安定する。これにより、膨張機103および第2圧縮機105も自然と停止する。 In order to stop the operation of the refrigeration cycle apparatus 100, for example, the rotational speed of the first compressor 101 is gradually decreased. After the first compressor 101 is stopped, the working fluid moves through the first compressor 101, the expander 103, and the second compressor 105 over a sufficient time. Therefore, the pressure difference in the working fluid circuit 106 is naturally eliminated, and becomes a substantially uniform pressure and stabilized. Thereby, the expander 103 and the 2nd compressor 105 also stop naturally.
<冷凍サイクル装置100の効果>
 本実施の形態1によれば、冷凍サイクル装置100の起動時において、第1バイパス弁113は開放、起動補助弁114は閉鎖されている。そのため、第1圧縮機101の吐出口から膨張機103の吸入口までの流路内の作動流体を、第1バイパス路112を通じて、第2圧縮機105の吸入口へ供給できる。これにより、第2圧縮機105の吸入口での圧力を上昇させることができる。また、流路106eに加えて、膨張機103の吐出口から起動補助弁114までの流路内の作動流体を、第2バイパス路110を通じて、直接、第1圧縮機101へ供給できる。
<Effect of refrigeration cycle apparatus 100>
According to the first embodiment, when the refrigeration cycle apparatus 100 is activated, the first bypass valve 113 is opened and the activation assist valve 114 is closed. Therefore, the working fluid in the flow path from the discharge port of the first compressor 101 to the suction port of the expander 103 can be supplied to the suction port of the second compressor 105 through the first bypass passage 112. Thereby, the pressure at the suction port of the second compressor 105 can be increased. In addition to the flow path 106 e, the working fluid in the flow path from the discharge port of the expander 103 to the activation assist valve 114 can be directly supplied to the first compressor 101 through the second bypass path 110.
 一方、第1圧縮機101が作動流体を吸入し始めると、流路106eおよび第2バイパス弁111よりも下流側における第2バイパス路110内の圧力が低下する。これにより、逆止弁である第2バイパス弁111が開放される。第2バイパス路110には、膨張機103の吐出口から起動補助弁114までの流路内の作動流体が流入し、第2バイパス路110および流路106e内の作動流体とともに、第1圧縮機101に吸入される。 On the other hand, when the first compressor 101 starts to suck the working fluid, the pressure in the second bypass passage 110 on the downstream side of the flow passage 106e and the second bypass valve 111 decreases. Thereby, the 2nd bypass valve 111 which is a check valve is opened. The working fluid in the flow path from the discharge port of the expander 103 to the auxiliary start valve 114 flows into the second bypass path 110, and together with the working fluid in the second bypass path 110 and the flow path 106e, the first compressor 101 is inhaled.
 以上に説明したように、冷凍サイクル装置100によれば、膨張機103の吸入口と吐出口との間だけでなく、第2圧縮機105の吸入口と吐出口との間にも圧力差が生じうる。そのため、動力回収システム108を安定かつ確実に起動させることができ、ひいては冷凍サイクル装置100の信頼性も向上する。 As described above, according to the refrigeration cycle apparatus 100, there is a pressure difference not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Can occur. Therefore, the power recovery system 108 can be started stably and reliably, and as a result, the reliability of the refrigeration cycle apparatus 100 is improved.
(実施の形態2)
<冷凍サイクル装置200の構成>
 図3は、本発明の実施の形態2における冷凍サイクル装置200の構成図である。図3に示すように、冷凍サイクル装置200は、第1バイパス弁201として三方弁を用いている点で、実施の形態1と相違する。つまり、第1バイパス弁201は、実施の形態1における第1バイパス弁113および起動補助弁114の両方の役割を担う。本実施の形態2において、実施の形態1と共通部品については同一符号を付し、その詳細な説明は省略する。
(Embodiment 2)
<Configuration of refrigeration cycle apparatus 200>
FIG. 3 is a configuration diagram of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention. As shown in FIG. 3, the refrigeration cycle apparatus 200 is different from the first embodiment in that a three-way valve is used as the first bypass valve 201. That is, the first bypass valve 201 serves as both the first bypass valve 113 and the activation assist valve 114 in the first embodiment. In this Embodiment 2, the same code | symbol is attached | subjected about Embodiment 1 and a common part, The detailed description is abbreviate | omitted.
 本実施の形態2において、第1バイパス弁201は、第1バイパス路112の下流端K2と流路106dとの接合部に設けられている。これにより、第1バイパス路112の開閉と、流路106dの開閉とを1つの弁で簡便に行うことができる。具体的には、(a)流路106dを開通し、第1バイパス路112を閉鎖した状態(例えば、定常運転時)と、(b)第1バイパス路112を開通し、流路106dを第1バイパス路112の下流端K2との接合部で閉鎖した状態(例えば、起動制御時)との間で、作動流体の経路を簡便に切り替えることができる。このように、本実施の形態2では、冷凍サイクル装置200の構成を簡素化することができる。なお、第1バイパス弁201は、第1バイパス路112の上流端K1と流路106bとの接合部に設けられていてもよい。 In the second embodiment, the first bypass valve 201 is provided at the junction between the downstream end K2 of the first bypass path 112 and the flow path 106d. Thereby, the opening and closing of the first bypass path 112 and the opening and closing of the flow path 106d can be easily performed with one valve. Specifically, (a) the flow path 106d is opened and the first bypass path 112 is closed (for example, during steady operation), and (b) the first bypass path 112 is opened and the flow path 106d is The path of the working fluid can be easily switched between the closed state (for example, during start-up control) at the junction with the downstream end K2 of the one bypass path 112. Thus, in Embodiment 2, the configuration of the refrigeration cycle apparatus 200 can be simplified. The first bypass valve 201 may be provided at the joint between the upstream end K1 of the first bypass passage 112 and the flow path 106b.
 第1バイパス弁201には、弁切替手段202が設けられている。弁切替手段202は、典型的には、ソレノイド等のアクチュエータで構成されており、制御器117により制御される。 The first bypass valve 201 is provided with a valve switching means 202. The valve switching means 202 is typically composed of an actuator such as a solenoid and is controlled by the controller 117.
<冷凍サイクル装置200の動作>
 図4は、冷凍サイクル装置200の起動制御のフロー図である。冷凍サイクル装置200は、図4に示す起動制御の実行後、定常運転を開始する。運転待機状態において、第1圧縮機101は停止し、第1バイパス弁201により流路106dは開通し、第1バイパス路112は閉鎖されている(上記(a)の状態)。作動流体回路106内の作動流体の圧力は略均一である。
<Operation of refrigeration cycle apparatus 200>
FIG. 4 is a flowchart of activation control of the refrigeration cycle apparatus 200. The refrigeration cycle apparatus 200 starts steady operation after executing the start-up control shown in FIG. In the operation standby state, the first compressor 101 is stopped, the flow path 106d is opened by the first bypass valve 201, and the first bypass path 112 is closed (state (a) above). The pressure of the working fluid in the working fluid circuit 106 is substantially uniform.
 ステップS21において入力装置118から起動指令を取得することに応じて、先に説明した(a)の状態から(b)の状態へと切り替わるように、制御器117は、弁制御手段202に制御信号を送信する(ステップS22)。 In response to the acquisition of the activation command from the input device 118 in step S21, the controller 117 sends a control signal to the valve control means 202 so as to switch from the state (a) described above to the state (b). Is transmitted (step S22).
 続いて、制御器117は、第1圧縮機101を起動するべく、モータ101bへの給電を開始する(ステップS23)。これにより、第1圧縮機101には、流路106eおよび第2バイパス路110内の作動流体が吸入される。ステップS22の処理は、第1圧縮機101の起動に応じて実行しても構わない。 Subsequently, the controller 117 starts power supply to the motor 101b to start the first compressor 101 (step S23). Accordingly, the working fluid in the flow path 106e and the second bypass path 110 is sucked into the first compressor 101. The process of step S22 may be executed in response to the activation of the first compressor 101.
 第1圧縮機101への作動流体の吸入が開始されると、流路106eおよび第2バイパス路110内の圧力が低下する。これにより、第2バイパス弁111が開放され、第2バイパス路110には、第2バイパス弁111よりも上流側の作動流体、すなわち、膨張機103の吐出口から第1バイパス弁201までの流路(流路106c、蒸発器104、流路106dの一部)内の作動流体が流入する。第2バイパス路110に流入した作動流体は、第1圧縮機101に吸入および圧縮されて、流路106aに吐出される。したがって、膨張機103の吐出口から第1バイパス弁201までの流路(流路106c、蒸発器104、流路106dの一部)内の圧力も低下する。 When the suction of the working fluid into the first compressor 101 is started, the pressure in the flow path 106e and the second bypass path 110 decreases. As a result, the second bypass valve 111 is opened, and the working fluid upstream of the second bypass valve 111, that is, the flow from the discharge port of the expander 103 to the first bypass valve 201 flows into the second bypass passage 110. The working fluid in the channel (the channel 106c, the evaporator 104, and part of the channel 106d) flows in. The working fluid that has flowed into the second bypass passage 110 is sucked and compressed by the first compressor 101 and discharged to the flow path 106a. Accordingly, the pressure in the flow path from the discharge port of the expander 103 to the first bypass valve 201 (the flow path 106c, the evaporator 104, and a part of the flow path 106d) also decreases.
 一方、第1圧縮機101が起動すると、第1圧縮機101の吐出口から膨張機103の吸入口までの流路(流路106a、放熱器102、流路106b)内の圧力が上昇する。圧縮された作動流体は、第1バイパス路112を通じて、第1バイパス弁201と第2圧縮機105の吸入口との間の流路106dにも流入する。これにより、第1バイパス弁201から第2圧縮機105の吸入口までの流路(流路106dの一部)内の圧力が上昇する。実施の形態1と同様に、図6Aに示す状態が形成され、動力回収システム108を容易に自立起動させることができる。 On the other hand, when the first compressor 101 is started, the pressure in the flow path (flow path 106a, radiator 102, flow path 106b) from the discharge port of the first compressor 101 to the suction port of the expander 103 increases. The compressed working fluid also flows into the flow path 106 d between the first bypass valve 201 and the suction port of the second compressor 105 through the first bypass passage 112. Thereby, the pressure in the flow path (a part of the flow path 106d) from the first bypass valve 201 to the suction port of the second compressor 105 increases. Similar to the first embodiment, the state shown in FIG. 6A is formed, and the power recovery system 108 can be easily activated independently.
 制御器117は、起動検出器119を通じて、第2圧縮機105が起動したことを検出すると(ステップS24)、先に説明した(b)の状態から(a)の状態へと切り替わるように、弁切替手段202に制御信号を送信する(ステップS25)。これにより、第1バイパス弁201が切り替えられて、第1バイパス路112が閉鎖される。起動制御の終了後、冷凍サイクル装置200は定常運転に移行する。 When the controller 117 detects that the second compressor 105 is started through the start detector 119 (step S24), the controller 117 switches the state from the state (b) described above to the state (a). A control signal is transmitted to the switching means 202 (step S25). Thereby, the first bypass valve 201 is switched and the first bypass passage 112 is closed. After the start control ends, the refrigeration cycle apparatus 200 shifts to a steady operation.
 本実施の形態2においても、第2バイパス路110の一部(第2バイパス弁111から下流端H2までの部分)は、流路106eの容積を拡張させるバッファ空間として機能しうる。したがって、実施の形態1で説明したように、流路106eで発生した圧力脈動の脈動幅の緩和を期待することができ、ひいては冷凍サイクル装置200の動作の信頼性を高めることができる。 Also in the second embodiment, a part of the second bypass passage 110 (a portion from the second bypass valve 111 to the downstream end H2) can function as a buffer space for expanding the volume of the flow path 106e. Therefore, as described in the first embodiment, it is possible to expect relaxation of the pulsation width of the pressure pulsation generated in the flow path 106e, and as a result, the reliability of the operation of the refrigeration cycle apparatus 200 can be improved.
 同様に、第1バイパス路112は、流路106bの容積を拡張させるバッファ空間として機能しうる。したがって、流路106bで発生する圧力脈動の脈動幅の緩和を期待でき、ひいては冷凍サイクル装置200の動作の信頼性を高めることができる。 Similarly, the first bypass path 112 can function as a buffer space for expanding the volume of the flow path 106b. Therefore, relaxation of the pulsation width of the pressure pulsation generated in the flow path 106b can be expected, and as a result, the operation reliability of the refrigeration cycle apparatus 200 can be improved.
<冷凍サイクル装置200の効果>
 本実施の形態2によれば、冷凍サイクル装置200の起動時において、第1バイパス路112は開通、流路106dは第1バイパス路112の下流端K2との接合部で閉鎖されている。そのため、第1圧縮機101の吐出口から膨張機103の吸入口までの流路内の作動流体を、第1バイパス路112を通じて、第2圧縮機105の吸入口へ供給できる。これにより、第2圧縮機105の吸入口での圧力を上昇させることができる。また、流路106eに加えて、膨張機103の吐出口から第1バイパス弁201までの流路内の作動流体を、第2バイパス路110を通じて、直接、第1圧縮機101へ供給できる。
<Effect of refrigeration cycle apparatus 200>
According to the second embodiment, when the refrigeration cycle apparatus 200 is activated, the first bypass path 112 is opened, and the flow path 106d is closed at the junction with the downstream end K2 of the first bypass path 112. Therefore, the working fluid in the flow path from the discharge port of the first compressor 101 to the suction port of the expander 103 can be supplied to the suction port of the second compressor 105 through the first bypass passage 112. Thereby, the pressure at the suction port of the second compressor 105 can be increased. In addition to the flow path 106 e, the working fluid in the flow path from the discharge port of the expander 103 to the first bypass valve 201 can be directly supplied to the first compressor 101 through the second bypass path 110.
 一方、第1圧縮機101が作動流体を吸入し始めると、流路106eおよび第2バイパス弁111よりも下流側における第2バイパス路110内の圧力が低下する。これにより、逆止弁である第2バイパス弁111が開放される。第2バイパス路110には、膨張機103の吐出口から第1バイパス弁201までの流路内の作動流体が流入し、第2バイパス路110および流路106e内の作動流体とともに、第1圧縮機101に吸入される。 On the other hand, when the first compressor 101 starts to suck the working fluid, the pressure in the second bypass passage 110 on the downstream side of the flow passage 106e and the second bypass valve 111 decreases. Thereby, the 2nd bypass valve 111 which is a check valve is opened. The working fluid in the flow path from the discharge port of the expander 103 to the first bypass valve 201 flows into the second bypass path 110, and the first compression is performed together with the working fluid in the second bypass path 110 and the flow path 106e. Inhaled into machine 101.
 また、冷凍サイクル装置200によれば、起動時に、蒸発器104および第2圧縮機105による作動流体の圧力損失を回避して、第1圧縮機101が吸入するべき作動流体の圧力低下を抑制することができ、第1圧縮機101が作動流体を昇圧する動力を低減させることができる。 Further, according to the refrigeration cycle apparatus 200, the pressure loss of the working fluid to be sucked by the first compressor 101 is suppressed by avoiding the pressure loss of the working fluid by the evaporator 104 and the second compressor 105 at the time of startup. Therefore, it is possible to reduce the power with which the first compressor 101 boosts the working fluid.
 以上に説明したように、冷凍サイクル装置200によれば、膨張機103の吸入口と吐出口との間だけでなく、第2圧縮機105の吸入口と吐出口との間にも圧力差が生じうる。そのため、動力回収システム108を安定かつ確実に起動させることができ、ひいては冷凍サイクル装置200の信頼性も向上する。 As described above, according to the refrigeration cycle apparatus 200, there is a pressure difference not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105. Can occur. Therefore, the power recovery system 108 can be started stably and reliably, and the reliability of the refrigeration cycle apparatus 200 is also improved.
(実施の形態3)
 実施の形態1および2によると、第2バイパス路110および第2バイパス弁111が設けられている。しかし、これらが常に必要というわけではない。すなわち、図5に示すように、第2バイパス路110および第2バイパス弁111を省略した構成の冷凍サイクル装置300を提案できる。
(Embodiment 3)
According to the first and second embodiments, the second bypass passage 110 and the second bypass valve 111 are provided. However, these are not always necessary. That is, as shown in FIG. 5, a refrigeration cycle apparatus 300 having a configuration in which the second bypass passage 110 and the second bypass valve 111 are omitted can be proposed.
 冷凍サイクル装置300によると、起動時に第1バイパス弁113を開放かつ起動補助弁114を閉鎖する。動力回収システム108が起動していない状態において、第1圧縮機101は、流路106e内の作動流体のみを吸入できる。すなわち、第1圧縮機101が吸入できる作動流体の量に着目すると、本実施の形態3は、実施の形態1および2よりも不利かもしれない。しかし、本実施の形態3によっても、膨張機103の吸入口と吐出口との間だけでなく、第2圧縮機105の吸入口と吐出口との間にも圧力差が生じうる(図6A参照)。したがって、第2バイパス路110および第2バイパス弁111を省略したとしても、動力回収システム108を容易かつ確実に起動できる。 According to the refrigeration cycle apparatus 300, the first bypass valve 113 is opened and the activation auxiliary valve 114 is closed at the time of activation. In a state where the power recovery system 108 is not activated, the first compressor 101 can suck only the working fluid in the flow path 106e. That is, if attention is paid to the amount of working fluid that can be sucked by the first compressor 101, the third embodiment may be more disadvantageous than the first and second embodiments. However, according to the third embodiment, a pressure difference can be generated not only between the suction port and the discharge port of the expander 103 but also between the suction port and the discharge port of the second compressor 105 (FIG. 6A). reference). Therefore, even if the second bypass passage 110 and the second bypass valve 111 are omitted, the power recovery system 108 can be easily and reliably activated.
 さらに、冷凍サイクル装置300から起動補助弁114を省略することも可能である。その場合、図6Bに示すように、第2圧縮機105の吸入口と吐出口との間でのみ圧力差が生じる。しかし、膨張機103の容積よりも第2圧縮機105の容積が十分に大きい場合、膨張機103の駆動抵抗よりも第2圧縮機105の駆動抵抗が相対的に大きい。したがって、図10に示す状態よりも図6Bに示す状態の方が、動力回収システム108の起動にとって有利である。 Furthermore, it is possible to omit the auxiliary start valve 114 from the refrigeration cycle apparatus 300. In that case, as shown in FIG. 6B, a pressure difference is generated only between the suction port and the discharge port of the second compressor 105. However, when the volume of the second compressor 105 is sufficiently larger than the volume of the expander 103, the drive resistance of the second compressor 105 is relatively larger than the drive resistance of the expander 103. Therefore, the state shown in FIG. 6B is more advantageous for starting the power recovery system 108 than the state shown in FIG.
(参考例)
 図7に示す冷凍サイクル装置400は、バイパス路110の上流端H1の位置が従来の冷凍サイクル装置500(図9参照)と異なる。具体的には、バイパス路110の上流端H1が、膨張機103の吐出口と蒸発器104の入口とを結ぶ流路106c上に位置している。冷凍サイクル装置400のその他の構成は、起動の検出方法等も含め、図1等を参照して説明した冷凍サイクル装置100と同じである。
(Reference example)
The refrigeration cycle apparatus 400 shown in FIG. 7 differs from the conventional refrigeration cycle apparatus 500 (see FIG. 9) in the position of the upstream end H1 of the bypass passage 110. Specifically, the upstream end H <b> 1 of the bypass passage 110 is located on the flow path 106 c that connects the discharge port of the expander 103 and the inlet of the evaporator 104. Other configurations of the refrigeration cycle apparatus 400 are the same as those of the refrigeration cycle apparatus 100 described with reference to FIG.
 冷凍サイクル装置400によれば、図9を参照して説明した冷凍サイクル装置500と同様に、第2圧縮機105の吸入口と吐出口との間に圧力差を生じさせることができない。しかし、冷凍サイクル装置400によれば、バイパス路110の上流端H1の位置の違いに基づき、次のような有意な効果が得られる。すなわち、冷凍サイクル装置400によれば、起動前後の一定期間において、蒸発器104および第2圧縮機105による作動流体の圧力損失を回避でき、それにより、第1圧縮機101が吸入するべき作動流体の圧力低下を抑制できる。その結果、第1圧縮機101が作動流体を昇圧するのに必要な動力を低減でき、ひいては、より迅速に安定した運転状態を形成しやすくなる。 According to the refrigeration cycle apparatus 400, as in the refrigeration cycle apparatus 500 described with reference to FIG. 9, a pressure difference cannot be generated between the suction port and the discharge port of the second compressor 105. However, according to the refrigeration cycle apparatus 400, the following significant effects can be obtained based on the difference in the position of the upstream end H1 of the bypass passage 110. That is, according to the refrigeration cycle apparatus 400, pressure loss of the working fluid due to the evaporator 104 and the second compressor 105 can be avoided in a certain period before and after the start, and thereby the working fluid that the first compressor 101 should suck The pressure drop can be suppressed. As a result, the power required for the first compressor 101 to increase the pressure of the working fluid can be reduced, and as a result, it becomes easier to form a stable operating state more quickly.
 図8Aに示すように、従来の冷凍サイクル装置500(図9)の停止時において、蒸発器4内の比較的下流部分に液相の作動流体が溜まりやすい。このことは、図10のモリエル線図からも理解できる。蒸発器4の内部に液相の作動流体が溜まった状態で冷凍サイクル装置500を起動すると、流路10cおよび10d内の気相の作動流体と、蒸発器4内の気相の作動流体とが、蒸発器4の中を通って第1圧縮機1または第2圧縮機5に進む。作動流体が比較的長い距離を移動するので、圧力損失も比較的大きい。さらに、第1圧縮機101に液相の作動流体が吸入される可能性もあるし、液相の作動流体が抵抗となって圧力損失が増える可能性もある。 As shown in FIG. 8A, when the conventional refrigeration cycle apparatus 500 (FIG. 9) is stopped, the liquid-phase working fluid tends to accumulate in a relatively downstream portion in the evaporator 4. This can be understood from the Mollier diagram of FIG. When the refrigeration cycle apparatus 500 is started in a state where the liquid-phase working fluid is accumulated in the evaporator 4, the gas-phase working fluid in the flow paths 10c and 10d and the gas-phase working fluid in the evaporator 4 are separated. Then, the process proceeds through the evaporator 4 to the first compressor 1 or the second compressor 5. Since the working fluid travels a relatively long distance, the pressure loss is also relatively large. Further, there is a possibility that the liquid working fluid is sucked into the first compressor 101, and there is a possibility that the pressure loss increases due to the resistance of the liquid working fluid.
 これに対し、本参考例の冷凍サイクル装置400によると、図8に示すように、気相の作動流体が蒸発器104の中を逆流するとともに、バイパス路110を通って第1圧縮機101に直接に吸い込まれる。液相の作動流体は蒸発器104内を気化しながら移動し、バイパス路110を通って第1圧縮機101に吸い込まれる。こうして、蒸発器104内の圧力、すなわち、第1圧縮機101の吸入圧力が略一定に保たれる。液相の作動流体が抵抗になったりせず、気相の作動流体の圧力損失は比較的小さい。また、起動時に液相の作動流体が第1圧縮機101に吸入される可能性も低いので、より安定した起動を実現できる。 On the other hand, according to the refrigeration cycle apparatus 400 of the present reference example, as shown in FIG. 8, the gas-phase working fluid flows back through the evaporator 104 and passes through the bypass 110 to the first compressor 101. Inhaled directly. The liquid-phase working fluid moves while vaporizing in the evaporator 104, and is sucked into the first compressor 101 through the bypass 110. Thus, the pressure in the evaporator 104, that is, the suction pressure of the first compressor 101 is kept substantially constant. The liquid-phase working fluid does not become resistive, and the pressure loss of the gas-phase working fluid is relatively small. In addition, since the liquid phase working fluid is unlikely to be sucked into the first compressor 101 at the time of activation, more stable activation can be realized.
 なお、実施の形態1および2の冷凍サイクル装置100および200もバイパス路110を備えているので、起動時に上記効果を得ることができる。 In addition, since the refrigeration cycle apparatuses 100 and 200 of Embodiments 1 and 2 also include the bypass passage 110, the above-described effects can be obtained at the time of startup.
 本発明の冷凍サイクル装置は、給湯機、空気調和装置、乾燥機等の機器に有用である。 The refrigeration cycle apparatus of the present invention is useful for equipment such as a water heater, an air conditioner, and a dryer.

Claims (19)

  1.  作動流体を圧縮する第1圧縮機、前記第1圧縮機で圧縮された作動流体を放熱させる放熱器、前記放熱器で放熱した作動流体を膨張させて作動流体から動力を回収する膨張機、前記膨張機で膨張した作動流体を蒸発させる蒸発器、前記蒸発器で蒸発した作動流体を昇圧して前記第1圧縮機に供給する第2圧縮機、およびこれらの要素をこの順番で接続している流路、によって形成された作動流体回路と、
     前記膨張機で回収された動力によって前記第2圧縮機が駆動されるように、前記膨張機と前記第2圧縮機とを連結している動力回収軸と、
     前記第1圧縮機の吐出口から前記膨張機の吸入口までの前記作動流体回路の部分と、前記蒸発器の出口から前記第2圧縮機の吸入口までの前記作動流体回路の部分と、を連絡する第1バイパス路と、
     前記第1バイパス路に設けられ、前記第1バイパス路における作動流体の流通を制御する第1バイパス弁と、
     を備えた、冷凍サイクル装置。
    A first compressor that compresses the working fluid; a radiator that dissipates heat from the working fluid compressed by the first compressor; an expander that recovers power from the working fluid by expanding the working fluid dissipated by the radiator; An evaporator that evaporates the working fluid expanded by the expander, a second compressor that pressurizes the working fluid evaporated by the evaporator and supplies the working fluid to the first compressor, and these elements are connected in this order. A working fluid circuit formed by a flow path;
    A power recovery shaft connecting the expander and the second compressor so that the second compressor is driven by the power recovered by the expander;
    A portion of the working fluid circuit from the outlet of the first compressor to the inlet of the expander; and a portion of the working fluid circuit from the outlet of the evaporator to the inlet of the second compressor. A first bypass to communicate with,
    A first bypass valve that is provided in the first bypass passage and controls the flow of the working fluid in the first bypass passage;
    A refrigeration cycle apparatus comprising:
  2.  前記蒸発器の出口から前記第2圧縮機の吸入口までの間であって前記第1バイパス路の下流端よりも前記蒸発器の近くにおいて前記作動流体回路に設けられた起動補助弁をさらに備えた、請求項1に記載の冷凍サイクル装置。 And a starting auxiliary valve provided in the working fluid circuit between the outlet of the evaporator and the inlet of the second compressor and closer to the evaporator than the downstream end of the first bypass passage. The refrigeration cycle apparatus according to claim 1.
  3.  前記第1バイパス弁は、前記第1バイパス路の上流端部または下流端部に設けられている、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the first bypass valve is provided at an upstream end portion or a downstream end portion of the first bypass passage.
  4.  前記第1バイパス弁は、開閉弁または三方弁である、請求項2または3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2 or 3, wherein the first bypass valve is an on-off valve or a three-way valve.
  5.  前記膨張機の吐出口から前記第1バイパス路の下流端までの前記作動流体回路の部分と、前記第2圧縮機の吐出口から前記第1圧縮機の吸入口までの前記作動流体回路の部分と、を連絡する第2バイパス路をさらに備えた、請求項1~4のいずれか1項に記載の冷凍サイクル装置。 The portion of the working fluid circuit from the discharge port of the expander to the downstream end of the first bypass passage, and the portion of the working fluid circuit from the discharge port of the second compressor to the suction port of the first compressor The refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising a second bypass passage that communicates with each other.
  6.  前記第2バイパス路に設けられ、前記第2バイパス路における作動流体の流通を制御する第2バイパス弁をさらに備えた、請求項5に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 5, further comprising a second bypass valve that is provided in the second bypass passage and controls the flow of the working fluid in the second bypass passage.
  7.  前記第1圧縮機の起動前に、または前記第1圧縮機の起動に応じて、前記第1バイパス弁を開放する、請求項2~4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 2 to 4, wherein the first bypass valve is opened before starting the first compressor or in response to starting the first compressor.
  8.  前記第2圧縮機の起動後に、前記第1バイパス弁を閉鎖する、請求項2~4のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 2 to 4, wherein the first bypass valve is closed after the second compressor is started.
  9.  前記第2圧縮機の起動を検出する起動検出器と、
     前記第1バイパス弁の開閉を制御する制御器と、をさらに備え、
     前記制御器は、前記起動検出器からの検出信号を受けて前記第2圧縮機の起動を検出し、前記第1バイパス弁を閉鎖する、請求項8に記載の冷凍サイクル装置。
    An activation detector for detecting activation of the second compressor;
    A controller for controlling opening and closing of the first bypass valve,
    The refrigeration cycle apparatus according to claim 8, wherein the controller receives a detection signal from the activation detector, detects activation of the second compressor, and closes the first bypass valve.
  10.  前記起動検出器は、前記膨張機に吸入されるべき作動流体との温度と、前記膨張機から吐出された作動流体の温度との差を検出する温度検出器であり、
     前記温度差が所定の値より大きくなることで、前記第2圧縮機の起動を検出する、請求項9に記載の冷凍サイクル装置。
    The activation detector is a temperature detector that detects a difference between a temperature of the working fluid to be sucked into the expander and a temperature of the working fluid discharged from the expander;
    The refrigeration cycle apparatus according to claim 9, wherein the start of the second compressor is detected when the temperature difference becomes larger than a predetermined value.
  11.  前記起動検出器は、前記膨張機に吸入されるべき作動流体の圧力と、前記膨張機から吐出された作動流体の圧力との差を検出する圧力検出器であり、
     前記圧力差が所定の値より大きくなることで、前記第2圧縮機の起動を検出する、請求項9に記載の冷凍サイクル装置。
    The activation detector is a pressure detector for detecting a difference between a pressure of the working fluid to be sucked into the expander and a pressure of the working fluid discharged from the expander;
    The refrigeration cycle apparatus according to claim 9, wherein activation of the second compressor is detected when the pressure difference is greater than a predetermined value.
  12.  前記起動検出器は、前記第1圧縮機の起動時点からの経過時間を計測するタイマであり、
     前記タイマによって計測された時間が所定時間を経過することで、前記副第2圧縮機の起動を検出する、請求項9に記載の冷凍サイクル装置。
    The activation detector is a timer that measures an elapsed time from the activation time of the first compressor,
    The refrigeration cycle apparatus according to claim 9, wherein the start of the sub second compressor is detected when a predetermined time has elapsed by the time measured by the timer.
  13.  前記第1圧縮機の起動前に、または前記第1圧縮機の起動に応じて、前記起動補助弁を閉鎖する、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the start assist valve is closed before the first compressor is started or in response to the start of the first compressor.
  14.  前記第2圧縮機の起動後に、前記起動補助弁を開放する、請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the start auxiliary valve is opened after the second compressor is started.
  15.  前記第2圧縮機の起動を検出する起動検出器と、
     前記起動補助弁の開閉を制御する制御器と、をさらに備え、
     前記制御器は、前記起動検出器からの検出信号を受けて前記第2圧縮機の起動を検出し、前記起動補助弁を開放する、請求項14に記載の冷凍サイクル装置。
    An activation detector for detecting activation of the second compressor;
    A controller for controlling opening and closing of the start assist valve,
    The refrigeration cycle apparatus according to claim 14, wherein the controller receives a detection signal from the activation detector, detects activation of the second compressor, and opens the activation assist valve.
  16.  前記起動検出器は、前記膨張機に吸入されるべき作動流体との温度と、前記膨張機から吐出された作動流体の温度との差を検出する温度検出器であり、
     前記温度差が所定の値より大きくなることで、前記第2圧縮機の起動を検出する、請求項15に記載の冷凍サイクル装置。
    The activation detector is a temperature detector that detects a difference between a temperature of the working fluid to be sucked into the expander and a temperature of the working fluid discharged from the expander;
    The refrigeration cycle apparatus according to claim 15, wherein the start of the second compressor is detected when the temperature difference becomes larger than a predetermined value.
  17.  前記起動検出器は、前記膨張機に吸入されるべき作動流体の圧力と、前記膨張機から吐出された作動流体の圧力との差を検出する圧力検出器であり、
     前記圧力差が所定の値より大きくなることで、前記第2圧縮機の起動を検出する、請求項15に記載の冷凍サイクル装置。
    The activation detector is a pressure detector for detecting a difference between a pressure of the working fluid to be sucked into the expander and a pressure of the working fluid discharged from the expander;
    The refrigeration cycle apparatus according to claim 15, wherein the activation of the second compressor is detected when the pressure difference becomes larger than a predetermined value.
  18.  前記起動検出器は、前記第1圧縮機の起動時点からの経過時間を計測するタイマであり、
     前記タイマによって計測された時間が所定時間を経過することで、前記副第2圧縮機の起動を検出する、請求項15に記載の冷凍サイクル装置。
    The activation detector is a timer that measures an elapsed time from the activation time of the first compressor,
    The refrigeration cycle apparatus according to claim 15, wherein the start of the sub second compressor is detected when a predetermined time has elapsed by the time measured by the timer.
  19.  前記膨張機と前記第2圧縮機とが1つの密閉容器に収容されている、請求項1~18のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 18, wherein the expander and the second compressor are accommodated in a single sealed container.
PCT/JP2009/007066 2008-12-22 2009-12-21 Refrigeration cycle device WO2010073586A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010543836A JPWO2010073586A1 (en) 2008-12-22 2009-12-21 Refrigeration cycle equipment
US13/140,331 US20110247358A1 (en) 2008-12-22 2009-12-21 Refrigeration cycle apparatus
CN200980151528.6A CN102257332B (en) 2008-12-22 2009-12-21 Refrigeration cycle device
EP09834397.3A EP2381190A4 (en) 2008-12-22 2009-12-21 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-325208 2008-12-22
JP2008325208 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010073586A1 true WO2010073586A1 (en) 2010-07-01

Family

ID=42287235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007066 WO2010073586A1 (en) 2008-12-22 2009-12-21 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20110247358A1 (en)
EP (1) EP2381190A4 (en)
JP (1) JPWO2010073586A1 (en)
CN (1) CN102257332B (en)
WO (1) WO2010073586A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765369A1 (en) * 2011-09-01 2014-08-13 Mitsubishi Electric Corporation Refrigeration cycle device
JP2020051630A (en) * 2018-09-21 2020-04-02 株式会社富士通ゼネラル Refrigeration cycle device
WO2022118729A1 (en) * 2020-12-01 2022-06-09 株式会社前川製作所 Refrigerator, and method of operation during pre-cooling of refrigerator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904870B1 (en) * 2012-01-30 2018-10-08 엘지전자 주식회사 Apparatus and method for controlling compressor, and refrigerator having the same
KR101955977B1 (en) * 2012-01-30 2019-03-08 엘지전자 주식회사 Apparatus and method for controlling compressor, and refrigerator having the same
JP6197745B2 (en) * 2013-07-31 2017-09-20 株式会社デンソー Refrigeration cycle equipment for vehicles
JP6276000B2 (en) * 2013-11-11 2018-02-07 株式会社前川製作所 Expander-integrated compressor, refrigerator, and operation method of refrigerator
KR102016827B1 (en) 2015-05-01 2019-08-30 가부시끼가이샤 마에가와 세이사꾸쇼 How to operate freezer and freezer
EP3655718A4 (en) 2017-07-17 2021-03-17 Alexander Poltorak Multi-fractal heat sink system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286968A (en) * 1990-03-31 1991-12-17 Aisin Seiki Co Ltd Cryogenic freezer device
JP2003307358A (en) 2002-04-15 2003-10-31 Sanden Corp Refrigeration air conditioner
JP2004251558A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Refrigeration cycle device and its control method
JP2006071257A (en) * 2004-08-06 2006-03-16 Daikin Ind Ltd Refrigeration cycle device
JP2007155277A (en) * 2005-12-08 2007-06-21 Valeo Thermal Systems Japan Corp Refrigerating cycle
WO2008050654A1 (en) 2006-10-25 2008-05-02 Panasonic Corporation Refrigeration cycle device and fluid machine used for the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044736B2 (en) * 1990-03-30 2000-05-22 ヤマハ株式会社 Air conditioning duct noise attenuator
JP2001141315A (en) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd Refrigerating air conditioner
JP3897681B2 (en) * 2002-10-31 2007-03-28 松下電器産業株式会社 Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP4321095B2 (en) * 2003-04-09 2009-08-26 日立アプライアンス株式会社 Refrigeration cycle equipment
CN100575817C (en) * 2005-05-06 2009-12-30 松下电器产业株式会社 Refrigerating circulatory device
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
CN101568776B (en) * 2006-10-27 2011-03-09 开利公司 Economized refrigeration cycle with expander
US20100058781A1 (en) * 2006-12-26 2010-03-11 Alexander Lifson Refrigerant system with economizer, intercooler and multi-stage compressor
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
ATE550612T1 (en) * 2007-05-22 2012-04-15 Angelantoni Ind Spa COOLING DEVICE AND METHOD FOR CIRCULATING A COOLING FLUID ASSOCIATED WITH IT
EP2476973B9 (en) * 2009-10-07 2019-02-13 Mitsubishi Electric Corporation Refrigeration cycle device
JPWO2011135779A1 (en) * 2010-04-30 2013-07-18 パナソニック株式会社 Fluid machinery and refrigeration cycle equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286968A (en) * 1990-03-31 1991-12-17 Aisin Seiki Co Ltd Cryogenic freezer device
JP2003307358A (en) 2002-04-15 2003-10-31 Sanden Corp Refrigeration air conditioner
JP2004251558A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Refrigeration cycle device and its control method
JP2006071257A (en) * 2004-08-06 2006-03-16 Daikin Ind Ltd Refrigeration cycle device
JP2007155277A (en) * 2005-12-08 2007-06-21 Valeo Thermal Systems Japan Corp Refrigerating cycle
WO2008050654A1 (en) 2006-10-25 2008-05-02 Panasonic Corporation Refrigeration cycle device and fluid machine used for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381190A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765369A1 (en) * 2011-09-01 2014-08-13 Mitsubishi Electric Corporation Refrigeration cycle device
EP2765369A4 (en) * 2011-09-01 2015-04-22 Mitsubishi Electric Corp Refrigeration cycle device
US9395105B2 (en) 2011-09-01 2016-07-19 Mitsubishi Electric Corporation Refrigeration cycle device
JP2020051630A (en) * 2018-09-21 2020-04-02 株式会社富士通ゼネラル Refrigeration cycle device
JP7192347B2 (en) 2018-09-21 2022-12-20 株式会社富士通ゼネラル refrigeration cycle equipment
WO2022118729A1 (en) * 2020-12-01 2022-06-09 株式会社前川製作所 Refrigerator, and method of operation during pre-cooling of refrigerator

Also Published As

Publication number Publication date
EP2381190A4 (en) 2013-10-02
US20110247358A1 (en) 2011-10-13
EP2381190A1 (en) 2011-10-26
CN102257332A (en) 2011-11-23
CN102257332B (en) 2013-08-14
JPWO2010073586A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2010073586A1 (en) Refrigeration cycle device
JP5367164B2 (en) Refrigeration cycle equipment
JP4053082B2 (en) Refrigeration cycle equipment
WO2011161952A1 (en) Refrigeration cycle apparatus
JP5163620B2 (en) Waste heat regeneration system
JP4906962B2 (en) Refrigeration cycle equipment
US7886550B2 (en) Refrigerating machine
JP4682677B2 (en) Heat cycle equipment
JP5068966B2 (en) Heat pump heat recovery device
JP2012504220A (en) Control of the flash tank economizer cycle
JP5036593B2 (en) Refrigeration cycle equipment
JP2007009897A (en) Heat cycle device, and high pressure protective device
JP4976970B2 (en) Refrigeration cycle equipment
JP3894190B2 (en) Heat pump water heater
JP5473213B2 (en) Air conditioner
WO2006112157A1 (en) Refrigeration cycle device and method of operating the same
US9121278B2 (en) Positive displacement expander and refrigeration cycle apparatus including positive displacement expander
JP5012706B2 (en) Heat pump cycle
JP4179267B2 (en) Heat pump water heater
JP6616235B2 (en) Waste heat recovery system
JP2012102968A (en) Refrigerating cycle device
JP2006162186A (en) Refrigerating cycle device
JP2005106413A (en) Refrigerant cycle device
JP2012098000A (en) Refrigeration cycle apparatus
JP2004324930A (en) Vapor compression refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151528.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543836

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13140331

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009834397

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE