WO2010071011A1 - Method for producing acetic acid ester - Google Patents

Method for producing acetic acid ester Download PDF

Info

Publication number
WO2010071011A1
WO2010071011A1 PCT/JP2009/069908 JP2009069908W WO2010071011A1 WO 2010071011 A1 WO2010071011 A1 WO 2010071011A1 JP 2009069908 W JP2009069908 W JP 2009069908W WO 2010071011 A1 WO2010071011 A1 WO 2010071011A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
olefin
acetic acid
ion exchange
exchange resin
Prior art date
Application number
PCT/JP2009/069908
Other languages
French (fr)
Japanese (ja)
Inventor
真一朗 柳川
朝子 田村
彰 松尾
秀怜 近藤
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to JP2010542927A priority Critical patent/JPWO2010071011A1/en
Priority to CN2009801504101A priority patent/CN102264685A/en
Publication of WO2010071011A1 publication Critical patent/WO2010071011A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to a method for producing an acetate ester. More specifically, the present invention relates to a method for producing an acetate ester that can obtain an acetate ester useful as a solvent or a fragrance, such as isopropyl acetate or butyl acetate, with excellent selectivity and reaction efficiency using a specific catalyst.
  • styrene sulfonic acid type cation exchange resin or a phenolic sulfonic acid type cation exchange resin has been conventionally used (Patent Documents 1 to 6).
  • the styrene sulfonic acid type cation exchange resin is obtained by sulfonating a crosslinked resin obtained by copolymerizing styrene and a compound having a plurality of unsaturated side chains such as divinylbenzene.
  • the phenolic sulfonic acid type cation exchange resin is usually obtained by condensing phenolsulfonic acid with formaldehyde or the like.
  • styrene sulfonic acid type cation exchange resin or phenolic sulfonic acid type cation exchange resin used for the production of acetate ester by addition reaction of olefin and acetic acid the amount of sulfonic acid group added to benzene ring The ion exchange capacity was small.
  • acetic anhydride and water by-product due to acetic acid dehydration reaction are unavoidable due to the use at high temperature, and side reactions such as hydration reaction of olefin also occur, and olefin oligomerization and polymerization reaction are also added.
  • the effective utilization rate decreases.
  • a benzenesulfonic acid type cation exchange resin catalyst having a large ion exchange capacity is also known.
  • the use of a catalyst having a large ion exchange capacity may cause oligomerization of the olefin.
  • An object of the present invention is to provide a method for producing an acetate ester with a high selectivity with a long catalyst life by suppressing a decrease in the olefin polymerization reaction and the catalyst life resulting therefrom or a reduction in the effective utilization of olefins derived from side reactions. Is to provide.
  • the present inventors have obtained a porous specific structure ion exchange resin, In addition, by using a resin having an ion exchange capacity of 4.8 mmol / g or more, the activity of the addition reaction of olefin and acetic acid is remarkably increased, and the degree of the increase is more than estimated from the magnitude of the ion exchange capacity. The present inventors discovered a new fact that it is much larger and the selectivity of the acetate ester in the addition reaction is not decreased in spite of the increased activity.
  • the present inventors use an ion exchange resin having the above-described specific structure and an ion exchange capacity of 4.8 mmol / g or more to perform an ester formation reaction by addition reaction of olefin and acetic acid. Further, by maintaining the olefin conversion rate under specific conditions, it was found that an acetic acid ester was obtained with high selectivity and a decrease in catalyst activity could be suppressed, and the present invention was achieved. That is, for the first time, the present invention makes it possible to produce an ester from olefin and acetic acid in a high yield with a long catalyst life.
  • the catalyst in a method for producing an acetate ester by reacting an olefin such as propylene with acetic acid, has a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, and is porous.
  • a method for producing an acetate ester characterized by using a porous cation exchange resin having an ion exchange capacity of 4.8 mmol / g or more.
  • the manufacturing method of acetate ester characterized by performing esterification reaction on specific reaction conditions using the said ion exchange resin is provided.
  • the production method of the present invention uses a specific porous cation exchange resin, it suppresses side reactions such as polymerization reaction of olefin, and has a long catalyst life and high selectivity from olefin and acetic acid even under mild conditions.
  • the acetate can be produced with When the resulting acetate is isopropyl acetate or butyl acetate, it is useful as a solvent for ink, a solvent for paint, or a solvent for adhesives. It is also useful as a perfume raw material.
  • isopropyl acetate obtained by the production method of the present invention is an environmentally superior solvent with a low content of acetaldehyde that causes odor and sick house disease and ethanol that becomes acetaldehyde by oxidation.
  • the present invention uses a specific ion exchange resin as a catalyst in a method for producing an acetate ester by reacting an olefin and acetic acid.
  • the catalyst used in the present invention is a porous cation exchange resin that has a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, is porous, and has a specific ion exchange capacity.
  • the porous cation exchange resin has a large number of macropores in its polymer matrix and usually exhibits a large surface area of about 20 m 2 / g or more. The surface area can be determined by the BET method.
  • a cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene in addition to those used in the present invention, so-called gel ion exchange resins having different production methods are well known.
  • the gel type ion exchange resin has few effective macropores in its polymer matrix and has a very small surface area. When such an ion exchange resin is used as a catalyst, even if it has the same chemical structure and the ion exchange capacity is 4.8 mmol / g or more, the desired effect of the present invention cannot be obtained.
  • the ion exchange capacity of the porous cation exchange resin used in the present invention is 4.8 mmol / g or more.
  • the ion exchange capacity is less than 4.8 mmol / g, the addition reaction activity of olefin and acetic acid is greatly reduced. Further, even when the ion exchange capacity is large, when the gel ion exchange resin is used, the activity of the addition reaction of olefin with acetic acid is low, and a desired effect cannot be obtained.
  • the reaction temperature is increased in order to achieve a sufficient reaction rate, an olefin polymerization reaction also occurs, and the selectivity for the formation of acetate to the olefin is reduced. As a result, the polymer is deposited on the catalyst surface. There is a possibility that the catalytic activity may be lowered, and furthermore, since the temperature is high, a dehydration reaction of acetic acid is likely to occur.
  • the ion exchange capacity is a value obtained by an ion exchange reaction using a sodium chloride solution, by exchanging protons of sodium sulfonate groups and sodium ions, and neutralizing titrating the amount of hydrogen chloride produced. Desired.
  • the ion exchange reaction is represented by the following formula. R-SO 3 H + NaCl ⁇ R-SO 3 Na + HCl
  • R shows the residue except the sulfonic acid group part of the ion exchange resin.
  • porous cation exchange resin used in the present invention.
  • examples thereof include, but are not limited to, “Levacit K2620” and “Levacit K2420” (registered trademark) manufactured by LANXESS, and “Amberlist 36” and “Amberlist 35” (registered trademark) manufactured by Rohm and Haas.
  • the olefin used in the esterification reaction of the present invention is not particularly limited and may be linear, branched or cyclic, and an aliphatic olefin having 2 to 5 carbon atoms is preferably used. More preferably, olefins having 3 or 4 carbon atoms, specifically, propylene, 1-butene, 2-butene, and isobutene are used. As these olefins, it is natural that high-purity olefins can be used, but low-purity olefins can also be used as long as they do not inhibit the esterification reaction.
  • a butane-butene fraction is used, various butyl acetate mixtures are obtained.
  • acetic acid used in the esterification reaction of the present invention.
  • acetic acid produced by direct oxidation of light hydrocarbons or acetic acid produced by methanol carbonylation reaction can be used.
  • esterification reaction conditions reaction method
  • a general method practiced in the chemical industry can be adopted. That is, either a stationary phase flow type using a catalyst layer filled with an ion exchange resin or a batch reaction method in which an ion exchange resin is suspended and reacted in a tank reactor equipped with a stirrer can be employed.
  • a stationary phase flow system is desirable, and a stationary phase flow system in which olefin and acetic acid are continuously supplied is a preferred system.
  • the reaction mixture obtained from the reactor outlet is circulated to the reactor inlet, and a new raw material (hereinafter referred to as “feedstock”) supplied to the reactor is diluted.
  • feedstock a new raw material supplied to the reactor is diluted.
  • a so-called local recycling method can also be used. Local recycling is a preferred method that is effective in preventing local heating in the reactor due to the heat of reaction of acetic acid and olefin addition, and suppressing olefin oligomerization reaction or polymerization reaction by reducing the olefin concentration at the reactor inlet. .
  • the recycle liquid In addition to returning the recycled liquid to the inlet of the reactor, it is also possible to return it to the middle stage of the reactor. Furthermore, it is possible to divide the recycle liquid back to each part of the reactor.
  • the ratio of acetic acid and olefin in the production method of the present invention is not substantially different from the case of using a conventional benzenesulfonic acid type ion exchange resin. That is, the preferred ratio is 1.0 to 3.0 as the molar ratio of acetic acid / olefin. Note that this figure in the stationary phase flow system represents the molar ratio of acetic acid / olefin in the feedstock.
  • the amount of unreacted acetic acid increases and the burden on recovery such as distillation may increase.
  • the oligomerization reaction and polymerization reaction of the olefin tend to be reduced by local recycling.
  • the ratio is desirably 1.0 or more.
  • reaction temperature is preferably 60 to 150 ° C, more preferably 60 to 130 ° C, still more preferably 65 ° C to 110 ° C. If it is less than 60 ° C., the rate of addition reaction between acetic acid and olefin is small, and an acetate ester cannot be obtained efficiently. Moreover, when it exceeds 150 degreeC, the heat deterioration of an ion exchange resin will occur easily.
  • oligomerization reaction or polymerization reaction of olefin is likely to occur, the selectivity for the formation of acetate to olefin is reduced, and deposition of the polymer on the catalyst surface may occur and the catalyst life may be reduced. is there.
  • the acetate formation reaction by the addition reaction of olefin and acetic acid is an exothermic reaction.
  • the reaction takes place over time, and in the case of a stationary phase flow reactor, the reaction takes place from the inlet to the outlet of the reactor.
  • the temperature changes. In any case, it is preferable that the minimum temperature and the maximum temperature in the reactor are within the above-mentioned range.
  • the stationary phase flow type if local recycling is adopted, the degree of temperature distribution change from the inlet to the outlet of the reactor is alleviated.
  • the reaction rate is preferably 80% or more.
  • the reaction rate is less than 80%, since the concentration of olefin in the reactor is high, propylene oligomerization tends to proceed, and the selectivity of acetate ester to propylene may decrease. Therefore, in the present invention, when propylene is used as the olefin, it is desirable to carry out the reaction under the conditions of a reaction temperature of 110 ° C. or lower and a propylene reaction rate of 80% or higher.
  • the selectivity of acetate to propylene is high, and the decrease in catalytic activity due to olefin oligomerization and polymerization reaction is also suppressed.
  • setting the reaction rate to 80% or more also contributes to suppressing the cost for facilities and operations necessary for separation and recovery of unreacted propylene downstream of the reactor.
  • Such control of the reaction rate can be appropriately performed by adjusting, for example, the reaction temperature, the supply amount of the feedstock, and the like.
  • the reaction temperature is 60 ° C.
  • the activity of addition reaction of olefin to acetic acid was low and there was a problem in practical use, by using the above-mentioned porous cation exchange resin in the present invention, oligomerization of olefin even at a low temperature of 60 ° C. It is possible to produce an acetate ester with high catalytic activity while suppressing polymerization.
  • an acetate ester can be produced from a temperature as low as 60 ° C. or more, which is advantageous in terms of chemical equilibrium, and suppresses the generation of side reactions such as olefin oligomerization and polymerization reaction, Acetic acid esters can be produced with a long catalyst life.
  • reaction time varies depending on the reaction temperature, molar ratio of acetic acid / olefin, catalyst / reaction raw material, etc., but is generally 0.5 to 10 hours.
  • the preferred liquid hourly space velocity (LHSV) is 0.5 to 20 (Feed-ml / Cat-ml / h) for the feedstock.
  • reaction pressure in the reactor may be sufficient to keep the reaction system in a liquid phase, preferably 1.5 to 5.0 MPa for propylene, and 0.5 for butenes. ⁇ 5.0 MPa is preferred.
  • the catalyst / reaction raw material ratio in the case of using a stirred tank type batch reactor is preferably 0.005 to 0.2 in terms of mass ratio.
  • it is less than 0.005
  • the contact efficiency between the catalyst and the reaction raw material is poor, and the conversion rate of the addition reaction of acetic acid and olefin may be small.
  • stirring efficiency falls and there exists a possibility that the production efficiency of the acetate per catalyst may fall.
  • the acetate obtained by the production method of the present invention can be easily purified from the reaction product by a known method such as distillation as appropriate.
  • the ion exchange capacity of the cation exchange resin used in each example was measured by the following method. The results are shown in Table 1. 0.1 g of the cation exchange resin used in each example was placed in a glass container, 50 g of a 1 mol / L NaCl solution was added thereto, and the mixture was stirred for 30 minutes. After stirring, only the solution was transferred to a glass beaker and titrated with a 0.1 mol / L KOH solution to determine the ion exchange capacity.
  • Example 1 As a porous cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, “Levacit K2620” (registered trademark) (surface area by BET method 33 m 2 / g) manufactured by LANXESS is used. It was. To a 100 cc autoclave equipped with a stirrer, 36 g of acetic acid (purity 99.8%), 0.5 g of the porous cation exchange resin, and 16.8 g of propylene (purity 99.8%) were introduced. Subsequently, the pressure in the autoclave was increased to 2 MPa using nitrogen.
  • the temperature in the autoclave was raised to 80 ° C. using an electric furnace while stirring at a rotation speed of 500 rpm.
  • the reaction was continued for 4 hours after reaching 80 ° C.
  • the reaction solution was collected in a sampling tube, and the product was analyzed by gas chromatography using a hydrogen ion detector. The results are shown in Table 1.
  • Examples 2 and 3 and Comparative Examples 1 and 2 As a porous cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, “Amberlyst 36” (registered trademark) manufactured by Rohm and Haas (surface area of 33 m 2 / g by BET method) (Example 2), “Amberlyst 35” (registered trademark) manufactured by Rohm and Haas (surface area 50 m 2 / g by BET method) (Example 3), “Levacit K2629” (registered trademark) manufactured by LANXESS (BET method surface area of 40 m 2 / g by) (Comparative example 1), or Rohm and Haas Co.
  • Comparative Examples 3 and 4 As a cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, "Levacite K1461” (registered trademark) manufactured by LANXESS of gel type (surface area by BET method is below detection limit) ( Comparative Example 3) or “Amberlyst 31” (registered trademark) manufactured by Rohm and Haas (registered trademark) (surface area by BET method is below detection limit) (Comparative Example 4) was used. The reaction of propylene and acetic acid was carried out by the method. The results are shown in Table 1.
  • Examples 4 to 9 As the ion exchange resin, the same ion exchange resin as in Example 3 was used as a catalyst, and the reaction temperature was changed to carry out the reaction between propylene and acetic acid. Acetic acid (purity 99.8%) 0.86 g / min and propylene (purity 99.8%) 0.4 g / min were introduced into a fixed bed flow reactor filled with 50 ml of the porous cation exchange resin. The recycling amount was set to 700 g / h. When a steady state was reached, a sample was taken and the product was analyzed by gas chromatography with a hydrogen ion detector. The results are shown in Table 2.
  • Example 8 is an example in which the reaction was carried out at a temperature of 60 ° C. In this case, the propylene reaction rate was slightly lowered, and the selectivity for acetate was also slightly lowered. In addition, 36% of propylene remained unreacted.
  • Example 9 where the reaction temperature was 120 ° C., the reaction rate of propylene was as high as 87%, but the selectivity of acetate was slightly lowered. Further, as will be described later, under the condition where the reaction temperature exceeds 110 ° C., the decrease in the catalyst activity with time was slightly larger than when the reaction temperature was 110 ° C. or less.
  • Example 10 Using the same ion exchange resin as in Example 3, a life test for catalytic activity was conducted. In a fixed bed flow reactor filled with 33 ml of the porous cation exchange resin, acetic acid (purity 99.8%) 0.28 g / min, propane-propylene fraction obtained from petroleum fluid catalytic cracker (propylene purity) 76.5%) 0.13 g / min was introduced, and the recycling amount was set to 700 g / h. When a steady state was reached, a sample was taken and the product was analyzed by gas chromatography with a hydrogen ion detector. The reaction temperature was set so that the propylene reaction rate at the start of oil passing was about 90%, and the reaction was started.
  • acetic acid purity 99.8%
  • propane-propylene fraction obtained from petroleum fluid catalytic cracker propane-propylene fraction obtained from petroleum fluid catalytic cracker (propylene purity) 76.5%) 0.13 g / min was introduced, and the recycling amount was set to 700 g /
  • Comparative Example 5 Using the same ion exchange resin as in Comparative Example 2, a life test for catalytic activity was performed under the same conditions as in Example 10. However, in order to obtain a propylene reaction rate of 90%, the reaction temperature needs to be 80 ° C. Therefore, the reaction temperature at the start of oil passing was set to 80 ° C. The results are also shown in Table 3. In the case of Comparative Example 7 using an ion exchange resin having an ion exchange capacity of less than 4.8 mmol / g, since the catalytic activity is small, the temperature at the start of oil passage must be 10 ° C.
  • Example 10 As a result, the aging of the activity was remarkably reduced, and when the oil was passed for 2500 hours, the value fell below 80%, and it was necessary to raise the reaction temperature in order to recover 80% or more. Moreover, after raising the reaction temperature, the selectivity for isopropyl acetate was 95%, which was lower than in Example 10.
  • Example 11 A life test of the catalyst activity was performed under the same conditions as in Example 10 except that the reaction temperature at the start of oil passing was 115 ° C.
  • the propylene reaction rate at the start of oil passing was 90%, and the propylene reaction rate was almost the same even though the reaction temperature was increased by 45 ° C.
  • the selectivity for isopropyl acetate was 88%, which was lower than that of Example 10.
  • the propylene reaction rate decreased to 78% when the oil flowed for 1000 hours, and it was necessary to raise the reaction temperature in order to maintain the reaction rate above 80%. , Activity decreased.
  • the selectivity for isopropyl acetate was 87%.
  • the ion exchange capacity is 4.8 mmol / g or more and a porous ion exchange resin is used, compared with the case where the ion exchange capacity is less than 4.8 mmol / g or the gel type ion exchange resin is used, It can be seen that since the acetate ester can be produced at a low reaction temperature, the decrease in the catalytic activity is small and the acetate ester can be produced with high efficiency. It is also clear that when propylene is used as the olefin, isopropyl acetate can be produced with a high selectivity and a reduction in catalytic activity by setting the propylene reaction rate to 80% or more and the reaction temperature to 110 ° C. or less. Became.

Abstract

Provided is a method for producing an acetic acid ester whereby olefin polymerization and a lowering in catalyst life caused thereby or a lowering in the effective olefin utilization ratio caused by side reactions can be regulated and thus the acetic acid ester can be obtained at a high selectivity while achieving a long catalyst life.  A method for producing an acetic acid ester comprising reacting an olefin such as propylene with acetic acid to give an acetic acid ester, characterized in that a porous cation exchange resin, which has a structure comprising a styrene/divinyl benzene copolymer carrying sulfonate group attached thereto, has a porous nature and shows an ion exchange capacity of 4.8 mmol/g or more, is used as a catalyst.

Description

酢酸エステルの製造方法Method for producing acetate ester
 本発明は、酢酸エステルの製造方法に関する。さらに詳しくは、特に酢酸イソプロピルや酢酸ブチル等の、溶剤や香料として有用な酢酸エステルを、特定の触媒を用いて優れた選択性及び反応効率により得ることができる酢酸エステルの製造方法に関する。 The present invention relates to a method for producing an acetate ester. More specifically, the present invention relates to a method for producing an acetate ester that can obtain an acetate ester useful as a solvent or a fragrance, such as isopropyl acetate or butyl acetate, with excellent selectivity and reaction efficiency using a specific catalyst.
 オレフィンと酢酸を酸触媒下で反応させると下記式のようにオレフィンが酢酸に付加反応し酢酸エステルが得られことは良く知られている。
 R’+CH3COOH → CH3COOR
 ここでR’はオレフィンである。R’がプロピレンの場合は以下の反応のように酢酸イソプロピルが得られる。
 CH2=CH-CH3+CH3COOH → CH3COOCH(CH3)2
 この反応に用いる固体酸触媒として、従来スチレン系スルホン酸型陽イオン交換樹脂あるいはフェノール系スルホン酸型陽イオン交換樹脂が用いられている(特許文献1~6)。
 スチレン系スルホン酸型陽イオン交換樹脂は、スチレンとジビニルベンゼンなど不飽和側鎖を複数有する化合物とを共重合させて得られる架橋型の樹脂を、スルホン化して得られる。一方、フェノール系スルホン酸型陽イオン交換樹脂は、通常はフェノールスルホン酸をホルムアルデヒドなどで縮合して得られる。
 従来、オレフィンと酢酸の付加反応による酢酸エステルの製造に用いられているスチレン系スルホン酸型陽イオン交換樹脂あるいはフェノール系スルホン酸型陽イオン交換樹脂としては、ベンゼン環に付加したスルホン酸基の量が少なく、イオン交換容量が小さいものであった。
It is well known that when an olefin and acetic acid are reacted in the presence of an acid catalyst, the olefin is subjected to an addition reaction with acetic acid as shown in the following formula to obtain an acetate ester.
R '+ CH 3 COOH → CH 3 COOR
Here, R ′ is an olefin. When R ′ is propylene, isopropyl acetate is obtained as in the following reaction.
CH 2 = CH—CH 3 + CH 3 COOH → CH 3 COOCH (CH 3 ) 2
As the solid acid catalyst used in this reaction, a styrene sulfonic acid type cation exchange resin or a phenolic sulfonic acid type cation exchange resin has been conventionally used (Patent Documents 1 to 6).
The styrene sulfonic acid type cation exchange resin is obtained by sulfonating a crosslinked resin obtained by copolymerizing styrene and a compound having a plurality of unsaturated side chains such as divinylbenzene. On the other hand, the phenolic sulfonic acid type cation exchange resin is usually obtained by condensing phenolsulfonic acid with formaldehyde or the like.
Conventionally, as styrene sulfonic acid type cation exchange resin or phenolic sulfonic acid type cation exchange resin used for the production of acetate ester by addition reaction of olefin and acetic acid, the amount of sulfonic acid group added to benzene ring The ion exchange capacity was small.
 このようなイオン交換容量が小さいベンゼンスルホン酸型陽イオン交換樹脂を用いて、オレフィンと酢酸から酢酸エステルを製造する場合、オレフィンの付加反応に対する活性が十分でないために高温で使用する必要がある。そのためオレフィンの重合反応によるポリマーやオリゴマーの生成が避けられず、その結果、触媒のファウリングによる触媒活性の低下が生じ、触媒寿命も必ずしも満足するものではなかった。また高温で使用するために酢酸の脱水反応による無水酢酸や水の副生も避けられず、それによるオレフィンの水和反応などの副反応も起こり、オレフィンのオリゴマー化や重合反応も加わってオレフィンの有効利用率が低下するという問題もある。
 ところで、イオン交換容量が大きいベンゼンスルホン酸型陽イオン交換樹脂触媒も知られているが、単にイオン交換容量が大きい触媒を用いても、上記オレフィンのオリゴマー化等が生じるおそれがある。
When an acetate ester is produced from an olefin and acetic acid using such a benzenesulfonic acid type cation exchange resin having a small ion exchange capacity, it is necessary to use it at a high temperature because the activity for the addition reaction of the olefin is not sufficient. Therefore, the production of polymers and oligomers due to the polymerization reaction of olefins cannot be avoided. As a result, the catalyst activity is reduced due to catalyst fouling, and the catalyst life is not always satisfactory. In addition, acetic anhydride and water by-product due to acetic acid dehydration reaction are unavoidable due to the use at high temperature, and side reactions such as hydration reaction of olefin also occur, and olefin oligomerization and polymerization reaction are also added. There is also a problem that the effective utilization rate decreases.
By the way, a benzenesulfonic acid type cation exchange resin catalyst having a large ion exchange capacity is also known. However, the use of a catalyst having a large ion exchange capacity may cause oligomerization of the olefin.
特公昭59-44295号公報Japanese Patent Publication No.59-44295 特開平4-169552号公報Japanese Patent Laid-Open No. 4-169552 特開平4-169553号公報Japanese Patent Laid-Open No. 4-169553 特開平7-2735号公報Japanese Patent Laid-Open No. 7-2735 特開昭49-100016号公報Japanese Patent Laid-Open No. 49-100016 特開昭55-102530号公報JP-A-55-102530
 本発明の課題は、オレフィンの重合反応やそれに由来する触媒寿命の低下、或いは副反応に由来するオレフィン有効利用率の低下を抑え、長い触媒寿命でもって高い選択率で酢酸エステルが得られる製造方法を提供することにある。 An object of the present invention is to provide a method for producing an acetate ester with a high selectivity with a long catalyst life by suppressing a decrease in the olefin polymerization reaction and the catalyst life resulting therefrom or a reduction in the effective utilization of olefins derived from side reactions. Is to provide.
 従来、オレフィンと酢酸から、高収率で、かつ副反応を抑えて酢酸エステルを製造するという双方を両立させることは達成されていない。また、触媒としては、そのイオン交換容量が4.8mmol/g以上の物は用いられていない。本発明者らは、イオン交換樹脂の構造およびそのイオン交換容量と、オレフィンと酢酸の付加反応によるエステル生成反応の活性に関する研究を鋭意進めた結果、多孔性の特定構造のイオン交換樹脂であり、かつそのイオン交換容量が4.8mmol/g以上の樹脂を用いることで、オレフィンと酢酸の付加反応の活性が格段に増大し、その増大の程度はイオン交換容量の大きさから類推されるよりも遥かに大きいこと、また活性が増大するにもかかわらず当該付加反応に於ける酢酸エステルの選択性の低下が認められないという新たな事実を見出した。
 また本発明者らは、前記した特定構造を有しかつそのイオン交換容量が4.8mmol/g以上のイオン交換樹脂を用いて、オレフィンと酢酸の付加反応によるエステル生成反応を行うに当たり、反応温度およびオレフィン転化率を特定の条件に維持することにより、酢酸エステルが高選択率で得られ、且つ触媒活性の低下も抑制できることを見い出し、本発明に至った。すなわち本発明により初めて、長い触媒寿命で以って高収率でオレフィンと酢酸からエステルを製造することが可能となる。
Conventionally, it has not been achieved to achieve both the production of an acetate ester from an olefin and acetic acid with a high yield while suppressing side reactions. Moreover, the thing whose ion exchange capacity is 4.8 mmol / g or more is not used as a catalyst. As a result of diligent research on the structure of an ion exchange resin, its ion exchange capacity, and the activity of an ester formation reaction by addition reaction of olefin and acetic acid, the present inventors have obtained a porous specific structure ion exchange resin, In addition, by using a resin having an ion exchange capacity of 4.8 mmol / g or more, the activity of the addition reaction of olefin and acetic acid is remarkably increased, and the degree of the increase is more than estimated from the magnitude of the ion exchange capacity. The present inventors discovered a new fact that it is much larger and the selectivity of the acetate ester in the addition reaction is not decreased in spite of the increased activity.
In addition, the present inventors use an ion exchange resin having the above-described specific structure and an ion exchange capacity of 4.8 mmol / g or more to perform an ester formation reaction by addition reaction of olefin and acetic acid. Further, by maintaining the olefin conversion rate under specific conditions, it was found that an acetic acid ester was obtained with high selectivity and a decrease in catalyst activity could be suppressed, and the present invention was achieved. That is, for the first time, the present invention makes it possible to produce an ester from olefin and acetic acid in a high yield with a long catalyst life.
 本発明によれば、プロピレン等のオレフィンと酢酸とを反応させて酢酸エステルを製造する方法において、触媒として、スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有し、多孔質であって、かつイオン交換容量が4.8mmol/g以上である多孔性陽イオン交換樹脂を用いることを特徴とする酢酸エステルの製造方法が提供される。
 また当該イオン交換樹脂を用いて、特定の反応条件でエステル化反応を行うことを特徴とする酢酸エステルの製造方法が提供される。
According to the present invention, in a method for producing an acetate ester by reacting an olefin such as propylene with acetic acid, the catalyst has a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, and is porous. Further, there is provided a method for producing an acetate ester, characterized by using a porous cation exchange resin having an ion exchange capacity of 4.8 mmol / g or more.
Moreover, the manufacturing method of acetate ester characterized by performing esterification reaction on specific reaction conditions using the said ion exchange resin is provided.
 本発明の製造方法は、特定の多孔性陽イオン交換樹脂を用いるので、オレフィンの重合反応などの副反応を抑え、長い触媒寿命で以って、緩やかな条件においてもオレフィンと酢酸から高い選択率で酢酸エステルを製造することができる。そして、得られる酢酸エステルが、酢酸イソプロピルや酢酸ブチル等の場合、インク用溶剤や塗料用溶剤、あるいは粘接着剤の溶剤として有用である。また香料原料としても有用である。特に、本発明の製造方法で得られる酢酸イソプロピルは、臭気やシックハウス症の原因となるアセトアルデヒドや、酸化によりアセトアルデヒドになるエタノールの含有量が少ない環境上優れた溶剤である。 Since the production method of the present invention uses a specific porous cation exchange resin, it suppresses side reactions such as polymerization reaction of olefin, and has a long catalyst life and high selectivity from olefin and acetic acid even under mild conditions. The acetate can be produced with When the resulting acetate is isopropyl acetate or butyl acetate, it is useful as a solvent for ink, a solvent for paint, or a solvent for adhesives. It is also useful as a perfume raw material. In particular, isopropyl acetate obtained by the production method of the present invention is an environmentally superior solvent with a low content of acetaldehyde that causes odor and sick house disease and ethanol that becomes acetaldehyde by oxidation.
 以下、本発明について詳しく説明する。
 本発明は、オレフィンと酢酸とを反応させて酢酸エステルを製造する方法において、触媒として、特定のイオン交換樹脂を用いる。
(イオン交換樹脂)
 本発明に用いる触媒は、スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有し、多孔質であって、かつ特定のイオン交換容量を有する多孔性陽イオン交換樹脂である。該多孔性陽イオン交換樹脂は、その高分子母体に多数のマクロポアーを有し、通常、20m2/g以上程度の大きい表面積を示す。該表面積は、BET法により求めることができる。
The present invention will be described in detail below.
The present invention uses a specific ion exchange resin as a catalyst in a method for producing an acetate ester by reacting an olefin and acetic acid.
(Ion exchange resin)
The catalyst used in the present invention is a porous cation exchange resin that has a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, is porous, and has a specific ion exchange capacity. The porous cation exchange resin has a large number of macropores in its polymer matrix and usually exhibits a large surface area of about 20 m 2 / g or more. The surface area can be determined by the BET method.
 スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有する陽イオン交換樹脂としては、本発明に用いるものの他、その製造方法が異なる、所謂ゲル型イオン交換樹脂も良く知られている。該ゲル型イオン交換樹脂は、その高分子母体に有効なマクロポアーが少なく、表面積が極めて小さいものである。このようなイオン交換樹脂を触媒として用いる場合には、同じ化学的構造を有し、かつイオン交換容量が4.8mmol/g以上であっても、本発明の所望の効果は得られない。 As a cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, in addition to those used in the present invention, so-called gel ion exchange resins having different production methods are well known. . The gel type ion exchange resin has few effective macropores in its polymer matrix and has a very small surface area. When such an ion exchange resin is used as a catalyst, even if it has the same chemical structure and the ion exchange capacity is 4.8 mmol / g or more, the desired effect of the present invention cannot be obtained.
 本発明に用いる多孔性陽イオン交換樹脂のイオン交換容量は、4.8mmol/g以上である。イオン交換容量が4.8mmol/gに満たない場合には、オレフィンと酢酸の付加反応活性が大きく低下する。またイオン交換容量が大きくとも上記ゲル型イオン交換樹脂を用いる場合には、酢酸に対するオレフィンの付加反応の活性が低く、所望の効果が得られない。また、充分な反応速度を実現するために反応温度を高くすると、オレフィンの重合反応も生じ、オレフィンに対する酢酸エステル生成の選択率が減少すると共に、その結果、重合物の触媒表面上への沈積により触媒活性が低下するおそれがあり、更に、高温であるがために酢酸の脱水反応も起こりやすくなり、その結果副生した水とオレフィンの反応によりアルコールが副生するおそれがある。 The ion exchange capacity of the porous cation exchange resin used in the present invention is 4.8 mmol / g or more. When the ion exchange capacity is less than 4.8 mmol / g, the addition reaction activity of olefin and acetic acid is greatly reduced. Further, even when the ion exchange capacity is large, when the gel ion exchange resin is used, the activity of the addition reaction of olefin with acetic acid is low, and a desired effect cannot be obtained. In addition, when the reaction temperature is increased in order to achieve a sufficient reaction rate, an olefin polymerization reaction also occurs, and the selectivity for the formation of acetate to the olefin is reduced. As a result, the polymer is deposited on the catalyst surface. There is a possibility that the catalytic activity may be lowered, and furthermore, since the temperature is high, a dehydration reaction of acetic acid is likely to occur.
 ここで、イオン交換容量は、塩化ナトリウム溶液を用いたイオン交換反応により求められる値であり、スルホン酸基のプロトンとナトリウムイオンとを交換させ、生成した塩化水素の量を中和滴定することにより求められる。イオン交換反応は下記式で表される。
 R-SO3H + NaCl → R-SO3Na + HCl
 式中、Rはイオン交換樹脂のスルホン酸基部分を除いた残基を示す。
Here, the ion exchange capacity is a value obtained by an ion exchange reaction using a sodium chloride solution, by exchanging protons of sodium sulfonate groups and sodium ions, and neutralizing titrating the amount of hydrogen chloride produced. Desired. The ion exchange reaction is represented by the following formula.
R-SO 3 H + NaCl → R-SO 3 Na + HCl
In formula, R shows the residue except the sulfonic acid group part of the ion exchange resin.
 本発明に用いる多孔性陽イオン交換樹脂としては、市販品を用いることができる。例えば、ランクセス社製の「レバチットK2620」や「レバチットK2420」(登録商標)、ロームアンドハース社製の「アンバーリスト36」や「アンバーリスト35」(登録商標)が挙げられるがこれらに限定されない。 Commercially available products can be used as the porous cation exchange resin used in the present invention. Examples thereof include, but are not limited to, “Levacit K2620” and “Levacit K2420” (registered trademark) manufactured by LANXESS, and “Amberlist 36” and “Amberlist 35” (registered trademark) manufactured by Rohm and Haas.
(オレフィン)
 本発明のエステル化反応に用いるオレフィンは特に制限はなく、直鎖状、分岐状、環状の何れでも良く、炭素数2~5の脂肪族オレフィンが好ましく用いられる。さらに好ましくは炭素数3あるいは4のオレフィン、具体的にはプロピレン、1-ブテン、2-ブテン、イソブテンが用いられる。
 これらオレフィンとしては高純度のオレフィンを用いることができるのは当然であるが、エステル化反応を阻害しない限り低純度のものも用いることができる。例えば、石油の流動接触分解装置から得られるプロパン-プロピレン留分やブテン-ブタン留分、あるいはナフサ分解装置から得られるプロパン-プロピレン留分、ブタジエン抽出装置から得られる、ブタン-ブテンを含むラフィネート留分なども好ましく用いられる。なお、ブタン-ブテン留分を用いた場合は、各種の酢酸ブチルの混合物が得られる。
(Olefin)
The olefin used in the esterification reaction of the present invention is not particularly limited and may be linear, branched or cyclic, and an aliphatic olefin having 2 to 5 carbon atoms is preferably used. More preferably, olefins having 3 or 4 carbon atoms, specifically, propylene, 1-butene, 2-butene, and isobutene are used.
As these olefins, it is natural that high-purity olefins can be used, but low-purity olefins can also be used as long as they do not inhibit the esterification reaction. For example, a raffinate fraction containing butane-butene obtained from a propane-propylene fraction or butene-butane fraction obtained from a fluidized fluid catalytic cracker of petroleum, a propane-propylene fraction obtained from a naphtha cracker, or a butadiene extractor. Minutes are also preferably used. When a butane-butene fraction is used, various butyl acetate mixtures are obtained.
(酢酸)
 本発明のエステル化反応に用いる酢酸についても特に制限はない。例えば、軽質炭化水素の直接酸化により製造される酢酸、あるいはメタノールのカルボニル化反応により製造される酢酸の何れも使用できる。
(Acetic acid)
There is no particular limitation on the acetic acid used in the esterification reaction of the present invention. For example, either acetic acid produced by direct oxidation of light hydrocarbons or acetic acid produced by methanol carbonylation reaction can be used.
(エステル化反応条件)
(反応方式)
 本発明におけるエステル化反応の方式は、化学工業で実施されている一般的な方法を採用できる。すなわち、イオン交換樹脂を充填した触媒層を用いた固定相流通式、あるいは撹拌機を備えた槽型反応機にイオン交換樹脂を懸濁させて反応させる回分式反応方式の何れも採用できる。工業的には固定相流通式が望ましく、オレフィンと酢酸とを連続的に供給して行う固定相流通式が好ましい方式である。なお、固定相流通式の反応方式を用いる場合には、反応器出口から得られる反応混合物を反応器入口に循環し、反応器へ供給する新規原料(以下「供給原料」という)を希釈する、所謂ローカルリサイクルの方法を取ることもできる。ローカルリサイクルは、酢酸とオレフィンの付加反応の反応熱による反応器内の局部加熱の防止、反応器入口のオレフィン濃度の低減によるオレフィンのオリゴマー化反応あるいは重合反応の抑制に効果があり好ましい方法である。
 ローカルリサイクルを行う場合には、反応熱を除去するためにリサイクル液を冷却して反応器に循環する方式を取ることもできる。また、リサイクル液は反応器の入口に戻すほか、反応器の中段に戻すことも可能である。さらにはリサイクル液を反応器の各箇所に分割して戻すことも可能である。
(Esterification reaction conditions)
(Reaction method)
As a method of esterification reaction in the present invention, a general method practiced in the chemical industry can be adopted. That is, either a stationary phase flow type using a catalyst layer filled with an ion exchange resin or a batch reaction method in which an ion exchange resin is suspended and reacted in a tank reactor equipped with a stirrer can be employed. Industrially, a stationary phase flow system is desirable, and a stationary phase flow system in which olefin and acetic acid are continuously supplied is a preferred system. In the case of using a stationary phase flow type reaction system, the reaction mixture obtained from the reactor outlet is circulated to the reactor inlet, and a new raw material (hereinafter referred to as “feedstock”) supplied to the reactor is diluted. A so-called local recycling method can also be used. Local recycling is a preferred method that is effective in preventing local heating in the reactor due to the heat of reaction of acetic acid and olefin addition, and suppressing olefin oligomerization reaction or polymerization reaction by reducing the olefin concentration at the reactor inlet. .
In the case of performing local recycling, it is possible to take a system in which the recycle liquid is cooled and circulated to the reactor in order to remove reaction heat. In addition to returning the recycled liquid to the inlet of the reactor, it is also possible to return it to the middle stage of the reactor. Furthermore, it is possible to divide the recycle liquid back to each part of the reactor.
(酢酸/オレフィンのモル比)
 本発明の製造方法における酢酸とオレフィンとの比率は、従来のベンゼンスルホン酸型のイオン交換樹脂を用いて行う場合と実質的に異ならない。すなわち、その好ましい比率は、酢酸/オレフィンのモル比として、1.0~3.0である。なお、固定相流通式の反応方式におけるこの数値は、供給原料中の酢酸/オレフィンのモル比を表す。
 酢酸/オレフィンのモル比が1.0より小さい場合は、オレフィンのオリゴマー化反応や重合反応が起こりやすくなり、オレフィンに対する酢酸エステル生成の選択率が低下し、また重合物の触媒表面への沈着が生じて触媒寿命が低下するおそれがある。一方、その比率が3.0を超えると、上記問題は回避されるが、回分式の場合は反応容積あたりのエステルの生産効率、あるいは固定相流通式の反応方式の場合は、空時収率(STY)の低下による反応器容積あたりの効率が低下するおそれがある。また、未反応の酢酸が多くなり蒸留等の回収にかかる負担が大きくなるおそれがある。
 固定相流通式の反応方式において、ローカルリサイクルを採用する場合には、上記オレフィンのオリゴマー化反応や重合反応はローカルリサイクルにより低減される傾向にあるが、その場合でも供給原料の酢酸/オレフィンのモル比は1.0以上であることが望ましい。
(Mole ratio of acetic acid / olefin)
The ratio of acetic acid and olefin in the production method of the present invention is not substantially different from the case of using a conventional benzenesulfonic acid type ion exchange resin. That is, the preferred ratio is 1.0 to 3.0 as the molar ratio of acetic acid / olefin. Note that this figure in the stationary phase flow system represents the molar ratio of acetic acid / olefin in the feedstock.
When the molar ratio of acetic acid / olefin is less than 1.0, olefin oligomerization reaction or polymerization reaction is likely to occur, the selectivity for the formation of acetate ester with respect to olefin is reduced, and the deposition of polymer on the catalyst surface is reduced. It may occur and the catalyst life may be reduced. On the other hand, when the ratio exceeds 3.0, the above problem is avoided, but in the case of a batch system, the production efficiency of ester per reaction volume, or in the case of a stationary phase flow system, the space time yield. There is a possibility that the efficiency per reactor volume due to the decrease in (STY) may decrease. In addition, the amount of unreacted acetic acid increases and the burden on recovery such as distillation may increase.
In the stationary phase flow type reaction system, when local recycling is adopted, the oligomerization reaction and polymerization reaction of the olefin tend to be reduced by local recycling. The ratio is desirably 1.0 or more.
(反応温度)
 本発明の製造方法において反応温度は、好ましくは60~150℃、より好ましくは60~130℃、さらに好ましくは65℃~110℃である。60℃未満では酢酸とオレフィンの付加反応の速度が小さく酢酸エステルが効率的に得られない。また、150℃を超えるとイオン交換樹脂の熱劣化が起こりやすくなる。110℃を超えると、オレフィンのオリゴマー化反応や重合反応が起こりやすくなり、オレフィンに対する酢酸エステル生成の選択率が低下し、また重合物の触媒表面への沈着が発生し触媒寿命が低下するおそれがある。また、110℃を超えると酢酸エステルが酢酸とオレフィンに分解する逆反応が起こりやすくなり、オレフィンの反応率を高められないばかりか、オレフィンのオリゴマー化や重合反応などの副反応も起こりやすく、オレフィンの有効利用率や触媒寿命が低下しやすくなるおそれがある。
 オレフィンと酢酸の付加反応による酢酸エステル生成反応は発熱反応であり、回分式反応器の場合には時間経過とともに、また固定相流通式反応器の場合には反応器の入口から出口に掛けて反応温度が変化する。その何れの場合も、反応器内の最低温度と最高温度は上記の範囲内にあることが好ましい。固定相流通式の場合、ローカルリサイクルを採用すると、反応器の入口から出口にかけての温度分布変化の程度は緩和される。
(Reaction temperature)
In the production method of the present invention, the reaction temperature is preferably 60 to 150 ° C, more preferably 60 to 130 ° C, still more preferably 65 ° C to 110 ° C. If it is less than 60 ° C., the rate of addition reaction between acetic acid and olefin is small, and an acetate ester cannot be obtained efficiently. Moreover, when it exceeds 150 degreeC, the heat deterioration of an ion exchange resin will occur easily. If it exceeds 110 ° C., oligomerization reaction or polymerization reaction of olefin is likely to occur, the selectivity for the formation of acetate to olefin is reduced, and deposition of the polymer on the catalyst surface may occur and the catalyst life may be reduced. is there. In addition, when the temperature exceeds 110 ° C., a reverse reaction in which acetate ester is decomposed into acetic acid and olefin easily occurs, and not only the reaction rate of olefin can be increased, but also side reactions such as olefin oligomerization and polymerization reaction easily occur. The effective utilization rate and catalyst life of the catalyst may be likely to be reduced.
The acetate formation reaction by the addition reaction of olefin and acetic acid is an exothermic reaction. In the case of a batch reactor, the reaction takes place over time, and in the case of a stationary phase flow reactor, the reaction takes place from the inlet to the outlet of the reactor. The temperature changes. In any case, it is preferable that the minimum temperature and the maximum temperature in the reactor are within the above-mentioned range. In the case of the stationary phase flow type, if local recycling is adopted, the degree of temperature distribution change from the inlet to the outlet of the reactor is alleviated.
 (オレフィンの反応率)
 本発明においてはオレフィンがプロピレンの場合、その反応率は80%以上であることが好ましい。反応率が80%を下回る場合には、反応器内のオレフィンの濃度が高いためにプロピレンのオリゴマー化が進行し易く、プロピレンに対する酢酸エステルの選択率が低下するおそれがある。従って、本発明において、オレフィンとしてプロピレンを用いる場合には、反応温度が110℃以下、且つプロピレン反応率が80%以上の条件で反応させることが望ましい。この条件で反応させると、プロピレンに対する酢酸エステルの選択率も高く、またオレフィンのオリゴマー化や重合反応による触媒活性の低下も抑制される。
 また、反応率80%以上とすることは、反応器下流における未反応プロピレンの分離回収に必要な設備や操作に係わるコストを抑制することにも資する。
 このような反応率の制御は、例えば、反応温度や供給原料の供給量などを調整することにより、適宜実施することができる。
(Olefin reaction rate)
In the present invention, when the olefin is propylene, the reaction rate is preferably 80% or more. When the reaction rate is less than 80%, since the concentration of olefin in the reactor is high, propylene oligomerization tends to proceed, and the selectivity of acetate ester to propylene may decrease. Therefore, in the present invention, when propylene is used as the olefin, it is desirable to carry out the reaction under the conditions of a reaction temperature of 110 ° C. or lower and a propylene reaction rate of 80% or higher. When the reaction is carried out under these conditions, the selectivity of acetate to propylene is high, and the decrease in catalytic activity due to olefin oligomerization and polymerization reaction is also suppressed.
In addition, setting the reaction rate to 80% or more also contributes to suppressing the cost for facilities and operations necessary for separation and recovery of unreacted propylene downstream of the reactor.
Such control of the reaction rate can be appropriately performed by adjusting, for example, the reaction temperature, the supply amount of the feedstock, and the like.
 従来のイオン交換容量が4.8mmol/g未満の陽イオン交換樹脂あるいはイオン交換容量が4.8mmol/g以上であってもゲル型の陽イオン交換樹脂を用いる場合は、反応温度が60℃では酢酸に対するオレフィンの付加反応の活性が低く、実用上問題が有ったが、本発明における上述の多孔性陽イオン交換樹脂を用いることにより、60℃という低い温度であっても、オレフィンのオリゴマー化やポリマー化を抑えながら高い触媒活性で以って酢酸エステルを製造することが可能である。
 ところで、オレフィンと酢酸の付加反応は可逆反応であり、高温においては上述のように生成した酢酸エステルが分解する逆反応が起こりやすくなる。本発明においては、例えば、60℃以上という低い温度から酢酸エステルを製造することができるので化学平衡的にも有利であり、かつオレフィンのオリゴマー化や重合反応などの副反応の生成を抑制し、長い触媒寿命で以って酢酸エステルを製造することが可能になる。
When a conventional cation exchange resin with an ion exchange capacity of less than 4.8 mmol / g or a gel type cation exchange resin with an ion exchange capacity of 4.8 mmol / g or more is used, the reaction temperature is 60 ° C. Although the activity of addition reaction of olefin to acetic acid was low and there was a problem in practical use, by using the above-mentioned porous cation exchange resin in the present invention, oligomerization of olefin even at a low temperature of 60 ° C. It is possible to produce an acetate ester with high catalytic activity while suppressing polymerization.
By the way, the addition reaction of an olefin and acetic acid is a reversible reaction, and at a high temperature, a reverse reaction in which the produced acetate is decomposed easily occurs. In the present invention, for example, an acetate ester can be produced from a temperature as low as 60 ° C. or more, which is advantageous in terms of chemical equilibrium, and suppresses the generation of side reactions such as olefin oligomerization and polymerization reaction, Acetic acid esters can be produced with a long catalyst life.
(反応時間、液空間速度)
 本発明の製造方法において反応時間は、反応温度や酢酸/オレフィンのモル比、触媒/反応原料等の条件により異なるが、一般には0.5~10時間である。また、固定相流通式の場合、その好ましい液空間速度(LHSV)は、供給原料について0.5~20(Feed-ml/Cat-ml/h)である。反応時間が0.5時間未満の場合、或いはLHSVが20を超える場合、酢酸とオレフィンの付加反応の転化率が小さくなるおそれがある。反応時間が10時間を超える場合、あるいはLHSVが0.5未満の場合、反応器の容積あたり或いは触媒容積あたりの生産効率が小さくなるおそれがある。
(Reaction time, liquid space velocity)
In the production method of the present invention, the reaction time varies depending on the reaction temperature, molar ratio of acetic acid / olefin, catalyst / reaction raw material, etc., but is generally 0.5 to 10 hours. In the case of the stationary phase flow type, the preferred liquid hourly space velocity (LHSV) is 0.5 to 20 (Feed-ml / Cat-ml / h) for the feedstock. When the reaction time is less than 0.5 hours, or when the LHSV exceeds 20, the conversion rate of the addition reaction of acetic acid and olefin may be small. When the reaction time exceeds 10 hours, or when LHSV is less than 0.5, production efficiency per reactor volume or catalyst volume may be reduced.
(反応圧力)
 本発明の製造方法において、反応器内の反応圧力は、反応系を液相に保つために充分な圧力でよく、プロピレンの場合1.5~5.0MPaが好ましく、ブテン類の場合0.5~5.0MPaが好ましい。
(Reaction pressure)
In the production method of the present invention, the reaction pressure in the reactor may be sufficient to keep the reaction system in a liquid phase, preferably 1.5 to 5.0 MPa for propylene, and 0.5 for butenes. ~ 5.0 MPa is preferred.
(触媒/反応原料比率)
 本発明の製造方法において、撹拌槽型の回分式反応器を用いる場合の触媒/反応原料比率は、質量比で0.005~0.2が好ましい。0.005に満たない場合、触媒と反応原料との接触効率が悪く、酢酸とオレフィンの付加反応の転化率が小さくなるおそれがある。また、0.2を超える場合は、撹拌効率が低下し、触媒あたりの酢酸エステルの生産効率が低下するおそれがある。
(Catalyst / reaction raw material ratio)
In the production method of the present invention, the catalyst / reaction raw material ratio in the case of using a stirred tank type batch reactor is preferably 0.005 to 0.2 in terms of mass ratio. When it is less than 0.005, the contact efficiency between the catalyst and the reaction raw material is poor, and the conversion rate of the addition reaction of acetic acid and olefin may be small. Moreover, when it exceeds 0.2, stirring efficiency falls and there exists a possibility that the production efficiency of the acetate per catalyst may fall.
 本発明の製造方法により得られる酢酸エステルは、反応生成物を適宜、蒸留等の公知の方法により容易に精製することができる。 The acetate obtained by the production method of the present invention can be easily purified from the reaction product by a known method such as distillation as appropriate.
 以下、実施例により本発明の具体的実施態様を説明するが、本発明はこれらに限定されない。
 各例で使用する陽イオン交換樹脂のイオン交換容量を以下の方法により測定した。結果を表1に示す。
 各例において用いる陽イオン交換樹脂0.1gをガラス容器に取り、それに1mol/LのNaCl溶液50gを加え、30分間撹拌した。撹拌後溶液のみをガラスビーカーに移し、0.1mol/LのKOH溶液で滴定をしてイオン交換容量を求めた。
Hereinafter, specific embodiments of the present invention will be described by way of examples, but the present invention is not limited thereto.
The ion exchange capacity of the cation exchange resin used in each example was measured by the following method. The results are shown in Table 1.
0.1 g of the cation exchange resin used in each example was placed in a glass container, 50 g of a 1 mol / L NaCl solution was added thereto, and the mixture was stirred for 30 minutes. After stirring, only the solution was transferred to a glass beaker and titrated with a 0.1 mol / L KOH solution to determine the ion exchange capacity.
 実施例1
 スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有する多孔性陽イオン交換樹脂として、ランクセス社製の「レバチットK2620」(登録商標)(BET法による表面積33m2/g)を用いた。
 撹拌機を備えた100ccのオートクレーブに、酢酸(純度99.8%)36g、上記多孔性陽イオン交換樹脂0.5g、及びプロピレン(純度99.8%)16.8g導入した。続いて、窒素を用いてオートクレーブ内の圧力を2MPaに加圧した。回転数500rpmで撹拌しながら電気炉を使ってオートクレーブ内の温度を80℃に昇温した。80℃に達した後4時間反応を継続した。4時間経過後反応液を試料採取管に採取し、水素イオン検出器型ガスクロマトグラフィーで生成物を分析した。結果を表1に示す。
Example 1
As a porous cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, “Levacit K2620” (registered trademark) (surface area by BET method 33 m 2 / g) manufactured by LANXESS is used. It was.
To a 100 cc autoclave equipped with a stirrer, 36 g of acetic acid (purity 99.8%), 0.5 g of the porous cation exchange resin, and 16.8 g of propylene (purity 99.8%) were introduced. Subsequently, the pressure in the autoclave was increased to 2 MPa using nitrogen. The temperature in the autoclave was raised to 80 ° C. using an electric furnace while stirring at a rotation speed of 500 rpm. The reaction was continued for 4 hours after reaching 80 ° C. After 4 hours, the reaction solution was collected in a sampling tube, and the product was analyzed by gas chromatography using a hydrogen ion detector. The results are shown in Table 1.
 実施例2、3及び比較例1、2
 スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有する多孔性陽イオン交換樹脂として、ロームアンドハース社製の「アンバーリスト36」(登録商標)(BET法による表面積33m2/g)(実施例2)、ロームアンドハース社製の「アンバーリスト35」(登録商標)(BET法による表面積50m2/g)(実施例3)、ランクセス社製の「レバチットK2629」(登録商標)(BET法による表面積40m2/g)(比較例1)、もしくはロームアンドハース社製の「アンバーリスト15」(登録商標)(BET法による表面積53m2/g)(比較例2)を用いたほかは、実施例1と同様の方法でプロピレンと酢酸の反応行った。結果を表1に示す。
Examples 2 and 3 and Comparative Examples 1 and 2
As a porous cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, “Amberlyst 36” (registered trademark) manufactured by Rohm and Haas (surface area of 33 m 2 / g by BET method) (Example 2), “Amberlyst 35” (registered trademark) manufactured by Rohm and Haas (surface area 50 m 2 / g by BET method) (Example 3), “Levacit K2629” (registered trademark) manufactured by LANXESS (BET method surface area of 40 m 2 / g by) (Comparative example 1), or Rohm and Haas Co. "Amberlyst 15" with (R) (surface area by BET method 53m 2 / g) (Comparative example 2) Otherwise, the reaction of propylene and acetic acid was carried out in the same manner as in Example 1. The results are shown in Table 1.
 比較例3及び4
 スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有する陽イオン交換樹脂として、ゲル型のランクセス社製の「レバチットK1461」(登録商標)(BET法による表面積は検出限界以下)(比較例3)又はゲル型のロームアンドハース社製の「アンバーリスト31」(登録商標)(BET法による表面積は検出限界以下)(比較例4)を用いたほかは、実施例1と同様の方法でプロピレンと酢酸の反応行った。結果を表1に示す。
Comparative Examples 3 and 4
As a cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, "Levacite K1461" (registered trademark) manufactured by LANXESS of gel type (surface area by BET method is below detection limit) ( Comparative Example 3) or “Amberlyst 31” (registered trademark) manufactured by Rohm and Haas (registered trademark) (surface area by BET method is below detection limit) (Comparative Example 4) was used. The reaction of propylene and acetic acid was carried out by the method. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例4~9
 イオン交換樹脂として、実施例3と同じイオン交換樹脂を触媒として用い、反応温度を変化させてプロピレンと酢酸との反応を行った。
 上記多孔性陽イオン交換樹脂50mlを充填した固定床流通式反応装置に、酢酸(純度99.8%)0.86g/min、プロピレン(純度99.8%)0.4g/minを導入し、リサイクル量は700g/hに設定した。定常状態になったところで試料を採取し、水素イオン検出器型ガスクロマトグラフィーで生成物を分析した。結果を表2に示す。
Examples 4 to 9
As the ion exchange resin, the same ion exchange resin as in Example 3 was used as a catalyst, and the reaction temperature was changed to carry out the reaction between propylene and acetic acid.
Acetic acid (purity 99.8%) 0.86 g / min and propylene (purity 99.8%) 0.4 g / min were introduced into a fixed bed flow reactor filled with 50 ml of the porous cation exchange resin. The recycling amount was set to 700 g / h. When a steady state was reached, a sample was taken and the product was analyzed by gas chromatography with a hydrogen ion detector. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、プロピレン反応率が80%以上で且つ反応温度が110℃以下の実施例4~7の場合、酢酸エステルの選択率は96モル%以上と高く、満足できるものであった。実施例8は温度60℃で反応させた例であるが、この場合プロピレン反応率は若干低くなり、酢酸エステルの選択率も若干低下した。また36%のプロピレンが未反応で残った。一方、反応温度が120℃の実施例9は、プロピレンの反応率は87%と高かったが、酢酸エステルの選択率は若干低下した。また、後述するように、反応温度が110℃を超える条件では、110℃以下の場合に比べて触媒活性の経時低下がやや大きかった。 As can be seen from Table 2, in Examples 4 to 7 in which the propylene reaction rate was 80% or more and the reaction temperature was 110 ° C. or less, the selectivity of acetate was as high as 96 mol% or more, which was satisfactory. . Example 8 is an example in which the reaction was carried out at a temperature of 60 ° C. In this case, the propylene reaction rate was slightly lowered, and the selectivity for acetate was also slightly lowered. In addition, 36% of propylene remained unreacted. On the other hand, in Example 9 where the reaction temperature was 120 ° C., the reaction rate of propylene was as high as 87%, but the selectivity of acetate was slightly lowered. Further, as will be described later, under the condition where the reaction temperature exceeds 110 ° C., the decrease in the catalyst activity with time was slightly larger than when the reaction temperature was 110 ° C. or less.
 実施例10
 実施例3と同じイオン交換樹脂を用い、触媒活性の寿命試験を行った。
 上記多孔性陽イオン交換樹脂33mlを充填した固定床流通式反応装置に、酢酸(純度99.8%)0.28g/min、石油の流動接触分解装置から得られるプロパン-プロピレン留分(プロピレン純度76.5%)0.13g/minを導入し、リサイクル量は700g/hに設定した。定常状態になったところで試料を採取し、水素イオン検出器型ガスクロマトグラフィーで生成物を分析した。
 通油開始時のプロピレン反応率を90%程度になるように反応温度を設定し反応を開始した。通油時間の経過に伴い触媒活性が低下して、反応率が低下した場合、反応率が80%を切った段階で反応温度を上げ、80%~90%のプロピレン反応率を維持するように反応を行った。
 通油開始時の反応温度を70℃にしたところ、プロピレンの反応率は92%であり、この条件で反応を継続した。結果を表3に示す。
 本実施例の場合、触媒活性の低下は極めて小さく、同一反応温度で2600時間通油しても反応率の低下は5%にとどまり、活性の低下は極めて小さく、この段階では反応温度の昇温は必要なかった。また、酢酸イソプロピルの選択率も98%以上と極めて高く、満足できるものであった。
Example 10
Using the same ion exchange resin as in Example 3, a life test for catalytic activity was conducted.
In a fixed bed flow reactor filled with 33 ml of the porous cation exchange resin, acetic acid (purity 99.8%) 0.28 g / min, propane-propylene fraction obtained from petroleum fluid catalytic cracker (propylene purity) 76.5%) 0.13 g / min was introduced, and the recycling amount was set to 700 g / h. When a steady state was reached, a sample was taken and the product was analyzed by gas chromatography with a hydrogen ion detector.
The reaction temperature was set so that the propylene reaction rate at the start of oil passing was about 90%, and the reaction was started. When the catalyst activity decreases and the reaction rate decreases with the passage of oil passage time, the reaction temperature is raised when the reaction rate is below 80%, and the propylene reaction rate of 80% to 90% is maintained. Reaction was performed.
When the reaction temperature at the start of oil passing was 70 ° C., the reaction rate of propylene was 92%, and the reaction was continued under these conditions. The results are shown in Table 3.
In the case of this example, the decrease in the catalyst activity is extremely small, and even when the oil is passed for 2600 hours at the same reaction temperature, the decrease in the reaction rate is only 5%, and the decrease in the activity is very small. Was not necessary. Moreover, the selectivity of isopropyl acetate was as high as 98% or more, which was satisfactory.
 比較例5
 比較例2と同じイオン交換樹脂を用いて実施例10と同じ条件で触媒活性の寿命試験を行った。但し、プロピレン反応率90%を得るためには反応温度を80℃とする必要があり、そのため通油開始時の反応温度を80℃とした。結果を同じく表3に示す。
 イオン交換容量が4.8mmol/g未満のイオン交換樹脂を使った比較例7の場合、触媒活性が小さいために通油開始時の温度も実施例8に比べ10℃高くしなければならず、その結果活性の経時低下が著しく、2500時間通油時には80%を切る値となり、80%以上を回復するために反応温度の上昇が必要であった。また反応温度を上げた後は、酢酸イソプロピルの選択率も95%となり、実施例10に比べ低かった。
Comparative Example 5
Using the same ion exchange resin as in Comparative Example 2, a life test for catalytic activity was performed under the same conditions as in Example 10. However, in order to obtain a propylene reaction rate of 90%, the reaction temperature needs to be 80 ° C. Therefore, the reaction temperature at the start of oil passing was set to 80 ° C. The results are also shown in Table 3.
In the case of Comparative Example 7 using an ion exchange resin having an ion exchange capacity of less than 4.8 mmol / g, since the catalytic activity is small, the temperature at the start of oil passage must be 10 ° C. higher than in Example 8, As a result, the aging of the activity was remarkably reduced, and when the oil was passed for 2500 hours, the value fell below 80%, and it was necessary to raise the reaction temperature in order to recover 80% or more. Moreover, after raising the reaction temperature, the selectivity for isopropyl acetate was 95%, which was lower than in Example 10.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例11
 通油開始時の反応温度を115℃としたほかは、実施例10と同じ条件で、触媒活性の寿命試験を行った。通油開始時のプロピレン反応率は90%で、反応温度を45℃も高くしたにもかかわらず、プロピレン反応率は、ほぼ変わらなかった。また、酢酸イソプロピルの選択率は88%で、実施例10に比べて低かった。反応温度を115℃に維持しながら通油を継続したところ、1000時間通油時にはプロピレン反応率が78%に低下し、反応率を80%以上に維持するためには反応温度を上げる必要があり、活性が低下した。またこの時点での酢酸イソプロピルの選択率は87%であった。
Example 11
A life test of the catalyst activity was performed under the same conditions as in Example 10 except that the reaction temperature at the start of oil passing was 115 ° C. The propylene reaction rate at the start of oil passing was 90%, and the propylene reaction rate was almost the same even though the reaction temperature was increased by 45 ° C. The selectivity for isopropyl acetate was 88%, which was lower than that of Example 10. When the oil flow was continued while maintaining the reaction temperature at 115 ° C., the propylene reaction rate decreased to 78% when the oil flowed for 1000 hours, and it was necessary to raise the reaction temperature in order to maintain the reaction rate above 80%. , Activity decreased. At this time, the selectivity for isopropyl acetate was 87%.
 以上の実施例および比較例より、オレフィンと酢酸の付加反応による酢酸エステルの合成反応において、4.8mmol/g以上のイオン交換容量を持ち、且つ多孔性イオン交換樹脂であるベンゼンスルホン酸型の陽イオン交換樹脂を用いると、ゲル型イオン交換樹脂あるいはそのイオン交換容量が4.8mmol/g未満の樹脂を用いた場合に比べ、著しくエステル化反応の活性が大きいことがわかる。
 また高いオレフィン転化率にも関わらず酢酸エステルの選択率の低下もなく、オレフィンのオリゴマー化反応によるオレフィン二量体の副生も同程度に少ないことが分かる。
 実施例と比較例におけるオレフィン転化率あるいは酢酸エステル収率を比較すると、実施例におけるオレフィン転化率や酢酸エステル収率は、実施例と比較例で用いた各イオン交換樹脂のイオン交換容量から予測されるよりも遥かに大きいこと、またそのイオン交換容量が4.8mmol/gを境にしてそれを下回った場合には大きく活性が低下することは、驚くべきことである。
 また、イオン交換容量が4.8mmol/g以上で且つ多孔性のイオン交換樹脂を用いた場合、イオン交換容量4.8mmol/g未満の、あるいはゲル型イオン交換樹脂を用いた場合に比べて、低い反応温度で酢酸エステルを製造することが出来るので、触媒活性の低下も小さく、高い効率で酢酸エステルを製造することが可能となることが分かる。
 また、オレフィンとしてプロピレンを用いた場合、プロピレン反応率を80%以上とし、且つ反応温度を110℃以下とすることで、高い選択率で且つ触媒活性の低下も抑えながら酢酸イソプロピルを製造できることも明らかになった。
From the above examples and comparative examples, in the synthesis reaction of acetic acid ester by the addition reaction of olefin and acetic acid, a positive ion of benzenesulfonic acid type that has an ion exchange capacity of 4.8 mmol / g or more and is a porous ion exchange resin. It can be seen that when an ion exchange resin is used, the activity of the esterification reaction is remarkably greater than when a gel ion exchange resin or a resin having an ion exchange capacity of less than 4.8 mmol / g is used.
It can also be seen that despite the high olefin conversion rate, there is no decrease in the selectivity of the acetate ester, and the by-product of the olefin dimer due to the olefin oligomerization reaction is almost the same.
When comparing the olefin conversion rate or acetate ester yield in Examples and Comparative Examples, the olefin conversion rate and acetate ester yield in Examples are predicted from the ion exchange capacity of each ion exchange resin used in Examples and Comparative Examples. It is surprising that the ion exchange capacity is much lower than that of 4.8 mmol / g, and the activity is greatly reduced when the ion exchange capacity falls below 4.8 mmol / g.
In addition, when the ion exchange capacity is 4.8 mmol / g or more and a porous ion exchange resin is used, compared with the case where the ion exchange capacity is less than 4.8 mmol / g or the gel type ion exchange resin is used, It can be seen that since the acetate ester can be produced at a low reaction temperature, the decrease in the catalytic activity is small and the acetate ester can be produced with high efficiency.
It is also clear that when propylene is used as the olefin, isopropyl acetate can be produced with a high selectivity and a reduction in catalytic activity by setting the propylene reaction rate to 80% or more and the reaction temperature to 110 ° C. or less. Became.

Claims (4)

  1.  オレフィンと酢酸とを反応させて酢酸エステルを製造する方法において、
     触媒として、スチレンとジビニルベンゼンの共重合体にスルホン酸基が付加した構造を有し、多孔質であって、かつイオン交換容量が4.8mmol/g以上である多孔性陽イオン交換樹脂を用いることを特徴とする酢酸エステルの製造方法。
    In the method of producing acetate by reacting olefin and acetic acid,
    As a catalyst, a porous cation exchange resin having a structure in which a sulfonic acid group is added to a copolymer of styrene and divinylbenzene, having a porous structure and an ion exchange capacity of 4.8 mmol / g or more is used. A method for producing an acetate ester.
  2.  オレフィンがプロピレンである請求項1記載の酢酸エステルの製造方法。 The method for producing an acetate according to claim 1, wherein the olefin is propylene.
  3.  プロピレンの反応率が80%以上であり、かつ反応温度が110℃以下である請求項2記載の酢酸エステルの製造方法。 The method for producing an acetate ester according to claim 2, wherein the reaction rate of propylene is 80% or more and the reaction temperature is 110 ° C or less.
  4.  前記反応を、前記多孔性陽イオン交換樹脂を充填した固定相流通式反応器に、オレフィンと酢酸とを連続的に供給して行うことを特徴とする、請求項1~3の何れか記載の酢酸エステルの製造方法。 4. The reaction according to claim 1, wherein the reaction is carried out by continuously supplying olefin and acetic acid to a stationary-phase flow reactor filled with the porous cation exchange resin. Method for producing acetate ester.
PCT/JP2009/069908 2008-12-15 2009-11-26 Method for producing acetic acid ester WO2010071011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010542927A JPWO2010071011A1 (en) 2008-12-15 2009-11-26 Method for producing acetate ester
CN2009801504101A CN102264685A (en) 2008-12-15 2009-11-26 Method for producing acetic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008318610 2008-12-15
JP2008-318610 2008-12-15

Publications (1)

Publication Number Publication Date
WO2010071011A1 true WO2010071011A1 (en) 2010-06-24

Family

ID=42268685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069908 WO2010071011A1 (en) 2008-12-15 2009-11-26 Method for producing acetic acid ester

Country Status (3)

Country Link
JP (1) JPWO2010071011A1 (en)
CN (1) CN102264685A (en)
WO (1) WO2010071011A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203692A (en) * 2012-03-28 2013-10-07 Mitsubishi Chemicals Corp Method for producing purified phenol-based compound
CN104557523A (en) * 2014-08-28 2015-04-29 丹东明珠特种树脂有限公司 Catalyst loading method for synthesizing sec-butyl acetate
JP2017512877A (en) * 2014-04-09 2017-05-25 ローム アンド ハース カンパニーRohm And Haas Company Catalyst resin
CN111807957A (en) * 2020-07-02 2020-10-23 深圳飞扬兴业科技有限公司 Synthetic method of geranyl acetate
CN112679297A (en) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 Preparation method of high-purity dicyclopentadiene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100016A (en) * 1973-02-03 1974-09-20
JPS5225710A (en) * 1975-08-22 1977-02-25 Nippon Oil Co Ltd Process for preparation of isopropyl acetate
JPS55102530A (en) * 1979-01-30 1980-08-05 Anic Spa Manufacture of secondary butylalcohol
JPS5944295B2 (en) * 1973-02-10 1984-10-29 ヘキスト アクチェンゲゼルシャフト Production method of isopropyl ester
JPH072735A (en) * 1992-12-08 1995-01-06 Daicel Chem Ind Ltd Production of isopropyl acetate
WO2008009648A1 (en) * 2006-07-20 2008-01-24 Basf Se Process for preparing isopropanol and 2-butanol from the corresponding alkanes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100016A (en) * 1973-02-03 1974-09-20
JPS5944295B2 (en) * 1973-02-10 1984-10-29 ヘキスト アクチェンゲゼルシャフト Production method of isopropyl ester
JPS5225710A (en) * 1975-08-22 1977-02-25 Nippon Oil Co Ltd Process for preparation of isopropyl acetate
JPS55102530A (en) * 1979-01-30 1980-08-05 Anic Spa Manufacture of secondary butylalcohol
JPH072735A (en) * 1992-12-08 1995-01-06 Daicel Chem Ind Ltd Production of isopropyl acetate
WO2008009648A1 (en) * 2006-07-20 2008-01-24 Basf Se Process for preparing isopropanol and 2-butanol from the corresponding alkanes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203692A (en) * 2012-03-28 2013-10-07 Mitsubishi Chemicals Corp Method for producing purified phenol-based compound
JP2017512877A (en) * 2014-04-09 2017-05-25 ローム アンド ハース カンパニーRohm And Haas Company Catalyst resin
CN104557523A (en) * 2014-08-28 2015-04-29 丹东明珠特种树脂有限公司 Catalyst loading method for synthesizing sec-butyl acetate
CN104557523B (en) * 2014-08-28 2016-11-23 丹东明珠特种树脂有限公司 A kind of Catalyst packing method synthesizing sec-Butyl Acetate
CN112679297A (en) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 Preparation method of high-purity dicyclopentadiene
CN111807957A (en) * 2020-07-02 2020-10-23 深圳飞扬兴业科技有限公司 Synthetic method of geranyl acetate

Also Published As

Publication number Publication date
JPWO2010071011A1 (en) 2012-05-24
CN102264685A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
KR101157813B1 (en) Process for preparing tert-butanol from isobutene-containing hydrocarbon mixtures
JP4504135B2 (en) Method for producing t-butanol
JP5368791B2 (en) Reactive distillation in olefin recycling
EP1792885A1 (en) Process for producing ethylene
US20120245397A1 (en) Hydrated Niobium Oxide Nanoparticle Containing Catalysts for Olefin Hydration
JP2009500383A (en) Reactive distillation for dehydration of mixed alcohols
CN110759801B (en) Method for producing diisobutylene by mixing C4
WO2010071011A1 (en) Method for producing acetic acid ester
JP5890849B2 (en) Method for producing high-purity isobutene using glycol ether
JP4292072B2 (en) Production of t-butanol
CN1117958A (en) Method for production of methyl tertbutyl ether for production of high-purity isobutylene
WO1999033775A1 (en) PROCESS FOR THE PREPARATION OF tert-BUTYL ALCOHOL
CN111073690B (en) Process for oligomerizing olefins using a reduced olefin content stream
WO2011136765A1 (en) Regeneration of oligomerisation catalysts and their use
US9926245B2 (en) Fuels and chemicals from lower alkanes
US20220371978A1 (en) Systems and methods for mtbe production
JP4025373B2 (en) Method for producing carboxylic acid
CA2965479C (en) Process for in situ water removal from an oxidative esterification reaction using a coupled reactor-distillation system
US20020177733A1 (en) Manufacture of cyclic aliphatic acids and esters
KR20010075171A (en) Process for the manufacture of quaternary carboxylic acids
JPS58225030A (en) Separation and recovery of high-purity butene-1

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150410.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833316

Country of ref document: EP

Kind code of ref document: A1