WO2010067721A1 - Method for manufacturing organic electroluminescent element, and organic electroluminescent element - Google Patents

Method for manufacturing organic electroluminescent element, and organic electroluminescent element Download PDF

Info

Publication number
WO2010067721A1
WO2010067721A1 PCT/JP2009/070028 JP2009070028W WO2010067721A1 WO 2010067721 A1 WO2010067721 A1 WO 2010067721A1 JP 2009070028 W JP2009070028 W JP 2009070028W WO 2010067721 A1 WO2010067721 A1 WO 2010067721A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
electrode
light emitting
sealing member
Prior art date
Application number
PCT/JP2009/070028
Other languages
French (fr)
Japanese (ja)
Inventor
敦夫 野崎
喜芳 遠藤
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010542077A priority Critical patent/JP5573678B2/en
Publication of WO2010067721A1 publication Critical patent/WO2010067721A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element (hereinafter also referred to as an organic EL element) and an organic EL element produced by this production method.
  • an organic electroluminescence element hereinafter also referred to as an organic EL element
  • the organic EL element includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material laminated thereon, that is, a light emitting layer, A thin film element in which an organic EL element having a second electrode (cathode or anode) laminated on the light emitting layer is sealed with a sealing member that seals at least the surface of the organic EL element through an adhesive layer. It is.
  • the organic EL element is a thin film type element
  • a surface light source such as a backlight
  • a surface light source such as a backlight
  • the liquid crystal display has high visibility and no viewing angle dependency. Consideration is being made because there are advantages that cannot be obtained with the device.
  • a method for producing an organic EL structure a method of sequentially forming a first electrode, an organic functional layer, a second electrode, and a sealing layer on a substrate (sequential film formation method), and the first electrode And a second member on which a second electrode is formed, and the first electrode and the second electrode are opposed to each other between the first member and the second member.
  • a method of pasting (a pasting method) is known.
  • an organic EL element is a laminate in which at least a first electrode (anode), at least an organic compound layer (light emitting layer), and a second electrode (cathode) are formed on a substrate, and an adhesive layer is used. The end portion of the first electrode (anode) and the second electrode (cathode) is extracted on the base material as an extraction electrode.
  • Organic substances such as organic light emitting materials used in organic EL elements are weak in moisture and oxygen, and their performance deteriorates. Also, the characteristics of electrodes deteriorate rapidly in the atmosphere due to oxidation, and the organic EL elements are spotted on the organic EL elements. A non-light emitting part (hereinafter referred to as a dark spot) is generated and further has a disadvantage that it expands. Generally, it is used by blocking moisture and oxygen from the outside and suppressing deterioration of the organic EL element over a long period of time.
  • Stable light emission is an indispensable condition for applying the organic EL element as described above to a display device.
  • dark spots are generated by long-time driving, and the growth of the dark spots is one of the causes for shortening the lifetime of the organic EL elements. It is known that a dark spot is generally generated in a size that cannot be seen with the naked eye immediately after driving, and grows by continuous driving using this as a core. Further, it is known that dark spots are generated even in a storage state where driving is not performed and grows with time.
  • an organic EL structure having a plurality of laminates in which at least a first electrode, an organic layer including at least one light emitting layer, and a second electrode are sequentially laminated on a flexible support.
  • a method is known in which a body is formed, a sealing member is bonded onto the second electrode via an adhesive, and then cut into individual organic EL elements.
  • a roll-to-roll method is used to manufacture an organic EL structure having an organic EL element continuously on a band-shaped flexible support using a band-shaped flexible support.
  • a method in which the flexible support is a single sheet and an organic EL structure is manufactured for each single sheet is called a batch method.
  • a sealing member using a metal foil as a barrier layer is interposed via an adhesive.
  • a method of manufacturing individual organic EL elements by punch-die punching in which a cutting blade is inserted from the sealing member side after the second electrode is tightly sealed is known (see Patent Document 1). ).
  • the organic EL device produced by the method described in Patent Document 1 is excellent without dark spots, but when used and stored for a long time, a sealing member using a metal foil as a barrier layer is used. In spite of this, it has been found that the occurrence of light emission unevenness that causes light emission failure is scattered around the light emitting region.
  • the present invention has been made in view of the above situation, and has an object of having a plurality of organic EL elements fabricated using a sealing member using a metal foil as a barrier layer in order to prevent the occurrence of dark spots. It is to provide an organic EL device manufacturing method and an organic EL device in which the storage stability of individual organic EL devices manufactured by cutting an organic EL structure is improved.
  • a method for producing an organic electroluminescence element comprising: cutting the structure on which the sealing member is bonded with a cutting blade from the flexible support side to produce an individual organic electroluminescence element.
  • Organic EL elements manufactured by cutting organic EL structures using a sealing member having a conductive layer can be used for a long time regardless of the manufacturing method (batch method, roll-to-roll method) of the organic EL structures. In the storage, the occurrence of uneven light emission is seen around the light emitting area.
  • the organic EL element generally has a configuration in which an organic EL element having at least a first electrode, an organic functional layer including at least one light emitting layer, and a second electrode is sealed with a sealing member having a barrier layer.
  • a sealing member having a barrier layer is 100 nm to 25 ⁇ m
  • the thickness of the barrier layer of the sealing member having the barrier layer is 5 ⁇ m to 100 ⁇ m.
  • the adhesive layer peels off due to rubbing with the metal layer cutting of the barrier layer, and moisture enters the inside from the peeled portion, causing uneven emission around the light emitting region.
  • FIG. 1 is a schematic view of an organic EL structure.
  • FIG. 1A is a schematic perspective view of an organic EL structure.
  • FIG. 1B is an enlarged schematic cross-sectional view along AA ′ of FIG.
  • 1 indicates an organic EL structure.
  • the organic EL structure 1 has an organic EL element 2 continuously formed on a flexible support 3.
  • the organic EL element 2 is a laminate in which a first electrode 201, a hole transport layer 202, a light emitting layer 203, an electron transport layer 204, and a second electrode 205 are sequentially stacked on the flexible support 3. It has a structure in which the body is tightly sealed with a sealing member 207 through an adhesive layer 206.
  • the sealing member 207 includes a base material 207a and a barrier layer 207b.
  • the thickness of the barrier layer 207b is preferably 10 ⁇ m to 50 ⁇ m in consideration of performance degradation of the organic EL element due to permeation of moisture and oxygen, inhibition of flexibility of the organic EL element due to thickness, and the like.
  • a gas barrier layer may be provided between the flexible support 3 and the first electrode 201.
  • the thickness of the first electrode 201 of the organic EL element 2 is preferably 100 nm to 200 nm. Although there is no restriction
  • the hole transport layer may have a single layer structure. In the case where the light emitting layer 203 is a multilayer, it is necessary to arrange units for the coating / drying unit in accordance with the number of layers to be stacked. For example, a white element can be manufactured by forming a light emitting layer in multiple layers.
  • the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer.
  • stacking a light emitting layer You may have a nonluminous intermediate
  • blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting from the order close to the anode.
  • the total thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 2 nm to 5 ⁇ m, preferably 2 nm to 200 nm in consideration of the film homogeneity, the voltage required for light emission, and the like. Further, it is preferably in the range of 10 nm to 20 nm.
  • the thickness of the electron transport layer 204 is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • the sheet resistance as the second electrode (cathode) 205 is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the layer configuration of the organic EL element shown in this figure is an example, but as another typical organic EL element layer configuration between the first electrode (anode) and the second electrode (cathode), The following configurations are listed.
  • the organic EL structure shown in this figure can be manufactured by the method
  • FIG. 2 is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut from the sealing member side.
  • FIG. 2A is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut by inserting a cutting blade from the sealing member side by a conventional method.
  • FIG. 2B is an enlarged schematic view of a portion indicated by P in FIG.
  • 4 indicates a cutting blade.
  • the leading edge of the cutting blade 4 is composed of a mining surface 402 and an anti-mineral surface 401.
  • the anti-mineral surface As the base material 207a and the barrier layer 207b of the sealing member 207 are rubbed by 401, the cutting blade 4 is stretched in the advancing direction by friction.
  • the support 207a is a plastic support, it shrinks, but if a highly stretchable metal foil (aluminum foil) is used for the barrier layer 207b, the support 207a remains stretched and becomes a burr 207c.
  • the adhesive layer 206 is also stretched together with the barrier layer 207b, and finally, the adhesive layer 206 is peeled off from the interface between the barrier layer 207b and the adhesive layer 206.
  • a portion indicated by Q indicates a state where the adhesive layer 206 is peeled off. When peeling occurs, moisture gradually permeates into the inside from the peeled portion, eventually destroying the organic EL element and causing uneven light emission around the light emitting region.
  • the present invention relates to an organic EL element manufacturing method for manufacturing an individual organic EL element by cutting the organic EL structure from which peeling of the adhesive layer 206 is prevented with a cutting blade, and an organic EL element manufactured by the manufacturing method. It is.
  • FIG. 3 is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut from the flexible support side.
  • FIG. 3A is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut by inserting a cutting blade from the flexible support side of the present invention.
  • FIG. 2B is an enlarged schematic view of a portion indicated by R in FIG. Reference numerals are the same as those in FIG.
  • the difference from the cutting method shown in FIG. 2 is that the organic EL structure 1 is cut by inserting a cutting blade from the flexible support side.
  • the flexible support 3 and the adhesive layer 206 are rubbed by the anti-mineral surface 401, thereby cutting by friction.
  • the blade 4 is stretched in the traveling direction. At this time, since the flexible support 3 and the adhesive layer 206 are stretchable, they are once stretched, but are not easily burred by shrinking thereafter.
  • the barrier layer 207 b When the leading edge of the cutting blade 4 reaches the barrier layer 207 b and further proceeds to the base material 207 a of the sealing member 207, the barrier layer 207 b is rubbed by the anti-mineral surface 401 of the cutting blade 4, so that the cutting blade 4 moves in the traveling direction due to friction. The stretched state becomes the burr 207c.
  • a highly stretchable metal foil aluminum foil
  • the barrier layer 207b extends to become a burr 207c.
  • the thickness of the base material 207a is sufficiently thick with respect to the thickness of the barrier layer 207b and a cutting blade. Since the distance traveled by 4 is as short as the thickness of the base material 207a, it does not become a burr that has come out of the base material 207a.
  • the thickness of the base material 207a is 5 ⁇ m to 70 ⁇ m.
  • the thickness of the barrier layer 207b is 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m. When the thickness is less than 10 ⁇ m, dark spots are likely to occur, and when it exceeds 50 ⁇ m, there is a risk of film peeling.
  • the adhesive layer 206 is also a cut surface and does not come into contact with the barrier layer 207b (metal foil) stretched by the anti-mineral surface of the cutting blade 4, so that excessive stress is not applied and peeling from the interface with the barrier layer 207b is prevented. Can be prevented.
  • the barrier layer 207b metal foil
  • the portion to be cut is between each organic EL element constituting the organic EL structure, and with a cutting blade
  • the material to be cut include a flexible support, an adhesive layer, and a sealing member.
  • a gas barrier layer is also object.
  • the cutting method when the organic EL structure is cut to manufacture individual organic EL elements there is no particular limitation on the cutting method when the organic EL structure is cut to manufacture individual organic EL elements.
  • the punching and cutting method using a punch and die the punching and cutting method using a Thomson blade
  • the organic EL structure A method in which the organic EL element is formed in the length direction of the organic EL structure by cutting the slit in the length direction with a rotary blade in accordance with the row of organic EL elements formed in the width direction
  • Examples include a method of cutting in a strip shape with a guillotine blade in accordance with the interval row of EL elements, and then cutting with a guillotine blade in accordance with the interval of organic EL elements formed in the width direction.
  • These methods can be appropriately selected depending on the arrangement state of the organic EL elements constituting the organic EL structure.
  • the organic EL structure cutting method of the present invention shown in FIG. 3 can be applied to all methods for cutting an organic EL structure.
  • a transparent resin film is mentioned as a flexible support body.
  • the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate
  • PET polyethylene
  • barrier layer examples of the barrier layer provided on the surface of the flexible support as needed include inorganic, organic barrier films, or a hybrid barrier film of both.
  • a material for forming the barrier film any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization
  • a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the materials used for these barrier layers can also be used for the second strip-shaped flexible support and the strip-shaped flexible adhesive member.
  • the water vapor permeability is 0.01 g / m 2 / day or less. Furthermore, a high barrier film having an oxygen permeability of 10 ⁇ 3 ml / m 2 / day / atm or less and a water vapor permeability of 10 ⁇ 5 g / m 2 / day or less is preferable.
  • the adhesive examples include a liquid adhesive, a sheet adhesive, and a thermoplastic resin.
  • liquid adhesives include photo-curing and thermosetting sealing agents having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture-curing adhesives such as 2-cyanoacrylate, epoxy-based adhesives, etc.
  • the organic layer which comprises an element may deteriorate with heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable.
  • the above-mentioned barrier layer is formed on the back surface side of the adhesive layer of the belt-like flexible adhesive member as necessary.
  • a sheet-like adhesive is an adhesive that is non-flowable at room temperature (about 25 ° C.) and exhibits fluidity in the range of 50 ° C. to 100 ° C. when heated, and is molded into a sheet shape.
  • a photocurable resin mainly composed of a compound having an ethylenic double bond at the end or side chain of a molecule and a photopolymerization initiator can be mentioned.
  • thermoplastic resin a thermoplastic resin having a melt flow rate of JIS K 7210 specified in a range of 5 g / 10 min to 20 g / 10 min is preferable, and a thermoplastic resin of 6 g / 10 min to 15 g / 10 min or less is more preferable. preferable. This is because if a resin having a melt flow rate of 5 g / 10 min or less is used, the gap caused by the step of the extraction electrode of each electrode cannot be completely filled, and if a resin having a melt flow rate of 20 g / 10 min or more is used, the tensile strength and This is because stress cracking properties, workability, and the like are reduced.
  • thermoplastic resins are preferably formed into a film and bonded to a flexible sealing member (a strip-shaped flexible sealing member or a single-sheet flexible sealing member).
  • the laminating method can be made by using various generally known methods such as a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method, and a thermal laminating method.
  • the thermoplastic resin is not particularly limited as long as it satisfies the above numerical values.
  • low density polyethylene which is a polymer film described in the new development of functional packaging materials (Toray Research Center, Inc.).
  • High density polyethylene HDPE
  • linear low density polyethylene LLDPE
  • medium density polyethylene unstretched polypropylene
  • CPP stretched polypropylene
  • OPP stretched nylon
  • PET polyethylene terephthalate
  • PVA polyvinyl Alcohol
  • OV expanded vinylon
  • EVOH ethylene-vinyl acetate copolymer
  • EVOH ethylene-propylene copolymer
  • ethylene-acrylic acid copolymer ethylene-methacrylic acid copolymer
  • PVDC vinylidene chloride
  • thermoplastic resins LDPE, LLDPE produced using LDPE, LLDPE and a metallocene catalyst, or a thermoplastic resin using a mixture of LDPE, LLDPE and HDPE films is preferably used.
  • the base material of the sealing member is not particularly limited.
  • Thermoplastic resin film materials, glass, metal foil, etc. used for general packaging films such as polyimide and polyether styrene (PES) can be used.
  • thermoplastic resin films a multilayer film produced by coextrusion with a different film, a multilayer film produced by bonding with different stretching angles, etc. can be used as required. Further, it is naturally possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties.
  • thermoplastic resin film it is necessary to form a barrier layer by vapor deposition or coating.
  • An example of the barrier layer is a metal foil.
  • a metal material such as aluminum, copper, or nickel, or an alloy material such as stainless steel or aluminum alloy can be used, but aluminum is preferable in terms of workability and cost.
  • a film such as PET or nylon may be laminated in advance.
  • a resin film it is preferable to have a thermoplastic adhesive resin layer on the side in contact with the liquid sealing agent.
  • a protective layer may be provided on the barrier layer.
  • the thickness of the protective layer is preferably from 100 nm to 200 ⁇ m in consideration of stress cracking resistance, electrical insulation resistance of the barrier layer, adhesiveness (adhesive force, step following ability) and the like when used as a sealant layer.
  • a thermoplastic resin film having a JIS K 7210 standard melt flow rate of 5 g / 10 min to 20 g / 10 min is preferable, and a thermoplastic resin film of 6 g / 10 min to 15 g / 10 min or less is more preferably used. preferable.
  • thermoplastic resin film is not particularly limited as long as it satisfies the above numerical values.
  • LDPE, HDPE, LLDPE which are polymer films described in Toray Research Center, Inc.
  • thermoplastic resin films it is particularly preferable to use LDPE, LLDPE produced by using LDPE, LLDPE and a metallocene catalyst, or a film using a mixture of these films and HDPE films.
  • the flexible sealing member used to form the sealing layer is a laminated film in which a barrier layer (a protective layer if necessary) is formed on the resin base material in order to facilitate handling during production. It is preferable to use it in the state.
  • a method for producing a laminated film various methods generally known on an inorganic layer of a thermoplastic resin film laminated with an aluminum foil, for example, a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method. It is possible to make by using the heat laminating method.
  • the water vapor permeability of the flexible sealing member used in the present invention is preferably 0.01 g / m 2 ⁇ day or less in consideration of barrier properties and the like required for commercialization as an organic EL element.
  • the oxygen permeability is preferably 0.1 ml / m 2 ⁇ day ⁇ MPa or less.
  • the moisture permeability is a value measured mainly by the MOCON method by a method based on the JIS K7129B method (1992), and the oxygen permeability is a value measured mainly by the MOCON method by a method based on the JIS K7126B method (1987). is there.
  • the Young's modulus of the flexible sealing member is 1 ⁇ 10 ⁇ 3 GPa to 80 GPa and the thickness is 10 ⁇ m to 500 ⁇ m in consideration of adhesion to the organic EL element, prevention of spreading of the liquid adhesive, and the like. preferable.
  • Example 1 (Production of organic EL structure)
  • Organic EL structure having the structure shown in FIG. 1 (flexible support / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) / adhesive layer / sealing member ) was prepared by changing the thickness of the metal foil (aluminum foil) of the barrier layer of the sealing member as shown in Table 1. 1-1 to 1-5.
  • the hole transport layer, the light emitting layer, and the electron transport layer were formed by a wet coating method.
  • PEN polyethylene naphthalate film having a width of 200 mm and a length of 100 m and a thickness of 100 ⁇ m was prepared.
  • a position designation mark was added to the position where the alignment mark, the extraction electrode for the first electrode, and the extraction electrode for the second electrode were formed in accordance with the position of the first electrode formed in advance.
  • anode On the prepared PEN, 25 mm is formed on each side, an anode (first electrode) having a thickness of 120 nm and a size of 150 mm ⁇ 150 mm and having an extraction electrode is patterned by ITO (indium tin oxide) by vapor deposition.
  • ITO indium tin oxide
  • One row of electrodes was formed at intervals of 10 mm in the length direction of the belt-like flexible support, and a winding roll was formed on the winding core.
  • a hole transport layer forming coating solution shown below is applied onto the first electrode of the belt-like flexible support having the first electrode formed in the form of a take-up roll on the prepared winding core by extrusion coating with a nitrogen gas. After coating at a coating speed of 2 m / min in the atmosphere, the hole transport layer having a thickness of 50 nm was formed by drying. Before applying the coating liquid for forming the hole transport layer, the surface of the belt-like flexible support is subjected to a cleaning surface modification treatment using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. Carried out. The charge removal treatment was performed using a static eliminator with weak X-rays.
  • PEDOT / PSS polyethylene dioxythiophene / polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • a coating solution for forming a green light emitting layer shown below is applied by an extrusion coater in a nitrogen gas atmosphere at a coating speed of 2 m / min. Then, the resultant was dried to form a light emitting layer having a thickness of 100 nm.
  • a dopant material Ir (ppy) 3 was dissolved in a host material polyvinyl carbazole (PVK) in 5% by mass in 1,2-dichloroethane to prepare a 1% solution as a coating solution for forming a green light emitting layer.
  • PVK polyvinyl carbazole
  • the second electrode forming material is formed on the formed electron transport layer under a vacuum of 5 ⁇ 10 ⁇ 4 Pa except for the portion that becomes the take-out electrode on the first electrode on the formed electron transport layer.
  • a mask pattern was formed in the same size as the first electrode by vapor deposition so as to have an extraction electrode, and a second electrode having a thickness of 100 nm was laminated.
  • an adhesive was applied over the entire width of the PEN so as to have a thickness of 20 ⁇ m including the portion to be the takeout electrode on the second electrode.
  • An ultraviolet curable liquid sealant manufactured by ThreeBond 3124C, manufactured by Three Bond Co., Ltd. was used as the adhesive.
  • the prepared organic EL structure No. A cutting speed of 60 m / min with reference to the alignment mark attached to the flexible support from the flexible support side in the cutting method shown in FIG. And an individual organic EL element having a size of 160 mm ⁇ 160 mm was produced. 101 to 105.
  • Table 2 shows the results of the tests from 101 to 110, the dark spots, the preservability, and the film peeling, and the evaluations according to the following evaluation ranks.
  • the sample was allowed to stand for 24 hours at a temperature of 55 ° C., a humidity of 80% RH, and then a direct voltage was applied to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica Corporation. At this time, the number of dark spots when light was emitted at 100 cd / m 2 was visually measured using a 100 times magnifier.
  • Evaluation rank of dark spot ⁇ Less than 2 dark spots ⁇ : 2 or more dark spots, less than 5 ⁇ : 5 or more dark spots, less than 10 ⁇ : 10 or more dark spots
  • preservation test method As an alternative characteristic of storability, light emission unevenness around the light emitting region was observed by the following method. 100 samples thus prepared were stored at a temperature of 55 ° C. and a humidity of 80% RH for 24 hours, and then a DC voltage was applied to the organic EL element to emit light using a source measure unit type 2400 manufactured by KEITHLEY.
  • Evaluation rank of light emitting area ⁇ The number of organic EL panels that do not emit light around the light emitting region is less than 2/100 ⁇ : The number of organic EL panels that do not emit light around the light emitting region is 2/100 or more, 6/100 Less than: ⁇ : The number of organic EL panels that do not emit light around the light emitting region is 6/100 or more, and less than 11/100 ⁇ : The number of organic EL panels that do not emit light around the light emitting region is 11/100 or more Test Method The peeling width between the adhesive layer and the aluminum foil was observed on the cut surface of the sample with a Keyence laser microscope.
  • peeling width is 0 ⁇ m ⁇ : Peel width is 0 ⁇ m or more and less than 30 ⁇ m ⁇ : Peel width is 30 ⁇ m or more and less than 50 ⁇ m ⁇ : Peel width is 50 ⁇ m or more
  • the individual organic EL element produced by cutting the organic EL structure by inserting a cutting blade from the flexible support side of the present invention showed excellent performance in both dark spots, storage stability and film peeling.
  • the individual organic EL elements produced by the conventional method of cutting an organic EL structure from a sealing member by inserting a cutting blade showed good performance but dark storage performance and poor film peeling performance. .
  • the effectiveness of the present invention was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a method for manufacturing separate organic electroluminescent elements having improved storage properties, wherein an organic EL structure, which has, on a flexible supporting body, a laminate in which at least a first electrode, an organic layer containing at least one light-emitting layer, and a second electrode are sequentially arranged, is formed; a sealing member, which uses a metal foil for a barrier layer, is bonded onto the second electrode of the organic EL structure with an adhesive for the purpose of preventing generation of dark spots; and then the organic EL structure having a plurality of organic EL elements, to which the sealing member is bonded, is cut with a cutting blade from the flexible supporting body side.  Also disclosed is an organic electroluminescent element manufactured by this method.

Description

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子Method for manufacturing organic electroluminescent element, organic electroluminescent element
 本発明は有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)の製造方法及びこの製造方法により製造された有機EL素子に関するものである。 The present invention relates to a method for producing an organic electroluminescence element (hereinafter also referred to as an organic EL element) and an organic EL element produced by this production method.
 近年、有機物質を使用した有機EL素子は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視されており、活発な研究開発が進められている。有機EL素子は、基材上に形成された第1電極(陽極又は陰極)と、その上に積層された有機発光物質を含有する有機化合物層(単層部又は多層部)すなわち発光層と、この発光層上に積層された第2電極(陰極又は陽極)とを有する有機EL素子を接着剤層を介して少なくとも有機EL素子の表面を封止する封止部材により封止した薄膜型の素子である。この様な有機EL素子に電圧を印加すると、有機化合物層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られている。 In recent years, organic EL elements using organic substances have been promising for use as solid light-emitting, inexpensive large-area full-color display elements and writing light source arrays, and active research and development are being promoted. The organic EL element includes a first electrode (anode or cathode) formed on a substrate, an organic compound layer (single layer portion or multilayer portion) containing an organic light emitting material laminated thereon, that is, a light emitting layer, A thin film element in which an organic EL element having a second electrode (cathode or anode) laminated on the light emitting layer is sealed with a sealing member that seals at least the surface of the organic EL element through an adhesive layer. It is. When a voltage is applied to such an organic EL element, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer. It is known that light is obtained by releasing energy as light when the electrons and holes recombine in the light emitting layer and the energy level returns from the conduction band to the valence band.
 この様に、有機EL素子は薄膜型の素子であるため、1個又は複数個の有機EL素子を基板上に形成した有機EL素子をバックライト等の面光源として利用した場合には、面光源を備えた装置を容易に薄型にすることが出来る。又、画素としての有機EL素子を基板上に所定個数形成した有機EL素子をディスプレイパネルとして用いて有機EL表示装置を構成した場合には視認性が高い、視野角依存性がないなど、液晶表示装置では得られない利点があることから検討が進められている。 As described above, since the organic EL element is a thin film type element, when an organic EL element in which one or a plurality of organic EL elements are formed on a substrate is used as a surface light source such as a backlight, a surface light source. It is possible to easily make a device equipped with In addition, when an organic EL display device is configured using an organic EL element in which a predetermined number of organic EL elements as pixels are formed on a substrate as a display panel, the liquid crystal display has high visibility and no viewing angle dependency. Consideration is being made because there are advantages that cannot be obtained with the device.
 本発明では可撓性支持体の上に複数の第1電極と少なくとも発光層を含む有機層と第2電極まで積層した状態の積層体や、更に積層体を封止部材で密着封止した状態を有機EL構造体と言う。 In the present invention, a laminated body in a state where a plurality of first electrodes, an organic layer including at least a light emitting layer, and a second electrode are laminated on a flexible support, and a state in which the laminated body is tightly sealed with a sealing member Is called an organic EL structure.
 有機EL構造体の製造方法としては、基材の上に順次第1電極、有機機能層、第2電極、封止層を逐次形成して行く方法が(逐次成膜法)と、第1電極と有機機能層とを積層した第1部材と、第2電極を形成した第2部材とを準備し、第1部材と第2部材との間に第1電極と第2電極とが対向するように貼合する方法(貼合法)とが知られている。 As a method for producing an organic EL structure, a method of sequentially forming a first electrode, an organic functional layer, a second electrode, and a sealing layer on a substrate (sequential film formation method), and the first electrode And a second member on which a second electrode is formed, and the first electrode and the second electrode are opposed to each other between the first member and the second member. A method of pasting (a pasting method) is known.
 通常、有機EL素子は、基材上に、少なくとも第1電極(陽極)と、少なくとも有機化合物層(発光層)と、第2電極(陰極)とが形成された積層体を、接着剤層を介して封止部材により封止されており、第1電極(陽極)と第2電極(陰極)との端部が基材上に取り出し電極として引き出された構造を有している。 Usually, an organic EL element is a laminate in which at least a first electrode (anode), at least an organic compound layer (light emitting layer), and a second electrode (cathode) are formed on a substrate, and an adhesive layer is used. The end portion of the first electrode (anode) and the second electrode (cathode) is extracted on the base material as an extraction electrode.
 有機EL素子に用いられる有機発光材料等の有機物は、水分や酸素等に弱く性能が劣化し、又、電極も、酸化により大気中では特性が急激に劣化し、有機EL素子上に斑点状の非発光部(以下、ダークスポットと言う)が発生し、更にはそれが拡大してしまう欠点があるため、これらの劣化を防止するために、不活性ガス中で製造したり、封止部材を設けて外部からの水分や酸素を遮断し、長期にわたり有機EL素子の劣化を抑制して使用しているのが一般的である。 Organic substances such as organic light emitting materials used in organic EL elements are weak in moisture and oxygen, and their performance deteriorates. Also, the characteristics of electrodes deteriorate rapidly in the atmosphere due to oxidation, and the organic EL elements are spotted on the organic EL elements. A non-light emitting part (hereinafter referred to as a dark spot) is generated and further has a disadvantage that it expands. Generally, it is used by blocking moisture and oxygen from the outside and suppressing deterioration of the organic EL element over a long period of time.
 上記に述べた如き有機EL素子を表示装置に応用を行う上で、安定した発光は必要不可欠な条件である。しかしながら、有機EL素子においては、長時間駆動によりダークスポットが発生し、このダークスポットの成長が有機EL素子の寿命を短くしている原因の1つとなっている。ダークスポットは一般的に駆動直後は肉眼では見えない程度の大きさで発生し、これを核として連続駆動により成長して行くことが知られている。又、ダークスポットは駆動を行わない保存状態でも発生し、経時的に成長することが知られている。 Stable light emission is an indispensable condition for applying the organic EL element as described above to a display device. However, in organic EL elements, dark spots are generated by long-time driving, and the growth of the dark spots is one of the causes for shortening the lifetime of the organic EL elements. It is known that a dark spot is generally generated in a size that cannot be seen with the naked eye immediately after driving, and grows by continuous driving using this as a core. Further, it is known that dark spots are generated even in a storage state where driving is not performed and grows with time.
 ダークスポットの原因は色々考えられるが、例えば、水分や酸素の有機EL素子内への浸入による有機層の結晶化、第2電極の剥離等が考えられる。水分や酸素の有機EL素子内への浸入によるダークスポットの発生を防止するための対策として、例えば特開2001-307871号公報、同2002-50470号公報には金属箔などのバリア性の高いフィルムを用いて有機EL素子を接着剤層を介して被覆封止する方法が記載されている。 There are various causes of dark spots. For example, crystallization of the organic layer due to penetration of moisture and oxygen into the organic EL element, peeling of the second electrode, and the like are possible. As countermeasures for preventing the generation of dark spots due to the ingress of moisture or oxygen into the organic EL element, for example, Japanese Patent Application Laid-Open Nos. 2001-307871 and 2002-50470 disclose a film having a high barrier property such as a metal foil. Describes a method of covering and sealing an organic EL element with an adhesive layer using an adhesive.
 有機EL素子の製造方法としては、可撓性支持体の上に少なくとも第1電極と、少なくとも一層の発光層を含む有機層と、第2電極とを順次積層した積層体を複数有する有機EL構造体を形成し、第2電極の上に接着剤を介して封止部材を貼合した後、断裁して個別の有機EL素子とする方法が知られている。 As a method for producing an organic EL element, an organic EL structure having a plurality of laminates in which at least a first electrode, an organic layer including at least one light emitting layer, and a second electrode are sequentially laminated on a flexible support. A method is known in which a body is formed, a sealing member is bonded onto the second electrode via an adhesive, and then cut into individual organic EL elements.
 有機EL素子の製造方法において、帯状の可撓性支持体を使用し、帯状の可撓性支持体の上に連続して有機EL素子を有する有機EL構造体を製造する方法をロールトゥーロール方式と言い、可撓性支持体が枚葉シート状で、枚葉シート毎に有機EL構造体を製造する方法をバッチ方式と言う。 In a method of manufacturing an organic EL element, a roll-to-roll method is used to manufacture an organic EL structure having an organic EL element continuously on a band-shaped flexible support using a band-shaped flexible support. In other words, a method in which the flexible support is a single sheet and an organic EL structure is manufactured for each single sheet is called a batch method.
 上記のバッチ方式及びロールトゥーロール方式で、可撓性支持体の上に形成された有機ELパネルのダークスポットの発生を抑えるためにバリア層として金属箔を用いた封止部材を接着剤を介して第2電極の上を密着封止した後、封止部材側から断裁刃を入れるパンチ・ダイ方式の打ち抜き断裁で個別の有機EL素子を製造する方法が知られている(特許文献1参照。)。 In order to suppress the occurrence of dark spots on the organic EL panel formed on the flexible support by the batch method and the roll-to-roll method, a sealing member using a metal foil as a barrier layer is interposed via an adhesive. A method of manufacturing individual organic EL elements by punch-die punching in which a cutting blade is inserted from the sealing member side after the second electrode is tightly sealed is known (see Patent Document 1). ).
 特許文献1に記載の方法により製造した有機EL素子は、ダークスポット発生はなく優れているのであるが、長期間使用、及び保管した場合、バリア層に金属箔を用いた封止部材を用いているにもかかわらず、発光領域の周囲に発光不良となる発光ムラの発生が散見されることが判った。 The organic EL device produced by the method described in Patent Document 1 is excellent without dark spots, but when used and stored for a long time, a sealing member using a metal foil as a barrier layer is used. In spite of this, it has been found that the occurrence of light emission unevenness that causes light emission failure is scattered around the light emitting region.
 この様な状況から、ダークスポットの発生を防止するためにバリア層に金属箔を用いた封止部材を使用し作製した複数の有機EL素子を有する有機EL構造体を断裁して製造した個別の有機EL素子の保存性を向上させた有機EL素子の製造方法及び有機EL素子の開発が望まれている。 From such a situation, in order to prevent the generation of dark spots, individual organic EL structures having a plurality of organic EL elements manufactured using a sealing member using a metal foil as a barrier layer are manufactured. Development of a manufacturing method of an organic EL element with improved storage stability of the organic EL element and development of the organic EL element are desired.
特開2007-73332号公報JP 2007-73332 A
 本発明は、上記状況に鑑みなされたものであり、その目的はダークスポットの発生を防止するために、バリア層に金属箔を用いた封止部材を使用し作製した複数の有機EL素子を有する有機EL構造体を断裁して製造した個別の有機EL素子の保存性を向上させた有機EL素子の製造方法及び有機EL素子を提供することである。 The present invention has been made in view of the above situation, and has an object of having a plurality of organic EL elements fabricated using a sealing member using a metal foil as a barrier layer in order to prevent the occurrence of dark spots. It is to provide an organic EL device manufacturing method and an organic EL device in which the storage stability of individual organic EL devices manufactured by cutting an organic EL structure is improved.
 本発明の上記課題は、下記の構成により達成された。 The above object of the present invention has been achieved by the following constitution.
 1.可撓性支持体の上に少なくとも第1電極と、少なくとも一層の発光層を含む有機層と、第2電極とを順次積層した積層体を有する有機エレクトロルミネッセンス構造体を形成し、
前記構造体の前記第2電極上に接着剤を介してバリア層に金属箔を用いた封止部材を貼合した後、
前記可撓性支持体側から断裁刃で前記封止部材を貼合した前記構造体を断裁し、個別の有機エレクトロルミネッセンス素子を製造することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
1. Forming an organic electroluminescent structure having a laminate in which at least a first electrode, an organic layer including at least one light emitting layer, and a second electrode are sequentially laminated on a flexible support;
After bonding a sealing member using a metal foil to the barrier layer via an adhesive on the second electrode of the structure,
A method for producing an organic electroluminescence element, comprising: cutting the structure on which the sealing member is bonded with a cutting blade from the flexible support side to produce an individual organic electroluminescence element.
 2.前記金属箔の厚さが10μmから50μmであることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. 2. The method for producing an organic electroluminescent element according to 1 above, wherein the thickness of the metal foil is 10 μm to 50 μm.
 3.前記1又は2に記載の有機エレクトロルミネッセンス素子の製造方法により製造されたことを特徴とする有機エレクトロルミネッセンス素子。 3. 3. An organic electroluminescence device manufactured by the method for manufacturing an organic electroluminescence device according to 1 or 2 above.
 ダークスポットの発生を防止するために、バリア層に金属箔を用いた封止部材を使用し作製した複数の有機EL素子を有する有機EL構造体を断裁して製造した個別の有機EL素子の保存性を向上させた有機EL素子の製造方法及び有機EL素子を提供することが出来た。有機EL素子以外にも有機光電変換素子を始めとした各種有機エレクトロニクス素子において、湿度の進入は機能低下や寿命短縮の要因であり、有機エレクトロニクス素子の断裁においてもこの方法は有効的である。 Storage of individual organic EL elements manufactured by cutting an organic EL structure having a plurality of organic EL elements prepared using a sealing member using a metal foil as a barrier layer in order to prevent the occurrence of dark spots The manufacturing method of the organic EL element which improved the property, and the organic EL element were able to be provided. In addition to organic EL elements, in various organic electronics elements including organic photoelectric conversion elements, the ingress of humidity is a cause of functional deterioration and shortening of life, and this method is effective in cutting organic electronic elements.
有機EL構造体の概略図である。It is the schematic of an organic electroluminescent structure. 図1で示される有機EL構造体を封止部材側から断裁する状態を示した模式図である。It is the schematic diagram which showed the state which cuts out the organic electroluminescent structure shown by FIG. 1 from the sealing member side. 図1で示される有機EL構造体を可撓性支持体側から断裁する状態を示した模式図である。It is the schematic diagram which showed the state which cuts the organic electroluminescent structure shown by FIG. 1 from the flexible support body side.
 導電性層を有する封止部材を使用した有機EL構造体を断裁し製造された有機EL素子は、有機EL構造体の製造方式(バッチ方式、ロールトゥーロール方式)に関係なく、長期間の使用、保管で発光領域の周囲に発光ムラの発生が散見される。 Organic EL elements manufactured by cutting organic EL structures using a sealing member having a conductive layer can be used for a long time regardless of the manufacturing method (batch method, roll-to-roll method) of the organic EL structures. In the storage, the occurrence of uneven light emission is seen around the light emitting area.
 有機EL素子は、概略、少なくとも第1電極と、少なくとも1層の発光層を含む有機機能層と、第2電極とを有する有機EL素子を、バリア層を有する封止部材で封止した構成を有している。一般的に第1電極、発光層を含む有機層、第2電極等の厚さが100nmから25μmに対して、バリア層を有する封止部材のバリア層の厚さが5μmから100μmと厚くなっている。このため、有機EL構造体を断裁し個別の有機EL素子を作る時、断裁刃の進行に伴い、断裁刃と断裁面の接触により、断裁面が断裁刃の進行方向に伸ばされ切断ダレが発生する。この時、可撓性支持体、封止部材の支持体はプラスチックを使用しているため時間と共に収縮するが、バリア層が金属箔の場合は伸ばされた状態を維持しているため封止部材のバリア層の切断ダレが長くなっていると推定した。 The organic EL element generally has a configuration in which an organic EL element having at least a first electrode, an organic functional layer including at least one light emitting layer, and a second electrode is sealed with a sealing member having a barrier layer. Have. In general, the thickness of the first electrode, the organic layer including the light emitting layer, the second electrode, etc. is 100 nm to 25 μm, whereas the thickness of the barrier layer of the sealing member having the barrier layer is 5 μm to 100 μm. Yes. For this reason, when the organic EL structure is cut to produce individual organic EL elements, the cutting surface is extended in the advancing direction of the cutting blade due to the contact between the cutting blade and the cutting surface with the progress of the cutting blade. To do. At this time, since the support of the flexible support and the sealing member uses plastic, it shrinks with time. However, when the barrier layer is a metal foil, the sealing member maintains the stretched state. It was estimated that the cutting of the barrier layer was longer.
 バリア層の切断ダレが発生する際、バリア層の金属箔の切断ダレとの擦れにより接着剤層が剥離し、剥離した箇所から湿度が内部に進入することで発光領域の周囲に発光ムラが発生することが判った。 When cutting of the barrier layer occurs, the adhesive layer peels off due to rubbing with the metal layer cutting of the barrier layer, and moisture enters the inside from the peeled portion, causing uneven emission around the light emitting region. I found out that
 これらの対応として、バリア層の切断ダレに伴う発光領域の周囲に発光ムラの発生を防止するには、断裁時に切断ダレが発生する際、バリア層の金属箔の切断ダレとの擦れを緩和することが有効であることが判り本発明に至った次第である。 In order to prevent the occurrence of light emission unevenness around the light emitting region due to the cutting sag of the barrier layer as a countermeasure to these, when the cutting sag occurs at the time of cutting, the friction with the cutting sag of the metal foil of the barrier layer is reduced. It has been found that this is effective, and the present invention has been achieved.
 本発明の実施の形態を図1から図3を参照しながら説明するが、本発明はこれに限定されるものではない。 The embodiment of the present invention will be described with reference to FIGS. 1 to 3, but the present invention is not limited to this.
 図1は有機EL構造体の概略図である。図1(a)は有機EL構造体の概略斜視図である。図1(b)は図1(a)のA-A′に沿った拡大概略断面図である。 FIG. 1 is a schematic view of an organic EL structure. FIG. 1A is a schematic perspective view of an organic EL structure. FIG. 1B is an enlarged schematic cross-sectional view along AA ′ of FIG.
 図中、1は有機EL構造体を示す。有機EL構造体1は、可撓性支持体3の上に連続して形成された有機EL素子2を有している。 In the figure, 1 indicates an organic EL structure. The organic EL structure 1 has an organic EL element 2 continuously formed on a flexible support 3.
 有機EL素子2は、可撓性支持体3の上に、第1電極201と、正孔輸送層202と、発光層203と、電子輸送層204と、第2電極205とを順次積層した積層体を接着剤層を206を介して封止部材207で密着封止された構造を有している。封止部材207は基材207aと、バリア層207bとを有している。 The organic EL element 2 is a laminate in which a first electrode 201, a hole transport layer 202, a light emitting layer 203, an electron transport layer 204, and a second electrode 205 are sequentially stacked on the flexible support 3. It has a structure in which the body is tightly sealed with a sealing member 207 through an adhesive layer 206. The sealing member 207 includes a base material 207a and a barrier layer 207b.
 バリア層207bの厚さは、水分や酸素の透過による有機EL素子の性能劣化、厚みによる有機EL素子の柔軟性の阻害等を考慮し、10μmから50μmが好ましい。 The thickness of the barrier layer 207b is preferably 10 μm to 50 μm in consideration of performance degradation of the organic EL element due to permeation of moisture and oxygen, inhibition of flexibility of the organic EL element due to thickness, and the like.
 可撓性支持体3と、第1電極201との間にガスバリア層を設けても構わない。 A gas barrier layer may be provided between the flexible support 3 and the first electrode 201.
 有機EL素子2の第1電極201の厚さは、100nmから200nmが好ましい。正孔輸送層202の膜厚については特に制限はないが、通常は5nmから5μm程度、好ましくは5nmから200nmである。この正孔輸送層は一層構造であってもよい。発光層203が多層の場合は、積層する数に合わせて塗布・乾燥部のユニットを配設する必要がある。例えば、発光層を多層にすることで白色素子の作製が可能である。本発明において、発光層とは青色発光層、緑色発光層、赤色発光層を指す。発光層を積層する場合の積層順としては、特に制限はなく、又各発光層間に非発光性の中間層を有していてもよい。本発明においては、少なくとも1つの青発光層が、全発光層中最も陽極に近い位置に設けられていることが好ましい。又、発光層を4層以上設ける場合には、陽極に近い順から、例えば青色発光層/緑色発光層/赤色発光層/青色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層、青色発光層/緑色発光層/赤色発光層/青色発光層/緑色発光層/赤色発光層のように青色発光層、緑色発光層、赤色発光層を順に積層することが、輝度安定性を高める上で好ましい。発光層の膜厚の総和は特に制限はないが、膜の均質性、発光に必要な電圧等を考慮し、通常2nmから5μm、好ましくは2nmから200nmの範囲で選ばれる。更に10nmから20nmの範囲にあるのが好ましい。電子輸送層204の膜厚は、素材にもよるが0.1nmから5μmの範囲が好ましい。第2電極(陰極)205としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nmから5μm、好ましくは50nmから200nmの範囲で選ばれる。 The thickness of the first electrode 201 of the organic EL element 2 is preferably 100 nm to 200 nm. Although there is no restriction | limiting in particular about the film thickness of the positive hole transport layer 202, Usually, 5 nm to about 5 micrometers, Preferably it is 5 nm to 200 nm. The hole transport layer may have a single layer structure. In the case where the light emitting layer 203 is a multilayer, it is necessary to arrange units for the coating / drying unit in accordance with the number of layers to be stacked. For example, a white element can be manufactured by forming a light emitting layer in multiple layers. In the present invention, the light emitting layer refers to a blue light emitting layer, a green light emitting layer, and a red light emitting layer. There is no restriction | limiting in particular as a lamination order in the case of laminating | stacking a light emitting layer, You may have a nonluminous intermediate | middle layer between each light emitting layer. In the present invention, it is preferable that at least one blue light emitting layer is provided at a position closest to the anode among all the light emitting layers. Also, when four or more light emitting layers are provided, for example, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting from the order close to the anode. Layered / green light emitting layer, blue light emitting layer / green light emitting layer / red light emitting layer / blue light emitting layer / green light emitting layer / red light emitting layer, etc. It is preferable for improving luminance stability. The total thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 2 nm to 5 μm, preferably 2 nm to 200 nm in consideration of the film homogeneity, the voltage required for light emission, and the like. Further, it is preferably in the range of 10 nm to 20 nm. The thickness of the electron transport layer 204 is preferably in the range of 0.1 nm to 5 μm, although it depends on the material. The sheet resistance as the second electrode (cathode) 205 is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 本図に示す有機EL素子の層構成は一例を示したものであるが、第1電極(陽極)と第2電極(陰極)との間の他の代表的な有機EL素子の層構成としては次の構成が挙げられる。 The layer configuration of the organic EL element shown in this figure is an example, but as another typical organic EL element layer configuration between the first electrode (anode) and the second electrode (cathode), The following configurations are listed.
 (1)第1電極(陽極)/有機層(発光層)/第2電極(陰極)
 (2)第1電極(陽極)/有機層(発光層)/電子輸送層/第2電極(陰極)
 (3)第1電極(陽極)/正孔輸送層/有機層(発光層)/正孔阻止層/電子輸送層/第2電極(陰極)
 (4)第1電極(陽極)/正孔輸送層(正孔注入層)/有機層(発光層)/正孔阻止層/電子輸送層/陰極バッファ層(電子注入層)/第2電極(陰極)
 (5)第1電極(陽極)/陽極バッファ層(正孔注入層)/正孔輸送層/有機層(発光層)/正孔阻止層/電子輸送層/陰極バッファ層(電子注入層)/第2電極(陰極)
 本図に示される有機EL構造体は、特開2006-294536b号公報、同2008-117689号公報に記載されている方法で製造することが可能である。
(1) First electrode (anode) / organic layer (light emitting layer) / second electrode (cathode)
(2) First electrode (anode) / organic layer (light emitting layer) / electron transport layer / second electrode (cathode)
(3) First electrode (anode) / hole transport layer / organic layer (light emitting layer) / hole blocking layer / electron transport layer / second electrode (cathode)
(4) first electrode (anode) / hole transport layer (hole injection layer) / organic layer (light emitting layer) / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / second electrode ( cathode)
(5) First electrode (anode) / anode buffer layer (hole injection layer) / hole transport layer / organic layer (light emitting layer) / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / Second electrode (cathode)
The organic EL structure shown in this figure can be manufactured by the method described in JP-A-2006-294536b and 2008-117689.
 図2は図1で示される有機EL構造体を封止部材側から断裁する状態を示した模式図である。図2(a)は図1で示される有機EL構造体を従来の方法で封止部材側から断裁刃を入れて断裁する状態を示した模式図である。図2(b)は図2(a)のPで示される部分の拡大模式図である。 FIG. 2 is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut from the sealing member side. FIG. 2A is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut by inserting a cutting blade from the sealing member side by a conventional method. FIG. 2B is an enlarged schematic view of a portion indicated by P in FIG.
 図中、4は断裁刃を示す。断裁刃4の先端は、ミネ面402と反ミネ面401とから構成されており、断裁刃4の先端が封止部材207側から入り、可撓性支持体3向けて進むと、反ミネ面401により封止部材207の基材207a、バリア層207bとが擦れることで摩擦により断裁刃4の進行方向に伸ばされた状態となる。この時、支持体207aがプラスチック支持体の場合は、縮むが、バリア層207bに延伸性の高い金属箔(アルミニウム箔)が使用されていると延びたままの状態となりバリ207cとなる。 In the figure, 4 indicates a cutting blade. The leading edge of the cutting blade 4 is composed of a mining surface 402 and an anti-mineral surface 401. When the leading edge of the cutting blade 4 enters from the sealing member 207 side and advances toward the flexible support 3, the anti-mineral surface As the base material 207a and the barrier layer 207b of the sealing member 207 are rubbed by 401, the cutting blade 4 is stretched in the advancing direction by friction. At this time, when the support 207a is a plastic support, it shrinks, but if a highly stretchable metal foil (aluminum foil) is used for the barrier layer 207b, the support 207a remains stretched and becomes a burr 207c.
 バリア層207bが伸ばされることで、接着剤層206もバリア層207bと一緒に伸ばされて、最終的にバリア層207bと接着剤層206との界面から接着剤層206の剥離が発生する。Qで示される部分が接着剤層206が剥離した状態を示す。剥離が発生すると、剥離した箇所から水分が内部に徐々に浸透し最終的には有機EL素子を破壊し発光領域の周囲の発光ムラの原因となる。 By stretching the barrier layer 207b, the adhesive layer 206 is also stretched together with the barrier layer 207b, and finally, the adhesive layer 206 is peeled off from the interface between the barrier layer 207b and the adhesive layer 206. A portion indicated by Q indicates a state where the adhesive layer 206 is peeled off. When peeling occurs, moisture gradually permeates into the inside from the peeled portion, eventually destroying the organic EL element and causing uneven light emission around the light emitting region.
 本発明はこの接着剤層206の剥離を防止した有機EL構造体を断裁刃で断裁し個別の有機EL素子を製造する有機EL素子の製造方法及びこの製造方法により製造された有機EL素子に関するものである。 The present invention relates to an organic EL element manufacturing method for manufacturing an individual organic EL element by cutting the organic EL structure from which peeling of the adhesive layer 206 is prevented with a cutting blade, and an organic EL element manufactured by the manufacturing method. It is.
 図3は図1で示される有機EL構造体を可撓性支持体側から断裁する状態を示した模式図である。図3(a)は図1で示される有機EL構造体を本発明の可撓性支持体側から断裁刃を入れて断裁する状態を示した模式図である。図2(b)は図2(a)のRで示される部分の拡大模式図である。符号は図2と同義である。 FIG. 3 is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut from the flexible support side. FIG. 3A is a schematic view showing a state in which the organic EL structure shown in FIG. 1 is cut by inserting a cutting blade from the flexible support side of the present invention. FIG. 2B is an enlarged schematic view of a portion indicated by R in FIG. Reference numerals are the same as those in FIG.
 図2で示される断裁方法との違いは、断裁刃を可撓性支持体側から入れて有機EL構造体1を断裁することである。 The difference from the cutting method shown in FIG. 2 is that the organic EL structure 1 is cut by inserting a cutting blade from the flexible support side.
 断裁刃4の先端が可撓性支持体3側から入り、封止部材207に向けて進むと、反ミネ面401により可撓性支持体3、接着剤層206とが擦れることで摩擦により断裁刃4の進行方向に伸ばされた状態となる。この時、可撓性支持体3、接着剤層206は伸縮性があるため一旦は伸ばされるが、その後縮むことでバリとはなり難い。 When the leading edge of the cutting blade 4 enters from the side of the flexible support 3 and advances toward the sealing member 207, the flexible support 3 and the adhesive layer 206 are rubbed by the anti-mineral surface 401, thereby cutting by friction. The blade 4 is stretched in the traveling direction. At this time, since the flexible support 3 and the adhesive layer 206 are stretchable, they are once stretched, but are not easily burred by shrinking thereafter.
 断裁刃4の先端がバリア層207bに到達し、更に封止部材207の基材207aに進むと断裁刃4の反ミネ面401によりバリア層207bが擦れることで摩擦により断裁刃4の進行方向に伸ばされた状態となりバリ207cとなる。バリア層207bに延伸性の高い金属箔(アルミニウム箔)が使用されていると延びバリ207cとなるが、バリア層207bの厚さに対して基材207aの厚さが充分に厚いこと及び断裁刃4の進む距離が基材207aの厚さ分と短いため基材207aの外に出たバリとなることはない。 When the leading edge of the cutting blade 4 reaches the barrier layer 207 b and further proceeds to the base material 207 a of the sealing member 207, the barrier layer 207 b is rubbed by the anti-mineral surface 401 of the cutting blade 4, so that the cutting blade 4 moves in the traveling direction due to friction. The stretched state becomes the burr 207c. When a highly stretchable metal foil (aluminum foil) is used for the barrier layer 207b, the barrier layer 207b extends to become a burr 207c. However, the thickness of the base material 207a is sufficiently thick with respect to the thickness of the barrier layer 207b and a cutting blade. Since the distance traveled by 4 is as short as the thickness of the base material 207a, it does not become a burr that has come out of the base material 207a.
 一般的に基材207aの厚さは5μmから70μmである。又、一般的にバリア層207bの厚さは5μmから100μmであり、好ましくは10μmから50μmである。10μm未満の場合はダークスポットが発生し易くなり、50μmを超える場合は膜剥がれの危険が生じる。 Generally, the thickness of the base material 207a is 5 μm to 70 μm. In general, the thickness of the barrier layer 207b is 5 μm to 100 μm, preferably 10 μm to 50 μm. When the thickness is less than 10 μm, dark spots are likely to occur, and when it exceeds 50 μm, there is a risk of film peeling.
 又、接着剤層206も断裁面で、断裁刃4の反ミネ面で伸ばされたバリア層207b(金属箔)と接触しないため余分なストレスが掛からなくなり、バリア層207bとの界面からの剥離を防止することが出来る。 Further, the adhesive layer 206 is also a cut surface and does not come into contact with the barrier layer 207b (metal foil) stretched by the anti-mineral surface of the cutting blade 4, so that excessive stress is not applied and peeling from the interface with the barrier layer 207b is prevented. Can be prevented.
 これにより、断裁面からの水分の浸透がなくなり、長期的に安定した性能の維持が可能な有機EL素子の製造が可能となった。 As a result, moisture permeation from the cut surface was eliminated, and it became possible to produce an organic EL device capable of maintaining stable performance over the long term.
 本図に示される様に、有機EL構造体から断裁し個別の有機EL素子を製造する時、断裁する箇所は有機EL構造体を構成している各有機EL素子の間であり、断裁刃で断裁される材料としては、可撓性支持体、接着剤層、封止部材が挙げられる。尚、可撓性支持体の第1電極が形成される側にガスバリア層がある場合はガスバリア層も対象となる。 As shown in this figure, when manufacturing an individual organic EL element by cutting from an organic EL structure, the portion to be cut is between each organic EL element constituting the organic EL structure, and with a cutting blade Examples of the material to be cut include a flexible support, an adhesive layer, and a sealing member. In addition, when there exists a gas barrier layer in the side in which the 1st electrode of a flexible support body is formed, a gas barrier layer is also object.
 尚、有機EL構造体を断裁して個別の有機EL素子を製造する時の断裁方法は特に限定はなく、例えばパンチ・ダイによる打ち抜き断裁方法、トムソン刃を使用した打ち抜き断裁方法、有機EL構造体の幅方向に形成されている有機EL素子の列に合わせ回転刃で長さ方向にスリット断裁した後、回転刃で個別に切断する方法、有機EL構造体の長さ方向に形成されている有機EL素子の間隔列に合わせギロチン刃で短冊状に断裁した後、幅方向に形成されている有機EL素子の間隔に合わせギロチン刃で断裁する方法等が挙げられる。これらの方法は、有機EL構造体を構成している有機EL素子の配置状態により異なるが適宜選択して行うことが可能である。図3に示される本発明の有機EL構造体の断裁方法は有機EL構造体を断裁する全ての方法に適用することが可能である。 In addition, there is no particular limitation on the cutting method when the organic EL structure is cut to manufacture individual organic EL elements. For example, the punching and cutting method using a punch and die, the punching and cutting method using a Thomson blade, the organic EL structure A method in which the organic EL element is formed in the length direction of the organic EL structure by cutting the slit in the length direction with a rotary blade in accordance with the row of organic EL elements formed in the width direction, Examples include a method of cutting in a strip shape with a guillotine blade in accordance with the interval row of EL elements, and then cutting with a guillotine blade in accordance with the interval of organic EL elements formed in the width direction. These methods can be appropriately selected depending on the arrangement state of the organic EL elements constituting the organic EL structure. The organic EL structure cutting method of the present invention shown in FIG. 3 can be applied to all methods for cutting an organic EL structure.
 以下、本発明の有機EL素子の製造法に係わる断裁刃で断裁される材料に付き説明する。 Hereinafter, the material cut by the cutting blade according to the method for manufacturing the organic EL element of the present invention will be described.
 (可撓性支持体)
 可撓性支持体としては透明な樹脂フィルムが挙げられる。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。これらの可撓性支持体はロールトゥーロール法の場合は帯状を使用し、バッチ方式の場合は枚葉シート状で使用する。
(Flexible support)
A transparent resin film is mentioned as a flexible support body. Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Is mentioned. These flexible supports are used in the form of strips in the case of the roll-to-roll method, and in the form of single sheets in the case of the batch system.
 (バリア層)
 可撓性支持体の表面に必要に応じて設けるバリア層としては、無機物、有機物のバリア膜又はその両者のハイブリッドバリア膜が挙げられる。バリア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることが出来る。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。バリア膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることが出来るが、特開2004-68143号に記載されているような大気圧プラズマ重合法によるものが特に好ましい。これらのバリア層に使用した材料は第2帯状可撓性支持体、帯状可撓性接着部材への使用も可能である。
(Barrier layer)
Examples of the barrier layer provided on the surface of the flexible support as needed include inorganic, organic barrier films, or a hybrid barrier film of both. As a material for forming the barrier film, any material may be used as long as it has a function of suppressing intrusion of elements such as moisture and oxygen that cause deterioration of the element. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times. The method for forming the barrier film is not particularly limited, and for example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable. The materials used for these barrier layers can also be used for the second strip-shaped flexible support and the strip-shaped flexible adhesive member.
 バリア層の特性としては、水蒸気透過度が0.01g/m/day以下であることが好ましい。更には、酸素透過度10-3ml/m/day/atm以下、水蒸気透過度10-5g/m/day以下の高バリア性フィルムであることが好ましい。 As a characteristic of the barrier layer, it is preferable that the water vapor permeability is 0.01 g / m 2 / day or less. Furthermore, a high barrier film having an oxygen permeability of 10 −3 ml / m 2 / day / atm or less and a water vapor permeability of 10 −5 g / m 2 / day or less is preferable.
 (接着剤)
 接着剤としては液状接着剤、シート状接着剤、熱可塑性樹脂等が挙げられる。液状接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型シール剤、2-シアノアクリル酸エステルなどの湿気硬化型等の接着剤、エポキシ系などの熱及び化学硬化型(2液混合)等の接着剤、又、ポリアミド系、ポリエステル系、ポリオレフィン系のホットメルト型接着剤、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤等を挙げることが出来る。尚、素子を構成する有機層が熱処理により劣化する場合があるので、室温から80℃までに接着硬化出来るものが好ましい。又、帯状可撓性接着部材の接着剤層の裏面側には前述のバリア層が必要に応じて形成されることが好ましい。
(adhesive)
Examples of the adhesive include a liquid adhesive, a sheet adhesive, and a thermoplastic resin. Examples of liquid adhesives include photo-curing and thermosetting sealing agents having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, moisture-curing adhesives such as 2-cyanoacrylate, epoxy-based adhesives, etc. Heat- and chemical-curing type (two-component mixed) adhesives, polyamide-based, polyester-based, polyolefin-based hot-melt adhesives, cationic-curing type UV-curable epoxy resin adhesives, etc. . In addition, since the organic layer which comprises an element may deteriorate with heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable. Moreover, it is preferable that the above-mentioned barrier layer is formed on the back surface side of the adhesive layer of the belt-like flexible adhesive member as necessary.
 液状接着剤を使用して封止部材とを接着する場合、貼合安定性、貼合部内への気泡混入防止、可撓性封止部材の平面性保持等を考慮し、10Paから1×10-5Paの減圧条件で行うことが好ましい。 When adhering the sealing member using a liquid adhesive, 10 Pa to 1 × 10 in consideration of the bonding stability, the prevention of air bubbles mixing into the bonding part, the flatness of the flexible sealing member, etc. It is preferable to carry out under a reduced pressure condition of −5 Pa.
 シート状の接着剤としては、常温(25℃程度)では非流動性を示し、且つ、加熱すると50℃から100℃の範囲で流動性を発現し、シート状に成形された接着剤を言う。使用する接着剤としては、例えば分子の末端又は側鎖にエチレン性2重結合を有する化合物と、光重合開始剤とを主成分とする光硬化性樹脂が挙げられる。使用に際しては、例えば、予め、封止部材側に貼合して常温(25℃程度)以下にして使用することが好ましい。 A sheet-like adhesive is an adhesive that is non-flowable at room temperature (about 25 ° C.) and exhibits fluidity in the range of 50 ° C. to 100 ° C. when heated, and is molded into a sheet shape. As an adhesive to be used, for example, a photocurable resin mainly composed of a compound having an ethylenic double bond at the end or side chain of a molecule and a photopolymerization initiator can be mentioned. In use, for example, it is preferable to use it at a normal temperature (about 25 ° C.) or less by pasting it on the sealing member side in advance.
 熱可塑性樹脂としては、JIS K 7210規定のメルトフローレートが5g/10minから20g/10minである熱可塑性樹脂が好ましく、更に好ましくは、6g/10minから15g/10min以下の熱可塑性樹脂を用いることが好ましい。これは、メルトフローレートが5g/10min以下の樹脂を用いると、各電極の取り出し電極の段差により生じる隙間部を完全に埋めることが出来ず、20g/10min以上の樹脂を用いると引っ張り強さや耐ストレスクラッキング性、加工性などが低下するためである。これらの熱可塑性樹脂をフィルム状に成形し可撓性封止部材(帯状可撓性封止部材、枚葉シート状可撓性封止部材)に貼合して使用することが好ましい。貼合方法は一般的に知られている各種の方法、例えばウェットラミネート法、ドライラミネート法、ホットメルトラミネート法、押出しラミネート法、熱ラミネート法を利用して作ることが可能である。 As the thermoplastic resin, a thermoplastic resin having a melt flow rate of JIS K 7210 specified in a range of 5 g / 10 min to 20 g / 10 min is preferable, and a thermoplastic resin of 6 g / 10 min to 15 g / 10 min or less is more preferable. preferable. This is because if a resin having a melt flow rate of 5 g / 10 min or less is used, the gap caused by the step of the extraction electrode of each electrode cannot be completely filled, and if a resin having a melt flow rate of 20 g / 10 min or more is used, the tensile strength and This is because stress cracking properties, workability, and the like are reduced. These thermoplastic resins are preferably formed into a film and bonded to a flexible sealing member (a strip-shaped flexible sealing member or a single-sheet flexible sealing member). The laminating method can be made by using various generally known methods such as a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method, and a thermal laminating method.
 熱可塑性樹脂は、上記数値を満たすものであれば特に限定されるものではないが、例えば機能性包装材料の新展開(株式会社東レリサーチセンター)に記載の高分子フィルムである低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン、未延伸ポリプロピレン(CPP)、延伸ポリプロピレン(OPP)、延伸ナイロン(ONy)、ポリエチレンテレフタレート(PET)、セロファン、ポリビニルアルコール(PVA)、延伸ビニロン(OV)、エチレン-酢酸ビニル共重合体(EVOH)、エチレン-プロピレン共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、塩化ビニリデン(PVDC)等の使用が可能である。これらの熱可塑性樹脂の中で特にLDPE、LLDPE及びメタロセン触媒を使用して製造したLDPE、LLDPE、又、LDPE、LLDPEとHDPEフィルムの混合使用した熱可塑性樹脂を使用することが好ましい。 The thermoplastic resin is not particularly limited as long as it satisfies the above numerical values. For example, low density polyethylene (LDPE) which is a polymer film described in the new development of functional packaging materials (Toray Research Center, Inc.). ), High density polyethylene (HDPE), linear low density polyethylene (LLDPE), medium density polyethylene, unstretched polypropylene (CPP), stretched polypropylene (OPP), stretched nylon (ONy), polyethylene terephthalate (PET), cellophane, polyvinyl Alcohol (PVA), expanded vinylon (OV), ethylene-vinyl acetate copolymer (EVOH), ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, vinylidene chloride (PVDC) Etc. can be used. Among these thermoplastic resins, LDPE, LLDPE produced using LDPE, LLDPE and a metallocene catalyst, or a thermoplastic resin using a mixture of LDPE, LLDPE and HDPE films is preferably used.
 (封止部材)
 封止部材の基材としては特に限定はなく、例えばエチレンテトラフルオロエチル共重合体(ETFE)、HDPE、OPP、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ONy、PET、ポリカーボネート(PC)、ポリイミド、ポリエーテルスチレン(PES)など一般の包装用フィルムに使用されている熱可塑性樹脂フィルム材料、ガラス、金属箔等を使用することが出来る。又、これら熱可塑性樹脂フィルムは、必要に応じて異種フィルムと共押出しで作った多層フィルム、延伸角度を変えて貼り合せて作った多層フィルム等も当然使用出来る。更に必要とする物性を得るために使用するフィルムの密度、分子量分布を組合せて作ることも当然可能である。
(Sealing member)
The base material of the sealing member is not particularly limited. For example, ethylene tetrafluoroethyl copolymer (ETFE), HDPE, OPP, polystyrene (PS), polymethyl methacrylate (PMMA), ONy, PET, polycarbonate (PC), Thermoplastic resin film materials, glass, metal foil, etc. used for general packaging films such as polyimide and polyether styrene (PES) can be used. As these thermoplastic resin films, a multilayer film produced by coextrusion with a different film, a multilayer film produced by bonding with different stretching angles, etc. can be used as required. Further, it is naturally possible to combine the density and molecular weight distribution of the film used to obtain the required physical properties.
 熱可塑性樹脂フィルムの場合は、蒸着法やコーティング法でバリア層を形成する必要がある。バリア層としては、金属箔が挙げられる。金属箔の材料としては、例えばアルミニウム、銅、ニッケルなどの金属材料や、ステンレス、アルミニウム合金などの合金材料を用いることが出来るが、加工性やコストの面でアルミニウムが好ましい。又、製造時の取り扱いを容易にするために、PET、ナイロンなどのフィルムを予めラミネートしておいてもよい。可撓性封止部材に樹脂フィルムを使用する場合、液状シール剤と接触する側に熱可塑性接着性樹脂層を有することが好ましい。 In the case of a thermoplastic resin film, it is necessary to form a barrier layer by vapor deposition or coating. An example of the barrier layer is a metal foil. As a material of the metal foil, for example, a metal material such as aluminum, copper, or nickel, or an alloy material such as stainless steel or aluminum alloy can be used, but aluminum is preferable in terms of workability and cost. In order to facilitate handling during production, a film such as PET or nylon may be laminated in advance. When a resin film is used for the flexible sealing member, it is preferable to have a thermoplastic adhesive resin layer on the side in contact with the liquid sealing agent.
 更に、バリア層の上に保護層を設けてもよい。保護層の膜厚は、バリア層の耐ストレスクラッキング性、耐電気的絶縁性、シール剤層として使用する場合は接着性(接着力、段差追従性)等を考慮し、100nmから200μmが好ましい。保護層としてはJIS K 7210規定のメルトフローレートが5g/10minから20g/10minである熱可塑性樹脂フィルムが好ましく、更に好ましくは、6g/10minから15g/10min以下の熱可塑性樹脂フィルムを用いることが好ましい。これは、メルトフローレートが5g/10min以下の樹脂を用いると、各電極の取り出し電極の段差により生じる隙間部を完全に埋めることが出来ず、20g/10min以上の樹脂を用いると引っ張り強さや耐ストレスクラッキング性、加工性などが低下するためである。熱可塑性樹脂フィルムは、上記数値を満たすものであれば特に限定されるものではないが、例えば機能性包装材料の新展開株式会社東レリサーチセンター記載の高分子フィルムであるLDPE、HDPE、LLDPE、中密度ポリエチレン、CPP、OPP、ONy、PET、セロファン、ポリビニルアルコール(PVA)、OV、EVOH、エチレン-プロピレン共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、PVDC等の使用が可能である。これらの熱可塑性樹脂フィルムの中で特にLDPE、LLDPE及びメタロセン触媒を使用して製造したLDPE、LLDPE、又、これらフィルムとHDPEフィルムの混合使用したフィルムを使用することが好ましい。 Furthermore, a protective layer may be provided on the barrier layer. The thickness of the protective layer is preferably from 100 nm to 200 μm in consideration of stress cracking resistance, electrical insulation resistance of the barrier layer, adhesiveness (adhesive force, step following ability) and the like when used as a sealant layer. As the protective layer, a thermoplastic resin film having a JIS K 7210 standard melt flow rate of 5 g / 10 min to 20 g / 10 min is preferable, and a thermoplastic resin film of 6 g / 10 min to 15 g / 10 min or less is more preferably used. preferable. This is because if a resin having a melt flow rate of 5 g / 10 min or less is used, the gap caused by the step of the extraction electrode of each electrode cannot be completely filled, and if a resin having a melt flow rate of 20 g / 10 min or more is used, the tensile strength and This is because stress cracking properties, workability, and the like are reduced. The thermoplastic resin film is not particularly limited as long as it satisfies the above numerical values. For example, LDPE, HDPE, LLDPE, which are polymer films described in Toray Research Center, Inc. Use of density polyethylene, CPP, OPP, ONy, PET, cellophane, polyvinyl alcohol (PVA), OV, EVOH, ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, PVDC, etc. Is possible. Among these thermoplastic resin films, it is particularly preferable to use LDPE, LLDPE produced by using LDPE, LLDPE and a metallocene catalyst, or a film using a mixture of these films and HDPE films.
 封止層を形成するのに使用する可撓性封止部材は、製造時の取り扱いを容易にするために、樹脂基材の上にバリア層(必要に応じて保護層)を形成し積層フィルム状にした状態で使用することが好ましい。積層フィルムの製造方法としては、アルミニウム箔をラミネートした熱可塑性樹脂フィルムの無機物層の上に一般的に知られている各種の方法、例えばウェットラミネート法、ドライラミネート法、ホットメルトラミネート法、押出しラミネート法、熱ラミネート法を利用して作ることが可能である。 The flexible sealing member used to form the sealing layer is a laminated film in which a barrier layer (a protective layer if necessary) is formed on the resin base material in order to facilitate handling during production. It is preferable to use it in the state. As a method for producing a laminated film, various methods generally known on an inorganic layer of a thermoplastic resin film laminated with an aluminum foil, for example, a wet laminating method, a dry laminating method, a hot melt laminating method, an extrusion laminating method. It is possible to make by using the heat laminating method.
 本発明に使用する可撓性封止部材の水蒸気透過度は、有機EL素子として製品化する際に必要とするバリア性等を考慮し、0.01g/m・day以下であることが好ましく、且つ酸素透過度は、0.1ml/m・day・MPa以下であることが好ましい。水分透過度はJIS K7129B法(1992年)に準拠した方法で主としてMOCON法により測定した値であり、酸素透過度はJIS K7126B法(1987年)に準拠した方法で主としてMOCON法により測定した値である。可撓性封止部材のヤング率は有機EL素子との密着性、液状接着剤の塗れ広がり防止等を考慮し、1×10-3GPaから80GPaであり、厚みが10μmから500μmであることが好ましい。 The water vapor permeability of the flexible sealing member used in the present invention is preferably 0.01 g / m 2 · day or less in consideration of barrier properties and the like required for commercialization as an organic EL element. The oxygen permeability is preferably 0.1 ml / m 2 · day · MPa or less. The moisture permeability is a value measured mainly by the MOCON method by a method based on the JIS K7129B method (1992), and the oxygen permeability is a value measured mainly by the MOCON method by a method based on the JIS K7126B method (1987). is there. The Young's modulus of the flexible sealing member is 1 × 10 −3 GPa to 80 GPa and the thickness is 10 μm to 500 μm in consideration of adhesion to the organic EL element, prevention of spreading of the liquid adhesive, and the like. preferable.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 (有機EL構造体の作製)
 図1に示す構成の有機EL構造体(可撓性支持体/第1電極(陽極)/正孔輸送層/発光層/電子輸送層/第2電極(陰極)/接着剤層/封止部材)を作製する時、封止部材のバリア層の金属箔(アルミ箔)の厚さを表1の様に変えて作製しNo.1-1から1-5とした。尚、正孔輸送層、発光層及び電子輸送層は湿式塗布方式で形成した。
Example 1
(Production of organic EL structure)
Organic EL structure having the structure shown in FIG. 1 (flexible support / first electrode (anode) / hole transport layer / light emitting layer / electron transport layer / second electrode (cathode) / adhesive layer / sealing member ) Was prepared by changing the thickness of the metal foil (aluminum foil) of the barrier layer of the sealing member as shown in Table 1. 1-1 to 1-5. The hole transport layer, the light emitting layer, and the electron transport layer were formed by a wet coating method.
 〈帯状の可撓性支持体の準備〉
 帯状の可撓性支持体として、幅200mm、長さ100mの厚さ100μmのポリエチレンナフタレートフィルム(帝人・デュポン社製フィルム、以下、PENと略記する)を準備した。尚、予め形成する第1電極の位置に合わせアライメントマーク及び第1電極の取り出し電極、第2電極の取り出し電極が形成される位置に位置指定マークを付けた。
<Preparation of strip-shaped flexible support>
As a belt-like flexible support, a polyethylene naphthalate film (Teijin DuPont film, hereinafter abbreviated as PEN) having a width of 200 mm and a length of 100 m and a thickness of 100 μm was prepared. A position designation mark was added to the position where the alignment mark, the extraction electrode for the first electrode, and the extraction electrode for the second electrode were formed in accordance with the position of the first electrode formed in advance.
 (第1電極の形成)
 準備したPENの上に各片側に25mm空けて、厚さ120nm、大きさ150mm×150mmで取り出し電極を有する陽極(第1電極)を、ITO(インジウムチンオキシド)を蒸着法によりパターニングし、第1電極を帯状可撓性支持体の長さ方向に10mm間隔で1列形成し、巻き芯に巻き取りロール状とした。
(Formation of the first electrode)
On the prepared PEN, 25 mm is formed on each side, an anode (first electrode) having a thickness of 120 nm and a size of 150 mm × 150 mm and having an extraction electrode is patterned by ITO (indium tin oxide) by vapor deposition. One row of electrodes was formed at intervals of 10 mm in the length direction of the belt-like flexible support, and a winding roll was formed on the winding core.
 〈正孔輸送層の形成〉
 準備した巻き芯に巻き取りロール状とした第1電極が形成された帯状可撓性支持体の第1電極の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で窒素ガス雰囲気で塗布速度2m/min塗布した後、乾燥し厚みが50nmの正孔輸送層を形成した。正孔輸送層形成用塗布液を塗布する前に、帯状可撓性支持体の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。
<Formation of hole transport layer>
A hole transport layer forming coating solution shown below is applied onto the first electrode of the belt-like flexible support having the first electrode formed in the form of a take-up roll on the prepared winding core by extrusion coating with a nitrogen gas. After coating at a coating speed of 2 m / min in the atmosphere, the hole transport layer having a thickness of 50 nm was formed by drying. Before applying the coating liquid for forming the hole transport layer, the surface of the belt-like flexible support is subjected to a cleaning surface modification treatment using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. Carried out. The charge removal treatment was performed using a static eliminator with weak X-rays.
 (正孔輸送層形成用塗布液の準備)
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
(Preparation of coating solution for hole transport layer formation)
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer.
 (乾燥及び加熱処理条件)
 正孔輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置で温度200℃で裏面伝熱方式の熱処理を行い正孔輸送層を形成した。
(Drying and heat treatment conditions)
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 200 ° C. with an apparatus to form a hole transport layer.
 〈発光層の形成〉
 引き続き、正孔輸送層迄を形成した帯状可撓性支持体の正孔輸送層の上に、以下に示す緑色発光層形成用塗布液を押出し塗布機で窒素ガス雰囲気中で塗布速度2m/minで塗布した後、乾燥し厚みが100nmの発光層を形成した。
<Formation of light emitting layer>
Subsequently, on the hole transport layer of the belt-like flexible support formed up to the hole transport layer, a coating solution for forming a green light emitting layer shown below is applied by an extrusion coater in a nitrogen gas atmosphere at a coating speed of 2 m / min. Then, the resultant was dried to form a light emitting layer having a thickness of 100 nm.
 (緑色発光層形成用塗布液の準備)
 ホスト材のポリビニルカルバゾール(PVK)にドーパント材Ir(ppy)を5質量%、1,2-ジクロロエタン中に溶解し1%溶液とし緑色発光層形成用塗布液として準備した。
(Preparation of green luminescent layer forming coating solution)
A dopant material Ir (ppy) 3 was dissolved in a host material polyvinyl carbazole (PVK) in 5% by mass in 1,2-dichloroethane to prepare a 1% solution as a coating solution for forming a green light emitting layer.
 (乾燥及び加熱処理条件)
 緑色発光層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度220℃で加熱処理を行い発光層を形成した。
(Drying and heat treatment conditions)
After applying the green light emitting layer forming coating solution, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at 220 ° C. to form a light emitting layer.
 〈電子輸送層の形成〉
 引き続き、発光層迄を形成した帯状可撓性支持体の発光層の上に、以下に示す電子輸送層形成用塗布液を押出し塗布機で窒素ガス雰囲気中で塗布速度2m/min塗布した後、乾燥し厚みが30nmの電子輸送層を形成した。
<Formation of electron transport layer>
Subsequently, on the light emitting layer of the belt-like flexible support formed up to the light emitting layer, the following coating liquid for forming an electron transport layer was applied in a nitrogen gas atmosphere by an extrusion coater and applied at a coating speed of 2 m / min. An electron transport layer having a thickness of 30 nm was formed by drying.
 (電子輸送層形成用塗布液の準備)
 電子輸送層はトリス(8-キノリノラート)アルミニウム(III)(Alq)を1,2-ジクロロエタン中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
(Preparation of coating solution for electron transport layer formation)
For the electron transport layer, tris (8-quinolinolato) aluminum (III) (Alq 3 ) was dissolved in 1,2-dichloroethane to obtain a 0.5 mass% solution, which was used as an electron transport layer forming coating solution.
 (乾燥及び加熱処理条件)
 電子輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度200℃で加熱処理を行い電子輸送層を形成した。
(Drying and heat treatment conditions)
After applying the coating solution for forming the electron transport layer, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.
 (第2電極の形成)
 引き続き、形成された電子輸送層の上に第1電極の上に取り出し電極になる部分を除き、形成された電子輸送層の上に5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有する様に蒸着法にて第1電極と同じ大きさにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, the second electrode forming material is formed on the formed electron transport layer under a vacuum of 5 × 10 −4 Pa except for the portion that becomes the take-out electrode on the first electrode on the formed electron transport layer. Was used, and a mask pattern was formed in the same size as the first electrode by vapor deposition so as to have an extraction electrode, and a second electrode having a thickness of 100 nm was laminated.
 (接着剤の塗設)
 引き続き、第2電極の上に取り出し電極になる部分を含め接着剤をPENの幅全面に厚さ20μmに塗設した。接着剤として紫外線硬化型の液状シール剤(ThreeBond3124C(株)スリーボンド製)を使用した。
(Applying adhesive)
Subsequently, an adhesive was applied over the entire width of the PEN so as to have a thickness of 20 μm including the portion to be the takeout electrode on the second electrode. An ultraviolet curable liquid sealant (manufactured by ThreeBond 3124C, manufactured by Three Bond Co., Ltd.) was used as the adhesive.
 (封止部材の貼合)
 厚さ50μmのPET上に、バリア層として表1に示す様に厚さを変えたアルミ箔を用いた封止部材を準備し、押圧0.3Paから1.0Paでバリア層を下側にして貼合し接着固定化した。この段階で複数の有機EL素子を有する有機EL構造体が製造される。
(Pasting of sealing member)
As shown in Table 1, a sealing member using aluminum foil with a thickness changed as shown in Table 1 was prepared on PET having a thickness of 50 μm, and the barrier layer was placed on the lower side with a pressure of 0.3 Pa to 1.0 Pa. Bonded and fixed by adhesion. At this stage, an organic EL structure having a plurality of organic EL elements is manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (有機EL構造体の断裁)
 準備した有機EL構造体No.1-1から1-5を図3に示す断裁方法で刃先角度30°の片刃による断裁方式で可撓性支持体側から可撓性支持体に付けられたアライメントマークを基準に断裁速度60m/minで断裁し、160mm×160mmの大きさの個別の有機EL素子を作製し試料No.101から105とした。又、準備した有機EL構造体No.1-1から1-5を図2に示す従来の断裁方法で封止部材側から断裁した他は全て同じ条件で断裁し個別の有機EL素子を作製し比較試料有機EL素子106から110とした。
(Cutting organic EL structures)
The prepared organic EL structure No. A cutting speed of 60 m / min with reference to the alignment mark attached to the flexible support from the flexible support side in the cutting method shown in FIG. And an individual organic EL element having a size of 160 mm × 160 mm was produced. 101 to 105. The prepared organic EL structure No. Each of 1-1 to 1-5 was cut from the sealing member side by the conventional cutting method shown in FIG. .
 評価
 作製した各試料No.101から110に付き、ダークスポット、保存性、膜剥がれ、に付き以下に示す方法で試験し、以下に示す評価ランクに従って評価した結果を表2に示す。
Evaluation Each sample No. Table 2 shows the results of the tests from 101 to 110, the dark spots, the preservability, and the film peeling, and the evaluations according to the following evaluation ranks.
 ダークスポットの試験方法
 試料を温度55℃、湿度80%RH、24hr放置した後、東洋テクニカ(株)製 ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。この際、100cd/mで発光させた時のダークスポットの数を100倍のルーペを使用し目視で計測した。
Dark Spot Test Method The sample was allowed to stand for 24 hours at a temperature of 55 ° C., a humidity of 80% RH, and then a direct voltage was applied to the organic EL element to emit light using a source measure unit type 2400 manufactured by Toyo Technica Corporation. At this time, the number of dark spots when light was emitted at 100 cd / m 2 was visually measured using a 100 times magnifier.
 ダークスポットの評価ランク
 ◎:ダークスポットが2個未満
 ○:ダークスポットが2個以上、5個未満
 △:ダークスポットが5個以上、10個未満
 ×:ダークスポットが10個以上
 保存性の試験方法
 保存性の代用特性として、発光領域の周囲の発光ムラを次の方法で観察した。作製した試料100枚を、温度55℃、湿度80%RHで24時間保存した後、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。200cd/mで発光させた有機EL素子に付いて、発光領域の周囲の発光ムラを目視で観察し、発光領域の周囲の発光ムラが発生す有機ELパネルの枚数を測定した。
Evaluation rank of dark spot ◎: Less than 2 dark spots ○: 2 or more dark spots, less than 5 △: 5 or more dark spots, less than 10 ×: 10 or more dark spots Preservation test method As an alternative characteristic of storability, light emission unevenness around the light emitting region was observed by the following method. 100 samples thus prepared were stored at a temperature of 55 ° C. and a humidity of 80% RH for 24 hours, and then a DC voltage was applied to the organic EL element to emit light using a source measure unit type 2400 manufactured by KEITHLEY. Attached to the organic EL element that emitted light at 200 cd / m 2 , the light emission unevenness around the light emitting region was visually observed, and the number of organic EL panels in which the light emission unevenness around the light emitting region occurred was measured.
 発光面積の評価ランク
 ◎:発光領域の周囲が発光しない有機ELパネルの数が2/100枚未満
 ○:発光領域の周囲が発光しない有機ELパネルの数が2/100枚以上、6/100枚未満
 △:発光領域の周囲が発光しない有機ELパネルの数が6/100枚以上、11/100枚未満
 ×:発光領域の周囲が発光しない有機ELパネルの数が11/100枚以上
 膜剥がれの試験方法
 試料の断裁面をキーエンス製レーザー顕微鏡にて接着剤層とアルミ箔との剥離幅を観察した。
Evaluation rank of light emitting area ◎: The number of organic EL panels that do not emit light around the light emitting region is less than 2/100 ○: The number of organic EL panels that do not emit light around the light emitting region is 2/100 or more, 6/100 Less than: Δ: The number of organic EL panels that do not emit light around the light emitting region is 6/100 or more, and less than 11/100 ×: The number of organic EL panels that do not emit light around the light emitting region is 11/100 or more Test Method The peeling width between the adhesive layer and the aluminum foil was observed on the cut surface of the sample with a Keyence laser microscope.
 ◎:剥離幅が0μm
 ○:剥離幅が0μm以上30μm未満
 △:剥離幅が30μm以上50μm未満
 ×:剥離幅が50μm以上
A: peeling width is 0 μm
○: Peel width is 0 μm or more and less than 30 μm Δ: Peel width is 30 μm or more and less than 50 μm ×: Peel width is 50 μm or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 有機EL構造体を本発明の可撓性支持体側から断裁刃を入れて断裁する方法で作製した個別の有機EL素子は、ダークスポット、保存性、膜剥がれ共に優れた性能を示した。 The individual organic EL element produced by cutting the organic EL structure by inserting a cutting blade from the flexible support side of the present invention showed excellent performance in both dark spots, storage stability and film peeling.
 有機EL構造体を封止部材から断裁刃を入れて断裁する従来の方法で作製した個別の有機EL素子は、ダークスポットは良好な性能を示すが、保存性、膜剥がれ共に劣る性能を示した。本発明の有効性が確認された。 The individual organic EL elements produced by the conventional method of cutting an organic EL structure from a sealing member by inserting a cutting blade showed good performance but dark storage performance and poor film peeling performance. . The effectiveness of the present invention was confirmed.
 1 有機EL構造体
 2 有機EL素子
 201 第1電極
 202 正孔輸送層
 203 発光層
 204 電子輸送層
 205 第2電極
 206 接着剤層
 207 封止部材
 207a 基材
 207b バリア層
 3 可撓性支持体
 4 断裁刃
 401 反ミネ面
 402 ミネ面
DESCRIPTION OF SYMBOLS 1 Organic EL structure 2 Organic EL element 201 1st electrode 202 Hole transport layer 203 Light emitting layer 204 Electron transport layer 205 2nd electrode 206 Adhesive layer 207 Sealing member 207a Base material 207b Barrier layer 3 Flexible support body 4 Cutting blade 401 Anti-mineral surface 402 Mineral surface

Claims (3)

  1. 可撓性支持体の上に少なくとも第1電極と、少なくとも一層の発光層を含む有機層と、第2電極とを順次積層した積層体を有する有機エレクトロルミネッセンス構造体を形成し、前記構造体の前記第2電極上に接着剤を介してバリア層に金属箔を用いた封止部材を貼合した後、
    前記可撓性支持体側から断裁刃で前記封止部材を貼合した前記構造体を断裁し、個別の有機エレクトロルミネッセンス素子を製造することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    Forming an organic electroluminescence structure having a laminate in which at least a first electrode, an organic layer including at least one light emitting layer, and a second electrode are sequentially laminated on a flexible support; After bonding a sealing member using a metal foil to the barrier layer via an adhesive on the second electrode,
    A method for producing an organic electroluminescence element, comprising: cutting the structure on which the sealing member is bonded with a cutting blade from the flexible support side to produce an individual organic electroluminescence element.
  2. 前記金属箔の厚さが10μmから50μmであることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 The method of manufacturing an organic electroluminescent element according to claim 1, wherein the metal foil has a thickness of 10 µm to 50 µm.
  3. 請求項1又は2に記載の有機エレクトロルミネッセンス素子の製造方法により製造されたことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescent element manufactured by the method for manufacturing an organic electroluminescent element according to claim 1.
PCT/JP2009/070028 2008-12-10 2009-11-27 Method for manufacturing organic electroluminescent element, and organic electroluminescent element WO2010067721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542077A JP5573678B2 (en) 2008-12-10 2009-11-27 Method for manufacturing organic electroluminescent element, organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-314319 2008-12-10
JP2008314319 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010067721A1 true WO2010067721A1 (en) 2010-06-17

Family

ID=42242710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070028 WO2010067721A1 (en) 2008-12-10 2009-11-27 Method for manufacturing organic electroluminescent element, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP5573678B2 (en)
WO (1) WO2010067721A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114907A1 (en) * 2011-02-23 2012-08-30 コニカミノルタホールディングス株式会社 Organic electroluminescent element manufacturing method
WO2012114906A1 (en) * 2011-02-23 2012-08-30 コニカミノルタホールディングス株式会社 Production method for organic electroluminescence device
JP2014167895A (en) * 2013-02-28 2014-09-11 Kaneka Corp Organic el device and method for manufacturing the same
JP2015162419A (en) * 2014-02-28 2015-09-07 コニカミノルタ株式会社 Organic electroluminescent element, protection material for organic electroluminescent element, and method of manufacturing organic electroluminescent element
WO2015152395A1 (en) * 2014-04-04 2015-10-08 コニカミノルタ株式会社 Oled substrate cutting device and oled substrate
JP2017004747A (en) * 2015-06-10 2017-01-05 双葉電子工業株式会社 Organic EL display device
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
WO2018198655A1 (en) 2017-04-25 2018-11-01 住友化学株式会社 Manufacturing method for organic device
CN110945968A (en) * 2017-08-02 2020-03-31 住友化学株式会社 Method for manufacturing organic device and organic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2653468T3 (en) 2009-07-28 2016-06-06 Ono Pharmaceutical Co Bicyclic compound AND USE THEREOF FOR MEDICAL PURPOSES

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073332A (en) * 2005-09-07 2007-03-22 Konica Minolta Holdings Inc Organic electroluminescent panel and method of manufacturing the same
JP2007073225A (en) * 2005-09-05 2007-03-22 Konica Minolta Holdings Inc Method of sealing organic electroluminescent element, and method of manufacturing organic electroluminescent element
JP2008218323A (en) * 2007-03-07 2008-09-18 Canon Inc Manufacturing method for organic el panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045652A (en) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd Oled display
JP4325249B2 (en) * 2003-03-31 2009-09-02 凸版印刷株式会社 Method for manufacturing organic electroluminescence element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073225A (en) * 2005-09-05 2007-03-22 Konica Minolta Holdings Inc Method of sealing organic electroluminescent element, and method of manufacturing organic electroluminescent element
JP2007073332A (en) * 2005-09-07 2007-03-22 Konica Minolta Holdings Inc Organic electroluminescent panel and method of manufacturing the same
JP2008218323A (en) * 2007-03-07 2008-09-18 Canon Inc Manufacturing method for organic el panel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US10428431B2 (en) 2010-12-10 2019-10-01 Aquahydrex Pty Ltd Multi-layer water-splitting devices
WO2012114906A1 (en) * 2011-02-23 2012-08-30 コニカミノルタホールディングス株式会社 Production method for organic electroluminescence device
JPWO2012114906A1 (en) * 2011-02-23 2014-07-07 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence device
WO2012114907A1 (en) * 2011-02-23 2012-08-30 コニカミノルタホールディングス株式会社 Organic electroluminescent element manufacturing method
JP5786933B2 (en) * 2011-02-23 2015-09-30 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence element
JP2014167895A (en) * 2013-02-28 2014-09-11 Kaneka Corp Organic el device and method for manufacturing the same
JP2015162419A (en) * 2014-02-28 2015-09-07 コニカミノルタ株式会社 Organic electroluminescent element, protection material for organic electroluminescent element, and method of manufacturing organic electroluminescent element
JPWO2015152395A1 (en) * 2014-04-04 2017-04-13 コニカミノルタ株式会社 OLED base material cutting device and OLED base material
WO2015152395A1 (en) * 2014-04-04 2015-10-08 コニカミノルタ株式会社 Oled substrate cutting device and oled substrate
JP2017004747A (en) * 2015-06-10 2017-01-05 双葉電子工業株式会社 Organic EL display device
WO2018198655A1 (en) 2017-04-25 2018-11-01 住友化学株式会社 Manufacturing method for organic device
KR20200002855A (en) 2017-04-25 2020-01-08 스미또모 가가꾸 가부시키가이샤 Manufacturing method of organic device
CN110945968A (en) * 2017-08-02 2020-03-31 住友化学株式会社 Method for manufacturing organic device and organic device
EP3664580A4 (en) * 2017-08-02 2021-02-24 Sumitomo Chemical Company Limited Method for manufacturing organic device, and organic device

Also Published As

Publication number Publication date
JPWO2010067721A1 (en) 2012-05-17
JP5573678B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5573678B2 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element
EP1943881B1 (en) Method of manufacturing device having flexible substrate
JP5109606B2 (en) Organic electroluminescence device manufacturing method and protective film
TWI462358B (en) Protected polymeric film
JP5545301B2 (en) Organic electroluminescent panel manufacturing method, organic electroluminescent panel
JP6501755B2 (en) Laminated sheet for electronic device sealing and method of manufacturing electronic device
KR20030031116A (en) Encapsulated organic electronic devices and method for making same
KR20060109928A (en) Segmented organic light emitting device
JP2010097803A (en) Construction method of organic electronics element, organic electronics element and organic electroluminescent element
JP2001237065A (en) Macromolecular el element and manufacturing method of the same
WO2011114882A1 (en) Organic electroluminescent panel and production method for organic electroluminescent panel
JP6160107B2 (en) Organic electroluminescence light emitting device, organic EL display device, and organic EL lighting
JP4325249B2 (en) Method for manufacturing organic electroluminescence element
JP6461189B2 (en) SEALING SHEET, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
JP6299394B2 (en) Gas barrier laminate film and organic EL device
JP2008269964A (en) Method for manufacturing electroluminescent element
JP6384328B2 (en) Method for manufacturing organic electroluminescence panel
JP2007073332A (en) Organic electroluminescent panel and method of manufacturing the same
JP2004281085A (en) Flexible organic el device and flexible organic el display
JP6213254B2 (en) Method for manufacturing organic electroluminescence device
JP5353898B2 (en) Method for manufacturing organic electroluminescence element
JP2010067355A (en) Organic el element panel and method of manufacturing the same
JP4830222B2 (en) Electroluminescence element
JP6310276B2 (en) Adhesive encapsulating resin composition, adhesive encapsulating film, organic electroluminescence element, and image display device
JP2008023892A (en) Protective film for optical display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831825

Country of ref document: EP

Kind code of ref document: A1