WO2010064620A1 - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
WO2010064620A1
WO2010064620A1 PCT/JP2009/070157 JP2009070157W WO2010064620A1 WO 2010064620 A1 WO2010064620 A1 WO 2010064620A1 JP 2009070157 W JP2009070157 W JP 2009070157W WO 2010064620 A1 WO2010064620 A1 WO 2010064620A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
lens
lens group
moving object
imaging
Prior art date
Application number
PCT/JP2009/070157
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 山本
明 小坂
隆 松尾
康隆 谷村
吉宏 原
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010541318A priority Critical patent/JP5429190B2/en
Publication of WO2010064620A1 publication Critical patent/WO2010064620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present invention relates to an imaging apparatus.
  • a lens barrel and a lens holder that support a lens, a holder that supports an infrared (IR) cut filter, a substrate, an image sensor, and a casing that holds a laminate including optical elements, such a stack A resin or the like for sealing the body is required. For this reason, it has been difficult to reduce the size of the above-mentioned many parts and to produce a camera module by accurately combining the parts.
  • IR infrared
  • a laminated member is formed by attaching a substrate, a semiconductor sheet on which a large number of imaging elements are formed, and a lens array sheet on which a large number of imaging lenses are formed through a resin layer, A technique for dicing the laminated member to complete each camera module has been proposed (for example, Patent Document 1).
  • a camera module is formed by laminating a layer including an image sensor, a layer including a lens, and the like in a wafer state (at the wafer level). For this reason, it is difficult to form a drive mechanism for moving a lens for realizing a function such as autofocus or zoom in the camera module.
  • an object of the present invention is to provide an imaging device that can displace the lens and stabilize the posture of the lens while suppressing an increase in size of the device.
  • an imaging apparatus includes an imaging element, a moving object including one or more lenses, an actuator that moves the moving object in a predetermined direction, and the moving object.
  • An elastic member that applies a force in a direction opposite to the predetermined direction to the moving object when the object moves in the predetermined direction, and a contact provided between the imaging element and the moving object A part.
  • the said moving target object is arrange
  • the imaging device is the imaging device according to the first aspect, wherein the moving object is constituted by one or more layers including one or more lens layers, and the actuator is a plate.
  • the elastic member is constituted by a plate-like elastic member layer.
  • the imaging device is the imaging device according to the second aspect, and is disposed between the imaging element and the moving object, and between the imaging element and the moving object.
  • An adjustment layer for adjusting the distance is provided, and the adjustment layer has the contact portion.
  • the imaging device according to the fourth aspect is the imaging device according to the third aspect, wherein the contact portion includes a protrusion provided on the adjustment layer.
  • the imaging device which concerns on a 5th aspect is an imaging device which concerns on a 1st aspect, Comprising:
  • the said moving target object has a projection part provided in the said image pick-up element side,
  • the said projection part is provided by the said elastic member. Is pressed against the contact portion, so that the moving object is arranged at the predetermined position.
  • an imaging device is the imaging device according to the fifth aspect, wherein the one or more lenses and the protrusion are integrally formed.
  • the imaging device is the imaging device according to the first aspect, wherein the predetermined position is a focal point of an optical system including the one or more lenses arranged on an imaging surface of the imaging element. It is the position where it is done.
  • An imaging device is the imaging device according to the first aspect, wherein the predetermined position is a focal point of an optical system including the one or more lenses arranged on an imaging surface of the imaging element. It is a position closer to the image sensor than the position where it is to be.
  • An imaging device is the imaging device according to the first aspect, wherein the imaging element has a pixel arrangement region in which a plurality of pixel circuits are arranged, and the contact portion is The optical path from the subject to the pixel array area via the one or more lenses is arranged at a position that sandwiches the pixel array area in the direction in which the width of the pixel array area is the narrowest.
  • an increase in the thickness of the device for moving the moving object against the elastic force of the elastic member is suppressed, and the posture of the moving object is stable. Therefore, it is possible to provide an imaging apparatus in which the lens can be displaced and the posture of the lens can be stabilized while suppressing an increase in size of the apparatus.
  • the lens is displaced and the lens posture is stabilized while suppressing an increase in size of the device. .
  • the adjustment layer having the contact portion is provided between the imaging element and the moving object, the contact portion can be easily manufactured.
  • the imaging device since the protruding portion of the moving object is in contact with the contact portion, the increase in the size of the device due to an increase in the number of layers constituting the imaging device is suppressed. Is done.
  • the protrusion and the lens that come into contact with the contact portion are integrally molded, the protrusion can be manufactured relatively easily and with high accuracy.
  • the imaging device since the posture of the lens can be stabilized in a state of focusing on a subject existing at infinity, for example, the lens is generally used as an initial state of focusing control. Therefore, it can arrange
  • the imaging device it is possible to prevent the occurrence of a problem that it is not possible to set the focus on a subject existing at infinity due to various errors during production.
  • the imaging device According to the imaging device according to the ninth aspect, it is possible to install the abutting portion without causing adverse effects on photographing and increasing the size of the device.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone equipped with a camera module according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view focusing on the first housing according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the camera module according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the lens group.
  • FIG. 5 is a schematic cross-sectional view of the lens group.
  • FIG. 6 is an external view of the lower surface of the first lens constituent layer.
  • FIG. 7 is a top external view of the second lens constituent layer.
  • FIG. 8 is a diagram for explaining the shape of the spacer layer.
  • FIG. 9 is a top external view of the lens position adjusting layer.
  • FIG. 10 is a side external view of the lens position adjusting layer.
  • FIG. 11 is an external view of the top surface of the actuator layer.
  • FIG. 12 is a side external view of the actuator layer.
  • FIG. 13 is a bottom view of the first and second parallel springs.
  • FIG. 14 is a diagram illustrating the first parallel spring mounted on the lens group.
  • FIG. 15 is a diagram illustrating the second parallel spring attached to the lens group.
  • FIG. 16 is a flowchart showing the manufacturing process of the camera module.
  • FIG. 17 is a plan view of a lens constituent layer wafer according to the first and second lens constituent layers.
  • FIG. 18 is a plan view of a spacer layer wafer according to the spacer layer.
  • FIG. 19 is a diagram showing how the first lens constituent layer is produced.
  • FIG. 17 is a plan view of a lens constituent layer wafer according to the first and second lens constituent layers.
  • FIG. 18 is a plan view of a spacer layer wafer according to the space
  • FIG. 20 is a diagram showing how the second lens constituent layer is produced.
  • FIG. 21 is a plan view illustrating a configuration example of a sheet to be prepared.
  • FIG. 22 is a diagram illustrating a preparation process of the assembly jig.
  • FIG. 23 is a diagram schematically illustrating a state in which prepared sheets and the like are stacked and joined.
  • FIG. 24 is a diagram illustrating a placing process of the first frame layer sheet.
  • FIG. 25 is a diagram illustrating a joining process of the first parallel spring sheet.
  • FIG. 26 is a diagram illustrating a joining process of the second frame layer sheet.
  • FIG. 27 is a diagram illustrating a lens group attaching step.
  • FIG. 28 is a diagram illustrating a joining process of the second parallel spring sheet.
  • FIG. 21 is a plan view illustrating a configuration example of a sheet to be prepared.
  • FIG. 22 is a diagram illustrating a preparation process of the assembly jig.
  • FIG. 23 is
  • FIG. 29 is a diagram illustrating an actuator layer sheet joining step.
  • FIG. 30 is a diagram illustrating a cover layer sheet joining step.
  • FIG. 31 is a diagram illustrating a bonding process of the lens position adjustment layer sheet.
  • FIG. 32 is a schematic cross-sectional view of a camera module according to a modification of the present invention.
  • FIG. 33 is an external view of the lower surface of the first lens constituent layer according to a modification of the present invention.
  • FIG. 34 is a diagram illustrating a first parallel spring attached to a lens group according to a modification.
  • FIG. 35 is a diagram showing the relationship between the initial position of the lens group and the focal position of the lens group.
  • FIG. 36 is a diagram showing the relationship between the initial position of the lens group and the focal position of the lens group.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone 100 equipped with a camera module 500 according to the first embodiment of the present invention.
  • the mobile phone 100 is configured as a foldable mobile phone, and includes a first housing 200, a second housing 300, and a hinge part 400.
  • the first casing 200 and the second casing 300 are each a plate-shaped rectangular parallelepiped and have a role as a casing for storing various electronic members.
  • the first casing 200 includes a camera module 500 and a display (not shown)
  • the second casing 300 includes a control unit that electrically controls the mobile phone 100, buttons, and the like. And an operating member (not shown).
  • the hinge part 400 connects the first casing 200 and the second casing 300 so as to be rotatable. For this reason, the mobile phone 100 can be folded.
  • FIG. 2 is a schematic cross-sectional view focusing on the first casing 200 of the mobile phone 100.
  • the camera module 500 is a small imaging device, so-called micro camera unit, having an XY cross section of about 5 mm square and a thickness (depth in the Z direction) of about 3 mm. (MCU).
  • FIG. 3 is a schematic cross-sectional view of the camera module 500, and the direction indicated by the arrow AR1 corresponds to the + Z direction.
  • an arrow AR ⁇ b> 1 indicating a direction corresponding to the + Z direction is attached in order to clarify the orientation relationship.
  • the camera module 500 includes an optical unit KB in which a lens group 20 as a photographing optical system is movably provided, and an imaging unit PB that acquires a photographed image related to a subject image. Yes.
  • the imaging unit PB has a configuration in which an imaging element layer 18 having an imaging element 181 such as a COMS sensor or a CCD sensor and a cover glass layer 17 are laminated in this order in the + Z direction.
  • the cover glass layer 17 may include a filter layer that cuts infrared rays (IR).
  • the optical unit KB includes a lid layer 10, a first frame layer 11, a first parallel spring (upper parallel spring) 12, a second frame layer 13, a second parallel spring (lower parallel spring) 14, an actuator layer 15, and lens position adjustment.
  • the layer 16 and the lens group 20 are provided.
  • the lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, the lens position adjustment layer 16, and the lens group 20 are all in a wafer state (wafer Produced by level). These manufacturing processes will be described later.
  • the lens position adjusting layer 16, the actuator layer 15, the second parallel spring 14, the second frame layer 13, the first parallel spring 12, the first frame layer 11, and the lid layer 10 are arranged in this order in the + Z direction.
  • the lens group 20 is held between the second parallel spring 14 and the first parallel spring 12 which are stacked.
  • the first parallel spring 12, the second parallel spring 14, and the actuator layer 15 cooperate with each other to move the lens group 20 in the direction along the Z axis.
  • the lid layer 10, the first and second frame layers 11 and 13, the lens position adjustment layer 16, the cover glass layer 17, and the imaging element layer 18 serve as a fixing portion for the lens group 20.
  • the lens group 20 is supported by first and second parallel springs 12 and 14 coupled to the fixed portion.
  • the second parallel spring 14 is interposed between the actuator layer 15 on the ⁇ Z side of the lens group 20 and the lens group 20.
  • a first parallel spring 12 is interposed between the first frame layer 11 on the + Z side of the lens group 20 and the lens group 20. That is, the lens group 20 is sandwiched between the first parallel spring 12 and the second parallel spring 14.
  • the posture of the lens group 20 is maintained regardless of the movement of the lens group 20, and the optical axis of the lens group 20 is substantially constant. Retained.
  • first and second parallel springs 12 and 14 apply a force in a direction opposite to the moving direction of the lens group 20 (that is, the + Z direction) when the lens group 20 as the moving object moves in the + Z direction.
  • the lens group 20 is given.
  • the direction of the force applied to the lens group 20 by the first and second parallel springs 12 and 14 is the moving direction of the lens group 20 (ie, ⁇ Z Direction).
  • the lens group 20 is moved by the elastic force of the first and second parallel springs 12 and 14 from the lens position adjusting layer 16.
  • the lens group 20 is supported by the lens position adjusting layer 16 by being pressed against the upper end surface of the protrusion 162.
  • the lens group 20 is placed at a predetermined position on the most ⁇ Z side of a range (displaceable range) that can be displaced along the Z axis and is stationary.
  • the predetermined position is set to a position where the focal point of the optical unit KB is arranged on a surface on the + Z side (hereinafter also referred to as “imaging surface”) on which a large number of pixel circuits are arranged in the image sensor 181.
  • imaging surface a surface on the + Z side
  • the focal point of the optical unit KB refers to a point where light beams emitted from the optical unit KB gather at one point when parallel light beams enter the optical unit KB from the + Z side.
  • the optical unit KB corresponds to the “optical system” of the present invention.
  • the lens group 20 is pressed against the lens position adjusting layer 16 by the elastic force of the first and second parallel springs 12 and 14, so that a strong impact is applied to the camera module 500. Even in such a case, the posture of the lens group 20 is maintained.
  • the actuator layer 15 has a displacement generating part that generates a drive displacement in the + Z direction, and is disposed on the ⁇ Z side of the lens group 20.
  • the displacement generating unit comes into contact with the first protrusion 201 protruding to the ⁇ Z side of the lens group 20, and the drive displacement generated by the displacement generating unit is transmitted to the lens group 20 through the first protruding part 201. That is, the actuator layer 15 moves the lens group 20 that is a moving object in a predetermined direction (here, the + Z direction).
  • the lens group 20 In a scene where the drive displacement in the + Z direction in the displacement generating portion is reduced, the lens group 20 is in a direction opposite to the predetermined direction ( ⁇ Z direction) by the elastic force of the first and second parallel springs 12 and 14. Move to.
  • the lens group 20 that is a moving object is coupled to the first and second parallel springs 12 and 14 disposed at positions facing each other via the lens group 20,
  • the first and second parallel springs 12 and 14 are elastically deformed in a direction perpendicular to the lens group 20 (+ Z direction), and hold the posture of the lens group 20.
  • the lens group 20 receives a driving force from the displacement generating portion of the actuator layer 15 and displaces the position along the Z axis.
  • the optical unit KB provided in the camera module 500 can displace the lens group 20 in the optical axis direction (+ Z direction) of the lens group 20, and drive the camera module 500 to displace the lens group 20.
  • the optical unit KB provided in the camera module 500 can displace the lens group 20 in the optical axis direction (+ Z direction) of the lens group 20, and drive the camera module 500 to displace the lens group 20.
  • the lens group 20 is manufactured at a wafer level using a glass substrate as a base material, and is formed by, for example, superposing two or more lenses. In the present embodiment, a case where the lens group 20 is configured by overlapping two optical lenses is illustrated. In the present embodiment, the lens group 20 functions as an imaging lens that guides light from the subject to the imaging element 181.
  • FIG. 4 and 5 are cross-sectional schematic views of the lens group 20, and the direction indicated by the arrow AR2 corresponds to the + Z direction.
  • FIG. 6 is a bottom view of the lens group 20, and
  • FIG. 7 is a top view of the lens group 20.
  • the lens group 20 includes a first lens constituent layer LY1 having a first lens G1, a second lens constituent layer LY2 having a second lens G2, and a spacer layer RB. .
  • the first lens constituent layer LY1 and the second lens constituent layer LY2 are coupled via the spacer layer RB.
  • the outer edges of the non-lens portions of the first and second lens constituent layers LY1, LY2 have a substantially square shape.
  • the first and second lens constituent layers LY1 and LY2 correspond to the “lens layer” of the present invention.
  • the first lens surface does not function as a lens.
  • a protrusion 201 is provided on one main surface (here, the ⁇ Z side) of the first lens constituent layer LY1 having the first lens G1, the first lens surface does not function as a lens.
  • the one main surface (here, + Z side) of the second lens constituent layer LY2 having the second lens G2 is provided with a non-lens portion that does not function as a lens.
  • a second protrusion 202 is provided.
  • FIG. 8 is a view of the spacer layer RB as viewed from the ⁇ Z side, paying attention to the shape of the spacer layer RB.
  • the spacer layer RB is provided along the outer edge of the non-lens portion of the first and second lens constituting layers LY1, LY2, and the outer edge and the inner edge of the ZY cross section are rectangular in shape. It has a configuration.
  • the optical axis of the lens group 20 is set in a direction along the Z axis.
  • each functional layer ⁇ About each functional layer> Below, the detail of each functional layer which comprises the camera module 500 is demonstrated.
  • the ⁇ Z side surface is referred to as one main surface
  • the + Z side surface is referred to as the other main surface.
  • Image sensor layer 18 As shown in FIG. 3, the image sensor layer 18 receives light from the subject that has passed through the optical unit KB, and generates an image signal related to the image of the subject, its peripheral circuit, and the image sensor 181. It is a member provided with the outer peripheral part which surrounds.
  • the image sensor 181 is configured by arranging a large number of pixel circuits.
  • a solder ball HB for performing soldering by a reflow method is provided on one main surface (the surface on the ⁇ Z side) of the imaging element layer 18.
  • various types of wiring for applying a signal to the image sensor 181 and reading a signal from the image sensor 181 are connected to one main surface of the image sensor layer 18. Terminals are provided.
  • the cover glass layer 17 has a substantially flat plate shape and an XY cross section having a substantially square shape, and is made of transparent glass or the like.
  • the cover glass layer 17 is bonded to the other main surface (+ Z side surface) of the image sensor layer 18 and has a function of protecting the image sensor 181.
  • the image sensor substrate 178 is configured with the cover glass layer 17 bonded to the image sensor layer 18.
  • the lens position adjustment layer 16 is configured by using a resin material, is disposed between the image sensor 181 and the lens group 20, and is a member that adjusts the distance between the image sensor 181 and the lens group 20. Specifically, the lens position adjustment layer 16 defines the position (initial position) of the lens group 20 in the non-driven state.
  • the lens position adjustment layer 16 is generated using, for example, a method of etching a resin.
  • FIG. 9 is a top view of the lens position adjusting layer 16.
  • FIG. 10 is a side view of the lens position adjustment layer 16.
  • the lens position adjustment layer 16 includes a frame body 161 and a protrusion 162.
  • the frame body 161 is a substantially rectangular annular portion constituting the outer peripheral portion of the lens position adjusting layer 16, and has a plate shape substantially parallel to the XY plane.
  • the frame body 161 forms a hole (through hole) 16H penetrating in the direction along the Z-axis.
  • the + Y side plate-like member and the ⁇ Y side plate-like member constituting the frame body 161 are: Each has a protruding portion 161T that protrudes toward the through hole 16H.
  • one main surface of the frame body 161 is bonded to the adjacent cover glass layer 17, and the other main surface of the frame body 161 is adjacent to the adjacent actuator layer 15 (specifically, the frame body 152 ( To be described later)).
  • the projecting portion 162 is configured to stand in the + Z direction in the vicinity of the inner edge of the convex portion 161T constituting the frame body 161.
  • the projection 162 is a plate-like portion having a substantially rectangular board surface substantially parallel to the XZ plane, and the longitudinal direction of the projection 162 is a direction substantially parallel to the X axis, and the short direction of the projection 162 Is a direction substantially parallel to the Z-axis.
  • the end surface on the + Z side of the protrusion 162 has a function of placing the lens group 20 at the initial position when the lens group 20 comes into contact therewith.
  • the protrusion 162 provided between the image sensor 181 and the lens group 20 as the moving object corresponds to the “contact portion” of the present invention.
  • a region where a plurality of pixel circuits constituting the image sensor 181 are arranged (hereinafter also referred to as “pixel array region”), that is, an outer edge of the front surface (image pickup surface) of the image sensor 181 is indicated by a broken line. Yes.
  • the protrusion 162 is disposed at a position where the optical path from the subject through the lens group 20 to the pixel array area of the image sensor 181 is sandwiched in the direction in which the width of the pixel array area is the narrowest. That is, the protrusion 162 is installed so as not to adversely affect the photographing and increase the size of the apparatus.
  • the actuator layer 15 is a thin plate-like member in which a displacement element (also referred to as “actuator element”) that generates a driving force is provided on a metal or silicon (Si) substrate.
  • FIG. 11 is a top view of the actuator layer 15.
  • FIG. 12 is a side view of the actuator layer 15.
  • the actuator layer 15 includes two frames that protrude from the frame body 152 with respect to the frame body 152 that forms the outer peripheral portion and the hollow portion inside the frame body 152.
  • the plate-like movable part 151 is provided.
  • a thin-film actuator element 153 is provided on the other main surface side of the movable portion 151.
  • the actuator element 153 for example, a thin film of shape memory alloy (SMA) is used.
  • SMA shape memory alloy
  • the movable portion 151 is set in a mold having a shape to be memorized, and a predetermined temperature (for example, , 600 ° C.) heating (shape memory processing) is performed.
  • SMA has a characteristic of restoring to a predetermined contracted shape (memory shape) stored in advance when the temperature exceeds a predetermined phase transformation temperature by heating and reaches a predetermined temperature. For this reason, when the SMA is heated by energization of the heater layer, the SMA contracts and deforms to have a memory shape, and the free end FT of the movable portion 151 moves in the + Z direction (see FIG. 12). That is, the free end FT side of the movable part 151 functions as a displacement generating part.
  • a predetermined contracted shape memory shape
  • the heater layer is energized from an electrode provided on the imaging element layer 18, and the conduction from the electrode to the heater layer is, for example, the actuator layer 15, the lens position adjusting layer 16, and the cover glass layer 17. What is necessary is just to carry out through the thin electroconductive member (not shown) affixed on the side surface.
  • the frame body 152 functions as a portion (movable reference portion) serving as a reference for displacement of the movable portion 151, and the actuator layer 15 functions as a drive layer.
  • the frame 152 of the actuator layer 15 is joined to the fixed frame 141 (see FIG. 13) of the second parallel spring 14.
  • the free end FT side of each movable portion 151 comes into contact with the corresponding first protrusion 201.
  • the displacement generated at the free end FT of each movable portion 151 is transmitted to the lens group 20 via each first protrusion 201. That is, each movable portion 151 applies a force to the lens group 20 in the + Z direction, thereby displacing the lens group 20 in the + Z direction.
  • the amount of displacement generated on the free end FT side of the movable portion 151 differs depending on the heating temperature of the SMA, and the amount of displacement is adjusted by controlling the amount of current supplied to the heater layer.
  • the heater layer is deformed as the SMA is deformed, and the electric resistance of the heater layer is changed according to the deformation of the heater layer. For this reason, the amount of displacement may be controlled by monitoring the current resistance value of the heater layer.
  • FIG. 13 is an external view of the lower surface of the second parallel spring 14.
  • FIG. 14 is a view showing the second parallel spring 14 joined to the lens group 20.
  • the second parallel spring 14 is an elastic member having a fixed frame 141 and an elastic portion 142, and is a layer (elastic layer) forming a spring mechanism.
  • the second parallel spring 14 constitutes the “plate-like elastic member layer” of the present invention.
  • the fixed frame 141 constitutes the outer peripheral portion of the second parallel spring 14 and is joined to the frame 152 of the adjacent actuator layer 15.
  • the elastic part 142 has a connection part PG1 with the fixed frame 141 and a joint part PG2 with the lens group 20, and the connection part PG1 and the joint part PG2 are connected by a plate-like member EB.
  • the second parallel spring 14 is joined to the adjacent actuator layer 15 in the fixed frame 141. Further, as shown in FIG. 14, the second parallel spring 14 is joined to the lens group 20 at a joint portion PG ⁇ b> 2 provided in the elastic portion 142.
  • the first projecting portion 201 contacts the vicinity of the free end FT of the actuator layer 15 through the gap between the fixed frame body 141 of the second parallel spring 14 and the plate-like member EB. That is, the second parallel spring 14 has a shape that does not contact the first protrusion 201 of the lens group 20.
  • the second parallel spring 14 can be elastically deformed in the optical axis direction ( ⁇ Z direction) of the lens group 20 by elastic deformation of the plate-like member EB, and functions as a spring mechanism.
  • the second parallel spring 14 is manufactured using a SUS metal material or phosphor bronze.
  • the shape of the parallel spring is patterned on the metal material by photolithography, and wet etching is performed by dipping in an iron chloride-based etchant. A pattern of parallel springs is formed.
  • Second frame layer 13 As shown in FIG. 3, the second frame layer 13 is a ring-shaped member in which the outer edge and the inner edge of the XY cross section are each substantially rectangular, and forms a hollow portion that penetrates along the Z-axis. The second frame layer 13 surrounds the lens group 20 from the side by arranging the lens group 20 in the hollow portion.
  • resin, glass, etc. are mentioned as a raw material which comprises the 2nd frame layer 13,
  • the 2nd frame layer 13 is manufactured by what is called a press method using a metal metal mold
  • the lower end surface (one main surface) located on the ⁇ Z side of the second frame layer 13 is joined to the fixed frame body 141 of the adjacent second parallel spring 14. Further, the upper end surface (other main surface) located on the + Z side of the second frame layer is joined to the adjacent first parallel spring 12 (specifically, a fixed frame body 121 (described later) of the first parallel spring 12).
  • First parallel spring 12 As shown in FIG. 13, the first parallel spring 12 is an elastic member having the same configuration and function as the second parallel spring 14, and includes a fixed frame body 121 and an elastic portion 122. In the present embodiment, the first parallel spring 12 constitutes the “plate-like elastic member layer” of the present invention.
  • One main surface of the fixed frame 121 is joined to the other main surface of the adjacent second frame layer 13, and the other main surface of the fixed frame 121 is connected to the adjacent first frame layer 11 (in detail, the first frame It is joined to the lower end surface (described later) of the layer 11 on the ⁇ Z side.
  • FIG. 15 is a view showing the first parallel spring 12 joined to the lens group 20.
  • the joint part PG ⁇ b> 2 provided in the elastic part 122 is joined to the upper end surface on the + Z side of the projection part 202 of the lens group 20.
  • First frame layer 11 As shown in FIG. 3, the first frame layer 11 is a ring-shaped member in which the outer edge and the inner edge of the XY cross section are each substantially rectangular like the second frame layer 13 and penetrates along the Z axis. Forming a hollow portion.
  • the hollow portion of the first frame layer 11 serves as a space in which the plate-like member EB and the protrusion 202 that are elastically deformed when the lens group 20 is moved in the + Z direction can move.
  • the first frame layer 11 is formed by the same material and manufacturing method as the second frame layer 13.
  • the lower end surface (one main surface) located on the ⁇ Z side of the first frame layer 11 is joined to the fixed frame body 121 of the adjacent first parallel spring 12. Moreover, the upper end surface (other end surface) located on the + Z side of the first frame layer is joined to the adjacent lid layer 10 (specifically, near the outer peripheral portion of the lid layer).
  • the outer edge of the XY cross section has a substantially square shape
  • the lid layer 10 has a hole (through hole) 10 ⁇ / b> H penetrating in a direction parallel to the Z axis at a substantially center, and is substantially in the XY plane. It is a plate-like member having a parallel board surface.
  • the through hole 10H is a hole for guiding light from the subject to the image sensor 181 through the lens group 20, and the lid layer 10 is formed by pressing a flat resin material or patterning the resin material.
  • the through hole 10H is formed and manufactured by a method of etching later.
  • FIG. 16 is a flowchart showing the manufacturing process of the camera module 500.
  • process A generation of the lens group 20 (step SP1),
  • process B sheet preparation (step SP2),
  • process C assembly jig preparation (step SP3),
  • process D First bonding of the sheet (step SP4),
  • Process E Mounting of the lens group 20 (Step SP5),
  • Process F Second bonding of the sheet (Step SP6),
  • Process G Image sensor substrate 178 (Step SP7) and
  • process H dicing
  • step SP1 the lens group 20 is generated.
  • a wafer in which a large number of lens groups 20 are arranged in a matrix (hereinafter also referred to as a “lens group wafer”) is manufactured, and a large number of lens groups 20 are separated into pieces by dicing. Produced.
  • the lens group wafer includes a wafer in which a large number of first lens constituent layers LY1 are arranged (first lens constituent layer wafer), a wafer in which a large number of spacer layers RB are arranged (spacer layer wafer), and a large number of second lenses.
  • a wafer (second lens constituent layer wafer) on which the constituent layers LY2 are arranged is stacked and bonded to each other.
  • FIG. 17 is a plan view schematically showing the first and second lens constituent layer wafers U20a and U20c.
  • FIG. 18 is a plan view schematically showing the spacer layer wafer U20b.
  • the first lens component layer wafer U20a is integrally configured by arranging a large number of first lens component layers LY1 in a matrix at first predetermined intervals.
  • the second lens component layer wafer U20c is configured integrally by arranging a large number of second lens component layers LY2 in a matrix at first predetermined intervals.
  • the spacer layer wafer U20b is configured integrally by arranging a number of spacer layers RB in a matrix at first predetermined intervals.
  • the spacer layer wafer U20b has a lattice structure in which a large number of through-holes having a substantially square outer edge are arranged in a matrix at first predetermined intervals.
  • the first lens component layer wafer U20a, the spacer layer wafer U20b, and the second lens component layer wafer U20c are stacked in this order and bonded to each other, and then the broken lines shown in FIGS. Each lens group 20 is separated into individual pieces by dicing along the line.
  • each first lens constituent layer LY1 in the first lens constituent layer wafer U20a is the same, and the manufacturing method of each second lens constituent layer LY2 in the second lens constituent layer wafer U20c is also the same. For this reason, here, description will be given focusing on the production of the first and second lens constituent layers LY1, LY2.
  • the first and second lens constituent layers LY1, LY2 are both produced by a similar method using a glass substrate as a base material.
  • FIG. 19 is a diagram showing a state of manufacturing the first lens constituent layer LY1 having the first lens G1
  • FIG. 20 is a diagram showing a state of manufacturing the second lens constituent layer LY2 having the second lens G2. is there.
  • a wafer-like substrate 20BS is prepared.
  • the material of the substrate 20BS include glass such as so-called Tempax (registered trademark), resin such as so-called PPMA, and the like.
  • a highly transparent acrylic or epoxy ultraviolet (UV) curable resin is applied to both surfaces of the substrate 20BS.
  • a transparent lens molding die 20CA having one curved surface shape of the first lens G1 is pressed from the upper surface of the substrate 20BS with a predetermined pressure, and the other curved surface of the first lens G1 is pressed from the lower surface of the substrate 20BS.
  • the transparent lens molding die 20CB having the shape and the shape of the first protrusion 201 is pressed with a predetermined pressure.
  • the ultraviolet rays UV1 are irradiated to form the polymer lenses GP1 and GP2 and the first protrusion 201 on each surface of the substrate 16BS.
  • the first lens constituent layer wafer U20a is manufactured.
  • the tip of the first protrusion 201 is a surface that contacts the actuator layer 15.
  • highly transparent acrylic or epoxy ultraviolet (UV) curable resin is applied to both surfaces of the substrate 20BS.
  • a transparent lens molding die 20CC having the shape of one curved surface of the second lens G2 and the shape of the second protrusion 202 is pressed from the upper surface of the substrate 20BS with a predetermined pressure, and the second lens G2 is pressed from the lower surface of the substrate 20BS.
  • a transparent lens molding die 20CD having the shape of the other curved surface of the two lenses G2 is pressed with a predetermined pressure.
  • ultraviolet rays UV1 are irradiated to form polymer lenses GP3 and GP4 and second protrusions 202 on each surface of the substrate 16BS.
  • the second lens constituent layer wafer U20c is manufactured.
  • the tip of the second protrusion 202 is a surface joined to the first parallel spring 12.
  • the spacer layer wafer U20b is manufactured, for example, by processing a wafer-like glass substrate by etching or the like.
  • Alignment marks for alignment are formed at two or more predetermined locations on the first and second lens component layer wafers U20a and U20c and the spacer layer wafer U20b manufactured in this way.
  • the first lens component layer wafer U20a, the spacer layer wafer U20b, and the second lens component layer wafer U20c are aligned and bonded while confirming the respective alignment marks using a mask aligner or the like.
  • the first and second lens constituent layers LY1, LY2 and the spacer layer RB constitute the lens group 20.
  • UV curing layers are provided on the upper and lower surfaces of the spacer layer RB to be bonded to the first and second lens constituent layers LY1 and LY2, and bonded by irradiating ultraviolet rays.
  • a method of irradiating the upper and lower surfaces of the spacer layer RB with plasma of an inert gas and bonding the surfaces of the spacer layer RB while being activated (surface activated bonding method).
  • a method of forming a diaphragm layer with a resin material or the like colored separately in black is used.
  • a wafer (lens group wafer) in which a large number of lens groups 20 are arranged in a matrix is manufactured, and a large number of individual lens groups 20 are manufactured by dicing.
  • FIG. 21 is a plan view illustrating a configuration example of a sheet to be prepared. Here, it is assumed that a wafer-level disk-shaped sheet is prepared.
  • a large number of chips corresponding to members related to the functional layer are formed in a matrix in a predetermined arrangement.
  • a large number of chips corresponding to the first frame layer 11 are formed in a predetermined arrangement on the sheet (first frame layer sheet) U11 of the first frame layer 11.
  • predetermined arrangement is used to include a state in which a large number of chips are arranged at predetermined intervals in a predetermined direction.
  • the first frame layer sheet U11 has a lattice shape in which side surfaces of chips corresponding to the first frame layer 11 are connected to each other.
  • the first frame layer sheet U11 is made of a resin material, glass, or the like.
  • the first frame layer sheet U11 is made of a resin material
  • the first frame layer sheet U11 is manufactured by a method such as press molding or injection molding using a metal mold.
  • the first frame layer sheet U11 is manufactured, for example, by so-called blasting using a metal or ceramic shadow mask.
  • the lens position adjustment layer 16 sheet (lens position adjustment layer sheet) U16 a large number of chips corresponding to the lens position adjustment layer 16 are formed in a predetermined arrangement.
  • the lens position adjustment layer sheet U16 has a shape in which side surfaces of chips corresponding to the lens position adjustment layer 16 are connected to each other.
  • the lens position adjustment layer sheet U16 is made of a resin material or the like.
  • the lens position adjusting layer sheet U16 is manufactured by manufacturing a mold having the shape of the lens position adjusting layer sheet U16, pouring resin into the mold, heating the resin together with the mold, and then cooling.
  • the lens position adjustment layer sheet U16 may be manufactured using injection molding or the like.
  • step SP2 as with the first frame layer sheet U11 and the lens position adjustment layer 16, the lid layer 10, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, and the actuator layer 15 are used.
  • the sheets U10, U12 to U15 on which a large number of chips related to each functional layer are formed in a predetermined arrangement, and a chip related to the image sensor substrate 178 formed by joining the cover glass layer 17 and the image sensor layer 18 Including sheets (imaging element substrate sheets) U178 are prepared. That is, eight sheets U10 to 16 and U178 are prepared.
  • step SP3 the assembly jig 300 is prepared.
  • FIG. 22 is a diagram focusing on the part of the assembly jig 300 used for manufacturing each camera module 500.
  • the assembly jig 300 is configured by providing a large number of protrusions 301 having substantially the same shape on a flat base, in a predetermined arrangement.
  • alignment marks for alignment are formed at two or more predetermined locations. Further, the upper surface of the protrusion 301 is configured to be substantially parallel to the main surface of the flat base.
  • step SP4 Three sheets U11 to U13 among the eight prepared sheets U10 to U16 and U178 are joined.
  • FIG. 23 shows a state in which three sheets U11 to U13 are stacked and joined in step S4, a lens group 20 is attached in step S5, and four sheets U10 and U14 to U16 are stacked in step S6. It is a figure which shows typically a mode that it joins, and a mode that the image pick-up element board
  • step SP4 as shown in FIG. 23, for the first frame layer sheet U11, the first parallel spring sheet U12, and the second frame layer sheet U13, the chips included in the sheets U11 to U13 are stacked on each other. Thus, alignment (alignment) is performed with the sheet shape. Then, the sheets U11 to U13 are joined using an adhesive or the like.
  • FIGS. 24 to 26 are views showing how the sheets U11 to U13 are stacked and joined by paying attention to each chip constituting one camera module 500.
  • FIG. 24 to 26 the camera module 500 shown in FIG. 3 is shown upside down for convenience of the process.
  • the first frame layer sheet U11 is placed on the assembly jig 300 so that each first frame layer 11 is placed at a predetermined position on the base of the assembly jig 300. Placed.
  • the moving direction of the first frame layer sheet U11 when the first frame layer sheet U11 is carried on the assembly jig 300 is indicated by an arrow YJ1.
  • the first frame layer sheet is formed by joining the fixed frame body 121 constituting the outer peripheral portion of the first parallel spring 12 on one main surface of the first frame layer 11.
  • the first parallel spring seat U12 is joined to U11.
  • the fixed frame 121 is pressed against the one main surface of the first frame layer 11 in the direction indicated by the arrow YJ2, and the other main surface of the fixed frame 121 and the first frame layer 11 The main surface is joined.
  • the joint portion PG2 of the first parallel spring 12 is brought into contact with the upper surface of the protrusion 301 of the assembly jig 300, whereby the substantially parallel plate shape of the first parallel spring 12 is maintained.
  • the first main surface of the second frame layer 13 is joined to the first main surface of the fixed frame 121 constituting the outer peripheral portion of the first parallel spring 12.
  • the second frame layer sheet U13 is joined to the parallel spring sheet U12.
  • the second frame layer 13 is pressed against the main surface of the fixed frame 121 of the first parallel spring 12 in the direction indicated by the arrow YJ3, and the main surface of the fixed frame 121 The other main surface of the two-frame layer 13 is joined.
  • FIG. 27 is a diagram illustrating a state in which the lens group 20 is attached.
  • step SP5 the lens group 20 generated in step SP1 is attached to a hollow portion of each second frame layer 13 of the unit manufactured in step SP4 by a predetermined mounter. That is, the lens group 20 is inserted into each gap of the second frame layer sheet U13 having a lattice shape.
  • the end surfaces of the two second protrusions 202 of the lens group 20 are joined to the joint PG2 of the first parallel spring 12, respectively.
  • the end surface of the second protrusion 202 is joined to the one main surface side of the joint portion PG2.
  • an adhesive (ultraviolet curable adhesive) that is cured by irradiation of ultraviolet rays is applied in advance to the end surface of the second protrusion 202 of the lens group 20, and the second protrusion 202 of the lens group 20 is applied.
  • abutted with respect to joining part PG2 of the 1st parallel spring 12 is mentioned.
  • step SP6 Sheet second joining (process F): In step SP6, as shown in FIG. 23, four sheets U10, U14 to U16 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined.
  • step SP6 each chip included in the second parallel spring sheet U14 and the actuator layer sheet U15 is attached to the second frame layer sheet with respect to one main surface side of the units generated up to step SP5.
  • Positioning is performed while maintaining the sheet shape so as to be stacked on each chip included in U13.
  • seat U14, U15 is joined using an adhesive agent etc. in order.
  • the sheet is so formed that each chip included in the lid layer sheet U10 is stacked with respect to each chip included in the first frame layer sheet U11 with respect to the other main surface side of the first frame layer sheet U11. Alignment (alignment) is performed in the shape. In this state, the lid layer sheet U10 is bonded to the other main surface side of the first frame layer sheet U11 using an adhesive or the like.
  • the sheet-like shape is formed so that each chip included in the lens position adjustment layer sheet U16 is stacked on each chip included in the actuator layer sheet U15 with respect to one main surface side of the actuator layer sheet U15.
  • the alignment is performed as it is.
  • the lens position adjustment layer sheet U16 is bonded to the other main surface side of the actuator layer sheet U15 using an adhesive or the like.
  • FIG. 28 to FIG. 31 are views showing how the sheets U10 and U14 to U16 are laminated and joined, focusing on each chip constituting one camera module 500.
  • FIGS. 30 and 31 the upper and lower sides of the camera module 500 shown in FIG. 3 are shown in the same state.
  • the spring seat U14 is joined.
  • the joint part PG2 of the second parallel spring 14 is joined to the non-lens part of the first lens constituent layer LY1 of the lens group 20 by an adhesive or the like.
  • the actuator layer sheet U15 is bonded onto one main surface of the second parallel spring sheet U14 so that the actuator layer 15 is bonded to one main surface of the second parallel spring 14.
  • each movable portion 151 of the actuator layer 15 comes into contact with the corresponding first protrusion 201 and the free end FT of each movable portion 151 is pushed up in the direction corresponding to the ⁇ Z side. It becomes a state.
  • the unit formed by joining the actuator layer sheet U15 on the second parallel spring sheet U14 is removed from the assembly jig 300, and the lid layer sheet is attached to the unit. U10 is joined.
  • the lens group 20 is held by the first and second parallel springs 12, 14, so that the lens group 20 floats in the air. It becomes.
  • the unit joined up to the actuator layer sheet U15 is turned upside down, and the outer peripheral portion of the lid layer 10 is pressed against the other main surface of the first frame layer 11 in the direction indicated by the arrow YJ7. Meanwhile, the other main surface of the first frame layer 11 and one main surface of the outer peripheral portion of the lid layer 10 are joined by an adhesive or the like.
  • the lens with respect to one main surface of the actuator layer sheet U15 is so joined that one main surface of the frame body 152 of the actuator layer 15 is bonded to the frame body 161 of the lens position adjusting layer 16.
  • the position adjustment layer sheet U16 is joined.
  • the unit formed by joining up to the lid layer sheet U10 is placed on the other main surface of the lens position adjustment layer sheet U16, and the unit is pushed down in the direction indicated by the arrow YJ8.
  • the other main surface of the lens position adjustment layer sheet U16 and one main surface of the actuator layer sheet U15 are bonded together with an adhesive or the like.
  • the upper end surface of the protrusion 162 of the lens position adjustment layer 16 contacts a part of the non-lens portion of the first lens constituent layer LY1 of the lens group 20, and the lens group 20 is pushed up to the lid layer 10 side.
  • the force by which the movable portion 151 of the actuator layer 15 is pushed down by the first projection 201 is reduced, and the free end FT of the movable portion 151 of the actuator layer 15 that has been pushed down by the first projection 201 rises in the + Z direction. To do.
  • the movable part 151 hardly generates an elastic force, that is, the shape of the movable part 151 is substantially flat.
  • the extending distance along the Z axis of the first protrusion 201 and the protrusion 162 is set so that the state where the first protrusion 201 and the free end FT are in contact with each other is maintained.
  • the free end FT does not come into contact with the first protrusion 201 and is swung in an inefficient manner. Is prevented.
  • both the first and second parallel springs 12 and 14 have a large displacement in the position of the joint portion PG2 in the + Z direction with respect to the connection portion PG1, that is, bending deformation (flexure deformation) of the plate-like member EB. That is, each plate member EB is elastically deformed and stress (elastic force) is charged so that each joint portion PG2 is displaced toward the lid layer 10 side.
  • the lens group 20 is pressed against the upper end surface of the protrusion 162 of the lens position adjusting layer 16 by the elastic force generated in each plate member EB.
  • the pressing force of the lens group 20 against the protrusion 162 suppresses the occurrence of deviations in the posture and position of the lens group 20 such as the tilt amount regardless of the holding posture of the camera module 500 by the user.
  • step SP7 the lens position adjusting layer sheet is bonded so that the outer peripheral portion of the image sensor substrate 178 is bonded to the frame 161 of the lens position adjusting layer 16 of the unit formed by bonding the lens position adjusting layer 16.
  • the other main surface of the imaging element substrate sheet U178 is bonded to one main surface of U16.
  • step SP8 a large number of lens groups 20 are inserted, and the laminated member formed by laminating the eight sheets U10 to U16 and U178 is protected by a dicing tape or the like and then separated for each chip by a dicing device. . At this time, a large number of camera modules 500 are completed.
  • the actuator element 153 of the actuator layer 15 contracts and deforms due to heating by energization of the heater layer provided in the actuator layer 15. I do. Then, the free end FT of the movable portion 151 is displaced in the + Z direction. Note that the amount of displacement generated on the free end FT side of the movable portion 151 differs depending on the heating temperature of the SMA, and the amount of displacement is adjusted by controlling the amount of current supplied to the heater layer.
  • SMA shape memory alloy
  • the electric resistance of the heater layer also changes in accordance with the deformation of the heater layer accompanying the deformation of the SMA, the current resistance value of the heater layer is monitored, and the displacement amount of the free end FT, that is, the lens group 20 It is possible to control the amount of displacement.
  • the thickness along the Z axis of the first frame layer 11 ensures a space in which the lens group 20 moves, that is, a movable range (stroke) along the Z axis of the lens group 20.
  • the extension distance along the Z axis of the second protrusion 202 is such that the lens group 20 is pushed up in the + Z direction when the lens position adjusting layer 16 is bonded to the actuator layer 15 and the lens group 20. Is greater than or equal to the distance obtained by adding the distance movable in the + Z direction (movable distance).
  • the camera module 500 has the first and second parallel springs 12 and 14 that restrict the movement of the lens group 20, and performs AF control (focusing) by the movement of the lens group 20. Control) is realized.
  • the lens group 20 In the non-driven state, when the lens group 20 is pressed against the lens position adjusting layer 16 by the first and second parallel springs 12 and 14, and the movable portion 151 of the actuator layer 15 is deformed, The lens group 20 is configured to move against the elastic force of the second parallel springs 12 and 14.
  • the Z-axis of the camera module 500 is aligned. It is not necessary to increase the thickness in the direction (optical axis direction). In particular, even when the posture of the camera module 500 is variously changed in the non-driven state, the inclination of the lens group 20 and the like are suppressed, so that the posture of the lens group 20 is stabilized. Therefore, it is possible to displace the lens while suppressing an increase in the size of the apparatus, and it is possible to stabilize the posture of the lens.
  • the camera module 500 is configured by laminating a plurality of layers, a small and thin camera module 500 is realized. Therefore, the displacement of the lens and the stabilization of the posture of the lens can be achieved while suppressing an increase in the size of the apparatus.
  • a lens position adjusting layer 16 having a protrusion 162 with which the lens group 20 abuts is separately provided between the image sensor 181 and the lens group 20. For this reason, in order to set the lens group 20 to the initial position, it is possible to easily manufacture a portion (contact portion) with which the lens group 20 is brought into contact.
  • the lens group 20 when the lens group 20 is in contact with the lens position adjusting layer 16 in the non-driven state, the lens group 20 is focused on a subject located at infinity with the camera module 500 as a reference. It is arranged at a predetermined position.
  • the lens group 20 can be easily and accurately arranged at a predetermined position generally adopted as an initial state of focus control.
  • the lens group 20 is disposed at a predetermined position so that a subject located at infinity with the camera module 500 as a reference can be focused by simply joining the layers without performing any special adjustment operation thereafter. can do.
  • the protrusion 162 is disposed at a position that sandwiches the optical path from the subject through the lens group 20 to the pixel array region of the image sensor 181 in the direction in which the width of the pixel array region is the narrowest. For this reason, the protrusion 162 corresponding to the contact portion can be installed without adversely affecting the photographing and without enlarging the apparatus.
  • the lens position adjustment layer 16 is provided in which the lens group 20 is brought into contact with the lens group 20 in the non-driven state and the lens group 20 is disposed at the initial position.
  • the lens group 20 itself may be provided with a structure for disposing the lens group 20 at the initial position without providing the lens position adjusting layer 16.
  • a specific example will be described.
  • FIG. 32 is a schematic cross-sectional view of a camera module 500A according to a modification of the present invention.
  • the camera module 500A according to the modification is obtained by removing the lens position adjustment layer 16 from the camera module 500 according to the above-described embodiment and changing the lens group 20 to a lens group 20A having a different configuration. It has become.
  • the optical unit KB is changed to the optical unit KBA with the lens group 20 being changed to the lens group 20A.
  • the mobile phone 100A according to the modification includes a first housing 200A provided with a camera module 500A.
  • FIG. 33 is a bottom view of the lens group 20A.
  • the lens group 20A includes two first protrusions 201 on one main surface of the non-lens part of the first lens constituent layer LY1 of the lens group 20 according to the embodiment.
  • it has a configuration in which four third protrusions 203 are added. That is, the third protrusion 203 is formed integrally with the first lens G1.
  • the third protrusion 203 is made of, for example, resin, and the extension distance of the third protrusion 203 along the Z axis is longer than the extension distance of the first protrusion 201 along the Z axis. Yes.
  • the third protrusion 203 for example, when the first lens constituent layer LY1 is manufactured, the same technique as the first protrusion 201 together with the first protrusion 201 on the one main surface side of the substrate 16BS is used. It may be formed by.
  • FIG. 34 is a diagram showing the second parallel spring 14 joined to the lens group 20A. As shown in FIG. 34, the third protrusion 203 is provided so as not to contact the plate-like member EB of the second parallel spring 14.
  • the tip end portion of the third protrusion 203 abuts against the other main surface of the cover glass layer 17 in the non-driven state.
  • the cover glass layer 17 is bonded to the actuator layer 15, the other main surface of the cover glass layer 17 abuts on the tip of the third protrusion 203, and the third protrusion 203 is Pushed up to the + Z side.
  • the lens group 20A is pushed up to the + Z side, the plate-like members EB of the first and second parallel springs 12 and 14 are deformed to the lid layer 10 side.
  • the lens group 20A is pushed down by the elastic force of the first and second parallel springs 12 and 14, and the third protrusion 203 is formed on the cover glass layer.
  • the lens group 20 ⁇ / b> A is arranged at a predetermined position by being pressed against the other main surface 17.
  • the other main surface of the cover glass layer 17 corresponds to a portion where the lens group 20A abuts and places the lens group 20A in the initial position, that is, a “contact portion” of the present invention.
  • a space for moving the lens group 20A corresponding to the moving object against the elastic force of the first and second parallel springs 12 and 14 is provided as in the above embodiment.
  • the tilt of the lens group 20A is suppressed, so that the posture of the lens group 20 is stabilized. Therefore, the lens can be displaced and the posture of the lens can be stabilized while suppressing an increase in the size of the apparatus.
  • the third protrusion 203 of the lens group 20A has a configuration that comes into contact with the other main surface of the cover glass layer 17 corresponding to the contact portion. For this reason, the enlargement of the apparatus accompanying the increase in the number of layers which comprise the camera module 500A is suppressed. It is also possible to reduce the manufacturing cost of the camera module 500A.
  • the third projection 203 that contacts the other main surface of the cover glass layer 17 and the first lens G1 are integrally configured. For this reason, the 3rd projection part 203 can be manufactured comparatively easily and with sufficient precision.
  • the stress design concerning the 2nd parallel spring 14 it is also possible to form the 3rd projection part 203 suitably so that it may not contact the 2nd parallel spring 14.
  • the image pickup device substrate sheet U178 on which the image pickup device substrate sheet 178 is arranged is shipped to the customer in a state before the image pickup device substrate sheet U178 is attached, and the steps after the attachment of the image pickup device substrate sheet U178 are performed by the customer.
  • the lens group 20 ⁇ / b> A is transported in an unstable state that is not held by the cover glass layer 17.
  • the lens position adjustment layer sheet U16 in which a large number of lens position adjustment layers 16 are arranged is bonded as in the above embodiment. It is preferable to ship the lens group 20 to the customer in the state of the unit because the lens group 20 is held by the lens position adjusting layer 16 and transported in a stable state. Specifically, for example, the occurrence of problems such as plastic deformation due to stress concentration of the first and second parallel springs 12 and 14 is suppressed, which is preferable.
  • the aspect ratio related to the shape that can be produced by molding there is a limit of the aspect ratio related to the shape that can be produced by molding.
  • the extending distance along the Z axis is long, that is, rather than manufacturing the lens group 20A having the third protrusion 203 having a large aspect ratio.
  • the lens group 20 in the non-driven state, the lens group 20 abuts against the lens position adjustment layer 16 so that a subject located at infinity with the camera module 500 as a reference is focused.
  • the lens group 20 is installed at a predetermined position, but the present invention is not limited to this.
  • the predetermined position where the lens group 20 is in contact with the lens position adjustment layer 16 is closer to the image sensor 181 than the position of the lens group 20 where the focal point of the lens group 20 is on the imaging surface of the image sensor 181. It may be a position.
  • FIG. 35 is a diagram schematically illustrating the positional relationship between the focal point of the lens group 20 and the image sensor 181 according to the above embodiment
  • FIG. 36 illustrates the focal point of the lens group 20 and the image sensor 181 according to this modification. It is a figure which shows typically the positional relationship of these.
  • the focus FP of the lens group 20 is imaged. It is disposed on the imaging surface of the element 181.
  • FIG. 36 when the lens group 20 is in contact with the lens position adjusting layer 16 and is disposed at a predetermined position, The focal point FP is disposed at a position opposite to the lens group 20 with respect to the imaging surface of the imaging element 181.
  • the lens group 20 can be arranged.
  • the initial position of the lens group 20 may be the position of the lens group 20 that focuses on a subject that is located very close to the camera module 500.
  • the lens group 20 includes the first and second lenses G1 and G2.
  • the present invention is not limited to this.
  • the lens group 20 may be an optical system having one lens. That is, the optical system that is the moving object may include one or more optical lenses.
  • the focus control is performed by moving the lens group 20, but the present invention is not limited to this.
  • a so-called zoom operation may be realized by moving the lens group 20.
  • SMA is used as the actuator element 153.
  • the actuator element 153 is not limited to this.
  • a so-called bi-metal strip may be used.
  • a film made of a material having a coefficient of thermal expansion different from that of the substrate may be formed instead of SMA. That is, the movable part may be configured to include a substrate and a thin film formed on the substrate and having a different coefficient of thermal expansion from the substrate.
  • a layer (metal layer) of a metal material such as aluminum or nickel is formed on one main surface side of a substrate of a movable part made of Si.
  • the movable portion is deformed due to the difference in thermal expansion coefficient, and the free end of the movable portion is displaced in the + Z direction.
  • the free end of the movable part tends to be displaced unintentionally in proportion to changes in the environmental temperature.
  • the movable portion 151 has a force with which the lens group 20 is pressed in the ⁇ Z direction against the lens position adjusting layer 16 by the first and second parallel springs at the upper limit of the assumed operating environment temperature. If the force is larger than the force exerted on the lens group 20, the posture of the lens group 20 is not broken.
  • the actuator element for example, a thin film (piezoelectric thin film) of a piezoelectric element such as an inorganic piezoelectric body (PZT) or an organic piezoelectric body (PVDF) may be used. That is, the movable part may be configured to include a substrate and a thin film of a piezoelectric element formed on the substrate.
  • a piezoelectric thin film is used as the actuator element, an electrode, a piezoelectric thin film, and an electrode are formed on the Si substrate in this order using a sputtering method or the like, and poling with a high electric field is performed.
  • the lens group 20 that is the moving object is configured to include the first and second lens constituent layers LY1 and LY2, but is not limited thereto.
  • the moving object may be configured by one or more layers including one or more lens layers.
  • the plate-like first and second parallel springs 12 and 14 are employed as members for restricting the movement of the lens group 20, but the present invention is not limited to this.
  • various elastic members including a helical spring may be employed.
  • the camera module 500 is configured by laminating a plurality of layers, but is not limited thereto.
  • the technical idea of the present invention can be applied to an imaging apparatus in general including an imaging apparatus in which each functional layer is not layered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Provided is a small-sized imaging apparatus including a displaceable lens that is stabilized in position. The imaging apparatus includes an imaging element, an object to be moved including one or more lenses, an actuator allowing the object to be moved to move in a predetermined direction, a resilient member which applies a force to the object to be moved in the opposite direction to the predetermined direction when the object to be moved moves in the predetermined direction, and a contact part disposed between the imaging element and the object to be moved. The object to be moved is pressed against the contact part by the resilient member so that the object to be moved is placed in a predetermined position.

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
 近年、マイクロカメラユニット(Micro Camera Unit:MCU)を搭載することで撮影機能が付加された小型の電子機器(例えば携帯電話機)が急速に普及している。これに伴い、MCUに採用されるカメラモジュールに対しては、更なる小型化が望まれている。 In recent years, small electronic devices (for example, mobile phones) to which a photographing function is added by mounting a micro camera unit (MCU) are rapidly spreading. Accordingly, further miniaturization is desired for the camera module used in the MCU.
 従来のカメラモジュールにおいては、レンズを支持するレンズバレルおよびレンズホルダ、赤外線(IR)カットフィルタを支持するホルダ、基板、撮像素子、並びに光学素子からなる積層体を保持する筐体、このような積層体を封止する樹脂等が必要とされている。このため、上記多数の部品の小型化を図り、各部品を精度良く組み合わせてカメラモジュールを作製することが困難であった。 In a conventional camera module, a lens barrel and a lens holder that support a lens, a holder that supports an infrared (IR) cut filter, a substrate, an image sensor, and a casing that holds a laminate including optical elements, such a stack A resin or the like for sealing the body is required. For this reason, it has been difficult to reduce the size of the above-mentioned many parts and to produce a camera module by accurately combining the parts.
 このような問題に対して、基板と、多数の撮像素子が形成された半導体シートと、多数の撮像レンズが形成されたレンズアレイシートとを樹脂層を介して貼り付けて積層部材を形成し、該積層部材をダイシングして、個々のカメラモジュールを完成させる技術が提案されている(例えば、特許文献1等)。 For such problems, a laminated member is formed by attaching a substrate, a semiconductor sheet on which a large number of imaging elements are formed, and a lens array sheet on which a large number of imaging lenses are formed through a resin layer, A technique for dicing the laminated member to complete each camera module has been proposed (for example, Patent Document 1).
特開2007-12995号公報Japanese Patent Laid-Open No. 2007-12995
 しかしながら、上記特許文献1の技術では、撮像素子を含む層、およびレンズを含む層等をウエハ状態で(ウエハレベルで)積層させてカメラモジュールが形成される。このため、カメラモジュールにおいてオートフォーカスまたはズーム等の機能を実現するためのレンズを移動させる駆動機構を形成することが困難である。 However, in the technique disclosed in Patent Document 1, a camera module is formed by laminating a layer including an image sensor, a layer including a lens, and the like in a wafer state (at the wafer level). For this reason, it is difficult to form a drive mechanism for moving a lens for realizing a function such as autofocus or zoom in the camera module.
 また、仮にレンズを移動させる駆動機構を形成する場合には、撮像装置の大型化を抑制しつつ、レンズを移動させるための空間を確保するとともに、レンズの姿勢を安定させることが要求される。そして、このような要求は、撮像装置一般に共通する。 Further, when a driving mechanism for moving the lens is formed, it is required to secure a space for moving the lens and stabilize the lens posture while suppressing an increase in the size of the imaging apparatus. Such a request is common to imaging apparatuses in general.
 そこで、本発明は、装置の大型化を抑制しつつ、レンズが変位可能であり且つレンズの姿勢の安定化を図ることが可能な撮像装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an imaging device that can displace the lens and stabilize the posture of the lens while suppressing an increase in size of the device.
 上記の課題を解決するために、第1の態様に係る撮像装置は、撮像素子と、1以上のレンズを含む移動対象物と、前記移動対象物を所定方向に移動させるアクチュエータと、前記移動対象物が前記所定方向に移動する際に、該所定方向とは反対方向の力を該移動対象物に対して付与する弾性部材と、前記撮像素子と前記移動対象物との間に設けられる当接部とを備える。そして、前記雪像装置では、前記弾性部材によって前記移動対象物が前記当接部に押し付けられることで、該移動対象物が所定位置に配置される。 In order to solve the above problems, an imaging apparatus according to a first aspect includes an imaging element, a moving object including one or more lenses, an actuator that moves the moving object in a predetermined direction, and the moving object. An elastic member that applies a force in a direction opposite to the predetermined direction to the moving object when the object moves in the predetermined direction, and a contact provided between the imaging element and the moving object A part. And in the said snow image apparatus, the said moving target object is arrange | positioned in a predetermined position by the said elastic member pressing the said moving target object to the said contact part.
 また、第2の態様に係る撮像装置は、第1の態様に係る撮像装置であって、前記移動対象物が、1以上のレンズ層を含む1以上の層によって構成され、前記アクチュエータが、板状のアクチュエータ層によって構成され、前記弾性部材が、板状の弾性部材層によって構成される。 The imaging device according to the second aspect is the imaging device according to the first aspect, wherein the moving object is constituted by one or more layers including one or more lens layers, and the actuator is a plate. The elastic member is constituted by a plate-like elastic member layer.
 また、第3の態様に係る撮像装置は、第2の態様に係る撮像装置であって、前記撮像素子と前記移動対象物との間に配設され且つ前記撮像素子と前記移動対象物との距離を調整する調整層を備え、前記調整層が、前記当接部を有する。 The imaging device according to the third aspect is the imaging device according to the second aspect, and is disposed between the imaging element and the moving object, and between the imaging element and the moving object. An adjustment layer for adjusting the distance is provided, and the adjustment layer has the contact portion.
 また、第4の態様に係る撮像装置は、第3の態様に係る撮像装置であって、前記当接部が、前記調整層に設けられる突起部を含む。 Moreover, the imaging device according to the fourth aspect is the imaging device according to the third aspect, wherein the contact portion includes a protrusion provided on the adjustment layer.
 また、第5の態様に係る撮像装置は、第1の態様に係る撮像装置であって、前記移動対象物が、前記撮像素子側に設けられる突起部を有し、前記弾性部材によって前記突起部が前記当接部に押し付けられることで、該移動対象物が前記所定位置に配置される。 Moreover, the imaging device which concerns on a 5th aspect is an imaging device which concerns on a 1st aspect, Comprising: The said moving target object has a projection part provided in the said image pick-up element side, The said projection part is provided by the said elastic member. Is pressed against the contact portion, so that the moving object is arranged at the predetermined position.
 また、第6の態様に係る撮像装置は、第5の態様に係る撮像装置であって、前記1以上のレンズと前記突起部とが、一体的に構成されている。 Further, an imaging device according to a sixth aspect is the imaging device according to the fifth aspect, wherein the one or more lenses and the protrusion are integrally formed.
 また、第7の態様に係る撮像装置は、第1の態様に係る撮像装置であって、前記所定位置が、前記1以上のレンズを含む光学系の焦点が前記撮像素子の撮像面上に配置されるような位置である。 The imaging device according to a seventh aspect is the imaging device according to the first aspect, wherein the predetermined position is a focal point of an optical system including the one or more lenses arranged on an imaging surface of the imaging element. It is the position where it is done.
 また、第8の態様に係る撮像装置は、第1の態様に係る撮像装置であって、前記所定位置が、前記1以上のレンズを含む光学系の焦点が前記撮像素子の撮像面上に配置されるような位置よりも、前記撮像素子に近い位置である。 An imaging device according to an eighth aspect is the imaging device according to the first aspect, wherein the predetermined position is a focal point of an optical system including the one or more lenses arranged on an imaging surface of the imaging element. It is a position closer to the image sensor than the position where it is to be.
 また、第9の態様に係る撮像装置は、第1の態様に係る撮像装置であって、前記撮像素子が、複数の画素回路が配列される画素配列領域を有し、前記当接部が、被写体から前記1以上のレンズを介して前記画素配列領域に至る光路を該画素配列領域の幅が最も狭い方向において挟む位置に、配設されている。 An imaging device according to a ninth aspect is the imaging device according to the first aspect, wherein the imaging element has a pixel arrangement region in which a plurality of pixel circuits are arranged, and the contact portion is The optical path from the subject to the pixel array area via the one or more lenses is arranged at a position that sandwiches the pixel array area in the direction in which the width of the pixel array area is the narrowest.
 第1から第9の何れの態様に係る撮像装置によっても、弾性部材の弾性力に抗して移動対象物を移動させる為の装置の厚みの増大が抑制され、且つ移動対象物の姿勢が安定化されるため、装置の大型化を抑制しつつ、レンズが変位可能であり且つレンズの姿勢の安定化を図ることが可能な撮像装置を提供することができる。 In any of the imaging devices according to any of the first to ninth aspects, an increase in the thickness of the device for moving the moving object against the elastic force of the elastic member is suppressed, and the posture of the moving object is stable. Therefore, it is possible to provide an imaging apparatus in which the lens can be displaced and the posture of the lens can be stabilized while suppressing an increase in size of the apparatus.
 第2の態様に係る撮像装置によれば、複数の層が積層されて構成される撮像装置において、装置の大型化を抑制しつつ、レンズが変位とレンズの姿勢の安定化とが実現される。 According to the imaging device according to the second aspect, in the imaging device configured by stacking a plurality of layers, the lens is displaced and the lens posture is stabilized while suppressing an increase in size of the device. .
 第3または第4の態様に係る撮像装置によれば、撮像素子と移動対象物との間に当接部を有する調整層を設けられるため、当接部を容易に製作することができる。 According to the imaging device according to the third or fourth aspect, since the adjustment layer having the contact portion is provided between the imaging element and the moving object, the contact portion can be easily manufactured.
 第5の態様に係る撮像装置によれば、移動対象物の突起部が当接部と当接するような構成であるため、撮像装置を構成する層の数の増加に伴う装置の大型化が抑制される。 According to the imaging device according to the fifth aspect, since the protruding portion of the moving object is in contact with the contact portion, the increase in the size of the device due to an increase in the number of layers constituting the imaging device is suppressed. Is done.
 第6の態様に係る撮像装置によれば、当接部と当接する突起部とレンズとが一体的に成型されるため、突起部を比較的容易且つ精度良く製作することができる。 According to the imaging device according to the sixth aspect, since the protrusion and the lens that come into contact with the contact portion are integrally molded, the protrusion can be manufactured relatively easily and with high accuracy.
 第7の態様に係る撮像装置によれば、無限遠に存在する被写体に対して合焦する状態でレンズの姿勢の安定化させることができるため、例えば、レンズを合焦制御の初期状態として一般的に採用される位置に容易且つ精度良く配置することができる。 According to the imaging device according to the seventh aspect, since the posture of the lens can be stabilized in a state of focusing on a subject existing at infinity, for example, the lens is generally used as an initial state of focusing control. Therefore, it can arrange | position to the position employ | adopted easily and accurately.
 第8の態様に係る撮像装置によれば、製作時の各種の誤差により、無限遠に存在する被写体に対して合焦する状態に設定できなくなる不具合の発生を防止することができる。 According to the imaging device according to the eighth aspect, it is possible to prevent the occurrence of a problem that it is not possible to set the focus on a subject existing at infinity due to various errors during production.
 第9の態様に係る撮像装置によれば、撮影への悪影響、および装置の大型化を招くことなく、当接部を設置することができる。 According to the imaging device according to the ninth aspect, it is possible to install the abutting portion without causing adverse effects on photographing and increasing the size of the device.
図1は、本発明の実施形態に係るカメラモジュールを搭載した携帯電話機の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone equipped with a camera module according to an embodiment of the present invention. 図2は、本発明の実施形態に係る第1の筐体に着目した断面模式図である。FIG. 2 is a schematic cross-sectional view focusing on the first housing according to the embodiment of the present invention. 図3は、本発明の実施形態に係るカメラモジュールの断面模式図である。FIG. 3 is a schematic cross-sectional view of the camera module according to the embodiment of the present invention. 図4は、レンズ群の断面模式図である。FIG. 4 is a schematic cross-sectional view of the lens group. 図5は、レンズ群の断面模式図である。FIG. 5 is a schematic cross-sectional view of the lens group. 図6は、第1レンズ構成層の下面外観図である。FIG. 6 is an external view of the lower surface of the first lens constituent layer. 図7は、第2レンズ構成層の上面外観図である。FIG. 7 is a top external view of the second lens constituent layer. 図8は、スペーサ層の形状を説明するための図である。FIG. 8 is a diagram for explaining the shape of the spacer layer. 図9は、レンズ位置調整層の上面外観図である。FIG. 9 is a top external view of the lens position adjusting layer. 図10は、レンズ位置調整層の側面外観図である。FIG. 10 is a side external view of the lens position adjusting layer. 図11は、アクチュエータ層の上面外観図である。FIG. 11 is an external view of the top surface of the actuator layer. 図12は、アクチュエータ層の側面外観図である。FIG. 12 is a side external view of the actuator layer. 図13は、第1および第2平行ばねの下面外観図である。FIG. 13 is a bottom view of the first and second parallel springs. 図14は、レンズ群に装着された第1平行ばねを示す図である。FIG. 14 is a diagram illustrating the first parallel spring mounted on the lens group. 図15は、レンズ群に装着された第2平行ばねを示す図である。FIG. 15 is a diagram illustrating the second parallel spring attached to the lens group. 図16は、カメラモジュールの製造工程を示すフローチャートである。FIG. 16 is a flowchart showing the manufacturing process of the camera module. 図17は、第1および第2レンズ構成層に係るレンズ構成層ウエハの平面図である。FIG. 17 is a plan view of a lens constituent layer wafer according to the first and second lens constituent layers. 図18は、スペーサ層に係るスペーサ層ウエハの平面図である。FIG. 18 is a plan view of a spacer layer wafer according to the spacer layer. 図19は、第1レンズ構成層の作製の様子を示す図である。FIG. 19 is a diagram showing how the first lens constituent layer is produced. 図20は、第2レンズ構成層の作製の様子を示す図である。FIG. 20 is a diagram showing how the second lens constituent layer is produced. 図21は、準備するシートの構成例を示す平面図である。FIG. 21 is a plan view illustrating a configuration example of a sheet to be prepared. 図22は、組み立て治具の準備工程を示す図である。FIG. 22 is a diagram illustrating a preparation process of the assembly jig. 図23は、準備されたシート等を積層させて接合する様子を模式的に示す図である。FIG. 23 is a diagram schematically illustrating a state in which prepared sheets and the like are stacked and joined. 図24は、第1枠層シートの載置工程を示す図である。FIG. 24 is a diagram illustrating a placing process of the first frame layer sheet. 図25は、第1平行ばねシートの接合工程を示す図である。FIG. 25 is a diagram illustrating a joining process of the first parallel spring sheet. 図26は、第2枠層シートの接合工程を示す図である。FIG. 26 is a diagram illustrating a joining process of the second frame layer sheet. 図27は、レンズ群の取り付け工程を示す図である。FIG. 27 is a diagram illustrating a lens group attaching step. 図28は、第2平行ばねシートの接合工程を示す図である。FIG. 28 is a diagram illustrating a joining process of the second parallel spring sheet. 図29は、アクチュエータ層シートの接合工程を示す図である。FIG. 29 is a diagram illustrating an actuator layer sheet joining step. 図30は、カバー層シートの接合工程を示す図である。FIG. 30 is a diagram illustrating a cover layer sheet joining step. 図31は、レンズ位置調整層シートの接合工程を示す図である。FIG. 31 is a diagram illustrating a bonding process of the lens position adjustment layer sheet. 図32は、本発明の変形例に係るカメラモジュールの断面模式図である。FIG. 32 is a schematic cross-sectional view of a camera module according to a modification of the present invention. 図33は、本発明の変形例に係る第1レンズ構成層の下面外観図である。FIG. 33 is an external view of the lower surface of the first lens constituent layer according to a modification of the present invention. 図34は、変形例に係るレンズ群に装着された第1平行ばねを示す図である。FIG. 34 is a diagram illustrating a first parallel spring attached to a lens group according to a modification. 図35は、レンズ群の初期位置とレンズ群の焦点の位置との関係を示す図である。FIG. 35 is a diagram showing the relationship between the initial position of the lens group and the focal position of the lens group. 図36は、レンズ群の初期位置とレンズ群の焦点の位置との関係を示す図である。FIG. 36 is a diagram showing the relationship between the initial position of the lens group and the focal position of the lens group.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <携帯電話機の概略構成>
 図1は、本発明の第1実施形態に係るカメラモジュール500を搭載した携帯電話機100の概略構成を示す模式図である。なお、図1および図1以降の図では方位関係を明確化するために、XYZの相互に直交する3軸が適宜付されている。
<Schematic configuration of mobile phone>
FIG. 1 is a schematic diagram showing a schematic configuration of a mobile phone 100 equipped with a camera module 500 according to the first embodiment of the present invention. In FIG. 1 and the drawings after FIG. 1, three axes XYZ orthogonal to each other are appropriately attached in order to clarify the azimuth relationship.
 図1で示されるように、携帯電話機100は、折り畳み式の携帯電話機として構成され、第1の筐体200と、第2の筐体300と、ヒンジ部400とを有している。 As shown in FIG. 1, the mobile phone 100 is configured as a foldable mobile phone, and includes a first housing 200, a second housing 300, and a hinge part 400.
 第1の筐体200および第2の筐体300は、それぞれ板状の直方体であり、各種電子部材を格納する筐体としての役割を有している。具体的には、第1の筐体200は、カメラモジュール500および表示ディスプレイ(不図示)を有し、第2の筐体300は、携帯電話機100を電気的に制御する制御部とボタン等の操作部材(不図示)とを有している。 The first casing 200 and the second casing 300 are each a plate-shaped rectangular parallelepiped and have a role as a casing for storing various electronic members. Specifically, the first casing 200 includes a camera module 500 and a display (not shown), and the second casing 300 includes a control unit that electrically controls the mobile phone 100, buttons, and the like. And an operating member (not shown).
 ヒンジ部400は、第1の筐体200と第2の筐体300とを回動可能に接続している。このため、携帯電話機100は、折り畳み可能となっている。 The hinge part 400 connects the first casing 200 and the second casing 300 so as to be rotatable. For this reason, the mobile phone 100 can be folded.
 図2は、携帯電話機100のうち第1の筐体200に着目した断面模式図である。 FIG. 2 is a schematic cross-sectional view focusing on the first casing 200 of the mobile phone 100.
 図1および図2で示されるように、カメラモジュール500は、XY断面のサイズが約5mm四方であり、厚さ(Z方向の奥行き)が約3mm程度である小型の撮像装置、所謂マイクロカメラユニット(MCU)となっている。 As shown in FIG. 1 and FIG. 2, the camera module 500 is a small imaging device, so-called micro camera unit, having an XY cross section of about 5 mm square and a thickness (depth in the Z direction) of about 3 mm. (MCU).
 以下、カメラモジュール500の構成、およびその製造工程等について順次説明する。 Hereinafter, the configuration of the camera module 500 and the manufacturing process thereof will be sequentially described.
 <カメラモジュールの構成>
 図3は、カメラモジュール500の断面模式図であり、矢印AR1の示す方向が+Z方向に対応する。なお、図3以降の図面においても、方位関係の明確化のために、+Z方向に対応する方向を示す矢印AR1が付されている。
<Configuration of camera module>
FIG. 3 is a schematic cross-sectional view of the camera module 500, and the direction indicated by the arrow AR1 corresponds to the + Z direction. In the drawings subsequent to FIG. 3, an arrow AR <b> 1 indicating a direction corresponding to the + Z direction is attached in order to clarify the orientation relationship.
 図3で示されるように、カメラモジュール500は、撮影光学系としてのレンズ群20が移動可能に設けられている光学ユニットKBと、被写体像に関する撮影画像を取得する撮像部PBとを有している。 As shown in FIG. 3, the camera module 500 includes an optical unit KB in which a lens group 20 as a photographing optical system is movably provided, and an imaging unit PB that acquires a photographed image related to a subject image. Yes.
 撮像部PBは、例えば、COMSセンサまたはCCDセンサ等の撮像素子181を有する撮像素子層18と、カバーガラス層17とが+Z方向にこの順序で積層された構成を有する。なお、カバーガラス層17が、赤外線(IR)をカットするフィルタ層を含むようにしても良い。 The imaging unit PB has a configuration in which an imaging element layer 18 having an imaging element 181 such as a COMS sensor or a CCD sensor and a cover glass layer 17 are laminated in this order in the + Z direction. The cover glass layer 17 may include a filter layer that cuts infrared rays (IR).
 光学ユニットKBは、蓋層10、第1枠層11、第1平行ばね(上層平行ばね)12、第2枠層13、第2平行ばね(下層平行ばね)14、アクチュエータ層15、レンズ位置調整層16、およびレンズ群20を備えて構成される。蓋層10、第1枠層11、第1平行ばね12、第2枠層13、第2平行ばね14、アクチュエータ層15、レンズ位置調整層16、およびレンズ群20は、いずれもウエハ状態(ウエハレベルで)製作される。これらの製作工程については後述する。 The optical unit KB includes a lid layer 10, a first frame layer 11, a first parallel spring (upper parallel spring) 12, a second frame layer 13, a second parallel spring (lower parallel spring) 14, an actuator layer 15, and lens position adjustment. The layer 16 and the lens group 20 are provided. The lid layer 10, the first frame layer 11, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, the actuator layer 15, the lens position adjustment layer 16, and the lens group 20 are all in a wafer state (wafer Produced by level). These manufacturing processes will be described later.
 光学ユニットKBでは、レンズ位置調整層16、アクチュエータ層15、第2平行ばね14、第2枠層13、第1平行ばね12、第1枠層11、および蓋層10が+Z方向にこの順序で積層され、第2平行ばね14と第1平行ばね12との間にレンズ群20が保持された構成を有している。そして、第1平行ばね12と第2平行ばね14とアクチュエータ層15とが互いに協働することで、レンズ群20をZ軸に沿った方向に移動させる。 In the optical unit KB, the lens position adjusting layer 16, the actuator layer 15, the second parallel spring 14, the second frame layer 13, the first parallel spring 12, the first frame layer 11, and the lid layer 10 are arranged in this order in the + Z direction. The lens group 20 is held between the second parallel spring 14 and the first parallel spring 12 which are stacked. The first parallel spring 12, the second parallel spring 14, and the actuator layer 15 cooperate with each other to move the lens group 20 in the direction along the Z axis.
 カメラモジュール500では、蓋層10、第1および第2枠層11,13、レンズ位置調整層16、カバーガラス層17、および撮像素子層18が、レンズ群20に対する固定部となる。そして、レンズ群20は、固定部に結合された第1および第2平行ばね12,14によって支持される。 In the camera module 500, the lid layer 10, the first and second frame layers 11 and 13, the lens position adjustment layer 16, the cover glass layer 17, and the imaging element layer 18 serve as a fixing portion for the lens group 20. The lens group 20 is supported by first and second parallel springs 12 and 14 coupled to the fixed portion.
 より詳細には、レンズ群20の-Z側におけるアクチュエータ層15と該レンズ群20との間には、第2平行ばね14が介挿される。また、レンズ群20の+Z側における第1枠層11と該レンズ群20との間には、第1平行ばね12が介挿される。つまり、レンズ群20は、第1平行ばね12と第2平行ばね14とによって挟まれている。 More specifically, the second parallel spring 14 is interposed between the actuator layer 15 on the −Z side of the lens group 20 and the lens group 20. A first parallel spring 12 is interposed between the first frame layer 11 on the + Z side of the lens group 20 and the lens group 20. That is, the lens group 20 is sandwiched between the first parallel spring 12 and the second parallel spring 14.
 ここでは、第1および第2平行ばね12,14によってレンズ群20が挟持されるため、レンズ群20の移動に拘わらず、レンズ群20の姿勢が保持され、レンズ群20の光軸が略一定に保持される。 Here, since the lens group 20 is clamped by the first and second parallel springs 12 and 14, the posture of the lens group 20 is maintained regardless of the movement of the lens group 20, and the optical axis of the lens group 20 is substantially constant. Retained.
 また、第1および第2平行ばね12,14は、移動対象物であるレンズ群20が+Z方向に移動する際に、レンズ群20の移動方向(すなわち+Z方向)とは反対方向の力を、該レンズ群20に対して付与する。なお、レンズ群20が-Z方向に移動する際には、第1および第2平行ばね12,14がレンズ群20に対して付与する力の方向は、レンズ群20の移動方向(すなわち-Z方向)と一致する。 Further, the first and second parallel springs 12 and 14 apply a force in a direction opposite to the moving direction of the lens group 20 (that is, the + Z direction) when the lens group 20 as the moving object moves in the + Z direction. The lens group 20 is given. When the lens group 20 moves in the −Z direction, the direction of the force applied to the lens group 20 by the first and second parallel springs 12 and 14 is the moving direction of the lens group 20 (ie, −Z Direction).
 更に、レンズ群20が+Z方向に移動していない非駆動状態(例えば駆動前の静止状態)では、第1および第2平行ばね12,14の弾性力によってレンズ群20がレンズ位置調整層16の突起部162の上端面に対して押し付けられ、レンズ群20がレンズ位置調整層16によっても支持される。そして、この非駆動状態では、レンズ群20がZ軸に沿って変位可能な範囲(変位可能範囲)の最も-Z側の所定位置に配置されて静止する。 Further, in a non-driving state in which the lens group 20 is not moving in the + Z direction (for example, a stationary state before driving), the lens group 20 is moved by the elastic force of the first and second parallel springs 12 and 14 from the lens position adjusting layer 16. The lens group 20 is supported by the lens position adjusting layer 16 by being pressed against the upper end surface of the protrusion 162. In this non-driven state, the lens group 20 is placed at a predetermined position on the most −Z side of a range (displaceable range) that can be displaced along the Z axis and is stationary.
 この所定位置は、例えば、撮像素子181において多数の画素回路が配列されている+Z側の面(以下「撮像面」とも称する)上に光学ユニットKBの焦点が配置されるような位置に設定される。ここで言う光学ユニットKBの焦点とは、+Z側から平行光線を光学ユニットKBに入射したときに、該光学ユニットKBから射出される光線が一点に集まる点のことを言う。なお、本実施形態では、光学ユニットKBが、本発明の「光学系」に相当する。 For example, the predetermined position is set to a position where the focal point of the optical unit KB is arranged on a surface on the + Z side (hereinafter also referred to as “imaging surface”) on which a large number of pixel circuits are arranged in the image sensor 181. The Here, the focal point of the optical unit KB refers to a point where light beams emitted from the optical unit KB gather at one point when parallel light beams enter the optical unit KB from the + Z side. In the present embodiment, the optical unit KB corresponds to the “optical system” of the present invention.
 このように、非駆動状態では、レンズ群20は、第1および第2平行ばね12,14の弾性力によってレンズ位置調整層16に対して押し付けられるため、カメラモジュール500に対して強い衝撃が付与される場合でも、レンズ群20の姿勢が保持される。 Thus, in the non-driven state, the lens group 20 is pressed against the lens position adjusting layer 16 by the elastic force of the first and second parallel springs 12 and 14, so that a strong impact is applied to the camera module 500. Even in such a case, the posture of the lens group 20 is maintained.
 アクチュエータ層15は、+Z方向への駆動変位を発生させる変位発生部を有し、レンズ群20の-Z側に配置されている。変位発生部は、レンズ群20の-Z側に突出した第1突起部201と接触し、変位発生部で生じる駆動変位は、第1突起部201を介してレンズ群20に伝達される。つまり、アクチュエータ層15は、移動対象物であるレンズ群20を所定方向(ここでは、+Z方向)に移動させる。なお、変位発生部における+Z方向への駆動変位が小さくなっていく場面では、第1および第2平行ばね12,14の弾性力によって、レンズ群20が所定方向とは反対方向(-Z方向)に移動する。 The actuator layer 15 has a displacement generating part that generates a drive displacement in the + Z direction, and is disposed on the −Z side of the lens group 20. The displacement generating unit comes into contact with the first protrusion 201 protruding to the −Z side of the lens group 20, and the drive displacement generated by the displacement generating unit is transmitted to the lens group 20 through the first protruding part 201. That is, the actuator layer 15 moves the lens group 20 that is a moving object in a predetermined direction (here, the + Z direction). In a scene where the drive displacement in the + Z direction in the displacement generating portion is reduced, the lens group 20 is in a direction opposite to the predetermined direction (−Z direction) by the elastic force of the first and second parallel springs 12 and 14. Move to.
 以上のように、カメラモジュール500では、移動対象物であるレンズ群20が、該レンズ群20を介して互いに対向する位置に配置された第1および第2平行ばね12,14と結合され、該第1および第2平行ばね12,14がレンズ群20に垂直な方向(+Z方向)に弾性変形しつつ、レンズ群20の姿勢を保持する。そして、レンズ群20は、アクチュエータ層15の変位発生部から駆動力を受けて、その位置をZ軸に沿って変位させる。 As described above, in the camera module 500, the lens group 20 that is a moving object is coupled to the first and second parallel springs 12 and 14 disposed at positions facing each other via the lens group 20, The first and second parallel springs 12 and 14 are elastically deformed in a direction perpendicular to the lens group 20 (+ Z direction), and hold the posture of the lens group 20. The lens group 20 receives a driving force from the displacement generating portion of the actuator layer 15 and displaces the position along the Z axis.
 このように、カメラモジュール500に設けられた光学ユニットKBは、レンズ群20を該レンズ群20の光軸方向(+Z方向)に変位させることができ、カメラモジュール500をレンズ群20を変位させる駆動装置として機能させる。 As described above, the optical unit KB provided in the camera module 500 can displace the lens group 20 in the optical axis direction (+ Z direction) of the lens group 20, and drive the camera module 500 to displace the lens group 20. To function as a device.
 <レンズ群について>
 レンズ群20は、ガラス基板を基材としてウエハレベルで作製され、例えば、2枚以上のレンズを重ね合わせて成形される。本実施形態では、2枚の光学レンズを重ね合わせてレンズ群20が構成される場合について例示する。なお、本実施形態では、レンズ群20は、被写体からの光を撮像素子181に導く撮像レンズとして機能する。
<About the lens group>
The lens group 20 is manufactured at a wafer level using a glass substrate as a base material, and is formed by, for example, superposing two or more lenses. In the present embodiment, a case where the lens group 20 is configured by overlapping two optical lenses is illustrated. In the present embodiment, the lens group 20 functions as an imaging lens that guides light from the subject to the imaging element 181.
 図4および図5は、レンズ群20の断面模式図であり、矢印AR2の示す方向が+Z方向に対応する。図6は、レンズ群20の下面外観図であり、図7は、レンズ群20の上面外観図である。 4 and 5 are cross-sectional schematic views of the lens group 20, and the direction indicated by the arrow AR2 corresponds to the + Z direction. FIG. 6 is a bottom view of the lens group 20, and FIG. 7 is a top view of the lens group 20.
 図4および図5で示されるように、レンズ群20は、第1レンズG1を有する第1レンズ構成層LY1と、第2レンズG2を有する第2レンズ構成層LY2と、スペーサ層RBとを備える。そして、第1レンズ構成層LY1と第2レンズ構成層LY2とが、スペーサ層RBを介して結合されている。ここでは、第1および第2レンズ構成層LY1,LY2の非レンズ部の外縁が略正方形の形状を有する。 As shown in FIGS. 4 and 5, the lens group 20 includes a first lens constituent layer LY1 having a first lens G1, a second lens constituent layer LY2 having a second lens G2, and a spacer layer RB. . The first lens constituent layer LY1 and the second lens constituent layer LY2 are coupled via the spacer layer RB. Here, the outer edges of the non-lens portions of the first and second lens constituent layers LY1, LY2 have a substantially square shape.
 なお、本実形態では、第1および第2レンズ構成層LY1,LY2が、本発明の「レンズ層」に相当する。 In this embodiment, the first and second lens constituent layers LY1 and LY2 correspond to the “lens layer” of the present invention.
 また、図4~図6で示されるように、第1レンズG1を有する第1レンズ構成層LY1の一方主面(ここでは、-Z側)には、レンズとして機能しない非レンズ部に第1突起部201が設けられている。更に、図4、図5および図7で示されるように、第2レンズG2を有する第2レンズ構成層LY2の一方主面(ここでは、+Z側)には、レンズとして機能しない非レンズ部に第2突起部202が設けられている。 Also, as shown in FIGS. 4 to 6, on one main surface (here, the −Z side) of the first lens constituent layer LY1 having the first lens G1, the first lens surface does not function as a lens. A protrusion 201 is provided. Further, as shown in FIGS. 4, 5, and 7, the one main surface (here, + Z side) of the second lens constituent layer LY2 having the second lens G2 is provided with a non-lens portion that does not function as a lens. A second protrusion 202 is provided.
 また、図8は、スペーサ層RBの形状に着目して、スペーサ層RBを-Z側から見た図である。図8で示されるように、スペーサ層RBは、第1および第2レンズ構成層LY1,LY2の非レンズ部の外縁に沿って設けられ、ZY断面の外縁および内縁の形状が矩形である環状の構成を有する。 FIG. 8 is a view of the spacer layer RB as viewed from the −Z side, paying attention to the shape of the spacer layer RB. As shown in FIG. 8, the spacer layer RB is provided along the outer edge of the non-lens portion of the first and second lens constituting layers LY1, LY2, and the outer edge and the inner edge of the ZY cross section are rectangular in shape. It has a configuration.
 そして、レンズ群20の光軸が、Z軸に沿った方向に設定されている。 The optical axis of the lens group 20 is set in a direction along the Z axis.
 <各機能層について>
 以下では、カメラモジュール500を構成する各機能層の詳細について説明する。なお、各機能層については、-Z側の面を一主面と称し、+Z側の面を他主面と称する。
<About each functional layer>
Below, the detail of each functional layer which comprises the camera module 500 is demonstrated. For each functional layer, the −Z side surface is referred to as one main surface, and the + Z side surface is referred to as the other main surface.
 ○撮像素子層18:
 図3で示されるように、撮像素子層18は、光学ユニットKBを通過した被写体からの光を受光して、被写体の像に関する画像信号を生成する撮像素子181、その周辺回路、および撮像素子181を囲む外周部を備える部材である。また、撮像素子181は、多数の画素回路が配列されて構成される。
○ Image sensor layer 18:
As shown in FIG. 3, the image sensor layer 18 receives light from the subject that has passed through the optical unit KB, and generates an image signal related to the image of the subject, its peripheral circuit, and the image sensor 181. It is a member provided with the outer peripheral part which surrounds. The image sensor 181 is configured by arranging a large number of pixel circuits.
 なお、撮像素子層18の一主面(-Z側の面)には、リフロー方式によるはんだ付けを行うためのはんだボールHBが設けられている。また、ここでは図示を省略しているが、撮像素子層18の一主面には、撮像素子181に対する信号の付与、および該撮像素子181からの信号の読み出しを行う配線を接続するための各種端子が設けられている。 Note that a solder ball HB for performing soldering by a reflow method is provided on one main surface (the surface on the −Z side) of the imaging element layer 18. Although not shown here, various types of wiring for applying a signal to the image sensor 181 and reading a signal from the image sensor 181 are connected to one main surface of the image sensor layer 18. Terminals are provided.
 ○カバーガラス層17:
 図3で示されるように、カバーガラス層17は、略平板状であり且つXY断面が略正方形の形状を有し、透明なガラス等によって構成される。このカバーガラス層17は、撮像素子層18の他主面(+Z側の面)に対して接合され、撮像素子181を保護する機能を有する。
○ Cover glass layer 17:
As shown in FIG. 3, the cover glass layer 17 has a substantially flat plate shape and an XY cross section having a substantially square shape, and is made of transparent glass or the like. The cover glass layer 17 is bonded to the other main surface (+ Z side surface) of the image sensor layer 18 and has a function of protecting the image sensor 181.
 なお、カバーガラス層17が撮像素子層18上に接合された状態で撮像素子基板178を構成する。 The image sensor substrate 178 is configured with the cover glass layer 17 bonded to the image sensor layer 18.
 ○レンズ位置調整層16:
 レンズ位置調整層16は、樹脂材料を用いて構成されるとともに、撮像素子181とレンズ群20との間に配設され、且つ撮像素子181とレンズ群20との距離を調整する部材である。具体的には、レンズ位置調整層16は、非駆動状態におけるレンズ群20の位置(初期位置)を規定する。なお、レンズ位置調整層16は、例えば、樹脂をエッチングする手法等を用いて生成される。
○ Lens position adjustment layer 16:
The lens position adjustment layer 16 is configured by using a resin material, is disposed between the image sensor 181 and the lens group 20, and is a member that adjusts the distance between the image sensor 181 and the lens group 20. Specifically, the lens position adjustment layer 16 defines the position (initial position) of the lens group 20 in the non-driven state. The lens position adjustment layer 16 is generated using, for example, a method of etching a resin.
 図9は、レンズ位置調整層16の上面図である。図10は、レンズ位置調整層16の側面図である。 FIG. 9 is a top view of the lens position adjusting layer 16. FIG. 10 is a side view of the lens position adjustment layer 16.
 図9で示されるように、レンズ位置調整層16は、枠体161と突起部162とを備えている。 As shown in FIG. 9, the lens position adjustment layer 16 includes a frame body 161 and a protrusion 162.
 枠体161は、レンズ位置調整層16の外周部分を構成する略矩形の環状の部分であり、XY平面に略平行な板状の形状を有する。そして、枠体161は、Z軸に沿った方向に貫通する孔(貫通孔)16Hを形成し、枠体161を構成する+Y側の板状の部材および-Y側の板状の部材は、貫通孔16H側に出っ張った部分(凸部)161Tをそれぞれ有する。 The frame body 161 is a substantially rectangular annular portion constituting the outer peripheral portion of the lens position adjusting layer 16, and has a plate shape substantially parallel to the XY plane. The frame body 161 forms a hole (through hole) 16H penetrating in the direction along the Z-axis. The + Y side plate-like member and the −Y side plate-like member constituting the frame body 161 are: Each has a protruding portion 161T that protrudes toward the through hole 16H.
 また、枠体161の一主面は、隣接するカバーガラス層17に対して接合され、枠体161の他主面は、隣接するアクチュエータ層15(詳細には、アクチュエータ層15の枠体152(後述))と接合される。 Further, one main surface of the frame body 161 is bonded to the adjacent cover glass layer 17, and the other main surface of the frame body 161 is adjacent to the adjacent actuator layer 15 (specifically, the frame body 152 ( To be described later)).
 突起部162は、枠体161を構成する凸部161Tの内縁近傍において+Z方向に立設されて構成されている。この突起部162は、XZ平面に略平行で且つ略長方形の盤面を有する板状の部分であり、突起部162の長手方向がX軸に略平行な方向とされ、突起部162の短手方向がZ軸に略平行な方向とされている。そして、突起部162の+Z側の端面は、レンズ群20が当接することで、該レンズ群20を初期位置に配置する機能を有する。 The projecting portion 162 is configured to stand in the + Z direction in the vicinity of the inner edge of the convex portion 161T constituting the frame body 161. The projection 162 is a plate-like portion having a substantially rectangular board surface substantially parallel to the XZ plane, and the longitudinal direction of the projection 162 is a direction substantially parallel to the X axis, and the short direction of the projection 162 Is a direction substantially parallel to the Z-axis. The end surface on the + Z side of the protrusion 162 has a function of placing the lens group 20 at the initial position when the lens group 20 comes into contact therewith.
 なお、本実施形態では、撮像素子181と移動対象物であるレンズ群20との間に設けられる突起部162が、本発明の「当接部」に相当する。 In the present embodiment, the protrusion 162 provided between the image sensor 181 and the lens group 20 as the moving object corresponds to the “contact portion” of the present invention.
 また、図9では、撮像素子181を構成する複数の画素回路が配列される領域(以下「画素配列領域」とも称する)、すなわち撮像素子181の前面(撮像面)の外縁が破線で示されている。図9で示されるように、撮像面は、(短辺の長さ):(長辺の長さ):(対角線の長さ)=3:4:5の関係が成立するように構成されている。 In FIG. 9, a region where a plurality of pixel circuits constituting the image sensor 181 are arranged (hereinafter also referred to as “pixel array region”), that is, an outer edge of the front surface (image pickup surface) of the image sensor 181 is indicated by a broken line. Yes. As shown in FIG. 9, the imaging surface is configured so that the relationship of (short side length) :( long side length) :( diagonal length) = 3: 4: 5 is established. Yes.
 そして、突起部162は、被写体からレンズ群20を介して撮像素子181の画素配列領域に至る光路を、該画素配列領域の幅が最も狭い方向において挟む位置に配設されている。つまり、撮影への悪影響、および装置の大型化を招かないように、突起部162が設置される。 The protrusion 162 is disposed at a position where the optical path from the subject through the lens group 20 to the pixel array area of the image sensor 181 is sandwiched in the direction in which the width of the pixel array area is the narrowest. That is, the protrusion 162 is installed so as not to adversely affect the photographing and increase the size of the apparatus.
 ○アクチュエータ層15:
 アクチュエータ層15は、金属またはシリコン(Si)等の基板上に、駆動力を発生させる変位素子(「アクチュエータ素子」とも称する)を設けた薄板状の部材である。図11は、アクチュエータ層15の上面図である。図12は、アクチュエータ層15の側面図である。
○ Actuator layer 15:
The actuator layer 15 is a thin plate-like member in which a displacement element (also referred to as “actuator element”) that generates a driving force is provided on a metal or silicon (Si) substrate. FIG. 11 is a top view of the actuator layer 15. FIG. 12 is a side view of the actuator layer 15.
 具体的には、図11で示されるように、アクチュエータ層15は、外周部を構成する枠体152と、枠体152の内側の中空部分に対して該枠体152から突設される2枚の板状の可動部151とを備えている。そして、可動部151の他主面側には、薄膜状のアクチュエータ素子153が設けられている。 Specifically, as shown in FIG. 11, the actuator layer 15 includes two frames that protrude from the frame body 152 with respect to the frame body 152 that forms the outer peripheral portion and the hollow portion inside the frame body 152. The plate-like movable part 151 is provided. A thin-film actuator element 153 is provided on the other main surface side of the movable portion 151.
 アクチュエータ素子153としては、例えば、形状記憶合金(SMA)の薄膜が用いられる。この場合、基板上にシリカ等の絶縁層、金属のヒータ層、およびアクチュエータ素子層をスパッタリング法等を用いて形成した後に、記憶させたい形状の型に可動部151をセットし、所定温度(例えば、600℃)程度で加熱する処理(形状記憶処理)が施される。 As the actuator element 153, for example, a thin film of shape memory alloy (SMA) is used. In this case, after an insulating layer such as silica, a metal heater layer, and an actuator element layer are formed on the substrate using a sputtering method or the like, the movable portion 151 is set in a mold having a shape to be memorized, and a predetermined temperature (for example, , 600 ° C.) heating (shape memory processing) is performed.
 SMAは、加熱によって所定の相変態温度を超えて所定の温度に達すると、予め記憶されている所定の縮み形状(記憶形状)に復元する特性を有する。このため、ヒータ層の通電によってSMAが加熱されると、該SMAは記憶形状となるように縮み変形を行い、可動部151の自由端FTが+Z方向に移動する(図12参照)。すなわち、可動部151の自由端FT側が、変位発生部として機能する。 SMA has a characteristic of restoring to a predetermined contracted shape (memory shape) stored in advance when the temperature exceeds a predetermined phase transformation temperature by heating and reaches a predetermined temperature. For this reason, when the SMA is heated by energization of the heater layer, the SMA contracts and deforms to have a memory shape, and the free end FT of the movable portion 151 moves in the + Z direction (see FIG. 12). That is, the free end FT side of the movable part 151 functions as a displacement generating part.
 なお、ヒータ層への通電は、撮像素子層18に設けられた電極から行われるが、該電極からヒータ層への導電は、例えば、アクチュエータ層15、レンズ位置調整層16、およびカバーガラス層17の側面に貼り付けられた薄型の導電部材(不図示)を介して行えばよい。 The heater layer is energized from an electrode provided on the imaging element layer 18, and the conduction from the electrode to the heater layer is, for example, the actuator layer 15, the lens position adjusting layer 16, and the cover glass layer 17. What is necessary is just to carry out through the thin electroconductive member (not shown) affixed on the side surface.
 このように、本実施形態では、枠体152が可動部151の変位の基準となる部分(可動基準部)として機能し、アクチュエータ層15が駆動層として機能する。 As described above, in this embodiment, the frame body 152 functions as a portion (movable reference portion) serving as a reference for displacement of the movable portion 151, and the actuator layer 15 functions as a drive layer.
 アクチュエータ層15の枠体152は、第2平行ばね14の固定枠体141(図13参照)と接合される。該接合された状態では、各可動部151の自由端FT側が対応する第1突起部201とそれぞれ当接する。このため、各可動部151の自由端FTにおいて発生する変位が、各第1突起部201を介してレンズ群20に伝えられる。すなわち、各可動部151は、レンズ群20に対して+Z方向に力を付与することで、該レンズ群20を+Z方向に変位させる。 The frame 152 of the actuator layer 15 is joined to the fixed frame 141 (see FIG. 13) of the second parallel spring 14. In the joined state, the free end FT side of each movable portion 151 comes into contact with the corresponding first protrusion 201. For this reason, the displacement generated at the free end FT of each movable portion 151 is transmitted to the lens group 20 via each first protrusion 201. That is, each movable portion 151 applies a force to the lens group 20 in the + Z direction, thereby displacing the lens group 20 in the + Z direction.
 なお、可動部151の自由端FT側で発生する変位量は、SMAの加熱温度に応じて異なり、ヒータ層への通電量を制御することによって変位量が調整される。 Note that the amount of displacement generated on the free end FT side of the movable portion 151 differs depending on the heating temperature of the SMA, and the amount of displacement is adjusted by controlling the amount of current supplied to the heater layer.
 また、SMAの変形に伴ってヒータ層も変形し、該ヒータ層の変形に応じてヒータ層の電気抵抗も変化する。このため、ヒータ層の電流抵抗値をモニタリングして変位量を制御してもよい。 Also, the heater layer is deformed as the SMA is deformed, and the electric resistance of the heater layer is changed according to the deformation of the heater layer. For this reason, the amount of displacement may be controlled by monitoring the current resistance value of the heater layer.
 ○第2平行ばね14:
 図13は、第2平行ばね14の下面外観図である。図14は、レンズ群20に接合された第2平行ばね14を示す図である。
○ Second parallel spring 14:
FIG. 13 is an external view of the lower surface of the second parallel spring 14. FIG. 14 is a view showing the second parallel spring 14 joined to the lens group 20.
 図13で示されるように、第2平行ばね14は、固定枠体141と、弾性部142とを有する弾性部材であり、ばね機構を形成する層(弾性層)となっている。なお、本実施形態では、第2平行ばね14が、本発明の「板状の弾性部材層」を構成する。 As shown in FIG. 13, the second parallel spring 14 is an elastic member having a fixed frame 141 and an elastic portion 142, and is a layer (elastic layer) forming a spring mechanism. In the present embodiment, the second parallel spring 14 constitutes the “plate-like elastic member layer” of the present invention.
 固定枠体141は、第2平行ばね14の外周部を構成し、隣接するアクチュエータ層15の枠体152と接合される。 The fixed frame 141 constitutes the outer peripheral portion of the second parallel spring 14 and is joined to the frame 152 of the adjacent actuator layer 15.
 弾性部142は、固定枠体141との接続部PG1と、レンズ群20との接合部PG2とを有し、接続部PG1と接合部PG2とが板状部材EBで繋がれている。 The elastic part 142 has a connection part PG1 with the fixed frame 141 and a joint part PG2 with the lens group 20, and the connection part PG1 and the joint part PG2 are connected by a plate-like member EB.
 すなわち、第2平行ばね14は、固定枠体141において隣接するアクチュエータ層15と接合される。また、図14で示されるように、第2平行ばね14は、弾性部142に設けられた接合部PG2においてレンズ群20と接合される。 That is, the second parallel spring 14 is joined to the adjacent actuator layer 15 in the fixed frame 141. Further, as shown in FIG. 14, the second parallel spring 14 is joined to the lens group 20 at a joint portion PG <b> 2 provided in the elastic portion 142.
 なお、第1突起部201は、第2平行ばね14の固定枠体141と板状部材EBとの隙間を通って、アクチュエータ層15の自由端FT近傍と当接する。つまり、第2平行ばね14は、レンズ群20の第1突起部201と接触しないような形状を有する。 The first projecting portion 201 contacts the vicinity of the free end FT of the actuator layer 15 through the gap between the fixed frame body 141 of the second parallel spring 14 and the plate-like member EB. That is, the second parallel spring 14 has a shape that does not contact the first protrusion 201 of the lens group 20.
 このため、レンズ群20が固定枠体141に対して+Z方向に移動されるにつれて、接続部PG1と接合部PG2とのZ方向の位置がずれ、板状部材EBは曲げ変形(たわみ変形)を生じて湾曲する。つまり、第2平行ばね14は、板状部材EBの弾性変形によって、レンズ群20の光軸方向(±Z方向)に弾性変形可能であり、ばね機構として機能する。 For this reason, as the lens group 20 is moved in the + Z direction with respect to the fixed frame body 141, the positions of the connecting portion PG1 and the joint portion PG2 are shifted in the Z direction, and the plate-like member EB undergoes bending deformation (flexure deformation). Resulting in curvature. That is, the second parallel spring 14 can be elastically deformed in the optical axis direction (± Z direction) of the lens group 20 by elastic deformation of the plate-like member EB, and functions as a spring mechanism.
 第2平行ばね14は、SUS系の金属材料またはりん青銅等を用いて作製される。例えば、SUS系の金属材料で第2平行ばね14を作製する場合は、フォトリソグラフィで平行ばねの形状を金属材料上にパターンニングし、塩化鉄系のエッチング液に浸してウエットエッチングを行うことによって、平行ばねのパターンが形成される。 The second parallel spring 14 is manufactured using a SUS metal material or phosphor bronze. For example, when the second parallel spring 14 is made of a SUS-based metal material, the shape of the parallel spring is patterned on the metal material by photolithography, and wet etching is performed by dipping in an iron chloride-based etchant. A pattern of parallel springs is formed.
 ○第2枠層13:
 図3で示されるように、第2枠層13は、XY断面の外縁および内縁がそれぞれ略矩形状であるリング状の部材であり、Z軸に沿って貫通する中空部分を形成する。第2枠層13は、中空部分にレンズ群20が配置されることで、該レンズ群20を側方から囲む。なお、第2枠層13を構成する素材としては、樹脂やガラス等が挙げられ、第2枠層13は、金属金型を用いたいわゆるプレス法や射出成型法等によって製作される。
○ Second frame layer 13:
As shown in FIG. 3, the second frame layer 13 is a ring-shaped member in which the outer edge and the inner edge of the XY cross section are each substantially rectangular, and forms a hollow portion that penetrates along the Z-axis. The second frame layer 13 surrounds the lens group 20 from the side by arranging the lens group 20 in the hollow portion. In addition, resin, glass, etc. are mentioned as a raw material which comprises the 2nd frame layer 13, The 2nd frame layer 13 is manufactured by what is called a press method using a metal metal mold | die, the injection molding method, etc.
 そして、第2枠層13の-Z側に位置する下端面(一主面)は、隣接する第2平行ばね14の固定枠体141と接合される。また、第2枠層の+Z側に位置する上端面(他主面)は、隣接する第1平行ばね12(詳細には、第1平行ばね12の固定枠体121(後述))と接合される。 The lower end surface (one main surface) located on the −Z side of the second frame layer 13 is joined to the fixed frame body 141 of the adjacent second parallel spring 14. Further, the upper end surface (other main surface) located on the + Z side of the second frame layer is joined to the adjacent first parallel spring 12 (specifically, a fixed frame body 121 (described later) of the first parallel spring 12). The
 ○第1平行ばね12:
 図13で示されるように、第1平行ばね12は、第2平行ばね14と同様の構成および機能を有する弾性部材であり、固定枠体121と弾性部122とを備えている。なお、本実施形態では、第1平行ばね12が、本発明の「板状の弾性部材層」を構成する。
○ First parallel spring 12:
As shown in FIG. 13, the first parallel spring 12 is an elastic member having the same configuration and function as the second parallel spring 14, and includes a fixed frame body 121 and an elastic portion 122. In the present embodiment, the first parallel spring 12 constitutes the “plate-like elastic member layer” of the present invention.
 固定枠体121の一主面は、隣接する第2枠層13の他主面と接合され、固定枠体121の他主面は、隣接する第1枠層11(詳細には、第1枠層11の-Z側の下端面(後述))と接合される。 One main surface of the fixed frame 121 is joined to the other main surface of the adjacent second frame layer 13, and the other main surface of the fixed frame 121 is connected to the adjacent first frame layer 11 (in detail, the first frame It is joined to the lower end surface (described later) of the layer 11 on the −Z side.
 図15は、レンズ群20に接合された第1平行ばね12を示す図である。図15で示されるように、弾性部122に設けられた接合部PG2は、レンズ群20の突起部202の+Z側の上端面と接合される。 FIG. 15 is a view showing the first parallel spring 12 joined to the lens group 20. As shown in FIG. 15, the joint part PG <b> 2 provided in the elastic part 122 is joined to the upper end surface on the + Z side of the projection part 202 of the lens group 20.
 このため、固定枠体121に対してレンズ群20が+Z方向に相対的に移動されると、板状部材EBにおいて弾性変形が発生し、第1平行ばね12は、ばね機構として機能する。 For this reason, when the lens group 20 is moved relative to the fixed frame 121 in the + Z direction, elastic deformation occurs in the plate member EB, and the first parallel spring 12 functions as a spring mechanism.
 ○第1枠層11:
 図3で示されるように、第1枠層11は、第2枠層13と同様に、XY断面の外縁および内縁がそれぞれ略矩形状であるリング状の部材であり、Z軸に沿って貫通する中空部分を形成する。第1枠層11の中空部分は、レンズ群20が+Z方向に移動される際に、弾性変形する板状部材EBおよび突起部202が移動可能な空間として働く。なお、第1枠層11は、第2枠層13と同様な素材および製作方法によって形成される。
○ First frame layer 11:
As shown in FIG. 3, the first frame layer 11 is a ring-shaped member in which the outer edge and the inner edge of the XY cross section are each substantially rectangular like the second frame layer 13 and penetrates along the Z axis. Forming a hollow portion. The hollow portion of the first frame layer 11 serves as a space in which the plate-like member EB and the protrusion 202 that are elastically deformed when the lens group 20 is moved in the + Z direction can move. The first frame layer 11 is formed by the same material and manufacturing method as the second frame layer 13.
 そして、第1枠層11の-Z側に位置する下端面(一主面)は、隣接する第1平行ばね12の固定枠体121と接合される。また、第1枠層の+Z側に位置する上端面(他端面)は、隣接する蓋層10(詳細には、蓋層の外周部近傍)と接合される。 The lower end surface (one main surface) located on the −Z side of the first frame layer 11 is joined to the fixed frame body 121 of the adjacent first parallel spring 12. Moreover, the upper end surface (other end surface) located on the + Z side of the first frame layer is joined to the adjacent lid layer 10 (specifically, near the outer peripheral portion of the lid layer).
 ○蓋層10:
 図3で示されるように、蓋層10は、XY断面の外縁が略正方形であるとともに、略中央にZ軸に平行な方向に貫通する孔(貫通孔)10Hを有し、XY平面に略平行な盤面を有する板状の部材である。貫通孔10Hは、被写体からの光をレンズ群20を介して撮像素子181に導くための孔であり、この蓋層10は、平板状の樹脂材料をプレス加工する手法、あるいは樹脂材料をパターニングした後にエッチングする手法によって、貫通孔10Hが形成されて製作される。
○ Cover layer 10:
As shown in FIG. 3, the outer edge of the XY cross section has a substantially square shape, and the lid layer 10 has a hole (through hole) 10 </ b> H penetrating in a direction parallel to the Z axis at a substantially center, and is substantially in the XY plane. It is a plate-like member having a parallel board surface. The through hole 10H is a hole for guiding light from the subject to the image sensor 181 through the lens group 20, and the lid layer 10 is formed by pressing a flat resin material or patterning the resin material. The through hole 10H is formed and manufactured by a method of etching later.
 なお、図3では、図示が省略されているが、蓋層10の貫通孔10Hからカメラモジュール500の内部にゴミ等が侵入しないように、蓋層10の上面(他主面)側には、適宜ガラス等で構成される透明な保護層が設けられる。 In addition, although illustration is abbreviate | omitted in FIG. 3, on the upper surface (other main surface) side of the lid | cover layer 10 so that dust etc. may not penetrate | invade into the camera module 500 from the through-hole 10H of the lid | cover layer 10, A transparent protective layer composed of glass or the like is provided as appropriate.
 <カメラモジュールの製造工程>
 ここで、カメラモジュール500の製造工程について詳述する。
<Camera module manufacturing process>
Here, the manufacturing process of the camera module 500 will be described in detail.
 図16は、カメラモジュール500の製造工程を示すフローチャートである。図16で示されるように、(工程A)レンズ群20の生成(ステップSP1)、(工程B)シートの準備(ステップSP2)、(工程C)組み立て治具の準備(ステップSP3)、(工程D)シートの第1の接合(ステップSP4)、(工程E)レンズ群20の取り付け(ステップSP5)、(工程F)シートの第2の接合(ステップSP6)、(工程G)撮像素子基板178の取り付け(ステップSP7)、および(工程H)ダイシング(ステップSP8)が順次に行われて、カメラモジュール500が製造される。以下、各工程について説明する。 FIG. 16 is a flowchart showing the manufacturing process of the camera module 500. As shown in FIG. 16, (process A) generation of the lens group 20 (step SP1), (process B) sheet preparation (step SP2), (process C) assembly jig preparation (step SP3), (process D) First bonding of the sheet (step SP4), (Process E) Mounting of the lens group 20 (Step SP5), (Process F) Second bonding of the sheet (Step SP6), (Process G) Image sensor substrate 178 (Step SP7) and (process H) dicing (step SP8) are sequentially performed, and the camera module 500 is manufactured. Hereinafter, each step will be described.
 ○レンズ群20の生成(工程A):
 ステップSP1では、レンズ群20が生成される。
○ Generation of lens group 20 (step A):
In step SP1, the lens group 20 is generated.
 まず、多数のレンズ群20がマトリックス状に配列されたウエハ(以下「レンズ群ウエハ」とも称する)が製作され、ダイシングによって、多数のレンズ群20が個片化されて、多数のレンズ群20が製作される。 First, a wafer in which a large number of lens groups 20 are arranged in a matrix (hereinafter also referred to as a “lens group wafer”) is manufactured, and a large number of lens groups 20 are separated into pieces by dicing. Produced.
 レンズ群ウエハは、多数の第1レンズ構成層LY1が配列されたウエハ(第1レンズ構成層ウエハ)と、多数のスペーサ層RBが配列されたウエハ(スペーサ層ウエハ)と、多数の第2レンズ構成層LY2が配列されたウエハ(第2レンズ構成層ウエハ)とが積層されて、相互に接合されることで、製作される。 The lens group wafer includes a wafer in which a large number of first lens constituent layers LY1 are arranged (first lens constituent layer wafer), a wafer in which a large number of spacer layers RB are arranged (spacer layer wafer), and a large number of second lenses. A wafer (second lens constituent layer wafer) on which the constituent layers LY2 are arranged is stacked and bonded to each other.
 図17は、第1および第2レンズ構成層ウエハU20a,U20cを模式的に示した平面図である。図18は、スペーサ層ウエハU20bを模式的に示した平面図である。 FIG. 17 is a plan view schematically showing the first and second lens constituent layer wafers U20a and U20c. FIG. 18 is a plan view schematically showing the spacer layer wafer U20b.
 図17で示されるように、第1レンズ構成層ウエハU20aは、多数の第1レンズ構成層LY1が第1の所定間隔でマトリックス状に配置されて一体的に構成される。また、第2レンズ構成層ウエハU20cは、多数の第2レンズ構成層LY2が第1の所定間隔でマトリックス状に配置されて一体的に構成される。 As shown in FIG. 17, the first lens component layer wafer U20a is integrally configured by arranging a large number of first lens component layers LY1 in a matrix at first predetermined intervals. In addition, the second lens component layer wafer U20c is configured integrally by arranging a large number of second lens component layers LY2 in a matrix at first predetermined intervals.
 また、図18で示されるように、スペーサ層ウエハU20bは、多数のスペーサ層RBが第1の所定間隔でマトリックス状に配置されて一体的に構成される。つまり、スペーサ層ウエハU20bは、外縁が略正方形の多数の貫通孔が第1の所定間隔でマトリックス状に配置されて、格子状の構成を有している。 Further, as shown in FIG. 18, the spacer layer wafer U20b is configured integrally by arranging a number of spacer layers RB in a matrix at first predetermined intervals. In other words, the spacer layer wafer U20b has a lattice structure in which a large number of through-holes having a substantially square outer edge are arranged in a matrix at first predetermined intervals.
 なお、第1レンズ構成層ウエハU20aと、スペーサ層ウエハU20bと、第2レンズ構成層ウエハU20cとが、この順番で積層されて、相互に接合された後に、図17および図18で示される破線に沿ってダイシングが行われることで、各レンズ群20が個片化される。 The first lens component layer wafer U20a, the spacer layer wafer U20b, and the second lens component layer wafer U20c are stacked in this order and bonded to each other, and then the broken lines shown in FIGS. Each lens group 20 is separated into individual pieces by dicing along the line.
 ここで、第1および第2レンズ構成層ウエハU20a,U20cの作製方法について説明する。なお、第1レンズ構成層ウエハU20aにおける各第1レンズ構成層LY1の作製方法は同様であり、また、第2レンズ構成層ウエハU20cにおける各第2レンズ構成層LY2の作製方法も同様である。このため、ここでは、各第1および第2レンズ構成層LY1,LY2の製作に着目して説明する。 Here, a method of manufacturing the first and second lens constituent layer wafers U20a and U20c will be described. The manufacturing method of each first lens constituent layer LY1 in the first lens constituent layer wafer U20a is the same, and the manufacturing method of each second lens constituent layer LY2 in the second lens constituent layer wafer U20c is also the same. For this reason, here, description will be given focusing on the production of the first and second lens constituent layers LY1, LY2.
 第1および第2レンズ構成層LY1,LY2は、ガラス基板を基材としていずれも同様な手法にて作製される。図19は、第1レンズG1を有する第1レンズ構成層LY1の作製の様子を示す図であり、図20は、第2レンズG2を有する第2レンズ構成層LY2の作製の様子を示す図である。 The first and second lens constituent layers LY1, LY2 are both produced by a similar method using a glass substrate as a base material. FIG. 19 is a diagram showing a state of manufacturing the first lens constituent layer LY1 having the first lens G1, and FIG. 20 is a diagram showing a state of manufacturing the second lens constituent layer LY2 having the second lens G2. is there.
 図19で示されるように、ウエハ状の基板20BSを準備する。この基板20BSの素材としては、いわゆるテンパックス(登録商標)等のガラスや、いわゆるPPMA等の樹脂等が挙げられる。 As shown in FIG. 19, a wafer-like substrate 20BS is prepared. Examples of the material of the substrate 20BS include glass such as so-called Tempax (registered trademark), resin such as so-called PPMA, and the like.
 次に、基板20BSの両面それぞれに透明度の高いアクリル系またはエポキシ系の紫外線(UV)硬化樹脂が塗布される。そして、基板20BSの上面から第1レンズG1の一方の曲面の形状を有する透明のレンズ成型用型20CAが所定の圧力で押し当てられるとともに、基板20BSの下面から第1レンズG1の他方の曲面の形状および第1突起部201の形状を有する透明のレンズ成型用型20CBが所定の圧力で押し当てられる。このとき、紫外線UV1が照射されて、基板16BSの各面にポリマーレンズGP1,GP2および第1突起部201がそれぞれ形成される。このような方法により、第1レンズ構成層ウエハU20aが製作される。なお、第1突起部201の先端部は、アクチュエータ層15に当接する面となる。 Next, a highly transparent acrylic or epoxy ultraviolet (UV) curable resin is applied to both surfaces of the substrate 20BS. Then, a transparent lens molding die 20CA having one curved surface shape of the first lens G1 is pressed from the upper surface of the substrate 20BS with a predetermined pressure, and the other curved surface of the first lens G1 is pressed from the lower surface of the substrate 20BS. The transparent lens molding die 20CB having the shape and the shape of the first protrusion 201 is pressed with a predetermined pressure. At this time, the ultraviolet rays UV1 are irradiated to form the polymer lenses GP1 and GP2 and the first protrusion 201 on each surface of the substrate 16BS. By such a method, the first lens constituent layer wafer U20a is manufactured. The tip of the first protrusion 201 is a surface that contacts the actuator layer 15.
 また、図20で示されるように、基板20BSの両面それぞれに透明度の高いアクリル系またはエポキシ系の紫外線(UV)硬化樹脂が塗布される。そして、基板20BSの上面から第2レンズG2の一方の曲面の形状および第2突起部202の形状を有する透明のレンズ成型用型20CCが所定の圧力で押し当てられるとともに、基板20BSの下面から第2レンズG2の他方の曲面の形状を有する透明のレンズ成型用型20CDが所定の圧力で押し当てられる。このとき、紫外線UV1が照射されて、基板16BSの各面にポリマーレンズGP3,GP4および第2突起部202がそれぞれ形成される。このような方法により、第2レンズ構成層ウエハU20cが製作される。なお、第2突起部202の先端部は、第1平行ばね12に接合される面となる。 Also, as shown in FIG. 20, highly transparent acrylic or epoxy ultraviolet (UV) curable resin is applied to both surfaces of the substrate 20BS. Then, a transparent lens molding die 20CC having the shape of one curved surface of the second lens G2 and the shape of the second protrusion 202 is pressed from the upper surface of the substrate 20BS with a predetermined pressure, and the second lens G2 is pressed from the lower surface of the substrate 20BS. A transparent lens molding die 20CD having the shape of the other curved surface of the two lenses G2 is pressed with a predetermined pressure. At this time, ultraviolet rays UV1 are irradiated to form polymer lenses GP3 and GP4 and second protrusions 202 on each surface of the substrate 16BS. By such a method, the second lens constituent layer wafer U20c is manufactured. The tip of the second protrusion 202 is a surface joined to the first parallel spring 12.
 また、スペーサ層ウエハU20bは、例えば、ウエハ状のガラス基板がエッチング等によって加工されて製作される。 The spacer layer wafer U20b is manufactured, for example, by processing a wafer-like glass substrate by etching or the like.
 このようにして製作された第1および第2レンズ構成層ウエハU20a,U20cならびにスペーサ層ウエハU20bには、2カ所以上の所定の箇所に位置合わせのためのアライメントマークが形成されている。 Alignment marks for alignment are formed at two or more predetermined locations on the first and second lens component layer wafers U20a and U20c and the spacer layer wafer U20b manufactured in this way.
 そして、第1および第2レンズ構成層LY1,LY2の間に、スペーサ層RBが挟まれるように、一体のレンズ群20へと組み上げられる。 Then, it is assembled into an integrated lens group 20 so that the spacer layer RB is sandwiched between the first and second lens constituent layers LY1, LY2.
 具体的には、第1レンズ構成層ウエハU20aと、スペーサ層ウエハU20bと、第2レンズ構成層ウエハU20cとが、マスクアライナー等を用いてそれぞれのアライメントマークが確認されながら、アライメントされて接合される。このとき、第1および第2レンズ構成層LY1,LY2ならびにスペーサ層RBが、レンズ群20の構成を成す。 Specifically, the first lens component layer wafer U20a, the spacer layer wafer U20b, and the second lens component layer wafer U20c are aligned and bonded while confirming the respective alignment marks using a mask aligner or the like. The At this time, the first and second lens constituent layers LY1, LY2 and the spacer layer RB constitute the lens group 20.
 なお、3つのウエハU20a~U20cの接合方法としては、例えば、第1および第2レンズ構成層LY1,LY2と接合させるスペーサ層RBの上下面にUV硬化層を設け、紫外線を照射することで接合する手法、或いは、スペーサ層RBの上下面に不活性ガスのプラズマを照射し、スペーサ層RBの表面を活性化したまま張り合わせて接合する手法(表面活性化接合法)等が採用される。 As a method of bonding the three wafers U20a to U20c, for example, UV curing layers are provided on the upper and lower surfaces of the spacer layer RB to be bonded to the first and second lens constituent layers LY1 and LY2, and bonded by irradiating ultraviolet rays. Or a method of irradiating the upper and lower surfaces of the spacer layer RB with plasma of an inert gas and bonding the surfaces of the spacer layer RB while being activated (surface activated bonding method).
 また、カメラモジュール500に絞りを形成する場合は、例えば、別途黒色に色づけされた樹脂材料等で絞りレイヤーを構成する手法等が用いられる。 Further, when forming a diaphragm on the camera module 500, for example, a method of forming a diaphragm layer with a resin material or the like colored separately in black is used.
 このようにして、多数のレンズ群20がマトリックス状に配列されたウエハ(レンズ群ウエハ)が製作され、更に、ダイシングによって、個片化された多数のレンズ群20が製作される。 In this way, a wafer (lens group wafer) in which a large number of lens groups 20 are arranged in a matrix is manufactured, and a large number of individual lens groups 20 are manufactured by dicing.
 ○シートの準備(工程B):
 ステップSP2では、カメラモジュール500を構成する各機能層に係るシートが、層ごとに形成される。図21は、準備するシートの構成例を示す平面図である。なお、ここでは、ウエハレベルの円盤状のシートが準備されるものとする。
○ Sheet preparation (process B):
In step SP2, a sheet relating to each functional layer constituting the camera module 500 is formed for each layer. FIG. 21 is a plan view illustrating a configuration example of a sheet to be prepared. Here, it is assumed that a wafer-level disk-shaped sheet is prepared.
 機能層ごとのシートには、該機能層に係る部材に相当するチップがマトリクス状に所定配列で多数形成されている。 In the sheet for each functional layer, a large number of chips corresponding to members related to the functional layer are formed in a matrix in a predetermined arrangement.
 例えば、図21で示されるように、第1枠層11のシート(第1枠層シート)U11には、第1枠層11に相当するチップが所定配列で多数形成される。なお、ここでは、「所定配列」という表現を、多数のチップを所定の方向に所定の間隔で配列した状態を含む意味で用いている。 For example, as shown in FIG. 21, a large number of chips corresponding to the first frame layer 11 are formed in a predetermined arrangement on the sheet (first frame layer sheet) U11 of the first frame layer 11. Here, the expression “predetermined arrangement” is used to include a state in which a large number of chips are arranged at predetermined intervals in a predetermined direction.
 第1枠層シートU11は、第1枠層11に相当するチップの側面どうしが相互に繋がった格子状の形状を有する。この第1枠層シートU11は、樹脂材料やガラス等で構成される。 The first frame layer sheet U11 has a lattice shape in which side surfaces of chips corresponding to the first frame layer 11 are connected to each other. The first frame layer sheet U11 is made of a resin material, glass, or the like.
 例えば、第1枠層シートU11が、樹脂材料で構成される場合には、該第1枠層シートU11は、金属金型を用いたプレス成型や射出成型等の方法によって製作される。また、第1枠層シートU11が、ガラス等で構成される場合には、該第1枠層シートU11は、例えば、金属製またはセラミック製のシャドウマスクを用いた所謂ブラスト加工によって製作される。 For example, when the first frame layer sheet U11 is made of a resin material, the first frame layer sheet U11 is manufactured by a method such as press molding or injection molding using a metal mold. When the first frame layer sheet U11 is made of glass or the like, the first frame layer sheet U11 is manufactured, for example, by so-called blasting using a metal or ceramic shadow mask.
 また、レンズ位置調整層16のシート(レンズ位置調整層シート)U16は、レンズ位置調整層16に相当するチップが所定配列で多数形成される。該レンズ位置調整層シートU16は、レンズ位置調整層16に相当するチップの側面どうしが相互に繋がった形状を有する。このレンズ位置調整層シートU16は、樹脂材料等で構成される。 Further, in the lens position adjustment layer 16 sheet (lens position adjustment layer sheet) U16, a large number of chips corresponding to the lens position adjustment layer 16 are formed in a predetermined arrangement. The lens position adjustment layer sheet U16 has a shape in which side surfaces of chips corresponding to the lens position adjustment layer 16 are connected to each other. The lens position adjustment layer sheet U16 is made of a resin material or the like.
 例えば、レンズ位置調整層シートU16の形状を有する金型を製作し、その金型に樹脂を流し込んで、樹脂を鋳型ごと加熱した後に、冷却することで、該レンズ位置調整層シートU16が製作される。なお、射出成型等を用いて、レンズ位置調整層シートU16が製作されても良い。 For example, the lens position adjusting layer sheet U16 is manufactured by manufacturing a mold having the shape of the lens position adjusting layer sheet U16, pouring resin into the mold, heating the resin together with the mold, and then cooling. The The lens position adjustment layer sheet U16 may be manufactured using injection molding or the like.
 このように、ステップSP2では、第1枠層シートU11およびレンズ位置調整層16と同様に、蓋層10、第1平行ばね12、第2枠層13、第2平行ばね14、およびアクチュエータ層15の各機能層に係るチップがそれぞれ所定配列で多数形成された各シートU10,U12~U15、ならびにカバーガラス層17と撮像素子層18とが接合されて形成される撮像素子基板178に係るチップを含むシート(撮像素子基板シート)U178がそれぞれ準備される。つまり、8枚のシートU10~16,U178が準備される。 Thus, in step SP2, as with the first frame layer sheet U11 and the lens position adjustment layer 16, the lid layer 10, the first parallel spring 12, the second frame layer 13, the second parallel spring 14, and the actuator layer 15 are used. Each of the sheets U10, U12 to U15 on which a large number of chips related to each functional layer are formed in a predetermined arrangement, and a chip related to the image sensor substrate 178 formed by joining the cover glass layer 17 and the image sensor layer 18 Including sheets (imaging element substrate sheets) U178 are prepared. That is, eight sheets U10 to 16 and U178 are prepared.
 ○組み立て治具の準備(工程C):
 ステップSP3では、組み立て治具300が準備される。
○ Preparation of assembly jig (process C):
In step SP3, the assembly jig 300 is prepared.
 図22は、組み立て治具300のうち、各カメラモジュール500の製作に使用される部分に着目した図である。組み立て治具300は、平板状の基台上に略同一の形状を有する多数の突起部301が所定配列で設けられて構成されている。 FIG. 22 is a diagram focusing on the part of the assembly jig 300 used for manufacturing each camera module 500. The assembly jig 300 is configured by providing a large number of protrusions 301 having substantially the same shape on a flat base, in a predetermined arrangement.
 なお、組み立て治具300には、2カ所以上の所定の箇所に位置合わせのためのアライメントマークが形成されている。また、突起部301の上面は、平板状の基台の主面に対して略平行となるように構成されている。 In the assembly jig 300, alignment marks for alignment are formed at two or more predetermined locations. Further, the upper surface of the protrusion 301 is configured to be substantially parallel to the main surface of the flat base.
 ○シートの第1の接合(工程D):
 ステップSP4では、準備された8枚のシートU10~16,U178のうちの3枚のシートU11~U13が接合される。
○ First joining of sheets (process D):
In step SP4, three sheets U11 to U13 among the eight prepared sheets U10 to U16 and U178 are joined.
 図23は、ステップS4において3枚のシートU11~U13が積層されて接合される様子、ステップS5においてレンズ群20が取り付けられる様子、ステップS6において4枚のシートU10,U14~U16が積層されて接合される様子、およびステップSP7において撮像素子基板シートU178が接合される様子を合わせて模式的に示す図である。 FIG. 23 shows a state in which three sheets U11 to U13 are stacked and joined in step S4, a lens group 20 is attached in step S5, and four sheets U10 and U14 to U16 are stacked in step S6. It is a figure which shows typically a mode that it joins, and a mode that the image pick-up element board | substrate sheet | seat U178 is joined in step SP7.
 ステップSP4では、図23で示されるように、第1枠層シートU11、第1平行ばねシートU12、および第2枠層シートU13について、各シートU11~U13に含まれる各チップが互いに積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、各シートU11~U13が接着剤等を用いて接合される。 In step SP4, as shown in FIG. 23, for the first frame layer sheet U11, the first parallel spring sheet U12, and the second frame layer sheet U13, the chips included in the sheets U11 to U13 are stacked on each other. Thus, alignment (alignment) is performed with the sheet shape. Then, the sheets U11 to U13 are joined using an adhesive or the like.
 図24~図26は、各シートU11~U13が積層されて接合される様子を、1つのカメラモジュール500を構成する各チップに着目して示した図である。なお、図24~図26では、工程の便宜上、図3で示されたカメラモジュール500とは上下が反転された状態で示されている。 FIGS. 24 to 26 are views showing how the sheets U11 to U13 are stacked and joined by paying attention to each chip constituting one camera module 500. FIG. 24 to 26, the camera module 500 shown in FIG. 3 is shown upside down for convenience of the process.
 図24で示されるように、組み立て治具300の基台上の所定位置に対して各第1枠層11が載置されるように、組み立て治具300上に第1枠層シートU11が載置される。図24では、組み立て治具300上に第1枠層シートU11が運ばれてくる際における第1枠層シートU11の移動方向が矢印YJ1で示されている。 As shown in FIG. 24, the first frame layer sheet U11 is placed on the assembly jig 300 so that each first frame layer 11 is placed at a predetermined position on the base of the assembly jig 300. Placed. In FIG. 24, the moving direction of the first frame layer sheet U11 when the first frame layer sheet U11 is carried on the assembly jig 300 is indicated by an arrow YJ1.
 次に、図25で示されるように、第1枠層11の一主面上に、第1平行ばね12の外周部を構成する固定枠体121が接合されることで、第1枠層シートU11に対して第1平行ばねシートU12が接合される。 Next, as shown in FIG. 25, the first frame layer sheet is formed by joining the fixed frame body 121 constituting the outer peripheral portion of the first parallel spring 12 on one main surface of the first frame layer 11. The first parallel spring seat U12 is joined to U11.
 具体的には、第1枠層11の一主面に対して、固定枠体121が矢印YJ2で示される方向に押し付けられて、固定枠体121の他主面と第1枠層11の一主面とが接合される。なお、このとき、第1平行ばね12の接合部PG2が、組み立て治具300の突起部301の上面に当接することで、第1平行ばね12の略平板状の形態が保持される。 Specifically, the fixed frame 121 is pressed against the one main surface of the first frame layer 11 in the direction indicated by the arrow YJ2, and the other main surface of the fixed frame 121 and the first frame layer 11 The main surface is joined. At this time, the joint portion PG2 of the first parallel spring 12 is brought into contact with the upper surface of the protrusion 301 of the assembly jig 300, whereby the substantially parallel plate shape of the first parallel spring 12 is maintained.
 更に、図26で示されるように、第1平行ばね12の外周部を構成する固定枠体121の一主面上に、第2枠層13の他主面が接合されることで、第1平行ばねシートU12に対して、第2枠層シートU13が接合される。 Furthermore, as shown in FIG. 26, the first main surface of the second frame layer 13 is joined to the first main surface of the fixed frame 121 constituting the outer peripheral portion of the first parallel spring 12. The second frame layer sheet U13 is joined to the parallel spring sheet U12.
 具体的には、第1平行ばね12の固定枠体121の一主面に対して、第2枠層13が矢印YJ3で示される方向に押し付けられて、固定枠体121の一主面と第2枠層13の他主面とが接合される。 Specifically, the second frame layer 13 is pressed against the main surface of the fixed frame 121 of the first parallel spring 12 in the direction indicated by the arrow YJ3, and the main surface of the fixed frame 121 The other main surface of the two-frame layer 13 is joined.
 ○レンズ群の取り付け(工程E):
 図27は、レンズ群20が取り付けられる様子を示す図である。
○ Attaching the lens group (Process E):
FIG. 27 is a diagram illustrating a state in which the lens group 20 is attached.
 ステップSP5では、図27で示されるように、ステップSP4で製作されたユニットの各第2枠層13の中空部分に、ステップSP1で生成されたレンズ群20が、所定のマウンターによって取り付けられる。つまり、格子状の形状を有する第2枠層シートU13の各空隙に、レンズ群20がそれぞれ挿入される。 In step SP5, as shown in FIG. 27, the lens group 20 generated in step SP1 is attached to a hollow portion of each second frame layer 13 of the unit manufactured in step SP4 by a predetermined mounter. That is, the lens group 20 is inserted into each gap of the second frame layer sheet U13 having a lattice shape.
 具体的には、レンズ群20の2本の第2突起部202の端面が、第1平行ばね12の接合部PG2に対してそれぞれ接合される。このとき、レンズ群20が矢印YJ4で示される方向に接合部PG2に対して押し付けられつつ、第2突起部202の端面が、接合部PG2の一主面側に対して接合される。 Specifically, the end surfaces of the two second protrusions 202 of the lens group 20 are joined to the joint PG2 of the first parallel spring 12, respectively. At this time, while the lens group 20 is pressed against the joint portion PG2 in the direction indicated by the arrow YJ4, the end surface of the second protrusion 202 is joined to the one main surface side of the joint portion PG2.
 なお、この接合手法としては、レンズ群20の第2突起部202の端面に紫外線の照射によって硬化する接着剤(紫外線硬化接着剤)を予め塗布しておき、レンズ群20の第2突起部202の端面が第1平行ばね12の接合部PG2に対して当接させた状態で、紫外線の照射によって接合する手法等が挙げられる。 As a joining method, an adhesive (ultraviolet curable adhesive) that is cured by irradiation of ultraviolet rays is applied in advance to the end surface of the second protrusion 202 of the lens group 20, and the second protrusion 202 of the lens group 20 is applied. The method of joining by irradiation of an ultraviolet-ray, etc. in the state which contact | abutted with respect to joining part PG2 of the 1st parallel spring 12 is mentioned.
 ○シートの第2の接合(工程F):
 ステップSP6では、図23で示されるように、ステップSP2で準備された8枚のシートU10~16,U178のうちの4枚のシートU10,U14~U16が接合される。
○ Sheet second joining (process F):
In step SP6, as shown in FIG. 23, four sheets U10, U14 to U16 of the eight sheets U10 to U16 and U178 prepared in step SP2 are joined.
 具体的には、ステップSP6では、ステップSP5までに生成されたユニットの一主面側に対して、第2平行ばねシートU14、およびアクチュエータ層シートU15に含まれる各チップが、第2枠層シートU13に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、各シートU14,U15が順次に接着剤等を用いて接合される。 Specifically, in step SP6, each chip included in the second parallel spring sheet U14 and the actuator layer sheet U15 is attached to the second frame layer sheet with respect to one main surface side of the units generated up to step SP5. Positioning (alignment) is performed while maintaining the sheet shape so as to be stacked on each chip included in U13. And each sheet | seat U14, U15 is joined using an adhesive agent etc. in order.
 また、第1枠層シートU11の他主面側に対して、蓋層シートU10に含まれる各チップが、第1枠層シートU11に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、この状態で、第1枠層シートU11の他主面側に対して、蓋層シートU10が接着剤等を用いて接合される。 Further, the sheet is so formed that each chip included in the lid layer sheet U10 is stacked with respect to each chip included in the first frame layer sheet U11 with respect to the other main surface side of the first frame layer sheet U11. Alignment (alignment) is performed in the shape. In this state, the lid layer sheet U10 is bonded to the other main surface side of the first frame layer sheet U11 using an adhesive or the like.
 更に、アクチュエータ層シートU15の一主面側に対して、レンズ位置調整層シートU16に含まれる各チップが、アクチュエータ層シートU15に含まれる各チップに対してそれぞれ積層されるように、シート形状のまま位置合わせ(アライメント)が行われる。そして、この状態で、アクチュエータ層シートU15の他主面側に対して、レンズ位置調整層シートU16が接着剤等を用いて接合される。 Further, the sheet-like shape is formed so that each chip included in the lens position adjustment layer sheet U16 is stacked on each chip included in the actuator layer sheet U15 with respect to one main surface side of the actuator layer sheet U15. The alignment (alignment) is performed as it is. In this state, the lens position adjustment layer sheet U16 is bonded to the other main surface side of the actuator layer sheet U15 using an adhesive or the like.
 図28~図31は、各シートU10,U14~U16が積層されて接合される様子を、1つのカメラモジュール500を構成する各チップに着目して示した図である。なお、図28および図29では、図24~図26と同様に、工程の便宜上、図3で示されたカメラモジュール500とは上下が反転された状態で示されている。これに対して、図30および図31では、図3で示されたカメラモジュール500と上下が同一の状態で示されている。 FIG. 28 to FIG. 31 are views showing how the sheets U10 and U14 to U16 are laminated and joined, focusing on each chip constituting one camera module 500. FIG. In FIGS. 28 and 29, as in FIGS. 24 to 26, the camera module 500 shown in FIG. 3 is shown upside down for convenience of the process. On the other hand, in FIGS. 30 and 31, the upper and lower sides of the camera module 500 shown in FIG. 3 are shown in the same state.
 図28で示されるように、第2枠層13およびレンズ群20の一主面側に第2平行ばね14が接合されるように、第2枠層シートU13の一主面上に第2平行ばねシートU14が接合される。 As shown in FIG. 28, the second parallel on the one main surface of the second frame layer sheet U13 so that the second parallel spring 14 is joined to the one main surface side of the second frame layer 13 and the lens group 20. The spring seat U14 is joined.
 具体的には、第2枠層13の一主面に対して、第2平行ばね14の固定枠体141が矢印YJ5で示される方向に押し付けられつつ、該固定枠体141の他主面が接着剤等によって第2枠層13の一主面に対して接合される。このとき、レンズ群20の第1レンズ構成層LY1の非レンズ部に対して、第2平行ばね14の接合部PG2が接着剤等によって接合される。 Specifically, while the fixed frame 141 of the second parallel spring 14 is pressed against the one main surface of the second frame layer 13 in the direction indicated by the arrow YJ5, the other main surface of the fixed frame 141 is It is joined to one main surface of the second frame layer 13 by an adhesive or the like. At this time, the joint part PG2 of the second parallel spring 14 is joined to the non-lens part of the first lens constituent layer LY1 of the lens group 20 by an adhesive or the like.
 次に、図29で示されるように、第2平行ばね14の一主面にアクチュエータ層15が接合されるように、第2平行ばねシートU14の一主面上にアクチュエータ層シートU15が接合される。 Next, as shown in FIG. 29, the actuator layer sheet U15 is bonded onto one main surface of the second parallel spring sheet U14 so that the actuator layer 15 is bonded to one main surface of the second parallel spring 14. The
 具体的には、第2平行ばね14の固定枠体141の一主面に対して、アクチュエータ層15の枠体152が矢印YJ6で示される方向に押し付けられつつ、該枠体152の他主面と固定枠体141の一主面とが接着剤等によって接合される。 Specifically, while the frame body 152 of the actuator layer 15 is pressed in the direction indicated by the arrow YJ6 against one main surface of the fixed frame body 141 of the second parallel spring 14, the other main surface of the frame body 152 is pressed. And one main surface of the fixed frame 141 are joined together by an adhesive or the like.
 更に、このとき、アクチュエータ層15の各可動部151の自由端FT側が対応する第1突起部201とそれぞれ当接し、各可動部151の自由端FTが、-Z側に対応する方向に押し上げられた状態となる。 Further, at this time, the free end FT side of each movable portion 151 of the actuator layer 15 comes into contact with the corresponding first protrusion 201 and the free end FT of each movable portion 151 is pushed up in the direction corresponding to the −Z side. It becomes a state.
 次に、図30で示されるように、第2平行ばねシートU14上にアクチュエータ層シートU15が接合されて形成されたユニットが、組み立て治具300から取り外されて、該ユニットに対して蓋層シートU10が接合される。なお、該ユニットが組み立て治具300から取り外される際には、レンズ群20が、第1および第2平行ばね12,14によって保持されているため、該レンズ群20が宙に浮いた様な状態となる。 Next, as shown in FIG. 30, the unit formed by joining the actuator layer sheet U15 on the second parallel spring sheet U14 is removed from the assembly jig 300, and the lid layer sheet is attached to the unit. U10 is joined. When the unit is removed from the assembly jig 300, the lens group 20 is held by the first and second parallel springs 12, 14, so that the lens group 20 floats in the air. It becomes.
 また、このとき、アクチュエータ層シートU15まで接合されたユニットの上下が反転
されて、第1枠層11の他主面に対して、蓋層10の外周部が矢印YJ7で示される方向に押し付けられつつ、第1枠層11の他主面と蓋層10の外周部の一主面とが接着剤等によって接合される。
At this time, the unit joined up to the actuator layer sheet U15 is turned upside down, and the outer peripheral portion of the lid layer 10 is pressed against the other main surface of the first frame layer 11 in the direction indicated by the arrow YJ7. Meanwhile, the other main surface of the first frame layer 11 and one main surface of the outer peripheral portion of the lid layer 10 are joined by an adhesive or the like.
 更に、図31で示されるように、アクチュエータ層15の枠体152の一主面にレンズ位置調整層16の枠体161が接合されるように、アクチュエータ層シートU15の一主面に対してレンズ位置調整層シートU16が接合される。 Further, as shown in FIG. 31, the lens with respect to one main surface of the actuator layer sheet U15 is so joined that one main surface of the frame body 152 of the actuator layer 15 is bonded to the frame body 161 of the lens position adjusting layer 16. The position adjustment layer sheet U16 is joined.
 具体的には、蓋層シートU10まで接合されて形成されたユニットが、レンズ位置調整層シートU16の他主面上に載置され、該ユニットが、矢印YJ8で示される方向に押し下げられつつ、レンズ位置調整層シートU16の他主面と、アクチュエータ層シートU15の一主面とが接着剤等によって接合される。 Specifically, the unit formed by joining up to the lid layer sheet U10 is placed on the other main surface of the lens position adjustment layer sheet U16, and the unit is pushed down in the direction indicated by the arrow YJ8. The other main surface of the lens position adjustment layer sheet U16 and one main surface of the actuator layer sheet U15 are bonded together with an adhesive or the like.
 このとき、レンズ位置調整層16の突起部162の上端面が、レンズ群20の第1レンズ構成層LY1の非レンズ部の一部分に接触し、該レンズ群20が蓋層10側へと押し上げられる。また、アクチュエータ層15の可動部151が第1突起部201によって押し下げられる力が低減されて、第1突起部201によって押し下げられていたアクチュエータ層15の可動部151の自由端FTが+Z方向に上昇する。そして、可動部151が弾性力をほとんど生じさせない、すなわち可動部151の形状が略平板状となる。 At this time, the upper end surface of the protrusion 162 of the lens position adjustment layer 16 contacts a part of the non-lens portion of the first lens constituent layer LY1 of the lens group 20, and the lens group 20 is pushed up to the lid layer 10 side. . Further, the force by which the movable portion 151 of the actuator layer 15 is pushed down by the first projection 201 is reduced, and the free end FT of the movable portion 151 of the actuator layer 15 that has been pushed down by the first projection 201 rises in the + Z direction. To do. And the movable part 151 hardly generates an elastic force, that is, the shape of the movable part 151 is substantially flat.
 但し、第1突起部201と自由端FTとが当接した状態が保持されるように、第1突起部201および突起部162のZ軸に沿った延設距離が設定される。このような設定により、可動部151を変形させて自由端FTを+Z方向に変位させる際に、自由端FTが第1突起部201に対して当接せず、空振りしてしまう非効率な動作が防止される。 However, the extending distance along the Z axis of the first protrusion 201 and the protrusion 162 is set so that the state where the first protrusion 201 and the free end FT are in contact with each other is maintained. With such a setting, when the movable portion 151 is deformed and the free end FT is displaced in the + Z direction, the free end FT does not come into contact with the first protrusion 201 and is swung in an inefficient manner. Is prevented.
 更に、このとき、第1および第2平行ばね12,14ともに、接続部PG1に対する接合部PG2の+Z方向の位置のずれ、すなわち板状部材EBの曲げ変形(たわみ変形)が大きくなる。つまり、各接合部PG2が蓋層10側へと変位するように、各板状部材EBが弾性的に変形し、応力(弾性力)がチャージされた状態となる。 Further, at this time, both the first and second parallel springs 12 and 14 have a large displacement in the position of the joint portion PG2 in the + Z direction with respect to the connection portion PG1, that is, bending deformation (flexure deformation) of the plate-like member EB. That is, each plate member EB is elastically deformed and stress (elastic force) is charged so that each joint portion PG2 is displaced toward the lid layer 10 side.
 したがって、この各板状部材EBにおいて発生した弾性力によって、レンズ位置調整層16の突起部162の上端面に対して、レンズ群20が押し付けられる。このレンズ群20の突起部162に対する押し付け力は、ユーザーによるカメラモジュール500の保持姿勢に拘わらず、レンズ群20のチルト量等の姿勢および位置のずれの発生を抑制する。 Therefore, the lens group 20 is pressed against the upper end surface of the protrusion 162 of the lens position adjusting layer 16 by the elastic force generated in each plate member EB. The pressing force of the lens group 20 against the protrusion 162 suppresses the occurrence of deviations in the posture and position of the lens group 20 such as the tilt amount regardless of the holding posture of the camera module 500 by the user.
 ○撮像素子基板の取り付け(工程G):
 ステップSP7において、レンズ位置調整層16が接合されて形成されたユニットのレンズ位置調整層16の枠体161に対して、撮像素子基板178の外周部が接合されるように、レンズ位置調整層シートU16の一主面に対して、撮像素子基板シートU178の他主面が接合される。
○ Mounting of image sensor substrate (process G):
In step SP7, the lens position adjusting layer sheet is bonded so that the outer peripheral portion of the image sensor substrate 178 is bonded to the frame 161 of the lens position adjusting layer 16 of the unit formed by bonding the lens position adjusting layer 16. The other main surface of the imaging element substrate sheet U178 is bonded to one main surface of U16.
 ○ダイシング(工程H):
 ステップSP8では、多数のレンズ群20がそれぞれ挿入され、8つのシートU10~U16,U178を積層して形成された積層部材が、ダイシングテープ等で保護された後、ダイシング装置によってチップ毎に切り離される。このとき、多数のカメラモジュール500が完成される。
○ Dicing (Process H):
In step SP8, a large number of lens groups 20 are inserted, and the laminated member formed by laminating the eight sheets U10 to U16 and U178 is protected by a dicing tape or the like and then separated for each chip by a dicing device. . At this time, a large number of camera modules 500 are completed.
 <カメラモジュールにおけるレンズ駆動>
 カメラモジュール500では、上述したように、非駆動状態において、第1および第2平行ばね12,14の弾性力により、レンズ群20がレンズ位置調整層16に対して押し付けられて、該レンズ群20が初期位置に配置される。このとき、カメラモジュール500は、該カメラモジュール500を基準として、無限遠に位置する被写体に対して合焦する。
<Lens drive in camera module>
In the camera module 500, as described above, the lens group 20 is pressed against the lens position adjusting layer 16 by the elastic force of the first and second parallel springs 12 and 14 in the non-driven state, and the lens group 20 Is placed in the initial position. At this time, the camera module 500 focuses on a subject located at infinity with the camera module 500 as a reference.
 そして、アクチュエータ層15の可動部151が変形することで、自由端FTが第1突起部201を+Z方向に押す。そして、第1および第2平行ばね12,14の弾性力に抗して、可動部151がレンズ群20を+Z方向に押し上げる。このとき、レンズ群20と撮像素子181との距離が変更され、該カメラモジュール500を基準として、種々の距離に位置する被写体に対して合焦させることが可能なオートフォーカス(AF)制御が実現される。 Then, when the movable portion 151 of the actuator layer 15 is deformed, the free end FT pushes the first protrusion 201 in the + Z direction. The movable portion 151 pushes up the lens group 20 in the + Z direction against the elastic force of the first and second parallel springs 12 and 14. At this time, the distance between the lens group 20 and the image sensor 181 is changed, and auto-focus (AF) control capable of focusing on subjects located at various distances with the camera module 500 as a reference is realized. Is done.
 上述したように、アクチュエータ層15のアクチュエータ素子153に、形状記憶合金(SMA)の薄膜が用いられる場合には、アクチュエータ層15に設けられたヒータ層の通電による加熱によって、アクチュエータ素子153が縮み変形を行う。そして、可動部151の自由端FTが+Z方向に変位する。なお、可動部151の自由端FT側で発生する変位量は、SMAの加熱温度に応じて異なり、該変位量は、ヒータ層への通電量の制御によって調整される。 As described above, when a thin film of shape memory alloy (SMA) is used for the actuator element 153 of the actuator layer 15, the actuator element 153 contracts and deforms due to heating by energization of the heater layer provided in the actuator layer 15. I do. Then, the free end FT of the movable portion 151 is displaced in the + Z direction. Note that the amount of displacement generated on the free end FT side of the movable portion 151 differs depending on the heating temperature of the SMA, and the amount of displacement is adjusted by controlling the amount of current supplied to the heater layer.
 ここでは、SMAの変形に伴う該ヒータ層の変形に応じてヒータ層の電気抵抗も変化するため、該ヒータ層の電流抵抗値をモニタリングして、自由端FTの変位量、すなわちレンズ群20の変位量を制御することが可能である。 Here, since the electric resistance of the heater layer also changes in accordance with the deformation of the heater layer accompanying the deformation of the SMA, the current resistance value of the heater layer is monitored, and the displacement amount of the free end FT, that is, the lens group 20 It is possible to control the amount of displacement.
 また、カメラモジュール500では、第1枠層11のZ軸に沿った厚みが、レンズ群20が移動する空間、すなわちレンズ群20のZ軸に沿った移動可能な範囲(ストローク)を確保する。そして、第2突起部202のZ軸に沿った延設距離は、レンズ位置調整層16がアクチュエータ層15に対して接合される際にレンズ群20が+Z方向に押し上げられる距離と、レンズ群20が+Z方向に移動可能な距離(移動可能距離)とを加算した距離以上とされている。 In the camera module 500, the thickness along the Z axis of the first frame layer 11 ensures a space in which the lens group 20 moves, that is, a movable range (stroke) along the Z axis of the lens group 20. The extension distance along the Z axis of the second protrusion 202 is such that the lens group 20 is pushed up in the + Z direction when the lens position adjusting layer 16 is bonded to the actuator layer 15 and the lens group 20. Is greater than or equal to the distance obtained by adding the distance movable in the + Z direction (movable distance).
 以上のように、本発明の実施形態に係るカメラモジュール500では、レンズ群20の移動を規制する第1および第2平行ばね12,14を有し、レンズ群20の移動によってAF制御(合焦制御)が実現される。そして、非駆動状態では、第1および第2平行ばね12,14により、レンズ群20がレンズ位置調整層16に対して押し付けられており、アクチュエータ層15の可動部151が変形すると、第1および第2平行ばね12,14の弾性力に抗して、レンズ群20が移動する構成となっている。 As described above, the camera module 500 according to the embodiment of the present invention has the first and second parallel springs 12 and 14 that restrict the movement of the lens group 20, and performs AF control (focusing) by the movement of the lens group 20. Control) is realized. In the non-driven state, when the lens group 20 is pressed against the lens position adjusting layer 16 by the first and second parallel springs 12 and 14, and the movable portion 151 of the actuator layer 15 is deformed, The lens group 20 is configured to move against the elastic force of the second parallel springs 12 and 14.
 このため、第1および第2平行ばね12,14の弾性力に抗して移動対象物に相当するレンズ群20を移動させるための空間を確保する目的で、カメラモジュール500のZ軸に沿った方向(光軸方向)の厚みをあまり大きくする必要がない。また、特に、非駆動状態においてカメラモジュール500の姿勢が種々変更されても、レンズ群20の傾き等が抑制されるため、レンズ群20の姿勢が安定化される。したがって、装置の大型化が抑制されつつ、レンズが変位可能となり、且つレンズの姿勢の安定化が実現される。 Therefore, in order to secure a space for moving the lens group 20 corresponding to the moving object against the elastic force of the first and second parallel springs 12, 14, the Z-axis of the camera module 500 is aligned. It is not necessary to increase the thickness in the direction (optical axis direction). In particular, even when the posture of the camera module 500 is variously changed in the non-driven state, the inclination of the lens group 20 and the like are suppressed, so that the posture of the lens group 20 is stabilized. Therefore, it is possible to displace the lens while suppressing an increase in the size of the apparatus, and it is possible to stabilize the posture of the lens.
 また、カメラモジュール500が複数の層が積層されて構成されるため、小型で且つ薄型のカメラモジュール500が実現される。したがって、装置の大型化が抑制されつつ、レンズの変位とレンズの姿勢の安定化とが図られる。 Further, since the camera module 500 is configured by laminating a plurality of layers, a small and thin camera module 500 is realized. Therefore, the displacement of the lens and the stabilization of the posture of the lens can be achieved while suppressing an increase in the size of the apparatus.
 また、撮像素子181とレンズ群20との間に、レンズ群20が当接する突起部162を有するレンズ位置調整層16が別途設けられる。このため、レンズ群20を初期位置に設定するために、レンズ群20を当接させる部分(当接部)を容易に製作することができる。 Further, a lens position adjusting layer 16 having a protrusion 162 with which the lens group 20 abuts is separately provided between the image sensor 181 and the lens group 20. For this reason, in order to set the lens group 20 to the initial position, it is possible to easily manufacture a portion (contact portion) with which the lens group 20 is brought into contact.
 また、非駆動状態において、レンズ群20がレンズ位置調整層16に対して当接することで、カメラモジュール500を基準として無限遠に位置する被写体に対して合焦するように、該レンズ群20が所定位置に配置される。 Further, when the lens group 20 is in contact with the lens position adjusting layer 16 in the non-driven state, the lens group 20 is focused on a subject located at infinity with the camera module 500 as a reference. It is arranged at a predetermined position.
 このため、無限遠に存在する被写体に対して合焦する状態でレンズの姿勢を安定化させることができる。したがって、例えば、レンズ群20を合焦制御の初期状態として一般的に採用される所定位置に容易且つ精度良く配置することができる。また、各層を接合させていくだけで、その後の特別な調整動作を行うことなく、カメラモジュール500を基準として無限遠に位置する被写体に対して合焦するように、レンズ群20を所定位置に配置することができる。 For this reason, it is possible to stabilize the posture of the lens while focusing on a subject existing at infinity. Therefore, for example, the lens group 20 can be easily and accurately arranged at a predetermined position generally adopted as an initial state of focus control. In addition, the lens group 20 is disposed at a predetermined position so that a subject located at infinity with the camera module 500 as a reference can be focused by simply joining the layers without performing any special adjustment operation thereafter. can do.
 また、被写体からレンズ群20を介して撮像素子181の画素配列領域に至る光路を、該画素配列領域の幅が最も狭い方向において挟む位置に、突起部162が配設されている。このため、撮影への悪影響、および装置の大型化を招くことなく、当接部に相当する突起部162を設置することができる。 In addition, the protrusion 162 is disposed at a position that sandwiches the optical path from the subject through the lens group 20 to the pixel array region of the image sensor 181 in the direction in which the width of the pixel array region is the narrowest. For this reason, the protrusion 162 corresponding to the contact portion can be installed without adversely affecting the photographing and without enlarging the apparatus.
 <変形例>
 本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<Modification>
The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.
 ◎例えば、上記実施形態では、非駆動状態においてレンズ群20が当接して該レンズ群20を初期位置に配置するレンズ位置調整層16を設けたが、これには限られない。例えば、レンズ位置調整層16を設けることなく、該レンズ群20を初期位置に配置するための構造をレンズ群20自身に設けても良い。以下、具体例を挙げて説明する。 For example, in the above-described embodiment, the lens position adjustment layer 16 is provided in which the lens group 20 is brought into contact with the lens group 20 in the non-driven state and the lens group 20 is disposed at the initial position. For example, the lens group 20 itself may be provided with a structure for disposing the lens group 20 at the initial position without providing the lens position adjusting layer 16. Hereinafter, a specific example will be described.
 図32は、本発明の変形例に係るカメラモジュール500Aの断面模式図である。 FIG. 32 is a schematic cross-sectional view of a camera module 500A according to a modification of the present invention.
 図32で示されるように、変形例に係るカメラモジュール500Aは、上記実施形態に係るカメラモジュール500からレンズ位置調整層16が取り除かれ、レンズ群20が構成の異なるレンズ群20Aに変更されたものとなっている。なお、レンズ群20がレンズ群20Aに変更されたことに伴って、光学ユニットKBが光学ユニットKBAに変更されている。また、変形例に係る携帯電話機100Aは、カメラモジュール500Aを備えた第1の筐体200Aを有する。その他の部分については、上記実施形態に係る携帯電話機100と本変形例に係る携帯電話機100Aとは同様な構成を有するため、同じ符号付して説明を省略し、異なる部分について、以下説明する。 As shown in FIG. 32, the camera module 500A according to the modification is obtained by removing the lens position adjustment layer 16 from the camera module 500 according to the above-described embodiment and changing the lens group 20 to a lens group 20A having a different configuration. It has become. In addition, the optical unit KB is changed to the optical unit KBA with the lens group 20 being changed to the lens group 20A. In addition, the mobile phone 100A according to the modification includes a first housing 200A provided with a camera module 500A. Regarding the other parts, since the mobile phone 100 according to the above embodiment and the mobile phone 100A according to the present modification have the same configuration, the same reference numerals are assigned and description thereof is omitted, and different parts will be described below.
 図33は、レンズ群20Aの下面外観図である。 FIG. 33 is a bottom view of the lens group 20A.
 図32および図33で示されるように、レンズ群20Aは、上記実施形態に係るレンズ群20の第1レンズ構成層LY1の非レンズ部の一主面に、2本の第1突起部201とは別に4本の第3突起部203が追加された構成を有する。つまり、第3突起部203は、第1レンズG1と一体的に構成されている。 As shown in FIGS. 32 and 33, the lens group 20A includes two first protrusions 201 on one main surface of the non-lens part of the first lens constituent layer LY1 of the lens group 20 according to the embodiment. In addition, it has a configuration in which four third protrusions 203 are added. That is, the third protrusion 203 is formed integrally with the first lens G1.
 第3突起部203は、例えば、樹脂等によって構成され、第3突起部203のZ軸に沿った延設距離は、第1突起部201のZ軸に沿った延設距離よりも長くなっている。そして、第3突起部203については、例えば、第1レンズ構成層LY1が製作される際に、基板16BSの一主面側に第1突起部201とともに、該第1突起部201と同様な手法で形成するようにすれば良い。 The third protrusion 203 is made of, for example, resin, and the extension distance of the third protrusion 203 along the Z axis is longer than the extension distance of the first protrusion 201 along the Z axis. Yes. For the third protrusion 203, for example, when the first lens constituent layer LY1 is manufactured, the same technique as the first protrusion 201 together with the first protrusion 201 on the one main surface side of the substrate 16BS is used. It may be formed by.
 図34は、レンズ群20Aに接合された第2平行ばね14を示す図である。図34で示されるように、第3突起部203は、第2平行ばね14の板状部材EBと接触しないように設けられる。 FIG. 34 is a diagram showing the second parallel spring 14 joined to the lens group 20A. As shown in FIG. 34, the third protrusion 203 is provided so as not to contact the plate-like member EB of the second parallel spring 14.
 また、図32で示されるように、非駆動状態において、第3突起部203の先端部は、カバーガラス層17の他主面に対して当接する。 Further, as shown in FIG. 32, the tip end portion of the third protrusion 203 abuts against the other main surface of the cover glass layer 17 in the non-driven state.
 詳細には、カバーガラス層17が、アクチュエータ層15に対して接合される際に、カバーガラス層17の他主面が第3突起部203の先端部に当接し、該第3突起部203が+Z側に押し上げられる。このとき、レンズ群20Aが+Z側に押し上げられることで、第1および第2平行ばね12,14の板状部材EBが、蓋層10側へ変形する。 Specifically, when the cover glass layer 17 is bonded to the actuator layer 15, the other main surface of the cover glass layer 17 abuts on the tip of the third protrusion 203, and the third protrusion 203 is Pushed up to the + Z side. At this time, when the lens group 20A is pushed up to the + Z side, the plate-like members EB of the first and second parallel springs 12 and 14 are deformed to the lid layer 10 side.
 このため、非駆動状態においては、板状部材EBの変形の反作用として、第1および第2平行ばね12,14の弾性力によってレンズ群20Aが押し下げられ、第3突起部203が、カバーガラス層17の他主面に対して押し付けられることで、レンズ群20Aが所定位置に配置される。なお、本変形例では、カバーガラス層17の他主面が、レンズ群20Aが当接して該レンズ群20Aを初期位置に配置させる部分、すなわち本発明の「当接部」に相当する。 Therefore, in the non-driven state, as a reaction of deformation of the plate-like member EB, the lens group 20A is pushed down by the elastic force of the first and second parallel springs 12 and 14, and the third protrusion 203 is formed on the cover glass layer. The lens group 20 </ b> A is arranged at a predetermined position by being pressed against the other main surface 17. In the present modification, the other main surface of the cover glass layer 17 corresponds to a portion where the lens group 20A abuts and places the lens group 20A in the initial position, that is, a “contact portion” of the present invention.
 このような構成を採用しても、上記実施形態と同様に、第1および第2平行ばね12,14の弾性力に抗して移動対象物に相当するレンズ群20Aを移動させるための空間を確保する目的で、カメラモジュール500AのZ軸に沿った方向(光軸方向)の厚みをあまり大きくする必要がない。また、特に、非駆動状態においてカメラモジュール500Aの姿勢が種々変更されても、レンズ群20Aの傾き等が抑制されるため、レンズ群20の姿勢が安定化される。したがって、装置の大型化を抑制しつつ、レンズが変位可能であり且つレンズの姿勢の安定化を図ることができる。 Even when such a configuration is adopted, a space for moving the lens group 20A corresponding to the moving object against the elastic force of the first and second parallel springs 12 and 14 is provided as in the above embodiment. For the purpose of ensuring, it is not necessary to increase the thickness of the camera module 500A in the direction along the Z-axis (optical axis direction). In particular, even if the posture of the camera module 500A is variously changed in the non-driven state, the tilt of the lens group 20A is suppressed, so that the posture of the lens group 20 is stabilized. Therefore, the lens can be displaced and the posture of the lens can be stabilized while suppressing an increase in the size of the apparatus.
 また、レンズ群20Aの第3突起部203が、当接部に相当するカバーガラス層17の他主面に対して当接するような構成を有する。このため、カメラモジュール500Aを構成する層の数の増加に伴う装置の大型化が抑制される。また、カメラモジュール500Aの製造コストの低減を図ることも可能となる。 Also, the third protrusion 203 of the lens group 20A has a configuration that comes into contact with the other main surface of the cover glass layer 17 corresponding to the contact portion. For this reason, the enlargement of the apparatus accompanying the increase in the number of layers which comprise the camera module 500A is suppressed. It is also possible to reduce the manufacturing cost of the camera module 500A.
 また、カバーガラス層17の他主面に対して当接する第3突起部203と、第1レンズG1とが一体的に構成される。このため、第3突起部203を比較的容易且つ精度良く製作することができる。なお、第2平行ばね14に係る応力設計に合わせて、第2平行ばね14に接触しないように、第3突起部203を適宜形成することも容易に可能である。 Also, the third projection 203 that contacts the other main surface of the cover glass layer 17 and the first lens G1 are integrally configured. For this reason, the 3rd projection part 203 can be manufactured comparatively easily and with sufficient precision. In addition, according to the stress design concerning the 2nd parallel spring 14, it is also possible to form the 3rd projection part 203 suitably so that it may not contact the 2nd parallel spring 14. FIG.
 但し、例えば、撮像素子基板178が配列された撮像素子基板シートU178が取り付けられる前のユニットの状態で、客先に出荷し、撮像素子基板シートU178の取り付け以降の工程が客先で行われる場合には、レンズ群20Aが、カバーガラス層17によって保持されていない不安定な状態で、運搬されることになる。 However, for example, when the image pickup device substrate sheet U178 on which the image pickup device substrate sheet 178 is arranged is shipped to the customer in a state before the image pickup device substrate sheet U178 is attached, and the steps after the attachment of the image pickup device substrate sheet U178 are performed by the customer. The lens group 20 </ b> A is transported in an unstable state that is not held by the cover glass layer 17.
 このように、撮像素子基板シートU178の取り付け以降の工程が客先で行われる場合には、上記実施形態のように、多数のレンズ位置調整層16が配列されたレンズ位置調整層シートU16が接合されたユニットの状態で、客先に出荷した方が、レンズ群20が、レンズ位置調整層16によって保持されて安定な状態で、運搬されるため、好ましい。具体的には、例えば、第1および第2平行ばね12,14の応力集中による塑性変形等の不具合の発生が抑制されるため、好ましい。 As described above, when the steps after the mounting of the image pickup device substrate sheet U178 are performed by the customer, the lens position adjustment layer sheet U16 in which a large number of lens position adjustment layers 16 are arranged is bonded as in the above embodiment. It is preferable to ship the lens group 20 to the customer in the state of the unit because the lens group 20 is held by the lens position adjusting layer 16 and transported in a stable state. Specifically, for example, the occurrence of problems such as plastic deformation due to stress concentration of the first and second parallel springs 12 and 14 is suppressed, which is preferable.
 また、樹脂の種類により、成型によって製作可能な形状に係るアスペクト比の限界がある。このようなアスペクト比の限界を考慮すると、本変形例のように、Z軸に沿った延設距離が長い、すなわちアスペクト比の大きな第3突起部203を有するレンズ群20Aを製作するよりも、上記実施形態のように、いわゆる樹脂等を用いたブラスト加工やエッチング等によって製作可能なレンズ位置調整層16を採用する方が、製造上好ましい。 Also, depending on the type of resin, there is a limit of the aspect ratio related to the shape that can be produced by molding. Considering such a limit of the aspect ratio, as in the present modification, the extending distance along the Z axis is long, that is, rather than manufacturing the lens group 20A having the third protrusion 203 having a large aspect ratio. As in the above embodiment, it is preferable in terms of manufacturing to employ the lens position adjusting layer 16 that can be manufactured by blasting or etching using a so-called resin or the like.
 ◎また、上記実施形態では、非駆動状態において、レンズ群20がレンズ位置調整層16に対して当接することで、カメラモジュール500を基準として無限遠に位置する被写体に対して合焦するように、レンズ群20が所定位置に設置されたが、これに限られない。例えば、レンズ群20がレンズ位置調整層16に対して当接する所定位置が、レンズ群20の焦点が撮像素子181の撮像面上に来るようなレンズ群20の位置よりも、撮像素子181に近い位置であっても良い。 In the above embodiment, in the non-driven state, the lens group 20 abuts against the lens position adjustment layer 16 so that a subject located at infinity with the camera module 500 as a reference is focused. The lens group 20 is installed at a predetermined position, but the present invention is not limited to this. For example, the predetermined position where the lens group 20 is in contact with the lens position adjustment layer 16 is closer to the image sensor 181 than the position of the lens group 20 where the focal point of the lens group 20 is on the imaging surface of the image sensor 181. It may be a position.
 図35は、上記実施形態に係るレンズ群20の焦点と撮像素子181との位置関係を模式的に示す図であり、図36は、本変形例に係るレンズ群20の焦点と撮像素子181との位置関係を模式的に示す図である。 FIG. 35 is a diagram schematically illustrating the positional relationship between the focal point of the lens group 20 and the image sensor 181 according to the above embodiment, and FIG. 36 illustrates the focal point of the lens group 20 and the image sensor 181 according to this modification. It is a figure which shows typically the positional relationship of these.
 上記実施形態では、図35で示されるように、レンズ群20がレンズ位置調整層16に対して当接することで、所定位置に配置されている場合には、レンズ群20の焦点FPが、撮像素子181の撮像面上に配置される。これに対して、本変形例では、図36で示されるように、レンズ群20がレンズ位置調整層16に対して当接することで、所定位置に配置されている場合には、レンズ群20の焦点FPが、撮像素子181の撮像面よりもレンズ群20とは反対側の位置に配置される。 In the above embodiment, as shown in FIG. 35, when the lens group 20 is in contact with the lens position adjustment layer 16 and is disposed at a predetermined position, the focus FP of the lens group 20 is imaged. It is disposed on the imaging surface of the element 181. On the other hand, in this modification, as shown in FIG. 36, when the lens group 20 is in contact with the lens position adjusting layer 16 and is disposed at a predetermined position, The focal point FP is disposed at a position opposite to the lens group 20 with respect to the imaging surface of the imaging element 181.
 このような構成を採用することで、製作時の各種の誤差により、無限遠に存在する被写体に対して合焦する状態に設定できなくなる不具合の発生を防止することができる。また、各層を接合させていくだけで、その後の特別な調整動作を行うことなく、カメラモジュール500を基準として無限遠に位置する被写体に対して合焦する位置よりも、撮像素子181側の所定位置に、レンズ群20を配置することができる。 By adopting such a configuration, it is possible to prevent the occurrence of a problem that it becomes impossible to set the focus on a subject existing at infinity due to various errors during production. Further, a predetermined position on the image sensor 181 side rather than a position focused on a subject located at infinity with reference to the camera module 500 without performing a special adjustment operation thereafter by simply joining the layers. In addition, the lens group 20 can be arranged.
 なお、レンズ群20の初期位置は、カメラモジュール500から非常に近い位置に存在する被写体に対して合焦するような該レンズ群20の位置であっても良い。 It should be noted that the initial position of the lens group 20 may be the position of the lens group 20 that focuses on a subject that is located very close to the camera module 500.
 ◎また、上記実施形態では、レンズ群20は、第1および第2レンズG1,G2を備えて構成されたが、これに限られず、例えば、1つのレンズを有する光学系であっても良い。すなわち、移動対象物である光学系は、1以上の光学レンズを含めば良い。 In the above embodiment, the lens group 20 includes the first and second lenses G1 and G2. However, the present invention is not limited to this. For example, the lens group 20 may be an optical system having one lens. That is, the optical system that is the moving object may include one or more optical lenses.
 ◎また、上記実施形態では、レンズ群20の移動によって、合焦制御が行われたが、これに限られず、例えば、レンズ群20の移動によって、いわゆるズーム動作が実現されても良い。 In the above embodiment, the focus control is performed by moving the lens group 20, but the present invention is not limited to this. For example, a so-called zoom operation may be realized by moving the lens group 20.
 ◎また、上記実施形態では、アクチュエータ素子153として、SMAが用いられたが、これに限られず、例えば、いわゆるバイメタル(Bi-metallic strip)が用いられてもよい。アクチュエータ素子にバイメタルを採用した場合には、SMAの代わりに、基板とは熱膨張率が異なる素材の膜を形成すればよい。つまり、可動部が、基板と、該基板上に形成され且つ該基板とは熱膨張率が異なる薄膜とを有して構成されてもよい。 In the above embodiment, SMA is used as the actuator element 153. However, the actuator element 153 is not limited to this. For example, a so-called bi-metal strip may be used. When a bimetal is employed for the actuator element, a film made of a material having a coefficient of thermal expansion different from that of the substrate may be formed instead of SMA. That is, the movable part may be configured to include a substrate and a thin film formed on the substrate and having a different coefficient of thermal expansion from the substrate.
 具体例としては、Si製の可動部の基板の一主面側に、アルミニウムやニッケル等の金属素材の層(金属層)が形成されるような構成が挙げられる。このような構成では、ヒータ層への通電により、基板と金属層とが加熱されると、熱膨張率の差によって、可動部が変形し、該可動部の自由端が+Z方向に変位する。 As a specific example, there is a configuration in which a layer (metal layer) of a metal material such as aluminum or nickel is formed on one main surface side of a substrate of a movable part made of Si. In such a configuration, when the substrate and the metal layer are heated by energization of the heater layer, the movable portion is deformed due to the difference in thermal expansion coefficient, and the free end of the movable portion is displaced in the + Z direction.
 そして、アクチュエータ素子にバイメタルを用いた場合にも、上記実施形態と同様な効果が得られる。なお、意図せずして、環境温度の変化に比例して可動部の自由端が変位しようとする。しかしながら、例えば、非駆動状態において第1および第2平行ばねによってレンズ群20がレンズ位置調整層16に対して-Z方向に押し付けられる力を、想定される使用環境温度の上限で可動部151がレンズ群20に及ぼす力よりも大きくしておけば、レンズ群20の姿勢が崩れない。 Even when a bimetal is used for the actuator element, the same effect as in the above embodiment can be obtained. Note that the free end of the movable part tends to be displaced unintentionally in proportion to changes in the environmental temperature. However, for example, in a non-driving state, the movable portion 151 has a force with which the lens group 20 is pressed in the −Z direction against the lens position adjusting layer 16 by the first and second parallel springs at the upper limit of the assumed operating environment temperature. If the force is larger than the force exerted on the lens group 20, the posture of the lens group 20 is not broken.
 また、アクチュエータ素子として、例えば、無機圧電体(PZT)または有機圧電体(PVDF)等の圧電体素子の薄膜(圧電体薄膜)を用いてもよい。つまり、可動部が、基板と、該基板上に形成される圧電体素子の薄膜とを有して構成されても良い。なお、アクチュエータ素子として圧電体薄膜を用いる場合は、Si基板上に電極、圧電体薄膜、および電極がこの順序でスパッタリング法等を用いて形成され、高電界をかけたポーリングが行われる。 Further, as the actuator element, for example, a thin film (piezoelectric thin film) of a piezoelectric element such as an inorganic piezoelectric body (PZT) or an organic piezoelectric body (PVDF) may be used. That is, the movable part may be configured to include a substrate and a thin film of a piezoelectric element formed on the substrate. When a piezoelectric thin film is used as the actuator element, an electrode, a piezoelectric thin film, and an electrode are formed on the Si substrate in this order using a sputtering method or the like, and poling with a high electric field is performed.
 ◎また、上記実施形態では、移動対象物であるレンズ群20が、第1および第2レンズ構成層LY1,LY2を含んで構成されたが、これに限られない。例えば、移動対象物が、1以上のレンズ層を含む1以上の層によって構成されても良い。 In the above embodiment, the lens group 20 that is the moving object is configured to include the first and second lens constituent layers LY1 and LY2, but is not limited thereto. For example, the moving object may be configured by one or more layers including one or more lens layers.
 ◎また、上記実施形態では、レンズ群20の移動を規制する部材として、板状の第1および第2平行ばね12,14が採用されたが、これに限られない。例えば、つる巻き状のばね等を含む各種弾性部材が採用されても良い。 In the above embodiment, the plate-like first and second parallel springs 12 and 14 are employed as members for restricting the movement of the lens group 20, but the present invention is not limited to this. For example, various elastic members including a helical spring may be employed.
 ◎また、上記実施形態では、カメラモジュール500が複数の層が積層されて構成されたが、これに限られない。例えば、本発明の技術的思想は、各機能層が層状のものでない撮像装置を含む撮像装置一般に対して適用可能である。 In the above embodiment, the camera module 500 is configured by laminating a plurality of layers, but is not limited thereto. For example, the technical idea of the present invention can be applied to an imaging apparatus in general including an imaging apparatus in which each functional layer is not layered.
 ◎なお、上記実施形態および各種変形例をそれぞれ構成する一部分は、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 ◎ Needless to say, a part of each of the above-described embodiments and various modifications can be appropriately combined within a consistent range.
 10 蓋層
 11 第1枠層
 12 第1平行ばね
 13 第2枠層
 14 第2平行ばね
 15 アクチュエータ層
 16 レンズ位置調整層
 17 カバーガラス層
 18 撮像素子層
 20,20A レンズ群
 162 突起部
 178 撮像素子基板
 181 撮像素子
 201 第1突起部
 202 第2突起部
 203 第3突起部
 500,500A カメラモジュール
 KB,KBA 光学ユニット
 PB 撮像部
DESCRIPTION OF SYMBOLS 10 Cover layer 11 1st frame layer 12 1st parallel spring 13 2nd frame layer 14 2nd parallel spring 15 Actuator layer 16 Lens position adjustment layer 17 Cover glass layer 18 Imaging element layer 20, 20A Lens group 162 Protrusion part 178 Imaging element Substrate 181 Imaging element 201 First projection 202 Second projection 203 Third projection 500, 500A Camera module KB, KBA Optical unit PB Imaging unit

Claims (9)

  1.  撮像素子と、
     1以上のレンズを含む移動対象物と、
     前記移動対象物を所定方向に移動させるアクチュエータと、
     前記移動対象物が前記所定方向に移動する際に、該所定方向とは反対方向の力を該移動対象物に対して付与する弾性部材と、
     前記撮像素子と前記移動対象物との間に設けられる当接部と、
    を備え、
     前記弾性部材によって前記移動対象物が前記当接部に押し付けられることで、該移動対象物が所定位置に配置されることを特徴とする撮像装置。
    An image sensor;
    A moving object including one or more lenses;
    An actuator for moving the moving object in a predetermined direction;
    An elastic member that applies a force in a direction opposite to the predetermined direction to the moving object when the moving object moves in the predetermined direction;
    A contact portion provided between the imaging element and the moving object;
    With
    An imaging apparatus, wherein the moving object is placed at a predetermined position by pressing the moving object against the contact portion by the elastic member.
  2.  請求項1に記載の撮像装置であって、
     前記移動対象物が、
     1以上のレンズ層を含む1以上の層によって構成され、
     前記アクチュエータが、
     板状のアクチュエータ層によって構成され、
     前記弾性部材が、
     板状の弾性部材層によって構成されることを特徴とする撮像装置。
    The imaging apparatus according to claim 1,
    The moving object is
    Constituted by one or more layers including one or more lens layers;
    The actuator is
    Consists of a plate-like actuator layer,
    The elastic member is
    An imaging apparatus comprising a plate-like elastic member layer.
  3.  請求項2に記載の撮像装置であって、
     前記撮像素子と前記移動対象物との間に配設され且つ前記撮像素子と前記移動対象物との距離を調整する調整層、
    を備え、
     前記調整層が、
     前記当接部を有することを特徴とする撮像装置。
    The imaging apparatus according to claim 2,
    An adjustment layer disposed between the image sensor and the moving object and adjusting a distance between the image sensor and the moving object;
    With
    The adjustment layer is
    An image pickup apparatus having the contact portion.
  4.  請求項3に記載の撮像装置であって、
     前記当接部が、
     前記調整層に設けられる突起部を含むことを特徴とする撮像装置。
    The imaging apparatus according to claim 3,
    The contact portion is
    An image pickup apparatus comprising a protrusion provided on the adjustment layer.
  5.  請求項1に記載の撮像装置であって、
     前記移動対象物が、
     前記撮像素子側に設けられる突起部を有し、
     前記弾性部材によって前記突起部が前記当接部に押し付けられることで、該移動対象物が前記所定位置に配置されることを特徴とする撮像装置。
    The imaging apparatus according to claim 1,
    The moving object is
    Having a protrusion provided on the image sensor side;
    An image pickup apparatus, wherein the moving object is arranged at the predetermined position by pressing the protruding portion against the contact portion by the elastic member.
  6.  請求項5に記載の撮像装置であって、
     前記1以上のレンズと前記突起部とが、
     一体的に構成されていることを特徴とする撮像装置。
    The imaging apparatus according to claim 5,
    The one or more lenses and the protrusion are
    An image pickup apparatus that is integrally formed.
  7.  請求項1に記載の撮像装置であって、
     前記所定位置が、
     前記1以上のレンズを含む光学系の焦点が前記撮像素子の撮像面上に配置されるような位置であることを特徴とする撮像装置。
    The imaging apparatus according to claim 1,
    The predetermined position is
    An imaging apparatus, wherein a focal point of an optical system including the one or more lenses is located on an imaging surface of the imaging element.
  8.  請求項1に記載の撮像装置であって、
     前記所定位置が、
     前記1以上のレンズを含む光学系の焦点が前記撮像素子の撮像面上に配置されるような位置よりも、前記撮像素子に近い位置であることを特徴とする撮像装置。
    The imaging apparatus according to claim 1,
    The predetermined position is
    An imaging apparatus, wherein a focal point of an optical system including the one or more lenses is closer to the imaging element than a position where the focal point is disposed on an imaging surface of the imaging element.
  9.  請求項1に記載の撮像装置であって、
     前記撮像素子が、
     複数の画素回路が配列される画素配列領域を有し、
     前記当接部が、
     被写体から前記1以上のレンズを介して前記画素配列領域に至る光路を該画素配列領域の幅が最も狭い方向において挟む位置に、配設されていることを特徴とする撮像装置。
    The imaging apparatus according to claim 1,
    The image sensor is
    A pixel arrangement region in which a plurality of pixel circuits are arranged;
    The contact portion is
    An image pickup apparatus, wherein an optical path from a subject to the pixel array area via the one or more lenses is disposed at a position sandwiching the pixel array area in a direction in which the width of the pixel array area is the narrowest.
PCT/JP2009/070157 2008-12-05 2009-12-01 Imaging apparatus WO2010064620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541318A JP5429190B2 (en) 2008-12-05 2009-12-01 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008310987 2008-12-05
JP2008-310987 2008-12-05

Publications (1)

Publication Number Publication Date
WO2010064620A1 true WO2010064620A1 (en) 2010-06-10

Family

ID=42233269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070157 WO2010064620A1 (en) 2008-12-05 2009-12-01 Imaging apparatus

Country Status (2)

Country Link
JP (1) JP5429190B2 (en)
WO (1) WO2010064620A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314046A (en) * 2010-07-02 2012-01-11 夏普株式会社 Camera module
TWI634358B (en) * 2015-12-02 2018-09-01 寧波舜宇光電信息有限公司 Camera module using split lens and assembly method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246656A (en) * 2005-03-04 2006-09-14 Seiko Precision Inc Actuator, focusing device, and image pickup unit
JP2007025640A (en) * 2005-06-17 2007-02-01 Nidec Sankyo Corp Lens drive apparatus
JP2007139862A (en) * 2005-11-15 2007-06-07 Olympus Corp Lens driving mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360896B2 (en) * 2003-12-15 2009-11-11 シャープ株式会社 Autofocus device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246656A (en) * 2005-03-04 2006-09-14 Seiko Precision Inc Actuator, focusing device, and image pickup unit
JP2007025640A (en) * 2005-06-17 2007-02-01 Nidec Sankyo Corp Lens drive apparatus
JP2007139862A (en) * 2005-11-15 2007-06-07 Olympus Corp Lens driving mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314046A (en) * 2010-07-02 2012-01-11 夏普株式会社 Camera module
JP2012032778A (en) * 2010-07-02 2012-02-16 Sharp Corp Camera module
TWI634358B (en) * 2015-12-02 2018-09-01 寧波舜宇光電信息有限公司 Camera module using split lens and assembly method thereof

Also Published As

Publication number Publication date
JPWO2010064620A1 (en) 2012-05-10
JP5429190B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5348241B2 (en) Actuator, drive device, and imaging device
JP5447387B2 (en) Imaging unit and imaging apparatus
JP5056984B2 (en) Drive device and camera module
JP5223917B2 (en) Imaging device and manufacturing method of imaging device
US20110026148A1 (en) Actuator array sheet
KR20090117613A (en) Camera module
JP5429190B2 (en) Imaging device
JP5440600B2 (en) Camera module array and manufacturing method thereof
JP5163587B2 (en) Actuator, drive device, and imaging device
JP2010074502A (en) Drive unit and imaging device
JP2010169800A (en) Driving device and imaging apparatus
JP5115510B2 (en) Imaging device, optical unit, and manufacturing method of imaging device
JP5407409B2 (en) Imaging device and manufacturing method thereof
JP5035188B2 (en) Imaging device manufacturing method and imaging device
JP5261749B2 (en) Driving device and imaging device
JP2010160187A (en) Method for manufacturing drive device and method for manufacturing imaging apparatus
JP2011083847A (en) Method for manufacturing actuator, actuator, and imaging device
JP2010066458A (en) Actuator and driving device
JP2011109853A (en) Actuator manufacturing method, actuator, moving mechanism, and camera module
JP5422986B2 (en) Driving device and imaging device
JP2009251173A (en) Lens array sheet
JP2013077031A (en) Actuator, driving device and imaging apparatus
JP2010219727A (en) Actuator, driving device and imaging device
JP5447528B2 (en) Actuator, drive device, and camera module
JP2011118074A (en) Method for manufacturing moving mechanism, moving mechanism, and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830386

Country of ref document: EP

Kind code of ref document: A1