WO2010064426A1 - Scroll type fluid machine - Google Patents

Scroll type fluid machine Download PDF

Info

Publication number
WO2010064426A1
WO2010064426A1 PCT/JP2009/006560 JP2009006560W WO2010064426A1 WO 2010064426 A1 WO2010064426 A1 WO 2010064426A1 JP 2009006560 W JP2009006560 W JP 2009006560W WO 2010064426 A1 WO2010064426 A1 WO 2010064426A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
drive shaft
movable scroll
chamber
fluid machine
Prior art date
Application number
PCT/JP2009/006560
Other languages
French (fr)
Japanese (ja)
Inventor
高部哲也
大谷尚史
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2010064426A1 publication Critical patent/WO2010064426A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/807Balance weight, counterweight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll type fluid machine, and more particularly, to a scroll type fluid machine suitable for being incorporated in a refrigeration air conditioner or a heat pump type water heater.
  • This type of scroll type fluid machine includes a drive shaft extending in a sealed container, an upper end eccentric shaft portion having a flange portion that is eccentric from the axis of the drive shaft and is concentric with the axis of the drive shaft.
  • a scroll unit composed of a fixed scroll fixed to the sealed container, a movable scroll coupled to the upper end eccentric shaft part and revolving around the axis of the fixed scroll as the drive shaft rotates;
  • a scroll type comprising a balance weight that is supported and rotated integrally with the drive shaft, and a frame having a receiving surface for back pressure that opposes the thrust load of the movable scroll and that defines a movable scroll accommodating chamber in the sealed container.
  • a compressor is known (see, for example, Patent Document 1).
  • the balance weight is provided in a substantially L shape in cross section along the axial direction of the drive shaft from the collar part to the movable scroll side, and the distance from the collar part to the movable scroll is short.
  • the size of the balance weight is increased in the radial direction of the movable scroll. For this reason, in order to secure the rotating space of the balance weight, the diameter of the movable scroll and thus the scroll unit must be increased, and the scroll unit and thus the scroll type fluid machine becomes larger and its weight increases. There is a problem.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a scroll type fluid machine that can be reduced in size and weight.
  • a scroll type fluid machine is fixed to a sealed container, a drive shaft extending in the sealed container, an eccentric shaft portion eccentric from the axis of the drive shaft, and the sealed container.
  • the balance weight that is rotated integrally, the storage chamber of the movable scroll is defined in the sealed container, the first load receiving surface receives the back pressure against the thrust load of the movable scroll, and the rotation chamber of the balance weight is provided in the storage chamber.
  • a first frame that forms the shape.
  • the rotary chamber is defined on the side opposite to the movable scroll in the housing chamber, and has a second pressure receiving surface that receives a back pressure against the thrust load of the movable scroll.
  • the pressure receiving surface includes a second frame provided with a seal ring that intermittently partitions the drive shaft side and the first frame side.
  • the invention of claim 3 is characterized in that in claim 1 or 2, a rotation prevention mechanism for preventing rotation of the movable scroll at the first pressure receiving surface is provided.
  • the one end eccentric shaft portion has a flange portion concentric with the axis of the drive shaft at its base portion, and the rotating chamber has It is characterized in that it is formed in an annular recess that is recessed along the axial direction of the drive shaft on the side opposite to the movable scroll.
  • the balance weight is formed in an L shape along the axial direction of the drive shaft from the drive shaft.
  • the drive shaft is arranged in the vertical direction in the longitudinal direction, and the drive shaft is an upper eccentric shaft portion formed on the upper end side of the drive shaft;
  • the scroll unit includes an expander including a movable scroll coupled to the upper eccentric shaft portion and a movable scroll coupled to the lower eccentric shaft portion. It is characterized by constituting a compressor-integrated expander comprising a compressor including the compressor.
  • the rotation space of the balance weight is formed in the accommodating chamber of the movable scroll partitioned by the first frame, thereby securing the rotation space of the balance weight.
  • the diameter of the movable scroll, and hence the diameter of the scroll unit is prevented from being increased, it is possible to achieve a reduction in size and weight of the scroll unit, and thus the scroll fluid machine.
  • the rotating chamber is defined on the counter-movable scroll side in the housing chamber, and the second pressure receiving surface that receives the back pressure against the thrust load of the movable scroll is provided.
  • a second frame provided with a seal ring for intermittently partitioning between the drive shaft side and the first frame side is provided.
  • the rotation prevention mechanism for preventing the rotation of the movable scroll at the first pressure receiving surface, the diameter of the movable scroll, and hence the diameter of the scroll unit, in order to provide the rotation prevention mechanism. Since it is prevented from becoming large, it is possible to achieve a reduction in size and weight of the scroll unit, and in turn, the scroll type fluid machine.
  • the rotating chamber is formed in an annular recess that is recessed along the axial direction of the drive shaft on the side opposite to the movable scroll of the collar portion. This prevents the storage chamber from becoming larger in the radial direction of the movable scroll due to the formation of the rotating chamber, thereby preventing the diameter of the movable scroll and hence the scroll unit from being increased. Can be reduced in size and weight.
  • the balance weight is formed in an L shape from the drive shaft to the axial direction of the drive shaft, so that the balance weight is large in the radial direction of the movable scroll.
  • the storage chamber becomes larger in the radial direction of the movable scroll, and the diameter of the movable scroll, and hence the scroll unit, is prevented from being increased. Therefore, the scroll unit and, consequently, the scroll type fluid machine can be reduced in size and weight. be able to.
  • the scroll unit constitutes a compressor-integrated expander, and the compressor-integrated expander is incorporated into the refrigeration cycle, so that the refrigeration cycle and thus the refrigeration cycle is mounted. It is possible to reduce the size and weight of the external device.
  • FIG. 3 is a perspective view showing an assembly step of the second frame of FIG. 2 to the first frame.
  • FIG. 1 shows a longitudinal sectional view of a scroll type fluid machine 1 according to the present embodiment.
  • the fluid machine 1 is, for example, a vertically-installed compressor-integrated expander, and a two-stage compression in which a later-described compressor 12 constituting the fluid machine 1 serves as a low-stage compressor.
  • the refrigeration cycle is incorporated in a refrigeration air conditioner, a heat pump type hot water heater, or the like. In this refrigeration cycle, the expansion energy of an expander 8 described later is converted into power to rotate the compressor 12, and the compressor 12 assists in driving a high-stage compressor (not shown) constituting the two-stage compressor. ing.
  • the fluid machine 1 includes a housing (sealed container) 2, and a drive shaft 4 that drives the fluid machine 1 is extended in the housing 2 with the longitudinal direction thereof being arranged in the vertical direction.
  • An upper eccentric shaft portion (one end eccentric shaft portion) 6 that is eccentric from the axis of the drive shaft 4 is integrally formed at the upper end of the drive shaft 4, and the upper eccentric shaft portion 6 has an expander via a bearing portion. (Scroll unit) 8 is connected.
  • the upper eccentric shaft portion 6 is formed with a flange portion 5 concentrically with the shaft center of the drive shaft 4 at the base portion, and the flange portion 5 is rotated integrally with the drive shaft 4 so that the expander 8
  • a balance weight 7 for adjusting a static and dynamic balance is supported and fixed.
  • a lower eccentric shaft portion (one end eccentric shaft portion) 10 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the lower end of the drive shaft 4, and a bearing portion is provided on the lower eccentric shaft portion 10.
  • a compressor (scroll unit) 12 is connected to the compressor.
  • the lower eccentric shaft portion 10 is formed with a flange portion 9 concentrically with the shaft center of the drive shaft 4 at the base portion, and the flange portion 9 is rotated integrally with the drive shaft 4 to be compressed by the compressor 12.
  • a balance weight 11 for adjusting the static and dynamic balance is supported and fixed.
  • the housing 2 includes a center shell 14 that forms a cylindrical body of the fluid machine 1, an upper frame (first frame) 16 that rotatably supports the upper end side of the drive shaft 4 via a bearing portion 15, and the fluid machine 1.
  • a cap-shaped top shell 18 that covers the upper part
  • a lower frame (first frame) 20 that rotatably supports the lower end side of the drive shaft 4 via a bearing portion 19, and a cap-shaped cover that covers the lower part of the fluid machine 1. It consists of a bottom shell 22.
  • the housing 2 is sealed by the shells 14, 18, 22 and the frames 16, 20, and the pressure of the refrigerant as the working fluid of the fluid machine 1 taken in from the external circuit is applied to the inside of the housing 2.
  • the top shell 18 is formed with a suction port 24 for sucking a refrigerant taken in from an external circuit, and a suction chamber 26 in which the suction port 24 is opened is formed inside the top shell 18.
  • the upper frame 16 is formed with a discharge port 28 for discharging the refrigerant that has passed through the suction port 24, the suction chamber 26, and the expander 8 to the outside of the housing 2.
  • the lower frame 20 is formed with a suction port 30 for sucking the refrigerant taken in from the external circuit, and the bottom shell 22 takes the refrigerant sucked from the suction port 30 and passed through the compressor 12 to the outside of the housing 2.
  • a discharge port 32 for discharging is formed, and the discharge port 32 is opened to a discharge chamber 34 formed inside the bottom shell 22.
  • the inside of the center shell 14 is partitioned by a partition wall 36 into a space 38 on the expander 8 side and a space 40 on the compressor 12 side, and a mechanical seal 42 is mounted at a position where the partition shaft 36 penetrates the drive shaft 4. 42 divides the space 38 and the space 40 in an airtight manner without disturbing the driving of the drive shaft 4.
  • the expander 8 includes a movable scroll 44 and a fixed scroll 46, and spiral wraps are erected on the scrolls 44 and 46 so as to face each other.
  • the movable scroll 44 is supported by the pedestal surface (first pressure receiving surface) 17 of the upper frame 16 so as to be capable of revolving without rotating, and a boss portion 48 projects on the back surface opposite to the standing surface of the wrap of the movable scroll 44.
  • the upper eccentric shaft portion 6 is connected to the boss portion 48.
  • the fixed scroll 46 is fixed to the upper frame 16, and a suction hole 50 opened to the suction chamber 26 is formed through the center of the fixed scroll 46, and communicated from the discharge port 28 inside the outer periphery of the fixed scroll 46.
  • a discharge chamber 52 is formed.
  • the drive shaft 4 is rotationally driven in accordance with the orbiting orbiting motion of the movable scroll 44, and the refrigerant used for the orbiting orbiting motion of the movable scroll 44 and the generation of the driving force of the driving shaft 4 passes through the discharge chamber 52 through the discharge port 28 to the housing. 2 is sent to an external circuit.
  • the compressor 12 includes a movable scroll 54 and a fixed scroll 56, and spiral wraps are erected on the scrolls 54 and 56 so as to face each other.
  • the movable scroll 54 is supported by the pedestal surface (first pressure receiving surface) 21 of the lower frame 20 so as to be capable of revolving without rotating, and a boss portion 58 projects from the back surface opposite to the standing surface of the wrap.
  • the lower eccentric shaft portion 10 is connected to the boss portion 58.
  • the fixed scroll 56 is fixed to the lower frame 20, and a discharge hole 60 opened to the discharge chamber 34 is formed through the center of the fixed scroll 56, and communicated from the suction port 30 to the inside of the outer periphery of the fixed scroll 56.
  • a suction chamber 62 is formed.
  • the compressor 12 described above the refrigerant sucked from the suction port 30 is taken into the compressor 12 through the suction chamber 62, and the movable and fixed scrolls 54 and 56 cooperate with each other so that the scrolls 54 and 56. Compressed in a compression chamber formed between the laps. The volume of the compression chamber is increased while the movable scroll 54 revolves around the axis of the fixed scroll 56 by the rotation of the drive shaft 4 via the boss portion 58 and moves toward the center of each scroll 54, 56. Will be reduced.
  • the refrigerant whose pressure has been increased with the decrease in the volume of the compression chamber passes through the discharge hole 60 and the discharge chamber 34 and is sent to an external circuit outside the housing 2 through the discharge port 32.
  • the upper lubricating oil chamber in which lubricating oil for lubricating the scrolls 44 and 46 of the expander 8 and the scrolls 54 and 56 of the compressor 12 is stored respectively.
  • 64 and a lower lubricating oil chamber 66 are formed.
  • oil passages 68 and 70 that open to the upper end and the lower end thereof are drilled in the axial direction of the drive shaft 4, and the oil passages 68 and 70 are drilled in the radial direction of the drive shaft 4, respectively.
  • the lubricating oil chambers 64 and 66 communicate with the oil supply holes 72 and 74. Lubricating oil stored in the upper lubricating oil chamber 64 is discharged from the upper end of the drive shaft 4 through the oil supply hole 72 and the oil passage 68, and the boss portion 48 of the movable scroll 44 partitioned in the housing 2 by the upper frame 16.
  • the storage chamber 76 is filled.
  • the lubricating oil filled in the storage chamber 76 flows down to the upper lubricating oil chamber 64 along the drive shaft 4 while lubricating the bearing portion 15, while passing through the space 78 outside the movable scroll 44 with respect to the fixed scroll 46. After being supplied to the sliding surface 80 of the movable scroll 44, it is sent from the discharge port 28 together with the refrigerant through the discharge chamber 52.
  • the lubricating oil stored in the lower lubricating oil chamber 66 is discharged from the lower end of the drive shaft 4 through the oil supply hole 74 and the oil passage 70, and the movable scroll 54 partitioned in the housing 2 by the lower frame 20.
  • the accommodation chamber 82 of the boss portion 58 is filled.
  • the lubricating oil filled in the storage chamber 82 is supplied to the sliding surface 86 of the movable scroll 54 with respect to the fixed scroll 56 through the space 84 outside the movable scroll 54, and then passes through the discharge hole 60 and the discharge chamber 34 to be refrigerant. At the same time, it is delivered from the discharge port 32.
  • a back pressure chamber of the movable scroll 44 is formed between the upper frame 16 and the back surface 44a of the movable scroll 44, and the back pressure chamber is supplied with the lubricating oil in the upper lubricating oil chamber 64.
  • the movable scroll 44 is pressed against the fixed scroll 46 by the back pressure generated as a result, and the upper frame 16 receives a back pressure against the thrust load of the movable scroll 44 on the pedestal surface 17.
  • a similar back pressure chamber is formed in the compressor 12, and the lower frame 20 receives a back pressure against the thrust load of the movable scroll 54 on the pedestal surface 21.
  • a suction pipe and a discharge pipe (not shown) for lubricating oil are connected to the upper side of the partition wall 36 of the center shell 14, and these pipes open to the upper lubricating oil chamber 64, while the partition wall 36 of the center shell 14.
  • a suction pipe and a discharge pipe (not shown) for the lubricating oil are connected to the lower side, and these pipes open to the lower lubricating oil chamber 66.
  • the amount of lubricating oil in the lubricating oil chambers 64 and 66 is appropriately controlled by a lubricating oil circulation circuit (not shown) to which the suction pipes and the discharge pipes are connected.
  • the upper frame 16 is formed with the rotation chamber 88 of the balance weight 7 in the accommodation chamber 76, and the rotation chamber 88 is the axis of the drive shaft 4 on the opposite side of the movable scroll 44 of the flange portion 5. It is formed in an annular recess 90 that is recessed along the direction.
  • the lower frame 20 is also provided with a rotation chamber 92 of the balance weight 11 in the accommodation chamber 82, and the rotation chamber 92 extends along the axial direction of the drive shaft 4 on the side opposite to the movable scroll 54 of the flange portion 9. It is formed in an annular recess 94 that is recessed.
  • FIG. 2 is an enlarged longitudinal sectional view showing the expander 8 side of the fluid machine 1 of FIG. 1, and the compressor 12 side has the same structure as the expander 8 side. Only the structure on the expander 8 side will be described as a representative, and the description on the compressor 12 side will be omitted.
  • the annular recess 90 is provided as much as possible in terms of rigidity or processing of the upper frame 16, and the weight and size of the balance weight 7 for ensuring a static balance of the compressor 12.
  • the bearing portion 15 is provided within a range that can rotate integrally with the drive shaft 4 without contacting the annular recess 90. It has a small diameter that is as close as possible, and is deeply recessed in the back surface 16a of the upper frame 16 as much as possible.
  • the expander 8 further includes a second frame 96 fixed to the first frame 16 in addition to an upper frame 16 (hereinafter referred to as a first frame) having a pedestal surface 17 (hereinafter referred to as a first pedestal surface).
  • the second frame 96 defines a rotating chamber 88 on the side of the movable scroll 44 in the accommodating chamber 76, and receives a back pressure against the thrust load of the movable scroll 44 in the back pressure chamber (second seat surface (second). Pressure-receiving surface) 95.
  • a seal ring 98 is fixed to the second pedestal surface 95 to intermittently partition the back pressure chamber into the drive shaft 4 side and the first frame 16 side.
  • the seal ring 98 intermittently straddles a not-shown annular groove or the like formed on the back surface 44 a with the revolving orbiting motion of the movable scroll 44, so that the back pressure closer to the drive shaft 4 than the seal ring 98 of the storage chamber 76 is obtained.
  • the high-pressure lubricating oil in the chamber is intermittently sent to the back pressure chamber on the first frame 16 side from the seal ring 98 through the annular groove, and the sent lubricating oil is discharged from the refrigerant by a back pressure adjusting valve (not shown).
  • the pressure is adjusted to an intermediate pressure that is lower than the pressure and higher than the refrigerant suction pressure.
  • Blocking mechanism 100 is provided. Specifically, referring to the perspective view showing the assembly stage of the second frame 96 to the first frame 16 in FIG. 3, the first frame 16 has a stepped portion 104 connected from the first pedestal surface 17 to the annular recess 90 side. Is formed.
  • Oldham ring grooves 106 ⁇ / b> A and 106 ⁇ / b> B are formed in the stepped portion 104 at a position facing the radial direction of the first frame 16 across the annular recess 90, and facing the radial direction different from the above of the first frame 16.
  • the locking grooves 108A and 108B of the second frame 96 are formed at the positions, and the lubricating oil discharged from the oil passage 68 between the Oldham ring grooves 106A and 106B and the locking grooves 108A and 108B.
  • Oil grooves 110A to 110D are formed.
  • the second frame 96 is formed with an annular seal ring groove 112 for fixing the seal ring 98 to the second pedestal surface 95, and the outer peripheral surface 96 a of the second frame 96 has a diameter of the second frame 96.
  • Locking portions 114A and 114B that are locked to the locking grooves 108A and 108B are provided in a projecting manner at positions facing each other in the direction.
  • Screw holes 116 are respectively formed in the bottoms of the locking grooves 108A and 108B and the locking portions 114A and 114B, and the locking portions 114A and 114B are fitted into the locking grooves 108A and 108B, respectively, and fixed with screws.
  • the second frame 96 is fixed to the first frame 16 and prevented from rotating or dropping.
  • the rotation space 88 of the balance weight 7 is secured by forming the rotation chamber 88 of the balance weight 7 in the accommodation chamber 76 of the movable scroll 44 partitioned by the first frame 16. Therefore, it is possible to prevent the diameter of the movable scroll 44 and consequently the diameter of the expander 8 from increasing. For the same reason, an increase in the diameter of the compressor 12 is also prevented, and the size in the radial direction of the fluid machine 1 can be particularly shortened. Therefore, the fluid machine 1 can be reduced in size and weight.
  • the second frame 96 is provided separately from the first frame 16, and the seal ring 98 is provided on the second pedestal surface 95, so that the diameter of the movable scroll 44 and thus the expander 8 can be reduced. Since the diameter is prevented from increasing and the diameter of the compressor 12 can be further reduced for the same reason, the fluid machine 1 can be further reduced in size and weight.
  • the Oldham ring 100 on the first pedestal surface 17, it is possible to prevent the diameter of the movable scroll 44 and thus the diameter of the expander 8 from being increased in order to provide the Oldham ring 100. Since the diameter can be further reduced, the fluid machine 1 can be further reduced in size and weight. Furthermore, the rotation chamber 88 is formed in an annular recess 90 that is recessed along the axial direction of the drive shaft 4 on the side of the collar 5 opposite to the movable scroll 44, so that the rotation chamber 88 can be formed. 76 is increased in the radial direction of the movable scroll 44, and the diameter of the movable scroll 44 and thus the diameter of the expander 8 is prevented from being increased. For the same reason, the diameter of the compressor 12 can be further decreased. Further reduction in size and weight of the machine 1 can be realized.
  • the balance weight 7 is formed in an L shape along the axial direction of the drive shaft 4 from the drive shaft 4, the balance weight 7 is large in the radial direction of the movable scroll 44. 76 is increased in the radial direction of the movable scroll 44, and the diameter of the movable scroll 44 and thus the diameter of the expander 8 is prevented from being increased. For the same reason, the diameter of the compressor 12 can be further decreased. Further reduction in size and weight of the machine 1 can be realized.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the rotation of the movable scroll 44 is prevented by the Oldham ring 100.
  • the present invention is not limited to this.
  • the diameters of the expander 8 and the compressor 12 can be reduced, so that the fluid machine 1 can be reduced in size and weight.
  • the drive side scroll unit is the expander 8 and the driven side scroll unit is the compressor 12 provided on the lower side of the expander 8, but either of the two scroll units is used.
  • the scroll units on the driving side and the driven side may be used, and the unit types of the expander 8 and the compressor 12 and the upper and lower arrangements are not limited.
  • this compressor-integrated expander By incorporating this compressor-integrated expander into, for example, a heat pump, it is possible to reduce the size and weight of a heat pump, and thus a heat pump type hot water heater equipped with the heat pump, which is preferable.
  • a movable scroll containing chamber is defined in the hermetic container, has a first pressure receiving surface that receives back pressure against the thrust load of the movable scroll, and includes a first frame that forms a balance weight rotating chamber in the containing chamber. Therefore, the present invention can be applied to a scroll type fluid machine that requires a reduction in size and weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a scroll type fluid machine with which smaller size and lighter weight can be realized. The machine is provided with a scroll unit (8) comprising a drive shaft (4) that extends inside a sealed container (2), a one-end eccentric shaft (6) offset from the axis of the drive shaft, a fixed scroll (46) that is affixed to the sealed container, and a movable scroll (44) that is connected to the one-end eccentric shaft and is caused to revolve around the axis of the fixed scroll with rotation of the drive shaft. The machine is also provided with a balance weight (7) that is supported on the drive shaft and is rotated integrally with the drive shaft, and a first frame (16) that partitions a movable scroll housing chamber (76) in the sealed container, forms a balance weight rotation chamber (88) in the housing chamber, and also has a first pressure-accepting surface (17) that is subjected to backpressure to resist the thrust load of the movable scroll.

Description

スクロール型流体機械Scroll type fluid machinery
 本発明は、スクロール型流体機械に係り、詳しくは、冷凍空調機やヒートポンプ式給湯機に組み込まれて好適なスクロール型流体機械に関する。 The present invention relates to a scroll type fluid machine, and more particularly, to a scroll type fluid machine suitable for being incorporated in a refrigeration air conditioner or a heat pump type water heater.
 この種のスクロール型流体機械には、密閉容器内を延びる駆動軸と、駆動軸の軸心から偏心され、その基部に駆動軸の軸心と同心円状をなす鍔部を有する上端偏心軸部と、密閉容器に固定される固定スクロールと、上端偏心軸部に連結され、駆動軸の回転に伴って固定スクロールの軸心周りに公転旋回運動される可動スクロールとからなるスクロールユニットと、鍔部に支持され、駆動軸と一体に回転されるバランスウェイトと、密閉容器内に可動スクロールの収容室を区画し、可動スクロールのスラスト荷重に対抗する背圧の受圧面を有するフレームとを備えたスクロール型圧縮機が知られている(例えば特許文献1参照)。 This type of scroll type fluid machine includes a drive shaft extending in a sealed container, an upper end eccentric shaft portion having a flange portion that is eccentric from the axis of the drive shaft and is concentric with the axis of the drive shaft. A scroll unit composed of a fixed scroll fixed to the sealed container, a movable scroll coupled to the upper end eccentric shaft part and revolving around the axis of the fixed scroll as the drive shaft rotates; A scroll type comprising a balance weight that is supported and rotated integrally with the drive shaft, and a frame having a receiving surface for back pressure that opposes the thrust load of the movable scroll and that defines a movable scroll accommodating chamber in the sealed container. A compressor is known (see, for example, Patent Document 1).
特開平3-81586号公報Japanese Patent Laid-Open No. 3-81586
 しかしながら、上記従来技術では、バランスウェイトは、鍔部から可動スクロール側に駆動軸の軸線方向に沿って断面視略L字状に設けられており、鍔部から可動スクロールまでの距離が短いことから、バランスウェイトの重量を確保するためにバランスウェイトの大きさが可動スクロールの径方向に大きくなっている。このため、バランスウェイトの回転空間を確保するためには、可動スクロールの直径、ひいてはスクロールユニットの直径を大きくせざるを得ず、スクロールユニット、ひいてはスクロール型流体機械が大型化し、その重量も増大するとの問題がある。 However, in the above prior art, the balance weight is provided in a substantially L shape in cross section along the axial direction of the drive shaft from the collar part to the movable scroll side, and the distance from the collar part to the movable scroll is short. In order to ensure the weight of the balance weight, the size of the balance weight is increased in the radial direction of the movable scroll. For this reason, in order to secure the rotating space of the balance weight, the diameter of the movable scroll and thus the scroll unit must be increased, and the scroll unit and thus the scroll type fluid machine becomes larger and its weight increases. There is a problem.
 本発明は、このような課題に鑑みてなされたもので、小型化及び軽量化を実現することができるスクロール型流体機械を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a scroll type fluid machine that can be reduced in size and weight.
 上記の目的を達成するべく、請求項1の本発明のスクロール型流体機械は、密閉容器内を延びる駆動軸と、駆動軸の軸心から偏心される一端偏心軸部と、密閉容器に固定される固定スクロールと、一端偏心軸部に連結され、駆動軸の回転に伴って固定スクロールの軸心周りに公転旋回運動される可動スクロールとからなるスクロールユニットと、駆動軸に支持され、駆動軸と一体に回転されるバランスウェイトと、密閉容器内に可動スクロールの収容室を区画し、可動スクロールのスラスト荷重に対抗する背圧を受ける第1受圧面を有するとともに、収容室にバランスウェイトの回転室を形成する第1フレームとを備えることを特徴としている。 In order to achieve the above object, a scroll type fluid machine according to a first aspect of the present invention is fixed to a sealed container, a drive shaft extending in the sealed container, an eccentric shaft portion eccentric from the axis of the drive shaft, and the sealed container. A fixed scroll, a scroll unit that is connected to an eccentric shaft portion and is revolved around the axis of the fixed scroll as the drive shaft rotates, and is supported by the drive shaft, The balance weight that is rotated integrally, the storage chamber of the movable scroll is defined in the sealed container, the first load receiving surface receives the back pressure against the thrust load of the movable scroll, and the rotation chamber of the balance weight is provided in the storage chamber. And a first frame that forms the shape.
 また、請求項2の発明では、請求項1において、収容室内の反可動スクロール側に回転室を区画し、可動スクロールのスラスト荷重に対抗する背圧を受ける第2受圧面を有するとともに、第2受圧面に駆動軸側と第1フレーム側とを間歇的に仕切るシールリングが設けられた第2フレームを備えることを特徴としている。
 更に、請求項3の発明では、請求項1または2において、第1受圧面にて可動スクロールの自転を阻止する自転阻止機構を備えることを特徴としている。
According to a second aspect of the present invention, in the first aspect of the present invention, the rotary chamber is defined on the side opposite to the movable scroll in the housing chamber, and has a second pressure receiving surface that receives a back pressure against the thrust load of the movable scroll. The pressure receiving surface includes a second frame provided with a seal ring that intermittently partitions the drive shaft side and the first frame side.
Further, the invention of claim 3 is characterized in that in claim 1 or 2, a rotation prevention mechanism for preventing rotation of the movable scroll at the first pressure receiving surface is provided.
 更にまた、請求項4の発明では、請求項1乃至3の何れかにおいて、一端偏心軸部は、その基部に駆動軸の軸心と同心円状をなす鍔部を有し、回転室は、鍔部の反可動スクロール側に駆動軸の軸線方向に沿って凹設される環状凹部に形成されることを特徴としている。
 また、請求項5の発明では、請求項1乃至4の何れかにおいて、バランスウェイトは、駆動軸から駆動軸の軸線方向に沿うL字状に形成されることを特徴としている。
Furthermore, in the invention of claim 4, in any one of claims 1 to 3, the one end eccentric shaft portion has a flange portion concentric with the axis of the drive shaft at its base portion, and the rotating chamber has It is characterized in that it is formed in an annular recess that is recessed along the axial direction of the drive shaft on the side opposite to the movable scroll.
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the balance weight is formed in an L shape along the axial direction of the drive shaft from the drive shaft.
 更に、請求項6の発明では、請求項1乃至5の何れかにおいて、駆動軸は長手方向が鉛直方向に配され、駆動軸は、駆動軸の上端側に形成される上側偏心軸部と、駆動軸の下端側に形成される下側偏心軸部とからなり、スクロールユニットは、上側偏心軸部に連結される可動スクロールを含む膨張機と、下側偏心軸部に連結される可動スクロールを含む圧縮機とからなる圧縮機一体型膨張機を構成することを特徴としている。 Furthermore, in the invention of claim 6, in any one of claims 1 to 5, the drive shaft is arranged in the vertical direction in the longitudinal direction, and the drive shaft is an upper eccentric shaft portion formed on the upper end side of the drive shaft; The scroll unit includes an expander including a movable scroll coupled to the upper eccentric shaft portion and a movable scroll coupled to the lower eccentric shaft portion. It is characterized by constituting a compressor-integrated expander comprising a compressor including the compressor.
 請求項1の本発明のスクロール型流体機械によれば、第1フレームに区画される可動スクロールの収容室に、バランスウェイトの回転室が形成されることにより、バランスウェイトの回転空間を確保するために、可動スクロールの直径、ひいてはスクロールユニットの直径が大きくなることが防止されるため、スクロールユニット、ひいてはスクロール型流体機械の小型化及び軽量化を実現することができる。 According to the scroll type fluid machine of the first aspect of the present invention, the rotation space of the balance weight is formed in the accommodating chamber of the movable scroll partitioned by the first frame, thereby securing the rotation space of the balance weight. In addition, since the diameter of the movable scroll, and hence the diameter of the scroll unit, is prevented from being increased, it is possible to achieve a reduction in size and weight of the scroll unit, and thus the scroll fluid machine.
 また、請求項2の発明によれば、収容室内の反可動スクロール側に回転室を区画し、可動スクロールのスラスト荷重に対抗する背圧を受ける第2受圧面を有するとともに、第2受圧面に駆動軸側と第1フレーム側とに間歇的に仕切るシールリングが設けられた第2フレームを備える。これにより、シールリングを設けるために可動スクロールの直径、ひいてはスクロールユニットの直径が大きくなることが防止されるため、スクロールユニット、ひいてはスクロール型流体機械の小型化及び軽量化を実現することができる。 According to the second aspect of the present invention, the rotating chamber is defined on the counter-movable scroll side in the housing chamber, and the second pressure receiving surface that receives the back pressure against the thrust load of the movable scroll is provided. A second frame provided with a seal ring for intermittently partitioning between the drive shaft side and the first frame side is provided. Thereby, since the diameter of the movable scroll and thus the diameter of the scroll unit are prevented from being increased due to the provision of the seal ring, the scroll unit and thus the scroll type fluid machine can be reduced in size and weight.
 更に、請求項3の発明によれば、第1受圧面にて可動スクロールの自転を阻止する自転阻止機構を備えることにより、自転阻止機構を設けるために可動スクロールの直径、ひいてはスクロールユニットの直径が大きくなることが防止されるため、スクロールユニット、ひいてはスクロール型流体機械の小型化及び軽量化を実現することができる。
 更にまた、請求項4の発明によれば、回転室は、鍔部の反可動スクロール側に駆動軸の軸線方向に沿って凹設される環状凹部に形成される。これにより、回転室の形成のために収容室が可動スクロールの径方向に大きくなり、可動スクロールの直径、ひいてはスクロールユニットの直径が大きくなることが防止されるため、スクロールユニット、ひいてはスクロール型流体機械の小型化及び軽量化を実現することができる。
Furthermore, according to the invention of claim 3, by providing the rotation prevention mechanism for preventing the rotation of the movable scroll at the first pressure receiving surface, the diameter of the movable scroll, and hence the diameter of the scroll unit, in order to provide the rotation prevention mechanism. Since it is prevented from becoming large, it is possible to achieve a reduction in size and weight of the scroll unit, and in turn, the scroll type fluid machine.
Furthermore, according to the invention of claim 4, the rotating chamber is formed in an annular recess that is recessed along the axial direction of the drive shaft on the side opposite to the movable scroll of the collar portion. This prevents the storage chamber from becoming larger in the radial direction of the movable scroll due to the formation of the rotating chamber, thereby preventing the diameter of the movable scroll and hence the scroll unit from being increased. Can be reduced in size and weight.
 また、請求項5の発明によれば、バランスウェイトは、駆動軸から駆動軸の軸線方向に沿うL字状に形成されることにより、バランスウェイトが可動スクロールの径方向に大きいために回転室、ひいては収容室が可動スクロールの径方向に大きくなり、可動スクロールの直径、ひいてはスクロールユニットの直径が大きくなることが防止されるため、スクロールユニット、ひいてはスクロール型流体機械の小型化及び軽量化を実現することができる。 According to the invention of claim 5, the balance weight is formed in an L shape from the drive shaft to the axial direction of the drive shaft, so that the balance weight is large in the radial direction of the movable scroll. As a result, the storage chamber becomes larger in the radial direction of the movable scroll, and the diameter of the movable scroll, and hence the scroll unit, is prevented from being increased. Therefore, the scroll unit and, consequently, the scroll type fluid machine can be reduced in size and weight. be able to.
 更に、請求項6の発明によれば、スクロールユニットが圧縮機一体型膨張機を構成することにより、この圧縮機一体型膨張機を冷凍サイクルに組み込むことによって、冷凍サイクル、ひいては当冷凍サイクルが搭載される外部装置の小型化及び軽量化を図ることができる。 Furthermore, according to the invention of claim 6, the scroll unit constitutes a compressor-integrated expander, and the compressor-integrated expander is incorporated into the refrigeration cycle, so that the refrigeration cycle and thus the refrigeration cycle is mounted. It is possible to reduce the size and weight of the external device.
本発明の一本実施形態に係るスクロール型流体機械を示した縦断面図である。It is the longitudinal section showing the scroll type fluid machine concerning one embodiment of the present invention. 図1のスクロール型流体機械の膨張機側を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the expander side of the scroll type fluid machine of FIG. 図2の第2フレームの第1フレームへの組み付け段階を示した斜視図である。FIG. 3 is a perspective view showing an assembly step of the second frame of FIG. 2 to the first frame.
 以下、図面により本発明の一実施形態について説明する。
 図1は、本実施形態に係るスクロール型流体機械1の縦断面図を示している。
 図1に示されるように、流体機械1は、例えば縦置き型の圧縮機一体型膨張機であって、流体機械1を構成する後述の圧縮機12が低段側圧縮機となる2段圧縮機を構成し、超臨界となる二酸化炭素冷媒が循環するヒートポンプ等の冷凍サイクルに介挿され、当該冷凍サイクルは冷凍空調機やヒートポンプ式給湯機等に組み込まれている。この冷凍サイクルは、後述の膨張機8の膨張エネルギーを動力に変換して圧縮機12を回転させ、圧縮機12は上記2段圧縮機を構成する図示しない高段側圧縮機の駆動をアシストしている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of a scroll type fluid machine 1 according to the present embodiment.
As shown in FIG. 1, the fluid machine 1 is, for example, a vertically-installed compressor-integrated expander, and a two-stage compression in which a later-described compressor 12 constituting the fluid machine 1 serves as a low-stage compressor. The refrigeration cycle is incorporated in a refrigeration air conditioner, a heat pump type hot water heater, or the like. In this refrigeration cycle, the expansion energy of an expander 8 described later is converted into power to rotate the compressor 12, and the compressor 12 assists in driving a high-stage compressor (not shown) constituting the two-stage compressor. ing.
 流体機械1は、ハウジング(密閉容器)2を備え、ハウジング2には、流体機械1を駆動する駆動軸4がその長手方向を鉛直方向に配して延設されている。
 駆動軸4の上端には、駆動軸4の軸心から偏心される上側偏心軸部(一端偏心軸部)6が一体に形成され、上側偏心軸部6には、軸受部を介して膨張機(スクロールユニット)8が連結されている。
The fluid machine 1 includes a housing (sealed container) 2, and a drive shaft 4 that drives the fluid machine 1 is extended in the housing 2 with the longitudinal direction thereof being arranged in the vertical direction.
An upper eccentric shaft portion (one end eccentric shaft portion) 6 that is eccentric from the axis of the drive shaft 4 is integrally formed at the upper end of the drive shaft 4, and the upper eccentric shaft portion 6 has an expander via a bearing portion. (Scroll unit) 8 is connected.
 また、上側偏心軸部6には、その基部に駆動軸4の軸心と同心円状をなす鍔部5が形成され、鍔部5には、駆動軸4と一体に回転され、膨張機8の静的且つ動的なバランスを調整するバランスウェイト7が支持、固定されている。
 一方、駆動軸4の下端には、駆動軸4の軸心から偏心される下側偏心軸部(一端偏心軸部)10が一体に形成され、下側偏心軸部10には、軸受部を介して圧縮機(スクロールユニット)12が連結されている。
Further, the upper eccentric shaft portion 6 is formed with a flange portion 5 concentrically with the shaft center of the drive shaft 4 at the base portion, and the flange portion 5 is rotated integrally with the drive shaft 4 so that the expander 8 A balance weight 7 for adjusting a static and dynamic balance is supported and fixed.
On the other hand, a lower eccentric shaft portion (one end eccentric shaft portion) 10 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the lower end of the drive shaft 4, and a bearing portion is provided on the lower eccentric shaft portion 10. A compressor (scroll unit) 12 is connected to the compressor.
 また、下側偏心軸部10には、その基部に駆動軸4の軸心と同心円状をなす鍔部9が形成され、鍔部9には、駆動軸4と一体に回転され、圧縮機12の静的且つ動的なバランスを調整するバランスウェイト11が支持、固定されている。
 このように、ハウジング2には、上から順に、共通の駆動軸4が連結された膨張機8、圧縮機12が鉛直方向に収容されている。
Further, the lower eccentric shaft portion 10 is formed with a flange portion 9 concentrically with the shaft center of the drive shaft 4 at the base portion, and the flange portion 9 is rotated integrally with the drive shaft 4 to be compressed by the compressor 12. A balance weight 11 for adjusting the static and dynamic balance is supported and fixed.
Thus, in the housing 2, the expander 8 and the compressor 12 to which the common drive shaft 4 is connected are accommodated in the vertical direction in order from the top.
 ハウジング2は、流体機械1の円筒胴部をなすセンターシェル14と、駆動軸4の上端側を軸受部15を介して回転自在に支持する上側フレーム(第1フレーム)16と、流体機械1の上部を覆うキャップ状のトップシェル18と、駆動軸4の下端側を軸受部19を介して回転自在に支持する下側フレーム(第1フレーム)20と、流体機械1の下部を覆うキャップ状のボトムシェル22とから構成されている。 The housing 2 includes a center shell 14 that forms a cylindrical body of the fluid machine 1, an upper frame (first frame) 16 that rotatably supports the upper end side of the drive shaft 4 via a bearing portion 15, and the fluid machine 1. A cap-shaped top shell 18 that covers the upper part, a lower frame (first frame) 20 that rotatably supports the lower end side of the drive shaft 4 via a bearing portion 19, and a cap-shaped cover that covers the lower part of the fluid machine 1. It consists of a bottom shell 22.
 ハウジング2は、これらシェル14,18,22、及びフレーム16,20によって密閉され、その内部に上記外部回路から取り込んだ流体機械1の作動流体としての冷媒の圧力が作用している。
 詳しくは、トップシェル18には、外部回路から取り込んだ冷媒を吸入する吸入口24が形成され、トップシェル18の内側には吸入口24が開口される吸入室26が形成されている。また、上側フレーム16には、吸入口24、吸入室26、膨張機8を順次経由した冷媒をハウジング2の外部へ吐出する吐出口28が形成されている。
The housing 2 is sealed by the shells 14, 18, 22 and the frames 16, 20, and the pressure of the refrigerant as the working fluid of the fluid machine 1 taken in from the external circuit is applied to the inside of the housing 2.
Specifically, the top shell 18 is formed with a suction port 24 for sucking a refrigerant taken in from an external circuit, and a suction chamber 26 in which the suction port 24 is opened is formed inside the top shell 18. Further, the upper frame 16 is formed with a discharge port 28 for discharging the refrigerant that has passed through the suction port 24, the suction chamber 26, and the expander 8 to the outside of the housing 2.
 一方、下側フレーム20には、外部回路から取り込んだ冷媒を吸入する吸入口30が形成され、ボトムシェル22には、吸入口30から吸入され圧縮機12を経由した冷媒をハウジング2の外部へ吐出する吐出口32が形成され、吐出口32はボトムシェル22の内側に形成された吐出室34に開口されている。
 センターシェル14の内部は、隔壁36によって膨張機8側の空間38と圧縮機12側の空間40とに仕切られ、隔壁36の駆動軸4の貫通位置にはメカニカルシール42が装着され、メカニカルシール42は駆動軸4の駆動を妨げることなく空間38と空間40との間を気密に区画している。
On the other hand, the lower frame 20 is formed with a suction port 30 for sucking the refrigerant taken in from the external circuit, and the bottom shell 22 takes the refrigerant sucked from the suction port 30 and passed through the compressor 12 to the outside of the housing 2. A discharge port 32 for discharging is formed, and the discharge port 32 is opened to a discharge chamber 34 formed inside the bottom shell 22.
The inside of the center shell 14 is partitioned by a partition wall 36 into a space 38 on the expander 8 side and a space 40 on the compressor 12 side, and a mechanical seal 42 is mounted at a position where the partition shaft 36 penetrates the drive shaft 4. 42 divides the space 38 and the space 40 in an airtight manner without disturbing the driving of the drive shaft 4.
 膨張機8は、可動スクロール44及び固定スクロール46から構成され、各スクロール44,46には渦巻き状のラップが対向して立設されている。
 可動スクロール44は上側フレーム16の台座面(第1受圧面)17に自転することなく公転旋回運動可能に支持され、可動スクロール44のラップの立設面と反対側の背面にボス部48が突設され、ボス部48には上側偏心軸部6が連結される。
The expander 8 includes a movable scroll 44 and a fixed scroll 46, and spiral wraps are erected on the scrolls 44 and 46 so as to face each other.
The movable scroll 44 is supported by the pedestal surface (first pressure receiving surface) 17 of the upper frame 16 so as to be capable of revolving without rotating, and a boss portion 48 projects on the back surface opposite to the standing surface of the wrap of the movable scroll 44. The upper eccentric shaft portion 6 is connected to the boss portion 48.
 固定スクロール46は上側フレーム16に固定され、固定スクロール46の中央部には吸入室26に開口した吸入孔50が貫通して形成され、固定スクロール46の外周内部には吐出口28から連通された吐出室52が形成されている。
 上述した膨張機8によれば、吸入口24から吸入された冷媒は、吸入室26、吸入孔50を経て膨張機8に取り込まれ、可動及び固定スクロール44,46が互いに協働することによって各スクロール44,46のラップ間に形成された膨張室にて膨張される。膨張室は、各スクロール44,46の外周側に向けて移動しながらその容積が増大され、これに伴い可動スクロール44が固定スクロール46の軸心周りに公転旋回運動される。
The fixed scroll 46 is fixed to the upper frame 16, and a suction hole 50 opened to the suction chamber 26 is formed through the center of the fixed scroll 46, and communicated from the discharge port 28 inside the outer periphery of the fixed scroll 46. A discharge chamber 52 is formed.
According to the expander 8 described above, the refrigerant sucked from the suction port 24 is taken into the expander 8 through the suction chamber 26 and the suction hole 50, and the movable and fixed scrolls 44 and 46 cooperate with each other. It is expanded in an expansion chamber formed between the wraps of the scrolls 44 and 46. The volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 44 and 46, and accordingly, the movable scroll 44 is revolved around the axis of the fixed scroll 46.
 駆動軸4は可動スクロール44の公転旋回運動に伴って回転駆動され、可動スクロール44の公転旋回運動、ひいては駆動軸4の駆動力発生に供した冷媒は吐出室52を経て吐出口28を介しハウジング2外の外部回路へ送出される。
 一方、圧縮機12は、可動スクロール54及び固定スクロール56から構成され、各スクロール54,56には渦巻き状のラップが対向して立設されている。
The drive shaft 4 is rotationally driven in accordance with the orbiting orbiting motion of the movable scroll 44, and the refrigerant used for the orbiting orbiting motion of the movable scroll 44 and the generation of the driving force of the driving shaft 4 passes through the discharge chamber 52 through the discharge port 28 to the housing. 2 is sent to an external circuit.
On the other hand, the compressor 12 includes a movable scroll 54 and a fixed scroll 56, and spiral wraps are erected on the scrolls 54 and 56 so as to face each other.
 可動スクロール54は下側フレーム20の台座面(第1受圧面)21に自転することなく公転旋回運動可能に支持され、そのラップの立設面と反対側の背面にボス部58が突設され、ボス部58には下側偏心軸部10が連結される。
 固定スクロール56は下側フレーム20に固定され、固定スクロール56の中央部には吐出室34に開口した吐出孔60が貫通して形成され、固定スクロール56の外周内部には吸入口30から連通された吸入室62が形成されている。
The movable scroll 54 is supported by the pedestal surface (first pressure receiving surface) 21 of the lower frame 20 so as to be capable of revolving without rotating, and a boss portion 58 projects from the back surface opposite to the standing surface of the wrap. The lower eccentric shaft portion 10 is connected to the boss portion 58.
The fixed scroll 56 is fixed to the lower frame 20, and a discharge hole 60 opened to the discharge chamber 34 is formed through the center of the fixed scroll 56, and communicated from the suction port 30 to the inside of the outer periphery of the fixed scroll 56. A suction chamber 62 is formed.
 上述した圧縮機12によれば、吸入口30から吸入された冷媒は、吸入室62を経て圧縮機12に取り込まれ、可動及び固定スクロール54,56が互いに協働することによって各スクロール54,56のラップ間に形成された圧縮室にて圧縮される。圧縮室は、ボス部58を介する駆動軸4の回転によって可動スクロール54が固定スクロール56の軸心周りに公転旋回運動することにより、各スクロール54,56の中心に向けて移動しながらその容積が減少される。 According to the compressor 12 described above, the refrigerant sucked from the suction port 30 is taken into the compressor 12 through the suction chamber 62, and the movable and fixed scrolls 54 and 56 cooperate with each other so that the scrolls 54 and 56. Compressed in a compression chamber formed between the laps. The volume of the compression chamber is increased while the movable scroll 54 revolves around the axis of the fixed scroll 56 by the rotation of the drive shaft 4 via the boss portion 58 and moves toward the center of each scroll 54, 56. Will be reduced.
 そして、圧縮室の容積の減少に伴い高圧にされた冷媒は、吐出孔60、吐出室34を経て吐出口32を介しハウジング2外の外部回路へ送出される。
 一方、隔壁36の上下側の空間38,40には、それぞれ膨張機8の各スクロール44,46、圧縮機12の各スクロール54,56を潤滑するための潤滑油が貯留される上側潤滑油室64及び下側潤滑油室66が形成されている。
Then, the refrigerant whose pressure has been increased with the decrease in the volume of the compression chamber passes through the discharge hole 60 and the discharge chamber 34 and is sent to an external circuit outside the housing 2 through the discharge port 32.
On the other hand, in the upper and lower spaces 38 and 40 of the partition wall 36, the upper lubricating oil chamber in which lubricating oil for lubricating the scrolls 44 and 46 of the expander 8 and the scrolls 54 and 56 of the compressor 12 is stored, respectively. 64 and a lower lubricating oil chamber 66 are formed.
 詳しくは、駆動軸4内には、その上端、下端にそれぞれ開口する油路68,70が駆動軸4の軸線方向に穿孔され、油路68,70は、それぞれ駆動軸4の径方向に穿孔された給油孔72,74によって各潤滑油室64,66に連通されている。
 上側潤滑油室64に貯留される潤滑油は、給油孔72、油路68を経て駆動軸4の上端から吐出され、上側フレーム16によってハウジング2内に区画される可動スクロール44のボス部48の収容室76を満たす。
Specifically, in the drive shaft 4, oil passages 68 and 70 that open to the upper end and the lower end thereof are drilled in the axial direction of the drive shaft 4, and the oil passages 68 and 70 are drilled in the radial direction of the drive shaft 4, respectively. The lubricating oil chambers 64 and 66 communicate with the oil supply holes 72 and 74.
Lubricating oil stored in the upper lubricating oil chamber 64 is discharged from the upper end of the drive shaft 4 through the oil supply hole 72 and the oil passage 68, and the boss portion 48 of the movable scroll 44 partitioned in the housing 2 by the upper frame 16. The storage chamber 76 is filled.
 この収容室76に満たされた潤滑油は、軸受部15を潤滑しながら駆動軸4に沿って上側潤滑油室64に流下される一方、可動スクロール44の外側の空間78を経て固定スクロール46に対する可動スクロール44の摺動面80に供給され、その後は吐出室52を経て冷媒と共に吐出口28から送出される。
 一方、下側潤滑油室66に貯留される潤滑油は、給油孔74、油路70を経て駆動軸4の下端から吐出され、下側フレーム20によってハウジング2内に区画される可動スクロール54のボス部58の収容室82を満たす。
The lubricating oil filled in the storage chamber 76 flows down to the upper lubricating oil chamber 64 along the drive shaft 4 while lubricating the bearing portion 15, while passing through the space 78 outside the movable scroll 44 with respect to the fixed scroll 46. After being supplied to the sliding surface 80 of the movable scroll 44, it is sent from the discharge port 28 together with the refrigerant through the discharge chamber 52.
On the other hand, the lubricating oil stored in the lower lubricating oil chamber 66 is discharged from the lower end of the drive shaft 4 through the oil supply hole 74 and the oil passage 70, and the movable scroll 54 partitioned in the housing 2 by the lower frame 20. The accommodation chamber 82 of the boss portion 58 is filled.
 この収容室82に満たされた潤滑油は、可動スクロール54の外側の空間84を経て固定スクロール56に対する可動スクロール54の摺動面86に供給され、その後は吐出孔60、吐出室34を経て冷媒と共に吐出口32から送出される。
 ここで、膨張機8においては、上側フレーム16と可動スクロール44の背面44aとの間には可動スクロール44の背圧室が形成され、背圧室は、上側潤滑油室64の潤滑油が供給されることにより発生する背圧によって可動スクロール44を固定スクロール46に対して押圧し、上側フレーム16は、台座面17にて可動スクロール44のスラスト荷重に対抗する背圧を受けている。一方、圧縮機12においても同様の背圧室が形成され、下側フレーム20は、台座面21にて可動スクロール54のスラスト荷重に対抗する背圧を受けている。
The lubricating oil filled in the storage chamber 82 is supplied to the sliding surface 86 of the movable scroll 54 with respect to the fixed scroll 56 through the space 84 outside the movable scroll 54, and then passes through the discharge hole 60 and the discharge chamber 34 to be refrigerant. At the same time, it is delivered from the discharge port 32.
Here, in the expander 8, a back pressure chamber of the movable scroll 44 is formed between the upper frame 16 and the back surface 44a of the movable scroll 44, and the back pressure chamber is supplied with the lubricating oil in the upper lubricating oil chamber 64. The movable scroll 44 is pressed against the fixed scroll 46 by the back pressure generated as a result, and the upper frame 16 receives a back pressure against the thrust load of the movable scroll 44 on the pedestal surface 17. On the other hand, a similar back pressure chamber is formed in the compressor 12, and the lower frame 20 receives a back pressure against the thrust load of the movable scroll 54 on the pedestal surface 21.
 また、センターシェル14の隔壁36よりも上側には、潤滑油の図示しない吸入管及び吐出管が接続され、これら管は上側潤滑油室64に開口しており、一方、センターシェル14の隔壁36よりも下側にも、潤滑油の図示しない吸入管及び吐出管が接続されており、これら管は下側潤滑油室66に開口している。そして、これら各吸入管及び各吐出管が接続される図示しない潤滑油循環回路よって潤滑油室64,66の潤滑油量が適宜制御される。 Further, a suction pipe and a discharge pipe (not shown) for lubricating oil are connected to the upper side of the partition wall 36 of the center shell 14, and these pipes open to the upper lubricating oil chamber 64, while the partition wall 36 of the center shell 14. Further, a suction pipe and a discharge pipe (not shown) for the lubricating oil are connected to the lower side, and these pipes open to the lower lubricating oil chamber 66. The amount of lubricating oil in the lubricating oil chambers 64 and 66 is appropriately controlled by a lubricating oil circulation circuit (not shown) to which the suction pipes and the discharge pipes are connected.
 ところで、本実施形態では、上側フレーム16には、収容室76にバランスウェイト7の回転室88が形成され、回転室88は、鍔部5の可動スクロール44とは反対側に駆動軸4の軸線方向に沿って凹設される環状凹部90に形成されている。一方、下側フレーム20にも、収容室82にバランスウェイト11の回転室92が形成され、回転室92は、鍔部9の可動スクロール54とは反対側に駆動軸4の軸線方向に沿って凹設される環状凹部94に形成されている。 By the way, in the present embodiment, the upper frame 16 is formed with the rotation chamber 88 of the balance weight 7 in the accommodation chamber 76, and the rotation chamber 88 is the axis of the drive shaft 4 on the opposite side of the movable scroll 44 of the flange portion 5. It is formed in an annular recess 90 that is recessed along the direction. On the other hand, the lower frame 20 is also provided with a rotation chamber 92 of the balance weight 11 in the accommodation chamber 82, and the rotation chamber 92 extends along the axial direction of the drive shaft 4 on the side opposite to the movable scroll 54 of the flange portion 9. It is formed in an annular recess 94 that is recessed.
 図2は、図1の流体機械1の膨張機8側を拡大して示した縦断面図であり、圧縮機12側は膨張機8側と同様の構造をなすことから、当該図2を用いて膨張機8側の構造のみを代表して説明し、圧縮機12側の説明については割愛する。
 図2に示されるように、環状凹部90は、上側フレーム16の剛性上または加工上において可能な限り、また、圧縮機12の静的なバランスを確保するためのバランスウェイト7の重量や大きさ、膨張機8の動的なバランスを確保するためのバランスウェイト7の回転モーメントなどを考慮して、環状凹部90に接触することなく駆動軸4と一体に回転可能な範囲で、軸受部15に極力肉迫した小径且つ上側フレーム16の背面16aに極力肉迫した深長に凹設されている。
FIG. 2 is an enlarged longitudinal sectional view showing the expander 8 side of the fluid machine 1 of FIG. 1, and the compressor 12 side has the same structure as the expander 8 side. Only the structure on the expander 8 side will be described as a representative, and the description on the compressor 12 side will be omitted.
As shown in FIG. 2, the annular recess 90 is provided as much as possible in terms of rigidity or processing of the upper frame 16, and the weight and size of the balance weight 7 for ensuring a static balance of the compressor 12. In consideration of the rotational moment of the balance weight 7 for securing the dynamic balance of the expander 8, the bearing portion 15 is provided within a range that can rotate integrally with the drive shaft 4 without contacting the annular recess 90. It has a small diameter that is as close as possible, and is deeply recessed in the back surface 16a of the upper frame 16 as much as possible.
 一方、バランスウェイト7は、鍔部5の外周端面5aに支持されるとともに、外周端面5aから駆動軸4の軸線方向に沿って屈曲された断面視略L字状に形成されている。
 ここで、膨張機8は、台座面17(以下、第1台座面という)を有する上側フレーム16(以下、第1フレームという)の他、第1フレーム16に固定される第2フレーム96を更に備え、第2フレーム96は、収容室76内の反可動スクロール44側に回転室88を区画し、背圧室において可動スクロール44のスラスト荷重に対抗する背圧を受ける第2台座面(第2受圧面)95を有している。
On the other hand, the balance weight 7 is supported by the outer peripheral end surface 5 a of the flange portion 5, and is formed in a substantially L shape in sectional view bent from the outer peripheral end surface 5 a along the axial direction of the drive shaft 4.
Here, the expander 8 further includes a second frame 96 fixed to the first frame 16 in addition to an upper frame 16 (hereinafter referred to as a first frame) having a pedestal surface 17 (hereinafter referred to as a first pedestal surface). The second frame 96 defines a rotating chamber 88 on the side of the movable scroll 44 in the accommodating chamber 76, and receives a back pressure against the thrust load of the movable scroll 44 in the back pressure chamber (second seat surface (second). Pressure-receiving surface) 95.
 第2台座面95には、背圧室を駆動軸4側と第1フレーム16側とに間歇的に仕切るシールリング98が固定されている。
 シールリング98は、可動スクロール44の公転旋回運動に伴い、背面44aに形成される図示しない環状溝等を間歇的に跨ぐことによって、収容室76のシールリング98よりも駆動軸4側の背圧室の高圧潤滑油が上記環状溝を介してシールリング98よりも第1フレーム16側の背圧室に間歇的に送出され、この送出された潤滑油は図示しない背圧調整弁によって冷媒の吐出圧よりも低圧で且つ冷媒の吸入圧よりも高圧の中間圧力に調整される。
A seal ring 98 is fixed to the second pedestal surface 95 to intermittently partition the back pressure chamber into the drive shaft 4 side and the first frame 16 side.
The seal ring 98 intermittently straddles a not-shown annular groove or the like formed on the back surface 44 a with the revolving orbiting motion of the movable scroll 44, so that the back pressure closer to the drive shaft 4 than the seal ring 98 of the storage chamber 76 is obtained. The high-pressure lubricating oil in the chamber is intermittently sent to the back pressure chamber on the first frame 16 side from the seal ring 98 through the annular groove, and the sent lubricating oil is discharged from the refrigerant by a back pressure adjusting valve (not shown). The pressure is adjusted to an intermediate pressure that is lower than the pressure and higher than the refrigerant suction pressure.
 また、第1台座面17と可動スクロール44の背面44aとの間には、第1台座面17にて可動スクロール44の公転旋回運動を妨げることなく可動スクロール44の自転を阻止するオルダムリング(自転阻止機構)100が設けられている。
 詳しくは、図3の第2フレーム96の第1フレーム16への組み付け段階を示した斜視図を参照すると、第1フレーム16には、第1台座面17から環状凹部90側に連なる段差部104が形成されている。
In addition, an Oldham ring (rotation) that prevents the movable scroll 44 from rotating without interfering with the first pedestal surface 17 and the back surface 44a of the movable scroll 44 without disturbing the orbital turning motion of the movable scroll 44 on the first pedestal surface 17. Blocking mechanism) 100 is provided.
Specifically, referring to the perspective view showing the assembly stage of the second frame 96 to the first frame 16 in FIG. 3, the first frame 16 has a stepped portion 104 connected from the first pedestal surface 17 to the annular recess 90 side. Is formed.
 段差部104には、環状凹部90を跨いで第1フレーム16の径方向に対向する位置にオルダムリング溝106A,106Bが形成され、また、第1フレーム16の上記とは異なる径方向に対向する位置に第2フレーム96の係止溝108A,108Bが形成されており、更に、各オルダムリング溝106A,106Bと各係止溝108A,108Bとの間には油路68から吐出される潤滑油が貯留される油溝110A~110Dが形成されている。 Oldham ring grooves 106 </ b> A and 106 </ b> B are formed in the stepped portion 104 at a position facing the radial direction of the first frame 16 across the annular recess 90, and facing the radial direction different from the above of the first frame 16. The locking grooves 108A and 108B of the second frame 96 are formed at the positions, and the lubricating oil discharged from the oil passage 68 between the Oldham ring grooves 106A and 106B and the locking grooves 108A and 108B. Oil grooves 110A to 110D are formed.
 一方、第2フレーム96は、第2台座面95にシールリング98を固定するための環状のシールリング溝112が形成され、また、第2フレーム96の外周面96aには第2フレーム96の径方向に対向する位置にそれぞれ係止溝108A,108Bに係止される係止部114A,114Bが突設されている。
 係止溝108A,108Bの溝底と係止部114A,114Bにはそれぞれねじ穴116が形成されており、係止溝108A,108Bにそれぞれ係止部114A,114Bを嵌合させてねじ固定することにより、第2フレーム96は、第1フレーム16に固定されてその回動や脱落が阻止される。
On the other hand, the second frame 96 is formed with an annular seal ring groove 112 for fixing the seal ring 98 to the second pedestal surface 95, and the outer peripheral surface 96 a of the second frame 96 has a diameter of the second frame 96. Locking portions 114A and 114B that are locked to the locking grooves 108A and 108B are provided in a projecting manner at positions facing each other in the direction.
Screw holes 116 are respectively formed in the bottoms of the locking grooves 108A and 108B and the locking portions 114A and 114B, and the locking portions 114A and 114B are fitted into the locking grooves 108A and 108B, respectively, and fixed with screws. As a result, the second frame 96 is fixed to the first frame 16 and prevented from rotating or dropping.
 以上のように、本実施形態では、第1フレーム16に区画される可動スクロール44の収容室76に、バランスウェイト7の回転室88が形成されることにより、バランスウェイト7の回転空間を確保するために、可動スクロール44の直径、ひいては膨張機8の直径が大きくなることが防止される。同じ理由により圧縮機12の直径が大きくなることも防止され、特に流体機械1の径方向の寸法を短くすることができるため、流体機械1の小型化及び軽量化を実現することができる。 As described above, in the present embodiment, the rotation space 88 of the balance weight 7 is secured by forming the rotation chamber 88 of the balance weight 7 in the accommodation chamber 76 of the movable scroll 44 partitioned by the first frame 16. Therefore, it is possible to prevent the diameter of the movable scroll 44 and consequently the diameter of the expander 8 from increasing. For the same reason, an increase in the diameter of the compressor 12 is also prevented, and the size in the radial direction of the fluid machine 1 can be particularly shortened. Therefore, the fluid machine 1 can be reduced in size and weight.
 また、第1フレーム16とは別体の第2フレーム96を備え、第2台座面95にシールリング98を設けることにより、シールリング98を設けるために可動スクロール44の直径、ひいては膨張機8の直径が大きくなることが防止され、同じ理由により圧縮機12の直径も更に小さくすることができるため、流体機械1の更なる小型化及び軽量化を実現することができる。 Further, the second frame 96 is provided separately from the first frame 16, and the seal ring 98 is provided on the second pedestal surface 95, so that the diameter of the movable scroll 44 and thus the expander 8 can be reduced. Since the diameter is prevented from increasing and the diameter of the compressor 12 can be further reduced for the same reason, the fluid machine 1 can be further reduced in size and weight.
 更に、第1台座面17にオルダムリング100を設けることにより、オルダムリング100を設けるために可動スクロール44の直径、ひいては膨張機8の直径が大きくなることが防止され、同じ理由により圧縮機12の直径も更に小さくすることができるため、流体機械1の更なる小型化及び軽量化を実現することができる。
 更にまた、回転室88が鍔部5の反可動スクロール44側に駆動軸4の軸線方向に沿って凹設される環状凹部90に形成されることにより、回転室88の形成のために収容室76が可動スクロール44の径方向に大きくなり、可動スクロール44の直径、ひいては膨張機8の直径が大きくなることが防止され、同じ理由により圧縮機12の直径も更に小さくすることができるため、流体機械1の更なる小型化及び軽量化を実現することができる。
Further, by providing the Oldham ring 100 on the first pedestal surface 17, it is possible to prevent the diameter of the movable scroll 44 and thus the diameter of the expander 8 from being increased in order to provide the Oldham ring 100. Since the diameter can be further reduced, the fluid machine 1 can be further reduced in size and weight.
Furthermore, the rotation chamber 88 is formed in an annular recess 90 that is recessed along the axial direction of the drive shaft 4 on the side of the collar 5 opposite to the movable scroll 44, so that the rotation chamber 88 can be formed. 76 is increased in the radial direction of the movable scroll 44, and the diameter of the movable scroll 44 and thus the diameter of the expander 8 is prevented from being increased. For the same reason, the diameter of the compressor 12 can be further decreased. Further reduction in size and weight of the machine 1 can be realized.
 また、バランスウェイト7は、駆動軸4から駆動軸4の軸線方向に沿うL字状に形成されることにより、バランスウェイト7が可動スクロール44の径方向に大きいために回転室88、ひいては収容室76が可動スクロール44の径方向に大きくなり、可動スクロール44の直径、ひいては膨張機8の直径が大きくなることが防止され、同じ理由により圧縮機12の直径も更に小さくすることができるため、流体機械1の更なる小型化及び軽量化を実現することができる。 Further, since the balance weight 7 is formed in an L shape along the axial direction of the drive shaft 4 from the drive shaft 4, the balance weight 7 is large in the radial direction of the movable scroll 44. 76 is increased in the radial direction of the movable scroll 44, and the diameter of the movable scroll 44 and thus the diameter of the expander 8 is prevented from being increased. For the same reason, the diameter of the compressor 12 can be further decreased. Further reduction in size and weight of the machine 1 can be realized.
 以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
 例えば、上記実施形態では、可動スクロール44の自転阻止をオルダムリング100によって行うが、これに限らず、例えばピン&リング式やピン&ホール式の自転阻止機構を設ける場合であっても、上記と同様に膨張機8及び圧縮機12の直径を小さくすることができ、ひいては流体機械1の小型化及び軽量化を実現することができる。
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the rotation of the movable scroll 44 is prevented by the Oldham ring 100. However, the present invention is not limited to this. For example, even when a pin & ring type or pin & hole type rotation prevention mechanism is provided, Similarly, the diameters of the expander 8 and the compressor 12 can be reduced, so that the fluid machine 1 can be reduced in size and weight.
 また、上記実施形態では、駆動側スクロールユニットが膨張機8であって、被駆動側スクロールユニットは膨張機8の下側に設けられた圧縮機12であるが、2つのスクロールユニットの何れかが駆動側及び被駆動側のスクロールユニットであれば良く、膨張機8、圧縮機12のユニット種別や、上下の配置は限定されない。但し、本実施形態によれば、少なくとも、冷凍サイクルを循環する冷媒の吐出圧力によって膨張機8を駆動し、この駆動力によって圧縮機12を駆動する圧縮機一体型膨張機を構成することができる。この圧縮機一体型膨張機を例えばヒートポンプに組み込むことによって、ヒートポンプ、ひいてはヒートポンプが搭載されるヒートポンプ式給湯機等の小型化及び軽量化を図ることができて好ましい。 In the above embodiment, the drive side scroll unit is the expander 8 and the driven side scroll unit is the compressor 12 provided on the lower side of the expander 8, but either of the two scroll units is used. The scroll units on the driving side and the driven side may be used, and the unit types of the expander 8 and the compressor 12 and the upper and lower arrangements are not limited. However, according to this embodiment, it is possible to configure a compressor-integrated expander that drives the expander 8 by at least the discharge pressure of the refrigerant circulating in the refrigeration cycle and drives the compressor 12 by this driving force. . By incorporating this compressor-integrated expander into, for example, a heat pump, it is possible to reduce the size and weight of a heat pump, and thus a heat pump type hot water heater equipped with the heat pump, which is preferable.
 密閉容器内に可動スクロールの収容室を区画し、可動スクロールのスラスト荷重に対抗する背圧を受ける第1受圧面を有するとともに、収容室にバランスウェイトの回転室を形成する第1フレームを備えることによって、小型化及び軽量化を必要とするスクロール型流体機械に適用できる。 A movable scroll containing chamber is defined in the hermetic container, has a first pressure receiving surface that receives back pressure against the thrust load of the movable scroll, and includes a first frame that forms a balance weight rotating chamber in the containing chamber. Therefore, the present invention can be applied to a scroll type fluid machine that requires a reduction in size and weight.
    1  スクロール型流体機械
    2  ハウジング(密閉容器)
    4  駆動軸
  5、9  鍔部
    6  上側偏心軸部(一端偏心軸部)
 7、11  バランスウェイト
    8  膨張機(スクロールユニット)
   10  下側偏心軸部(一端偏心軸部)
   12  圧縮機(スクロールユニット)
15、19  軸受部
   16  上側フレーム(第1フレーム)
   20  下側フレーム(第1フレーム)
17、21  台座面(第1台座面、第1受圧面)
   36  隔壁
44、54  可動スクロール
46、56  固定スクロール
76、82  収容室
88、92  回転室
90、94  環状凹部
   95  第2台座面(第2受圧面)
   96  第2フレーム
   98  シールリング
  100  オルダムリング(自転阻止機構)
1 Scroll type fluid machine 2 Housing (sealed container)
4 Drive shaft 5, 9 collar 6 Upper eccentric shaft (one eccentric shaft)
7, 11 Balance weight 8 Expander (scroll unit)
10 Lower eccentric shaft (one eccentric shaft)
12 Compressor (scroll unit)
15, 19 Bearing portion 16 Upper frame (first frame)
20 Lower frame (first frame)
17, 21 Pedestal surface (first pedestal surface, first pressure-receiving surface)
36 Partition 44, 54 Movable scroll 46, 56 Fixed scroll 76, 82 Storage chamber 88, 92 Rotating chamber 90, 94 Annular recess 95 Second seat surface (second pressure receiving surface)
96 Second frame 98 Seal ring 100 Oldham ring (rotation prevention mechanism)

Claims (6)

  1.  密閉容器内を延びる駆動軸と、
     前記駆動軸の軸心から偏心される一端偏心軸部と、
     前記密閉容器に固定される固定スクロールと、前記一端偏心軸部に連結され、該駆動軸の回転に伴って前記固定スクロールの軸心周りに公転旋回運動される可動スクロールとからなるスクロールユニットと、
     前記駆動軸に支持され、該駆動軸と一体に回転されるバランスウェイトと、
     前記密閉容器内に前記可動スクロールの収容室を区画し、前記可動スクロールのスラスト荷重に対抗する背圧を受ける第1受圧面を有するとともに、前記収容室に前記バランスウェイトの回転室を形成する第1フレームとを備えることを特徴とするスクロール型流体機械。
    A drive shaft extending through the sealed container;
    One end eccentric shaft portion eccentric from the axis of the drive shaft;
    A scroll unit composed of a fixed scroll fixed to the sealed container, and a movable scroll connected to the one end eccentric shaft portion and revolving around the axis of the fixed scroll as the drive shaft rotates.
    A balance weight supported by the drive shaft and rotated integrally with the drive shaft;
    A housing chamber for the movable scroll is defined in the sealed container, has a first pressure receiving surface that receives a back pressure against the thrust load of the movable scroll, and forms a rotation chamber for the balance weight in the housing chamber. A scroll type fluid machine comprising one frame.
  2.  前記収容室内の反可動スクロール側に前記回転室を区画し、前記可動スクロールの前記スラスト荷重に対抗する前記背圧を受ける第2受圧面を有するとともに、第2受圧面に前記駆動軸側と前記第1フレーム側とを間歇的に仕切るシールリングが設けられた第2フレームを備えることを特徴とする請求項1のスクロール型流体機械。 The rotating chamber is partitioned on the counter-movable scroll side in the storage chamber, and has a second pressure receiving surface that receives the back pressure against the thrust load of the movable scroll, and the second pressure receiving surface has the drive shaft side and the The scroll type fluid machine according to claim 1, further comprising a second frame provided with a seal ring that intermittently partitions the first frame side.
  3.  前記第1受圧面にて前記可動スクロールの自転を阻止する自転阻止機構を備えることを特徴とする請求項1または2のスクロール型流体機械。 The scroll type fluid machine according to claim 1 or 2, further comprising a rotation prevention mechanism for preventing rotation of the movable scroll at the first pressure receiving surface.
  4.  前記一端偏心軸部は、その基部に前記駆動軸の軸心と同心円状をなす鍔部を有し、
     前記回転室は、前記鍔部の反可動スクロール側に前記駆動軸の軸線方向に沿って凹設される環状凹部に形成されることを特徴とする請求項1乃至3の何れかのスクロール型流体機械。
    The one end eccentric shaft portion has a flange portion concentric with the shaft center of the drive shaft at the base portion thereof,
    The scroll-type fluid according to any one of claims 1 to 3, wherein the rotating chamber is formed in an annular recess that is recessed along the axial direction of the drive shaft on the side of the collar opposite to the movable scroll. machine.
  5.  前記バランスウェイトは、前記駆動軸から該駆動軸の軸線方向に沿うL字状に形成されることを特徴とする請求項1乃至4の何れかのスクロール型流体機械。 The scroll type fluid machine according to any one of claims 1 to 4, wherein the balance weight is formed in an L shape along the axial direction of the drive shaft from the drive shaft.
  6.  前記駆動軸は長手方向が鉛直方向に配され、
     前記駆動軸は、前記駆動軸の上端側に形成される上側偏心軸部と、前記駆動軸の下端側に形成される下側偏心軸部とからなり、
     前記スクロールユニットは、前記上側偏心軸部に連結される前記可動スクロールを含む膨張機と、前記下側偏心軸部に連結される前記可動スクロールを含む圧縮機とからなる圧縮機一体型膨張機を構成することを特徴とする請求項1乃至5の何れかのスクロール型流体機械。
    The drive shaft has a longitudinal direction arranged in a vertical direction,
    The drive shaft is composed of an upper eccentric shaft portion formed on the upper end side of the drive shaft and a lower eccentric shaft portion formed on the lower end side of the drive shaft,
    The scroll unit includes a compressor-integrated expander including an expander including the movable scroll coupled to the upper eccentric shaft portion and a compressor including the movable scroll coupled to the lower eccentric shaft portion. 6. The scroll type fluid machine according to claim 1, wherein the scroll type fluid machine is configured.
PCT/JP2009/006560 2008-12-02 2009-12-02 Scroll type fluid machine WO2010064426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-307362 2008-12-02
JP2008307362A JP2010133260A (en) 2008-12-02 2008-12-02 Scroll type fluid machine

Publications (1)

Publication Number Publication Date
WO2010064426A1 true WO2010064426A1 (en) 2010-06-10

Family

ID=42233084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006560 WO2010064426A1 (en) 2008-12-02 2009-12-02 Scroll type fluid machine

Country Status (2)

Country Link
JP (1) JP2010133260A (en)
WO (1) WO2010064426A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042916A1 (en) * 2014-09-17 2016-03-24 三菱重工オートモーティブサーマルシステムズ株式会社 Scroll compressor
JP2016118212A (en) * 2016-03-28 2016-06-30 三菱重工業株式会社 Fluid machinery
WO2022000887A1 (en) * 2020-07-02 2022-01-06 艾默生环境优化技术(苏州)有限公司 Compression mechanism and scroll compressor comprising compression mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948562B2 (en) * 2011-12-21 2016-07-06 パナソニックIpマネジメント株式会社 Scroll compressor
JP6241605B2 (en) * 2013-12-11 2017-12-06 サンデンホールディングス株式会社 Scroll type fluid machinery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160582A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Scroll compressor
JPS62199985A (en) * 1986-02-28 1987-09-03 Toshiba Corp Scroll type compressor
JPH01249974A (en) * 1988-03-31 1989-10-05 Toshiba Corp Scroll type fluid machine
JPH02173380A (en) * 1988-12-24 1990-07-04 Hitachi Ltd Scroll compressor
JP2001280272A (en) * 2000-03-31 2001-10-10 Fujitsu General Ltd Scroll type compressor
JP2003176794A (en) * 2002-12-13 2003-06-27 Hitachi Ltd Scroll compressor
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner
JP2007270764A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Scroll type fluid machine
JP2008002284A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160582A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Scroll compressor
JPS62199985A (en) * 1986-02-28 1987-09-03 Toshiba Corp Scroll type compressor
JPH01249974A (en) * 1988-03-31 1989-10-05 Toshiba Corp Scroll type fluid machine
JPH02173380A (en) * 1988-12-24 1990-07-04 Hitachi Ltd Scroll compressor
JP2001280272A (en) * 2000-03-31 2001-10-10 Fujitsu General Ltd Scroll type compressor
JP2003176794A (en) * 2002-12-13 2003-06-27 Hitachi Ltd Scroll compressor
JP2004257303A (en) * 2003-02-26 2004-09-16 Mitsubishi Electric Corp Scroll expansion machine and refrigerating air conditioner
JP2007270764A (en) * 2006-03-31 2007-10-18 Hitachi Ltd Scroll type fluid machine
JP2008002284A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042916A1 (en) * 2014-09-17 2016-03-24 三菱重工オートモーティブサーマルシステムズ株式会社 Scroll compressor
US10487831B2 (en) 2014-09-17 2019-11-26 Mitsubishi Heavy Industries Thermal Systems, Ltd. Scroll compressor
JP2016118212A (en) * 2016-03-28 2016-06-30 三菱重工業株式会社 Fluid machinery
WO2022000887A1 (en) * 2020-07-02 2022-01-06 艾默生环境优化技术(苏州)有限公司 Compression mechanism and scroll compressor comprising compression mechanism

Also Published As

Publication number Publication date
JP2010133260A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR101974272B1 (en) Compressor having merged flow path structure
JP5209764B2 (en) Scroll type fluid machinery
WO2011019021A1 (en) Scroll fluid machine
WO2015162869A1 (en) Scroll compressor
JP2020118161A (en) Scroll compressor
JP6187267B2 (en) Electric compressor
US6676392B1 (en) Small-sized compressor
WO2010064426A1 (en) Scroll type fluid machine
US10001122B2 (en) Scroll compressor
JP2009030469A (en) Scroll compressor
WO2014092065A1 (en) Scroll-type fluid machine
KR20100103139A (en) Scroll type compressor
WO2015194119A1 (en) Scroll compressor
JP2010090859A (en) Scroll type fluid machine
JP2004239099A (en) Rotary compressor
JP2021014830A (en) Scroll compressor
JPH09126168A (en) Fluid machinery
JP4484912B2 (en) Scroll compressor
JP2016217233A (en) Scroll compressor
JP6393116B2 (en) Scroll type fluid machinery
WO2017115559A1 (en) Scroll compressor
JP7486149B2 (en) Scroll Compressor
JP5058919B2 (en) Scroll type fluid machinery
JP7262010B2 (en) scroll compressor
JP2010096016A (en) Scroll fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830196

Country of ref document: EP

Kind code of ref document: A1