WO2010061441A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2010061441A1
WO2010061441A1 PCT/JP2008/071496 JP2008071496W WO2010061441A1 WO 2010061441 A1 WO2010061441 A1 WO 2010061441A1 JP 2008071496 W JP2008071496 W JP 2008071496W WO 2010061441 A1 WO2010061441 A1 WO 2010061441A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
fins
transfer tubes
fin
Prior art date
Application number
PCT/JP2008/071496
Other languages
French (fr)
Japanese (ja)
Inventor
貴宏 山谷
博司 堤
幸彦 川乘
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/071496 priority Critical patent/WO2010061441A1/en
Publication of WO2010061441A1 publication Critical patent/WO2010061441A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner designed to prevent dew-exposure.
  • the ceiling pocket (the space behind the ceiling) may be designed to be narrow in order to increase the ceiling height in the room.
  • the ceiling-embedded air conditioner installed in such a narrow ceiling pocket, there is an increasing need for thinning the indoor unit.
  • the installation space for the heat exchanger will decrease.
  • the longitudinal direction of the fin and the short direction of the fin correspond to the installation space. It is necessary to adjust the shape of the heat exchanger in the column direction and the fin stacking direction.
  • the conventional air conditioner is arranged so that the heat exchanger (more specifically, the longitudinal direction of the heat exchanger) is inclined at a predetermined angle from the vertical direction, so that the heat exchange efficiency of the heat exchanger is maintained. The installation space of the vessel is reduced.
  • the fins of the heat exchanger are subjected to a hydrophilic treatment on the surface in order to prevent the condensed water adhering to the fins from being scattered by the wind force of the blower (no loose dew splash).
  • the dew condensation water adhering to the fins easily flows on the fins, and the dew condensation water easily collects in a drain pan provided below the heat exchanger.
  • the hydrophilization treatment applied to the fin is deteriorated, the dew condensation water is difficult to flow on the fin. And the condensed water adhering to the fin peels off from the fin and scatters when its own weight and the wind force received from the blower exceed the surface tension.
  • the conventional air conditioner is provided with a structure for preventing dew-expansion separate from the hydrophilic treatment for fins.
  • the heat exchanger is arranged at a predetermined angle with respect to the vertical direction, it becomes easy to generate dew, so a dew structure that is different from the fin hydrophilization treatment is important.
  • Such a conventional air conditioner in which the heat exchanger is arranged at a predetermined angle with respect to the vertical direction and provided with an anti-exposure structure separate from the hydrophilization treatment is, for example, “at least provided on the upper surface A heat exchanger 3 that is bent in an inverted V shape by a front heat exchanger 3a and a rear heat exchanger 3b in an air passage that connects the suction port 1 and a blowout port 2 provided in the lower part of the front surface;
  • the rear dew A tray 5b is formed of a rear casing and a rib 6 that is integrally formed with the rear casing and also serves as a rear tongue of the blower fan 4.
  • the upper surface of the rib 6 passes through the rear heat exchanger 3b. It receives dew toward the air passage by the air flow.
  • the dew receiving plate 7 to recover er
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner capable of preventing dew-out without increasing the pressure loss of air flowing in the machine. To do.
  • An air conditioner includes a main body portion in which an air suction port and an air outlet are formed, and a blower provided in the main body portion, which sucks air from the suction port and discharges air from the air outlet.
  • a guide path as a structure for preventing dew escaping is formed in the fin direction of the heat exchanger along the step direction. For this reason, the dew condensation water adhering to the fin moves along the guide path (guided by the guide path) and moves to the drain pan. Further, since the dew-splash prevention structure (guidance path) according to the present invention does not protrude around the heat exchanger, it is possible to prevent an increase in pressure loss of the air flowing in the machine. Therefore, it is possible to obtain an air conditioner capable of preventing dew jumping without increasing the pressure loss of the air flowing in the machine.
  • FIG. 1 is a perspective view showing a heat exchanger according to Embodiment 1.
  • FIG. It is a perspective view which shows the conventional heat exchanger. It is the comparison figure which compared the dewdrop prevention effect of the heat exchanger which concerns on Embodiment 1, and the conventional heat exchanger.
  • It is a side view which shows an example of the number of passes of the heat exchanger which concerns on Embodiment 2, and a pass pattern. It is a side view which shows another example of the number of passes of the heat exchanger which concerns on Embodiment 2, and a pass pattern.
  • FIG. 1 is a schematic longitudinal sectional view showing an indoor unit of a ceiling-embedded air conditioner according to Embodiment 1 of the present invention.
  • the arrow shown in FIG. 1 shows the flow direction (wind direction) of air.
  • the indoor unit 100 of the ceiling-embedded air conditioner includes a main body 1, a blower 4, a drain pan 5, a heat exchanger 10, and the like.
  • the main body 1 has a substantially rectangular parallelepiped shape.
  • the height (vertical direction in FIG. 1) is 250 mm
  • the width (horizontal direction in FIG. 1) is 700 mm
  • the depth (perpendicular direction in FIG. 1) is 700 mm. It has become.
  • a suction port 2 is formed on one side surface
  • an air outlet 3 is formed on a side surface facing the suction port 2.
  • the position of the suction inlet 2 and the blower outlet 3 can be changed into arbitrary positions.
  • the suction port 2 and the exhaust port 3 may be formed on the bottom surface.
  • a blower 4 such as a sirocco fan is provided on the side where the suction port 2 is formed.
  • room air is sucked into the main body 1 and discharged from the outlet 3.
  • a heat exchanger 10 is provided in the main body 1 between the blower 4 and the blower outlet 3.
  • a drain pan 5 for collecting condensed water adhering to the heat exchanger 10 is provided below the heat exchanger 10.
  • the ceiling-embedded air conditioner according to the first embodiment has a cooling capacity of 3.2 kW.
  • FIG. 2 is a perspective view showing the heat exchanger according to Embodiment 1 of the present invention.
  • the stacking direction of the fins 11 is described as the stacking direction
  • the longitudinal direction of the fins 11 is the step direction
  • the short direction of the fins 11 is the column direction.
  • the heat exchanger 10 is a finned tube heat exchanger that includes a plurality of fins 11 stacked with a predetermined fin pitch and a plurality of heat transfer tubes 12 that penetrate the fins 11 in the stacking direction.
  • the plurality of heat transfer tubes 12 are arranged in a plurality of n rows.
  • each of the substantially rectangular fins 11 is also divided into n fins 11n in the row direction.
  • a space between adjacent fins 11n is the guide path 20. That is, the guide path 20 is formed along the step direction.
  • the guide path 20 (between adjacent fins 11n) does not have to be strictly parallel to the step direction. What is necessary is just to be formed along the step direction substantially. Moreover, the guide path 20 does not need to be a straight line, and may be partially curved. Moreover, between the adjacent fins 11n (guidance path 20) may be contacting, and the space may be formed. Further, the number of rows of the heat transfer tubes 12 and the number of divisions of the fins 11 are not necessarily the same. For example, the number of rows of heat transfer tubes may be four and the number of divisions of the fins 11 may be three.
  • the indoor air is cooled by the low-temperature refrigerant flowing through the heat transfer tube (heat transfer tube 12 or heat transfer tube 212) of the indoor heat exchanger (heat exchanger 10 or heat exchanger 210). At this time, moisture in the room air adheres to the fins (fin 11 or fin 211) as condensed water.
  • the conventional heat exchanger 210 that is arranged at an angle to reduce the installation space of the heat exchanger is configured by stacking undivided fins 211 in the stacking direction. .
  • the dew condensation adhering to the fin 211 flows downward due to its own weight or wind force received from the blower, as shown by the thick arrows in FIG.
  • This condensed water is combined with other condensed water while flowing downward, and becomes condensed water with large water droplets. The condensed water moves to the end of the fin 211.
  • the condensed water that has moved to the end portions of the fins 211 is less likely to move downward as compared to a vertically arranged heat exchanger. For this reason, the dew condensation water that has moved to the end of the fin 211 does not flow down to the lower drain pan, but remains at the end of the fin 211. Then, if the weight of the condensed water and the wind force received from the blower become larger than the surface tension acting on the condensed water, the condensed water peels off from the fins 211 and drops. And a part of dripped dew condensation water is decomposed
  • the dew condensation water adhering to the fins 111 and 112 is lowered by its own weight or wind force received from the blower. Flowing. This condensed water reaches the taxiway 20.
  • the condensed water that has reached the guide path 20 travels along the guide path 20 (guided by the guide path 20) and flows down to the drain pan 5 below.
  • the condensed water adhering to the fin 113 moves to the end of the fin 111.
  • the dew condensation water droplets are not so large.
  • FIG. 4 is a comparison diagram comparing the effect of preventing dew of the heat exchanger according to Embodiment 1 of the present invention and the conventional heat exchanger.
  • FIG. 4 shows that the local wind speed at the outlet of the blower is 9.7 m / s, the average wind speed passing through the heat exchanger is 1.7 m / s, the superheat of the refrigerant flowing through the heat exchanger is 2 ° C., and the heat exchanger And the heat exchanger 10 according to the first embodiment and the conventional heat exchanger 210 are compared for the effect of preventing dew-exposure in each air condition.
  • the number of the heat transfer tubes 12 and the heat transfer tubes 212 is changed to two or three, fins 11 and the fin pitches of the fins 211 are changed to 1.3, 1.5, and 1.7, and the effect of preventing the jumping out is compared.
  • the number of rows of the fins 11 according to the first embodiment is the same as the number of rows of the heat transfer tubes 12.
  • the dry bulb temperature and the wet bulb temperature are lower in the air condition shown on the right side. That is, the air condition shown on the right side is such that the outdoor temperature is lower and condensation tends to occur.
  • 4 is the conventional heat exchanger 210, and the divided fins shown in FIG. 4 are the heat exchanger 10 according to the first embodiment.
  • the heat exchanger 10 having a smaller fin pitch can prevent dew fly even under the air condition where the condensed water is likely to adhere to the fin 11. This is due to the following reason. If the fin pitch is large, the water droplets of condensed water that bridges between the fins 11 become large. When the water droplets of the condensed water bridging between the fins 11 are large, the weight of the condensed water increases and the condensed water is likely to drip. For this reason, when the condensed water drops, the above-described dew-off occurs. On the other hand, if the fin pitch is small, the water droplets of condensed water that bridges between the fins 11 also become small. For this reason, it becomes difficult for dew condensation water to drip, and dew jumping can be prevented.
  • the guide path 20 as a dew-exposure prevention structure is formed in the fin 11 of the heat exchanger 10 along the step direction. For this reason, the dew condensation water adhering to the fin 11 can move to the drain pan 5 through the guide path 20, so that dew splash can be prevented. Moreover, since the dew prevention structure (guidance path 20) which concerns on this Embodiment 1 does not protrude in the periphery of the heat exchanger 10, it prevents the increase in the pressure loss of the air which flows through the inside of the indoor unit 100. Can do. Therefore, it is possible to obtain an air conditioner capable of preventing dew escaping without increasing the pressure loss of the air flowing through the indoor unit 100.
  • the effect of preventing dew jumping is further improved.
  • the inclination angle of the heat exchanger 10 can be set to a large angle of 59 ° due to the above-described dew-exposure preventing effect. For this reason, the installation space of the heat exchanger 10 becomes small, and the indoor unit 100 can be reduced in thickness.
  • the guide path 20 is formed by dividing the fin 11, but the guide path 20 may be formed by forming a concave groove along the step direction of the fin 11, for example. Further, the guide path 20 does not need to communicate with both ends of the fin 11 in the longitudinal direction, and may be partially cut off.
  • the indoor unit 100 has been described. However, the present invention may be implemented in an outdoor unit.
  • the ceiling-embedded air conditioner has been described as an example of the air conditioner. However, the present invention may of course be applied to other air conditioners.
  • Embodiment 2 FIG.
  • the number of passes and the pass pattern of the heat exchanger 10 were not mentioned.
  • the number and path pattern of the heat exchanger are determined in consideration of refrigerant pressure loss and heat exchange efficiency. By setting the number of paths and the path pattern of the heat exchanger 10 as follows, dew jumping is performed. It becomes possible to prevent more.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a side view showing an example of the number of passes and a pass pattern of the heat exchanger according to Embodiment 2 of the present invention.
  • the arrows shown in FIG. 5 indicate the air flow direction (wind direction).
  • the fin 11 is constituted by two fins 111 and 112.
  • the heat transfer tubes 12 are arranged in two rows.
  • each path (a to d) is composed of eight heat transfer tubes 12.
  • the name of each heat transfer tube 12 is indicated as “(12) + (how many heat transfer tubes the refrigerant passes in each path) + (path name)”.
  • the heat transfer tube through which the refrigerant flows first in the path a is indicated as “121a”.
  • the low-temperature and low-pressure two-phase refrigerant decompressed by a decompression device (not shown) is branched by the refrigerant branching section 13 and flows into the heat transfer tubes 121a to 121d via the capillary tube.
  • the refrigerant that has flowed into the heat transfer tubes 121a to 121d flows into the heat transfer tubes 124a to 124d through the heat transfer tubes 122a to 122d and the heat transfer tubes 123a to 123d. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
  • the refrigerant that has flowed out of the heat transfer tubes 124a to 124d flows into the heat transfer tubes 125a to 125d in the second row on the leeward side.
  • the refrigerant that has flowed into the heat transfer tubes 125a to 125d flows into the heat transfer tubes 128a to 128d via the heat transfer tubes 126a to 126d and the heat transfer tubes 127a to 127d.
  • the refrigerant that has flowed out of each of the heat transfer tubes 128a to 128d joins at the refrigerant joining portion 15, and flows into the compressor (not shown) through a four-way valve (not shown) or the like.
  • the low-temperature and low-pressure two-phase refrigerant flowing into the heat exchanger 10 exchanges heat with the room air sent from the blower 4 in the process of flowing from the heat transfer tubes 121a to 121d to the heat transfer tubes 128a to 128d, and is sent from the blower 4. Cool the room air. At this time, the refrigerant is flowing in the second row of heat transfer tubes 12 (between the heat transfer tubes 125a to 125d and the heat transfer tubes 128a to 128d) on the leeward side so that the refrigerant becomes superheated steam.
  • the second row on the leeward side (outlet side) is obtained by flowing the refrigerant through the second row of heat transfer tubes 12 on the leeward side after flowing the refrigerant through the first row of heat transfer tubes 12 on the leeward side.
  • the temperature difference between the refrigerant flowing through the heat transfer tubes 12 and the indoor air flowing around the second row of heat transfer tubes 12 on the leeward side (outlet side) becomes small. For this reason, it becomes difficult for dew condensation water to adhere to the fins 112 in the second row on the leeward side (outflow side). Accordingly, the effect of preventing the jumping out is further improved.
  • FIG. 6 is a side view showing another example of the number of passes and the pass pattern of the heat exchanger according to Embodiment 2 of the present invention.
  • the arrows shown in FIG. 6 indicate the air flow direction (wind direction).
  • the fin 11 is constituted by two fins 111 and 112.
  • the heat transfer tubes 12 are arranged in two rows.
  • each of the path a and the path c is composed of ten heat transfer tubes 12.
  • the path b is composed of 12 heat transfer tubes 12.
  • the name of each heat transfer tube 12 is indicated as “(12) + (how many heat transfer tubes the refrigerant passes in each path) + (path name)”.
  • the heat transfer tube through which the refrigerant flows first in the path a is indicated as “121a”.
  • the low-temperature and low-pressure two-phase refrigerant decompressed by a decompression device (not shown) is branched by the refrigerant branching section 13.
  • a part of the refrigerant branched by the refrigerant branch part 13 flows into each of the heat transfer tubes 121a and 121c through the capillary tube.
  • the refrigerant flowing into the heat transfer tubes 121a and 121c flows into the heat transfer tubes 125a and 125c through the heat transfer tubes 122a and 122c, the heat transfer tubes 123a and 123c, and the heat transfer tubes 124a and 124c. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
  • the refrigerant that has flowed out of the heat transfer tubes 125a and 125c flows into the heat transfer tubes 126a and 126c in the second row on the leeward side.
  • the refrigerant flowing into the heat transfer tubes 126a and 126c flows into the heat transfer tubes 1210a and 1210c via the heat transfer tubes 127a and 127c, the heat transfer tubes 128a and 128c, and the heat transfer tubes 129a and 129c.
  • the refrigerant that has flowed out of each of the heat transfer tubes 1210a and 1210c merges with the refrigerant that flows through the path b at the refrigerant junction 15 and flows into the compressor (not shown) through a four-way valve (not shown) or the like. .
  • the remaining refrigerant branched by the refrigerant branch part 13 flows into the heat transfer tube 121b through the capillary tube.
  • the refrigerant that has flowed into the heat transfer tube 121b flows into the heat transfer tube 126b via the heat transfer tubes 122b to 125b. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
  • the refrigerant that has flowed out of the heat transfer tube 126b flows into the second row of heat transfer tubes 127b on the leeward side.
  • the refrigerant flowing into the heat transfer tube 127b flows into the heat transfer tube 1212b via the heat transfer tubes 128b to 1211b.
  • the refrigerant that has flowed out of the heat transfer tube 1212b joins with the refrigerant that flows through the path a and the path c in the refrigerant merging portion 15, and flows into the compressor (not shown) through a four-way valve (not shown) or the like.
  • the dew condensation water adheres to the fins 112 in the second row on the leeward side (outlet side) as in the heat exchanger 10 shown in FIG. It becomes difficult to do. Accordingly, the effect of preventing the jumping out is further improved.
  • the heat exchanger 10 shown in FIG. 6 has a longer heat transfer tube length per path than the heat exchanger 10 shown in FIG. For this reason, the refrigerant
  • the number of passes and the pass line of the heat exchanger 10 effective for preventing dew escaping have been described with reference to FIGS. 5 and 6.
  • the condensed water adhering to the upper portion of the heat exchanger 10 can be reduced by making the refrigerant flowing through the upper heat transfer tube 12 dry.
  • the condensed water adhering to the upper part of the heat exchanger 10 is highly likely to be scattered by the wind force of the blower 4. By reducing the amount of condensed water adhering to the upper part of the heat exchanger 10, it is possible to further improve the effect of preventing dew splatter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

An air conditioner has a body section (1) having an inlet opening (2) and an outlet opening (3) for air; a fan (4) provided at the body section (1) and sucking air from the inlet opening (2) and discharging the air from the outlet opening (3); a heat exchanger (10) having fins (11) and heat transfer pipes (12) and placed between the fan (4) and the outlet opening (3) with the longitudinal direction of the heat exchanger (10) inclined a predetermined angle relative to the vertical direction, the fins (11) being stacked with predetermined spacing, the heat transfer pipes (12) penetrating the fins (11) in the stack direction; and a drain pan (5) provided below the heat exchanger (10). The fins (11) have guide paths (20) formed in the step direction which is the longitudinal direction of the fins (11), and the guide paths (20) guide condensation water, adhering to the fins (11), to the drain pan (5).

Description

空気調和機Air conditioner
 本発明は空気調和機に関し、特に露飛び防止を図った空気調和機に関する。 The present invention relates to an air conditioner, and more particularly to an air conditioner designed to prevent dew-exposure.
 近年、空気調和機には、コンパクト化のニーズが高まっている。例えば、近年の建物は、室内の天井高さを高くするため、天井懐(天井裏の空間)が狭く設計されていることがある。このような狭い天井懐に設置される天井埋め込み形空気調和機の場合、室内機を薄型化するニーズが高まっている。 In recent years, there is an increasing need for compact air conditioners. For example, in recent buildings, the ceiling pocket (the space behind the ceiling) may be designed to be narrow in order to increase the ceiling height in the room. In the case of such a ceiling-embedded air conditioner installed in such a narrow ceiling pocket, there is an increasing need for thinning the indoor unit.
 空気調和機のコンパクト化を図るにつれて、熱交換器の設置スペースが減少する。例えばフィンチューブ型熱交換器の設置スペースを低減する場合、フィンチューブ型熱交換器の熱交換効率を維持するためには、フィンの表面積及び伝熱管長さを従来と同様に保つ必要がある。このため、熱交換器の熱交換効率を維持したまま熱交換器の設置スペースを低減させるためには、設置スペースに対応させて、フィンの長手方向である段方向、フィンの短手方向である列方向、及びフィンの積層方向に熱交換器形状を調整する必要がある。 As the air conditioner becomes more compact, the installation space for the heat exchanger will decrease. For example, when reducing the installation space of the finned tube heat exchanger, it is necessary to keep the surface area of the fins and the heat transfer tube length in the same manner as before in order to maintain the heat exchange efficiency of the finned tube heat exchanger. For this reason, in order to reduce the installation space of the heat exchanger while maintaining the heat exchange efficiency of the heat exchanger, the longitudinal direction of the fin and the short direction of the fin correspond to the installation space. It is necessary to adjust the shape of the heat exchanger in the column direction and the fin stacking direction.
 しかしながら、列方向に熱交換器形状を大きくした場合、熱交換器での風路抵抗が増加し、熱交換器を流れる空気の圧力損失が増加する。段方向に熱交換器形状を大きくすると室内機の高さが増加してしまう。積層方向に熱交換器形状を大きくすると、室内機の幅が大きくなってしまう。そこで、従来の空気調和機は、熱交換器(より詳しくは熱交換器の長手方向)を垂直方向から所定角度傾斜させて配置することにより、熱交換器の熱交換効率を維持したまま熱交換器の設置スペースを低減させている。 However, when the heat exchanger shape is increased in the row direction, the air path resistance in the heat exchanger increases, and the pressure loss of the air flowing through the heat exchanger increases. If the heat exchanger shape is increased in the step direction, the height of the indoor unit increases. When the heat exchanger shape is increased in the stacking direction, the width of the indoor unit is increased. Therefore, the conventional air conditioner is arranged so that the heat exchanger (more specifically, the longitudinal direction of the heat exchanger) is inclined at a predetermined angle from the vertical direction, so that the heat exchange efficiency of the heat exchanger is maintained. The installation space of the vessel is reduced.
 ところで、熱交換器のフィンには、送風機の風力によってフィンに付着した結露水が飛散すること(いやゆる露飛び)を防止するため、表面に親水化処理が施されている。これにより、フィンに付着した結露水がフィン上を流れやすくなり、熱交換器の下方に設けられたドレンパンに結露水が集まりやすくなる。しかしながら、フィンに施された親水化処理が劣化すると、結露水がフィン上を流れにくくなる。そして、フィンに付着した結露水は、その自重及び送風機から受ける風力が表面張力を超えると、フィンから剥離し飛散する。このため、従来の空気調和機には、フィンの親水化処理とは別の露飛び防止構造が設けられている。特に、熱交換器を垂直方向から所定角度傾斜させて配置した場合、露飛びが発生しやすくなるため、フィンの親水化処理とは別の露飛び防止構造が重要である。 By the way, the fins of the heat exchanger are subjected to a hydrophilic treatment on the surface in order to prevent the condensed water adhering to the fins from being scattered by the wind force of the blower (no loose dew splash). Thereby, the dew condensation water adhering to the fins easily flows on the fins, and the dew condensation water easily collects in a drain pan provided below the heat exchanger. However, if the hydrophilization treatment applied to the fin is deteriorated, the dew condensation water is difficult to flow on the fin. And the condensed water adhering to the fin peels off from the fin and scatters when its own weight and the wind force received from the blower exceed the surface tension. For this reason, the conventional air conditioner is provided with a structure for preventing dew-expansion separate from the hydrophilic treatment for fins. In particular, when the heat exchanger is arranged at a predetermined angle with respect to the vertical direction, it becomes easy to generate dew, so a dew structure that is different from the fin hydrophilization treatment is important.
 このような、熱交換器を垂直方向から所定角度傾斜させて配置し、親水化処理とは別の露飛び防止構造が設けられた従来の空気調和機としては、例えば「少なくとも上面に設けられた吸込口1と、前面下部に設けられた吹出口2とを結ぶ空気通路に、前部熱交換器3aおよび後部熱交換器3bにより逆V字状に折曲形成された熱交換器3と、送風ファン4とを設け、前記前部熱交換器3aの下部に前部露受皿5aを設け、前記後部熱交換器3bの下部に後部露受皿5bを設けてなる空気調和機において、前記後部露受皿5bが、後部ケーシングと、同後部ケーシングに一体成形され、前記送風ファン4の後側舌片を兼ねたリブ6とからなり、同リブ6の上面に、前記後部熱交換器3bを通過する空気流により前記空気通路に向かう露を受けて回収する露受板7を立設した。」(例えば特許文献1参照)というものが提案されている。 Such a conventional air conditioner in which the heat exchanger is arranged at a predetermined angle with respect to the vertical direction and provided with an anti-exposure structure separate from the hydrophilization treatment is, for example, “at least provided on the upper surface A heat exchanger 3 that is bent in an inverted V shape by a front heat exchanger 3a and a rear heat exchanger 3b in an air passage that connects the suction port 1 and a blowout port 2 provided in the lower part of the front surface; In the air conditioner provided with the blower fan 4, provided with a front dew tray 5a below the front heat exchanger 3a, and provided with a rear dew tray 5b below the rear heat exchanger 3b, the rear dew A tray 5b is formed of a rear casing and a rib 6 that is integrally formed with the rear casing and also serves as a rear tongue of the blower fan 4. The upper surface of the rib 6 passes through the rear heat exchanger 3b. It receives dew toward the air passage by the air flow. The dew receiving plate 7 to recover erected. "Is proposed as that (for example, see Patent Document 1).
特開2002-276986号公報(要約、図2)JP 2002-276986 A (summary, FIG. 2)
 空気調和機は、上述のようにコンパクト化が望まれる一方、冷房暖房性能確保や高顕熱化のニーズに答えるために大風量化も要望されている。このため、空気調和機には、機内(例えば室内機内)における風路抵抗増加の抑制や、熱交換器の通過風速増大等の対応が必要となる。しかしながら、従来の空気調和機(例えば特許文献1参照)では、リブ6や露受板7が風路抵抗となり、機内を流れる空気の圧力損失が増大してしまうという問題点があった。 While air conditioners are desired to be compact as described above, a large air volume is also required to meet the needs for ensuring cooling performance and increasing sensible heat. For this reason, it is necessary for the air conditioner to cope with suppression of an increase in air passage resistance in the apparatus (for example, in an indoor unit) and an increase in the passing air speed of the heat exchanger. However, the conventional air conditioner (see, for example, Patent Document 1) has a problem in that the rib 6 and the dew plate 7 become air path resistance, and the pressure loss of the air flowing in the machine increases.
 本発明は上述のような課題を解決するためになされたものであり、機内を流れる空気の圧力損失を増大させることなく、露飛びを防止することが可能な空気調和機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioner capable of preventing dew-out without increasing the pressure loss of air flowing in the machine. To do.
 本発明に係る空気調和機は、空気の吸込口及び吹出口が形成された本体部と、該本体部に設けられ、前記吸込口から空気を吸引して前記吹出し口から空気を排出させる送風機と、所定のフィンピッチを空けて積層された複数のフィン及び該フィンを積層方向に貫通する複数の伝熱管を有し、前記送風機と前記吹出口との間に、長手方向が垂直方向から所定角度傾斜して配置された熱交換器と、該熱交換器の下方に設けられたドレンパンと、を備え、前記フィンには、前記フィンに付着した結露水を前記ドレンパンに誘導する誘導路が、前記フィンの長手方向である段方向に沿って形成されているものである。 An air conditioner according to the present invention includes a main body portion in which an air suction port and an air outlet are formed, and a blower provided in the main body portion, which sucks air from the suction port and discharges air from the air outlet. A plurality of fins stacked with a predetermined fin pitch and a plurality of heat transfer tubes penetrating the fins in the stacking direction, and the longitudinal direction is a predetermined angle from the vertical direction between the blower and the outlet A heat exchanger disposed at an inclination, and a drain pan provided below the heat exchanger, wherein the fin has a guide path for guiding condensed water adhering to the fin to the drain pan. It is formed along the step direction which is the longitudinal direction of the fin.
 本発明においては、熱交換器のフィンに、露飛び防止構造としての誘導路が段方向に沿って形成されている。このため、フィンに付着した結露水は、この誘導路を伝って(誘導路に誘導されて)ドレンパンに移動する。また、本発明に係る露飛び防止構造(誘導路)は、熱交換器周辺に突出するものがないので、機内を流れる空気の圧力損失の増大を防止することができる。したがって、機内を流れる空気の圧力損失を増大させることなく、露飛びを防止することが可能な空気調和機を得ることができる。 In the present invention, a guide path as a structure for preventing dew escaping is formed in the fin direction of the heat exchanger along the step direction. For this reason, the dew condensation water adhering to the fin moves along the guide path (guided by the guide path) and moves to the drain pan. Further, since the dew-splash prevention structure (guidance path) according to the present invention does not protrude around the heat exchanger, it is possible to prevent an increase in pressure loss of the air flowing in the machine. Therefore, it is possible to obtain an air conditioner capable of preventing dew jumping without increasing the pressure loss of the air flowing in the machine.
実施の形態1に係る天井埋め込み形空気調和機の室内機を示す縦断面模式図である。It is a longitudinal cross-sectional schematic diagram which shows the indoor unit of the ceiling embedded type air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す斜視図である。1 is a perspective view showing a heat exchanger according to Embodiment 1. FIG. 従来の熱交換器を示す斜視図である。It is a perspective view which shows the conventional heat exchanger. 実施の形態1に係る熱交換器と従来の熱交換器との露飛び防止効果を比較した比較図である。It is the comparison figure which compared the dewdrop prevention effect of the heat exchanger which concerns on Embodiment 1, and the conventional heat exchanger. 実施の形態2に係る熱交換器のパス数及びパスパターンの一例を示す側面図である。It is a side view which shows an example of the number of passes of the heat exchanger which concerns on Embodiment 2, and a pass pattern. 実施の形態2に係る熱交換器のパス数及びパスパターンの別の一例を示す側面図である。It is a side view which shows another example of the number of passes of the heat exchanger which concerns on Embodiment 2, and a pass pattern.
符号の説明Explanation of symbols
 1 本体部、2 吸込口、3 吹出口、4 送風機、5 ドレンパン、10 熱交換器、11 フィン、12 伝熱管、13 冷媒分岐部、14 キャピラリーチューブ、15 冷媒合流部、20 誘導路、100 室内機、210 熱交換器、211 フィン、212 伝熱管。 1 body part, 2 inlet port, 3 outlet port, 4 blower, 5 drain pan, 10 heat exchanger, 11 fin, 12 heat transfer tube, 13 refrigerant branching part, 14 capillary tube, 15 refrigerant junction part, 20 induction path, 100 indoors Machine, 210 heat exchanger, 211 fins, 212 heat transfer tubes.
実施の形態1.
 以下では、空気調和機の一例として、室内機を天井に埋め込み設置する天井埋め込み形空気調和機について説明する。
 図1は、本発明の実施の形態1に係る天井埋め込み形空気調和機の室内機を示す縦断面模式図である。なお、図1に示す矢印は、空気の流れ方向(風向)を示す。
Embodiment 1 FIG.
Hereinafter, as an example of an air conditioner, a ceiling-embedded air conditioner in which an indoor unit is embedded in a ceiling will be described.
FIG. 1 is a schematic longitudinal sectional view showing an indoor unit of a ceiling-embedded air conditioner according to Embodiment 1 of the present invention. In addition, the arrow shown in FIG. 1 shows the flow direction (wind direction) of air.
 天井埋め込み形空気調和機の室内機100は、本体部1、送風機4、ドレンパン5及び熱交換器10等から構成されている。本体部1は略直方体形状をしており、本実施の形態1では、高さ(図1における上下方向)250mm、幅(図1における左右方向)700mm、奥行き(図1における紙面直交方向)700mmとなっている。この本体部1には、一側面部に吸込口2が形成されており、吸込口2と対向する側面部には吹出口3が形成されている。なお、吸込口2及び吹出口3の位置は任意の位置に変更可能である。例えば、吸込口2及び排気口3を底面部に形成してもよい。 The indoor unit 100 of the ceiling-embedded air conditioner includes a main body 1, a blower 4, a drain pan 5, a heat exchanger 10, and the like. The main body 1 has a substantially rectangular parallelepiped shape. In the first embodiment, the height (vertical direction in FIG. 1) is 250 mm, the width (horizontal direction in FIG. 1) is 700 mm, and the depth (perpendicular direction in FIG. 1) is 700 mm. It has become. In the main body 1, a suction port 2 is formed on one side surface, and an air outlet 3 is formed on a side surface facing the suction port 2. In addition, the position of the suction inlet 2 and the blower outlet 3 can be changed into arbitrary positions. For example, the suction port 2 and the exhaust port 3 may be formed on the bottom surface.
 本体部1内には、吸込口2の形成されている側に、例えばシロッコファン等の送風機4が設けられている。この送風機4によって、室内空気が本体部1内に吸引され、吹出口3から排出される。また、本体部1内には、送風機4と吹出口3との間に、熱交換器10が設けられている。この熱交換器10は、設置スペースを削減するため、長手方向が垂直方向から所定角度θだけ傾斜して配置されている。本実施の形態1では、θ=59°となっている。また、熱交換器10の下方には、熱交換器10に付着した結露水を集めるためのドレンパン5が設けられている。なお、本実施の形態1に係る天井埋め込み形空気調和機は、冷房能力が3.2kWとなっている。 In the main body 1, a blower 4 such as a sirocco fan is provided on the side where the suction port 2 is formed. By the blower 4, room air is sucked into the main body 1 and discharged from the outlet 3. Further, a heat exchanger 10 is provided in the main body 1 between the blower 4 and the blower outlet 3. The heat exchanger 10 is arranged such that the longitudinal direction is inclined by a predetermined angle θ from the vertical direction in order to reduce the installation space. In the first embodiment, θ = 59 °. Further, a drain pan 5 for collecting condensed water adhering to the heat exchanger 10 is provided below the heat exchanger 10. The ceiling-embedded air conditioner according to the first embodiment has a cooling capacity of 3.2 kW.
(熱交換器詳細)
 次に、本実施の形態1に係る熱交換器10の詳細について説明する。
 図2は、本発明の実施の形態1に係る熱交換器を示す斜視図である。なお、以下の説明では、フィン11の積層方向を積層方向、フィン11の長手方向を段方向、フィン11の短手方向を列方向として説明する。
(Details of heat exchanger)
Next, details of the heat exchanger 10 according to the first embodiment will be described.
FIG. 2 is a perspective view showing the heat exchanger according to Embodiment 1 of the present invention. In the following description, the stacking direction of the fins 11 is described as the stacking direction, the longitudinal direction of the fins 11 is the step direction, and the short direction of the fins 11 is the column direction.
 熱交換器10は、所定のフィンピッチを空けて積層された複数のフィン11、及びこれらフィン11を積層方向に貫通する複数の伝熱管12等から構成されるフィンチューブ型熱交換器である。複数の伝熱管12は複数のn列に配置されている。本実施の形態1では、伝熱管12は3列(n=3)に配置されている。また、例えば略長方形状のフィン11のそれぞれも、列方向に、n枚のフィン11nに分割されている。本実施の形態1では、フィン11は、列方向に、3枚(n=3)のフィン111~フィン113に分割されている。ここで、隣接するフィン11nの間が誘導路20となる。つまり、誘導路20は、段方向に沿って形成されている。 The heat exchanger 10 is a finned tube heat exchanger that includes a plurality of fins 11 stacked with a predetermined fin pitch and a plurality of heat transfer tubes 12 that penetrate the fins 11 in the stacking direction. The plurality of heat transfer tubes 12 are arranged in a plurality of n rows. In the first embodiment, the heat transfer tubes 12 are arranged in three rows (n = 3). For example, each of the substantially rectangular fins 11 is also divided into n fins 11n in the row direction. In the first embodiment, the fin 11 is divided into three (n = 3) fins 111 to 113 in the row direction. Here, a space between adjacent fins 11n is the guide path 20. That is, the guide path 20 is formed along the step direction.
 なお、誘導路20(隣接するフィン11nの間)は厳密に段方向と平行である必要はない。概ね段方向に沿って形成されていればよい。また、誘導路20は直線である必要はなく、一部曲線となっていてもよい。また、隣接するフィン11nの間(誘導路20)は、接触していてもよいし、空間が形成されていてもよい。また、伝熱管12の列数とフィン11の分割数を必ずしも同一数とする必要はない。例えば、伝熱管の列数を4列、フィン11の分割数を3列としてもよい。 Note that the guide path 20 (between adjacent fins 11n) does not have to be strictly parallel to the step direction. What is necessary is just to be formed along the step direction substantially. Moreover, the guide path 20 does not need to be a straight line, and may be partially curved. Moreover, between the adjacent fins 11n (guidance path 20) may be contacting, and the space may be formed. Further, the number of rows of the heat transfer tubes 12 and the number of divisions of the fins 11 are not necessarily the same. For example, the number of rows of heat transfer tubes may be four and the number of divisions of the fins 11 may be three.
(作用)
 続いて、誘導路20の作用について説明する。ここで、本実施の形態1に係る熱交換器10との比較のため、フィンが分割されていない従来の熱交換器を図3に示す。以下、図2及び図3を用いて、誘導路20の作用について説明する。
(Function)
Next, the operation of the guide path 20 will be described. Here, for comparison with the heat exchanger 10 according to Embodiment 1, a conventional heat exchanger in which the fins are not divided is shown in FIG. Hereinafter, the operation of the guide path 20 will be described with reference to FIGS. 2 and 3.
 冷房運転時、室内熱交換器(熱交換器10又は熱交換器210)の伝熱管(伝熱管12又は伝熱管212)を流れる低温冷媒によって、室内空気が冷却される。このとき、室内空気中の水分は、フィン(フィン11又はフィン211)等に、結露水となって付着する。 During the cooling operation, the indoor air is cooled by the low-temperature refrigerant flowing through the heat transfer tube (heat transfer tube 12 or heat transfer tube 212) of the indoor heat exchanger (heat exchanger 10 or heat exchanger 210). At this time, moisture in the room air adheres to the fins (fin 11 or fin 211) as condensed water.
 熱交換器の設置スペースを削減するために傾斜して配置されている従来の熱交換器210は、図3に示すように、分割されていないフィン211が積層方向に積層されて構成されている。このような従来の熱交換器210の場合、図3の太線の矢印で示すように、フィン211に付着した結露水は、その自重や送風機から受ける風力により、下方に流れる。この結露水は、下方に流れる途中でその他の結露水と合体し、大きな水滴の結露水となっていく。そして、この結露水は、フィン211の端部に移動する。 As shown in FIG. 3, the conventional heat exchanger 210 that is arranged at an angle to reduce the installation space of the heat exchanger is configured by stacking undivided fins 211 in the stacking direction. . In the case of such a conventional heat exchanger 210, the dew condensation adhering to the fin 211 flows downward due to its own weight or wind force received from the blower, as shown by the thick arrows in FIG. This condensed water is combined with other condensed water while flowing downward, and becomes condensed water with large water droplets. The condensed water moves to the end of the fin 211.
 熱交換器210は傾斜して配置されているため、垂直に配置された熱交換器と比較して、フィン211の端部に移動した結露水は下方へ移動しにくい。このため、フィン211の端部に移動した結露水は、下方のドレンパンに流れ落ちず、フィン211の端部に留まってしまう。そして、結露水の自重及び送風機から受ける風力が結露水に働く表面張力よりも大きくなってしまうと、結露水はフィン211から剥離し滴下してしまう。そして、滴下した結露水の一部は、送風機から受ける風力によって空中で小さな水滴に分解され、飛散してしまう。また、滴下した残りの一部は、ドレンパンに衝突することにより跳ね返り、送風機から受ける風力によって飛散してしまう。つまり、露飛びが発生してしまう。 Since the heat exchanger 210 is inclined, the condensed water that has moved to the end portions of the fins 211 is less likely to move downward as compared to a vertically arranged heat exchanger. For this reason, the dew condensation water that has moved to the end of the fin 211 does not flow down to the lower drain pan, but remains at the end of the fin 211. Then, if the weight of the condensed water and the wind force received from the blower become larger than the surface tension acting on the condensed water, the condensed water peels off from the fins 211 and drops. And a part of dripped dew condensation water is decomposed | disassembled into a small water droplet in the air by the wind force received from a fan, and will be scattered. Further, the remaining part of the dripped rebounds by colliding with the drain pan and is scattered by the wind force received from the blower. That is, dew is generated.
 一方、本実施の形態1に係る熱交換器10の場合、図2の太線の矢印で示すように、フィン111及びフィン112に付着した結露水は、その自重や送風機から受ける風力により、下方に流れる。この結露水は、誘導路20に到達する。誘導路20に到達した結露水は、誘導路20を伝って(誘導路20に誘導されて)、下方のドレンパン5に流れ落ちる。ここで、フィン113に付着した結露水は、フィン111の端部に移動する。しかしながら、結露水の下方への移動距離が短いので、結露水の水滴はあまり大きくならない。このため、結露水の自重及び送風機から受ける風力が結露水に働く表面張力よりも大きくなるということが起こりにくい。したがって、フィン111の端部に移動した結露水は、フィン111の端部を伝って、下方のドレンパン5に流れ落ちる。 On the other hand, in the case of the heat exchanger 10 according to the first embodiment, as shown by the thick arrows in FIG. 2, the dew condensation water adhering to the fins 111 and 112 is lowered by its own weight or wind force received from the blower. Flowing. This condensed water reaches the taxiway 20. The condensed water that has reached the guide path 20 travels along the guide path 20 (guided by the guide path 20) and flows down to the drain pan 5 below. Here, the condensed water adhering to the fin 113 moves to the end of the fin 111. However, since the moving distance of the dew condensation water is short, the dew condensation water droplets are not so large. For this reason, it is unlikely that the weight of the condensed water and the wind force received from the blower are larger than the surface tension acting on the condensed water. Therefore, the condensed water that has moved to the end of the fin 111 flows down the drain pan 5 along the end of the fin 111.
 図4は、本発明の実施の形態1に係る熱交換器と従来の熱交換器との露飛び防止効果を比較した比較図である。この図4は、送風機出口の吹出し局所風速を9.7m/s、熱交換器を通過する平均風速を1.7m/s、熱交換器を流れる冷媒のスーパーヒートを2℃、及び熱交換器の傾斜角度θ=59°とし、本実施の形態1に係る熱交換器10と従来の熱交換器210との各空気条件における露飛び防止効果を比較している。 FIG. 4 is a comparison diagram comparing the effect of preventing dew of the heat exchanger according to Embodiment 1 of the present invention and the conventional heat exchanger. FIG. 4 shows that the local wind speed at the outlet of the blower is 9.7 m / s, the average wind speed passing through the heat exchanger is 1.7 m / s, the superheat of the refrigerant flowing through the heat exchanger is 2 ° C., and the heat exchanger And the heat exchanger 10 according to the first embodiment and the conventional heat exchanger 210 are compared for the effect of preventing dew-exposure in each air condition.
 また、図4では、本実施の形態1に係る熱交換器10と従来の熱交換器210のそれぞれにおいて、伝熱管12及び伝熱管212の列数を2列又は3列に変更したもの、フィン11及びフィン211のフィンピッチを1.3,1.5,1.7に変更したものについて、露飛び防止効果を比較している。このとき、本実施の形態1に係るフィン11の列数は、伝熱管12の列数と同じになっている。 Further, in FIG. 4, in each of the heat exchanger 10 according to the first embodiment and the conventional heat exchanger 210, the number of the heat transfer tubes 12 and the heat transfer tubes 212 is changed to two or three, fins 11 and the fin pitches of the fins 211 are changed to 1.3, 1.5, and 1.7, and the effect of preventing the jumping out is compared. At this time, the number of rows of the fins 11 according to the first embodiment is the same as the number of rows of the heat transfer tubes 12.
 なお、図4では、右側に示す空気条件ほど、乾球温度及び湿球温度が低くなっている。つまり、右側に示す空気条件ほど、露天温度が低く、結露が発生しやすい空気条件となっている。また、図4に示す連続フィンが従来の熱交換器210となっており、図4に示す分割フィンが本実施の形態1に係る熱交換器10となっている。 In FIG. 4, the dry bulb temperature and the wet bulb temperature are lower in the air condition shown on the right side. That is, the air condition shown on the right side is such that the outdoor temperature is lower and condensation tends to occur. 4 is the conventional heat exchanger 210, and the divided fins shown in FIG. 4 are the heat exchanger 10 according to the first embodiment.
 図4からわかるように、乾球温度32℃/湿球温度29℃(相対湿度約80%)での空気条件では、図4に示す従来の熱交換器210のすべてに露飛びが発生している。一方、この空気条件では、図4に示す本実施の形態1に係る熱交換器10のすべてにおいて、露飛びを防止できている。 As can be seen from FIG. 4, under the air condition at a dry bulb temperature of 32 ° C./wet bulb temperature of 29 ° C. (relative humidity of about 80%), the conventional heat exchanger 210 shown in FIG. Yes. On the other hand, under this air condition, dew can be prevented in all of the heat exchanger 10 according to the first embodiment shown in FIG.
 また、図4に示す本実施の形態1に係る熱交換器10のそれぞれについて比較すると、伝熱管12及びフィン11の列数が多いほど、露飛びを防止できていることがわかる。これは、フィン11の列数が多いほど誘導路20及びフィン11の端部に到達する結露水を小さくできるので、結露水の自重及び送風機から受ける風力が結露水に働く表面張力よりも大きくなるということが起こりにくいからである。 Further, when comparing each of the heat exchangers 10 according to the first embodiment shown in FIG. 4, it can be seen that as the number of rows of the heat transfer tubes 12 and the fins 11 increases, the exposure can be prevented. This is because the greater the number of rows of fins 11, the smaller the dew condensation water that reaches the end of the guide path 20 and fins 11, so that the weight of the dew condensation water and the wind force received from the blower are greater than the surface tension acting on the dew condensation water. This is because it is difficult to happen.
 また、フィンピッチの小さい熱交換器10ほど、結露水がフィン11に付着しやすい空気条件下でも露飛びを防止できていることがわかる。これは、以下の理由による。フィンピッチが大きいと、フィン11間にブリッジする結露水の水滴が大きくなってしまう。フィン11間にブリッジする結露水の水滴が大きいと、結露水の自重が大きくなり、結露水が滴下しやすい。このため、結露水が滴下することによって、上述のような露飛びが発生する。一方、フィンピッチが小さいと、フィン11間にブリッジする結露水の水滴も小さくなる。このため、結露水が滴下しにくくなり、露飛びを防止することができる。 In addition, it can be seen that the heat exchanger 10 having a smaller fin pitch can prevent dew fly even under the air condition where the condensed water is likely to adhere to the fin 11. This is due to the following reason. If the fin pitch is large, the water droplets of condensed water that bridges between the fins 11 become large. When the water droplets of the condensed water bridging between the fins 11 are large, the weight of the condensed water increases and the condensed water is likely to drip. For this reason, when the condensed water drops, the above-described dew-off occurs. On the other hand, if the fin pitch is small, the water droplets of condensed water that bridges between the fins 11 also become small. For this reason, it becomes difficult for dew condensation water to drip, and dew jumping can be prevented.
 このように構成された空気調和機においては、熱交換器10のフィン11に、露飛び防止構造としての誘導路20を段方向に沿って形成している。このため、フィン11に付着した結露水は誘導路20を伝ってドレンパン5に移動することができるので、露飛びを防止することができる。また、本実施の形態1に係る露飛び防止構造(誘導路20)は、熱交換器10の周辺に突出するものがないので、室内機100内を流れる空気の圧力損失の増大を防止することができる。したがって、室内機100内を流れる空気の圧力損失を増大させることなく、露飛びを防止することが可能な空気調和機を得ることができる。 In the air conditioner configured as described above, the guide path 20 as a dew-exposure prevention structure is formed in the fin 11 of the heat exchanger 10 along the step direction. For this reason, the dew condensation water adhering to the fin 11 can move to the drain pan 5 through the guide path 20, so that dew splash can be prevented. Moreover, since the dew prevention structure (guidance path 20) which concerns on this Embodiment 1 does not protrude in the periphery of the heat exchanger 10, it prevents the increase in the pressure loss of the air which flows through the inside of the indoor unit 100. Can do. Therefore, it is possible to obtain an air conditioner capable of preventing dew escaping without increasing the pressure loss of the air flowing through the indoor unit 100.
 また、フィンピッチを小さくすることにより、より好ましくはフィンピッチを1.3mm~1.5mmとすることにより、露飛びの防止効果がさらに向上する。 Also, by reducing the fin pitch, more preferably by setting the fin pitch to 1.3 mm to 1.5 mm, the effect of preventing dew jumping is further improved.
 また、上記の露飛び防止効果により、熱交換器10の傾斜角度を59°という大きな角度に設定することができる。このため、熱交換器10の設置スペースが小さくなり、室内機100を薄型化することができる。 In addition, the inclination angle of the heat exchanger 10 can be set to a large angle of 59 ° due to the above-described dew-exposure preventing effect. For this reason, the installation space of the heat exchanger 10 becomes small, and the indoor unit 100 can be reduced in thickness.
 なお、本実施の形態1では、フィン11を分割することにより誘導路20を形成したが、例えばフィン11の段方向に沿って凹溝を形成することにより誘導路20を形成してもよい。また、誘導路20はフィン11の長手方向両端まで連通している必要はなく、一部分断されていてもよい。
 また、本実施の形態1では、室内機100について説明したが、室外機に本発明を実施してもよい。また、本実施の形態1では空気調和機の一例として天井埋め込み形空気調和機について説明したが、その他の空気調和機に本発明を実施してももちろんよい。
In the first embodiment, the guide path 20 is formed by dividing the fin 11, but the guide path 20 may be formed by forming a concave groove along the step direction of the fin 11, for example. Further, the guide path 20 does not need to communicate with both ends of the fin 11 in the longitudinal direction, and may be partially cut off.
In Embodiment 1, the indoor unit 100 has been described. However, the present invention may be implemented in an outdoor unit. In the first embodiment, the ceiling-embedded air conditioner has been described as an example of the air conditioner. However, the present invention may of course be applied to other air conditioners.
実施の形態2.
 実施の形態1では、熱交換器10のパス数及びパスパターンについては言及しなかった。熱交換器のパス数及びパスパターンは冷媒圧損や熱交換の効率を考慮して決定するものであるが、熱交換器10のパス数及びパスパターンを以下のようにすることにより、露跳びをより防止することが可能となる。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In Embodiment 1, the number of passes and the pass pattern of the heat exchanger 10 were not mentioned. The number and path pattern of the heat exchanger are determined in consideration of refrigerant pressure loss and heat exchange efficiency. By setting the number of paths and the path pattern of the heat exchanger 10 as follows, dew jumping is performed. It becomes possible to prevent more. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図5は、本発明の実施の形態2に係る熱交換器のパス数及びパスパターンの一例を示す側面図である。なお、図5に示す矢印は空気の流れ方向(風向)を示す。この熱交換器10は、2つのフィン111及び112によってフィン11が構成されている。また、伝熱管12は2列に配置されている。 FIG. 5 is a side view showing an example of the number of passes and a pass pattern of the heat exchanger according to Embodiment 2 of the present invention. The arrows shown in FIG. 5 indicate the air flow direction (wind direction). In the heat exchanger 10, the fin 11 is constituted by two fins 111 and 112. The heat transfer tubes 12 are arranged in two rows.
 図5に示す熱交換器10は、冷媒の流れるパス数が4つ(a~d)となっている。また、各パス(a~d)は、それぞれ8本の伝熱管12で構成されている。なお、図5では、伝熱管12のそれぞれの名称を、「(12)+(各パスで何番目に冷媒が通過する伝熱管となるか)+(パス名)」として示している。例えば、パスaのうち最初に冷媒の流れる伝熱管は「121a」と示している。 In the heat exchanger 10 shown in FIG. 5, the number of paths through which the refrigerant flows is four (ad). Each path (a to d) is composed of eight heat transfer tubes 12. In FIG. 5, the name of each heat transfer tube 12 is indicated as “(12) + (how many heat transfer tubes the refrigerant passes in each path) + (path name)”. For example, the heat transfer tube through which the refrigerant flows first in the path a is indicated as “121a”.
 次に、図5に示す熱交換器10の冷房運転時の冷媒流れについて説明する。
 減圧装置(図示せず)で減圧された低温低圧の二相冷媒は、冷媒分岐部13で分岐され、キャピラリーチューブ14を介して、伝熱管121a~121dのそれぞれに流入する。伝熱管121a~121dに流入した冷媒は、伝熱管122a~122d及び伝熱管123a~123dを介し、伝熱管124a~124dに流入する。つまり、熱交換器10に流入した冷媒は、風上側となる1列側の伝熱管12を最初に流れる。
Next, the refrigerant flow during the cooling operation of the heat exchanger 10 shown in FIG. 5 will be described.
The low-temperature and low-pressure two-phase refrigerant decompressed by a decompression device (not shown) is branched by the refrigerant branching section 13 and flows into the heat transfer tubes 121a to 121d via the capillary tube. The refrigerant that has flowed into the heat transfer tubes 121a to 121d flows into the heat transfer tubes 124a to 124d through the heat transfer tubes 122a to 122d and the heat transfer tubes 123a to 123d. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
 伝熱管124a~124dから流出した冷媒は、風下側となる2列目の伝熱管125a~125dに流入する。伝熱管125a~125dに流入した冷媒は、伝熱管126a~126d及び伝熱管127a~127dを介し、伝熱管128a~128dに流入する。そして、伝熱管128a~128dのそれぞれを流出した冷媒は、冷媒合流部15で合流し、四方弁(図示せず)等を介して圧縮機(図示せず)に流入する。 The refrigerant that has flowed out of the heat transfer tubes 124a to 124d flows into the heat transfer tubes 125a to 125d in the second row on the leeward side. The refrigerant that has flowed into the heat transfer tubes 125a to 125d flows into the heat transfer tubes 128a to 128d via the heat transfer tubes 126a to 126d and the heat transfer tubes 127a to 127d. Then, the refrigerant that has flowed out of each of the heat transfer tubes 128a to 128d joins at the refrigerant joining portion 15, and flows into the compressor (not shown) through a four-way valve (not shown) or the like.
 熱交換器10に流入した低温低圧の二相冷媒は、伝熱管121a~121dから伝熱管128a~128dを流れる過程において、送風機4から送られた室内空気と熱交換をし、送風機4から送られた室内空気を冷却する。このとき、風下側となる2列目の伝熱管12(伝熱管125a~125dから伝熱管128a~128dの間)で冷媒が過熱蒸気となるように、冷媒を流している。 The low-temperature and low-pressure two-phase refrigerant flowing into the heat exchanger 10 exchanges heat with the room air sent from the blower 4 in the process of flowing from the heat transfer tubes 121a to 121d to the heat transfer tubes 128a to 128d, and is sent from the blower 4. Cool the room air. At this time, the refrigerant is flowing in the second row of heat transfer tubes 12 (between the heat transfer tubes 125a to 125d and the heat transfer tubes 128a to 128d) on the leeward side so that the refrigerant becomes superheated steam.
 このように、風上側となる1列側の伝熱管12に冷媒を流した後に風下側となる2列目の伝熱管12に冷媒を流すことによって、風下側(吹き出し側)となる2列目の伝熱管12を流れる冷媒とこれら風下側(吹き出し側)となる2列目の伝熱管12周辺を流れる室内空気との温度差が小さくなる。このため、風下側(吹き出し側)となる2列目のフィン112に結露水が付着しにくくなる。したがって、露飛びを防止する効果がより向上する。 In this way, the second row on the leeward side (outlet side) is obtained by flowing the refrigerant through the second row of heat transfer tubes 12 on the leeward side after flowing the refrigerant through the first row of heat transfer tubes 12 on the leeward side. The temperature difference between the refrigerant flowing through the heat transfer tubes 12 and the indoor air flowing around the second row of heat transfer tubes 12 on the leeward side (outlet side) becomes small. For this reason, it becomes difficult for dew condensation water to adhere to the fins 112 in the second row on the leeward side (outflow side). Accordingly, the effect of preventing the jumping out is further improved.
 このとき、風下側となる2列目の伝熱管12で過熱蒸気となるように冷媒を流すことにより、風下側(吹き出し側)となる2列目の伝熱管12を流れる冷媒とこれら風下側(吹き出し側)となる2列目の伝熱管12周辺を流れる室内空気との温度差がさらに小さくなる。このため、さらに風下側(吹き出し側)となる2列目のフィン112に結露水が付着しにくくなる。したがって、露飛びを防止する効果がさらに向上する。 At this time, by flowing the refrigerant so as to be superheated steam in the second row of heat transfer tubes 12 on the leeward side, the refrigerant flowing through the second row of heat transfer tubes 12 on the leeward side (blowing side) and these leeward sides ( The temperature difference from the indoor air flowing around the second row of heat transfer tubes 12 on the blowout side is further reduced. For this reason, the dew condensation water is less likely to adhere to the fins 112 in the second row on the leeward side (outflow side). Therefore, the effect of preventing dew jumping is further improved.
 なお、熱交換器10のパス数及びパスパターンは、図5に示すものに限らず、種々のパス数及びパスパターンが考えられる。
 図6は、本発明の実施の形態2に係る熱交換器のパス数及びパスパターンの別の一例を示す側面図である。なお、図6に示す矢印は空気の流れ方向(風向)を示す。この熱交換器10は、2つのフィン111及び112によってフィン11が構成されている。また、伝熱管12は2列に配置されている。
Note that the number of passes and the pass pattern of the heat exchanger 10 are not limited to those shown in FIG.
FIG. 6 is a side view showing another example of the number of passes and the pass pattern of the heat exchanger according to Embodiment 2 of the present invention. The arrows shown in FIG. 6 indicate the air flow direction (wind direction). In the heat exchanger 10, the fin 11 is constituted by two fins 111 and 112. The heat transfer tubes 12 are arranged in two rows.
 図6に示す熱交換器10は、冷媒の流れるパス数が3つ(a~c)となっている。パスa及びパスcは、それぞれ10本の伝熱管12で構成されている。また、パスbは12本の伝熱管12で構成されている。なお、図6では、伝熱管12のそれぞれの名称を、「(12)+(各パスで何番目に冷媒が通過する伝熱管となるか)+(パス名)」として示している。例えば、パスaのうち最初に冷媒の流れる伝熱管は「121a」と示している。 In the heat exchanger 10 shown in FIG. 6, the number of paths through which the refrigerant flows is three (ac). Each of the path a and the path c is composed of ten heat transfer tubes 12. The path b is composed of 12 heat transfer tubes 12. In FIG. 6, the name of each heat transfer tube 12 is indicated as “(12) + (how many heat transfer tubes the refrigerant passes in each path) + (path name)”. For example, the heat transfer tube through which the refrigerant flows first in the path a is indicated as “121a”.
 次に、図6に示す熱交換器10の冷房運転時の冷媒流れについて説明する。
 減圧装置(図示せず)で減圧された低温低圧の二相冷媒は、冷媒分岐部13で分岐される。冷媒分岐部13で分岐された一部の冷媒は、キャピラリーチューブ14を介して、伝熱管121a及び121cのそれぞれに流入する。伝熱管121a,121cに流入した冷媒は、伝熱管122a,122c、伝熱管123a,123c、及び伝熱管124a,124cを介し、伝熱管125a,125cに流入する。つまり、熱交換器10に流入した冷媒は、風上側となる1列側の伝熱管12を最初に流れる。
Next, the refrigerant flow during the cooling operation of the heat exchanger 10 shown in FIG. 6 will be described.
The low-temperature and low-pressure two-phase refrigerant decompressed by a decompression device (not shown) is branched by the refrigerant branching section 13. A part of the refrigerant branched by the refrigerant branch part 13 flows into each of the heat transfer tubes 121a and 121c through the capillary tube. The refrigerant flowing into the heat transfer tubes 121a and 121c flows into the heat transfer tubes 125a and 125c through the heat transfer tubes 122a and 122c, the heat transfer tubes 123a and 123c, and the heat transfer tubes 124a and 124c. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
 伝熱管125a,125cから流出した冷媒は、風下側となる2列目の伝熱管126a,126cに流入する。伝熱管126a,126cに流入した冷媒は、伝熱管127a,127c、伝熱管128a,128c、及び伝熱管129a,129cを介し、伝熱管1210a,1210cに流入する。そして、伝熱管1210a,1210cのそれぞれを流出した冷媒は、冷媒合流部15でパスbを流れる冷媒と合流し、四方弁(図示せず)等を介して圧縮機(図示せず)に流入する。 The refrigerant that has flowed out of the heat transfer tubes 125a and 125c flows into the heat transfer tubes 126a and 126c in the second row on the leeward side. The refrigerant flowing into the heat transfer tubes 126a and 126c flows into the heat transfer tubes 1210a and 1210c via the heat transfer tubes 127a and 127c, the heat transfer tubes 128a and 128c, and the heat transfer tubes 129a and 129c. Then, the refrigerant that has flowed out of each of the heat transfer tubes 1210a and 1210c merges with the refrigerant that flows through the path b at the refrigerant junction 15 and flows into the compressor (not shown) through a four-way valve (not shown) or the like. .
 一方、冷媒分岐部13で分岐された残りの冷媒は、キャピラリーチューブ14を介して、伝熱管121bに流入する。伝熱管121bに流入した冷媒は、伝熱管122b~125bを介し、伝熱管126bに流入する。つまり、熱交換器10に流入した冷媒は、風上側となる1列側の伝熱管12を最初に流れる。 On the other hand, the remaining refrigerant branched by the refrigerant branch part 13 flows into the heat transfer tube 121b through the capillary tube. The refrigerant that has flowed into the heat transfer tube 121b flows into the heat transfer tube 126b via the heat transfer tubes 122b to 125b. That is, the refrigerant that has flowed into the heat exchanger 10 first flows through the heat transfer tube 12 on the first row side that is the windward side.
 伝熱管126bから流出した冷媒は、風下側となる2列目の伝熱管127bに流入する。伝熱管127bに流入した冷媒は、伝熱管128b~1211bを介し、伝熱管1212bに流入する。そして、伝熱管1212bを流出した冷媒は、冷媒合流部15でパスa及びパスcを流れる冷媒と合流し、四方弁(図示せず)等を介して圧縮機(図示せず)に流入する。 The refrigerant that has flowed out of the heat transfer tube 126b flows into the second row of heat transfer tubes 127b on the leeward side. The refrigerant flowing into the heat transfer tube 127b flows into the heat transfer tube 1212b via the heat transfer tubes 128b to 1211b. Then, the refrigerant that has flowed out of the heat transfer tube 1212b joins with the refrigerant that flows through the path a and the path c in the refrigerant merging portion 15, and flows into the compressor (not shown) through a four-way valve (not shown) or the like.
 このように熱交換器10のパス数及びパスラインを構成しても、図5に示す熱交換器10と同様に、風下側(吹き出し側)となる2列目のフィン112に結露水が付着しにくくなる。したがって、露飛びを防止する効果がより向上する。 Thus, even if the number of passes and the pass line of the heat exchanger 10 are configured, the dew condensation water adheres to the fins 112 in the second row on the leeward side (outlet side) as in the heat exchanger 10 shown in FIG. It becomes difficult to do. Accordingly, the effect of preventing the jumping out is further improved.
 また、図6に示す熱交換器10は図5に示す熱交換器10よりも1パスあたりの伝熱管長さが長くなっている。このため、風下側となる2列目の伝熱管12を流れる冷媒は、図5に示す熱交換器10と比較して、より早い段階で過熱蒸気とすることができる。このため、図5に示す熱交換器10と比較して、さらに風下側(吹き出し側)となる2列目のフィン112に結露水が付着しにくくなる。したがって、図5に示す熱交換器10と比較して、露飛びを防止する効果がさらに向上する。 Moreover, the heat exchanger 10 shown in FIG. 6 has a longer heat transfer tube length per path than the heat exchanger 10 shown in FIG. For this reason, the refrigerant | coolant which flows through the heat exchanger tube 12 of the 2nd row used as a leeward side can be made into superheated steam at an earlier stage compared with the heat exchanger 10 shown in FIG. For this reason, compared with the heat exchanger 10 shown in FIG. 5, the dew condensation water is less likely to adhere to the fins 112 in the second row on the leeward side (outlet side). Therefore, compared with the heat exchanger 10 shown in FIG.
 以上、図5及び図6を用いて、露飛び防止に効果的な熱交換器10のパス数及びパスラインを説明してきた。これらのパス数及びパスラインの構成に加えて、上段の伝熱管12を流れる冷媒を乾いた状態とすることにより、熱交換器10の上部に付着する結露水を少なくすることができる。熱交換器10の上部に付着する結露水は送風機4の風力によって飛散する可能性が高い。熱交換器10の上部に付着する結露水を少なくすることにより、露飛び防止効果をさらに向上させることも可能である。 As described above, the number of passes and the pass line of the heat exchanger 10 effective for preventing dew escaping have been described with reference to FIGS. 5 and 6. In addition to the number of passes and the configuration of the pass line, the condensed water adhering to the upper portion of the heat exchanger 10 can be reduced by making the refrigerant flowing through the upper heat transfer tube 12 dry. The condensed water adhering to the upper part of the heat exchanger 10 is highly likely to be scattered by the wind force of the blower 4. By reducing the amount of condensed water adhering to the upper part of the heat exchanger 10, it is possible to further improve the effect of preventing dew splatter.

Claims (5)

  1.  空気の吸込口及び吹出口が形成された本体部と、
     該本体部に設けられ、前記吸込口から空気を吸引して前記吹出し口から空気を排出させる送風機と、
     所定のフィンピッチを空けて積層された複数のフィン及び該フィンを積層方向に貫通する複数の伝熱管を有し、前記送風機と前記吹出口との間に、長手方向が垂直方向から所定角度傾斜して配置された熱交換器と、
     該熱交換器の下方に設けられたドレンパンと、
     を備え、
     前記フィンには、
     前記フィンに付着した結露水を前記ドレンパンに誘導する誘導路が、前記フィンの長手方向である段方向に沿って形成されていることを特徴とする空気調和機。
    A main body formed with an air inlet and outlet;
    A blower provided in the main body, for sucking air from the suction port and discharging air from the blowout port;
    A plurality of fins stacked with a predetermined fin pitch and a plurality of heat transfer tubes penetrating the fins in the stacking direction, the longitudinal direction being inclined at a predetermined angle from the vertical direction between the blower and the outlet A heat exchanger arranged as
    A drain pan provided below the heat exchanger;
    With
    The fin includes
    An air conditioner, wherein a guide path for guiding condensed water adhering to the fin to the drain pan is formed along a step direction which is a longitudinal direction of the fin.
  2.  前記フィンは、前記フィンの短手方向である列方向に分割されており、
     列方向に隣接する前記フィンの間が前記誘導路を形成していることを特徴とする請求項1に記載の空気調和機。
    The fins are divided in a row direction which is a short direction of the fins,
    The air conditioner according to claim 1, wherein the guide path is formed between the fins adjacent to each other in a row direction.
  3.  前記伝熱管は、前記フィンの短手方向である列方向に複数設けられており、
     前記伝熱管は、
     冷媒が、風上側の列に設けられた前記伝熱管を流れた後に、最も風下側の列に設けられた前記伝熱管を流れるように接続されていることを特徴とする請求項1又は請求項2に記載の空気調和機。
    A plurality of the heat transfer tubes are provided in the row direction, which is the short direction of the fins,
    The heat transfer tube is
    The refrigerant is connected to flow through the heat transfer tubes provided in the most leeward row after flowing through the heat transfer tubes provided in the leeward row. 2. The air conditioner according to 2.
  4.  最も風下側の列に設けられた前記伝熱管を流れる冷媒は、少なくともその一部が過熱蒸気となることを特徴とする請求項3に記載の空気調和機。 4. The air conditioner according to claim 3, wherein at least a part of the refrigerant flowing through the heat transfer tubes provided in the most leeward row becomes superheated steam.
  5.  前記フィンピッチは、1.3mm~1.5mmであることを特徴とする請求項1~請求項4のいずれか一項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 4, wherein the fin pitch is 1.3 mm to 1.5 mm.
PCT/JP2008/071496 2008-11-27 2008-11-27 Air conditioner WO2010061441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071496 WO2010061441A1 (en) 2008-11-27 2008-11-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071496 WO2010061441A1 (en) 2008-11-27 2008-11-27 Air conditioner

Publications (1)

Publication Number Publication Date
WO2010061441A1 true WO2010061441A1 (en) 2010-06-03

Family

ID=42225334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071496 WO2010061441A1 (en) 2008-11-27 2008-11-27 Air conditioner

Country Status (1)

Country Link
WO (1) WO2010061441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142026A1 (en) * 2016-02-17 2017-08-24 東芝キヤリア株式会社 Air-conditioning indoor unit and air-conditioning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445327A (en) * 1990-06-13 1992-02-14 Toshiba Corp Air conditioning apparatus
JPH0828897A (en) * 1994-07-15 1996-02-02 Shinko Kogyo Co Ltd Heat exchanger for air conditioner
JPH11316035A (en) * 1998-04-30 1999-11-16 Kimura Kohki Co Ltd Heat exchanging coil for air conditioner
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445327A (en) * 1990-06-13 1992-02-14 Toshiba Corp Air conditioning apparatus
JPH0828897A (en) * 1994-07-15 1996-02-02 Shinko Kogyo Co Ltd Heat exchanger for air conditioner
JPH11316035A (en) * 1998-04-30 1999-11-16 Kimura Kohki Co Ltd Heat exchanging coil for air conditioner
JP2005315455A (en) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142026A1 (en) * 2016-02-17 2017-08-24 東芝キヤリア株式会社 Air-conditioning indoor unit and air-conditioning device
JPWO2017142026A1 (en) * 2016-02-17 2018-08-02 東芝キヤリア株式会社 Indoor unit for air conditioning and air conditioner

Similar Documents

Publication Publication Date Title
KR101451054B1 (en) Heat exchanger and air conditioner
JP5579134B2 (en) Indoor unit
US10047962B2 (en) Indoor unit for air-conditioning apparatus
JP2010164222A (en) Finned heat exchanger
KR101558717B1 (en) Heat exchanger and air conditioner equipped with same
JP6972158B2 (en) Dehumidifier
JP5084707B2 (en) Air conditioner
CN110398163B (en) Heat exchanger
JP2013245884A (en) Fin tube heat exchanger
WO2014012286A1 (en) Cold water machine group of filler coupling coil pipe evaporative type condenser
JPS5995359A (en) Evaporator
JP6253513B2 (en) Air conditioner indoor unit
WO2010061441A1 (en) Air conditioner
EP3550247B1 (en) Heat exchanger and air conditioner
WO2020121615A1 (en) Indoor unit and air conditioner
JPH11132684A (en) Heat exchanger and air conditioner
JP2015222146A (en) Heat exchanger
JP7378502B2 (en) air conditioner
JP2008025855A (en) Heat exchanger, air conditioner and manufacturing method of heat exchanger
JP2004085139A (en) Indoor unit for air conditioner
JPWO2019116820A1 (en) Air conditioner
JP7208558B1 (en) heat exchangers and air conditioners
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
JP7394722B2 (en) dehumidifier
CN112771342B (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08878398

Country of ref document: EP

Kind code of ref document: A1