WO2010058998A2 - Swash plate compressor with rotary valve - Google Patents

Swash plate compressor with rotary valve Download PDF

Info

Publication number
WO2010058998A2
WO2010058998A2 PCT/KR2009/006870 KR2009006870W WO2010058998A2 WO 2010058998 A2 WO2010058998 A2 WO 2010058998A2 KR 2009006870 W KR2009006870 W KR 2009006870W WO 2010058998 A2 WO2010058998 A2 WO 2010058998A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotary valve
refrigerant
swash plate
drive shaft
cylinder block
Prior art date
Application number
PCT/KR2009/006870
Other languages
French (fr)
Korean (ko)
Other versions
WO2010058998A3 (en
Inventor
이권희
박성균
김기범
이건호
Original Assignee
두원공과대학교
주식회사 두원전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두원공과대학교, 주식회사 두원전자 filed Critical 두원공과대학교
Priority to CN200980153670.4A priority Critical patent/CN102272450B/en
Publication of WO2010058998A2 publication Critical patent/WO2010058998A2/en
Publication of WO2010058998A3 publication Critical patent/WO2010058998A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4003Synthetic polymers, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps

Definitions

  • the present invention relates to a swash plate type compressor equipped with a rotary valve, and more particularly, to a swash plate type compressor equipped with a rotary valve capable of efficiently sucking refrigerant flowing into the swash plate chamber through a cylinder block.
  • a vehicle air conditioner is a device that maintains a temperature inside a car lower than an external temperature by using a refrigerant, and includes a compressor, a condenser, and an evaporator to configure a circulation cycle of the refrigerant.
  • the compressor is a device that compresses and pumps refrigerant, and is driven by engine power or a motor.
  • swash plate type compressor which is a kind of reciprocating compressor
  • a disc shaped swash plate is installed on a drive shaft to which engine power is transmitted in a state in which the inclination angle is variable or fixed to the rotation of the drive shaft, and the circumference of the swash plate is caused by the rotation of the swash plate.
  • a plurality of pistons installed via a shoe along the structure is configured to suck, compress and discharge the refrigerant gas by linearly reciprocating the inside of the plurality of cylinder bores formed in the cylinder block.
  • a valve plate is disposed between the housing and the cylinder block to control the suction and discharge of the refrigerant gas.
  • the front housing (A10) is built in the front cylinder block (A20)
  • the rear housing (A10a) is coupled to the front housing (A10) and built in the rear cylinder block (A20a)
  • the front and rear A plurality of pistons A50 reciprocating in the plurality of cylinder bores A21 formed in the cylinder blocks A20 and A20a, respectively, and a shoe A45 inclinedly coupled to the drive shaft A30 and installed on an outer circumference thereof.
  • Valve plate (A60) installed between the swash plate (A40) and the front and rear housings (A10) (A10a) and the front and rear cylinder blocks (A20) (A20a) to be coupled to the piston (A50) via a).
  • a coolant discharge chamber A12 and a coolant suction chamber A11 are formed inside and outside the partition A13 in the front and rear housings A10 and A10a, respectively.
  • the coolant discharge chamber A12 is formed in the first discharge chamber A12a formed inside the partition A13 and outside the partition A13 and is partitioned from the coolant suction chamber A11 to form the first discharge chamber. It consists of the 2nd discharge chamber A12b which communicates with A12a and the discharge hole A12c. Accordingly, the refrigerant in the first discharge chamber A12a passes through the small diameter discharge hole A12c and moves to the second discharge chamber A12b. As a result, the pulsation pressure due to the periodic suction of the refrigerant is attenuated. This can reduce vibration and noise.
  • the front and rear cylinder block (A20) so that the refrigerant supplied to the swash plate chamber (A24) provided between the front and rear cylinder blocks (A20, A20a) can flow to each of the refrigerant suction chamber (A11).
  • a plurality of suction passages A22 are formed in A20a, and the second discharge chamber A12b of the front and rear housings A10 and A10a passes through the front and rear cylinder blocks A20 and A20a. It communicates with each other by the formed connection path A23. Therefore, the suction and compression of the refrigerant may be simultaneously performed in the bore A21 of the front and rear cylinder blocks A20 and A20a according to the reciprocating motion of the piston A50.
  • the conventional swash plate compressor configured as described above compresses the refrigerant through the following process.
  • the refrigerant supplied from the evaporator is sucked into the suction part of the muffler A70 and then supplied to the swash plate chamber A24 between the front and rear cylinder blocks A20 and A20a through the refrigerant suction port A71, and the swash plate chamber
  • the refrigerant supplied to A24 flows into the refrigerant suction chamber A11 of the front and rear housings A10 and A10a along the suction passage A22 formed in the front and rear cylinder blocks A20 and A20a. do.
  • the suction lead valve is opened during the suction stroke of the piston A50, so that the refrigerant in the refrigerant suction chamber A11 is sucked into the cylinder bore A21 through the refrigerant suction hole of the valve plate A60.
  • the piston A50 is compressed, the refrigerant inside the cylinder bore A21 is compressed, and the discharge lead valve is opened, and the refrigerant flows through the refrigerant discharge hole of the valve plate A60.
  • A10a flows to the first discharge chamber A12a.
  • the refrigerant flowing into the first discharge chamber A12a is discharged to the discharge portion of the muffler A70 through the refrigerant discharge port A72 of the muffler A70 via the second discharge chamber A12b and then flows to the condenser. .
  • the refrigerant compressed in the cylinder bore A21 of the front cylinder block A20 is discharged to the first discharge chamber A12a of the front housing A10 and then flows to the second discharge chamber A12b.
  • the second discharge chamber A12b of the rear housing A10a flows to the refrigerant discharge port A72 together with the refrigerant therein.
  • the discharge portion of the muffler A70 is discharged.
  • the suction of the refrigerant is caused by a loss due to a suction resistance caused by a complicated internal refrigerant flow path and a loss due to elastic resistance of the suction lead valve during opening and closing of the valve plate A60.
  • the volumetric efficiency is reduced.
  • Korean Patent Publication No. 2007-19564 discloses a technique for reducing the loss caused by the elastic resistance of the suction lead valve.
  • the prior art relates to a compressor to which a suction shaft integrated suction drive valve without a suction lead valve is applied.
  • the refrigerant allows the refrigerant to directly enter the cylinder bore through the inside of the drive shaft in order to reduce the loss caused by the suction resistance. will be.
  • the swash plate B160 is inclinedly coupled and a flow path B151 through which a refrigerant flows is formed, and the swash plate B160 is coupled to the flow plate B151 on the side of the swash plate hub.
  • One or more suction ports B152 are formed to communicate with each other, and a drive shaft B150 having an outlet B153 formed at a position spaced apart from the suction ports B152, and the drive shaft B150 is rotatably installed, and the swash plate chamber B136.
  • a plurality of cylinder bores B131 and B141 are provided at both sides, and the refrigerant sucked into the flow path B151 of the drive shaft B150 sequentially moves to each cylinder bore B131 and B141 when the drive shaft B150 rotates.
  • the cylinder bore (B131) (B141) mounted on the outer circumference of the (B160) via a shoe and linked to the rotational motion of the swash plate (B160)
  • Compressor comprising a plurality of pistons (B170) for reciprocating inside and the front and rear housings (B110) (B120) coupled to both sides of the cylinder block (B130) (B140) and the discharge chamber is formed therein, respectively Is disclosed.
  • the refrigerant introduced through the suction port flows into the drive shaft B150 through the suction port B152 formed on the hub side of the swash plate B160, and then the drive shaft B150. It is configured to flow into the cylinder bores B131 and B141 via the flow path B151 formed in the interior thereof.
  • the suction port of the drive shaft is formed on the swash plate hub side to suck the refrigerant in the swash plate chamber while the drive shaft rotates, the suction shaft has a sufficient suction flow rate due to the flow resistance caused by the centrifugal force. There was a problem that can not be.
  • an object of the present invention is to allow the suction of the refrigerant in the swash plate chamber through the cylinder block and at the same time the rotary valve which can be stably supplied in a state sufficiently secured refrigerant intake It is to provide a swash plate compressor equipped with.
  • another object of the present invention is to provide a swash plate compressor equipped with a rotary valve that can further improve the volumetric efficiency of the compressor by reducing the flow path resistance and suction loss of the refrigerant by the rotary valve.
  • a swash plate type compressor equipped with a rotary valve includes a housing, a cylinder block having a plurality of cylinder bores and coupled to the housing, and reciprocally accommodated in the cylinder bore, respectively.
  • the swash plate-type compressor including a rotary valve formed to rotate together and the sliding rotation is freely installed on the inner surface of the coupling hole formed in the cylinder block,
  • a coolant discharge port is formed on an outer circumferential surface of the rotary valve, and a communication hole connected to the plurality of cylinder bores is formed on an inner circumferential surface of a coupling hole facing the outer circumferential surface of the rotary valve, and the refrigerant communicates from the swash chamber to the housing. Characterized in that the suction groove is formed.
  • the cylinder block is further formed with a refrigerant supply passage communicating from the swash plate chamber to the housing, a connection flow path groove is formed between the refrigerant supply passage and the refrigerant suction groove, the refrigerant supply passage when viewed from the drive shaft direction Is characterized in that it is disposed outside the refrigerant suction groove.
  • the refrigerant suction groove for sucking the refrigerant in the swash plate chamber is formed in the coupling hole of the cylinder block, so that the refrigerant can be stably sucked regardless of the rotational force of the drive shaft rotating at high speed. There is an effect that can greatly reduce the loss caused by the suction resistance.
  • the coolant supply path and the connecting flow path groove are additionally formed in the cylinder block, so that sufficient coolant can be sucked from the swash plate chamber, thereby increasing the amount of coolant flowing into the cylinder bore, thereby further improving the volumetric efficiency.
  • the rotary valve formed in the coupling hole of the cylinder block has an advantage of supplying the refrigerant to the cylinder bore more quickly and smoothly by sucking the refrigerant flowing from the swash plate chamber in a double suction method.
  • the rotary valve is provided with a discharge hole for bypassing the refrigerant remaining in the communication hole of the cylinder bore during the compression stroke of the piston, so that the refrigerant re-supplied into the cylinder bore after the compression stroke is smoothly introduced into the cylinder bore without a suction obstacle. It is mobile.
  • FIG. 1 is a front sectional view and a side sectional view showing the configuration of a conventional swash plate type compressor.
  • FIG. 2 is a cross-sectional view showing a swash plate compressor equipped with a rotary valve according to the prior art.
  • FIG. 3 is a sectional view showing a swash plate compressor equipped with a rotary valve according to Embodiment 1 of the present invention.
  • FIG. 4 is a perspective view illustrating the cylinder block of FIG. 3.
  • FIG. 5 is a perspective view schematically illustrating a refrigerant flow structure with respect to FIG. 4.
  • FIG. 6 is a perspective view illustrating a state in which a rotary valve is mounted on the driving shaft of FIG. 3.
  • FIG. 7 is a cross-sectional view of FIG. 4.
  • FIG. 8 is a cross-sectional view showing a swash plate compressor equipped with a rotary valve according to a second embodiment of the present invention.
  • FIG. 9 is a perspective view illustrating the cylinder block of FIG. 8.
  • FIG. 10 is a cross-sectional view of FIG. 9.
  • FIG. 11 is a partial cross-sectional perspective view schematically illustrating the refrigerant flow structure with respect to FIG. 9.
  • the swash plate compressor 1000 is applied to an embodiment of the double-headed piston compressor, but may be applied to a conventional double-headed piston compressor not necessarily limited to the double-headed piston compressor.
  • the swash plate compressor 1000 includes a cylinder block 100 having a plurality of cylinder bores 110 and a cylinder bore 110 of the cylinder block 100.
  • Piston 200 which is accommodated in the reciprocating motion respectively, the front and rear housings 310 and 320 to be hermetically coupled to the front and rear of the cylinder block 100, respectively, the front housing 310 and the cylinder block ( Of the drive shaft 400 rotatably installed with respect to 100, the swash plate 500 interlocked with the drive shaft 400 and the piston 200, the cylinder block 100, and the front and rear housings 310 and 320. It is composed of a valve plate 600 interposed therebetween.
  • the cylinder block 100 is interposed between the front and rear housings 310 and 320, and a plurality of cylinder bores 110 in which the piston 200 reciprocates. ) Is formed.
  • the cylinder block 100 is provided with a coupling hole 120, the rotary valve (R) is provided in the coupling hole 120 is free to slide rotation.
  • the rotary valve (R) is coupled to the drive shaft 400 rotates with the rotation of the drive shaft (400).
  • the inner circumferential surface of the coupling hole 120 facing the outer circumferential surface of the rotary valve R is formed with a communication hole 130 for supplying refrigerant to each of the plurality of cylinder bores 110, and the swash plate chamber ( A refrigerant suction groove 140 communicating with each of the housings 310 and 320 is formed.
  • the refrigerant suction groove 140 is disposed between the adjacent cylinder bores (110, 110) is effective for the refrigerant suction. Strictly, as shown in the drawing, the refrigerant suction grooves 140 may be disposed one by one between the neighboring communication holes 130 and 130.
  • the configuration of the rotary valve (R) adopted in the embodiment of the present invention is as follows.
  • the rotary valve (R) is coupled to surround the drive shaft 400, but is coupled to the outer peripheral surface of the drive shaft 400, the outer peripheral surface of the rotary valve (R) is coupled to the coupling hole 120 of the cylinder block 100 It is.
  • the rotary valve (R) is a cylindrical shape having a predetermined length, one side of the outer peripheral surface of the refrigerant in the refrigerant suction groove 140 in the circumferential direction directly communicating with the communication hole 130 of the cylinder block 100
  • a refrigerant discharge port R1 is formed to discharge while communicating with each other
  • a refrigerant bypass groove R2 for introducing a refrigerant in the refrigerant storage chamber P1 of the front and rear housings 310 and 320 is formed at one end thereof.
  • the inner diameters of the refrigerant bypass grooves R2 are greater than the outer diameter of the drive shaft 400 and are spaced apart from each other.
  • the rotary valve R may suck the refrigerant in a quick and stable state by a double suction method.
  • a snap ring 402 between the rotary valve (R) and the drive shaft 400 to increase the sealing force.
  • the rotary valve (R) is formed with a discharge through-hole (R3) for removing the residual gas trapped in the communication hole 130 at the time of the suction action of the piston 200 do.
  • the discharge through hole (R3) is formed through the neighboring in front of the rotational direction of the refrigerant discharge port (R1) of the rotary valve (R).
  • the piston 200 when the piston 200 reaches the top dead center to complete the compression, most of the compressed high-pressure refrigerant is discharged to the refrigerant discharge chamber (P2) of the front and rear housings (310, 320), but some of the refrigerant is in communication It remains in the hole 130. At this time, the refrigerant gas remaining in the high pressure state in the communication hole 130 may cause a suction failure by preventing the suction of the refrigerant (low pressure state) flowing from the refrigerant discharge port R1 of the rotary valve R. .
  • the discharge hole R3 of the rotary valve R communicates with the communication hole 130 first after the compression stroke of the piston 200 reaches a top dead center, and the refrigerant remaining in the rotary valve R is rotated. Bypassing the inside to facilitate the subsequent suction of the refrigerant to the cylinder bore (110).
  • the discharge hole R3 of the rotary valve R may be formed in a shape corresponding to the width and width of the communication hole 130 of the cylinder block 100.
  • the discharge hole (R3) of the rotary valve (R) is preferably manufactured in a penetrating form, but not necessarily limited to the form of a groove recessed to a predetermined height to bypass the refrigerant in the longitudinal direction outside. It can also be produced in a form that can.
  • Teflon (Teflon) coating treatment to minimize overheating and wear.
  • the refrigerant introduced into the swash plate chamber 101 from the evaporator is a cylinder block (B) by the suction stroke of the piston 200. It is introduced into the refrigerant suction groove 140 of 100.
  • a part of the refrigerant moving in the axial direction through the refrigerant suction groove 140 moves to the refrigerant discharge port R1 in the rotary valve R and is directly sucked into the cylinder bore 110, and the other refrigerant is a rotary.
  • valve (R) Guided along the outer circumferential surface of the valve (R) is moved to the refrigerant bypass groove (R2) of the rotary valve (R) through the refrigerant storage chamber (P1) of the front and rear housings (310, 320) and then the cylinder bore through the refrigerant discharge port (R1) Inhaled at 110.
  • the rotary valve R has a structure in which the refrigerant is sucked in both directions, and not only maintains the suction amount of the refrigerant stably but also quickly discharges the cylinder bore.
  • the discharge valve R3 is formed in the rotary valve R, after the compression stroke of the piston 200 reaches a top dead center, the communication hole 130 of the cylinder bore 110 communicates therewith. Since the residual refrigerant is bypassed into the rotary valve R, the suction of the refrigerant into the cylinder bore 110 can be smoothly performed thereafter.
  • the rotary valve R is detachably coupled around the outer circumferential surface of the drive shaft 400, but may be formed by directly processing the existing drive shaft 400.
  • the swash plate compressor 1000 includes a cylinder block 100 having a plurality of cylinder bores 110 and a piston 200 reciprocally accommodated in the cylinder bores 110 of the cylinder block 100, respectively. ), The front and rear housings 310 and 320 which are hermetically coupled to the front and rear of the cylinder block 100, respectively, and a drive shaft rotatably installed with respect to the front housing 310 and the cylinder block 100 ( 400, the swash plate 500 interlocked with the drive shaft 400 and the piston 200, and the valve plate 600 interposed between the cylinder block 110 and the front and rear housings 310 and 320, respectively. It is composed.
  • the cylinder block 100 is interposed between the front and rear housings 310 and 320, and a cylinder bore 110 is formed therein to allow the piston 200 to reciprocate.
  • the cylinder block 100 is provided with a coupling hole 120, the rotary valve (R) is provided in the coupling hole 120 is free to slide rotation.
  • the rotary valve R is configured to rotate together with the drive shaft 400.
  • the inner circumferential surface of the coupling hole 120 facing the outer circumferential surface of the rotary valve R is formed with a communication hole 130 for supplying refrigerant to each of the plurality of cylinder bores 110, and the swash plate chamber ( A refrigerant suction groove 140 communicating with each of the housings 310 and 320 is formed.
  • the refrigerant suction groove 140 is disposed between the adjacent cylinder bores (110, 110) is effective for the refrigerant suction. Strictly, as shown in the drawing, the refrigerant suction grooves 140 may be disposed one by one between the neighboring communication holes 130 and 130.
  • a coolant supply path 170 for supplying a coolant to a coolant storage chamber P1 of the front and rear housings 310 and 320 is further formed near the outer circumferential surface of the coolant suction groove 140 and the coolant supply path 170.
  • the refrigerant suction groove 140 has a structure in which a connection flow path groove 180 is formed.
  • connection flow path groove 180 may be formed at an end surface of the cylinder block 100 facing the front and rear housings 310 and 320.
  • the refrigerant supply path 170 is formed through a plurality of cylinder bore 110 in a state spaced apart from the coupling hole 120 by a predetermined distance, it is possible to more smoothly suck the refrigerant in the swash plate chamber (101) In addition, it serves to significantly reduce the flow path resistance of the refrigerant.
  • the rotary valve (R) is formed integrally with the drive shaft 400 by processing the outer diameter of the drive shaft (400).
  • the rotary valve (R) is formed on the drive shaft 400, while the refrigerant introduced into the refrigerant suction groove 140 of the cylinder block 100 directly communicates with the cylinder bore 110 on one side of the outer peripheral surface.
  • a refrigerant discharge port R1 for discharging is formed.
  • the inner circumferential surface of the coupling hole 120 of the cylinder block 100 and the outer circumferential surface of the rotary valve R communicate with each other to remove residual high pressure gas in the communication hole 130 of the cylinder bore 110.
  • the first discharge groove 190 and the second discharge grooves R4 and R5 are formed.
  • the first discharge groove 190 has a circular shape recessed to a predetermined depth along the circumference of the inner circumferential surface of the coupling hole 120.
  • the first discharge groove 190 serves as an intermediate passage for supplying the residual gas moved from one side second discharge groove (R4) to the other side second discharge groove (R5).
  • the second discharge grooves R4 and R5 are formed with the refrigerant discharge port R1 formed in the drive shaft 400 interposed therebetween.
  • one side of the second discharge groove (R4) serves to suck the refrigerant in the communication hole 130
  • the second discharge groove (R5) formed on the other side residual gas passing through the first discharge groove 190 It serves to discharge to the expanded cylinder bore 110 through the communication hole 130 opposite.
  • the refrigerant remaining in the communication hole 130 may be configured to allow the second discharge groove R4, the first discharge groove 190, and the second discharge groove R5 on the other side of the driving shaft 400 to be rotated. After passing sequentially, it is discharged to the expanded cylinder bore 110 through the communication hole 130 on the opposite side.
  • the refrigerant discharge port of the rotary valve (R) formed in the drive shaft 400 in the process of the refrigerant flowing through the refrigerant suction groove 140 of the cylinder block 100 is moved. Through the R1 is discharged to the communication hole 130 of the cylinder bore 110.
  • the refrigerant introduced into the refrigerant supply path 170 of the cylinder block 100 is supplied to the refrigerant suction groove 140 through the connection flow path groove 180 and through the refrigerant discharge port R1 of the rotary valve R. It is discharged to the communication hole 130.
  • the coolant stored in the coolant storage chamber P1 flows back into the coolant suction groove 140 and the coolant discharge port R1. And it may move to the cylinder bore 110 through the communication hole 130.
  • the cylinder block 100 is formed in the vicinity of the outer circumferential surface in addition to the refrigerant suction groove 140 to form a refrigerant supply path 170 and a connection flow path groove 180 for moving the refrigerant, thereby allowing the refrigerant to the cylinder bore 110.
  • the volumetric efficiency of the compressor can be greatly improved by reducing the suction loss for discharging the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

The present invention relates to a swash plate compressor with a rotary valve which can effectively siphon a coolant into a swash plate chamber through a cylinder block. The swash plate compressor comprises a housing connected to the cylinder block which has a plurality of cylinder bores, pistons which are accommodated and reciprocate in the respective cylinder bores, a drive shaft which is installed to rotate with respect to the housing and the cylinder block, a swash plate which is installed to be rotated by the drive shaft and interlock with the pistons, a valve plate which is interposed between the housing and the cylinder block, and the rotary valve which is formed to rotate along with the drive shaft and installed to roll in a joint hole formed in the cylinder block. A coolant outlet is formed on the exterior of the rotary valve, connection holes connected to the respective cylinder bores are formed on the interior of the joint hole which abuts against the exterior of the rotary valve, and a coolant inlet groove is formed to penetrate the swash plate chamber through to the housing. Therefore, loss caused by coolant inlet resistance can be remarkably reduced by siphoning coolant regardless of the torque of the drive shaft rotating at high speed.

Description

로터리밸브를 장착한 사판식 압축기Swash plate compressor with rotary valve
본 발명은 로터리밸브를 장착한 사판식 압축기에 관한 것으로, 특히 사판실로 유입되는 냉매를 실린더블록을 통해 효율적으로 흡입할 수 있는 로터리밸브를 장착한 사판식 압축기에 관한 것이다. The present invention relates to a swash plate type compressor equipped with a rotary valve, and more particularly, to a swash plate type compressor equipped with a rotary valve capable of efficiently sucking refrigerant flowing into the swash plate chamber through a cylinder block.
일반적으로 차량의 공조장치는 냉매를 이용하여 차 실내의 온도를 외부의 온도보다 낮게 유지하는 장치로서, 냉매의 순환 사이클을 구성하기 위하여 압축기, 응축기 및 증발기를 구비하고 있다. In general, a vehicle air conditioner is a device that maintains a temperature inside a car lower than an external temperature by using a refrigerant, and includes a compressor, a condenser, and an evaporator to configure a circulation cycle of the refrigerant.
이러한 상기 압축기는 냉매를 압축 및 압송하는 장치로서 엔진의 동력이나 모터에 의해 구동된다.  The compressor is a device that compresses and pumps refrigerant, and is driven by engine power or a motor.
왕복동식 압축기의 일종인 사판식 압축기는, 엔진의 동력을 전달받는 구동축에 디스크 형상의 사판이 구동축의 회전에 대응되어 경사각이 가변 또는 고정된 상태로 설치되고, 상기 사판의 회전에 의하여 사판의 둘레를 따라 슈(shoe)를 개재하여 설치된 다수의 피스톤이 실린더블록에 형성된 다수의 실린더 보어 내부에서 직선 왕복 운동함으로써 냉매가스를 흡입하고 압축하여 배출하도록 구성된다. In the swash plate type compressor, which is a kind of reciprocating compressor, a disc shaped swash plate is installed on a drive shaft to which engine power is transmitted in a state in which the inclination angle is variable or fixed to the rotation of the drive shaft, and the circumference of the swash plate is caused by the rotation of the swash plate. A plurality of pistons installed via a shoe along the structure is configured to suck, compress and discharge the refrigerant gas by linearly reciprocating the inside of the plurality of cylinder bores formed in the cylinder block.
또한, 일반적으로 상기 냉매가스를 흡입하고 압축하여 배출시키는 과정에 있어, 하우징과 실린더블록 사이에는 냉매가스의 흡입 및 토출을 단속하는 밸브플레이트가 설치된다. In addition, in the process of inhaling, compressing, and discharging the refrigerant gas, a valve plate is disposed between the housing and the cylinder block to control the suction and discharge of the refrigerant gas.
구체적으로, 도 1을 참조하여 통상의 사판식 압축기의 구성을 보다 상세히 설명한다.  Specifically, with reference to Figure 1 will be described in more detail the configuration of a conventional swash plate compressor.
도시한 바와 같이, 전방 실린더블록(A20)이 내장된 전방 하우징(A10)과, 상기 전방 하우징(A10)과 결합되며 후방 실린더블록(A20a)이 내장된 후방 하우징(A10a)과, 상기 전,후방 실린더블록(A20)(A20a)의 내부에 형성된 다수의 실린더보어(A21) 내부에서 각각 왕복 운동하는 복수의 피스톤(A50)들과, 상기 구동축(A30)에 경사지게 결합되고 외주에 설치되는 슈(A45)를 개재하여 상기 피스톤(A50)들에 결합되는 사판(A40)과, 상기 전,후방 하우징(A10)(A10a)과 전,후방 실린더블록(A20)(A20a) 사이에 설치되는 밸브플레이트(A60)와, 상기 후방 하우징(A10a)의 외측면 상부에 설치되어 피스톤(A50)의 흡입행정시 증발기로부터 이송된 냉매를 압축기(A1) 내부로 공급하고 피스톤(A50)의 압축행정시에는 압축기(A1) 내부에서 압축된 냉매를 응축기 쪽으로 토출하도록 머플러(A70)로 구성되어 있다. As shown, the front housing (A10) is built in the front cylinder block (A20), the rear housing (A10a) is coupled to the front housing (A10) and built in the rear cylinder block (A20a), and the front and rear A plurality of pistons A50 reciprocating in the plurality of cylinder bores A21 formed in the cylinder blocks A20 and A20a, respectively, and a shoe A45 inclinedly coupled to the drive shaft A30 and installed on an outer circumference thereof. Valve plate (A60) installed between the swash plate (A40) and the front and rear housings (A10) (A10a) and the front and rear cylinder blocks (A20) (A20a) to be coupled to the piston (A50) via a). And an upper portion of the rear surface of the rear housing A10a to supply the refrigerant transferred from the evaporator during the suction stroke of the piston A50 into the compressor A1 and to compress the piston A50 during the compression stroke of the piston A50. ) Is composed of a muffler (A70) to discharge the refrigerant compressed inside the condenser .
그리고, 상기 전,후방 하우징(A10)(A10a)의 내부에는 격벽(A13)의 내,외측에 각각 냉매토출실(A12) 및 냉매흡입실(A11)이 형성되어 있다. 여기서, 상기 냉매토출실(A12)은 격벽(A13)의 내측에 형성된 제 1 토출실(A12a)과, 상기 격벽(A13)의 외측에 형성되어 냉매흡입실(A11)과 구획되며 제 1 토출실(A12a)과 토출홀(A12c)을 통해 연통하는 제 2 토출실(A12b)로 구성된다. 이에 따라 상기 제 1 토출실(A12a)의 냉매가 상기 작은 직경의 토출홀(A12c)을 통과하여 제 2 토출실(A12b)로 이동하게 되고, 그 결과 주기적인 냉매의 흡입에 따르는 맥동압이 감쇄되어 진동과 소음을 감소할 수 있게 된다. A coolant discharge chamber A12 and a coolant suction chamber A11 are formed inside and outside the partition A13 in the front and rear housings A10 and A10a, respectively. Here, the coolant discharge chamber A12 is formed in the first discharge chamber A12a formed inside the partition A13 and outside the partition A13 and is partitioned from the coolant suction chamber A11 to form the first discharge chamber. It consists of the 2nd discharge chamber A12b which communicates with A12a and the discharge hole A12c. Accordingly, the refrigerant in the first discharge chamber A12a passes through the small diameter discharge hole A12c and moves to the second discharge chamber A12b. As a result, the pulsation pressure due to the periodic suction of the refrigerant is attenuated. This can reduce vibration and noise.
한편, 상기 전,후방 실린더블록(A20)(A20a) 사이에 구비된 사판실(A24)로 공급되는 냉매가 상기 각 냉매흡입실(A11)로 유동할 수 있도록 상기 전,후방 실린더블록(A20)(A20a)에는 다수의 흡입통로(A22)가 형성되며, 상기 전,후방 하우징(A10)(A10a)의 제 2 토출실(A12b)은 상기 전,후방 실린더블록(A20)(A20a)을 관통하여 형성된 연결통로(A23)에 의해 상호 연통된다. 따라서, 상기 피스톤(A50)의 왕복운동에 따라 상기 전,후방 실린더블록(A20)(A20a)의 보어(A21) 내에서 동시에 냉매의 흡입 및 압축이 수행될 수 있는 것이다. On the other hand, the front and rear cylinder block (A20) so that the refrigerant supplied to the swash plate chamber (A24) provided between the front and rear cylinder blocks (A20, A20a) can flow to each of the refrigerant suction chamber (A11). A plurality of suction passages A22 are formed in A20a, and the second discharge chamber A12b of the front and rear housings A10 and A10a passes through the front and rear cylinder blocks A20 and A20a. It communicates with each other by the formed connection path A23. Therefore, the suction and compression of the refrigerant may be simultaneously performed in the bore A21 of the front and rear cylinder blocks A20 and A20a according to the reciprocating motion of the piston A50.
상기와 같이 구성된 종래의 사판식 압축기는 다음의 과정을 통해 냉매를 압축하고 있다. The conventional swash plate compressor configured as described above compresses the refrigerant through the following process.
증발기로부터 공급되는 냉매는 상기 머플러(A70)의 흡입부로 흡입된 후 냉매흡입구(A71)를 통해 상기 전,후방 실린더블록(A20)(A20a) 사이의 사판실(A24)로 공급되고, 상기 사판실(A24)로 공급된 냉매는 상기 전,후방 실린더블록(A20)(A20a)에 형성된 흡입통로(A22)를 따라 상기 전,후방 하우징(A10)(A10a)의 냉매흡입실(A11)로 유동하게 된다. The refrigerant supplied from the evaporator is sucked into the suction part of the muffler A70 and then supplied to the swash plate chamber A24 between the front and rear cylinder blocks A20 and A20a through the refrigerant suction port A71, and the swash plate chamber The refrigerant supplied to A24 flows into the refrigerant suction chamber A11 of the front and rear housings A10 and A10a along the suction passage A22 formed in the front and rear cylinder blocks A20 and A20a. do.
이후, 상기 피스톤(A50)의 흡입행정시 상기 흡입리드밸브가 열리게 되므로, 상기 냉매흡입실(A11)의 냉매가 밸브플레이트(A60)의 냉매흡입공을 통해 상기 실린더보어(A21) 내부로 흡입된다. 그리고, 피스톤(A50)의 압축행정시 상기 실린더보어(A21) 내부의 냉매가 압축되게 되고, 상기 토출리드밸브가 열리면서 냉매가 밸브플레이트(A60)의 냉매토출공을 통해 상기 전,후방 하우징(A10)(A10a)의 제 1 토출실(A12a)로 유동하게 된다. 상기 제 1 토출실(A12a)로 유동한 냉매는 제 2 토출실(A12b)을 거쳐 상기 머플러(A70)의 냉매토출구(A72)를 통해 머플러(A70)의 토출부로 토출된 후 응축기로 유동하게 된다. Thereafter, the suction lead valve is opened during the suction stroke of the piston A50, so that the refrigerant in the refrigerant suction chamber A11 is sucked into the cylinder bore A21 through the refrigerant suction hole of the valve plate A60. . When the piston A50 is compressed, the refrigerant inside the cylinder bore A21 is compressed, and the discharge lead valve is opened, and the refrigerant flows through the refrigerant discharge hole of the valve plate A60. A10a flows to the first discharge chamber A12a. The refrigerant flowing into the first discharge chamber A12a is discharged to the discharge portion of the muffler A70 through the refrigerant discharge port A72 of the muffler A70 via the second discharge chamber A12b and then flows to the condenser. .
한편, 상기 전방 실린더블록(A20)의 실린더보어(A21)내에서 압축된 냉매는 상기 전방 하우징(A10)의 제 1 토출실(A12a)로 토출되고 이후 제 2 토출실(A12b)로 유동한 후 상기 전,후방 실린더블록(A20)(A20a)에 형성된 연결통로(A23)를 따라 상기 후방 하우징(A10a)의 제 2 토출실(A12b)로 유동하여 이곳의 냉매와 함께 상기 냉매토출구(A72)를 통해 머플러(A70)의 토출부로 토출된다. Meanwhile, the refrigerant compressed in the cylinder bore A21 of the front cylinder block A20 is discharged to the first discharge chamber A12a of the front housing A10 and then flows to the second discharge chamber A12b. Along the connection passage A23 formed in the front and rear cylinder blocks A20 and A20a, the second discharge chamber A12b of the rear housing A10a flows to the refrigerant discharge port A72 together with the refrigerant therein. Through the discharge portion of the muffler A70 is discharged.
그러나, 상기한 종래의 압축기(A1)는 내부의 냉매 유로가 복잡하여 생기는 흡입 저항에 의한 손실과, 상기 밸브플레이트(A60)의 개폐작용시 흡입리드밸브의 탄성저항에 의한 손실 등으로 냉매의 흡입 체적효율이 감소되는 문제가 있었다. However, in the conventional compressor A1, the suction of the refrigerant is caused by a loss due to a suction resistance caused by a complicated internal refrigerant flow path and a loss due to elastic resistance of the suction lead valve during opening and closing of the valve plate A60. There was a problem that the volumetric efficiency is reduced.
한편, 이러한 흡입리드밸브의 탄성저항에 의한 손실을 감소시키기 위한 기술이 한국 특허공개번호 제2007-19564호(압축기, 이하 '종래기술'이라 함)가 개시되어 있다.  Meanwhile, Korean Patent Publication No. 2007-19564 (compressor, hereinafter referred to as 'prior art') discloses a technique for reducing the loss caused by the elastic resistance of the suction lead valve.
이러한 상기 종래기술은 흡입리드밸브가 없는 구동축 일체형 흡입 로터리 밸브(Suction Rotary Valve)를 적용한 압축기에 관한 것으로, 흡입저항에 의한 손실을 감소시키기 위하여 냉매가 구동축 내부를 통해 실린더보어를 직접 들어갈 수 있도록 한 것이다. The prior art relates to a compressor to which a suction shaft integrated suction drive valve without a suction lead valve is applied. The refrigerant allows the refrigerant to directly enter the cylinder bore through the inside of the drive shaft in order to reduce the loss caused by the suction resistance. will be.
구체적으로, 도 2에 도시된 바와 같이, 사판(B160)이 경사지게 결합되고 내부에 냉매가 흐르는 유로(B151)가 형성되며, 상기 사판(B160)이 결합되는 사판 허브측에 상기 유로(B151)에 연통되는 하나 이상의 흡입구(B152)가 형성되고, 상기 흡입구(B152)와 이격된 위치에 출구(B153)가 형성된 구동축(B150)과, 상기 구동축(B150)이 회전가능하게 설치되고 사판실(B136) 양측으로 다수의 실린더보어(B131)(B141)가 구비되며, 상기 구동축(B150)의 유로(B151)로 흡입된 냉매가 구동축(B150)의 회전시 순차적으로 각 실린더보어(B131)(B141)로 흡입될 수 있도록 축지지공(B133)(B143)과 각 실린더보어(B131)(B141)를 연통시키는 흡입통로(B132)(B142)가 형성된 전,후방 실린더블록(B130)(B140)과, 상기 사판(B160)의 외주에 슈를 개재하여 장착되고 사판(B160)의 회전운동에 연동하여 상기 실린더보어(B131)(B141)내를 왕복운동하는 다수의 피스톤(B170)과, 상기 실린더블록(B130)(B140)의 양측에 결합되며 내부에 토출실이 각각 형성된 전,후방 하우징(B110)(B120)을 포함하여 구성된 압축기가 개시되어 있다. Specifically, as shown in FIG. 2, the swash plate B160 is inclinedly coupled and a flow path B151 through which a refrigerant flows is formed, and the swash plate B160 is coupled to the flow plate B151 on the side of the swash plate hub. One or more suction ports B152 are formed to communicate with each other, and a drive shaft B150 having an outlet B153 formed at a position spaced apart from the suction ports B152, and the drive shaft B150 is rotatably installed, and the swash plate chamber B136. A plurality of cylinder bores B131 and B141 are provided at both sides, and the refrigerant sucked into the flow path B151 of the drive shaft B150 sequentially moves to each cylinder bore B131 and B141 when the drive shaft B150 rotates. Front and rear cylinder blocks (B130) (B140) and the swash plate formed with suction passages (B132) and (B142) for communicating the shaft support holes (B133) and (B143) and the respective cylinder bores (B131) and (B141) to be sucked. The cylinder bore (B131) (B141) mounted on the outer circumference of the (B160) via a shoe and linked to the rotational motion of the swash plate (B160) Compressor comprising a plurality of pistons (B170) for reciprocating inside and the front and rear housings (B110) (B120) coupled to both sides of the cylinder block (B130) (B140) and the discharge chamber is formed therein, respectively Is disclosed.
이러한 종래기술의 압축기에 따르면, 흡입포트(미도시)를 통해 유입된 냉매가 사판(B160)의 허브측에 형성된 흡입구(B152)를 통해 구동축(B150)의 내부로 유입된 후, 구동축(B150)의 내부에 형성된 유로(B151)를 경유하여 실린더보어(B131)(B141)로 유입되는 구성으로 되어 있다. According to the conventional compressor, the refrigerant introduced through the suction port (not shown) flows into the drive shaft B150 through the suction port B152 formed on the hub side of the swash plate B160, and then the drive shaft B150. It is configured to flow into the cylinder bores B131 and B141 via the flow path B151 formed in the interior thereof.
그러나, 상기한 종래기술은 구동축의 흡입구가 사판 허브 측에 형성되어 구동축이 회전하면서 사판실 내의 냉매를 흡입하는 구조이므로 상기 구동축이 고속으로 회전하게 되면 원심력에 의한 유동 저항으로 인하여 충분한 흡입유량을 확보하지 못하게 되는 문제점이 있었다. However, since the suction port of the drive shaft is formed on the swash plate hub side to suck the refrigerant in the swash plate chamber while the drive shaft rotates, the suction shaft has a sufficient suction flow rate due to the flow resistance caused by the centrifugal force. There was a problem that can not be.
더욱이, 구동축의 내부를 가공하여야 하는 별도의 공정이 추가적으로 이루어질 뿐만 아니라 축 가공에 따라 내구성이 크게 약화되는 문제점이 있었다. In addition, there is a problem that the additional process to process the inside of the drive shaft is additionally made, as well as the durability is greatly weakened by the shaft processing.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 발명의 목적은 사판실의 냉매를 실린더블록을 통해 흡입할 수 있도록 함과 동시에 냉매 흡입량을 충분히 확보한 상태에서 안정적으로 공급할 수 있는 로터리밸브를 장착한 사판식 압축기를 제공하는 데 있다. The present invention has been made to solve the above problems, an object of the present invention is to allow the suction of the refrigerant in the swash plate chamber through the cylinder block and at the same time the rotary valve which can be stably supplied in a state sufficiently secured refrigerant intake It is to provide a swash plate compressor equipped with.
또한, 발명의 다른 목적은 로터리밸브에 의해 냉매의 유로저항과 흡입손실을 줄이므로써 압축기의 체적효율을 한층 향상시킬 수 있는 로터리밸브를 장착한 사판식 압축기를 제공하는 데 있다. In addition, another object of the present invention is to provide a swash plate compressor equipped with a rotary valve that can further improve the volumetric efficiency of the compressor by reducing the flow path resistance and suction loss of the refrigerant by the rotary valve.
전술한 목적을 달성하기 위해, 본 발명에 따른 로터리밸브를 장착한 사판식 압축기는 하우징과, 다수개의 실린더보어가 형성되며 상기 하우징에 결합되는 실린더블록과, 상기 실린더보어에 각각 왕복운동 가능하게 수용되는 피스톤과, 상기 하우징과 실린더블록에 대하여 회전가능하게 설치되는 구동축과, 상기 구동축에 의해 회전하며 피스톤에 연동되게 설치되는 사판과, 상기 하우징과 실린더블록 사이에 개재되는 밸브플레이트와, 상기 구동축과 함께 회전하도록 형성되며 상기 실린더블록에 형성된 결합공의 내면에 미끄럼 회전이 자유롭게 설치된 로터리밸브를 포함하는 사판식 압축기에 있어서, In order to achieve the above object, a swash plate type compressor equipped with a rotary valve according to the present invention includes a housing, a cylinder block having a plurality of cylinder bores and coupled to the housing, and reciprocally accommodated in the cylinder bore, respectively. A piston, a drive shaft rotatably installed with respect to the housing and the cylinder block, a swash plate rotated by the drive shaft and interlocked with the piston, a valve plate interposed between the housing and the cylinder block, and the drive shaft; In the swash plate-type compressor including a rotary valve formed to rotate together and the sliding rotation is freely installed on the inner surface of the coupling hole formed in the cylinder block,
상기 로터리밸브의 외주면에는 냉매 토출구가 형성되고, 상기 로터리밸브의 외주면과 면하는 결합공의 내주면에는 상기 다수의 실린더보어와 각각 연결되는 연통홀이 형성되어 있는 것과 함께 사판실로부터 하우징까지 연통되는 냉매 흡입홈이 형성된 것을 특징으로 한다. A coolant discharge port is formed on an outer circumferential surface of the rotary valve, and a communication hole connected to the plurality of cylinder bores is formed on an inner circumferential surface of a coupling hole facing the outer circumferential surface of the rotary valve, and the refrigerant communicates from the swash chamber to the housing. Characterized in that the suction groove is formed.
또한, 상기 실린더블록에는 상기 사판실로부터 하우징까지 연통되어 있는 냉매공급로가 추가적으로 형성되고, 상기 냉매공급로와 냉매 흡입홈 사이에는 연결유로홈이 형성되되, 구동축 방향에서 바라볼 때 상기 냉매공급로는 냉매 흡입홈의 외측에 배치되는 것을 특징으로 한다. In addition, the cylinder block is further formed with a refrigerant supply passage communicating from the swash plate chamber to the housing, a connection flow path groove is formed between the refrigerant supply passage and the refrigerant suction groove, the refrigerant supply passage when viewed from the drive shaft direction Is characterized in that it is disposed outside the refrigerant suction groove.
전술한 바와 같은 구성의 본 발명에 따르면, 사판실의 냉매를 흡입하는 냉매흡입홈이 실린더블록의 결합공 내에 동반 형성됨에 따라 고속회전하는 구동축의 회전력에 관계없이 냉매를 안정적으로 흡입할 수 있어 냉매 흡입저항에 의한 손실을 크게 감소시킬 수 있는 효과가 있다. According to the present invention having the above-described configuration, the refrigerant suction groove for sucking the refrigerant in the swash plate chamber is formed in the coupling hole of the cylinder block, so that the refrigerant can be stably sucked regardless of the rotational force of the drive shaft rotating at high speed. There is an effect that can greatly reduce the loss caused by the suction resistance.
또한, 상기 실린더블록에는 냉매공급로와 연결유로홈이 추가적으로 형성됨으로써, 사판실로부터 충분한 냉매를 흡입할 수 있어 실린더보어 내부로 유입되는 냉매량이 증가되어 체적효율이 한층 향상시키는 효과가 있다. In addition, the coolant supply path and the connecting flow path groove are additionally formed in the cylinder block, so that sufficient coolant can be sucked from the swash plate chamber, thereby increasing the amount of coolant flowing into the cylinder bore, thereby further improving the volumetric efficiency.
아울러, 상기 실린더블록의 결합공 내에 형성되는 로터리밸브는 사판실로부터 유입되는 냉매를 이중 흡입방식으로 흡입함으로써, 실린더보어에 대한 냉매 공급을 보다 신속하고 원할하게 공급할 수 있는 장점이 있다. In addition, the rotary valve formed in the coupling hole of the cylinder block has an advantage of supplying the refrigerant to the cylinder bore more quickly and smoothly by sucking the refrigerant flowing from the swash plate chamber in a double suction method.
그리고, 상기 로터리밸브에는 피스톤의 압축행정 중 실린더보어의 연통홀 내에 잔류하는 냉매를 바이패스시키는 배출통공이 형성됨으로써, 압축행정을 마친 실린더보어 내로 재공급되는 냉매가 흡입장애 없이 그 내부로 원할하게 이동할 수 있는 것이다. In addition, the rotary valve is provided with a discharge hole for bypassing the refrigerant remaining in the communication hole of the cylinder bore during the compression stroke of the piston, so that the refrigerant re-supplied into the cylinder bore after the compression stroke is smoothly introduced into the cylinder bore without a suction obstacle. It is mobile.
도 1은 통상의 사판식 압축기의 구성을 나타낸 정단면도 및 측단면도이다.1 is a front sectional view and a side sectional view showing the configuration of a conventional swash plate type compressor.
도 2는 종래기술에 따른 로터리밸브를 장착한 사판식 압축기를 나타낸 단면도이다.2 is a cross-sectional view showing a swash plate compressor equipped with a rotary valve according to the prior art.
도 3은 본 발명의 실시예 1에 따른 로터리밸브를 장착한 사판식 압축기를 나타낸 단면도이다.3 is a sectional view showing a swash plate compressor equipped with a rotary valve according to Embodiment 1 of the present invention.
도 4는 도 3의 실린더블록을 나타낸 사시도이다.4 is a perspective view illustrating the cylinder block of FIG. 3.
도 5는 도 4에 대하여 냉매 흐름구조를 개략적으로 도시한 사시도이다.5 is a perspective view schematically illustrating a refrigerant flow structure with respect to FIG. 4.
도 6은 도 3의 구동축에 로터리밸브가 장착된 상태를 나타낸 사시도이다.6 is a perspective view illustrating a state in which a rotary valve is mounted on the driving shaft of FIG. 3.
도 7은 도 4의 단면도이다.7 is a cross-sectional view of FIG. 4.
도 8은 본 발명의 실시예 2에 따른 로터리밸브를 장착한 사판식 압축기를 나타낸 단면도이다.8 is a cross-sectional view showing a swash plate compressor equipped with a rotary valve according to a second embodiment of the present invention.
도 9는 도 8의 실린더블록을 나타낸 사시도이다.9 is a perspective view illustrating the cylinder block of FIG. 8.
도 10은 도 9의 단면도이다.10 is a cross-sectional view of FIG. 9.
도 11은 도 9에 대하여 냉매 흐름구조를 개략적으로 도시한 부분 단면 사시도이다.FIG. 11 is a partial cross-sectional perspective view schematically illustrating the refrigerant flow structure with respect to FIG. 9.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예1, 2를 상세히 설명한다. Hereinafter, exemplary embodiments 1 and 2 of the present invention will be described in detail with reference to the accompanying drawings.
설명에 앞서, 본 발명 따른 사판식 압축기(1000)는 양두식 피스톤 압축기에 대하여 실시예를 적용하였으나, 반드시 양두식 피스톤 압축기에 한정하지 않는 통상의 편두식 피스톤 압축기에 적용할 수 있다. Prior to the description, the swash plate compressor 1000 according to the present invention is applied to an embodiment of the double-headed piston compressor, but may be applied to a conventional double-headed piston compressor not necessarily limited to the double-headed piston compressor.
<실시예 1><Example 1>
도 3 내지 도 7에 도시된 바와 같이, 본 발명에 따른 사판식 압축기(1000)는 다수개의 실린더보어(110)를 갖는 실린더블록(100)과, 상기 실린더블록(100)의 실린더보어(110)에 각각 왕복운동 가능하게 수용되는 피스톤(200)과, 상기 실린더블록(100)의 전,후방에 각각 밀폐가능하게 결합되는 전,후방하우징(310,320)과, 상기 전방하우징(310)과 실린더블록(100)에 대하여 회전가능하게 설치되는 구동축(400)과, 상기 구동축(400)과 피스톤(200)에 연동 설치되는 사판(500)과, 상기 실린더블록(100)과 전,후방하우징(310,320)의 사이에 각각 개재되는 밸브플레이트(600)로 구성된다. As shown in FIGS. 3 to 7, the swash plate compressor 1000 according to the present invention includes a cylinder block 100 having a plurality of cylinder bores 110 and a cylinder bore 110 of the cylinder block 100. Piston 200 which is accommodated in the reciprocating motion respectively, the front and rear housings 310 and 320 to be hermetically coupled to the front and rear of the cylinder block 100, respectively, the front housing 310 and the cylinder block ( Of the drive shaft 400 rotatably installed with respect to 100, the swash plate 500 interlocked with the drive shaft 400 and the piston 200, the cylinder block 100, and the front and rear housings 310 and 320. It is composed of a valve plate 600 interposed therebetween.
상기 구성은 앞서 설명한 도 1 및 도 2의 종래기술과 동일하므로, 중복되는 구성의 설명은 생략하고, 차이가 있는 구성에 대해서만 설명하도록 한다. Since the configuration is the same as the prior art of FIG. 1 and FIG. 2 described above, description of the overlapping configuration will be omitted, and only the configuration having a difference will be described.
먼저, 도 3 및 도 4에 도시한 바와 같이, 상기 실린더블록(100)은 전,후방하우징(310,320) 사이에 개재되는 것으로, 내부에는 상기 피스톤(200)이 왕복운동하는 다수개의 실린더보어(110)가 형성된다.First, as shown in FIGS. 3 and 4, the cylinder block 100 is interposed between the front and rear housings 310 and 320, and a plurality of cylinder bores 110 in which the piston 200 reciprocates. ) Is formed.
특히, 상기 실린더블록(100)에는 결합공(120)이 형성되어 있으며, 상기 결합공(120) 내에는 미끄럼회전이 자유롭게 로터리밸브(R)가 설치되어 있다. 상기 로터리밸브(R)는 구동축(400)에 결합되어 있어 구동축(400)의 회전과 함께 회전한다.  In particular, the cylinder block 100 is provided with a coupling hole 120, the rotary valve (R) is provided in the coupling hole 120 is free to slide rotation. The rotary valve (R) is coupled to the drive shaft 400 rotates with the rotation of the drive shaft (400).
또한, 상기 로터리밸브(R)의 외주면과 대면하는 결합공(120)의 내주면에는 상기 다수의 실린더보어(110) 각각으로 냉매를 공급하는 연통홀(130)이 형성되어 있는 것과 함께, 사판실(101)로부터 각 하우징(310)(320)까지 연통되는 냉매흡입홈(140)이 형성되어 있다. In addition, the inner circumferential surface of the coupling hole 120 facing the outer circumferential surface of the rotary valve R is formed with a communication hole 130 for supplying refrigerant to each of the plurality of cylinder bores 110, and the swash plate chamber ( A refrigerant suction groove 140 communicating with each of the housings 310 and 320 is formed.
상기 냉매흡입홈(140)은 이웃하는 실린더보어들(110)(110) 사이에 배치되는 것이 냉매 흡입에 효과적이다. 엄밀하게는, 도시된 바와 같이, 상기 냉매흡입홈(140)이 상기 이웃하는 연통홀들(130)(130) 사이에 하나씩 배치되도록 하는 것이 좋다. The refrigerant suction groove 140 is disposed between the adjacent cylinder bores (110, 110) is effective for the refrigerant suction. Strictly, as shown in the drawing, the refrigerant suction grooves 140 may be disposed one by one between the neighboring communication holes 130 and 130.
본 발명의 실시예에 채택된 로터리밸브(R)의 구성은 아래와 같다. The configuration of the rotary valve (R) adopted in the embodiment of the present invention is as follows.
상기 로터리밸브(R)는 상기 구동축(400)을 감싸듯이 결합되되 구동축(400)의 외주면과 이격되게 결합되고, 로터리밸브(R)의 외주면은 실린더블록(100)의 결합공(120)에 결합되어 있다. The rotary valve (R) is coupled to surround the drive shaft 400, but is coupled to the outer peripheral surface of the drive shaft 400, the outer peripheral surface of the rotary valve (R) is coupled to the coupling hole 120 of the cylinder block 100 It is.
구체적으로, 상기 로터리밸브(R)는 소정의 길이를 갖는 원통형의 형태로써, 그 외주면 일측에는 둘레방향을 따라 냉매흡입홈(140) 내의 냉매를 직접 실린더블록(100)의 연통홀(130)과 연통시키면서 토출시키도록 냉매토출구(R1)가 형성되고, 일측단부에는 상기 전,후방하우징(310,320)의 냉매저장실(P1) 내의 냉매를 유입토록 하는 냉매우회홈(R2)이 형성된다. 상기 냉매우회홈(R2)의 내경은 구동축(400)의 외경보다 커서 상호 이격되어 있다. Specifically, the rotary valve (R) is a cylindrical shape having a predetermined length, one side of the outer peripheral surface of the refrigerant in the refrigerant suction groove 140 in the circumferential direction directly communicating with the communication hole 130 of the cylinder block 100 A refrigerant discharge port R1 is formed to discharge while communicating with each other, and a refrigerant bypass groove R2 for introducing a refrigerant in the refrigerant storage chamber P1 of the front and rear housings 310 and 320 is formed at one end thereof. The inner diameters of the refrigerant bypass grooves R2 are greater than the outer diameter of the drive shaft 400 and are spaced apart from each other.
이러한 구성에 따라, 도 5에 도시한 바와 같이, 상기 실린더블록(100)의 냉매흡입홈(140)을 통해 유입된 냉매가 이동하는 과정에서, 일부는 로터리밸브(R)의 냉매토출구(R1)를 통해 실린더보어(110)의 연통홀(130)로 토출되며, 나머지 냉매는 로터리밸브(R)의 길이방향을 따라 전,후방하우징(310,320)의 냉매저장실(P1)로 이동된다. 이후 상기 전,후방하우징(310,320)의 냉매저장실(P1) 내의 냉매는 로터리밸브(R)의 냉매우회홈(R2)로 유입되고 이 유입된 냉매는 냉매토출구(R1)와 연통홀(130)을 거쳐 실린더보어(110)로 토출된다. According to this configuration, as shown in FIG. 5, in the process of moving the refrigerant introduced through the refrigerant suction groove 140 of the cylinder block 100, a part of the refrigerant discharge port R1 of the rotary valve R is moved. Through the discharge through the communication hole 130 of the cylinder bore 110, the remaining refrigerant is moved to the refrigerant storage chamber (P1) of the front and rear housings 310 and 320 along the longitudinal direction of the rotary valve (R). Thereafter, the refrigerant in the refrigerant storage chambers P1 of the front and rear housings 310 and 320 flows into the refrigerant bypass groove R2 of the rotary valve R, and the refrigerant flows into the refrigerant discharge port R1 and the communication hole 130. Through the cylinder bore 110 is discharged.
이와 같이 상기 로터리밸브(R)는 냉매를 이중 흡입방식으로 냉매를 신속하고 안정적인 상태로 흡입할 수 있다. As such, the rotary valve R may suck the refrigerant in a quick and stable state by a double suction method.
아울러, 도 6에 도시한 바와 같이, 상기 로터리밸브(R)와 구동축(400)은 상호간의 결합력을 높이도록 디커팅('D' cutting)면(401)을 형성하는 것이 좋다. In addition, as shown in Figure 6, the rotary valve (R) and the drive shaft 400 is good to form a cutting ('D' cutting) surface 401 to increase the mutual coupling force.
또한, 상기 로터리밸브(R)와 구동축(400) 사이에는 밀폐력을 높이기 위한 스냅링(402)을 추가적으로 개재시키는 것이 바람직하다. In addition, it is preferable to further interpose a snap ring 402 between the rotary valve (R) and the drive shaft 400 to increase the sealing force.
한편, 도 3 및 도 7에 도시한 바와 같이, 상기 로터리밸브(R)에는 피스톤(200)의 흡입작용 시점에서 연통홀(130) 내에 갇히게 되는 잔류가스를 제거하기 위한 배출통공(R3)이 형성된다. On the other hand, as shown in Figure 3 and 7, the rotary valve (R) is formed with a discharge through-hole (R3) for removing the residual gas trapped in the communication hole 130 at the time of the suction action of the piston 200 do.
상기 배출통공(R3)은 로터리밸브(R)의 냉매토출구(R1)의 회전방향 앞쪽에 이웃하여 관통형성된다. The discharge through hole (R3) is formed through the neighboring in front of the rotational direction of the refrigerant discharge port (R1) of the rotary valve (R).
이는, 냉매를 흡입 및 압축작용 하는 피스톤(200)이 최고 상사점에 도달한 이후 다시 냉매를 흡입하는데 있어 연통홀(130)에 갇힌 고압의 잔류가스에 의해 장벽이 발생하는 것을 방지함으로써 냉매가 원활히 실린더보어(110) 내로 흡입될 수 있도록 하는 역할을 수행한다. This is to prevent the barrier from being generated by the high-pressure residual gas trapped in the communication hole 130 to intake the refrigerant again after the piston 200, which sucks and compresses the refrigerant, reaches a top dead center. It serves to be sucked into the cylinder bore (110).
구체적으로, 상기 피스톤(200)이 압축을 완료하는 최고 상사점에 도달하였을 경우, 압축된 고압의 냉매 대부분은 전,후방하우징(310,320)의 냉매토출실(P2)로 토출되되 일부 냉매는 상기 연통홀(130) 내에 잔류하게 된다. 이때, 상기 연통홀(130) 내에 고압의 상태로 잔류하는 냉매가스는 이후 로터리밸브(R)의 냉매토출구(R1)로부터 유입되는 냉매(저압의상태)의 흡입을 방해함으로써 흡입장애를 발생시키게 된다. Specifically, when the piston 200 reaches the top dead center to complete the compression, most of the compressed high-pressure refrigerant is discharged to the refrigerant discharge chamber (P2) of the front and rear housings (310, 320), but some of the refrigerant is in communication It remains in the hole 130. At this time, the refrigerant gas remaining in the high pressure state in the communication hole 130 may cause a suction failure by preventing the suction of the refrigerant (low pressure state) flowing from the refrigerant discharge port R1 of the rotary valve R. .
따라서, 상기 로터리밸브(R)의 배출통공(R3)은 피스톤(200)의 압축행정이 최고 상사점에 도달한 이후 연통홀(130)과 먼저 연통하여 그 내부에 잔류하던 냉매를 로터리밸브(R) 내측으로 바이패스시킴으로써 이후 상기 실린더보어(110)에 대한 냉매의 흡입을 원할하게 진행할 수 있게 한다. Therefore, the discharge hole R3 of the rotary valve R communicates with the communication hole 130 first after the compression stroke of the piston 200 reaches a top dead center, and the refrigerant remaining in the rotary valve R is rotated. Bypassing the inside to facilitate the subsequent suction of the refrigerant to the cylinder bore (110).
이러한 상기 로터리밸브(R)의 배출통공(R3)은 실린더블록(100)의 연통홀(130)의 폭과 넓이에 대응하는 형태로 형성하는 것이 좋다. The discharge hole R3 of the rotary valve R may be formed in a shape corresponding to the width and width of the communication hole 130 of the cylinder block 100.
또한, 상기 로터리밸브(R)의 배출통공(R3)은 관통된 형태로 제작하는 것이 바람직하나,반드시 이에 한정하지 않는 소정의 높이로 함몰된 홈의 형태로 하여 길이방향 외측으로 냉매를 바이패스시킬 수 있는 형태로 제작할 수도 있다. In addition, the discharge hole (R3) of the rotary valve (R) is preferably manufactured in a penetrating form, but not necessarily limited to the form of a groove recessed to a predetermined height to bypass the refrigerant in the longitudinal direction outside. It can also be produced in a form that can.
아울러, 상기 로터리밸브(R)의 외경 둘레에는 구동축(400) 회전에 따른 회전력에 실린더블록(100)과의 마찰열이 발생되어 과열되는 것과 마모를 최소화할 수 있도록 테프론(Teflon) 코팅처리 하는 것이 좋다. In addition, around the outer diameter of the rotary valve (R) is generated by friction heat with the cylinder block 100 in the rotational force according to the rotation of the drive shaft 400 is preferably Teflon (Teflon) coating treatment to minimize overheating and wear. .
이하, 도 3 내지 도 7을 참조하여 본 발명의 실시예 1에 따른 로터리밸브를 장착한 사판식 압축기를 설명한다. Hereinafter, a swash plate type compressor equipped with a rotary valve according to Embodiment 1 of the present invention will be described with reference to FIGS. 3 to 7.
먼저, 압축기(1000)의 구동축(400)이 동력을 전달받아 회전하게 되면, 사판(500)이 회전하고, 상기 사판(500)의 회전운동에 연동하는 다수의 피스톤(200)은 상기 실린더블록(100)의 실린더보어(110) 내부를 왕복운동하면서 냉매를 흡입 및 압축하는 작용을 반복 수행한다. First, when the drive shaft 400 of the compressor 1000 is rotated by receiving power, the swash plate 500 is rotated, the plurality of pistons 200 in conjunction with the rotational movement of the swash plate 500 is the cylinder block ( The suction and compression of the refrigerant is repeatedly performed while reciprocating inside the cylinder bore 110 of 100).
계속해서, 상기 실린더보어(110)로 유입되는 냉매의 흡입구조를 구체적으로 살펴보면, 증발기(미도시)로부터 사판실(101) 내로 유입된 냉매는 상기 피스톤(200)의 흡입행정에 의해 실린더블록(100)의 냉매흡입홈(140)으로 유입되게 된다. 이 과정에서 상기 냉매흡입홈(140)을 통해 축방향으로 이동하는 냉매의 일부는 로터리밸브(R)에 냉매토출구(R1)로 이동하여 직접 실린더보어(110) 내부로 흡입되며, 나머지 냉매는 로터리밸브(R)의 외주면을 따라 안내되어 전,후방하우징(310,320)의 냉매저장실(P1)을 거쳐 로터리밸브(R)의 냉매우회홈(R2)으로 이동한 후 냉매토출구(R1)를 통해 실린더보어(110)로 흡입된다. Subsequently, looking at the suction structure of the refrigerant flowing into the cylinder bore 110 in detail, the refrigerant introduced into the swash plate chamber 101 from the evaporator (not shown) is a cylinder block (B) by the suction stroke of the piston 200. It is introduced into the refrigerant suction groove 140 of 100. In this process, a part of the refrigerant moving in the axial direction through the refrigerant suction groove 140 moves to the refrigerant discharge port R1 in the rotary valve R and is directly sucked into the cylinder bore 110, and the other refrigerant is a rotary. Guided along the outer circumferential surface of the valve (R) is moved to the refrigerant bypass groove (R2) of the rotary valve (R) through the refrigerant storage chamber (P1) of the front and rear housings (310, 320) and then the cylinder bore through the refrigerant discharge port (R1) Inhaled at 110.
즉, 상기 로터리밸브(R)는 냉매를 양 방향으로 흡입하는 구조로써, 냉매의 흡입량을 안정적으로 유지시킬 뿐만 아니라 신속하게 실린더보어로 토출시킬 수 있다. That is, the rotary valve R has a structure in which the refrigerant is sucked in both directions, and not only maintains the suction amount of the refrigerant stably but also quickly discharges the cylinder bore.
한편, 상기 로터리밸브(R)에는 배출통공(R3)이 형성되어 있으므로 피스톤(200)의 압축행정이 최고 상사점에 도달한 이후 실린더보어(110)의 연통홀(130)을 연통시켜 그 내부에 잔류하던 냉매를 로터리밸브(R)의 내측으로 바이패스시키므로, 이후 상기 실린더보어(110)로의 냉매의 흡입을 원할하게 진행할 수 있게 한다. On the other hand, since the discharge valve R3 is formed in the rotary valve R, after the compression stroke of the piston 200 reaches a top dead center, the communication hole 130 of the cylinder bore 110 communicates therewith. Since the residual refrigerant is bypassed into the rotary valve R, the suction of the refrigerant into the cylinder bore 110 can be smoothly performed thereafter.
이러한 상기 로터리밸브(R)는 구동축(400)의 외주면 둘레에 착탈가능하게 결합되지만, 기존의 구동축(400)을 직접 가공하여 형성하는 것도 가능하다. The rotary valve R is detachably coupled around the outer circumferential surface of the drive shaft 400, but may be formed by directly processing the existing drive shaft 400.
또한, 냉매저장실(P1)이 별도로 없는 구조에 적용하여 단일 흡입구조를 형성하는 것도 가능하다. In addition, it is also possible to form a single suction structure by applying to the structure without the refrigerant storage chamber (P1) separately.
<실시예 2><Example 2>
이하, 첨부된 도 8 내지 도 11을 참조하여 본 발명의 바람직한 실시예 2를 상세히 설명한다. Hereinafter, with reference to the accompanying Figures 8 to 11 will be described a preferred embodiment 2 of the present invention in detail.
본 발명에 따른 사판식 압축기(1000)는 다수개의 실린더보어(110)를 갖는 실린더블록(100)과, 상기 실린더블록(100)의 실린더보어(110)에 각각 왕복운동 가능하게 수용되는 피스톤(200)과, 상기 실린더블록(100)의 전,후방에 각각 밀폐가능하게 결합되는 전,후방하우징(310,320)과, 상기 전방하우징(310)과 실린더블록(100)에 대하여 회전가능하게 설치되는 구동축(400)과, 상기 구동축(400)과 피스톤(200)에 연동 설치되는 사판(500)과, 상기 실린더블록(110)과 전,후방하우징(310,320)의 사이에 각각 개재되는 밸브플레이트(600)로 구성된다. The swash plate compressor 1000 according to the present invention includes a cylinder block 100 having a plurality of cylinder bores 110 and a piston 200 reciprocally accommodated in the cylinder bores 110 of the cylinder block 100, respectively. ), The front and rear housings 310 and 320 which are hermetically coupled to the front and rear of the cylinder block 100, respectively, and a drive shaft rotatably installed with respect to the front housing 310 and the cylinder block 100 ( 400, the swash plate 500 interlocked with the drive shaft 400 and the piston 200, and the valve plate 600 interposed between the cylinder block 110 and the front and rear housings 310 and 320, respectively. It is composed.
마찬가지로, 상기 구성은 전술한 도 1의 종래기술 및 실시예 1과 동일하므로, 중복되는 부분에 대한 설명은 생략하고, 이하 차이가 있는 구성에 대해서만 설명하도록 한다. Similarly, since the configuration is the same as the prior art and the first embodiment of FIG. 1 described above, a description of overlapping portions will be omitted, and only the configurations having differences will be described below.
도시한 바와 같이, 상기 실린더블록(100)은 전,후방하우징(310,320) 사이에 개재되는 것으로, 내부에는 상기 피스톤(200)이 왕복운동 가능하게 하는 실린더보어(110)가 형성된다. As shown in the drawing, the cylinder block 100 is interposed between the front and rear housings 310 and 320, and a cylinder bore 110 is formed therein to allow the piston 200 to reciprocate.
특히, 상기 실린더블록(100)에는 결합공(120)이 형성되어 있으며, 상기 결합공(120) 내에는 미끄럼회전이 자유롭게 로터리밸브(R)가 설치되어 있다. 상기 로터리밸브(R)는 구동축(400)과 함께 회전하도록 되어 있다. In particular, the cylinder block 100 is provided with a coupling hole 120, the rotary valve (R) is provided in the coupling hole 120 is free to slide rotation. The rotary valve R is configured to rotate together with the drive shaft 400.
또한, 상기 로터리밸브(R)의 외주면과 대면하는 결합공(120)의 내주면에는 상기 다수의 실린더보어(110) 각각으로 냉매를 공급하는 연통홀(130)이 형성되어 있는 것과 함께, 사판실(101)로부터 각 하우징(310)(320)까지 연통되는 냉매흡입홈(140)이 형성되어 있다. In addition, the inner circumferential surface of the coupling hole 120 facing the outer circumferential surface of the rotary valve R is formed with a communication hole 130 for supplying refrigerant to each of the plurality of cylinder bores 110, and the swash plate chamber ( A refrigerant suction groove 140 communicating with each of the housings 310 and 320 is formed.
상기 냉매흡입홈(140)은 이웃하는 실린더보어들(110)(110) 사이에 배치되는 것이 냉매 흡입에 효과적이다. 엄밀하게는, 도시된 바와 같이, 상기 냉매흡입홈(140)이 상기 이웃하는 연통홀들(130)(130) 사이에 하나씩 배치되도록 하는 것이 좋다. The refrigerant suction groove 140 is disposed between the adjacent cylinder bores (110, 110) is effective for the refrigerant suction. Strictly, as shown in the drawing, the refrigerant suction grooves 140 may be disposed one by one between the neighboring communication holes 130 and 130.
한편, 상기 냉매흡입홈(140)의 바깥쪽 외주면 근방에는 전,후하우징(310,320)의 냉매저장실(P1)로 냉매를 공급하는 냉매공급로(170)가 추가적으로 형성되고, 상기 냉매공급로(170)와 냉매흡입홈(140) 사이에는 연결유로홈(180)이 형성된 구조를 갖는다. Meanwhile, a coolant supply path 170 for supplying a coolant to a coolant storage chamber P1 of the front and rear housings 310 and 320 is further formed near the outer circumferential surface of the coolant suction groove 140 and the coolant supply path 170. ) And the refrigerant suction groove 140 has a structure in which a connection flow path groove 180 is formed.
상기 연결유로홈(180)은 상기 전,후방하우징(310,320)과 면하는 실린더블록(100)의 끝면에 형성되는 것이 좋다. The connection flow path groove 180 may be formed at an end surface of the cylinder block 100 facing the front and rear housings 310 and 320.
여기서, 상기 냉매공급로(170)는 결합공(120)으로부터 소정거리 이격된 상태에서 실린더보어(110) 사이에 다수개가 관통 형성된 것으로, 상기 사판실(101) 내의 냉매를 보다 원활하게 흡입될 수 있도록 함은 물론 냉매의 유로저항을 크게 줄일 수 있는 역할을 수행한다. Here, the refrigerant supply path 170 is formed through a plurality of cylinder bore 110 in a state spaced apart from the coupling hole 120 by a predetermined distance, it is possible to more smoothly suck the refrigerant in the swash plate chamber (101) In addition, it serves to significantly reduce the flow path resistance of the refrigerant.
한편, 상기 로터리밸브(R)는 구동축(400)의 외경을 가공하여 구동축(400)에 일체로 형성한다. On the other hand, the rotary valve (R) is formed integrally with the drive shaft 400 by processing the outer diameter of the drive shaft (400).
이는, 상기 로터리밸브(R)를 별도로 제작하여 생산하고 이를 다시 구동축(400)에 조립시키는 공정을 생략할 수 있을 뿐만 아니라 상기 로터리밸브(R)와 구동축(400) 상호간의 마찰을 줄일 수 있는 장점을 제공한다. This may not only omit the process of separately manufacturing the rotary valve R and assembling it back to the drive shaft 400, but also reduce the friction between the rotary valve R and the drive shaft 400. To provide.
구체적으로, 상기 로터리밸브(R)는 구동축(400)에 형성되는 것으로, 그 외주면의 일측에는 실린더블록(100)의 냉매흡입홈(140) 내로 유입된 냉매를 직접 실린더보어(110)와 연통시키면서 토출시키는 냉매토출구(R1)가 형성된다. Specifically, the rotary valve (R) is formed on the drive shaft 400, while the refrigerant introduced into the refrigerant suction groove 140 of the cylinder block 100 directly communicates with the cylinder bore 110 on one side of the outer peripheral surface. A refrigerant discharge port R1 for discharging is formed.
그리고, 상기 실린더블록(100)의 결합공(120) 내주면과 로터리밸브(R)의 외주면에는 상호간에 연통되어 실린더보어(110)의 연통홀(130) 내의 고압 잔류가스를 제거하기 위한 각각의 제1 배출홈(190)과 제2 배출홈(R4,R5)이 형성된다. In addition, the inner circumferential surface of the coupling hole 120 of the cylinder block 100 and the outer circumferential surface of the rotary valve R communicate with each other to remove residual high pressure gas in the communication hole 130 of the cylinder bore 110. The first discharge groove 190 and the second discharge grooves R4 and R5 are formed.
상기 제1 배출홈(190)은 결합공(120)의 내주면 둘레를 따라 소정 깊이로 함몰된 원형의 형태로 이루어진다. 여기서, 상기 제1 배출홈(190)은 후술할 일측 제2 배출홈(R4)으로부터 이동되는 잔류가스를 타측 제2 배출홈(R5)으로 공급하는 중간통로 역할을 수행한다. The first discharge groove 190 has a circular shape recessed to a predetermined depth along the circumference of the inner circumferential surface of the coupling hole 120. Here, the first discharge groove 190 serves as an intermediate passage for supplying the residual gas moved from one side second discharge groove (R4) to the other side second discharge groove (R5).
상기 제2 배출홈(R4,R5)은 구동축(400)에 형성된 냉매토출구(R1)를 사이에 두고 형성된다. 이 경우, 일측의 제2 배출홈(R4)은 연통홀(130) 내의 냉매를 흡입하는 역할을 수행하며, 타측에 형성된 제2 배출홈(R5)은 제1 배출홈(190)을 지나온 잔류가스를 맞은 편 연통홀(130)을 통해 팽창된 실린더보어(110)로 배출시키는 역할을 수행한다. The second discharge grooves R4 and R5 are formed with the refrigerant discharge port R1 formed in the drive shaft 400 interposed therebetween. In this case, one side of the second discharge groove (R4) serves to suck the refrigerant in the communication hole 130, the second discharge groove (R5) formed on the other side residual gas passing through the first discharge groove 190 It serves to discharge to the expanded cylinder bore 110 through the communication hole 130 opposite.
따라서, 상기 연통홀(130) 내에 잔류하던 냉매는 구동축(400)이 회전하는 과정에서 일측의 제2 배출홈(R4), 제1 배출홈(190), 타측의 제2 배출홈(R5)을 순차적으로 통과한 후 맞은 편의 연통홀(130)을 통해 팽창된 실린더보어(110)로 토출된다. Therefore, the refrigerant remaining in the communication hole 130 may be configured to allow the second discharge groove R4, the first discharge groove 190, and the second discharge groove R5 on the other side of the driving shaft 400 to be rotated. After passing sequentially, it is discharged to the expanded cylinder bore 110 through the communication hole 130 on the opposite side.
이하, 본 발명의 실시예에 따른 냉매의 흡입구조를 한층 구체적으로 설명한다. Hereinafter, the suction structure of the refrigerant according to an embodiment of the present invention will be described in more detail.
먼저, 도 8 내지 도 11에 도시한 바와 같이, 상기 실린더블록(100)의 냉매흡입홈(140)을 통해 유입된 냉매가 이동하는 과정에서 구동축(400)에 형성된 로터리밸브(R)의 냉매토출구(R1)를 통해 실린더보어(110)의 연통홀(130)로 토출된다. First, as shown in Figures 8 to 11, the refrigerant discharge port of the rotary valve (R) formed in the drive shaft 400 in the process of the refrigerant flowing through the refrigerant suction groove 140 of the cylinder block 100 is moved. Through the R1 is discharged to the communication hole 130 of the cylinder bore 110.
한편, 상기 실린더블록(100)의 냉매공급로(170)로 유입된 냉매는 연결유로홈(180)을 지나 냉매흡입홈(140)으로 공급되어 로터리밸브(R)의 냉매토출구(R1)를 통해 연통홀(130)로 토출된다. Meanwhile, the refrigerant introduced into the refrigerant supply path 170 of the cylinder block 100 is supplied to the refrigerant suction groove 140 through the connection flow path groove 180 and through the refrigerant discharge port R1 of the rotary valve R. It is discharged to the communication hole 130.
상기 밸브플레이트(600)에 인접한 각 하우징(310)(320)에 냉매저장실(P1)이 있다면, 상기 냉매저장실(P1)에 저장된 냉매는 다시 냉매흡입홈(140)으로 유입되어 냉매토출구(R1) 및 연통홀(130)을 통해 실린더보어(110)로 이동할 수도 있다. If there is a coolant storage chamber P1 in each of the housings 310 and 320 adjacent to the valve plate 600, the coolant stored in the coolant storage chamber P1 flows back into the coolant suction groove 140 and the coolant discharge port R1. And it may move to the cylinder bore 110 through the communication hole 130.
이와 같이 상기 실린더블록(100)에는 냉매흡입홈(140) 외에도 그 외주면 근방에 형성되어 냉매를 이동시키는 냉매공급로(170)와 연결유로홈(180)을 형성함으로써, 실린더보어(110)로 냉매를 토출시키기 위한 흡입손실을 줄임으로써 압축기의 체적효율을 크게 향상시킬 수 있는 것이다. As described above, the cylinder block 100 is formed in the vicinity of the outer circumferential surface in addition to the refrigerant suction groove 140 to form a refrigerant supply path 170 and a connection flow path groove 180 for moving the refrigerant, thereby allowing the refrigerant to the cylinder bore 110. The volumetric efficiency of the compressor can be greatly improved by reducing the suction loss for discharging the gas.
이밖에 다른 구성 및 작용설명은 전술한 실시예 1과 유사하므로, 상세한 설명은 생략한다. Other configurations and operation descriptions are similar to those of Embodiment 1 described above, and thus detailed descriptions thereof will be omitted.

Claims (14)

  1. 하우징과, 다수개의 실린더보어가 형성되며 상기 하우징에 결합되는 실린더블록과, 상기 실린더보어에 각각 왕복운동 가능하게 수용되는 피스톤과, 상기 하우징과 실린더블록에 대하여 회전가능하게 설치되는 구동축과, 상기 구동축에 의해 회전하며 피스톤에 연동되게 설치되는 사판과, 상기 하우징과 실린더블록 사이에 개재되는 밸브플레이트와, 상기 구동축과 함께 회전하도록 형성되며 상기 실린더블록에 형성된 결합공의 내면에 미끄럼 회전이 자유롭게 설치된 로터리밸브를 포함하는 사판식 압축기에 있어서,A housing, a cylinder block having a plurality of cylinder bores formed therein, coupled to the housing, a piston accommodated reciprocally in the cylinder bore, a drive shaft rotatably installed with respect to the housing and the cylinder block, and the drive shaft The rotary plate is rotated by the swash plate, the valve plate interposed between the housing and the cylinder block, and the rotary shaft is formed to rotate with the drive shaft, the rotary slide freely installed on the inner surface of the coupling hole formed in the cylinder block In the swash plate compressor comprising a valve,
    상기 로터리밸브의 외주면에는 냉매토출구가 형성되고, 상기 로터리밸브의 외주면과 면하는 결합공의 내주면에는 상기 다수의 실린더보어와 각각 연결되는 연통홀이 형성되어 있는 것과 함께 사판실로부터 하우징까지 연통되는 냉매 흡입홈이 형성된 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.A coolant discharge port is formed on an outer circumferential surface of the rotary valve, and a communication hole connected to the plurality of cylinder bores is formed on an inner circumferential surface of a coupling hole facing the outer circumferential surface of the rotary valve. Swash plate compressor equipped with a rotary valve, characterized in that the suction groove is formed.
  2. 제1항에 있어서,The method of claim 1,
    상기 실린더블록에는 상기 사판실로부터 하우징까지 연통되어 있는 냉매공급로가 추가적으로 형성되고, 상기 냉매공급로와 냉매 흡입홈 사이에는 연결유로홈이 형성되되, 구동축 방향에서 바라볼 때 상기 냉매공급로는 냉매 흡입홈의 외측에 배치되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The cylinder block is further formed with a refrigerant supply passage communicating from the swash plate chamber to the housing, a connection flow path groove is formed between the refrigerant supply passage and the refrigerant suction groove, the refrigerant supply passage when viewed from the direction of the drive shaft A swash plate type compressor equipped with a rotary valve, which is disposed outside the suction groove.
  3. 제2항에 있어서,The method of claim 2,
    상기 연결유로홈은 상기 하우징과 면하는 실린더블록의 끝면에 형성된 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The connecting flow path groove is a swash plate type compressor equipped with a rotary valve, characterized in that formed on the end surface of the cylinder block facing the housing.
  4. 제1항에 있어서,The method of claim 1,
    구동축 방향에서 바라볼 때, 상기 냉매 흡입홈은 상기 이웃하는 실린더보어에 각각 형성된 연통홀들 사이에 하나씩 형성되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.When viewed from the direction of the drive shaft, the refrigerant suction groove is a swash plate type compressor equipped with a rotary valve, characterized in that formed one by one between the communication holes formed in the adjacent cylinder bore.
  5. 제1항에 있어서,The method of claim 1,
    상기 밸브플레이트를 중심으로 상기 로터리밸브의 반대쪽 하우징에는 냉매저장실이 형성되어 있는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.A swash plate type compressor equipped with a rotary valve, characterized in that a coolant storage chamber is formed in a housing opposite to the rotary valve with respect to the valve plate.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 로터리밸브는 구동축의 외경 둘레로부터 착탈가능하게 결합되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The rotary valve is a swash plate type compressor equipped with a rotary valve, characterized in that detachably coupled from the outer circumference of the drive shaft.
  7. 제6항에 있어서,The method of claim 6,
    상기 로터리밸브에는, 구동축의 외주면과 이격되게 형성되어 상기 하우징의 냉매저장실 내의 냉매를 유입하는 냉매우회홈이 형성되어 있으며, 상기 냉매토출구는 상기 냉매우회홈과 연통되도록 외주면에 관통 형성되어 있는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The rotary valve has a refrigerant bypass groove formed to be spaced apart from an outer circumferential surface of the driving shaft to introduce a refrigerant into the refrigerant storage chamber of the housing, and the refrigerant discharge port is formed through the outer circumferential surface so as to communicate with the refrigerant bypass groove. Swash plate compressor equipped with a rotary valve.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 로터리밸브의 냉매토출구의 회전방향 앞쪽 외주면에는 냉매우회홈과 연통하는 배출통공이 관통되게 형성되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.A swash plate type compressor equipped with a rotary valve, characterized in that the discharge through-hole communicating with the refrigerant bypass groove is formed in the outer peripheral surface of the rotary valve in the front direction of the refrigerant discharge port.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 로터리밸브의 외주면에는 상기 냉매토출구를 사이에 두고 2개의 제2배출홈이 각각 형성되어 있되 앞뒤로 연장되어 있고, 상기 로터리밸브가 결합되는 결합공의 내주면에는 둘레방향을 따라 상기 2개의 제2배출홈과 연통하는 제1 배출홈이 형성되어 있는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.Two second discharge grooves are formed on the outer circumferential surface of the rotary valve with the refrigerant discharge port interposed therebetween, extending back and forth, and the two second discharges along the circumferential direction on the inner circumferential surface of the coupling hole to which the rotary valve is coupled. A swash plate compressor equipped with a rotary valve, characterized in that the first discharge groove is formed in communication with the groove.
  10. 제6항에 있어서,The method of claim 6,
    상기 로터리밸브와 구동축은 디커팅 되어 결합되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The rotary valve and the drive shaft is a swash plate type compressor equipped with a rotary valve, characterized in that coupled to the cutting.
  11. 제10항에 있어서,The method of claim 10,
    상기 로터리밸브와 구동축 사이에는 밀폐력을 높이기 위한 스냅링이 개재되는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.A swash plate type compressor equipped with a rotary valve, characterized in that a snap ring for increasing the sealing force is interposed between the rotary valve and the drive shaft.
  12. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 로터리밸브는 구동축의 외주면에 냉매토출구가 형성되어 이루어진 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The rotary valve is a swash plate compressor equipped with a rotary valve, characterized in that the refrigerant discharge port is formed on the outer peripheral surface of the drive shaft.
  13. 제12항에 있어서,The method of claim 12,
    상기 로터리밸브의 외주면에는 상기 냉매토출구를 사이에 두고 2개의 제2배출홈이 각각 형성되어 있되 앞뒤로 연장되어 있고, 상기 로터리밸브가 결합되는 결합공의 내주면에는 둘레방향을 따라 상기 2개의 제2배출홈과 연통하는 제1 배출홈이 형성되어 있는 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.Two second discharge grooves are formed on the outer circumferential surface of the rotary valve with the refrigerant discharge port interposed therebetween, extending back and forth, and the two second discharges along the circumferential direction on the inner circumferential surface of the coupling hole to which the rotary valve is coupled. A swash plate compressor equipped with a rotary valve, characterized in that the first discharge groove is formed in communication with the groove.
  14. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 결합공의 내부면에 접하는 로터리밸브의 외주면에는 테프론 코팅이 적용된 것을 특징으로 하는 로터리밸브를 장착한 사판식 압축기.The swash plate compressor equipped with a rotary valve, characterized in that the Teflon coating is applied to the outer peripheral surface of the rotary valve in contact with the inner surface of the coupling hole.
PCT/KR2009/006870 2008-11-20 2009-11-20 Swash plate compressor with rotary valve WO2010058998A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980153670.4A CN102272450B (en) 2008-11-20 2009-11-20 Swash plate compressor with rotary valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080115742A KR101001564B1 (en) 2008-11-20 2008-11-20 swash plate type compressor with rotary valve
KR10-2008-0115742 2008-11-20

Publications (2)

Publication Number Publication Date
WO2010058998A2 true WO2010058998A2 (en) 2010-05-27
WO2010058998A3 WO2010058998A3 (en) 2010-07-29

Family

ID=42198689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006870 WO2010058998A2 (en) 2008-11-20 2009-11-20 Swash plate compressor with rotary valve

Country Status (3)

Country Link
KR (1) KR101001564B1 (en)
CN (1) CN102272450B (en)
WO (1) WO2010058998A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624795B1 (en) * 2004-09-14 2006-09-18 엘지전자 주식회사 Detergent display method of washing machine
KR101768934B1 (en) * 2010-07-06 2017-08-18 학교법인 두원학원 Swash plate type compressor
CN102678864A (en) * 2012-05-18 2012-09-19 中山市亚泰机械实业有限公司 Swash-plate transmission mechanism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054955A (en) * 1998-08-10 2000-02-22 Toyota Autom Loom Works Ltd Variable displacement compressor
KR20060035063A (en) * 2004-10-20 2006-04-26 엘지전자 주식회사 Scroll compressor
KR20080072526A (en) * 2007-02-02 2008-08-06 가부시키가이샤 도요다 지도숏키 Double-headed piston type compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3018801B2 (en) * 1992-12-24 2000-03-13 株式会社豊田自動織機製作所 Reciprocating compressor
TW400919U (en) * 1996-03-12 2000-08-01 Toyoda Automatic Loom Works Variable volume capacity typed compressor
KR101165947B1 (en) * 2006-05-01 2012-07-18 한라공조주식회사 Variable capacity type swash plate type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054955A (en) * 1998-08-10 2000-02-22 Toyota Autom Loom Works Ltd Variable displacement compressor
KR20060035063A (en) * 2004-10-20 2006-04-26 엘지전자 주식회사 Scroll compressor
KR20080072526A (en) * 2007-02-02 2008-08-06 가부시키가이샤 도요다 지도숏키 Double-headed piston type compressor

Also Published As

Publication number Publication date
KR101001564B1 (en) 2010-12-17
KR20100056772A (en) 2010-05-28
CN102272450A (en) 2011-12-07
WO2010058998A3 (en) 2010-07-29
CN102272450B (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP4514232B2 (en) Compressor
WO2009151259A1 (en) Reciprocating compressor with rotary valve
WO2010058998A2 (en) Swash plate compressor with rotary valve
KR20080106007A (en) Compressor
EP1302662B1 (en) Swash plate type compressor having improved refrigerant discharge structure
WO2010068025A2 (en) Swash plate compressor
WO2009139559A1 (en) Swash plate compressor
KR101001575B1 (en) swash plate type compressor with rotary valve
KR100986964B1 (en) swash plate type compressor
WO2018221902A1 (en) Control valve and variable-capacity compressor
WO2020153705A1 (en) Swash plate type compressor
KR20080009361A (en) Compressor
KR100917020B1 (en) Compressor
KR20110007288A (en) Swash plate type compressor
KR101001569B1 (en) Rotary valve and swash pate type compressor having the same
KR101001566B1 (en) Swash plate type compressor
KR100993778B1 (en) Double-headed swash plate type compressor
KR101099102B1 (en) swash plate type compressor
JP3517938B2 (en) Refrigerant gas suction structure in reciprocating compressor
KR20080029077A (en) Compressor
WO2012005474A2 (en) Swash plate type compressor
WO2010068026A2 (en) Swash plate compressor
KR20080010686A (en) Compressor
WO2022119048A1 (en) Rotary piston air compressor
WO2010151021A2 (en) Reciprocating compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980153670.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827763

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827763

Country of ref document: EP

Kind code of ref document: A2