WO2010058760A1 - Gas hydrate pellet molding device and gas hydrate pellet molding method - Google Patents

Gas hydrate pellet molding device and gas hydrate pellet molding method Download PDF

Info

Publication number
WO2010058760A1
WO2010058760A1 PCT/JP2009/069461 JP2009069461W WO2010058760A1 WO 2010058760 A1 WO2010058760 A1 WO 2010058760A1 JP 2009069461 W JP2009069461 W JP 2009069461W WO 2010058760 A1 WO2010058760 A1 WO 2010058760A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellet
gas hydrate
die plate
plunger
die
Prior art date
Application number
PCT/JP2009/069461
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 村山
則之 下村
徹 岩崎
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Publication of WO2010058760A1 publication Critical patent/WO2010058760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates

Definitions

  • natural gas hydrate existing under the seabed or artificially produced gas hydrate (natural gas hydrate, CO 2 hydrate) is generated in a state suitable for transportation and storage. More specifically, the present invention relates to a gas hydrate pellet forming apparatus and a forming method for forming pellets while removing moisture from a slurry-like gas hydrate.
  • Natural gas hydrate (NGH), the main component of which is methane, exists under the seabed at a depth of 500 m or less in the frozen land belts of Siberia, Canada, Alaska, and the continental area.
  • NGH Natural gas hydrate
  • This NGH is a water-like solid substance or clathrate hydrate that is composed of gas molecules such as methane and water molecules and is stable under low temperature and high pressure, and as clean energy that emits less carbon dioxide and air pollutants. It is attracting attention.
  • Natural gas is liquefied and then stored and used as energy, but its production and storage are performed at an extremely low temperature of -162 ° C.
  • natural gas hydrate has the advantage that it exhibits stable properties without being decomposed at ⁇ 20 ° C. and can be handled as a solid. Because of these properties, it is possible to effectively use gas resources in undeveloped small and medium-sized gas fields, especially for reasons such as profitability existing all over the world, or as a means to make effective use of short-distance and small-lots from large gas fields.
  • NSH transport a method of transporting natural gas in a hydrate
  • FIG. 11 is a schematic block diagram illustrating an example of the configuration of a gas hydrate generation plant used in the NGH shipping base.
  • the mined source gas is sufficiently mixed with water and hydrated in a generator 41 which is a high-pressure reaction vessel, and a low concentration gas hydrate (GH) slurry is generated.
  • the generated GH slurry is supplied to the dehydrator 43 by the supply pump 42 to generate a dehydrated high-concentration GH slurry.
  • the dehydrator 43 is supplied to the lowermost part of the dehydrator 43.
  • the supplied GH slurry is dehydrated while gradually raising the dehydrator 43 and taken out from the upper end of the dehydrator 43.
  • the extracted gas hydrate is extracted as, for example, GH powder that has been dehydrated and powdered.
  • This GH powder is supplied to the pellet former 44 and granulated to form GH pellets of an appropriate size for transportation and storage.
  • the decompressor 46 After being cooled by the cooler 45 to a temperature at which it does not decompose even under normal pressure, it is supplied to the decompressor 46.
  • the treatment is performed under gas hydrate production conditions (for example, 5MPa, 8 ° C in the case of NGH), and the normal pressure is reduced by the cooler 45 and the decompressor 46.
  • gas hydrate production conditions for example, 5MPa, 8 ° C in the case of NGH
  • the normal pressure is reduced by the cooler 45 and the decompressor 46.
  • it is processed at a temperature at which decomposition is difficult (for example, -20 ° C in the case of NGH).
  • the generated GH pellets are fed to a storage tank and stored.
  • the applicant of the present application has proposed a manufacturing method and a manufacturing apparatus for gas hydrate pellets that can manufacture pellets excellent in storability at low cost (see Patent Document 1).
  • the gas hydrate is dehydrated by compression molding means under the production conditions and is molded into pellets.
  • the compression molding means a briquetting roll having a plurality of pellet molding dies on the outer peripheral surface and comprising a pair of rolls rotating in directions opposite to each other.
  • each device of the dehydrator 43 and the pellet former 44 is required, and the gas hydrate production plant is increased in size.
  • Patent Document 1 discloses a reciprocating pellet manufacturing apparatus. In this reciprocating type, dehydration and molding can be performed reliably while compressing, but since this method is so-called batch processing, there are the same problems as described above.
  • an object of the present invention is to provide a gas hydrate pellet molding apparatus and a gas hydrate molding method which can perform dehydration and pellet molding with a single apparatus and are suitable for mass production.
  • a gas hydrate pellet molding apparatus is a gas hydrate pellet molding apparatus that compresses and forms pellets while removing moisture from a gas hydrate slurry.
  • the inner cylinder is formed of a perforated plate
  • a die plate is disposed at an appropriate position in the longitudinal direction of the inner cylinder
  • the gas hydrate slurry is formed with the die plate as a boundary.
  • a die that divides into a pressing chamber to be supplied and a pellet receiving chamber for storing pellets generated from the gas hydrate slurry, and is provided with a pressing plunger slidably in the pressing chamber, and opens and closes the die plate in the pellet receiving chamber.
  • An opening / closing means is provided, a conveying means is connected to the pellet receiving chamber, and the outlet side of the die plate is opened / closed by the die opening / closing means.
  • the sliding of the pressing plunger, a gas hydrate slurry in the inner cylinder and pressed against the die plate, and the was housed in a pellet receiving chamber pellet is characterized in that as subjected to the conveying means.
  • gas hydrate (GH) slurry When gas hydrate (GH) slurry is supplied to the compression chamber in a state where the compression plunger is farthest away from the die plate, that is, in a position where it is retracted to the end, it is accompanied by the GH slurry. Moisture passes through the through hole of the inner cylinder and is discharged into the outer cylinder, and the concentration of the GH slurry is increased.
  • the GH slurry is supplied to the squeezing chamber by a raw material gas and water supplied to a generator and produced by reaction under high pressure, or a natural gas hydrate collected from the seabed.
  • the die plate When the GH slurry is supplied to the pressing chamber, the die plate is closed by the operation of the die opening / closing means.
  • GH slurry does not flow into the pellet receiving chamber.
  • the supply of GH slurry is stopped and the squeezing plunger is advanced by sliding it toward the die plate. Thereby, the supplied GH slurry is squeezed and water is further squeezed out.
  • the die opening / closing means is operated to open the die plate, and the compression chamber and the pellet receiving chamber are communicated with each other.
  • the pressing plunger is further advanced in this state, the substantially solid GH slurry is pushed out from the die plate to the pellet receiving chamber. Therefore, the rod-like GH slurry is extruded into the pellet receiving chamber through the die plate, cut into a suitable length by its own weight, and formed into pellets. The pellets are fed to the next process by the conveying means.
  • the die opening and closing means is constituted by a die opening and closing plunger slidably provided in the pellet receiving chamber, and the die opening and closing plunger slides the die opening and closing plunger. It is characterized by opening and closing the outlet side of the die plate.
  • the die opening / closing plunger is advanced and pressed to the outlet side of the die plate to close the die plate, and retracted from the die plate to open the die plate.
  • the gas hydrate pellet forming apparatus wherein the die opening / closing means has a rotary valve having a closed surface portion partially formed by a spherical surface, and an outlet side of the die plate coincides with the closed surface portion.
  • the die plate is closed with the closed surface portion of the rotary valve and the spherical surface on the outlet side of the die plate facing each other, and opened with the open surface portion other than the closed surface portion facing each other. It is a feature.
  • the die plate is opened and closed by rotating the rotary valve.
  • the closed surface portion of the rotary valve faces the die plate, the die plate is closed, and the die plate is opened with the open surface portion facing.
  • the portion facing the outlet side of the die plate is moved from the open surface portion to the closed surface portion. The rod-like pellets extruded from the die plate are cut.
  • the gas hydrate pellet forming apparatus wherein a cutting portion is formed at a boundary portion between the closed surface portion and the open surface portion of the rotary valve, and the boundary portion passes through the outlet side of the die plate. In this case, the pellets extruded from the die plate are cut.
  • the rod-shaped pellet can be cut by the rotation of the rotary valve.
  • the cutting portion the rod can be cut more reliably and the shape and size of the pellet can be made uniform.
  • the gas hydrate pellet forming apparatus according to the invention of claim 5 has a drainage chamber arranged in parallel with the outer cylinder in the longitudinal direction of the outer cylinder, and these drainage chambers are gathered in a gathering portion. It is characterized in that a drain valve is provided in the part.
  • the squeezed water in the outer cylinder passes through the discharge part to reach the collecting part, and is discharged from the collecting part when the drain valve is opened.
  • the drain valve is closed, all the discharge parts are in communication.
  • the supply of GH slurry is stopped. For this reason, the pressure which arises in the advancing direction front side of this squeezing plunger by sliding of a squeezing plunger is applied to the part of the advancing direction rear side via a drainage part and a gathering part.
  • a gas hydrate pellet forming apparatus is arranged such that any of the pellet forming apparatuses having the above-described structure is arranged side by side in a positional relationship that is symmetrical in the axial direction of the compression plunger.
  • the driving rods of the squeezing plungers of the paired pellet forming apparatuses are used in common, and the phase of operation in each pellet forming apparatus is shifted by sliding of the squeezing plungers.
  • a pellet forming device is arranged so that it can be operated in so-called tandem.
  • one side of the sliding direction of the squeezing plunger advances the squeezing plunger in one of the pair of pellet forming devices to squeeze the GH slurry, and the other squeezing
  • the plunger is retracted to supply the GH slurry to the pressing chamber.
  • the pellet forming apparatus comprising a double-structured cylindrical body of an outer cylinder that is a pressure vessel and an inner cylinder having a communication portion in which a part of the wall body communicates with the inside of the outer cylinder, A die plate is provided in the inner cylinder, one side is set as a pressing chamber, the other side is set as a pellet receiving chamber, and a pressing plunger that moves forward and backward with respect to the die plate in the pressing chamber, Die opening and closing means for opening and closing the die plate is provided in the pellet receiving chamber, respectively, the die opening and closing means is used to close the die plate, and the pressing plunger is attached to the die plate.
  • the die opening and closing means is operated to open the die plate, and by the advancement of the compression plunger, the pellet forming step of forming the gas hydrate pellets by extruding the gas hydrate from the die plate to the pellet receiving chamber; After molding the pellet, the squeezing plunger is moved backward so that the water retained in the outer cylinder flows into the inner cylinder from the communicating portion. Sequentially repeating the preceding steps to is characterized by molding a gas hydrate pellets.
  • the gas hydrate slurry Since the gas hydrate slurry is generated by reacting the raw material gas and the like with water, it is supplied in a state containing a large amount of water. For this reason, it uses for the filtration process which removes the water accompanying the supplied gas hydrate slurry. If the accompanying water is sufficiently filtered, it is subjected to a pressing step for removing moisture while applying pressure to the gas hydrate slurry. In a state where the concentration of the gas hydrate slurry is sufficiently high, the block of the compressed gas hydrate slurry is passed through a die plate to be subjected to a pellet forming step for forming pellets.
  • the water drained for filtration may be clogged by the water and gas hydrate slurry removed in the filtration step and the pressing step.
  • a reverse-end process is performed in which water is passed through the communicating portion in the opposite direction to that in the filtration step and the squeezing step.
  • a pressing plunger that reciprocates in the pellet forming apparatus is used. Moreover, after the squeeze plunger is completed in the pellet forming process, it is necessary to move in a direction opposite to the direction in which the gas hydrate slurry is pressurized in order to prepare for the next filtration process. Since the opposite side of the pressing step is pressurized, the reverse tip step can be performed by the differential pressure on both sides sandwiching the pressing plunger generated at that time.
  • the pellet molding apparatus is disposed as a pair, and a driving plunger driving rod of one pellet molding apparatus and a driving plunger driving rod of the other pellet molding apparatus.
  • the respective compression plungers are linked to the respective end portions of the shared drive rods, so that the operations of the filtration step, the compression step, the pellet forming step, and the backwashing step of the pair of pellet forming devices are performed. The phase of the process is shifted, and the pair of pellet forming apparatuses are operated.
  • a gas hydrate pellet is formed by operating a pair of pellet forming apparatuses in a so-called tandem operation.
  • the other pellet forming device is in the back-end step, and one is backwashed until the other is completed.
  • the squeezing from the GH slurry and the molding of the pellet can be performed continuously, and the apparatus has a cylindrical structure. Is easy to enlarge. Therefore, it can be suitably used in equipment for mass production.
  • FIG. 5 is a diagram for explaining a schematic structure of a chopper that cuts a pellet extruded from a die plate when forming a pellet, and is a cross-sectional view taken along the line AA in FIG. 4.
  • FIG. 4 is a diagram showing, in a simplified manner, another embodiment of a die opening / closing means used in a gas hydrate pellet molding apparatus according to the present invention, wherein (a) shows a state when the pellet molding apparatus is in a filtration step and a pressing step, b) shows the state in the pellet forming step.
  • FIG. 4 shows, in a simplified manner, another embodiment of a die opening / closing means used in a gas hydrate pellet molding apparatus according to the present invention, wherein (a) shows a state when the pellet molding apparatus is in a filtration step and a pressing step, b) shows the state in the pellet forming step.
  • FIG. 6 is a diagram showing, in a simplified manner, another embodiment of a die opening / closing means used in the gas hydrate pellet molding apparatus according to the present invention, in which (a) shows the state when the pellet molding apparatus is in the filtration step and the pressing step, b) shows the state in the pellet forming step.
  • It is a schematic block diagram explaining an example of the structure of the conventional gas hydrate production
  • FIG. 1 is a sectional view for explaining the schematic structure of a pellet forming apparatus 1 according to the present invention.
  • the pellet forming apparatus 1 includes an outer cylinder 2 made of a pressure vessel and an inner cylinder 3 accommodated in the outer cylinder 2.
  • the inner cylinder 3 is formed of a perforated plate such as punching metal.
  • a through-hole formed in the perforated plate serves as a communication portion that communicates the inside of the inner cylinder 3 and the inside of the outer cylinder 2.
  • a drainage chamber 3a is provided between the outer cylinder 2 and the inner cylinder 3 by being partitioned by an appropriate number of partition walls 3b.
  • the partition walls 3b are provided along the longitudinal direction of the cylinder so that the intervals are narrowed toward the die plate.
  • the density of the hole of a perforated plate may be equal intervals in the longitudinal direction of a cylinder, it is preferable to make the die plate side mentioned later into a higher density.
  • a die plate 4 having a large number of molding holes for molding GH pellets is fitted into the inner cylinder 3 at a position deviated from the center to one end side. Yes, on one side of the die plate 4, the large volume side is the pressing chamber 5, and the small side is the pellet receiving chamber 6.
  • a compression plunger 7 is disposed in the inner cylinder 3 of the compression chamber 5, and the compression plunger 7 is moved in the axial direction of the inner cylinder 3 by reciprocation of the drive rod 8 a due to the operation of the compression cylinder 8 such as a hydraulic cylinder. It is possible to slide.
  • the pellet receiving chamber is provided with a die opening / closing plunger 9 as a die opening / closing means.
  • the die opening / closing plunger 9 is reciprocated by a driving rod 10a by an operation of an opening / closing cylinder 10 such as a hydraulic cylinder. 3 is slidable in the axial direction.
  • the squeezing plunger 7 approaches the inlet side surface of the die plate 4 by sliding, and advances and retreats away from the die plate 4.
  • the die opening / closing plunger 9 moves forward and backward between a position pressed against the outlet side surface of the die plate 4 and a position separated from the die plate 4.
  • the inlet side surface of the die plate 4 is formed in an inverted conical shape having a concave central portion, and the pressing plunger 7 is pressed against the die plate 4.
  • the pressing plunger 7 is partly separated from the die plate 4.
  • the inlet side surface has an inverted conical shape, but the central portion may be formed in a conical shape having a convex shape toward the compression chamber 5 or may be formed in a flat surface. It does not matter. In the case of being formed in a flat surface, it is preferable that the compression plunger 7 is located at a position slightly separated from the die plate 4 at the forward end of the compression plunger 7 in order to achieve the action described later.
  • a screw conveyor 11 as a conveying means is disposed at the bottom of the pellet receiving chamber 6.
  • the conveying means is not limited to this, and a pipe that is simply inclined downward may be provided, and the pellets may be sent to the downstream equipment by sliding down along the inner wall.
  • FIGS. 2 to 5 are simplified cross-sectional views of the pellet forming apparatus 1.
  • a supply pipe 12 is connected to the pressing chamber 5 to supply GH slurry. It is like that.
  • a supply valve 12a is connected to the supply pipe 12, and the supply and stop of the GH slurry is performed by opening and closing the supply valve 12a.
  • the outer tube 2 is connected to an appropriate number of discharge pipes 13 as discharge portions. 2 to 5 for explaining this embodiment, seven discharge pipes 13 are provided, and subscripts are attached to the discharge pipes 13a,..., 13g, respectively.
  • These discharge pipes 13a,..., 13g are connected to a collection pipe 14 as a collection section, and the respective discharge pipes 13a communicate with each other via the collection pipe 14. Further, the collecting pipe 14 is provided with a drain valve 15.
  • FIG. 2 shows a state in which the pellet forming apparatus 1 is in a filtration step of filtering water accompanying the GH slurry (for example, 5% slurry) while supplying the GH slurry to the pressing chamber 5.
  • the supply valve 12a and the drain valve 15 are open.
  • the squeezing plunger 7 is in a slurry receiving position that is retracted most far from the die plate 4, and the die opening / closing plunger 9 is pressed against the outlet side surface of the die plate 4 to close the die plate 4.
  • the GH slurry In this state, if the GH slurry is continuously supplied while being pressed into the compression chamber 5, the water contained in the GH slurry passes through the through hole of the inner cylinder 3 without being subjected to the reaction when generating the GH slurry. Then, it is filtered and dehydrated by flowing into the drainage chamber 3a. The discharged water reaches the collecting pipe 14 from the discharge pipe 13 and is discharged through the open drain valve 15. The discharged water can be recovered and used again to generate GH slurry.
  • the supply valve 12a and the drain valve 15 are closed to seal the compression chamber 5, and the compression process is performed.
  • the pressing plunger 7 was advanced to squeeze water while pressurizing the GH slurry.
  • the GH slurry is pressurized by the advance of the squeezing plunger 7, and the water remaining in the GH slurry is squeezed out.
  • the compressed water passes through the through hole of the inner cylinder 3 and flows out into the drainage chamber 3a, and reaches the collecting pipe 14 from the discharge pipe 13.
  • the drain valve 15 since the drain valve 15 is closed, the water reaching the collecting pipe 14 flows into the outer cylinder 3 through the other discharge pipe 13.
  • the pressure in the front die plate side chamber in the traveling direction of the compression plunger 7 is the rear side. It becomes larger than the pressure of the GH slurry supply side chamber. For this reason, the compressed water is discharged from the discharge pipes 13f and 13g and flows into the GH slurry supply side chamber from the discharge pipes 13a to 13e through the collecting pipe 14.
  • the GH slurry concentration is squeezed to about 90%, for example, and then the process proceeds to the pellet forming process shown in FIG.
  • the die opening / closing plunger 9 is retracted and separated from the die plate 4, and the supply valve 12a is opened to supply GH slurry.
  • the squeezed GH slurry is pressed against the die plate 4 and is pushed out from the outlet side of the die plate 4 into a pellet receiving chamber 6.
  • it is extruded and has an appropriate length, it is cut by its own weight to form a pellet P, which falls onto the screw conveyor 11.
  • the dropped pellet P is transported to the next process by the screw conveyor 11.
  • the pressing plunger 7 when the pressing plunger 7 is advanced to the foremost part, when the inlet side surface of the die plate 4 is formed in an inverted conical shape or a conical shape, the pressing plunger 7 is in contact with the die plate 4. As a result, a gap is formed between the die plate 4 and the die plate 4. For this reason, the molding hole of the die plate 4 is clogged with the GH slurry, and the molding hole of the die plate 4 is maintained in a state of being blocked by the GH slurry. Thereby, the pressing chamber 5 and the pellet receiving chamber 6 do not communicate, and the pressure in the pressing chamber 5 is maintained.
  • the internal volume in the compression chamber 5 is increased. It is kept almost constant and pressure is maintained.
  • the process proceeds to the back washing process.
  • the pressing plunger 7 starts retreating.
  • the die opening / closing plunger 4 is advanced and pressed against the die plate 4 to close the die plate 4 and to supply the supply.
  • the valve 12a is closed. This state is shown in FIG.
  • the pressure in the GH slurry supply side chamber in the direction in which the pressing plunger 7 advances becomes higher than the pressure in the die plate side chamber.
  • the water in the GH slurry supply side chamber flows from the discharge pipes 13a to 13c through the collecting pipe 14 and through the discharge pipes 13d to 13g into the die plate side chamber.
  • the particles of the GH slurry clogged in the through holes of the inner cylinder 3 can be removed.
  • the supply valve 12a is opened to return to the filtration step described above for supplying GH slurry, and the above processing steps are repeated.
  • a chopper can be provided on the outlet side of the die plate 4, and the rod-shaped pellets P can be cut at a certain length so as to have the same size and shape.
  • a structure in which a chopper 17 that moves up and down along the exit-side surface of the die plate 4 can be provided.
  • the piston rod 18a of the chopper drive cylinder 18 is connected to both ends of the chopper 17, and is lifted and lowered at a desired cycle to cut the pellet P extruded from the die plate 4.
  • the chopper 17 is preferably formed with blades on the upper and lower sides so that the pellets P can be cut regardless of the direction of the lifting operation.
  • the processing in the next step is also continuously performed. It can be carried out.
  • the pair of pellet forming apparatuses 1 have a so-called tandem type as shown in FIGS.
  • a pair of pellet forming apparatuses 1 are arranged in a state where the pressing chambers 5 are adjacent to each other, and the drive rod 21 of the pressing plunger 7 is made common.
  • a piston rod 23 a of a drive cylinder 23 is linked to the drive rod 21 via a linkage bracket 22.
  • the drive rod 21 slides when the drive cylinder 23 operates and the piston rod 23a slides.
  • the respective compression plungers 7 of the pair of pellet forming apparatuses 1 slide in the respective compression chambers 5.
  • a pellet forming process is performed on one side of the pellet forming apparatus 1 and a filtration process is performed on the other side, and the phase of the processing process is The state is shifted by 180 °.
  • the molding of the pellet P becomes continuous.
  • the die opening / closing means included in the pellet forming apparatus 30 shown in FIG. 9 includes a rotary valve 31 that rotates about a shaft 31c that penetrates the paper surface, and an outlet side surface of the die plate 32 that is a part of the rotary valve 31.
  • a part of the rotary valve 31 has a closed surface part 31a formed of a spherical surface, and the other part is an open surface part 31b having a recessed surface.
  • the outlet side surface of the die plate 32 is formed into a spherical surface having a shape that matches the closing surface portion 31a, and when the rotary valve 31 is located at a position where the outlet side surface and the closing surface portion 31a face each other, The die plate 32 is in a closed state. Further, as shown in FIG. 9, the boundary portion between the closed surface portion 31a and the open surface portion 32a is formed by a cut portion 31d having a sharp edge at the end protruding from the closed surface portion 31a covering the open surface portion 31b. Is formed.
  • the rotary shaft 31c of the rotary valve 31 is connected to a driving means (not shown).
  • the driving means is provided with a braking means so that the rotating shaft 31c does not rotate carelessly when the driving means is stopped.
  • a braking mechanism is applied to the rotating shaft 31c so that rotation at the time of stopping is prevented.
  • the rotary shaft 31c is illustrated so that the closed surface portion 31a is not separated from the outlet side surface of the die plate 32 even when this pressure is received.
  • the bearing that does not do is made strong.
  • the rotary valve 31 when the pellet forming apparatus 30 is in the filtration step and the squeezing step, the rotary valve 31 has the closing surface portion 31a opposed to the die plate 32 as shown in FIG. In this state, the rotary valve 31 is stopped and the die plate 32 is closed. At this time, the closing surface portion 31a is not separated from the die plate 32 due to the braking force against the rotating shaft 31c and the driving source and the strength of the bearing of the rotating shaft 31c. In a state where the pellet forming apparatus 30 is in the pellet forming process, the rotary valve 31 rotates about the rotary shaft 31c. When the rotary valve 31 is rotated, as shown in FIG.
  • FIG. 10 shows an embodiment different from the rotary valve 31 shown in FIG. 9, and the rotary valve 36 constituting the die opening / closing means of the pellet forming apparatus 35 includes a closed surface portion 36a formed of a spherical surface and the closed surface portion 36a. And an open surface portion 36b other than the above.
  • the same parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the drawing is simplified.
  • a part of the open surface portion 36b is formed with a support surface portion 36c formed of a spherical surface in the same manner as the closed surface portion 36a.
  • the rotary valve 35 is rotated about the vertical direction in FIG.
  • the exit side surface of the die plate 37 is formed by a spherical surface that coincides with the closing surface portion 36a. Then, as shown in FIG. 10A, in the state where the blocking surface portion 36a faces the die plate 37, the support surface portion 36c is in contact with the bottom surface of the pellet receiving chamber 6.
  • the pellets are screwed without the need for a scraping device as in the case where the pellet forming apparatus 1 is vertical. It can be dropped onto the conveyor 11.
  • the dehydration process and the pellet molding process in the conventional GH production plant can be continuously performed by a single apparatus, Moreover, because it is suitable for mass production, it is possible to promote downsizing of the plant, reduce running costs as well as manufacturing costs, improve economy, and promote effective use of gas fields that are disadvantageous in the past. Contribute to.
  • P pellet 1 pellet forming apparatus 2 outer cylinder 3 inner cylinder 3a drainage chamber 3b partition wall 4 die plate 5 pressing chamber 6 pellet receiving chamber 7 pressing plunger 8 pressing cylinder 9 die opening and closing plunger (die opening and closing means) 10 Opening and closing cylinder 11 Screw conveyor (conveying means) 12 Supply pipe 12a Supply valve 13 Discharge pipe (discharge section) 14 Collecting pipe (gathering part) 15 Drain valve 17 Chopper 21 Drive rod 22 Connecting bracket 23 Drive cylinder 30 Pellet molding device 31 Rotary valve (die opening / closing means) 31a Blocking surface part 31b Opening surface part 31d Cutting part 32 Die plate 35 Pellet forming device 36 Rotary valve (die opening / closing means) 36a Closed surface 36b Open surface 36c Support surface 37 Die plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Glanulating (AREA)

Abstract

Provided are a gas hydrate pellet molding device and a gas hydrate pellet molding method that make it possible to improve efficiency in molding GH pellets by performing a gas hydrate dehydration process and a GH pellet molding process with a single device.  The inside of an inner barrel (3) comprising a porous plate is divided by a die plate (4) into a compression chamber (5) and a pellet accommodation chamber (6). A compression plunger (7) and a die opening and closing plunger (9) are slidably disposed in the compression chamber (5) and the pellet accommodation chamber (6), respectively. The die opening and closing plunger (9) is pressed against the die plate (4) to close the die plate (4), and the compression plunger (7) is moved forward to compress and squeeze the water out from a GH slurry supplied to the compression chamber (5). Discharged water flows to a water draining chamber (3a) through a through-hole of the inner barrel (3). The die plate (4) is opened, and the compression plunger (7) is moved further forward to push the GH slurry out of the die plate (4), so as to form a GH pellet, and then the GH pellet is transferred to the next process by means of a conveyance means.

Description

ガスハイドレートペレット成形装置及びガスハイドレートペレット成形方法Gas hydrate pellet molding apparatus and gas hydrate pellet molding method
 この発明は、例えば、海底下等に存在している天然ガスハイドレートや人工的に製造したガスハイドレート(天然ガスハイドレート、CO2ハイドレート)を輸送や貯蔵等に適した状態に生成するガスハイドレートペレット成形装置であって、具体的にはスラリー状のガスハイドレートから水分を除去しながらペレットを成形するガスハイドレートペレット成形装置と成形方法に関する。 In the present invention, for example, natural gas hydrate existing under the seabed or artificially produced gas hydrate (natural gas hydrate, CO 2 hydrate) is generated in a state suitable for transportation and storage. More specifically, the present invention relates to a gas hydrate pellet forming apparatus and a forming method for forming pellets while removing moisture from a slurry-like gas hydrate.
 シベリアやカナダ、アラスカ等の凍土地帯や大陸周辺部における水深500m以下の海底下には、主成分がメタンである天然ガスハイドレート(NGH)が存在している。このNGHは、メタン等のガス分子と水分子とから構成される低温高圧下で安定した水状固体物質あるいは包接水和物であり、二酸化炭素や大気汚染物質の排出量が少ないクリーンエネルギとして着目されている。 Natural gas hydrate (NGH), the main component of which is methane, exists under the seabed at a depth of 500 m or less in the frozen land belts of Siberia, Canada, Alaska, and the continental area. This NGH is a water-like solid substance or clathrate hydrate that is composed of gas molecules such as methane and water molecules and is stable under low temperature and high pressure, and as clean energy that emits less carbon dioxide and air pollutants. It is attracting attention.
 天然ガスは液化された後、貯蔵されてエネルギとして利用されているが、その製造や貯蔵は-162℃の極低温において行われている。これに対して天然ガスハイドレートは、-20℃で分解せずに安定した性質を示し、固体として扱うことができる等の利点を備えている。このような性質から、特に世界中に存在している採算面等の理由から未開発の中小ガス田におけるガス資源を有効に利用することができる手段として、あるいは大ガス田からの近距離、小口輸送手段として、天然ガスをハイドレート化して輸送する方式(NGH輸送)が期待されている。 Natural gas is liquefied and then stored and used as energy, but its production and storage are performed at an extremely low temperature of -162 ° C. On the other hand, natural gas hydrate has the advantage that it exhibits stable properties without being decomposed at −20 ° C. and can be handled as a solid. Because of these properties, it is possible to effectively use gas resources in undeveloped small and medium-sized gas fields, especially for reasons such as profitability existing all over the world, or as a means to make effective use of short-distance and small-lots from large gas fields. As a means of transport, a method of transporting natural gas in a hydrate (NGH transport) is expected.
 NGH輸送では、中小ガス田等のNGH出荷基地において、輸送や貯蔵に適したNGHを生成後、場合によっては成形し、輸送船や車両等によって所望のNGH受入基地まで輸送される。一方、NGH受入基地では輸送されたNGHを貯蔵し、必要に応じてガス化してエネルギ源として利用したり、NGHのままさらに車両等による小口輸送を行うことになる。図11は、前記NGH出荷基地に利用されるガスハイドレートの生成プラントの構成の一例を説明する概略のブロック図である。採掘された原料ガスは高圧反応容器である生成器41において、水と十分に混合されてハイドレート化され、低濃度のガスハイドレート(GH)スラリーが生成される。生成されたGHスラリーは供給ポンプ42によって脱水器43に供給されて、脱水された高濃度のGHスラリーを生成する。このとき、脱水器43へは該脱水器43の最下部に供給される。供給されたGHスラリーは脱水器43を徐々に上昇しながら脱水されて、脱水器43の上端部から取り出される。取り出されたガスハイドレートは、例えば脱水されてパウダー状となったGHパウダーとして取り出される。このGHパウダーがペレット成形器44に供給されて造粒され、輸送や貯蔵等にとって適宜な大きさのGHペレットが形成される。次いで、常圧下においても分解しない温度まで冷却機45により冷却された後、脱圧装置46に供給される。すなわち、前記生成器41から冷却機45に至るまでは、ガスハイドレート生成条件(例えば、NGHの場合、5MPa、8℃)において処理がなされ、冷却機45と脱圧装置46とにより、常圧下でも分解し難い温度(例えば、NGHの場合、-20℃)に処理される。その後、生成されたGHペレットは貯蔵槽に給送されて貯蔵される。 In NGH transportation, NGH suitable for transportation and storage is generated at an NGH shipping base such as a small and medium gas field, then molded in some cases and transported to a desired NGH receiving base by a transport ship or vehicle. On the other hand, at the NGH receiving terminal, the transported NGH is stored and gasified as necessary to be used as an energy source, or small-scale transportation by vehicles or the like is further performed as it is. FIG. 11 is a schematic block diagram illustrating an example of the configuration of a gas hydrate generation plant used in the NGH shipping base. The mined source gas is sufficiently mixed with water and hydrated in a generator 41 which is a high-pressure reaction vessel, and a low concentration gas hydrate (GH) slurry is generated. The generated GH slurry is supplied to the dehydrator 43 by the supply pump 42 to generate a dehydrated high-concentration GH slurry. At this time, the dehydrator 43 is supplied to the lowermost part of the dehydrator 43. The supplied GH slurry is dehydrated while gradually raising the dehydrator 43 and taken out from the upper end of the dehydrator 43. The extracted gas hydrate is extracted as, for example, GH powder that has been dehydrated and powdered. This GH powder is supplied to the pellet former 44 and granulated to form GH pellets of an appropriate size for transportation and storage. Next, after being cooled by the cooler 45 to a temperature at which it does not decompose even under normal pressure, it is supplied to the decompressor 46. That is, from the generator 41 to the cooler 45, the treatment is performed under gas hydrate production conditions (for example, 5MPa, 8 ° C in the case of NGH), and the normal pressure is reduced by the cooler 45 and the decompressor 46. However, it is processed at a temperature at which decomposition is difficult (for example, -20 ° C in the case of NGH). Thereafter, the generated GH pellets are fed to a storage tank and stored.
 ところで、本願出願人は、貯蔵性に優れたペレットを低コストで製造できるガスハイドレートペレットの製造方法及び製造装置を提案している(特許文献1参照)。このガスハイドレートペレットの製造方法は、ガスハイドレートをその生成条件下において圧縮成形手段により脱水するとともに、ペレットに成形するようにしたものである。また、前記圧縮成形手段として、外周面に複数のペレットの成形型を有し、互いに逆方向に回転する一対のロールからなるブリケッティングロールとしたものである。 By the way, the applicant of the present application has proposed a manufacturing method and a manufacturing apparatus for gas hydrate pellets that can manufacture pellets excellent in storability at low cost (see Patent Document 1). In this method for producing gas hydrate pellets, the gas hydrate is dehydrated by compression molding means under the production conditions and is molded into pellets. Further, as the compression molding means, a briquetting roll having a plurality of pellet molding dies on the outer peripheral surface and comprising a pair of rolls rotating in directions opposite to each other.
特開2007-270029JP2007-270029A
 しかしながら、従来の工程では、脱水器43とペレット成形器44とのそれぞれの装置を必要としており、ガスハイドレート生成プラントを大型化させてしまうため、その小型化が望まれていた。 However, in the conventional process, each device of the dehydrator 43 and the pellet former 44 is required, and the gas hydrate production plant is increased in size.
 一方、特許文献1に記載されたガスハイドレートペレットの製造装置では、脱水とペレット成形とを圧縮成形手段により行うようにしたため、脱水器を個別に配設する必要がないものの、大量生産を想定した場合、設備が大規模になるという課題があった。また、特許文献1には、往復動式のペレット製造装置が開示されている。この往復動式のものでは圧縮しながら脱水と成形を確実に行うことができるが、この方式ではいわゆるバッチ処理であるため、前述と同様の課題がある。 On the other hand, in the gas hydrate pellet manufacturing apparatus described in Patent Document 1, since dehydration and pellet molding are performed by compression molding means, it is not necessary to dispose a dehydrator individually, but mass production is assumed. In such a case, there is a problem that the facility becomes large-scale. Patent Document 1 discloses a reciprocating pellet manufacturing apparatus. In this reciprocating type, dehydration and molding can be performed reliably while compressing, but since this method is so-called batch processing, there are the same problems as described above.
 そこで、この発明は、脱水とペレット成形とを単独の装置により行うことができ、しかも、大量生産に好適なガスハイドレートペレット成形装置及びガスハイドレート成形方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a gas hydrate pellet molding apparatus and a gas hydrate molding method which can perform dehydration and pellet molding with a single apparatus and are suitable for mass production.
 前記目的を達成するための技術的手段として、この発明に係るガスハイドレートペレット成形装置は、ガスハイドレートスラリーから水分を除去しながら圧縮してペレットに成形するガスハイドレートペレット成形装置であって、外筒と内筒とを備え、前記内筒を多孔板により形成し、前記内筒の長手方向の適宜位置にダイプレートを配置して、該ダイプレートを境にして、ガスハイドレートスラリーを供給する圧搾室と、該ガスハイドレートスラリーから生成したペレットを収容するペレット受入室とに区画し、前記圧搾室に摺動自在に圧搾プランジャ設け、前記ペレット受入室に前記ダイプレートを開閉するダイ開閉手段を設け、前記ペレット受入室に搬送手段を接続させ、前記ダイ開閉手段により前記ダイプレートの出口側を開閉し、前記圧搾プランジャの摺動で、内筒内のガスハイドレートスラリーを前記ダイプレートに押圧し、前記ペレット受入室に収容させたペレットを前記搬送手段に供するようにしたことを特徴としている。 As a technical means for achieving the above object, a gas hydrate pellet molding apparatus according to the present invention is a gas hydrate pellet molding apparatus that compresses and forms pellets while removing moisture from a gas hydrate slurry. And an outer cylinder and an inner cylinder, the inner cylinder is formed of a perforated plate, a die plate is disposed at an appropriate position in the longitudinal direction of the inner cylinder, and the gas hydrate slurry is formed with the die plate as a boundary. A die that divides into a pressing chamber to be supplied and a pellet receiving chamber for storing pellets generated from the gas hydrate slurry, and is provided with a pressing plunger slidably in the pressing chamber, and opens and closes the die plate in the pellet receiving chamber. An opening / closing means is provided, a conveying means is connected to the pellet receiving chamber, and the outlet side of the die plate is opened / closed by the die opening / closing means. The sliding of the pressing plunger, a gas hydrate slurry in the inner cylinder and pressed against the die plate, and the was housed in a pellet receiving chamber pellet is characterized in that as subjected to the conveying means.
 前記圧搾プランジャがダイプレートから最も離隔した状態、すなわち最後部まで後退している位置にある状態で、前記圧搾室にガスハイドレート(GH)スラリーが供給されると、該GHスラリーに随伴された水分が、前記内筒の透孔を通過して外筒内に排出され、GHスラリーの濃度が高められる。なお、GHスラリーは、原料ガスと水とを生成器に供給して高圧下で反応させて生成したものや、海底より採取した天然ガスハイドレートが、前記圧搾室に供給される。圧搾室へのGHスラリーの供給時には、前記ダイ開閉手段の動作によりダイプレートが閉塞されている。このため、GHスラリーがペレット受入室に流入することはない。所望量のGHスラリーが供給されたならば、GHスラリーの供給を停止して、前記圧搾プランジャをダイプレートに向けて摺動させることにより前進させる。これにより、供給されたGHスラリーが圧搾されて、水がさらに搾り出される。GHスラリーが所望の濃度まで高められると、前記ダイ開閉手段を動作させてダイプレートを開放し、圧搾室とペレット受入室とを連通させる。この状態で、さらに前記圧搾プランジャを前進させると、ほぼ固形状となったGHスラリーがダイプレートからペレット受入室に押し出されることになる。このため、ペレット受入室にはダイプレートを通過して棒状となったGHスラリーが押し出され、適宜な長さで自重により切断されてペレットに成形される。このペレットが前記搬送手段により次工程へ給送される。 When gas hydrate (GH) slurry is supplied to the compression chamber in a state where the compression plunger is farthest away from the die plate, that is, in a position where it is retracted to the end, it is accompanied by the GH slurry. Moisture passes through the through hole of the inner cylinder and is discharged into the outer cylinder, and the concentration of the GH slurry is increased. The GH slurry is supplied to the squeezing chamber by a raw material gas and water supplied to a generator and produced by reaction under high pressure, or a natural gas hydrate collected from the seabed. When the GH slurry is supplied to the pressing chamber, the die plate is closed by the operation of the die opening / closing means. For this reason, GH slurry does not flow into the pellet receiving chamber. When the desired amount of GH slurry has been supplied, the supply of GH slurry is stopped and the squeezing plunger is advanced by sliding it toward the die plate. Thereby, the supplied GH slurry is squeezed and water is further squeezed out. When the GH slurry is increased to a desired concentration, the die opening / closing means is operated to open the die plate, and the compression chamber and the pellet receiving chamber are communicated with each other. When the pressing plunger is further advanced in this state, the substantially solid GH slurry is pushed out from the die plate to the pellet receiving chamber. Therefore, the rod-like GH slurry is extruded into the pellet receiving chamber through the die plate, cut into a suitable length by its own weight, and formed into pellets. The pellets are fed to the next process by the conveying means.
 また、請求項2の発明に係るガスハイドレートペレット成形装置は、前記ダイ開閉手段を、前記ペレット受入室に摺動自在に設けたダイ開閉プランジャにより構成し、前記ダイ開閉プランジャの摺動により前記ダイプレートの出口側を開閉することを特徴としている。 Further, in the gas hydrate pellet forming apparatus according to the invention of claim 2, the die opening and closing means is constituted by a die opening and closing plunger slidably provided in the pellet receiving chamber, and the die opening and closing plunger slides the die opening and closing plunger. It is characterized by opening and closing the outlet side of the die plate.
 すなわち、前記ダイ開閉プランジャを前進させてダイプレートの出口側に押圧することによりダイプレートを閉塞し、ダイプレートから後退させることによりダイプレートを開放するようにしたものである。 That is, the die opening / closing plunger is advanced and pressed to the outlet side of the die plate to close the die plate, and retracted from the die plate to open the die plate.
 また、請求項3の発明に係るガスハイドレートペレット成形装置は、前記ダイ開閉手段を、一部に球面により形成した閉塞面部を有する回転弁と、前記ダイプレートの出口側を該閉塞面部に一致する球面で構成し、前記ダイプレートが、前記回転弁の閉塞面部とダイプレートの出口側の球面とが対向した状態で閉塞され、閉塞面部以外の開放面部が対向した状態で開放されることを特徴としている。 According to a third aspect of the present invention, there is provided the gas hydrate pellet forming apparatus, wherein the die opening / closing means has a rotary valve having a closed surface portion partially formed by a spherical surface, and an outlet side of the die plate coincides with the closed surface portion. The die plate is closed with the closed surface portion of the rotary valve and the spherical surface on the outlet side of the die plate facing each other, and opened with the open surface portion other than the closed surface portion facing each other. It is a feature.
 前記回転弁を回転させることによりダイプレートが開閉されるようにしたものである。ダイプレートに回転弁の前記閉塞面部が対向した場合にダイプレートが閉塞された状態となり、前記開放面部が対向した状態でダイプレートが開放される。また、ペレットをダイプレートからダイプレート受入室に押し出す際には、回転弁を連続して回転させるようにすれば、ダイプレートの出口側に対向した部分が開放面部から閉塞面部に移行する際に、ダイプレートから押し出された棒状のペレットが切断されることになる。 The die plate is opened and closed by rotating the rotary valve. When the closed surface portion of the rotary valve faces the die plate, the die plate is closed, and the die plate is opened with the open surface portion facing. In addition, when extruding pellets from the die plate to the die plate receiving chamber, if the rotary valve is continuously rotated, the portion facing the outlet side of the die plate is moved from the open surface portion to the closed surface portion. The rod-like pellets extruded from the die plate are cut.
 また、請求項4の発明に係るガスハイドレートペレット成形装置は、前記回転弁の閉塞面部と開放面部との境界部で切断部を形成し、前記ダイプレートの出口側をこの境界部が通過する際に、ダイプレートから押し出されたペレットを切断することを特徴としている。 According to a fourth aspect of the present invention, there is provided the gas hydrate pellet forming apparatus, wherein a cutting portion is formed at a boundary portion between the closed surface portion and the open surface portion of the rotary valve, and the boundary portion passes through the outlet side of the die plate. In this case, the pellets extruded from the die plate are cut.
 前述したように、回転弁の回転により棒状のペレットを切断することができるが、前記切断部を設けることにより、より確実に切断でき、ペレットの形状・寸法の均一化を図れる。 As described above, the rod-shaped pellet can be cut by the rotation of the rotary valve. However, by providing the cutting portion, the rod can be cut more reliably and the shape and size of the pellet can be made uniform.
 また、請求項5の発明に係るガスハイドレートペレット成形装置は、前記外筒に、該外筒の長手方向に排水室を並設すると共に、これらの排水室を集合部に集合させ、該集合部に排水弁を設けたことを特徴としている。 Further, the gas hydrate pellet forming apparatus according to the invention of claim 5 has a drainage chamber arranged in parallel with the outer cylinder in the longitudinal direction of the outer cylinder, and these drainage chambers are gathered in a gathering portion. It is characterized in that a drain valve is provided in the part.
 すなわち、外筒内の搾水は前記排出部を通って前記集合部に至り、前記排水弁が開放されている場合には該集合部から排出される。他方、排水弁が閉止されている場合には、全ての前記排出部が連通している状態にある。なお、所望量のGHスラリーを供給した後には、GHスラリーの供給は停止される。このため、圧搾プランジャの摺動により該圧搾プランジャの進行方向前側に生じる圧力が、排水部と集合部を介して進行方向後側の部分に加えられる。例えば、GHスラリーを圧搾する際には、これにより圧搾室の前記ダイプレート側の部分、すなわち前側室が高圧となり、搾水が排水部と集合部を通って圧搾室の後側室に流入する。これにより、排水時とは逆方向の流れが生じる。この逆流によって、内筒の透孔内に残留したGHスラリーの粒子分が内筒内に押し戻されて、内筒の透孔を目詰まらせることが防止されると共に、前側室と後側室との圧力の均衡が図られて、圧搾プランジャの円滑な摺動が確保される。他方、圧搾プランジャの後退時には、後側室が高圧となって前側室に搾水が流入することにより、内筒の透孔が逆洗されると共に、前側室と後側室との圧力の均衡が図られる。 That is, the squeezed water in the outer cylinder passes through the discharge part to reach the collecting part, and is discharged from the collecting part when the drain valve is opened. On the other hand, when the drain valve is closed, all the discharge parts are in communication. In addition, after supplying a desired amount of GH slurry, the supply of GH slurry is stopped. For this reason, the pressure which arises in the advancing direction front side of this squeezing plunger by sliding of a squeezing plunger is applied to the part of the advancing direction rear side via a drainage part and a gathering part. For example, when the GH slurry is squeezed, a portion of the squeeze chamber on the die plate side, that is, the front chamber becomes high pressure, and the squeezed water flows into the rear chamber of the squeeze chamber through the drainage portion and the collecting portion. As a result, a flow in the opposite direction to that during drainage occurs. This reverse flow prevents the particles of the GH slurry remaining in the inner cylinder through-holes from being pushed back into the inner cylinder and clogs the inner cylinder through-holes. The pressure is balanced and smooth sliding of the squeezing plunger is ensured. On the other hand, when the squeezing plunger moves backward, the rear chamber becomes high pressure, and the squeezed water flows into the front chamber, so that the through hole of the inner cylinder is backwashed and the pressure balance between the front chamber and the rear chamber is balanced. It is done.
 また、請求項6の発明に係るガスハイドレートペレット成形装置は、前述した構造を備えたペレット成形装置のいずれかを、前記圧搾プランジャの軸方向に対称となる位置関係で並設させ、並設させた一対のペレット成形装置の圧搾プランジャの駆動ロッドを共通にして、該圧搾プランジャの摺動により、それぞれのペレット成形装置における動作の位相をずらしてあることを特徴としている。 Further, a gas hydrate pellet forming apparatus according to the invention of claim 6 is arranged such that any of the pellet forming apparatuses having the above-described structure is arranged side by side in a positional relationship that is symmetrical in the axial direction of the compression plunger. The driving rods of the squeezing plungers of the paired pellet forming apparatuses are used in common, and the phase of operation in each pellet forming apparatus is shifted by sliding of the squeezing plungers.
 いわゆるタンデムで運転することができるようにペレット成形装置を配設したものである。圧搾プランジャの駆動ロッドの方向に並設することにより、圧搾プランジャの摺動方向の一方の方向で、一対のペレット成形装置の一方で圧搾プランジャを前進させてGHスラリーの圧搾を行い、他方の圧搾プランジャを後退させて、GHスラリーの圧搾室への供給を行うようにしたものである。 A pellet forming device is arranged so that it can be operated in so-called tandem. By juxtaposing in the direction of the drive rod of the squeezing plunger, one side of the sliding direction of the squeezing plunger advances the squeezing plunger in one of the pair of pellet forming devices to squeeze the GH slurry, and the other squeezing The plunger is retracted to supply the GH slurry to the pressing chamber.
 また、単独の装置によりガスハイドレートのペレットを大量に生産する場合に適したガスハイドレート成形方法として、ガスハイドレートスラリーから水分を除去しながら圧縮してペレットに成形するガスハイドレートペレット成形方法であって、圧力容器である外筒と、壁体の一部が外筒の内部に連通している連通部を有する内筒との二重構造の筒体を備えたペレット成形装置の、前記内筒にダイプレートを具備させて、該ダイプレートを挟んで一方の側を圧搾室とし、他方の側をペレット受入室とし、前記圧搾室に前記ダイプレートに対して進退する圧搾プランジャを、前記ペレット受入室にダイプレートを開閉するダイ開閉手段を、それぞれ設けてあり、前記ダイ開閉手段でダイプレートを閉塞させ、前記圧搾プランジャをダイプレートから離隔した位置まで後退させた状態で、該圧搾室にガスハイドレートスラリーを供給しながら、ガスハイドレートに随伴された水分をろ過して前記前記内筒から排出させるろ過工程と、前記圧搾室へのガスハイドレートの充填後に、前記圧搾プランジャをダイプレートに向けて前進させて、ガスハイドレートに加圧して搾水する圧搾工程と、ガスハイドレートの水分が適宜な状態まで搾水された後、前記ダイ開閉手段を動作させてダイプレートを開放させ、前記圧搾プランジャの前進により、ガスハイドレートをダイプレートから前記ペレット受入室に押し出してガスハイドレートペレットを成形するペレット成形工程と、ペレットの成形後に、前記圧搾プランジャを後退させて、外筒に滞留した水を前記連通部から内筒へ流入させる逆先工程とを順次繰り返してガスハイドレートペレットを成形することを特徴としている。 In addition, as a gas hydrate molding method suitable for mass production of gas hydrate pellets using a single device, a gas hydrate pellet molding method that compresses and forms pellets while removing moisture from the gas hydrate slurry. The pellet forming apparatus comprising a double-structured cylindrical body of an outer cylinder that is a pressure vessel and an inner cylinder having a communication portion in which a part of the wall body communicates with the inside of the outer cylinder, A die plate is provided in the inner cylinder, one side is set as a pressing chamber, the other side is set as a pellet receiving chamber, and a pressing plunger that moves forward and backward with respect to the die plate in the pressing chamber, Die opening and closing means for opening and closing the die plate is provided in the pellet receiving chamber, respectively, the die opening and closing means is used to close the die plate, and the pressing plunger is attached to the die plate. In the state where the gas hydrate slurry is supplied to the squeezing chamber in a state where the gas hydrate slurry is retreated to a position separated from the gas, a filtration step of filtering water discharged from the gas hydrate and discharging it from the inner cylinder, and the compression After the gas hydrate is filled into the chamber, the pressing plunger is advanced toward the die plate to press the gas hydrate and squeeze the water, and the water of the gas hydrate is squeezed to an appropriate state. After that, the die opening and closing means is operated to open the die plate, and by the advancement of the compression plunger, the pellet forming step of forming the gas hydrate pellets by extruding the gas hydrate from the die plate to the pellet receiving chamber; After molding the pellet, the squeezing plunger is moved backward so that the water retained in the outer cylinder flows into the inner cylinder from the communicating portion. Sequentially repeating the preceding steps to is characterized by molding a gas hydrate pellets.
 ガスハイドレートスラリーは原料ガス等と水とを反応させて生成されるため、大量に水を含んだ状態で供給されることになる。このため、供給されたガスハイドレートスラリーに随伴された水を除去するろ過工程に供される。随伴された水が十分にろ過されたならば、さらにガスハイドレートスラリーに加圧しながら水分を除去する圧搾工程に供される。ガスハイドレートスラリーの濃度が十分に高くなった状態で、圧搾されたガスハイドレートスラリーのブロックをダイプレートを通過させてペレットにするペレット成形工程に供される。ペレットの成形が完了したならば、前記ろ過工程及び圧搾工程で除去された水とガスハイドレートスラリーとによって、ろ過のために排水する部位が目詰まりを生じる場合がある。この目詰まりを解消するために、連通部にろ過工程と圧搾工程の場合とは逆方向に水を通過させて逆洗する逆先工程を行う。 Since the gas hydrate slurry is generated by reacting the raw material gas and the like with water, it is supplied in a state containing a large amount of water. For this reason, it uses for the filtration process which removes the water accompanying the supplied gas hydrate slurry. If the accompanying water is sufficiently filtered, it is subjected to a pressing step for removing moisture while applying pressure to the gas hydrate slurry. In a state where the concentration of the gas hydrate slurry is sufficiently high, the block of the compressed gas hydrate slurry is passed through a die plate to be subjected to a pellet forming step for forming pellets. If the molding of the pellet is completed, the water drained for filtration may be clogged by the water and gas hydrate slurry removed in the filtration step and the pressing step. In order to eliminate this clogging, a reverse-end process is performed in which water is passed through the communicating portion in the opposite direction to that in the filtration step and the squeezing step.
 前記圧搾工程とペレット成形工程とを行う機構として、ペレット成形装置内を往復移動する圧搾プランジャを用いたものである。しかも、圧搾プランジャがペレット成形工程の完了後に、次のろ過工程の準備のためには、ガスハイドレートスラリーを加圧する方向とは逆方向に移動する必要があり、この逆方向への移動時には、圧搾工程時とは逆側を加圧することになるため、その際に生じる圧搾プランジャを挟む両側の差圧により、前記逆先工程を行わせることができる。 As a mechanism for performing the pressing step and the pellet forming step, a pressing plunger that reciprocates in the pellet forming apparatus is used. Moreover, after the squeeze plunger is completed in the pellet forming process, it is necessary to move in a direction opposite to the direction in which the gas hydrate slurry is pressurized in order to prepare for the next filtration process. Since the opposite side of the pressing step is pressurized, the reverse tip step can be performed by the differential pressure on both sides sandwiching the pressing plunger generated at that time.
 また、請求項8に記載のガスハイドレート成形方法は、前記ペレット成形装置を一対にして配設し、一方のペレット成形装置の圧搾プランジャの駆動ロッドと他方のペレット成形装置の圧搾プランジャの駆動ロッドとを共有させて、該共有した駆動ロッドのそれぞれの端部にそれぞれの圧搾プランジャを連繋させることにより、一対のペレット成形装置の前記ろ過工程と圧搾工程、ペレット成形工程、逆洗工程との作業工程の位相をずらして、前記一対のペレット成形装置を動作させることを特徴としている。 Further, in the gas hydrate molding method according to claim 8, the pellet molding apparatus is disposed as a pair, and a driving plunger driving rod of one pellet molding apparatus and a driving plunger driving rod of the other pellet molding apparatus. And the respective compression plungers are linked to the respective end portions of the shared drive rods, so that the operations of the filtration step, the compression step, the pellet forming step, and the backwashing step of the pair of pellet forming devices are performed. The phase of the process is shifted, and the pair of pellet forming apparatuses are operated.
 すなわち、一対のペレット成形装置をいわゆるタンデム運転させることにより、ガスハイドレートペレットを成形する方法である。一方のペレット成形層が圧搾工程にある場合には、他方のペレット成形装置は逆先工程にあり、一方がペレット成形装置の完了まで他方は逆洗工程が継続される。他方がろ過工程を完了するまで一方はペレット成形工程の完了した状態を維持し、他方が圧搾工程を開始すると、一方は逆洗工程を開始するようにしたものである。 That is, a gas hydrate pellet is formed by operating a pair of pellet forming apparatuses in a so-called tandem operation. When one pellet forming layer is in the squeezing step, the other pellet forming device is in the back-end step, and one is backwashed until the other is completed. One maintains the state where the pellet forming process is completed until the other completes the filtration process, and when the other starts the pressing process, one starts the backwashing process.
 この発明に係るガスハイドレートペレット成形装置またはガスハイドレートペレット成形方法によれば、GHスラリーからの搾水とペレットの成形とを連続して行うことができ、筒状の構造であるため、装置の大型化が容易である。したがって、大量生産する設備において好適に用いることができる。 According to the gas hydrate pellet molding apparatus or the gas hydrate pellet molding method according to the present invention, the squeezing from the GH slurry and the molding of the pellet can be performed continuously, and the apparatus has a cylindrical structure. Is easy to enlarge. Therefore, it can be suitably used in equipment for mass production.
 また、請求項5の発明に係るガスハイドレートペレット成形装置によれば、このペレット成形装置の定常の運転により、内筒を形成する多孔板の目詰まりを抑制できるから、常時安定した運転を行って確実にGHのペレットを生成することができる。したがって、高い運転効率でペレット成形を行うことができる。 Further, according to the gas hydrate pellet forming apparatus according to the invention of claim 5, since the clogging of the porous plate forming the inner cylinder can be suppressed by the steady operation of the pellet forming apparatus, the stable operation is always performed. Can reliably produce GH pellets. Therefore, pellet molding can be performed with high operation efficiency.
 また、請求項6の発明に係るガスハイドレートペレット成形装置または請求項8の発明に係るガスハイドレート成形方法によれば、連続してGHペレットを生成することができるので、一層効率よく連続運転することができるようになる。 In addition, according to the gas hydrate pellet forming apparatus according to the invention of claim 6 or the gas hydrate forming method according to the invention of claim 8, since GH pellets can be continuously produced, continuous operation more efficiently. Will be able to.
この発明に係るガスハイドレート生成プラントにおけるペレット成形装置の概略の構造を示す断面図である。It is sectional drawing which shows the general | schematic structure of the pellet shaping | molding apparatus in the gas hydrate production | generation plant which concerns on this invention. ペレット成形装置の作用を説明する図であり、ペレット成形装置の概略構造を示す断面図で、ガスハイドレートスラリーを供給して水を除去するろ過工程にある状態を示している。It is a figure explaining the effect | action of a pellet shaping | molding apparatus, and is sectional drawing which shows schematic structure of a pellet shaping | molding apparatus, and has shown the state in the filtration process which supplies a gas hydrate slurry and removes water. ペレット成形装置の作用を説明する図であり、ペレット成形装置の概略構造を示す断面図で、ガスハイドレートスラリーを圧潰して水を搾り出す圧搾工程にある状態を示している。It is a figure explaining the effect | action of a pellet shaping | molding apparatus, and is sectional drawing which shows schematic structure of a pellet shaping | molding apparatus, and has shown the state in the pressing process which crushes a gas hydrate slurry and squeezes water. ペレット成形装置の作用を説明する図であり、ペレット成形装置の概略構造を示す断面図で、水が除去されたガスハイドレートスラリーからガスハイドレートペレットを成形するペレット成形工程を示している。It is a figure explaining the effect | action of a pellet shaping | molding apparatus, and is sectional drawing which shows schematic structure of a pellet shaping | molding apparatus, The pellet shaping | molding process which shape | molds a gas hydrate pellet from the gas hydrate slurry from which water was removed is shown. ペレット成形装置の作用を説明する図であり、ペレット成形装置の概略構造を示す断面図で、ペレット成形工程が終了して図2に示すろ過工程に戻る途中の状態を示している。It is a figure explaining the effect | action of a pellet shaping | molding apparatus, and is sectional drawing which shows schematic structure of a pellet shaping | molding apparatus, and has shown the state in the middle of returning to the filtration process shown in FIG. ペレットを成形する際に、ダイプレートから棒状となって押し出されたペレットを切断するチョッパーの概略構造を説明する図で、図4におけるA-A線に沿って切断した断面図である。FIG. 5 is a diagram for explaining a schematic structure of a chopper that cuts a pellet extruded from a die plate when forming a pellet, and is a cross-sectional view taken along the line AA in FIG. 4. この発明の他の実施形態に係るペレット成形装置を示す図で、概略構造を示す側面図である。It is a figure which shows the pellet shaping | molding apparatus which concerns on other embodiment of this invention, and is a side view which shows schematic structure. 図7に示すペレット成形装置の平面図である。It is a top view of the pellet shaping | molding apparatus shown in FIG. この発明に係るガスハイドレートペレット成形装置に用いられるダイ開閉手段の他の実施形態を簡略化して示す図で、(a)はペレット成形装置がろ過工程と圧搾工程にある場合の状態を、(b)はペレット成形工程にある場合の状態を示している。FIG. 4 is a diagram showing, in a simplified manner, another embodiment of a die opening / closing means used in a gas hydrate pellet molding apparatus according to the present invention, wherein (a) shows a state when the pellet molding apparatus is in a filtration step and a pressing step, b) shows the state in the pellet forming step. この発明に係るガスハイドレートペレット成形装置に用いられるダイ開閉手段の別の実施形態を簡略化して示す図で、(a)はペレット成形装置がろ過工程と圧搾工程にある場合の状態を、(b)はペレット成形工程にある場合の状態を示している。FIG. 6 is a diagram showing, in a simplified manner, another embodiment of a die opening / closing means used in the gas hydrate pellet molding apparatus according to the present invention, in which (a) shows the state when the pellet molding apparatus is in the filtration step and the pressing step, b) shows the state in the pellet forming step. 天然ガスハイドレートの出荷基地に利用される、従来のガスハイドレートの生成プラントの構成の一例を説明する概略のブロック図である。It is a schematic block diagram explaining an example of the structure of the conventional gas hydrate production | generation plant utilized for the shipping base of a natural gas hydrate.
 以下、図示した好ましい実施の形態に基づいて、この発明に係るガスハイドレートペレット成形装置を具体的に説明し、併せてガスハイドレートペレット成形方法を説明する。 Hereinafter, based on the preferred embodiment shown in the drawings, the gas hydrate pellet forming apparatus according to the present invention will be specifically described, and the gas hydrate pellet forming method will be described together.
 図1は、この発明に係るペレット成形装置1の概略の構造を説明する断面図である。このペレット成形装置1は、圧力容器からなる外筒2と該外筒2の内部に収容された内筒3とを備えている。内筒3は、パンチングメタル等の多孔板により形成されている。この多孔板に形成された透孔により、内筒3の内部と外筒2の内部とを連通させる連通部としてある。また、外筒2と内筒3との間には排水室3aが、適宜の数設けた仕切壁3bによって仕切られて設けられている。なお、図1では仕切壁3bが円筒の長手方向に沿って、ダイプレートに向かって間隔が狭くなるように設けられているが、これに限らず等間隔でもよい。また、多孔板の穴の密度は、円筒の長手方向に等間隔でも良いが、後述するダイプレート側をより高密度とすることが好ましい。 FIG. 1 is a sectional view for explaining the schematic structure of a pellet forming apparatus 1 according to the present invention. The pellet forming apparatus 1 includes an outer cylinder 2 made of a pressure vessel and an inner cylinder 3 accommodated in the outer cylinder 2. The inner cylinder 3 is formed of a perforated plate such as punching metal. A through-hole formed in the perforated plate serves as a communication portion that communicates the inside of the inner cylinder 3 and the inside of the outer cylinder 2. A drainage chamber 3a is provided between the outer cylinder 2 and the inner cylinder 3 by being partitioned by an appropriate number of partition walls 3b. In FIG. 1, the partition walls 3b are provided along the longitudinal direction of the cylinder so that the intervals are narrowed toward the die plate. Moreover, although the density of the hole of a perforated plate may be equal intervals in the longitudinal direction of a cylinder, it is preferable to make the die plate side mentioned later into a higher density.
 前記内筒3の内部であって、中央部から一方の端部側に偏倚した位置には、GHのペレットを成形するための多数の成形孔が形成されているダイプレート4が嵌合させてあり、このダイプレート4の一方の側であって、容積の大きい側が圧搾室5と、同じく小さい側がペレット受入室6とされている。前記圧搾室5の内筒3には圧搾プランジャ7が配されており、この圧搾プランジャ7は油圧シリンダ等からなる圧搾シリンダ8の作動による駆動ロッド8aの往復動により、内筒3の軸方向に摺動可能とされている。また、前記ペレット受入室にはダイ開閉手段としてのダイ開閉プランジャ9が配されており、このダイ開閉プランジャ9は油圧シリンダ等からなる開閉シリンダ10の作動による駆動ロッド10aの往復動により、内筒3の軸方向に摺動可能とされている。前記圧搾プランジャ7はその摺動によって、ダイプレート4の入口側面に接近し、ダイプレート4から離隔するよう進退する。また、前記ダイ開閉プランジャ9は、ダイプレート4の出口側面に押圧された位置と、ダイプレート4から離隔した位置との間で進退する。なお、前記ダイプレート4の入口側面は、図1に示すように、中央部が凹となった逆円錐形に形成されており、圧搾プランジャ7がダイプレート4に押圧された状態であっても、該圧搾プランジャ7の一部がダイプレート4から離隔した状態となるようにしてある。また、この実施形態では、前記入口側面を逆円錐形としてあるが、中央部が圧縮室5側に凸となった円錐形に形成されたものであっても、あるいは、平面に形成されたものであっても構わない。平面に形成された場合には、後述する作用を果たす上で、圧縮プランジャ7の前進端においては、該圧縮プランジャ7がダイプレート4から僅かに離隔した位置とすることが好ましい。 A die plate 4 having a large number of molding holes for molding GH pellets is fitted into the inner cylinder 3 at a position deviated from the center to one end side. Yes, on one side of the die plate 4, the large volume side is the pressing chamber 5, and the small side is the pellet receiving chamber 6. A compression plunger 7 is disposed in the inner cylinder 3 of the compression chamber 5, and the compression plunger 7 is moved in the axial direction of the inner cylinder 3 by reciprocation of the drive rod 8 a due to the operation of the compression cylinder 8 such as a hydraulic cylinder. It is possible to slide. The pellet receiving chamber is provided with a die opening / closing plunger 9 as a die opening / closing means. The die opening / closing plunger 9 is reciprocated by a driving rod 10a by an operation of an opening / closing cylinder 10 such as a hydraulic cylinder. 3 is slidable in the axial direction. The squeezing plunger 7 approaches the inlet side surface of the die plate 4 by sliding, and advances and retreats away from the die plate 4. The die opening / closing plunger 9 moves forward and backward between a position pressed against the outlet side surface of the die plate 4 and a position separated from the die plate 4. As shown in FIG. 1, the inlet side surface of the die plate 4 is formed in an inverted conical shape having a concave central portion, and the pressing plunger 7 is pressed against the die plate 4. The pressing plunger 7 is partly separated from the die plate 4. In this embodiment, the inlet side surface has an inverted conical shape, but the central portion may be formed in a conical shape having a convex shape toward the compression chamber 5 or may be formed in a flat surface. It does not matter. In the case of being formed in a flat surface, it is preferable that the compression plunger 7 is located at a position slightly separated from the die plate 4 at the forward end of the compression plunger 7 in order to achieve the action described later.
 前記ペレット受入室6の下部には、搬送手段としてのスクリューコンベヤ11が配されている。なお、搬送手段はこれに限らず、単に下向きに傾斜させた配管を設け、その内壁に沿って滑落させてペレットを下流設備に送るようにするものでも構わない。 A screw conveyor 11 as a conveying means is disposed at the bottom of the pellet receiving chamber 6. The conveying means is not limited to this, and a pipe that is simply inclined downward may be provided, and the pellets may be sent to the downstream equipment by sliding down along the inner wall.
 図2~図5は、前記ペレット成形装置1を簡略化した断面図であるが、これらの図に示すように、前記圧搾室5には供給管12が接続されて、GHスラリーが供給されるようにしてある。前記供給管12には供給弁12aが接続されており、この供給弁12aの開閉によって、GHスラリーの供給と停止とが行われる。また、外筒2には排出部としての適宜本数の排出管13が接続されている。なお、この実施形態を説明する図2~図5には7本の排出管13が設けられており、それぞれに添え字を付して、排出管13a、…、13gとしてある。これら排出管13a、…、13gは、集合部としての集合管14に接続されており、それぞれの排出管13aはこの集合管14を介して連通されている。さらに、この集合管14には排水弁15が設けられている。 2 to 5 are simplified cross-sectional views of the pellet forming apparatus 1. As shown in these drawings, a supply pipe 12 is connected to the pressing chamber 5 to supply GH slurry. It is like that. A supply valve 12a is connected to the supply pipe 12, and the supply and stop of the GH slurry is performed by opening and closing the supply valve 12a. The outer tube 2 is connected to an appropriate number of discharge pipes 13 as discharge portions. 2 to 5 for explaining this embodiment, seven discharge pipes 13 are provided, and subscripts are attached to the discharge pipes 13a,..., 13g, respectively. These discharge pipes 13a,..., 13g are connected to a collection pipe 14 as a collection section, and the respective discharge pipes 13a communicate with each other via the collection pipe 14. Further, the collecting pipe 14 is provided with a drain valve 15.
 以上により構成されたこの発明に係るガスハイドレート生成プラントにおけるペレット成形装置1の作用を、以下に説明する。 The operation of the pellet forming apparatus 1 in the gas hydrate production plant according to the present invention configured as described above will be described below.
 図2は、このペレット成形装置1が、GHスラリーを圧搾室5に供給しながら該GHスラリー(例えば、5%スラリー)に随伴された水をろ過するろ過工程にある状態を示している。前記供給弁12aと排水弁15とは開放された状態にある。前記圧搾プランジャ7は後退してダイプレート4から最も離隔したスラリー受入位置にあり、前記ダイ開閉プランジャ9はダイプレート4の出口側面に押圧されて該ダイプレート4を閉成した状態にある。この状態で、GHスラリーを圧搾室5に圧入しながら供給しつづけると、該GHスラリーを生成する際に反応に供されずにGHスラリーに含有された水が、内筒3の透孔を通過して排水室3a内に流出することによりろ過脱水される。流出した水は前記排出管13から集合管14に至り、開放された排水弁15を通って排出される。なお、排出された水は回収されて、再度GHスラリーの生成に用いることもできる。 FIG. 2 shows a state in which the pellet forming apparatus 1 is in a filtration step of filtering water accompanying the GH slurry (for example, 5% slurry) while supplying the GH slurry to the pressing chamber 5. The supply valve 12a and the drain valve 15 are open. The squeezing plunger 7 is in a slurry receiving position that is retracted most far from the die plate 4, and the die opening / closing plunger 9 is pressed against the outlet side surface of the die plate 4 to close the die plate 4. In this state, if the GH slurry is continuously supplied while being pressed into the compression chamber 5, the water contained in the GH slurry passes through the through hole of the inner cylinder 3 without being subjected to the reaction when generating the GH slurry. Then, it is filtered and dehydrated by flowing into the drainage chamber 3a. The discharged water reaches the collecting pipe 14 from the discharge pipe 13 and is discharged through the open drain valve 15. The discharged water can be recovered and used again to generate GH slurry.
 水がある程度分離されて(例えば、30%スラリー)、圧搾室5がGHスラリーで充満されたならば、前記供給弁12aと排水弁15とを閉止して圧搾室5を密閉し、圧搾工程に移る。圧搾工程では、図3に示すように、圧搾室5が密閉された状態で、前記圧搾プランジャ7を前進させてGHスラリーを加圧しながら搾水する。ここでは、GHスラリーが圧搾プランジャ7の前進により加圧され、GHスラリーに残存している水が搾り出される。圧搾された水は、内筒3の透孔を通過して排水室3aに流出し、前記排出管13から集合管14に至ることになる。このとき、前記排水弁15が閉止されているから、集合管14に至った水は、他の排出管13を通って外筒3に流入することになる。例えば、圧搾プランジャ7が、図3に示すように、配水管13eと13fとの間に位置している場合には、該圧搾プランジャ7の進行方向の前側のダイプレート側室の圧力が、後側のGHスラリー供給側室の圧力よりも大きくなる。このため、圧搾された水は、前記排出管13f、13gから排出され、集合管14を通って排出管13a~13eから前記GHスラリー供給側室に流入することになる。このとき、水は内筒3の透孔を通過することにより、該透孔内に詰まったGHスラリーの粒子分を圧搾室5に押し戻すことになり、透孔の目詰まりが除去されることになる。また、圧搾プランジャ7の前後の室の圧力が均衡することになるため、圧搾プランジャ7の円滑な摺動が損なわれることがない。ここで、圧搾プランジャ7のダイプレート4とは反対側の圧搾室5の内部に逆流によるGHスラリーが蓄積した場合は、図示しない給排水管からの洗浄水で置換すればよい。 When water is separated to some extent (for example, 30% slurry) and the compression chamber 5 is filled with GH slurry, the supply valve 12a and the drain valve 15 are closed to seal the compression chamber 5, and the compression process is performed. Move. In a pressing process, as shown in FIG. 3, in the state where the pressing chamber 5 was sealed, the pressing plunger 7 was advanced to squeeze water while pressurizing the GH slurry. Here, the GH slurry is pressurized by the advance of the squeezing plunger 7, and the water remaining in the GH slurry is squeezed out. The compressed water passes through the through hole of the inner cylinder 3 and flows out into the drainage chamber 3a, and reaches the collecting pipe 14 from the discharge pipe 13. At this time, since the drain valve 15 is closed, the water reaching the collecting pipe 14 flows into the outer cylinder 3 through the other discharge pipe 13. For example, as shown in FIG. 3, when the compression plunger 7 is located between the water distribution pipes 13e and 13f, the pressure in the front die plate side chamber in the traveling direction of the compression plunger 7 is the rear side. It becomes larger than the pressure of the GH slurry supply side chamber. For this reason, the compressed water is discharged from the discharge pipes 13f and 13g and flows into the GH slurry supply side chamber from the discharge pipes 13a to 13e through the collecting pipe 14. At this time, when water passes through the through-hole of the inner cylinder 3, the particles of the GH slurry clogged in the through-hole are pushed back to the pressing chamber 5, and the clogging of the through-hole is removed. Become. Moreover, since the pressure of the chamber before and behind the pressing plunger 7 will be balanced, smooth sliding of the pressing plunger 7 will not be impaired. Here, when the GH slurry by a backflow accumulates in the inside of the pressing chamber 5 on the side opposite to the die plate 4 of the pressing plunger 7, it may be replaced with washing water from a water supply / drain pipe (not shown).
 圧搾工程では、GHスラリー濃度が、例えば、約90%まで搾水し、次いで、図4に示すペレット成形工程に移る。このペレット成形工程では、前記ダイ開閉プランジャ9が後退してダイプレート4から離隔した状態となり、前記供給弁12aを開放して、GHスラリーの供給が行われる。この状態で前記圧搾プランジャ7がさらに前進すると、圧搾されたGHスラリーがダイプレート4に押圧されて、該ダイプレート4の出口側から棒状となってペレット受入室6に押し出される。押し出されて適宜長さとなると、その自重により切断されてペレットPが成形され、前記スクリューコンベヤ11に落下することになる。落下したペレットPは、スクリューコンベヤ11で次工程へ搬送される。 In the pressing process, the GH slurry concentration is squeezed to about 90%, for example, and then the process proceeds to the pellet forming process shown in FIG. In this pellet forming step, the die opening / closing plunger 9 is retracted and separated from the die plate 4, and the supply valve 12a is opened to supply GH slurry. When the squeezing plunger 7 further advances in this state, the squeezed GH slurry is pressed against the die plate 4 and is pushed out from the outlet side of the die plate 4 into a pellet receiving chamber 6. When it is extruded and has an appropriate length, it is cut by its own weight to form a pellet P, which falls onto the screw conveyor 11. The dropped pellet P is transported to the next process by the screw conveyor 11.
 また、圧搾プランジャ7が最前部まで前進した場合に、前記ダイプレート4の入口側面が逆円錐形あるいは円錐形に形成されている場合には、該ダイプレート4に当接した状態でも圧搾プランジャ7とダイプレート4とに間隙が形成された状態となる。このため、ダイプレート4の成形孔にGHスラリーが詰まった状態となって、ダイプレート4の成形孔がGHスラリーにより閉塞された状態に維持される。これにより、圧搾室5とペレット受入室6とが連通することがなく、圧搾室5内の圧力が維持される。また、前記供給弁12aを開放してGHスラリーを供給することにより、圧搾プランジャ7によって押し出されたGHスラリーの容積に相当する量のGHスラリーを供給することにより、圧縮室5内の内容量がほぼ一定に保たれ、圧力が維持される。 Further, when the pressing plunger 7 is advanced to the foremost part, when the inlet side surface of the die plate 4 is formed in an inverted conical shape or a conical shape, the pressing plunger 7 is in contact with the die plate 4. As a result, a gap is formed between the die plate 4 and the die plate 4. For this reason, the molding hole of the die plate 4 is clogged with the GH slurry, and the molding hole of the die plate 4 is maintained in a state of being blocked by the GH slurry. Thereby, the pressing chamber 5 and the pellet receiving chamber 6 do not communicate, and the pressure in the pressing chamber 5 is maintained. Further, by supplying the GH slurry by opening the supply valve 12a, by supplying an amount of GH slurry corresponding to the volume of the GH slurry pushed out by the pressing plunger 7, the internal volume in the compression chamber 5 is increased. It is kept almost constant and pressure is maintained.
 成形工程が終了すると、逆洗工程に移る。この逆先工程では、圧搾プランジャ7が後退を開始するが、この後退に先立って、前記ダイ開閉プランジャ4を前進させてダイプレート4に押圧することにより、ダイプレート4を閉塞すると共に、前記供給弁12aを閉止しておく。この状態を図5に示してある。圧搾プランジャ7が後退すると、該圧搾プランジャ7が進行する方向のGHスラリー供給側室の圧力がダイプレート側室の圧力より高くなる。このため、GHスラリー供給側室内の水が、例えば図5において、排出管13a~13cから集合管14を通り、排出管13d~13gを通って、ダイプレート側室に流入することになり、その過程において、内筒3の透孔に詰まったGHスラリーの粒子を除去することができる。 When the molding process is completed, the process proceeds to the back washing process. In this reverse process, the pressing plunger 7 starts retreating. Prior to this retreat, the die opening / closing plunger 4 is advanced and pressed against the die plate 4 to close the die plate 4 and to supply the supply. The valve 12a is closed. This state is shown in FIG. When the pressing plunger 7 moves backward, the pressure in the GH slurry supply side chamber in the direction in which the pressing plunger 7 advances becomes higher than the pressure in the die plate side chamber. For this reason, for example, in FIG. 5, the water in the GH slurry supply side chamber flows from the discharge pipes 13a to 13c through the collecting pipe 14 and through the discharge pipes 13d to 13g into the die plate side chamber. The particles of the GH slurry clogged in the through holes of the inner cylinder 3 can be removed.
 圧搾プランジャ7がスラリー受入位置まで後退したならば、前記供給弁12aを開放してGHスラリーを供給する前述したろ過工程に戻って、以上の処理工程を繰り返すことになる。 If the squeezing plunger 7 has been retracted to the slurry receiving position, the supply valve 12a is opened to return to the filtration step described above for supplying GH slurry, and the above processing steps are repeated.
 前述したペレット成形工程において、ペレット受入室6にペレットPが押し出される際には、その自重により切断されるものとして説明したが、この場合には、ペレットPの寸法・形状が一定とならないおそれがある。そのため、ダイプレート4の出口側にチョッパーを設けて、棒状のペレットPを一定の長さで切断して寸法・形状を揃えるようにすることもできる。例えば、図6に示すように、ダイプレート4の出口側の面に沿って昇降するチョッパー17を設けた構造とすることもできる。すなわち、チョッパー17の両端部にチョッパー駆動シリンダ18のピストンロッド18aを連繋させ、所望の周期で昇降させて、ダイプレート4から押し出されたペレットPを切断するようにしたものである。なお、チョッパー17は上下のそれぞれに刃が形成されて、昇降動作にいずれの方向であってもペレットPを切断できるようにすることが好ましい。 In the above-described pellet forming process, when the pellet P is pushed out into the pellet receiving chamber 6, the pellet P is cut by its own weight, but in this case, the size and shape of the pellet P may not be constant. is there. Therefore, a chopper can be provided on the outlet side of the die plate 4, and the rod-shaped pellets P can be cut at a certain length so as to have the same size and shape. For example, as shown in FIG. 6, a structure in which a chopper 17 that moves up and down along the exit-side surface of the die plate 4 can be provided. That is, the piston rod 18a of the chopper drive cylinder 18 is connected to both ends of the chopper 17, and is lifted and lowered at a desired cycle to cut the pellet P extruded from the die plate 4. The chopper 17 is preferably formed with blades on the upper and lower sides so that the pellets P can be cut regardless of the direction of the lifting operation.
 また、前述したペレット成形装置1の多数基を配設して、それらの各工程の位相をずらすことにより、ペレットPの成形を連続的に行うことができるから、次工程における処理も連続して行うことができる。複数基のペレット成形装置1を効率よく運転するためには、図7及び図8に示すように、一対のペレット成形装置1を、いわゆるタンデム形式とすることが好ましい。一対のペレット成形装置1を、それらの前記圧搾室5が隣接した状態に配置させ、前記圧搾プランジャ7の駆動ロッド21を共通のものとしてある。駆動ロッド21には連繋ブラケット22を介して駆動シリンダ23のピストンロッド23aが連繋されている。このため、駆動シリンダ23が作動してピストンロッド23aが摺動することにより駆動ロッド21が摺動する。この駆動ロッド21の摺動によって、一対のペレット成形装置1のそれぞれの圧搾プランジャ7がそれぞれの圧搾室5内を摺動することになる。このとき、それぞれの圧搾プランジャ7は同方向に摺動することになるから、ペレット成形装置1の一方ではペレット成形工程が行われ、他方ではろ過工程が行われることになり、処理工程の位相が180°でずれた状態となる。このため、ペレットPの成形が連続的となる。これら一対のペレット成形装置1を複数対にして具備することにより、ペレットPの成形をより連続的に行うことができる。 In addition, since the pellet P can be continuously formed by arranging a large number of the above-described pellet forming apparatuses 1 and shifting the phases of the respective steps, the processing in the next step is also continuously performed. It can be carried out. In order to operate the plurality of pellet forming apparatuses 1 efficiently, it is preferable that the pair of pellet forming apparatuses 1 have a so-called tandem type as shown in FIGS. A pair of pellet forming apparatuses 1 are arranged in a state where the pressing chambers 5 are adjacent to each other, and the drive rod 21 of the pressing plunger 7 is made common. A piston rod 23 a of a drive cylinder 23 is linked to the drive rod 21 via a linkage bracket 22. For this reason, the drive rod 21 slides when the drive cylinder 23 operates and the piston rod 23a slides. By the sliding of the drive rod 21, the respective compression plungers 7 of the pair of pellet forming apparatuses 1 slide in the respective compression chambers 5. At this time, since each pressing plunger 7 slides in the same direction, a pellet forming process is performed on one side of the pellet forming apparatus 1 and a filtration process is performed on the other side, and the phase of the processing process is The state is shifted by 180 °. For this reason, the molding of the pellet P becomes continuous. By providing a plurality of pairs of these pellet forming apparatuses 1, the pellets P can be formed more continuously.
 以上に説明した実施形態では、圧搾プランジャ7とダイ開閉プランジャ9とが水平方向に摺動する横型とした場合のペレット成形装置1として説明したが、これらプランジャ7、9が鉛直方向に摺動することによりペレットの成形を行う縦型のペレット成形装置とすることもできる。縦型の構造を採用する場合には、ダイプレートから押し出されて成形されたペレットは、ダイ開閉プランジャ9の上面に落下するから、この上面から搬送装置へ掻き出す必要があり、例えば、該上面に沿って水平方向に移動しながらペレットを掻き出す掻き出し装置を設けることが望ましい。なお、ダイプレートから押し出されるペレットを切断するチョッパーを設ける場合には、該チョッパーと前記掻き出し装置とを連繋させて動作させる構造を採用することもできる。 In embodiment described above, although demonstrated as the pellet shaping | molding apparatus 1 at the time of setting it as the horizontal type which the pressing plunger 7 and die opening / closing plunger 9 slide in a horizontal direction, these plungers 7 and 9 slide to a perpendicular direction. Thus, a vertical pellet forming apparatus for forming pellets can be obtained. In the case of adopting a vertical structure, the pellets extruded and molded from the die plate fall on the upper surface of the die opening / closing plunger 9, so it is necessary to scrape the pellets from the upper surface to the conveying device. It is desirable to provide a scraping device that scrapes the pellets while moving along the horizontal direction. In addition, when providing the chopper which cut | disconnects the pellet extruded from a die plate, the structure which connects and operates this chopper and the said scraping apparatus is also employable.
 次に、図9に示すダイ開閉手段の他の実施形態について説明する。なお、図1に示す実施形態と同一の部位には同一の符号を付してあり、図を簡略化して示してある。この図9に示すペレット成形装置30が具備しているダイ開閉手段は、紙面を貫く方向の軸31cを中心として回転する回転弁31と、ダイプレート32の出口側面をこの回転弁31の一部により閉塞される形状に形成された構造としてある。すなわち、回転弁31の一部は球面により閉塞面部31aが形成され、それ以外の部分は表面を窪ませた開放面部31bとされている。前記ダイプレート32の出口側面は、前記閉塞面部31aと一致する形状の球面に形成されており、この出口側面と閉塞面部31aとが対向した位置に回転弁31が位置している場合には、ダイプレート32は閉塞された状態にある。また、前記閉塞面部31aと開放面部32aとの境界部は、図9に示すように、閉塞面部31aの端縁が開放面部31bに被さる状態に突出して、先端が鋭角とされた切断部31dが形成されている。前記回転弁31の回転軸31cは図示しない駆動手段に連繋されており、この駆動手段には制動手段が備えられて、該駆動手段の停止時には回転軸31cが不用意に回転することがないようにしてある。あるいは、回転軸31cに制動機構を施して、停止時の回転が阻止されるようにしてある。さらに、圧搾プランジャ7により回転弁31は加圧されるから、この圧力を受けた場合であっても閉塞面部31aがダイプレート32の出口側面から離隔することがないように、回転軸31cの図示しない軸受を強固なものとしてある。 Next, another embodiment of the die opening / closing means shown in FIG. 9 will be described. The same parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the drawing is simplified. The die opening / closing means included in the pellet forming apparatus 30 shown in FIG. 9 includes a rotary valve 31 that rotates about a shaft 31c that penetrates the paper surface, and an outlet side surface of the die plate 32 that is a part of the rotary valve 31. As a structure formed in a shape closed by the In other words, a part of the rotary valve 31 has a closed surface part 31a formed of a spherical surface, and the other part is an open surface part 31b having a recessed surface. The outlet side surface of the die plate 32 is formed into a spherical surface having a shape that matches the closing surface portion 31a, and when the rotary valve 31 is located at a position where the outlet side surface and the closing surface portion 31a face each other, The die plate 32 is in a closed state. Further, as shown in FIG. 9, the boundary portion between the closed surface portion 31a and the open surface portion 32a is formed by a cut portion 31d having a sharp edge at the end protruding from the closed surface portion 31a covering the open surface portion 31b. Is formed. The rotary shaft 31c of the rotary valve 31 is connected to a driving means (not shown). The driving means is provided with a braking means so that the rotating shaft 31c does not rotate carelessly when the driving means is stopped. It is. Alternatively, a braking mechanism is applied to the rotating shaft 31c so that rotation at the time of stopping is prevented. Further, since the rotary valve 31 is pressurized by the squeezing plunger 7, the rotary shaft 31c is illustrated so that the closed surface portion 31a is not separated from the outlet side surface of the die plate 32 even when this pressure is received. The bearing that does not do is made strong.
 この図9に示す実施形態では、ペレット成形装置30がろ過工程と圧搾工程にある場合には、同図(a)に示すように、前記回転弁31は閉塞面部31aがダイプレート32に対向した状態にあり、この状態では回転弁31が停止してダイプレート32が閉塞されている。なお、このとき、回転軸31cや駆動源に対する制動力と回転軸31cの軸受の強固さにより、閉塞面部31aがダイプレート32から離隔することがない。ペレット成形装置30がペレット成形工程にある状態では、回転弁31が回転軸31cを中心として回転する。この回転弁31の回転により、図9(b)に示すように、回転弁31の開放面部31bがダイプレート32の出口側面に対向した状態となると、ダイからペレットがペレット受入室6に押し出されることになる。このとき、回転弁31の回転により前記切断部31dがダイから押し出された棒状のペレットを切断することになり、適宜な形状・寸法のペレットが成形される。また、切断されたペレットは開放面部31bの窪みに落下し、さらに回転弁31の回転によりこの窪みが下方を指向した際に、ペレットがスクリューコンベヤ11に落下し、次工程へ搬送されることになる。 In the embodiment shown in FIG. 9, when the pellet forming apparatus 30 is in the filtration step and the squeezing step, the rotary valve 31 has the closing surface portion 31a opposed to the die plate 32 as shown in FIG. In this state, the rotary valve 31 is stopped and the die plate 32 is closed. At this time, the closing surface portion 31a is not separated from the die plate 32 due to the braking force against the rotating shaft 31c and the driving source and the strength of the bearing of the rotating shaft 31c. In a state where the pellet forming apparatus 30 is in the pellet forming process, the rotary valve 31 rotates about the rotary shaft 31c. When the rotary valve 31 is rotated, as shown in FIG. 9B, when the open surface portion 31b of the rotary valve 31 faces the outlet side surface of the die plate 32, pellets are pushed out from the die to the pellet receiving chamber 6. It will be. At this time, the cutting part 31d cuts the rod-shaped pellet pushed out from the die by the rotation of the rotary valve 31, and a pellet having an appropriate shape and size is formed. In addition, the pellets that have been cut fall into the depression of the open surface portion 31b, and when the depression is directed downward by the rotation of the rotary valve 31, the pellet falls to the screw conveyor 11 and is conveyed to the next process. Become.
 また、図10には、図9に示す回転弁31と異なる実施形態を示しており、このペレット成形装置35のダイ開閉手段を構成する回転弁36は、球面により形成された閉塞面部36aとそれ以外の開放面部36bとを具備している。なお、図1に示す実施形態と同一の部位は同一の符号を付してあり、図を簡略化して示してある。前記開放面部36bの一部には、閉塞面部36aと同様に球面により形成された支持面部36cが形成されている。なお、この回転弁35は図10の上下方向を軸として回動するようにしてある。また、ダイプレート37の出口側面は閉塞面部36aと一致する球面により形成されている。そして、図10(a)に示すように、閉塞面部36aがダイプレート37に対向している状態では、前記支持面部36cがペレット受入室6の底面に当接するようにしてある。 FIG. 10 shows an embodiment different from the rotary valve 31 shown in FIG. 9, and the rotary valve 36 constituting the die opening / closing means of the pellet forming apparatus 35 includes a closed surface portion 36a formed of a spherical surface and the closed surface portion 36a. And an open surface portion 36b other than the above. The same parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and the drawing is simplified. A part of the open surface portion 36b is formed with a support surface portion 36c formed of a spherical surface in the same manner as the closed surface portion 36a. The rotary valve 35 is rotated about the vertical direction in FIG. Further, the exit side surface of the die plate 37 is formed by a spherical surface that coincides with the closing surface portion 36a. Then, as shown in FIG. 10A, in the state where the blocking surface portion 36a faces the die plate 37, the support surface portion 36c is in contact with the bottom surface of the pellet receiving chamber 6.
 この図10に示す実施形態では、ペレット成形装置35がろ過工程と圧搾工程にある場合には、同図(a)に示すように、回転弁36の閉塞面部36aがダイプレート37に対向した状態にあり、圧搾プランジャ8による加圧力は、回転弁36の前記支持面部36cがペレット受入室6の底面に押圧されることで対抗させる。そして、ペレット成形装置35がペレット成形工程にある場合には、図10(b)に示すように、回転弁36が回転して開放面部36bがダイプレート37に対向した状態でペレットが押し出され、スクリューコンベヤ11に落下して次工程へ搬送されることになる。 In the embodiment shown in FIG. 10, when the pellet forming apparatus 35 is in the filtration process and the squeezing process, the closed surface portion 36a of the rotary valve 36 faces the die plate 37 as shown in FIG. The pressure applied by the squeezing plunger 8 is countered by pressing the support surface portion 36 c of the rotary valve 36 against the bottom surface of the pellet receiving chamber 6. Then, when the pellet molding apparatus 35 is in the pellet molding process, as shown in FIG. 10 (b), the rotary valve 36 rotates and the pellets are pushed out with the open surface portion 36b facing the die plate 37, It falls on the screw conveyor 11 and is conveyed to the next process.
 また、図9および図10に示すペレット成形装置30、35を縦型とする場合には、前記ペレット成形装置1を縦型とする場合のような掻き出し装置を必要とすることなく、ペレットをスクリューコンベヤ11に落下させることができる。 Further, when the pellet forming apparatuses 30 and 35 shown in FIGS. 9 and 10 are vertical, the pellets are screwed without the need for a scraping device as in the case where the pellet forming apparatus 1 is vertical. It can be dropped onto the conveyor 11.
 この発明に係るガスハイドレートペレット成形装置及びガスハイドレートペレット成形方法によれば、従来のGH生成プラントにおける脱水処理工程とペレットの成形工程とを単一の装置により連続して行うことができ、しかも大量生産に好適であるから、プラントの小型化を促進でき、製造コストと共にランニングコストを減じることができ、経済性を向上させて、従来において採算面で不利なガス田の有効利用の促進化に寄与する。 According to the gas hydrate pellet molding apparatus and the gas hydrate pellet molding method according to the present invention, the dehydration process and the pellet molding process in the conventional GH production plant can be continuously performed by a single apparatus, Moreover, because it is suitable for mass production, it is possible to promote downsizing of the plant, reduce running costs as well as manufacturing costs, improve economy, and promote effective use of gas fields that are disadvantageous in the past. Contribute to.
 P ペレット
 1 ペレット成形装置
 2 外筒
 3 内筒
 3a 排水室
 3b 仕切壁
 4 ダイプレート
 5 圧搾室
 6 ペレット受入室
 7 圧搾プランジャ
 8 圧搾シリンダ
 9 ダイ開閉プランジャ(ダイ開閉手段)
 10 開閉シリンダ
 11 スクリューコンベヤ(搬送手段)
 12 供給管
 12a 供給弁
 13 排出管(排出部)
 14 集合管(集合部)
 15 排水弁
 17 チョッパー
 21 駆動ロッド
 22 連繋ブラケット
 23 駆動シリンダ
 30 ペレット成形装置
 31 回転弁(ダイ開閉手段)
 31a 閉塞面部
 31b 開放面部
 31d 切断部
 32 ダイプレート
 35 ペレット形成装置
 36 回転弁(ダイ開閉手段)
 36a 閉塞面部
 36b 開放面部
 36c 支持面部
 37 ダイプレート
P pellet 1 pellet forming apparatus 2 outer cylinder 3 inner cylinder 3a drainage chamber 3b partition wall 4 die plate 5 pressing chamber 6 pellet receiving chamber 7 pressing plunger 8 pressing cylinder 9 die opening and closing plunger (die opening and closing means)
10 Opening and closing cylinder 11 Screw conveyor (conveying means)
12 Supply pipe 12a Supply valve 13 Discharge pipe (discharge section)
14 Collecting pipe (gathering part)
15 Drain valve 17 Chopper 21 Drive rod 22 Connecting bracket 23 Drive cylinder 30 Pellet molding device 31 Rotary valve (die opening / closing means)
31a Blocking surface part 31b Opening surface part 31d Cutting part 32 Die plate 35 Pellet forming device 36 Rotary valve (die opening / closing means)
36a Closed surface 36b Open surface 36c Support surface 37 Die plate

Claims (8)

  1.  ガスハイドレートスラリーから水分を除去しながら圧縮してペレットに成形するガスハイドレートペレット成形装置であって、
     外筒と内筒とを備え、
     前記内筒を多孔板により形成し、
     前記内筒の長手方向の適宜位置にダイプレートを配置して、該ダイプレートを境にして、ガスハイドレートスラリーを供給する圧搾室と、該ガスハイドレートスラリーから生成したペレットを収容するペレット受入室とに区画し、
     前記圧搾室に摺動自在に圧搾プランジャ設け、
     前記ペレット受入室に前記ダイプレートを開閉するダイ開閉手段を設け、
     前記ペレット受入室に搬送手段を接続させ、
     前記ダイ開閉手段により前記ダイプレートの出口側を開閉し、
     前記圧搾プランジャの摺動で、内筒内のガスハイドレートスラリーを前記ダイプレートに押圧し、
     前記ペレット受入室に収容させたペレットを前記搬送手段に供するようにしたことを特徴とするガスハイドレートペレット成形装置。
    A gas hydrate pellet forming apparatus that compresses and forms pellets while removing moisture from a gas hydrate slurry,
    An outer cylinder and an inner cylinder,
    The inner cylinder is formed of a perforated plate,
    A die plate is disposed at an appropriate position in the longitudinal direction of the inner cylinder, a pressing chamber for supplying a gas hydrate slurry with the die plate as a boundary, and a pellet receiving for containing pellets generated from the gas hydrate slurry Divided into rooms,
    A compression plunger is slidably provided in the compression chamber,
    A die opening and closing means for opening and closing the die plate is provided in the pellet receiving chamber,
    A conveying means is connected to the pellet receiving chamber,
    Opening and closing the outlet side of the die plate by the die opening and closing means;
    By sliding the compression plunger, press the gas hydrate slurry in the inner cylinder against the die plate,
    A gas hydrate pellet forming apparatus characterized in that the pellets accommodated in the pellet receiving chamber are supplied to the conveying means.
  2.  前記ダイ開閉手段を、前記ペレット受入室に摺動自在に設けたダイ開閉プランジャにより構成し、
     前記ダイ開閉プランジャの摺動により前記ダイプレートの出口側を開閉することを特徴とする請求項1に記載のガスハイドレートペレット成形装置。
    The die opening / closing means is constituted by a die opening / closing plunger provided slidably in the pellet receiving chamber,
    The gas hydrate pellet forming apparatus according to claim 1, wherein the outlet side of the die plate is opened and closed by sliding of the die opening and closing plunger.
  3.  前記ダイ開閉手段を、一部に球面により形成した閉塞面部を有する回転弁と、前記ダイプレートの出口側を該閉塞面部に一致する球面で構成し、
     前記ダイプレートが、前記回転弁の閉塞面部とダイプレートの出口側の球面とが対向した状態で閉塞され、閉塞面部以外の開放面部が対向した状態で開放されることを特徴とする請求項1に記載のガスハイドレートペレット成形装置。
    The die opening and closing means comprises a rotary valve having a closed surface portion formed in part by a spherical surface, and a spherical surface that matches the closed surface portion on the outlet side of the die plate,
    2. The die plate is closed in a state where a closed surface portion of the rotary valve and a spherical surface on the outlet side of the die plate are opposed to each other, and is opened in a state where open surface portions other than the closed surface portion are opposed to each other. The gas hydrate pellet molding apparatus described in 1.
  4.  前記回転弁の閉塞面部と開放面部との境界部で切断部を形成し、前記ダイプレートの出口側をこの境界部が通過する際に、ダイプレートから押し出されたペレットを切断することを特徴とする請求項3に記載のガスハイドレートペレット成形装置。 A cutting portion is formed at a boundary portion between the closed surface portion and the open surface portion of the rotary valve, and the pellet extruded from the die plate is cut when the boundary portion passes through the outlet side of the die plate. The gas hydrate pellet forming apparatus according to claim 3.
  5.  前記外筒に、該外筒の長手方向に排水室を並設すると共に、これらの排水室を集合部に集合させ、該集合部に排水弁を設けたことを特徴とする請求項1に記載のガスハイドレート生成プラントにおけるペレット成形装置。 2. The drain according to claim 1, wherein a drainage chamber is provided in the outer cylinder in the longitudinal direction of the outer cylinder, the drainage chambers are gathered in a gathering portion, and a drainage valve is provided in the gathering portion. Pellet forming equipment in a gas hydrate production plant.
  6.  請求項1から請求項5までのいずれかに記載のペレット成形装置を、前記圧搾プランジャの軸方向に対称となる位置関係で並設させ、
     並設させた一対のペレット成形装置の圧搾プランジャの駆動ロッドを共通にして、
     該圧搾プランジャの摺動により、それぞれのペレット成形装置における動作の位相をずらしてあることを特徴とするガスハイドレート生成プラントにおけるペレット成形装置。
    The pellet forming apparatus according to any one of claims 1 to 5 is juxtaposed in a positional relationship that is symmetrical in the axial direction of the compression plunger,
    In common with the drive rod of the compression plunger of a pair of pellet forming devices placed side by side,
    The pellet forming apparatus in a gas hydrate production plant, wherein the operation of each pellet forming apparatus is shifted by sliding of the compression plunger.
  7.  ガスハイドレートスラリーから水分を除去しながら圧縮してペレットに成形するガスハイドレートペレット成形方法であって、
     圧力容器である外筒と、壁体の一部が外筒の内部に連通している連通部を有する内筒との二重構造の筒体を備えたペレット成形装置の、前記内筒にダイプレートを具備させて、該ダイプレートを挟んで一方の側を圧搾室とし、他方の側をペレット受入室とし、前記圧搾室に前記ダイプレートに対して進退する圧搾プランジャを、前記ペレット受入室にダイプレートを開閉するダイ開閉手段を、それぞれ設けてあり、
     前記ダイ開閉手段でダイプレートを閉塞させ、前記圧搾プランジャをダイプレートから離隔した位置まで後退させた状態で、該圧搾室にガスハイドレートスラリーを供給しながら、ガスハイドレートに随伴された水分をろ過して前記前記内筒から排出させるろ過工程と、
     前記圧搾室へのガスハイドレートの充填後に、前記圧搾プランジャをダイプレートに向けて前進させて、ガスハイドレートに加圧して搾水する圧搾工程と、
     ガスハイドレートの水分が適宜な状態まで搾水された後、前記ダイ開閉手段を動作させてダイプレートを開放させ、前記圧搾プランジャの前進により、ガスハイドレートをダイプレートから前記ペレット受入室に押し出してガスハイドレートペレットを成形するペレット成形工程と、
     ペレットの成形後に、前記圧搾プランジャを後退させて、外筒に滞留した水を前記連通部から内筒へ流入させる逆先工程とを順次繰り返してガスハイドレートペレットを成形することを特徴とするガスハイドレートペレット成形方法。
    A gas hydrate pellet molding method of compressing and molding into pellets while removing moisture from a gas hydrate slurry,
    The pellet forming apparatus having a double-structured cylindrical body including an outer cylinder that is a pressure vessel and an inner cylinder having a communication portion in which a part of the wall body communicates with the inside of the outer cylinder is a die attached to the inner cylinder. A plate is provided, one side of the die plate is used as a pressing chamber, the other side is set as a pellet receiving chamber, and a pressing plunger that moves forward and backward with respect to the die plate in the pressing chamber is provided in the pellet receiving chamber. Die opening and closing means for opening and closing the die plate are provided,
    While the die plate is closed by the die opening / closing means and the compression plunger is retracted to a position separated from the die plate, the gas hydrate slurry is supplied to the compression chamber while the moisture accompanying the gas hydrate is removed. A filtration step of filtering and discharging from the inner cylinder;
    After the gas hydrate is filled into the squeezing chamber, the squeezing step of advancing the squeezing plunger toward the die plate to pressurize and squeeze the gas hydrate; and
    After the moisture of the gas hydrate is squeezed to an appropriate state, the die opening / closing means is operated to open the die plate, and the gas hydrate is pushed out from the die plate to the pellet receiving chamber by the advance of the squeezing plunger. Pellet forming process for forming gas hydrate pellets,
    After forming the pellet, a gas hydrate pellet is formed by sequentially reversing the pressing plunger and retreating the water retained in the outer cylinder into the inner cylinder from the communicating portion. Hydrate pellet forming method.
  8.  請求項7に記載のペレット成形装置を一対にして配設し、一方のペレット成形装置の圧搾プランジャの駆動ロッドと他方のペレット成形装置の圧搾プランジャの駆動ロッドとを共有させて、該共有した駆動ロッドのそれぞれの端部にそれぞれの圧搾プランジャを連繋させることにより、一対のペレット成形装置の前記ろ過工程と圧搾工程、ペレット成形工程、逆洗工程との作業工程の位相をずらして、前記一対のペレット成形装置を動作させることを特徴とするガスハイドレートペレット成形方法。 The pellet forming apparatus according to claim 7 is disposed in a pair, and the driving rod of the pressing plunger of one pellet forming apparatus and the driving rod of the pressing plunger of the other pellet forming apparatus are shared, and the shared driving is performed. By connecting the respective compression plungers to the respective end portions of the rods, the phases of the filtration process and the compression process, the pellet molding process, and the backwashing process of the pair of pellet forming apparatuses are shifted, A gas hydrate pellet molding method comprising operating a pellet molding apparatus.
PCT/JP2009/069461 2008-11-19 2009-11-17 Gas hydrate pellet molding device and gas hydrate pellet molding method WO2010058760A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-295060 2008-11-19
JP2008295060 2008-11-19
JP2009081350A JP5319359B2 (en) 2008-11-19 2009-03-30 Gas hydrate pellet molding apparatus and gas hydrate pellet molding method
JP2009-081350 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010058760A1 true WO2010058760A1 (en) 2010-05-27

Family

ID=42198200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069461 WO2010058760A1 (en) 2008-11-19 2009-11-17 Gas hydrate pellet molding device and gas hydrate pellet molding method

Country Status (2)

Country Link
JP (1) JP5319359B2 (en)
WO (1) WO2010058760A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000541A (en) * 2010-06-15 2012-01-05 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet molding apparatus and gas hydrate pellet
CN107308885A (en) * 2017-06-30 2017-11-03 临湘市高圣中药有限公司 A kind of extra granular process units
CN112794382A (en) * 2020-12-25 2021-05-14 中国科学院广州能源研究所 Hydrate method sea water desalination device
CN113029727A (en) * 2021-04-26 2021-06-25 常州大学 Adhesion testing device capable of forming regular spherical hydrate particles
CN114288901A (en) * 2021-11-29 2022-04-08 安徽省碧绿春生物科技有限公司 Feed stirring processing equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245751B1 (en) * 2011-02-23 2013-03-25 삼성중공업 주식회사 Hydrate packing device and cargo ship having the same
CN113477178B (en) * 2021-05-10 2024-02-09 湖南本业绿色防控科技股份有限公司 Rapid manufacturing equipment for ferment balls for agricultural production
CN113598395A (en) * 2021-08-10 2021-11-05 邵梅华 Pig feed processing system and pig feed processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052113A (en) * 2004-08-13 2006-02-23 Stolz Co Ltd Method and apparatus for producing dry ice pellet
JP2007268407A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gravity dehydrator, gravity dehydration method and manufacturing apparatus of gas hydrate
JP2007270029A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052113A (en) * 2004-08-13 2006-02-23 Stolz Co Ltd Method and apparatus for producing dry ice pellet
JP2007268407A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gravity dehydrator, gravity dehydration method and manufacturing apparatus of gas hydrate
JP2007270029A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000541A (en) * 2010-06-15 2012-01-05 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet molding apparatus and gas hydrate pellet
CN107308885A (en) * 2017-06-30 2017-11-03 临湘市高圣中药有限公司 A kind of extra granular process units
CN107308885B (en) * 2017-06-30 2019-12-03 临湘市高圣中药有限公司 A kind of extra granular process units
CN112794382A (en) * 2020-12-25 2021-05-14 中国科学院广州能源研究所 Hydrate method sea water desalination device
CN113029727A (en) * 2021-04-26 2021-06-25 常州大学 Adhesion testing device capable of forming regular spherical hydrate particles
CN114288901A (en) * 2021-11-29 2022-04-08 安徽省碧绿春生物科技有限公司 Feed stirring processing equipment
CN114288901B (en) * 2021-11-29 2022-12-27 安徽省碧绿春生物科技有限公司 Feed stirring processing equipment

Also Published As

Publication number Publication date
JP2010150496A (en) 2010-07-08
JP5319359B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5319359B2 (en) Gas hydrate pellet molding apparatus and gas hydrate pellet molding method
US20170203530A1 (en) Device and method for pressing organic material out of waste
US9713908B2 (en) Super compaction of biomass and other carbon-containing materials to high energy content fuels
US5996484A (en) Drilling fluid recovery defluidization system
JP2015033724A (en) Dewatering equipment
JP2001342473A (en) Apparatus for producing gas hydrate and apparatus for dehydrating gas hydrate
FR2739104A1 (en) PROCESS FOR DEHYDRATION OF FIBROUS MATERIALS, ESPECIALLY OF CRUDE LIGNITE, AND DEVICE FOR IMPLEMENTING THE SAID PROCESS
US5173196A (en) Dewatering and compacting equipment with high pressure pumping arrangement
EP0016271A1 (en) Process and apparatus for consolidating an aqueous coal slurry and obtaining clean water. Slugs obtained by consolidating the coal slurry
CN102249509A (en) Apparatus for sludge undertaking, flexible pipe extruding dewatering and transportation, and system thereof
US20150368862A1 (en) Raw-material supply device and biomass separation device
JP5153414B2 (en) NGH pellet pressing and dehydration
CN205705421U (en) A kind of copper bar waste material briquetting device of automatic discharge
JP5302065B2 (en) Gas hydrate pellet forming equipment
US8497402B2 (en) Process and apparatus for producing gas hydrate pellet
JP2012115880A (en) Device and method for forming gas hydrate pellet
CN210121518U (en) Colorful coating processing packaging system
JP5528921B2 (en) Gas hydrate adhesion water separator
CN106945336A (en) Device for producing particle
JP2010235868A (en) Gas hydrate pellet molding device
CN206970440U (en) Sludge deep dehydrator
JP2012000541A (en) Gas hydrate pellet molding apparatus and gas hydrate pellet
JP2009006342A (en) Dewatering and solidifying method for waste plant, and device therefor
CN210974374U (en) Municipal works sludge treatment equipment
CN210030522U (en) Starch glue extraction element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827541

Country of ref document: EP

Kind code of ref document: A1