WO2010058663A1 - Lighting device for vehicle - Google Patents

Lighting device for vehicle Download PDF

Info

Publication number
WO2010058663A1
WO2010058663A1 PCT/JP2009/067669 JP2009067669W WO2010058663A1 WO 2010058663 A1 WO2010058663 A1 WO 2010058663A1 JP 2009067669 W JP2009067669 W JP 2009067669W WO 2010058663 A1 WO2010058663 A1 WO 2010058663A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
region
light
regions
optical axis
Prior art date
Application number
PCT/JP2009/067669
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 八木
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP09827444A priority Critical patent/EP2351963B1/en
Publication of WO2010058663A1 publication Critical patent/WO2010058663A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/28Cover glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a vehicular illumination lamp using a light emitting element such as a light emitting diode as a light source, and in particular, performs light irradiation for forming a low beam light distribution pattern having horizontal and oblique cut-off lines at the upper end.
  • the present invention relates to a vehicular illumination lamp.
  • light-emitting elements such as light-emitting diodes are increasingly used as light sources for vehicular illumination lamps.
  • Japanese Patent Application Publication No. 2005-44683 includes a convex lens disposed on the optical axis extending in the front-rear direction of the lamp, and a light emitting element disposed near the rear focal point of the convex lens.
  • a so-called direct-lighting type vehicle illumination lamp that is configured to control the direct light from the beam with a convex lens.
  • a part of the direct light from the light emitting element is shielded by a shade arranged near the front of the light emitting element.
  • a light distribution pattern having a horizontal cut-off line or an oblique cut-off line is formed at the upper end.
  • An object of the present invention is to provide a vehicular illumination lamp capable of forming a low beam light distribution pattern having a horizontal and oblique cut-off line at the upper end.
  • the present invention is intended to achieve the above object by devising the arrangement of the light source and the lens configuration.
  • the vehicular illumination lamp according to the present invention is: In a vehicular illumination lamp comprising: a light source disposed in the vicinity of an optical axis extending in the front-rear direction of the lamp; and a lens disposed on the front side of the light source to deflect and emit light from the light source toward the front.
  • the light source has a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp. The lower end edge of the light emitting surface is positioned on a horizontal line orthogonal to the optical axis, and the optical axis passes over the lower end edge.
  • the lens has a first lens region substantially located at the upper part on the own lane side, a second lens region substantially located at the upper part on the opposite lane side, and a third lens located substantially below the opposite lane side with respect to the optical axis.
  • a rear surface of the first and third lens regions includes a first reference line that passes through a first corner point located at the upper corner of the light emitting surface on the own lane side and extends parallel to the optical axis.
  • a plurality of zonal prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the first reference line, After each ring-shaped prism makes the light from the first corner point incident on the ring-shaped prism in a manner to refract the light from the first reference line on the inner peripheral surface of the ring-shaped prism,
  • the incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism
  • a rear surface of the second and fourth lens regions includes a second reference line that passes through a second corner point located at a lower corner of the light emitting surface on the opposite lane side and extends in parallel with the optical axis.
  • a plurality of ring-shaped prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the second reference line, After each of the ring-shaped prisms is incident on the ring-shaped prism in a manner that refracts light from the second corner point in a direction away from the second reference line on the inner peripheral surface of the ring-shaped prism,
  • the incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism, An end region adjacent to the second lens region in the first lens region, an end region adjacent to the third lens region in the second lens region, and adjacent to the fourth lens region in the third lens region.
  • At least one end region has a substantially fan shape that enters a predetermined angle into the lens region adjacent to the end region.
  • a plurality of horizontal diffusing elements for diffusing emitted light from the general region in the horizontal direction are formed on the front surface of the general region other than the extended region in the first to fourth lens regions. It is a feature.
  • the specific shape and size of the “light source” is not particularly limited as long as it is configured as a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp.
  • the mode is not particularly limited, and for example, a light emitting chip in a light emitting element such as a light emitting diode, a light emitting surface of a light guide guided by light from a primary light source, a predetermined window on a bulb of a discharge bulb The window portion when the light-shielding paint is applied leaving the portion, etc. can be employed.
  • the above-mentioned “light emitting surface emitting light in a substantially rectangular shape” is a light emitting surface formed so that the upper edge and the lower edge thereof extend in parallel to each other, the left and right side edges are not necessarily the upper edge and the lower edge.
  • it may have a light emitting surface shape such as a parallelogram or a trapezoid.
  • extension region are not particularly limited as long as the “extension region” is formed as a substantially sector-shaped region that enters a lens region adjacent to the end region.
  • specific value of the “predetermined angle” should be appropriately set according to the shape of the light emitting surface, the inclination angle of the oblique cutoff line, and the like.
  • the horizontal diffusion of the emitted light from the general region by the “plural horizontal diffusing elements” may be diffused equally to the left and right sides, or diffused at different diffusion angles to the left and right sides. It may be.
  • the vehicular illumination lamp according to the present invention can deflect and emit light from a light source disposed in the vicinity of an optical axis extending in the front-rear direction of the lamp toward the front by a lens disposed on the front side thereof. Since the reflective Fresnel lens is formed on the rear surface of the lens, the lamp can be made compact.
  • the light source includes a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp, and the lower end edge thereof is positioned on a horizontal line orthogonal to the optical axis and the lower end edge.
  • the upper point is disposed on the optical axis, and the lens has a first lens region that is substantially located at the upper part on the own lane side and an upper part on the opposite lane side with respect to the optical axis.
  • a reflective Fresnel lens is formed on each of the rear surface and the rear surfaces of the second and fourth lens regions. Each reflective Fresnel lens is formed with reference to different predetermined reference lines. Therefore, the following effects can be obtained.
  • the rear surface of the first and third lens regions includes a first reference line that passes through the first corner point located at the upper corner of the light emitting surface on the own lane side and extends parallel to the optical axis.
  • a plurality of ring-shaped prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the first reference line, and each of the ring-shaped prisms has a first corner point. Is incident on the annular prism in a manner that refracts it in a direction away from the first reference line on the inner peripheral surface of the annular prism, and this incident light is forwarded on the outer peripheral surface of the annular prism.
  • the light emitted from the first and third lens regions is horizontally directed by a plurality of horizontal diffusion elements formed on the front surface of the general region. Diffused into The Rukoto, it is possible to form the horizontal diffusion light distribution pattern having a horizontal cutoff line on an upper end portion.
  • the rear surfaces of the second and fourth lens regions include a second reference line that passes through the second corner point located at the lower corner of the light emitting surface on the opposite lane side and extends parallel to the optical axis.
  • a plurality of ring-shaped prisms having a sawtooth cross-sectional shape along the plane are formed concentrically around the second reference line, and each of the ring-shaped prisms has a second corner point. Is incident on the annular prism in a manner that refracts it in a direction away from the second reference line on the inner peripheral surface of the annular prism, and then this incident light is forwarded on the outer peripheral surface of the annular prism.
  • the light emitted from the second and fourth lens regions is horizontally directed by a plurality of horizontal diffusion elements formed on the front surface of the general region. Diffuse to It is thereby possible to form the horizontal diffusion light distribution pattern having a horizontal cutoff line on an upper end portion.
  • the reflective Fresnel lens constituting the rear surface of the first and third lens regions is formed with reference to the first reference line, while the rear surface of the second and fourth lens regions. Is formed with reference to the second reference line, the vertical direction of the horizontal cutoff line of the horizontal diffused light distribution pattern formed by the light emitted from the first and third lens regions And the position in the vertical direction of the horizontal cut-off line of the horizontal diffusion light distribution pattern formed by the light emitted from the second and fourth lens regions can be substantially matched.
  • an end region adjacent to the second lens region in the first lens region, an end region adjacent to the third lens region in the second lens region, and a third lens At least one of the end region adjacent to the fourth lens region in the region and the end region adjacent to the first lens region in the fourth lens region is within the lens region adjacent to the end region. Since it is formed as an extended region that enters a predetermined angle, the following effects can be obtained.
  • the end region in any one of the first to fourth lens regions is formed as an extension region that enters a lens region adjacent to the end region, a rear side of the extension region is formed.
  • the reflective Fresnel lens constituting the surface is a reference line different from the original reference line (that is, the reference line for forming the reflective Fresnel lens constituting the surface on the rear side of the lens region in which the extended region is inserted) ) As a reference line.
  • the light distribution pattern formed by the light emitted from the extension region becomes a light distribution pattern protruding upward from the horizontal cut-off line, and at this time, the light distribution pattern is directed toward the own lane side at the upper end portion.
  • the light distribution pattern has an oblique cut-off line that rises obliquely.
  • a low beam light distribution pattern having horizontal and oblique cutoff lines can be formed. Moreover, this can be realized without shielding a part of the direct light from the light emitting surface with the shade as in the conventional case.
  • the first to fourth lens regions are arranged counterclockwise with respect to the optical axis when viewed from the front of the lamp, it is possible to form a light distribution pattern for the left beam with a low beam distribution. If arranged around, a right light distribution pattern for a low beam can be formed.
  • the utilization efficiency of the light source luminous flux is enhanced, and a horizontal and oblique cut-off line is provided at the upper end portion. It is possible to form a low-beam light distribution pattern having
  • the region in the vicinity of the optical axis in the lens is configured as a convex lens unit that emits light from a point on the optical axis at the lower edge of the light emitting surface as light parallel to the optical axis at least in the vertical direction
  • a light distribution pattern having a horizontal cutoff line at the upper end can be formed as a reverse projection image of the light emitting surface by the convex lens portion.
  • the vertical position of the horizontal cut-off line of this light distribution pattern can be made substantially coincident with the vertical position of the horizontal cut-off line of each horizontal diffusion light distribution pattern. Therefore, by combining this light distribution pattern with the light distribution pattern formed by the light emitted from the first to fourth lens regions, the horizontal cut-off line of the low beam light distribution pattern can be formed more clearly.
  • each lens area the area located near the end opposite to each end area is the upper end position of the light distribution pattern formed by the emitted light with respect to the other areas. Is slightly displaced upward. Therefore, by deflecting the emitted light from this region downward, the horizontal cut-off line of the low beam light distribution pattern can be formed more clearly.
  • the angle range (that is, the value of the “predetermined angle”) in which each extension region is formed is not particularly limited.
  • the reference line of the lens region to which the extension region belongs that is, the “first reference”. If the configuration is formed within an angle range of 5 to 12 ° from the vertical line or horizontal line passing through the “line” or “second reference line”), the light distribution pattern formed by the light emitted from the extended region is slanted.
  • the cut-off line can be clearly formed as an oblique cut-off line that rises at an angle of about 15 ° toward the own lane.
  • FIG. 1 is an enlarged cross-sectional view showing a part of a cross section taken along line II-II in FIG.
  • the perspective view which shows the lens 14 of the vehicle lighting device 10 with the single item Front view for explaining the positional relationship between the rear surface of the first to fourth lens regions in the lens 14 and the light emitting surface.
  • the figure which shows in perspective the low-beam light distribution pattern formed on the virtual vertical screen arrange
  • (A) is the figure which shows the said light distribution pattern for low beams as a result of having performed simulation
  • (b), (c), (d) shows three light distribution patterns which comprise the said light distribution pattern for low beams.
  • Each shown as a simulation result above The figure which shows the result of having performed the simulation in order to explain the formation process of two light distribution patterns among the said three light distribution patterns
  • FIG. 1 is a front view of a vehicular illumination lamp 10 according to the present embodiment.
  • 2 is a detailed sectional view taken along the line II-II in FIG.
  • the vehicular illumination lamp 10 includes a light emitting element 12 disposed forward in the vicinity of an optical axis Ax extending in the lamp front-rear direction, and a front side of the light emitting element 12.
  • the lens 14 includes a lens 14 that deflects and emits light from the light emitting element 12 forward, and a metal holder 16 that supports the light emitting element 12 and the lens 14.
  • the vehicular illumination lamp 10 is used in a state in which the optical axis can be adjusted with respect to a lamp body or the like (not shown).
  • the optical axis Ax is the vehicle. It extends downward by about 0.5 to 0.6 ° with respect to the front direction.
  • a light distribution pattern PL for left beam distribution as shown in FIG. 5 is formed by light irradiation from the vehicular illumination lamp 10.
  • the light emitting element 12 is a white light emitting diode, and includes four light emitting chips 12a arranged in series in the horizontal direction, and a substrate 12b that supports them.
  • each light emitting chip 12a has a square outer shape of about 1 ⁇ 1 mm, and thus the light emitting surface 12A has an outer shape of about 1 ⁇ 4 mm.
  • the lower end edge of the light emitting surface 12A is positioned on a horizontal line orthogonal to the optical axis Ax, and a point (specifically, a midpoint in the left-right direction) O on the lower end edge is placed on the optical axis Ax. It is arranged to be positioned.
  • FIG. 3 is a perspective view showing the lens 14 as a single item.
  • the lens 14 is a colorless and transparent acrylic resin disk-shaped member having an outer diameter of about ⁇ 80 mm, and has a configuration in which unevenness processing is performed on both the front and back surfaces. ing.
  • a region in the vicinity of the optical axis Ax is configured as a convex lens portion Z0, and the periphery thereof is configured as first to fourth lens regions Z1 to Z4 having a reflective Fresnel lens structure.
  • the first lens region Z1 is substantially located at the upper portion on the own lane side
  • the second lens region Z2 is substantially located at the upper portion on the opposite lane side
  • the third lens region Z3 is located on the opposite lane.
  • the fourth lens region Z4 is substantially located at the lower part on the own lane side.
  • the convex lens portion Z0 is configured as a plano-convex lens having a rear surface formed by a plane orthogonal to the optical axis Ax, and the rear focal point is light at the lower edge of the light emitting surface 12A. It is located at point O on the axis Ax. As a result, the convex lens portion Z0 forwards the light from the point O on the optical axis Ax at the lower edge of the light emitting surface 12A as light parallel to the optical axis Ax as indicated by the thick solid line in FIG. It is made to emit to.
  • FIG. 4 is a front view for explaining the positional relationship between the rear surface of the first to fourth lens regions Z1 to Z4 and the light emitting surface 12A.
  • the rear surfaces of the first and third lens regions Z1 and Z3 are positioned at the upper corner of the light emitting surface 12A on the own lane side (the upper right corner in the lamp front view).
  • a plurality of annular prisms 14p1 whose cross-sectional shape along a plane passing through the first corner point A and extending in parallel with the optical axis Ax and including the first reference line L1 is set in a sawtooth shape is defined by the first reference line L1. It is formed concentrically around the center.
  • Each of the ring-shaped prisms 14p1 causes the light from the first corner point A to be incident on the ring-shaped prism 14p1 in a manner that refracts the light from the first reference line L1 on the inner peripheral surface of the ring-shaped prism 14p1. After that, this incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p1 (see FIG. 2).
  • a second corner point B located at the lower end corner of the light emitting surface 12A on the opposite lane side (lower left corner when viewed from the front of the lamp).
  • a plurality of annular prisms 14p2 having a cross-sectional shape set along a plane including the second reference line L2 extending parallel to the optical axis Ax and having a sawtooth shape are concentrically centered on the second reference line L2. Is formed.
  • Each of the annular prisms 14p2 causes the light from the second corner point B to be incident on the annular prism 14p2 in a manner that refracts the inner circumferential surface of the annular zone prism 14p2 away from the second reference line. After that, the incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p2.
  • the first to fourth lens regions Z1 to Z4 are originally on the lane side of the light emitting surface 12A.
  • the region should be divided by a horizontal line and a vertical line (a line indicated by a two-dot chain line in the figure) passing through the third corner point C located at the lower end corner (the lower right corner in the lamp front view).
  • the end region adjacent to the second lens region Z2 in the first lens region Z1 the end region adjacent to the third lens region Z3 in the second lens region Z2, and the third lens region Z3.
  • Each of the end region adjacent to the fourth lens region Z4 and the end region adjacent to the first lens region Z1 in the fourth lens region Z4 is adjacent to the lens region Z1, Z2, Z3, Z4. It is formed as a substantially sector-shaped extension region Z1a, Z2a, Z3a, Z4a that enters a predetermined angle inside.
  • the extension region Z1a of the first lens region Z1 and the extension region Z3a of the third lens region Z3 are respectively angled from a vertical line passing through the first corner point A (that is, a vertical line passing through the first reference line L1). It is formed within the angle range of ⁇ 1 and ⁇ 3. At this time, the values of these angles ⁇ 1 and ⁇ 3 are both set to about 10 to 12 ° (for example, 11 °).
  • the extension region Z2a of the second lens region Z2 and the extension region Z4a of the fourth lens region Z4 are angled ⁇ 2, ⁇ 4 from the horizontal line passing through the second corner point B (that is, the horizontal line passing through the second reference line L2), respectively. Are formed within the angular range. At this time, the values of these angles ⁇ 2 and ⁇ 4 are both set to about 7 to 8 ° (for example, 7.5 °).
  • the first lens region Z1 is expanded from the original formation position by the angle ⁇ 1 of the extension region Z1a, while the other general region Z1o is reduced by the angle ⁇ 4 of the extension region Z4a.
  • the second lens region Z2 is expanded by the angle ⁇ 2 of the extension region Z2a from the original formation position, while the other general region Z2o is reduced by the angle ⁇ 1 of the extension region Z1a from the original formation position.
  • the third lens region Z3 extends from the original formation position by the angle ⁇ 3 of the extension region Z3a, while the other general region Z3o has an angle ⁇ 2 of the extension region Z2a.
  • the fourth lens region Z4 is expanded by an angle ⁇ 4 of the extension region Z4a from the original formation position.
  • Other general area Z4o is to be formed in a range of an angle ⁇ 3 minutes only reduced angle ⁇ 4 of the extension region Z3a.
  • the front surfaces of the extension regions Z1a to Z4a in the first to fourth lens regions Z1 to Z4 are configured by a plane orthogonal to the optical axis Ax, and the other general regions
  • the front surface of Z1o to Z4o has a structure in which a plurality of horizontal diffusing elements 14s1 and 14s2 for diffusing emitted light from the general regions Z1o to Z4o in the horizontal direction are formed.
  • the general regions Z1o to Z4o of the first to fourth lens regions Z1 to Z4 are all divided into three sector regions in the circumferential direction.
  • the fan-shaped regions Z1o1 to Z4o1 located at the center of the respective general regions Z1o to Z4o have a configuration in which a plurality of horizontal diffusion elements 14s1 are formed on a plane orthogonal to the optical axis Ax.
  • the horizontal cross-sectional shape of each of the horizontal diffusion elements 14s1 is set to a convex arc shape.
  • each of the fan-shaped areas Z1o1 to Z4o1 is configured to make the light emitted from the fan-shaped areas Z1o1 to Z4o1 diffuse substantially evenly on the left and right sides.
  • the fan-shaped regions Z1o2 to Z4o2 near the extended regions Z1a to Z4a in the general regions Z1o to Z4o have a configuration in which a plurality of horizontal diffusion elements 14s2 are formed on a plane orthogonal to the optical axis Ax.
  • Each horizontal diffusion element 14s2 has a horizontal sectional shape set to a convex arc shape, and its curvature is set to a value smaller than each horizontal diffusion element 14s1.
  • each of the fan-shaped areas Z1o2 to Z4o2 is configured so that the light emitted from the fan-shaped areas Z1o2 to Z4o2 is light that diffuses substantially evenly with a relatively small diffusion angle on the left and right sides.
  • each of the fan-shaped areas Z1o3 to Z4o3 is configured to make light emitted from the fan-shaped areas Z1o3 to Z4o3 slightly diffuse downward and substantially equally diffused to the left and right sides.
  • FIG. 5 is a perspective view showing a low beam light distribution pattern PL formed on a virtual vertical screen arranged at a position 25 m ahead of the lamp by light irradiated forward from the vehicular illumination lamp 10.
  • This low beam light distribution pattern PL is a left light distribution pattern for low beam, and has horizontal and oblique cutoff lines CL1 and CL2 at its upper end.
  • a horizontal cut-off line CL1 is formed on the opposite lane side with respect to the VV line which is a vertical line passing through HV, which is the vanishing point in the front direction of the lamp, and at an inclination of 15 ° toward the own lane side.
  • An oblique cut-off line CL2 having an angle is formed, and an elbow point E that is an intersection of both cut-off lines CL1 and CL2 is located about 0.5 to 0.6 ° below HV.
  • the low beam light distribution pattern PL is formed as a combined light distribution pattern in which three light distribution patterns PA, PB, and PC are superimposed.
  • the light distribution pattern PA is a light distribution pattern formed by light emitted from the convex lens portion Z0, and the light distribution pattern PB is obtained by light emitted from the general areas Z1o to Z4o of the first to fourth lens areas Z1 to Z4.
  • the light distribution pattern PC is a light distribution pattern formed by light emitted from the extended regions Z1a to Z4a of the first to fourth lens regions Z1 to Z4.
  • the light distribution pattern PA is formed as a horizontally long and bright light distribution pattern that extends to the left and right sides around the VV line. And the main part of horizontal cut-off line CL1 is formed by the upper end edge of this light distribution pattern PA.
  • This light distribution pattern PA is formed by reversing and projecting the image of the light emitting surface 12A by the convex lens portion Z0. At that time, since the lower end edge of the light emitting surface 12A is located on the horizontal line passing through the rear focal point of the convex lens portion Z0, the light-to-dark ratio of the upper end edge of the light distribution pattern PA becomes extremely high.
  • the main part of the offline CL1 is also clear. Note that the upper edge of the light distribution pattern PA is located about 0.5 to 0.6 ° below HV because the optical axis Ax of the vehicular illumination lamp 10 is in the vehicle front direction. This is due to extending downward by about 0.5 to 0.6 °.
  • the light distribution pattern PB is formed as a horizontally long horizontal diffusion light distribution pattern that spreads widely on the left and right sides around the VV line.
  • the horizontal cut-off line CL1 is also formed by the upper edge of the light distribution pattern PB. The formation process of the light distribution pattern PB will be described later.
  • the light distribution pattern PC is formed as an obliquely long and bright light distribution pattern that extends obliquely upward from the vicinity of the VV line toward the own lane.
  • the oblique cut-off line CL2 is formed by the upper edge of the light distribution pattern PC. The formation process of this light distribution pattern PC will also be described later.
  • a hot zone HZ which is a high light intensity region, is formed in the vicinity of the lower left of an elbow point E where the light distribution pattern PB and the light distribution pattern PC overlap.
  • FIG. 6A is a diagram showing the low beam light distribution pattern PL as a result of simulation.
  • FIGS. 7B, 7C, and 7D are diagrams showing the light distribution pattern PC, the light distribution pattern PA, and the light distribution pattern PB, respectively, as the simulation results.
  • the closed curve shown in multiple is an isoluminous curve, and shows that each light distribution pattern PL, PC, PA, PB becomes brighter from the outer peripheral edge toward the center.
  • the light distribution pattern PA is brightest in the vicinity of the center position, but the light distribution patterns PB and PC are brightest in the position closer to the elbow point E than the center position.
  • FIG. 7 and 8 are diagrams showing the results of simulations for explaining the formation process of the light distribution patterns PB and PC.
  • FIG. 7 will be described.
  • FIG. 7B eight light distribution patterns P1o to P4o and P1a to P4a shown together with the light distribution pattern PA formed by the light emitted from the convex lens portion Z0 shown in FIG.
  • the light distribution patterns P1o to P4o formed by the light emitted from the general regions Z1o to Z4o are formed so that substantially the whole is located below the horizontal cutoff line CL1. This is because the general regions Z1o and Z3o are formed with reference to the first reference line L1, and the general regions Z2o and Z4o are formed with reference to the second reference line L2.
  • each of the light distribution patterns P1a to P4a formed by the emitted light from each of the extended regions Z1a to Z4a is formed so that a part thereof protrudes upward from the horizontal cut-off line CL1.
  • the extension regions Z1a and Z3a are formed with reference to the second reference line L2 instead of the first reference line L1, and the extension regions Z2a and Z4a use the first reference line L1 instead of the second reference line L2. This is because it is formed as a standard.
  • These light distribution patterns P1a to P4a are formed so that the upper end edges thereof extend along the oblique cut-off line CL2. This is because the extension regions Z1a and Z3a are formed within the angle ranges of angles ⁇ 1 and ⁇ 3, respectively, and the extension regions Z2a and Z4a are formed within the angle ranges of angles ⁇ 2 and ⁇ 4, respectively. It is because it has been.
  • the light distribution patterns P1a and P3a formed by the light emitted from the extended regions Z1a and Z3a have their upper end edges formed by the upper end edge of the light emitting surface 12A, and end points on the elbow point E side at the upper end edges. Is formed by the first corner point A of the light emitting surface 12A.
  • the light distribution patterns P2a and P4a formed by the light emitted from the extended regions Z2a and Z4a are formed at the upper end edge by the lower end edge of the light emitting surface 12A, and the end point on the elbow point E side at the upper end edge is It is formed by the second corner point B of the light emitting surface 12A.
  • a light distribution pattern PC shown in FIG. 6B is formed as a combined light distribution pattern obtained by superimposing these four light distribution patterns P1a to P4a.
  • FIG. 8 will be described.
  • the general areas Z1o to Z4o of the first to fourth lens areas Z1 to Z4 are divided into three fan-shaped areas Z1o1 to Z4o1, Z1o2 to Z4o2, and Z1o3 to Z4o3.
  • one of the sector regions Z1o3 to Z4o3 is configured to deflect light emitted from the sector regions Z1o3 to Z4o3 slightly downward. Therefore, as shown in FIG. 8A, each of the general regions Z1o to Z4o is divided into two sector regions Z1o1 to Z4o1, Z1o2 to Z4o2, and the remaining one sector region Z1o3 to Z4o3.
  • the light distribution patterns P1oA to P4oA formed by the emitted light from the two fan-shaped regions Z1o1 to Z4o1 and Z1o2 to Z4o2 in the general regions Z1o to Z4o are shown in FIG.
  • the light distribution patterns P1o to P4o are formed as they are.
  • the light distribution patterns P1oB to P4oB formed by the light emitted from the remaining one of the sector regions Z1o3 to Z4o3 are the same as the light distribution patterns P1o to P4o shown in FIG.
  • the remaining portion is formed to be displaced slightly downward. Note that the positions of the upper end edges of the light distribution patterns P1oB to P4oB before being displaced downward in this way are indicated by broken lines in FIG. 8B.
  • the portions of the light distribution patterns P1oB to P4oB that slightly protrude upward from the horizontal cutoff line CL1 are also portions of the light distribution patterns P1oA to P4oA.
  • the upper end edge is substantially positioned on the horizontal cut-off line CL1.
  • each of the light distribution patterns P1oA to P4oA and each of the light distribution patterns P1oB to P4oB is diffused to the left and right sides by a plurality of horizontal diffusion elements 14s1 and 14s2, respectively, thereby forming eight horizontal diffusion light distribution patterns.
  • a light distribution pattern PB shown in FIG. 6D is formed as a combined light distribution pattern in which these horizontal diffusion light distribution patterns are superimposed.
  • each of the light distribution patterns P1oA to P4oA shown in FIG. 8B is a horizontal line formed with a relatively large diffusion angle by the light emitted from each of the fan-shaped regions Z1o1 to Z4o1 where the plurality of horizontal diffusion elements 14s1 are formed.
  • a combined light distribution pattern in which a diffusion light distribution pattern and a horizontal diffusion light distribution pattern formed with a relatively small diffusion angle by light emitted from each of the sector regions Z1o2 to Z4o2 in which a plurality of horizontal diffusion elements 14s2 are formed are superimposed. Therefore, a horizontal diffusion light distribution pattern with small light distribution unevenness is obtained.
  • the horizontal diffused light distribution pattern formed by the light emitted from each of the fan-shaped areas Z1o2 to Z4o2 located near the extended areas Z1a to Z4a in each of the general areas Z1o to Z4o is formed based on a horizontally long light source image. Therefore, by setting this to a relatively small diffusion angle, the upper edge becomes a relatively bright light distribution pattern along the horizontal cut-off line CL1.
  • the vehicular illumination lamp 10 arranges light from the light emitting surface 12A of the light emitting element 12 arranged in the vicinity of the optical axis Ax extending in the lamp front-rear direction on the front side thereof.
  • the lens 14 is configured to deflect and emit the light forward.
  • the rear surface of the lens 14 is configured as a reflection type Fresnel lens, the lamp can be configured compactly.
  • the light source is composed of the light emitting surface 12A that emits light in a substantially rectangular shape when viewed from the front of the lamp, and the lower end edge thereof is positioned on a horizontal line orthogonal to the optical axis Ax.
  • the first lens region Z1 is disposed such that the point O on the lower edge is positioned on the optical axis Ax, and the lens 14 is substantially positioned on the upper side of the own lane with respect to the optical axis Ax.
  • the first and third lens regions Z1 and Z3 are rear surfaces of the first and third lens regions Z1 and Z3 and the second and fourth lens regions Z2 and Z4 are rear surfaces with reference to different reference lines. Reflection formed Because it is constituted by a Fresnel lens, it is possible to obtain the following effects.
  • the rear surfaces of the first and third lens regions Z1 and Z3 pass through the first corner point A located at the upper corner of the light emitting surface 12A on the own lane side and extend in parallel with the optical axis Ax.
  • a plurality of annular zone prisms 14p1 whose cross-sectional shape along the plane including the first reference line L1 is set in a sawtooth shape are formed concentrically around the first reference line L1, and each of these rings
  • the band-shaped prism 14p1 causes the light from the first corner point A to be refracted in a direction away from the first reference line L1 on the inner peripheral surface of the ring-shaped prism 14p1, and then incident on the ring-shaped prism 14p1.
  • this incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p1, it is emitted from the first and third lens regions Z1 and Z3. Is diffused in the horizontal direction by a plurality of horizontal diffusion elements 14s1, 14s2 respectively formed on the front surfaces of the general regions Z1o, Z3o, thereby obtaining a horizontal diffusion light distribution pattern having a horizontal cut-off line at the upper end. It can be formed with substantially the same shape as the light distribution pattern PB and approximately half the brightness.
  • the rear surfaces of the second and fourth lens regions Z2 and Z4 pass through the second corner point B located at the lower corner of the light emitting surface 12A on the opposite lane side and extend in parallel with the optical axis Ax.
  • a plurality of annular zone prisms 14p2 having a sawtooth cross-sectional shape along a plane including the second reference line L2 are formed concentrically around the second reference line L2, and each of these rings
  • the band-shaped prism 14p2 makes the light from the second corner point B incident on the ring-shaped prism 14p2 in a manner that refracts light in a direction away from the second reference line L2 on the inner peripheral surface of the ring-shaped prism 14p2.
  • the horizontal diffusion light distribution pattern having a horizontal cut-off line at the upper end portion is distributed by horizontally diffusing by a plurality of horizontal diffusion elements 14s1 and 14s2 formed on the front surfaces of the general regions Z2o and Z4o, respectively. It can be formed with substantially the same shape as the light pattern PB and approximately half the brightness.
  • the reflection type Fresnel lens constituting the surface on the rear side of the first and third lens regions Z1 and Z3 is formed with reference to the first reference line L1, while the second and fourth lens regions are formed. Since the reflection type Fresnel lens constituting the rear surface of Z2 and Z4 is formed with reference to the second reference line L2, it is formed by the emitted light from the first and third lens regions Z1 and Z3.
  • the position of the horizontal cutoff line of the horizontal diffusion light distribution pattern and the position of the horizontal cutoff line of the horizontal diffusion light distribution pattern formed by the light emitted from the second and fourth lens regions Z2 and Z4 are also substantially the same as the horizontal cutoff line CL1. Can be matched.
  • Each of the partial region, the end region adjacent to the fourth lens region Z4 in the third lens region Z3, and the end region adjacent to the first lens region Z1 in the fourth lens region Z4 is adjacent to the end region. Since the extended regions Z1a, Z2a, Z3a, and Z4a that enter the lens regions Z2, Z3, Z4, and Z1 at a predetermined angle are formed, the following operational effects can be obtained.
  • the end regions in the lens regions Z1, Z2, Z3, and Z4 are formed as extended regions Z1a, Z2a, Z3a, and Z4a that enter the lens regions Z2, Z3, Z4, and Z1 adjacent to the end regions by a predetermined angle.
  • the reflective Fresnel lens constituting the rear surface of the extension regions Z1a and Z3a has a second reference line L2 different from the original first reference line L1 (that is, each of these extension regions Z1a and Z3a has Reflection that forms the back surface of the extended regions Z2a and Z4a, and is formed using the reference line when forming the reflection type Fresnel lens on the back surface of each of the lens regions Z2 and Z4 that enter.
  • the type Fresnel lens has a first reference line L1 that is different from the original second reference line L2 (that is, each lens region in which the extended regions Z2a and Z4a are inserted). 3, the reference line for forming the reflection type Fresnel lenses constituting the surface of the rear side of Z1) will be formed as a reference line.
  • the light distribution patterns P1a to P4a formed by the light emitted from each of the extended regions Z1a to Z4a become light distribution patterns protruding upward from the horizontal cut-off line CL1, and at this time, the light distribution patterns P1a to P1a to P4a is a light distribution pattern having an oblique cutoff line CL2 that rises obliquely toward the own lane at the upper end.
  • a low beam light distribution pattern PL having the oblique cut-off lines CL1 and CL2 can be formed.
  • the convex lens portion that emits the light from the point O on the optical axis Ax at the lower end edge of the light emitting surface 12A as the light parallel to the optical axis Ax in the region near the optical axis Ax in the optical axis Ax. Since it is configured as Z0, a light distribution pattern PA having a clear horizontal cutoff line at the upper end can be formed as an inverted projection image of the light emitting surface 12A by the convex lens portion Z0.
  • this light distribution pattern PA with the light distribution patterns PB and PC formed by the light emitted from the first to fourth lens regions Z1 to Z4, the horizontal cut-off line CL1 of the low beam light distribution pattern PL
  • the main part can be formed more clearly, and the hot zone HZ can be made brighter.
  • each of the fan-shaped regions Z1o3 to Z4o3 located near the end of each of the lens regions Z1 to Z4 in the general regions Z1o to Z4o opposite to the extended regions Z1a to Z4a, Since the light emitted from the fan-shaped regions Z1o3 to Z4o3 is formed to deflect downward, the following operational effects can be obtained.
  • each of the lens regions Z1 to Z4 is a plane orthogonal to the optical axis Ax
  • the general regions Z1o to Z4o of the lens regions Z1 to Z4 are separated from the fan-shaped regions Z1o3 to Z4o3.
  • the light distribution patterns P1oB to P4oB formed by the emitted light are the upper ends of the light distribution patterns P1o1 to P4o1 and P1o2 to P4o2 formed by the emitted light from the other fan-shaped regions Z1o1 to Z4o1 and Z1o2 to Z4o2.
  • the position is slightly displaced upward. Therefore, if the emitted light from each of the sector regions Z1o3 to Z4o3 is deflected downward, the horizontal cut-off line CL1 of the low beam light distribution pattern PL can be formed more clearly.
  • the extension regions Z1a and Z3a of the first and third lens regions Z1 and Z3 are formed within an angle range of about 10 to 12 ° from the vertical line passing through the first reference line L1
  • the extension regions Z2a and Z4a of the second and fourth lens regions Z2 and Z4 are formed within an angle range of about 7 to 8 ° from the horizontal line passing through the second reference line L2
  • each of these extension regions Z1a The upper edge of each of the light distribution patterns P1a to P4a formed by the light emitted from Z4a can be formed as an oblique cut-off line that rises at an angle of about 15 ° toward the own lane, thereby making the oblique cut-off line CL2 clear. Can be formed.
  • the light emitting element 12 included in the vehicular illumination lamp 10 of the above embodiment has a substantially rectangular shape with a light emitting surface 12A of about 1 ⁇ 4 mm, but the outer shape of the light emitting element used in the vehicular illumination lamp 10 is this. Not limited to.
  • the front surface of the extension regions Z1a to Z4a in the first to fourth lens regions Z1 to Z4 has been described as being configured by a plane orthogonal to the optical axis Ax.
  • a plurality of diffusion deflecting elements for diffusing or deflecting light emitted from the extension regions Z1a to Z4a in the oblique direction along the oblique cut-off line CL2 may be formed on the surface.
  • extension regions Z1a to Z4a are formed in the first to fourth lens regions Z1 to Z4, respectively, but any one of these four extension regions Z1a to Z4a is selected. It is also possible to have a configuration in which only two, three, or three are formed.
  • the convex lens unit Z0 has been described as being configured as a normal plano-convex lens.
  • the cross-sectional shape along the horizontal plane of the convex lens unit Z0 is appropriately changed so that the convex lens unit Z0 It is also possible to diffuse the emitted light in the horizontal direction.
  • a configuration in which the point is located on the optical axis Ax is also possible.
  • the front surfaces of the fan-shaped areas Z1o3 to Z4o3 in the general areas Z1o to Z4o of the lens areas Z1 to Z4 are horizontal in a state where the emitted light from the fan-shaped areas Z1o3 to Z4o3 is deflected downward.
  • the light emitted from the fan-shaped regions Z1o3 to Z4o3 should be diffused in the horizontal direction without being deflected downward. Is also possible.
  • the region near the optical axis Ax in the lens 14 is described as being configured by the convex lens portion Z0.
  • the first to fourth lens regions Z1 to Z4 are extended to the vicinity of the optical axis Ax. It is also possible to adopt a configuration.
  • the light distribution pattern PL for the left light distribution is formed by light irradiation from the vehicular illumination lamp 10, but the first to fourth lenses are used as in the above embodiment. If the first to fourth lens regions Z1 to Z4 are arranged clockwise with respect to the optical axis Ax instead of the configuration in which the regions Z1 to Z4 are arranged counterclockwise with respect to the optical axis Ax, A light distribution pattern for low beam distribution can be formed.
  • SYMBOLS 10 Vehicle illumination lamp 12 Light emitting element 12A Light emitting surface 12a Light emitting chip 12b Substrate 14 Lens 14p1, 14p2 Ring-shaped prism 14s1, 14s2 Horizontal diffuser 16 Holder A A 1st corner point Ax Optical axis B 2nd corner point C 3rd Corner point CL1 Horizontal cut-off line CL2 Diagonal cut-off line E Elbow point HZ Hot zone L1 First reference line L2 Second reference line O Point on the optical axis at the lower edge of the light emitting surface PA, PB, PC Light distribution pattern PL For low beam Light distribution pattern P1a, P1o, P1oA, P1oB, P2a, P2o, P2oA, P2oB, P3a, P3o, P3oA, P3oB, P4a, P4o, P4oA, P4oB Light distribution pattern Z0 Convex lens part Z1 First lens area Z1 , Z4a Extension region Z1

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

A direct illumination lighting device (10) for a vehicle, using a substantially rectangular light emitting surface (12A) as the light source.  The lower edge of the light emitting surface (12A) is positioned on a horizontal line normal to the light axis (Ax), and the point (O) on the lower edge is positioned on the light axis (Ax).  A reflective Fresnel lens is formed on the rear surface of a lens (14) in such a manner that first and third lens regions (Z1, Z3) of the lens are formed with reference to a first reference line (L1) and the second and fourth lens regions (Z2, Z4) of the lens are formed with reference to a second reference line (L2).  This forms a horizontal cutoff line.  Also, an end region of each of the lens region (Z1-Z4) is formed as an extended region (Z1a-Z4a) entering the associated adjacent lens region by a predetermined angle, and this forms an oblique cutoff line.

Description

車両用照明灯具Lighting fixtures for vehicles
 本願発明は、発光ダイオード等の発光素子を光源とする車両用照明灯具に関するものであり、特に、上端部に水平および斜めカットオフラインを有するロービーム用配光パターンを形成するための光照射を行うように構成された車両用照明灯具に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicular illumination lamp using a light emitting element such as a light emitting diode as a light source, and in particular, performs light irradiation for forming a low beam light distribution pattern having horizontal and oblique cut-off lines at the upper end. The present invention relates to a vehicular illumination lamp.
 近年、車両用照明灯具の光源として、発光ダイオード等の発光素子が多く用いられるようになってきている。 In recent years, light-emitting elements such as light-emitting diodes are increasingly used as light sources for vehicular illumination lamps.
 例えば日本国特許出願公開第2005-44683号公報には、灯具前後方向に延びる光軸上に配置された凸レンズと、この凸レンズの後側焦点近傍に配置された発光素子とを備え、この発光素子からの直射光を凸レンズで偏向制御するように構成された、いわゆる直射型の車両用照明灯具が記載されている。 For example, Japanese Patent Application Publication No. 2005-44683 includes a convex lens disposed on the optical axis extending in the front-rear direction of the lamp, and a light emitting element disposed near the rear focal point of the convex lens. There is described a so-called direct-lighting type vehicle illumination lamp that is configured to control the direct light from the beam with a convex lens.
 そして、この日本国特許出願公開第2005-44683号公報に記載された車両用照明灯具においては、発光素子の前方近傍に配置されたシェードにより、発光素子からの直射光の一部を遮蔽して、上端部に水平カットオフラインあるいは斜めカットオフラインを有する配光パターンを形成するようになっている。 In the vehicular illumination lamp described in Japanese Patent Application Publication No. 2005-44683, a part of the direct light from the light emitting element is shielded by a shade arranged near the front of the light emitting element. A light distribution pattern having a horizontal cut-off line or an oblique cut-off line is formed at the upper end.
日本国特許出願公開第2005-44683号公報Japanese Patent Application Publication No. 2005-44683
 上記の日本国特許出願公開第2005-44683号公報に記載された車両用照明灯具の構成を採用することにより、灯具の小型化を図ることが可能となる。また、この車両用照明灯具においては、シェードの上端縁の形状を適当に設定することにより、上端部に水平および斜めカットオフラインを有するロービーム用配光パターンを形成することも可能となる。 By adopting the configuration of the vehicular illumination lamp described in the above Japanese Patent Application Publication No. 2005-44683, it is possible to reduce the size of the lamp. In this vehicular illumination lamp, it is also possible to form a low beam light distribution pattern having horizontal and oblique cut-off lines at the upper end portion by appropriately setting the shape of the upper end edge of the shade.
 しかしながら、上記の日本国特許出願公開第2005-44683号公報に記載された車両用照明灯具においては、そのシェードにより発光素子からの直射光の一部が遮蔽されてしまうため、光源光束を有効に利用することができなかった。 However, in the vehicular illumination lamp described in the above Japanese Patent Application Publication No. 2005-44683, a part of the direct light from the light emitting element is shielded by the shade, so that the light source luminous flux is effectively used. Could not be used.
 本願発明は、このような事情に鑑みてなされたものであって、略矩形状の発光面を光源とする直射型の車両用照明灯具において、その光源光束の利用効率を高めるようにした上で、上端部に水平および斜めカットオフラインを有するロービーム用配光パターンを形成することができる車両用照明灯具を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and in a direct-type vehicle illumination lamp using a substantially rectangular light-emitting surface as a light source, the use efficiency of the light source luminous flux is increased. An object of the present invention is to provide a vehicular illumination lamp capable of forming a low beam light distribution pattern having a horizontal and oblique cut-off line at the upper end.
 本願発明は、光源の配置およびレンズの構成に工夫を施すことにより、上記目的達成を図るようにしたものである。 The present invention is intended to achieve the above object by devising the arrangement of the light source and the lens configuration.
 すなわち、本願発明に係る車両用照明灯具は、
 灯具前後方向に延びる光軸の近傍に配置された光源と、この光源の前方側に配置され、該光源からの光を前方へ向けて偏向出射させるレンズと、を備える車両用照明灯具において、
 上記光源は、灯具正面視において略矩形状に発光する発光面を有し、この発光面の下端縁を上記光軸と直交する水平線上に位置させるとともに該下端縁上を上記光軸が通るようにして配置されており、
 上記レンズが、上記光軸に関して、自車線側の上部に略位置する第1レンズ領域と、対向車線側の上部に略位置する第2レンズ領域と、対向車線側の下部に略位置する第3レンズ領域と、自車線側の下部に略位置する第4レンズ領域とを備えており、
 上記第1および第3レンズ領域の後方側の表面に、上記発光面における自車線側の上端隅角に位置する第1隅角点を通りかつ上記光軸と平行に延びる第1基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、上記第1基準線を中心にして同心円状に形成されており、
 これら各輪帯状プリズムが、上記第1隅角点からの光を、該輪帯状プリズムの内周面において上記第1基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されており、
 上記第2および第4レンズ領域の後方側の表面に、上記発光面における対向車線側の下端隅角に位置する第2隅角点を通りかつ上記光軸と平行に延びる第2基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、上記第2基準線を中心にして同心円状に形成されており、
 これら各輪帯状プリズムが、上記第2隅角点からの光を、該輪帯状プリズムの内周面において上記第2基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されており、
 上記第1レンズ領域における上記第2レンズ領域と隣接する端部領域、上記第2レンズ領域における上記第3レンズ領域と隣接する端部領域、上記第3レンズ領域における上記第4レンズ領域と隣接する端部領域、および上記第4レンズ領域における上記第1レンズ領域と隣接する端部領域のうち、少なくとも1つの端部領域が、該端部領域と隣接するレンズ領域内に所定角度入り込む略扇形の延長領域として形成されており、
 上記第1~第4レンズ領域における上記延長領域以外の一般領域における前方側の表面には、該一般領域からの出射光を水平方向に拡散させる複数の水平拡散素子が形成されている、ことを特徴とするものである。
That is, the vehicular illumination lamp according to the present invention is:
In a vehicular illumination lamp comprising: a light source disposed in the vicinity of an optical axis extending in the front-rear direction of the lamp; and a lens disposed on the front side of the light source to deflect and emit light from the light source toward the front.
The light source has a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp. The lower end edge of the light emitting surface is positioned on a horizontal line orthogonal to the optical axis, and the optical axis passes over the lower end edge. Is arranged, and
The lens has a first lens region substantially located at the upper part on the own lane side, a second lens region substantially located at the upper part on the opposite lane side, and a third lens located substantially below the opposite lane side with respect to the optical axis. A lens region, and a fourth lens region substantially located at a lower portion on the own lane side,
A rear surface of the first and third lens regions includes a first reference line that passes through a first corner point located at the upper corner of the light emitting surface on the own lane side and extends parallel to the optical axis. A plurality of zonal prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the first reference line,
After each ring-shaped prism makes the light from the first corner point incident on the ring-shaped prism in a manner to refract the light from the first reference line on the inner peripheral surface of the ring-shaped prism, The incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism,
A rear surface of the second and fourth lens regions includes a second reference line that passes through a second corner point located at a lower corner of the light emitting surface on the opposite lane side and extends in parallel with the optical axis. A plurality of ring-shaped prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the second reference line,
After each of the ring-shaped prisms is incident on the ring-shaped prism in a manner that refracts light from the second corner point in a direction away from the second reference line on the inner peripheral surface of the ring-shaped prism, The incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism,
An end region adjacent to the second lens region in the first lens region, an end region adjacent to the third lens region in the second lens region, and adjacent to the fourth lens region in the third lens region. Of the end region and the end region adjacent to the first lens region in the fourth lens region, at least one end region has a substantially fan shape that enters a predetermined angle into the lens region adjacent to the end region. Formed as an extension region,
A plurality of horizontal diffusing elements for diffusing emitted light from the general region in the horizontal direction are formed on the front surface of the general region other than the extended region in the first to fourth lens regions. It is a feature.
 なお、上記「光源」は、灯具正面視において略矩形状に発光する発光面として構成されたものであれば、その具体的な形状や大きさは特に限定されるものではなく、また、その発光態様についても特に限定されるものではなく、例えば、発光ダイオード等の発光素子における発光チップ、1次光源からの光が導かれた導光体の光出射面、放電バルブの管球に所定の窓部を残して遮光塗料を塗布した場合におけるその窓部、等が採用可能である。  Note that the specific shape and size of the “light source” is not particularly limited as long as it is configured as a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp. The mode is not particularly limited, and for example, a light emitting chip in a light emitting element such as a light emitting diode, a light emitting surface of a light guide guided by light from a primary light source, a predetermined window on a bulb of a discharge bulb The window portion when the light-shielding paint is applied leaving the portion, etc. can be employed. *
 また、上記「略矩形状に発光する発光面」は、その上端縁および下端縁が互いに平行に延びるように形成された発光面であれば、その左右両側縁については、必ずしも上端縁および下端縁に対して垂直に延びていなくてもよく、例えば、平行四辺形あるいは台形等の発光面形状を有するものであってもよい。 Further, if the above-mentioned “light emitting surface emitting light in a substantially rectangular shape” is a light emitting surface formed so that the upper edge and the lower edge thereof extend in parallel to each other, the left and right side edges are not necessarily the upper edge and the lower edge. For example, it may have a light emitting surface shape such as a parallelogram or a trapezoid.
 また、上記「延長領域」は、当該端部領域と隣接するレンズ領域内に所定角度入り込む略扇形の領域として形成されていれば、その具体的な形状や大きさは特に限定されるものではない。また、上記「所定角度」の具体的な値は、発光面の形状や斜めカットオフラインの傾斜角度等に応じて適宜設定されるべきものである。 In addition, the specific shape and size of the “extension region” are not particularly limited as long as the “extension region” is formed as a substantially sector-shaped region that enters a lens region adjacent to the end region. . Further, the specific value of the “predetermined angle” should be appropriately set according to the shape of the light emitting surface, the inclination angle of the oblique cutoff line, and the like.
 また、上記「複数の水平拡散素子」による一般領域からの出射光の水平方向の拡散は、左右両側へ均等に拡散させるものであってもよいし、左右両側へ互いに異なる拡散角度で拡散させるものであってもよい。 Further, the horizontal diffusion of the emitted light from the general region by the “plural horizontal diffusing elements” may be diffused equally to the left and right sides, or diffused at different diffusion angles to the left and right sides. It may be.
 本願発明に係る車両用照明灯具は、灯具前後方向に延びる光軸の近傍に配置された光源からの光を、その前方側に配置されたレンズにより、前方へ向けて偏向出射させることができるが、このレンズの後方側の表面には反射型フレネルレンズが形成されているので、灯具をコンパクトに構成することができる。 The vehicular illumination lamp according to the present invention can deflect and emit light from a light source disposed in the vicinity of an optical axis extending in the front-rear direction of the lamp toward the front by a lens disposed on the front side thereof. Since the reflective Fresnel lens is formed on the rear surface of the lens, the lamp can be made compact.
 また、本願発明に係る車両用照明灯具においては、その光源が、灯具正面視において略矩形状に発光する発光面からなり、その下端縁を光軸と直交する水平線上に位置させるとともにこの下端縁上の点を光軸上に位置させるようにして配置されており、また、そのレンズが、光軸に関して、自車線側の上部に略位置する第1レンズ領域と、対向車線側の上部に略位置する第2レンズ領域と、対向車線側の下部に略位置する第3レンズ領域と、自車線側の下部に略位置する第4レンズ領域とを備えており、その第1および第3レンズ領域の後方側の表面と、その第2および第4レンズ領域の後方側の表面とには、それぞれ反射型フレネルレンズが形成されている。そして、それぞれの反射型フレネルレンズは、互いに異なる所定の基準線を基準にして形成されている。したがって、次のような作用効果を得ることができる。 In the vehicular illumination lamp according to the present invention, the light source includes a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp, and the lower end edge thereof is positioned on a horizontal line orthogonal to the optical axis and the lower end edge. The upper point is disposed on the optical axis, and the lens has a first lens region that is substantially located at the upper part on the own lane side and an upper part on the opposite lane side with respect to the optical axis. A second lens region that is positioned; a third lens region that is substantially located at the lower portion on the opposite lane side; and a fourth lens region that is substantially located at the lower portion on the own lane side; the first and third lens regions A reflective Fresnel lens is formed on each of the rear surface and the rear surfaces of the second and fourth lens regions. Each reflective Fresnel lens is formed with reference to different predetermined reference lines. Therefore, the following effects can be obtained.
 すなわち、第1および第3レンズ領域の後方側の表面には、発光面における自車線側の上端隅角に位置する第1隅角点を通りかつ光軸と平行に延びる第1基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、第1基準線を中心にして同心円状に形成されており、そして、これら各輪帯状プリズムは、第1隅角点からの光を、該輪帯状プリズムの内周面において第1基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されているので、これら第1および第3レンズ領域からの出射光を、その一般領域の前方側の表面に形成された複数の水平拡散素子によって水平方向に拡散させることにより、上端部に水平カットオフラインを有する水平拡散配光パターンを形成することができる。 That is, the rear surface of the first and third lens regions includes a first reference line that passes through the first corner point located at the upper corner of the light emitting surface on the own lane side and extends parallel to the optical axis. A plurality of ring-shaped prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the first reference line, and each of the ring-shaped prisms has a first corner point. Is incident on the annular prism in a manner that refracts it in a direction away from the first reference line on the inner peripheral surface of the annular prism, and this incident light is forwarded on the outer peripheral surface of the annular prism. Since it is configured as a reflection type Fresnel lens that totally reflects the light, the light emitted from the first and third lens regions is horizontally directed by a plurality of horizontal diffusion elements formed on the front surface of the general region. Diffused into The Rukoto, it is possible to form the horizontal diffusion light distribution pattern having a horizontal cutoff line on an upper end portion.
 一方、第2および第4レンズ領域の後方側の表面には、発光面における対向車線側の下端隅角に位置する第2隅角点を通りかつ光軸と平行に延びる第2基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、第2基準線を中心にして同心円状に形成されており、そして、これら各輪帯状プリズムは、第2隅角点からの光を、該輪帯状プリズムの内周面において第2基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されているので、これら第2および第4レンズ領域からの出射光を、その一般領域の前方側の表面に形成された複数の水平拡散素子によって水平方向に拡散させることにより、上端部に水平カットオフラインを有する水平拡散配光パターンを形成することができる。 On the other hand, the rear surfaces of the second and fourth lens regions include a second reference line that passes through the second corner point located at the lower corner of the light emitting surface on the opposite lane side and extends parallel to the optical axis. A plurality of ring-shaped prisms having a sawtooth cross-sectional shape along the plane are formed concentrically around the second reference line, and each of the ring-shaped prisms has a second corner point. Is incident on the annular prism in a manner that refracts it in a direction away from the second reference line on the inner peripheral surface of the annular prism, and then this incident light is forwarded on the outer peripheral surface of the annular prism. Since it is configured as a reflection type Fresnel lens that totally reflects the light, the light emitted from the second and fourth lens regions is horizontally directed by a plurality of horizontal diffusion elements formed on the front surface of the general region. Diffuse to It is thereby possible to form the horizontal diffusion light distribution pattern having a horizontal cutoff line on an upper end portion.
 また、第1および第3レンズ領域の後方側の表面を構成する反射型フレネルレンズは、第1基準線を基準にして形成されており、一方、第2および第4レンズ領域の後方側の表面を構成する反射型フレネルレンズは、第2基準線を基準にして形成されているので、第1および第3レンズ領域からの出射光により形成される水平拡散配光パターンの水平カットオフラインの上下方向の位置と、第2および第4レンズ領域からの出射光により形成される水平拡散配光パターンの水平カットオフラインの上下方向の位置とを略一致させることができる。 The reflective Fresnel lens constituting the rear surface of the first and third lens regions is formed with reference to the first reference line, while the rear surface of the second and fourth lens regions. Is formed with reference to the second reference line, the vertical direction of the horizontal cutoff line of the horizontal diffused light distribution pattern formed by the light emitted from the first and third lens regions And the position in the vertical direction of the horizontal cut-off line of the horizontal diffusion light distribution pattern formed by the light emitted from the second and fourth lens regions can be substantially matched.
 その上で、本願発明に係る車両用照明灯具においては、第1レンズ領域における第2レンズ領域と隣接する端部領域、第2レンズ領域における第3レンズ領域と隣接する端部領域、第3レンズ領域における第4レンズ領域と隣接する端部領域、および第4レンズ領域における第1レンズ領域と隣接する端部領域のうち、少なくとも1つの端部領域が、該端部領域と隣接するレンズ領域内に所定角度入り込む延長領域として形成されているので、次のような作用効果を得ることができる。 In addition, in the vehicular illumination lamp according to the present invention, an end region adjacent to the second lens region in the first lens region, an end region adjacent to the third lens region in the second lens region, and a third lens At least one of the end region adjacent to the fourth lens region in the region and the end region adjacent to the first lens region in the fourth lens region is within the lens region adjacent to the end region. Since it is formed as an extended region that enters a predetermined angle, the following effects can be obtained.
 すなわち、第1~第4レンズ領域のうちのいずれかにおける端部領域を、該端部領域と隣接するレンズ領域内に所定角度入り込む延長領域として形成した場合には、この延長領域の後方側の表面を構成する反射型フレネルレンズは、本来の基準線とは異なる基準線(すなわち、この延長領域が入り込んでいるレンズ領域の後方側の表面を構成する反射型フレネルレンズを形成する際の基準線)を基準線として形成されることとなる。このため、この延長領域からの出射光により形成される配光パターンは、上記水平カットオフラインから上方へ突出する配光パターンとなり、その際、この配光パターンは、上端部に自車線側へ向けて斜めに立ち上がる斜めカットオフラインを有する配光パターンとなる。 That is, when the end region in any one of the first to fourth lens regions is formed as an extension region that enters a lens region adjacent to the end region, a rear side of the extension region is formed. The reflective Fresnel lens constituting the surface is a reference line different from the original reference line (that is, the reference line for forming the reflective Fresnel lens constituting the surface on the rear side of the lens region in which the extended region is inserted) ) As a reference line. For this reason, the light distribution pattern formed by the light emitted from the extension region becomes a light distribution pattern protruding upward from the horizontal cut-off line, and at this time, the light distribution pattern is directed toward the own lane side at the upper end portion. The light distribution pattern has an oblique cut-off line that rises obliquely.
 したがって、このようにして形成された少なくとも1つの延長領域からの出射光により形成される配光パターンと、それ以外の一般領域からの出射光により形成される配光パターンとを合成することにより、水平および斜めカットオフラインを有するロービーム用配光パターンを形成することができる。しかもこれを、従来のように、発光面からの直射光の一部をシェードにより遮蔽してしまうことなく、実現することができる。 Therefore, by synthesizing the light distribution pattern formed by the emitted light from the at least one extension region thus formed and the light distribution pattern formed by the emitted light from the other general regions, A low beam light distribution pattern having horizontal and oblique cutoff lines can be formed. Moreover, this can be realized without shielding a part of the direct light from the light emitting surface with the shade as in the conventional case.
 その際、灯具正面視において、第1~第4レンズ領域を、光軸に関して反時計回りに配置すれば、左配光のロービーム用配光パターンを形成することができ、一方、光軸に関して時計回りに配置すれば、右配光のロービーム用配光パターンを形成することができる。 At this time, if the first to fourth lens regions are arranged counterclockwise with respect to the optical axis when viewed from the front of the lamp, it is possible to form a light distribution pattern for the left beam with a low beam distribution. If arranged around, a right light distribution pattern for a low beam can be formed.
 このように本願発明によれば、略矩形状の発光面を光源とする直射型の車両用照明灯具において、その光源光束の利用効率を高めるようにした上で、上端部に水平および斜めカットオフラインを有するロービーム用配光パターンを形成することができる。 As described above, according to the present invention, in a direct-type vehicle illumination lamp using a substantially rectangular light-emitting surface as a light source, the utilization efficiency of the light source luminous flux is enhanced, and a horizontal and oblique cut-off line is provided at the upper end portion. It is possible to form a low-beam light distribution pattern having
 上記構成において、レンズにおける光軸の近傍領域を、発光面の下端縁における光軸上の点からの光を、少なくとも上下方向に関して光軸と平行な光として出射させる凸レンズ部として構成すれば、この凸レンズ部による発光面の反転投影像として、上端部に水平カットオフラインを有する配光パターンを形成することができる。その際、この配光パターンの水平カットオフラインの上下方向の位置を、上記各水平拡散配光パターンの水平カットオフラインの上下方向の位置と略一致させることができる。したがって、この配光パターンを第1~第4レンズ領域からの出射光により形成される配光パターンと合成することにより、ロービーム用配光パターンの水平カットオフラインをより鮮明に形成することができる。 In the above configuration, if the region in the vicinity of the optical axis in the lens is configured as a convex lens unit that emits light from a point on the optical axis at the lower edge of the light emitting surface as light parallel to the optical axis at least in the vertical direction, A light distribution pattern having a horizontal cutoff line at the upper end can be formed as a reverse projection image of the light emitting surface by the convex lens portion. At this time, the vertical position of the horizontal cut-off line of this light distribution pattern can be made substantially coincident with the vertical position of the horizontal cut-off line of each horizontal diffusion light distribution pattern. Therefore, by combining this light distribution pattern with the light distribution pattern formed by the light emitted from the first to fourth lens regions, the horizontal cut-off line of the low beam light distribution pattern can be formed more clearly.
 上記構成において、各レンズ領域の一般領域における各端部領域とは反対側の端部寄りに位置する領域の前方側の表面を、該領域からの出射光を下方へ偏向させるように形成すれば、次のような作用効果を得ることができる。 In the above configuration, if the front surface of the region located near the end opposite to each end region in the general region of each lens region is formed so as to deflect the emitted light from the region downward The following effects can be obtained.
 すなわち、各レンズ領域の一般領域において、その各端部領域とは反対側の端部寄りに位置する領域は、それ以外の領域に対して、その出射光により形成される配光パターンの上端位置がやや上方に変位したものとなる。そこで、この領域からの出射光を下方へ偏向させることにより、ロービーム用配光パターンの水平カットオフラインをより一層鮮明に形成することができる。 That is, in the general area of each lens area, the area located near the end opposite to each end area is the upper end position of the light distribution pattern formed by the emitted light with respect to the other areas. Is slightly displaced upward. Therefore, by deflecting the emitted light from this region downward, the horizontal cut-off line of the low beam light distribution pattern can be formed more clearly.
 上記各延長領域が形成される角度範囲(すなわち上記「所定角度」の値)が特に限定されないことは上述したとおりであるが、該延長領域が属するレンズ領域の基準線(すなわち上記「第1基準線」または「第2基準線」)を通る鉛直線または水平線から5~12°の角度範囲内に形成された構成とすれば、該延長領域からの出射光により形成される配光パターンの斜めカットオフラインを、自車線側へ斜め15°程度で立ち上がる斜めカットオフラインとして鮮明に形成することができる。 As described above, the angle range (that is, the value of the “predetermined angle”) in which each extension region is formed is not particularly limited. However, the reference line of the lens region to which the extension region belongs (that is, the “first reference”). If the configuration is formed within an angle range of 5 to 12 ° from the vertical line or horizontal line passing through the “line” or “second reference line”), the light distribution pattern formed by the light emitted from the extended region is slanted. The cut-off line can be clearly formed as an oblique cut-off line that rises at an angle of about 15 ° toward the own lane.
本願発明の一実施形態に係る車両用照明灯具10の正面図Front view of a vehicular illumination lamp 10 according to an embodiment of the present invention 図1のII-II線断面の一部を拡大して示す拡大断面図FIG. 1 is an enlarged cross-sectional view showing a part of a cross section taken along line II-II in FIG. 車両用照明灯具10のレンズ14を単品で示す斜視図The perspective view which shows the lens 14 of the vehicle lighting device 10 with the single item レンズ14における第1~第4レンズ領域の後方側の表面と発光面との位置関係を説明するための正面図Front view for explaining the positional relationship between the rear surface of the first to fourth lens regions in the lens 14 and the light emitting surface. 車両用照明灯具10から前方へ照射される光により、灯具前方25mの位置に配置された仮想鉛直スクリーン上に形成されるロービーム用配光パターンを透視的に示す図The figure which shows in perspective the low-beam light distribution pattern formed on the virtual vertical screen arrange | positioned in the position of 25 m ahead of a lamp | ramp by the light irradiated ahead from the illumination lamp 10 for vehicles. (a)は、上記ロービーム用配光パターンを、シミュレーションを行った結果として示す図、(b)、(c)、(d)は、上記ロービーム用配光パターンを構成する3つの配光パターンを、それぞれ上記シミュレーション結果として示す図(A) is the figure which shows the said light distribution pattern for low beams as a result of having performed simulation, (b), (c), (d) shows three light distribution patterns which comprise the said light distribution pattern for low beams. , Each shown as a simulation result above 上記3つの配光パターンのうちの2つの配光パターンの成立過程を説明するためにシミュレーションを行った結果を示す図The figure which shows the result of having performed the simulation in order to explain the formation process of two light distribution patterns among the said three light distribution patterns 上記2つの配光パターンのうちの1つの配光パターンの成立過程を説明するためにシミュレーションを行った結果を示す図The figure which shows the result of having performed the simulation in order to explain the formation process of one light distribution pattern of the said two light distribution patterns
 以下、図面を用いて、本願発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る車両用照明灯具10の正面図である。また、図2は、図1のII-II線断面詳細図である。 FIG. 1 is a front view of a vehicular illumination lamp 10 according to the present embodiment. 2 is a detailed sectional view taken along the line II-II in FIG.
 これらの図に示すように、本実施形態に係る車両用照明灯具10は、灯具前後方向に延びる光軸Axの近傍において前向きに配置された発光素子12と、この発光素子12の前方側に配置され、該発光素子12からの光を前方へ向けて偏向出射させるレンズ14と、これら発光素子12およびレンズ14を支持する金属製のホルダ16とからなっている。 As shown in these drawings, the vehicular illumination lamp 10 according to this embodiment includes a light emitting element 12 disposed forward in the vicinity of an optical axis Ax extending in the lamp front-rear direction, and a front side of the light emitting element 12. The lens 14 includes a lens 14 that deflects and emits light from the light emitting element 12 forward, and a metal holder 16 that supports the light emitting element 12 and the lens 14.
 この車両用照明灯具10は、図示しないランプボディ等に対して光軸調整可能に組み込まれた状態で用いられるようになっており、この光軸調整が完了した状態では、その光軸Axが車両正面方向に対して0.5~0.6°程度下向きに延びるようになっている。そして、この車両用照明灯具10からの光照射により、図5に示すような左配光のロービーム用配光パターンPLを形成するようになっている。 The vehicular illumination lamp 10 is used in a state in which the optical axis can be adjusted with respect to a lamp body or the like (not shown). When the optical axis adjustment is completed, the optical axis Ax is the vehicle. It extends downward by about 0.5 to 0.6 ° with respect to the front direction. Then, a light distribution pattern PL for left beam distribution as shown in FIG. 5 is formed by light irradiation from the vehicular illumination lamp 10.
 発光素子12は、白色発光ダイオードであって、水平方向に直列で配置された4つの発光チップ12aと、これらを支持する基板12bとからなっている。 The light emitting element 12 is a white light emitting diode, and includes four light emitting chips 12a arranged in series in the horizontal direction, and a substrate 12b that supports them.
 4つの発光チップ12aは、互いに略密着するようにして配置された状態で、その前面が薄膜により封止されており、これにより灯具正面視において横長矩形状に発光する発光面12Aを構成している。その際、各発光チップ12aは1×1mm程度の正方形の外形形状を有しており、これにより発光面12Aは1×4mm程度の外形形状を有するものとなっている。 The four light emitting chips 12a are arranged so as to be in close contact with each other, and their front surfaces are sealed with a thin film, thereby forming a light emitting surface 12A that emits light in a horizontally long rectangular shape when viewed from the front of the lamp. Yes. At this time, each light emitting chip 12a has a square outer shape of about 1 × 1 mm, and thus the light emitting surface 12A has an outer shape of about 1 × 4 mm.
 この発光素子12は、その発光面12Aの下端縁を光軸Axと直交する水平線上に位置させるとともにこの下端縁上の点(具体的には左右方向の中点)Oを光軸Ax上に位置させるようにして配置されている。 In the light emitting element 12, the lower end edge of the light emitting surface 12A is positioned on a horizontal line orthogonal to the optical axis Ax, and a point (specifically, a midpoint in the left-right direction) O on the lower end edge is placed on the optical axis Ax. It is arranged to be positioned.
 図3は、レンズ14を単品で示す斜視図である。 FIG. 3 is a perspective view showing the lens 14 as a single item.
 同図にも示すように、このレンズ14は、φ80mm程度の外径寸法を有する無色透明のアクリル樹脂製の円板状部材であって、その表裏両面にそれぞれ凹凸加工が施された構成となっている。 As shown in the figure, the lens 14 is a colorless and transparent acrylic resin disk-shaped member having an outer diameter of about φ80 mm, and has a configuration in which unevenness processing is performed on both the front and back surfaces. ing.
 このレンズ14は、その光軸Axの近傍領域が凸レンズ部Z0として構成されており、その周囲が、反射型フレネルレンズ構造を有する第1~第4レンズ領域Z1~Z4として構成されている。その際、第1レンズ領域Z1は、自車線側の上部に略位置しており、第2レンズ領域Z2は、対向車線側の上部に略位置しており、第3レンズ領域Z3は、対向車線側の下部に略位置しており、第4レンズ領域Z4は、自車線側の下部に略位置している。 In this lens 14, a region in the vicinity of the optical axis Ax is configured as a convex lens portion Z0, and the periphery thereof is configured as first to fourth lens regions Z1 to Z4 having a reflective Fresnel lens structure. At this time, the first lens region Z1 is substantially located at the upper portion on the own lane side, the second lens region Z2 is substantially located at the upper portion on the opposite lane side, and the third lens region Z3 is located on the opposite lane. The fourth lens region Z4 is substantially located at the lower part on the own lane side.
 凸レンズ部Z0は、図2に示すように、その後方側の表面が光軸Axと直交する平面で構成された平凸レンズとして構成されており、その後側焦点は、発光面12Aの下端縁における光軸Ax上の点Oに位置している。そしてこれにより、この凸レンズ部Z0は、発光面12Aの下端縁における光軸Ax上の点Oからの光を、図2において太い実線で光路を示すように、光軸Axと平行な光として前方へ出射させるようになっている。 As shown in FIG. 2, the convex lens portion Z0 is configured as a plano-convex lens having a rear surface formed by a plane orthogonal to the optical axis Ax, and the rear focal point is light at the lower edge of the light emitting surface 12A. It is located at point O on the axis Ax. As a result, the convex lens portion Z0 forwards the light from the point O on the optical axis Ax at the lower edge of the light emitting surface 12A as light parallel to the optical axis Ax as indicated by the thick solid line in FIG. It is made to emit to.
 次に、第1~第4レンズ領域Z1~Z4の構成について説明する。 Next, the configuration of the first to fourth lens regions Z1 to Z4 will be described.
 まず、第1~第4レンズ領域Z1~Z4の後方側の表面の形状について説明する。 First, the shape of the rear surface of the first to fourth lens regions Z1 to Z4 will be described.
 図4は、第1~第4レンズ領域Z1~Z4の後方側の表面と発光面12Aとの位置関係を説明するための正面図である。 FIG. 4 is a front view for explaining the positional relationship between the rear surface of the first to fourth lens regions Z1 to Z4 and the light emitting surface 12A.
 同図にも示すように、第1および第3レンズ領域Z1、Z3の後方側の表面には、発光面12Aにおける自車線側の上端隅角(灯具正面視において右上の隅角)に位置する第1隅角点Aを通りかつ光軸Axと平行に延びる第1基準線L1を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズム14p1が、第1基準線L1を中心にして同心円状に形成されている。 As shown in the drawing, the rear surfaces of the first and third lens regions Z1 and Z3 are positioned at the upper corner of the light emitting surface 12A on the own lane side (the upper right corner in the lamp front view). A plurality of annular prisms 14p1 whose cross-sectional shape along a plane passing through the first corner point A and extending in parallel with the optical axis Ax and including the first reference line L1 is set in a sawtooth shape is defined by the first reference line L1. It is formed concentrically around the center.
 これら各輪帯状プリズム14p1は、第1隅角点Aからの光を、該輪帯状プリズム14p1の内周面において第1基準線L1から離れる方向へ屈折させる態様で該輪帯状プリズム14p1に入射させた後、この入射光を該輪帯状プリズム14p1の外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されている(図2参照)。 Each of the ring-shaped prisms 14p1 causes the light from the first corner point A to be incident on the ring-shaped prism 14p1 in a manner that refracts the light from the first reference line L1 on the inner peripheral surface of the ring-shaped prism 14p1. After that, this incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p1 (see FIG. 2).
 一方、第2および第4レンズ領域Z2、Z4の後方側の表面には、発光面12Aにおける対向車線側の下端隅角(灯具正面視において左下の隅角)に位置する第2隅角点Bを通りかつ光軸Axと平行に延びる第2基準線L2を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズム14p2が、第2基準線L2を中心にして同心円状に形成されている。 On the other hand, on the surface on the rear side of the second and fourth lens regions Z2 and Z4, a second corner point B located at the lower end corner of the light emitting surface 12A on the opposite lane side (lower left corner when viewed from the front of the lamp). A plurality of annular prisms 14p2 having a cross-sectional shape set along a plane including the second reference line L2 extending parallel to the optical axis Ax and having a sawtooth shape are concentrically centered on the second reference line L2. Is formed.
 これら各輪帯状プリズム14p2は、第2隅角点Bからの光を、該輪帯状プリズム14p2の内周面において上記第2基準線から離れる方向へ屈折させる態様で該輪帯状プリズム14p2に入射させた後、この入射光を該輪帯状プリズム14p2の外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されている。 Each of the annular prisms 14p2 causes the light from the second corner point B to be incident on the annular prism 14p2 in a manner that refracts the inner circumferential surface of the annular zone prism 14p2 away from the second reference line. After that, the incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p2.
 第1~第4レンズ領域Z1~Z4は、上端部に水平カットオフラインを有する水平拡散配光パターン(これについては後述する)を形成するという観点からは、本来、発光面12Aにおける自車線側の下端隅角(灯具正面視において右下の隅角)に位置する第3隅角点Cを通る水平線および鉛直線(図中2点鎖線で示す線)によって領域分けされるべきものである。しかしながら、本実施形態においては、第1レンズ領域Z1における第2レンズ領域Z2と隣接する端部領域、第2レンズ領域Z2における第3レンズ領域Z3と隣接する端部領域、第3レンズ領域Z3における第4レンズ領域Z4と隣接する端部領域、および第4レンズ領域Z4における第1レンズ領域Z1と隣接する端部領域の各々が、該端部領域と隣接するレンズ領域Z1、Z2、Z3、Z4内に所定角度入り込む略扇形の延長領域Z1a、Z2a、Z3a、Z4aとしてそれぞれ形成されている。 From the viewpoint of forming a horizontal diffused light distribution pattern (which will be described later) having a horizontal cut-off line at the upper end portion, the first to fourth lens regions Z1 to Z4 are originally on the lane side of the light emitting surface 12A. The region should be divided by a horizontal line and a vertical line (a line indicated by a two-dot chain line in the figure) passing through the third corner point C located at the lower end corner (the lower right corner in the lamp front view). However, in the present embodiment, the end region adjacent to the second lens region Z2 in the first lens region Z1, the end region adjacent to the third lens region Z3 in the second lens region Z2, and the third lens region Z3. Each of the end region adjacent to the fourth lens region Z4 and the end region adjacent to the first lens region Z1 in the fourth lens region Z4 is adjacent to the lens region Z1, Z2, Z3, Z4. It is formed as a substantially sector-shaped extension region Z1a, Z2a, Z3a, Z4a that enters a predetermined angle inside.
 その際、第1レンズ領域Z1の延長領域Z1aおよび第3レンズ領域Z3の延長領域Z3aは、第1隅角点Aを通る鉛直線(すなわち第1基準線L1を通る鉛直線)から、それぞれ角度α1、α3の角度範囲内に形成されている。その際、これら角度α1、α3の値は、いずれも10~12°程度(例えば11°)に設定されている。一方、第2レンズ領域Z2の延長領域Z2aおよび第4レンズ領域Z4の延長領域Z4aは、第2隅角点Bを通る水平線(すなわち第2基準線L2を通る水平線)から、それぞれ角度α2、α4の角度範囲内に形成されている。その際、これら角度α2、α4の値は、いずれも7~8°程度(例えば7.5°)に設定されている。 At that time, the extension region Z1a of the first lens region Z1 and the extension region Z3a of the third lens region Z3 are respectively angled from a vertical line passing through the first corner point A (that is, a vertical line passing through the first reference line L1). It is formed within the angle range of α1 and α3. At this time, the values of these angles α1 and α3 are both set to about 10 to 12 ° (for example, 11 °). On the other hand, the extension region Z2a of the second lens region Z2 and the extension region Z4a of the fourth lens region Z4 are angled α2, α4 from the horizontal line passing through the second corner point B (that is, the horizontal line passing through the second reference line L2), respectively. Are formed within the angular range. At this time, the values of these angles α2 and α4 are both set to about 7 to 8 ° (for example, 7.5 °).
 そしてこれにより、第1レンズ領域Z1は、本来の形成位置から、その延長領域Z1aの角度α1分だけ拡張する一方、それ以外の一般領域Z1oが延長領域Z4aの角度α4分だけ縮小した角度θ1の範囲に形成されることとなり、第2レンズ領域Z2は、本来の形成位置から、延長領域Z2aの角度α2分だけ拡張する一方、それ以外の一般領域Z2oが延長領域Z1aの角度α1分だけ縮小した角度θ2の範囲に形成されることとなり、第3レンズ領域Z3は、本来の形成位置から、延長領域Z3aの角度α3分だけ拡張する一方、それ以外の一般領域Z3oが延長領域Z2aの角度α2分だけ縮小した角度θ3の範囲に形成されることとなり、第4レンズ領域Z4は、本来の形成位置から、延長領域Z4aの角度α4分だけ拡張する一方、それ以外の一般領域Z4oが延長領域Z3aの角度α3分だけ縮小した角度θ4の範囲に形成されることとなる。 As a result, the first lens region Z1 is expanded from the original formation position by the angle α1 of the extension region Z1a, while the other general region Z1o is reduced by the angle α4 of the extension region Z4a. The second lens region Z2 is expanded by the angle α2 of the extension region Z2a from the original formation position, while the other general region Z2o is reduced by the angle α1 of the extension region Z1a from the original formation position. The third lens region Z3 extends from the original formation position by the angle α3 of the extension region Z3a, while the other general region Z3o has an angle α2 of the extension region Z2a. Thus, the fourth lens region Z4 is expanded by an angle α4 of the extension region Z4a from the original formation position. Other general area Z4o is to be formed in a range of an angle α3 minutes only reduced angle θ4 of the extension region Z3a.
 次に、第1~第4レンズ領域Z1~Z4の前方側の表面の形状について説明する。 Next, the shape of the front surface of the first to fourth lens regions Z1 to Z4 will be described.
 図1~3に示すように、第1~第4レンズ領域Z1~Z4における延長領域Z1a~Z4aの前方側の表面は、光軸Axと直交する平面で構成されており、それ以外の一般領域Z1o~Z4oの前方側の表面は、該一般領域Z1o~Z4oからの出射光を水平方向に拡散させる複数の水平拡散素子14s1、14s2がそれぞれ形成された構成となっている。 As shown in FIGS. 1 to 3, the front surfaces of the extension regions Z1a to Z4a in the first to fourth lens regions Z1 to Z4 are configured by a plane orthogonal to the optical axis Ax, and the other general regions The front surface of Z1o to Z4o has a structure in which a plurality of horizontal diffusing elements 14s1 and 14s2 for diffusing emitted light from the general regions Z1o to Z4o in the horizontal direction are formed.
 これら第1~第4レンズ領域Z1~Z4の一般領域Z1o~Z4oは、いずれも周方向に3つの扇形領域に区分けされている。 The general regions Z1o to Z4o of the first to fourth lens regions Z1 to Z4 are all divided into three sector regions in the circumferential direction.
 その際、各一般領域Z1o~Z4oの中央に位置する扇形領域Z1o1~Z4o1は、光軸Axと直交する平面に複数の水平拡散素子14s1がそれぞれ形成された構成となっている。その際、これら各水平拡散素子14s1は、その水平断面形状が凸円弧形状に設定されている。そしてこれにより、これら各扇形領域Z1o1~Z4o1は、該扇形領域Z1o1~Z4o1からの出射光を左右両側に略均等に拡散する光とするようになっている。 At that time, the fan-shaped regions Z1o1 to Z4o1 located at the center of the respective general regions Z1o to Z4o have a configuration in which a plurality of horizontal diffusion elements 14s1 are formed on a plane orthogonal to the optical axis Ax. At that time, the horizontal cross-sectional shape of each of the horizontal diffusion elements 14s1 is set to a convex arc shape. As a result, each of the fan-shaped areas Z1o1 to Z4o1 is configured to make the light emitted from the fan-shaped areas Z1o1 to Z4o1 diffuse substantially evenly on the left and right sides.
 また、各一般領域Z1o~Z4oにおける各延長領域Z1a~Z4a寄りの扇形領域Z1o2~Z4o2は、光軸Axと直交する平面に複数の水平拡散素子14s2がそれぞれ形成された構成となっている。これら各水平拡散素子14s2は、その水平断面形状が凸円弧形状に設定されており、その曲率は各水平拡散素子14s1よりも小さい値に設定されている。そしてこれにより、これら各扇形領域Z1o2~Z4o2は、該扇形領域Z1o2~Z4o2からの出射光を左右両側に比較的小さい拡散角で略均等に拡散する光とするようになっている。 Further, the fan-shaped regions Z1o2 to Z4o2 near the extended regions Z1a to Z4a in the general regions Z1o to Z4o have a configuration in which a plurality of horizontal diffusion elements 14s2 are formed on a plane orthogonal to the optical axis Ax. Each horizontal diffusion element 14s2 has a horizontal sectional shape set to a convex arc shape, and its curvature is set to a value smaller than each horizontal diffusion element 14s1. As a result, each of the fan-shaped areas Z1o2 to Z4o2 is configured so that the light emitted from the fan-shaped areas Z1o2 to Z4o2 is light that diffuses substantially evenly with a relatively small diffusion angle on the left and right sides.
 さらに、各一般領域Z1o~Z4oにおける各延長領域Z1a~Z4aとは反対側の端部寄りに位置する扇形領域Z1o3~Z4o3は、光軸Axと直交する平面に対してやや後傾した(すなわち上端縁が後方側へ変位するように傾斜した)平面に複数の水平拡散素子14s1がそれぞれ形成された構成となっている。そしてこれにより、これら各扇形領域Z1o3~Z4o3は、該扇形領域Z1o3~Z4o3からの出射光をやや下向きで左右両側に略均等に拡散する光とするようになっている。 Further, the fan-shaped regions Z1o3 to Z4o3 located near the ends of the general regions Z1o to Z4o opposite to the extended regions Z1a to Z4a are inclined slightly rearward (that is, the upper end) A plurality of horizontal diffusing elements 14s1 are respectively formed on a plane that is inclined so that the edge is displaced rearward. As a result, each of the fan-shaped areas Z1o3 to Z4o3 is configured to make light emitted from the fan-shaped areas Z1o3 to Z4o3 slightly diffuse downward and substantially equally diffused to the left and right sides.
 図5は、車両用照明灯具10から前方へ照射される光により、灯具前方25mの位置に配置された仮想鉛直スクリーン上に形成されるロービーム用配光パターンPLを透視的に示す図である。 FIG. 5 is a perspective view showing a low beam light distribution pattern PL formed on a virtual vertical screen arranged at a position 25 m ahead of the lamp by light irradiated forward from the vehicular illumination lamp 10.
 このロービーム用配光パターンPLは、左配光のロービーム用配光パターンであって、その上端部に水平および斜めカットオフラインCL1、CL2を有している。その際、灯具正面方向の消点であるH-Vを通る鉛直線であるV-V線に対して、対向車線側に水平カットオフラインCL1が形成されるとともに、自車線側に15°の傾斜角度を有する斜めカットオフラインCL2が形成されており、両カットオフラインCL1、CL2の交点であるエルボ点Eは、H-Vの0.5~0.6°程度下方に位置している。 This low beam light distribution pattern PL is a left light distribution pattern for low beam, and has horizontal and oblique cutoff lines CL1 and CL2 at its upper end. At that time, a horizontal cut-off line CL1 is formed on the opposite lane side with respect to the VV line which is a vertical line passing through HV, which is the vanishing point in the front direction of the lamp, and at an inclination of 15 ° toward the own lane side. An oblique cut-off line CL2 having an angle is formed, and an elbow point E that is an intersection of both cut-off lines CL1 and CL2 is located about 0.5 to 0.6 ° below HV.
 このロービーム用配光パターンPLは、3つの配光パターンPA、PB、PCを重畳させた合成配光パターンとして形成されている。 The low beam light distribution pattern PL is formed as a combined light distribution pattern in which three light distribution patterns PA, PB, and PC are superimposed.
 配光パターンPAは、凸レンズ部Z0からの出射光により形成される配光パターンであり、配光パターンPBは、第1~第4レンズ領域Z1~Z4の一般領域Z1o~Z4oからの出射光により形成される配光パターンであり、配光パターンPCは、第1~第4レンズ領域Z1~Z4の延長領域Z1a~Z4aからの出射光により形成される配光パターンである。 The light distribution pattern PA is a light distribution pattern formed by light emitted from the convex lens portion Z0, and the light distribution pattern PB is obtained by light emitted from the general areas Z1o to Z4o of the first to fourth lens areas Z1 to Z4. The light distribution pattern PC is a light distribution pattern formed by light emitted from the extended regions Z1a to Z4a of the first to fourth lens regions Z1 to Z4.
 配光パターンPAは、V-V線を中心にして左右両側へ小さく拡がる横長の明るい配光パターンとして形成されている。そして、この配光パターンPAの上端縁により、水平カットオフラインCL1の主要部を形成するようになっている。この配光パターンPAは、発光面12Aの像を凸レンズ部Z0によって反転投影されることにより形成されるものである。その際、発光面12Aは、その下端縁が凸レンズ部Z0の後側焦点を通る水平線上に位置しているので、配光パターンPAの上端縁の明暗比は極めて高いものとなり、これにより水平カットオフラインCL1の主要部も明瞭なものとなる。なお、この配光パターンPAの上端縁が、H-Vの0.5~0.6°程度下方に位置しているのは、車両用照明灯具10の光軸Axが車両正面方向に対して0.5~0.6°程度下向きに延びていることによるものである。 The light distribution pattern PA is formed as a horizontally long and bright light distribution pattern that extends to the left and right sides around the VV line. And the main part of horizontal cut-off line CL1 is formed by the upper end edge of this light distribution pattern PA. This light distribution pattern PA is formed by reversing and projecting the image of the light emitting surface 12A by the convex lens portion Z0. At that time, since the lower end edge of the light emitting surface 12A is located on the horizontal line passing through the rear focal point of the convex lens portion Z0, the light-to-dark ratio of the upper end edge of the light distribution pattern PA becomes extremely high. The main part of the offline CL1 is also clear. Note that the upper edge of the light distribution pattern PA is located about 0.5 to 0.6 ° below HV because the optical axis Ax of the vehicular illumination lamp 10 is in the vehicle front direction. This is due to extending downward by about 0.5 to 0.6 °.
 配光パターンPBは、V-V線を中心にして左右両側へ大きく拡がる横長の水平拡散配光パターンとして形成されている。そして、この配光パターンPBの上端縁によっても、水平カットオフラインCL1を形成するようになっている。なお、この配光パターンPBの成立過程については後述する。 The light distribution pattern PB is formed as a horizontally long horizontal diffusion light distribution pattern that spreads widely on the left and right sides around the VV line. The horizontal cut-off line CL1 is also formed by the upper edge of the light distribution pattern PB. The formation process of the light distribution pattern PB will be described later.
 配光パターンPCは、V-V線近傍から自車線側へ向けて斜め上方に小さく拡がる斜め横長の明るい配光パターンとして形成されている。そして、この配光パターンPCの上端縁により、斜めカットオフラインCL2を形成するようになっている。なお、この配光パターンPCの成立過程についても後述する。 The light distribution pattern PC is formed as an obliquely long and bright light distribution pattern that extends obliquely upward from the vicinity of the VV line toward the own lane. The oblique cut-off line CL2 is formed by the upper edge of the light distribution pattern PC. The formation process of this light distribution pattern PC will also be described later.
 ロービーム用配光パターンPLにおいては、その配光パターンPBと配光パターンPCとが重複するエルボ点Eの左斜め下方近傍に、高光度領域であるホットゾーンHZが形成されている。 In the low beam light distribution pattern PL, a hot zone HZ, which is a high light intensity region, is formed in the vicinity of the lower left of an elbow point E where the light distribution pattern PB and the light distribution pattern PC overlap.
 図6(a)は、このロービーム用配光パターンPLを、シミュレーションを行った結果として示す図である。また、同図(b)、(c)、(d)は、配光パターンPC、配光パターンPA、配光パターンPBを、それぞれ上記シミュレーション結果として示す図である。 FIG. 6A is a diagram showing the low beam light distribution pattern PL as a result of simulation. FIGS. 7B, 7C, and 7D are diagrams showing the light distribution pattern PC, the light distribution pattern PA, and the light distribution pattern PB, respectively, as the simulation results.
 これら各図において、多重で示す閉曲線は、等光度曲線であって、各配光パターンPL、PC、PA、PBが、その外周縁から中心へ向かうほど明るくなることを示している。 In each of these figures, the closed curve shown in multiple is an isoluminous curve, and shows that each light distribution pattern PL, PC, PA, PB becomes brighter from the outer peripheral edge toward the center.
 配光パターンPAは、その中心位置近傍が最も明るくなっているが、配光パターンPB、PCは、その中心位置よりもエルボ点E寄りの位置が最も明るくなっている。 The light distribution pattern PA is brightest in the vicinity of the center position, but the light distribution patterns PB and PC are brightest in the position closer to the elbow point E than the center position.
 図7および8は、配光パターンPB、PCの成立過程を説明するためにシミュレーションを行った結果を示す図である。 7 and 8 are diagrams showing the results of simulations for explaining the formation process of the light distribution patterns PB and PC.
 まず、図7について説明する。 First, FIG. 7 will be described.
 図7(b)において、同図(a)に示す凸レンズ部Z0からの出射光により形成される配光パターンPAと共に示す8つの配光パターンP1o~P4o、P1a~P4aは、同図(a)に示すように、レンズ14の第1~第4レンズ領域Z1~Z4における前方側の表面が、仮に光軸Axと直交する平面で構成されているとした場合に、その一般領域Z1o~Z4oおよび延長領域Z1a~Z4aの各々からの出射光により形成される配光パターンである。 In FIG. 7B, eight light distribution patterns P1o to P4o and P1a to P4a shown together with the light distribution pattern PA formed by the light emitted from the convex lens portion Z0 shown in FIG. As shown in FIG. 4, when the front surface of the lens 14 in the first to fourth lens regions Z1 to Z4 is configured by a plane orthogonal to the optical axis Ax, the general regions Z1o to Z4o and This is a light distribution pattern formed by light emitted from each of the extended regions Z1a to Z4a.
 各一般領域Z1o~Z4oからの出射光により形成される各配光パターンP1o~P4oは、その略全体が水平カットオフラインCL1よりも下方に位置するようにして形成されている。これは、一般領域Z1o、Z3oが第1基準線L1を基準として形成されており、また、一般領域Z2o、Z4oが第2基準線L2を基準として形成されていることによるものである。 The light distribution patterns P1o to P4o formed by the light emitted from the general regions Z1o to Z4o are formed so that substantially the whole is located below the horizontal cutoff line CL1. This is because the general regions Z1o and Z3o are formed with reference to the first reference line L1, and the general regions Z2o and Z4o are formed with reference to the second reference line L2.
 一方、各延長領域Z1a~Z4aからの出射光により形成される各配光パターンP1a~P4aは、その一部が水平カットオフラインCL1よりも上方へ突出するようにして形成されている。これは、延長領域Z1a、Z3aが第1基準線L1ではなく第2基準線L2を基準として形成されており、また、延長領域Z2a、Z4aが第2基準線L2ではなく第1基準線L1を基準として形成されていることによるものである。 On the other hand, each of the light distribution patterns P1a to P4a formed by the emitted light from each of the extended regions Z1a to Z4a is formed so that a part thereof protrudes upward from the horizontal cut-off line CL1. This is because the extension regions Z1a and Z3a are formed with reference to the second reference line L2 instead of the first reference line L1, and the extension regions Z2a and Z4a use the first reference line L1 instead of the second reference line L2. This is because it is formed as a standard.
 これら各配光パターンP1a~P4aは、その上端縁が斜めカットオフラインCL2に沿って延びるようにして形成されている。これは、延長領域Z1a、Z3aが、それぞれ角度α1、α3の角度範囲内に形成されていることによるものであり、また、延長領域Z2a、Z4aが、それぞれ角度α2、α4の角度範囲内に形成されていることによるものである。 These light distribution patterns P1a to P4a are formed so that the upper end edges thereof extend along the oblique cut-off line CL2. This is because the extension regions Z1a and Z3a are formed within the angle ranges of angles α1 and α3, respectively, and the extension regions Z2a and Z4a are formed within the angle ranges of angles α2 and α4, respectively. It is because it has been.
 その際、延長領域Z1a、Z3aからの出射光により形成される配光パターンP1a、P3aは、その上端縁が発光面12Aの上端縁によって形成されており、その上端縁におけるエルボ点E側の端点が発光面12Aの第1隅角点Aによって形成されている。一方、延長領域Z2a、Z4aからの出射光により形成される配光パターンP2a、P4aは、その上端縁が発光面12Aの下端縁によって形成されており、その上端縁におけるエルボ点E側の端点が発光面12Aの第2隅角点Bによって形成されている。 At that time, the light distribution patterns P1a and P3a formed by the light emitted from the extended regions Z1a and Z3a have their upper end edges formed by the upper end edge of the light emitting surface 12A, and end points on the elbow point E side at the upper end edges. Is formed by the first corner point A of the light emitting surface 12A. On the other hand, the light distribution patterns P2a and P4a formed by the light emitted from the extended regions Z2a and Z4a are formed at the upper end edge by the lower end edge of the light emitting surface 12A, and the end point on the elbow point E side at the upper end edge is It is formed by the second corner point B of the light emitting surface 12A.
 そして、これら4つの配光パターンP1a~P4aを重畳させた合成配光パターンとして、図6(b)に示す配光パターンPCが形成されることとなる。 Then, a light distribution pattern PC shown in FIG. 6B is formed as a combined light distribution pattern obtained by superimposing these four light distribution patterns P1a to P4a.
 次に、図8について説明する。 Next, FIG. 8 will be described.
 図3に関連してすでに述べたように、第1~第4レンズ領域Z1~Z4の一般領域Z1o~Z4oは、3つの扇形領域Z1o1~Z4o1、Z1o2~Z4o2、Z1o3~Z4o3に区分けされており、そのうちの1つの扇形領域Z1o3~Z4o3は、該扇形領域Z1o3~Z4o3からの出射光をやや下向きに偏向させるようになっている。そこで、図8(a)に示すように、各一般領域Z1o~Z4oを2つの扇形領域Z1o1~Z4o1、Z1o2~Z4o2と、残り1つの扇形領域Z1o3~Z4o3とに分けて考える。 As described above with reference to FIG. 3, the general areas Z1o to Z4o of the first to fourth lens areas Z1 to Z4 are divided into three fan-shaped areas Z1o1 to Z4o1, Z1o2 to Z4o2, and Z1o3 to Z4o3. Of these, one of the sector regions Z1o3 to Z4o3 is configured to deflect light emitted from the sector regions Z1o3 to Z4o3 slightly downward. Therefore, as shown in FIG. 8A, each of the general regions Z1o to Z4o is divided into two sector regions Z1o1 to Z4o1, Z1o2 to Z4o2, and the remaining one sector region Z1o3 to Z4o3.
 図8(b)に示すように、各一般領域Z1o~Z4oにおける2つの扇形領域Z1o1~Z4o1、Z1o2~Z4o2からの出射光により形成される配光パターンP1oA~P4oAは、図7(b)に示す配光パターンP1o~P4oの一部としてそのまま形成される。一方、図8(b)に示すように、残り1つの扇形領域Z1o3~Z4o3からの出射光により形成される配光パターンP1oB~P4oBは、図7(b)に示す配光パターンP1o~P4oの残部をやや下方に変位させるようにして形成される。なお、このようにして下方に変位させる前の配光パターンP1oB~P4oBの上端縁の位置を、図8(b)において破線で示す。 As shown in FIG. 8B, the light distribution patterns P1oA to P4oA formed by the emitted light from the two fan-shaped regions Z1o1 to Z4o1 and Z1o2 to Z4o2 in the general regions Z1o to Z4o are shown in FIG. The light distribution patterns P1o to P4o are formed as they are. On the other hand, as shown in FIG. 8B, the light distribution patterns P1oB to P4oB formed by the light emitted from the remaining one of the sector regions Z1o3 to Z4o3 are the same as the light distribution patterns P1o to P4o shown in FIG. The remaining portion is formed to be displaced slightly downward. Note that the positions of the upper end edges of the light distribution patterns P1oB to P4oB before being displaced downward in this way are indicated by broken lines in FIG. 8B.
 これにより、図7(b)に示す配光パターンP1o~P4oにおいては、水平カットオフラインCL1よりも上方に多少突出していた配光パターンP1oB~P4oBの部分についても、配光パターンP1oA~P4oAの部分と同様、その上端縁が水平カットオフラインCL1上に略位置することとなる。そして、これら各配光パターンP1oA~P4oAおよび各配光パターンP1oB~P4oBを、それぞれ複数の水平拡散素子14s1、14s2によって左右両側に拡散させることにより8つの水平拡散配光パターンが形成され、さらに、これら水平拡散配光パターンを重畳させた合成配光パターンとして、図6(d)に示す配光パターンPBが形成されることとなる。 Accordingly, in the light distribution patterns P1o to P4o shown in FIG. 7B, the portions of the light distribution patterns P1oB to P4oB that slightly protrude upward from the horizontal cutoff line CL1 are also portions of the light distribution patterns P1oA to P4oA. Similarly to the above, the upper end edge is substantially positioned on the horizontal cut-off line CL1. Then, each of the light distribution patterns P1oA to P4oA and each of the light distribution patterns P1oB to P4oB is diffused to the left and right sides by a plurality of horizontal diffusion elements 14s1 and 14s2, respectively, thereby forming eight horizontal diffusion light distribution patterns. A light distribution pattern PB shown in FIG. 6D is formed as a combined light distribution pattern in which these horizontal diffusion light distribution patterns are superimposed.
 その際、図8(b)に示す各配光パターンP1oA~P4oAは、複数の水平拡散素子14s1が形成された各扇形領域Z1o1~Z4o1からの出射光により比較的大きい拡散角で形成される水平拡散配光パターンと、複数の水平拡散素子14s2が形成された各扇形領域Z1o2~Z4o2からの出射光により比較的小さい拡散角で形成される水平拡散配光パターンとを重畳させた合成配光パターンとして形成されることとなるので、配光ムラの小さい水平拡散配光パターンとなる。しかも、各一般領域Z1o~Z4oにおいて各延長領域Z1a~Z4a寄りに位置する各扇形領域Z1o2~Z4o2からの出射光により形成される水平拡散配光パターンは、横長の光源像を基にして形成されることとなるので、これを比較的小さい拡散角に設定することにより、その上端縁が水平カットオフラインCL1に沿った比較的明るい配光パターンとなる。 At that time, each of the light distribution patterns P1oA to P4oA shown in FIG. 8B is a horizontal line formed with a relatively large diffusion angle by the light emitted from each of the fan-shaped regions Z1o1 to Z4o1 where the plurality of horizontal diffusion elements 14s1 are formed. A combined light distribution pattern in which a diffusion light distribution pattern and a horizontal diffusion light distribution pattern formed with a relatively small diffusion angle by light emitted from each of the sector regions Z1o2 to Z4o2 in which a plurality of horizontal diffusion elements 14s2 are formed are superimposed. Therefore, a horizontal diffusion light distribution pattern with small light distribution unevenness is obtained. In addition, the horizontal diffused light distribution pattern formed by the light emitted from each of the fan-shaped areas Z1o2 to Z4o2 located near the extended areas Z1a to Z4a in each of the general areas Z1o to Z4o is formed based on a horizontally long light source image. Therefore, by setting this to a relatively small diffusion angle, the upper edge becomes a relatively bright light distribution pattern along the horizontal cut-off line CL1.
 以上詳述したように、本実施形態に係る車両用照明灯具10は、灯具前後方向に延びる光軸Axの近傍に配置された発光素子12の発光面12Aからの光を、その前方側に配置されたレンズ14により、前方へ向けて偏向出射させる構成となっているが、このレンズ14の後方側の表面は反射型フレネルレンズとして構成されているので、灯具をコンパクトに構成することができる。 As described above in detail, the vehicular illumination lamp 10 according to the present embodiment arranges light from the light emitting surface 12A of the light emitting element 12 arranged in the vicinity of the optical axis Ax extending in the lamp front-rear direction on the front side thereof. The lens 14 is configured to deflect and emit the light forward. However, since the rear surface of the lens 14 is configured as a reflection type Fresnel lens, the lamp can be configured compactly.
 しかも、本実施形態に係る車両用照明灯具10においては、その光源が、灯具正面視において略矩形状に発光する発光面12Aからなり、その下端縁を光軸Axと直交する水平線上に位置させるとともにこの下端縁上の点Oを光軸Ax上に位置させるようにして配置されており、また、そのレンズ14が、光軸Axに関して、自車線側の上部に略位置する第1レンズ領域Z1と、対向車線側の上部に略位置する第2レンズ領域Z2と、対向車線側の下部に略位置する第3レンズ領域Z3と、自車線側の下部に略位置する第4レンズ領域Z4とを備えており、その第1および第3レンズ領域Z1、Z3の後方側の表面と、その第2および第4レンズ領域Z2、Z4の後方側の表面とが、互いに異なる所定の基準線を基準にして形成された反射型フレネルレンズで構成されているので、次のような作用効果を得ることができる。 Moreover, in the vehicular illumination lamp 10 according to the present embodiment, the light source is composed of the light emitting surface 12A that emits light in a substantially rectangular shape when viewed from the front of the lamp, and the lower end edge thereof is positioned on a horizontal line orthogonal to the optical axis Ax. In addition, the first lens region Z1 is disposed such that the point O on the lower edge is positioned on the optical axis Ax, and the lens 14 is substantially positioned on the upper side of the own lane with respect to the optical axis Ax. A second lens region Z2 substantially located at the upper portion on the opposite lane side, a third lens region Z3 substantially located at the lower portion on the opposite lane side, and a fourth lens region Z4 substantially located at the lower portion on the own lane side The first and third lens regions Z1 and Z3 are rear surfaces of the first and third lens regions Z1 and Z3 and the second and fourth lens regions Z2 and Z4 are rear surfaces with reference to different reference lines. Reflection formed Because it is constituted by a Fresnel lens, it is possible to obtain the following effects.
 すなわち、第1および第3レンズ領域Z1、Z3の後方側の表面には、発光面12Aにおける自車線側の上端隅角に位置する第1隅角点Aを通りかつ光軸Axと平行に延びる第1基準線L1を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズム14p1が、第1基準線L1を中心にして同心円状に形成されており、そして、これら各輪帯状プリズム14p1は、第1隅角点Aからの光を、該輪帯状プリズム14p1の内周面において第1基準線L1から離れる方向へ屈折させる態様で該輪帯状プリズム14p1に入射させた後、この入射光を該輪帯状プリズム14p1の外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されているので、これら第1および第3レンズ領域Z1、Z3からの出射光を、その一般領域Z1o、Z3oの前方側の表面にそれぞれ形成された複数の水平拡散素子14s1、14s2によって水平方向に拡散させることにより、上端部に水平カットオフラインを有する水平拡散配光パターンを、配光パターンPBと略同じ形状でかつその略半分の明るさで形成することができる。 That is, the rear surfaces of the first and third lens regions Z1 and Z3 pass through the first corner point A located at the upper corner of the light emitting surface 12A on the own lane side and extend in parallel with the optical axis Ax. A plurality of annular zone prisms 14p1 whose cross-sectional shape along the plane including the first reference line L1 is set in a sawtooth shape are formed concentrically around the first reference line L1, and each of these rings The band-shaped prism 14p1 causes the light from the first corner point A to be refracted in a direction away from the first reference line L1 on the inner peripheral surface of the ring-shaped prism 14p1, and then incident on the ring-shaped prism 14p1. Since this incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p1, it is emitted from the first and third lens regions Z1 and Z3. Is diffused in the horizontal direction by a plurality of horizontal diffusion elements 14s1, 14s2 respectively formed on the front surfaces of the general regions Z1o, Z3o, thereby obtaining a horizontal diffusion light distribution pattern having a horizontal cut-off line at the upper end. It can be formed with substantially the same shape as the light distribution pattern PB and approximately half the brightness.
 一方、第2および第4レンズ領域Z2、Z4の後方側の表面には、発光面12Aにおける対向車線側の下端隅角に位置する第2隅角点Bを通りかつ光軸Axと平行に延びる第2基準線L2を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズム14p2が、第2基準線L2を中心にして同心円状に形成されており、そして、これら各輪帯状プリズム14p2は、第2隅角点Bからの光を、該輪帯状プリズム14p2の内周面において第2基準線L2から離れる方向へ屈折させる態様で該輪帯状プリズム14p2に入射させた後、この入射光を該輪帯状プリズム14p2の外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されているので、これら第2および第4レンズ領域Z2、Z4からの出射光を、その一般領域Z2o、Z4oの前方側の表面にそれぞれ形成された複数の水平拡散素子14s1、14s2によって水平方向に拡散させることにより、上端部に水平カットオフラインを有する水平拡散配光パターンを、配光パターンPBと略同じ形状でかつその略半分の明るさで形成することができる。 On the other hand, the rear surfaces of the second and fourth lens regions Z2 and Z4 pass through the second corner point B located at the lower corner of the light emitting surface 12A on the opposite lane side and extend in parallel with the optical axis Ax. A plurality of annular zone prisms 14p2 having a sawtooth cross-sectional shape along a plane including the second reference line L2 are formed concentrically around the second reference line L2, and each of these rings The band-shaped prism 14p2 makes the light from the second corner point B incident on the ring-shaped prism 14p2 in a manner that refracts light in a direction away from the second reference line L2 on the inner peripheral surface of the ring-shaped prism 14p2. Since the incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism 14p2, the light emitted from the second and fourth lens regions Z2 and Z4. The horizontal diffusion light distribution pattern having a horizontal cut-off line at the upper end portion is distributed by horizontally diffusing by a plurality of horizontal diffusion elements 14s1 and 14s2 formed on the front surfaces of the general regions Z2o and Z4o, respectively. It can be formed with substantially the same shape as the light pattern PB and approximately half the brightness.
 その際、第1および第3レンズ領域Z1、Z3の後方側の表面を構成する反射型フレネルレンズは、第1基準線L1を基準にして形成されており、一方、第2および第4レンズ領域Z2、Z4の後方側の表面を構成する反射型フレネルレンズは、第2基準線L2を基準にして形成されているので、第1および第3レンズ領域Z1、Z3からの出射光により形成される水平拡散配光パターンの水平カットオフラインの位置も、第2および第4レンズ領域Z2、Z4からの出射光により形成される水平拡散配光パターンの水平カットオフラインの位置も、水平カットオフラインCL1と略一致させることができる。 At that time, the reflection type Fresnel lens constituting the surface on the rear side of the first and third lens regions Z1 and Z3 is formed with reference to the first reference line L1, while the second and fourth lens regions are formed. Since the reflection type Fresnel lens constituting the rear surface of Z2 and Z4 is formed with reference to the second reference line L2, it is formed by the emitted light from the first and third lens regions Z1 and Z3. The position of the horizontal cutoff line of the horizontal diffusion light distribution pattern and the position of the horizontal cutoff line of the horizontal diffusion light distribution pattern formed by the light emitted from the second and fourth lens regions Z2 and Z4 are also substantially the same as the horizontal cutoff line CL1. Can be matched.
 その上で、本実施形態に係る車両用照明灯具10においては、第1レンズ領域Z1における第2レンズ領域Z2と隣接する端部領域、第2レンズ領域Z2における第3レンズ領域Z3と隣接する端部領域、第3レンズ領域Z3における第4レンズ領域Z4と隣接する端部領域、および第4レンズ領域Z4における第1レンズ領域Z1と隣接する端部領域の各々が、該端部領域と隣接するレンズ領域Z2、Z3、Z4、Z1内に所定角度入り込む延長領域Z1a、Z2a、Z3a、Z4aとしてそれぞれ形成されているので、次のような作用効果を得ることができる。 In addition, in the vehicular lamp 10 according to the present embodiment, an end region adjacent to the second lens region Z2 in the first lens region Z1 and an end adjacent to the third lens region Z3 in the second lens region Z2. Each of the partial region, the end region adjacent to the fourth lens region Z4 in the third lens region Z3, and the end region adjacent to the first lens region Z1 in the fourth lens region Z4 is adjacent to the end region. Since the extended regions Z1a, Z2a, Z3a, and Z4a that enter the lens regions Z2, Z3, Z4, and Z1 at a predetermined angle are formed, the following operational effects can be obtained.
 すなわち、各レンズ領域Z1、Z2、Z3、Z4における端部領域を、該端部領域と隣接するレンズ領域Z2、Z3、Z4、Z1内に所定角度入り込む延長領域Z1a、Z2a、Z3a、Z4aとして形成した場合には、延長領域Z1a、Z3aの後方側の表面を構成する反射型フレネルレンズは、本来の第1基準線L1とは異なる第2基準線L2(すなわち、これら各延長領域Z1a、Z3aが入り込んでいる各レンズ領域Z2、Z4の後方側の表面に反射型フレネルレンズを形成する際の基準線)を基準線として形成され、また、延長領域Z2a、Z4aの後方側の表面を構成する反射型フレネルレンズは、本来の第2基準線L2とは異なる第1基準線L1(すなわち、これら各延長領域Z2a、Z4aが入り込んでいる各レンズ領域Z3、Z1の後方側の表面を構成する反射型フレネルレンズを形成する際の基準線)を基準線として形成されることとなる。 That is, the end regions in the lens regions Z1, Z2, Z3, and Z4 are formed as extended regions Z1a, Z2a, Z3a, and Z4a that enter the lens regions Z2, Z3, Z4, and Z1 adjacent to the end regions by a predetermined angle. In this case, the reflective Fresnel lens constituting the rear surface of the extension regions Z1a and Z3a has a second reference line L2 different from the original first reference line L1 (that is, each of these extension regions Z1a and Z3a has Reflection that forms the back surface of the extended regions Z2a and Z4a, and is formed using the reference line when forming the reflection type Fresnel lens on the back surface of each of the lens regions Z2 and Z4 that enter. The type Fresnel lens has a first reference line L1 that is different from the original second reference line L2 (that is, each lens region in which the extended regions Z2a and Z4a are inserted). 3, the reference line for forming the reflection type Fresnel lenses constituting the surface of the rear side of Z1) will be formed as a reference line.
 このため、これら各延長領域Z1a~Z4aからの出射光により形成される配光パターンP1a~P4aは、水平カットオフラインCL1から上方へ突出する配光パターンとなり、その際、これら各配光パターンP1a~P4aは、上端部に自車線側へ向けて斜めに立ち上がる斜めカットオフラインCL2を有する配光パターンとなる。 For this reason, the light distribution patterns P1a to P4a formed by the light emitted from each of the extended regions Z1a to Z4a become light distribution patterns protruding upward from the horizontal cut-off line CL1, and at this time, the light distribution patterns P1a to P1a to P4a is a light distribution pattern having an oblique cutoff line CL2 that rises obliquely toward the own lane at the upper end.
 したがって、これら4つの延長領域Z1a~Z4aからの出射光により形成される4つの配光パターンP1a~P4aの合成配光パターンとして形成される配光パターンPCと、それ以外の4つの一般領域Z1o~Z4oからの出射光により形成される4つの水平拡散配光パターンの合成配光パターンとして形成される配光パターンPBとを合成することにより、水平および斜めカットオフラインCL1、CL2を有するロービーム用配光パターンPLを形成することができる。しかもこれを、従来のように、発光面12Aからの直射光の一部をシェードにより遮蔽してしまうことなく、実現することができる。 Therefore, the light distribution pattern PC formed as a combined light distribution pattern of the four light distribution patterns P1a to P4a formed by the light emitted from these four extension regions Z1a to Z4a, and the other four general regions Z1o to Low beam light distribution having horizontal and oblique cut-off lines CL1 and CL2 by combining light distribution pattern PB formed as a combined light distribution pattern of four horizontal diffusion light distribution patterns formed by light emitted from Z4o A pattern PL can be formed. Moreover, this can be realized without shielding a part of the direct light from the light emitting surface 12A by the shade as in the conventional case.
 このように本実施形態によれば、略矩形状の発光面12Aを光源とする直射型の車両用照明灯具10において、その光源光束の利用効率を高めるようにした上で、上端部に水平および斜めカットオフラインCL1、CL2を有するロービーム用配光パターンPLを形成することができる。 As described above, according to the present embodiment, in the direct-type vehicular illumination lamp 10 using the substantially rectangular light emitting surface 12A as a light source, the use efficiency of the light source luminous flux is enhanced, A low beam light distribution pattern PL having the oblique cut-off lines CL1 and CL2 can be formed.
 しかも本実施形態においては、光軸Axにおける光軸Axの近傍領域が、発光面12Aの下端縁における光軸Ax上の点Oからの光を、光軸Axと平行な光として出射させる凸レンズ部Z0として構成されているので、この凸レンズ部Z0による発光面12Aの反転投影像として、上端部に明瞭な水平カットオフラインを有する配光パターンPAを形成することができる。したがって、この配光パターンPAを第1~第4レンズ領域Z1~Z4からの出射光により形成される配光パターンPB、PCと合成することにより、ロービーム用配光パターンPLの水平カットオフラインCL1の主要部をより鮮明に形成することができ、かつ、そのホットゾーンHZをより明るいものとすることができる。 In addition, in the present embodiment, the convex lens portion that emits the light from the point O on the optical axis Ax at the lower end edge of the light emitting surface 12A as the light parallel to the optical axis Ax in the region near the optical axis Ax in the optical axis Ax. Since it is configured as Z0, a light distribution pattern PA having a clear horizontal cutoff line at the upper end can be formed as an inverted projection image of the light emitting surface 12A by the convex lens portion Z0. Accordingly, by combining this light distribution pattern PA with the light distribution patterns PB and PC formed by the light emitted from the first to fourth lens regions Z1 to Z4, the horizontal cut-off line CL1 of the low beam light distribution pattern PL The main part can be formed more clearly, and the hot zone HZ can be made brighter.
 また本実施形態においては、各レンズ領域Z1~Z4の一般領域Z1o~Z4oにおける各延長領域Z1a~Z4aとは反対側の端部寄りに位置する扇形領域Z1o3~Z4o3の前方側の表面が、該扇形領域Z1o3~Z4o3からの出射光を下方へ偏向させるように形成されているので、次のような作用効果を得ることができる。 Further, in the present embodiment, the front surface of each of the fan-shaped regions Z1o3 to Z4o3 located near the end of each of the lens regions Z1 to Z4 in the general regions Z1o to Z4o opposite to the extended regions Z1a to Z4a, Since the light emitted from the fan-shaped regions Z1o3 to Z4o3 is formed to deflect downward, the following operational effects can be obtained.
 すなわち、各レンズ領域Z1~Z4の前方側の表面が光軸Axと直交する平面であったと仮定すると、これら各レンズ領域Z1~Z4の一般領域Z1o~Z4oにおいて、その扇形領域Z1o3~Z4o3からの出射光により形成される配光パターンP1oB~P4oBは、それ以外の扇形領域Z1o1~Z4o1、Z1o2~Z4o2からの出射光により形成される配光パターンP1o1~P4o1、P1o2~P4o2に対して、その上端位置がやや上方に変位したものとなる。そこで、これら各扇形領域Z1o3~Z4o3からの出射光を下方へ偏向させるようにすれば、ロービーム用配光パターンPLの水平カットオフラインCL1をより一層鮮明に形成することができる。 That is, assuming that the front surface of each of the lens regions Z1 to Z4 is a plane orthogonal to the optical axis Ax, the general regions Z1o to Z4o of the lens regions Z1 to Z4 are separated from the fan-shaped regions Z1o3 to Z4o3. The light distribution patterns P1oB to P4oB formed by the emitted light are the upper ends of the light distribution patterns P1o1 to P4o1 and P1o2 to P4o2 formed by the emitted light from the other fan-shaped regions Z1o1 to Z4o1 and Z1o2 to Z4o2. The position is slightly displaced upward. Therefore, if the emitted light from each of the sector regions Z1o3 to Z4o3 is deflected downward, the horizontal cut-off line CL1 of the low beam light distribution pattern PL can be formed more clearly.
 さらに本実施形態においては、第1および第3レンズ領域Z1、Z3の延長領域Z1a、Z3aが、第1基準線L1を通る鉛直線から10~12°程度の角度範囲内に形成されており、また、第2および第4レンズ領域Z2、Z4の延長領域Z2a、Z4aが、第2基準線L2を通る水平線から7~8°程度の角度範囲内に形成されているので、これら各延長領域Z1a~Z4aからの出射光により形成される各配光パターンP1a~P4aの上端縁を、自車線側へ斜め15°程度で立ち上がる斜めカットオフラインとして形成することができ、これにより斜めカットオフラインCL2を鮮明に形成することができる。 Further, in the present embodiment, the extension regions Z1a and Z3a of the first and third lens regions Z1 and Z3 are formed within an angle range of about 10 to 12 ° from the vertical line passing through the first reference line L1, Further, since the extension regions Z2a and Z4a of the second and fourth lens regions Z2 and Z4 are formed within an angle range of about 7 to 8 ° from the horizontal line passing through the second reference line L2, each of these extension regions Z1a The upper edge of each of the light distribution patterns P1a to P4a formed by the light emitted from Z4a can be formed as an oblique cut-off line that rises at an angle of about 15 ° toward the own lane, thereby making the oblique cut-off line CL2 clear. Can be formed.
 上記実施形態の車両用照明灯具10が有する発光素子12は、発光面12Aの外形形状が1×4mm程度の略長方形であったが、車両用照明灯具10に用いられる発光素子の外形形状はこれに限られない。 The light emitting element 12 included in the vehicular illumination lamp 10 of the above embodiment has a substantially rectangular shape with a light emitting surface 12A of about 1 × 4 mm, but the outer shape of the light emitting element used in the vehicular illumination lamp 10 is this. Not limited to.
 上記実施形態においては、第1~第4レンズ領域Z1~Z4における延長領域Z1a~Z4aの前方側の表面が、光軸Axと直交する平面で構成されているものとして説明したが、この前方側の表面に、該延長領域Z1a~Z4aからの出射光を斜めカットオフラインCL2に沿って斜め方向に拡散または偏向させる複数の拡散偏向素子が形成された構成とすることも可能である。 In the above embodiment, the front surface of the extension regions Z1a to Z4a in the first to fourth lens regions Z1 to Z4 has been described as being configured by a plane orthogonal to the optical axis Ax. A plurality of diffusion deflecting elements for diffusing or deflecting light emitted from the extension regions Z1a to Z4a in the oblique direction along the oblique cut-off line CL2 may be formed on the surface.
 上記実施形態においては、第1~第4レンズ領域Z1~Z4の各々に延長領域Z1a~Z4aが形成されているものとして説明したが、これら4箇所の延長領域Z1a~Z4aのうち、任意の1つ、2つ、あるいは3つのみが形成された構成とすることも可能である。 In the above embodiment, the extension regions Z1a to Z4a are formed in the first to fourth lens regions Z1 to Z4, respectively, but any one of these four extension regions Z1a to Z4a is selected. It is also possible to have a configuration in which only two, three, or three are formed.
 上記実施形態においては、凸レンズ部Z0が、通常の平凸レンズとして構成されているものとして説明したが、この凸レンズ部Z0の水平面に沿った断面形状を適当に変化させて、この凸レンズ部Z0からの出射光を水平方向に拡散させるようにすることも可能である。 In the above-described embodiment, the convex lens unit Z0 has been described as being configured as a normal plano-convex lens. However, the cross-sectional shape along the horizontal plane of the convex lens unit Z0 is appropriately changed so that the convex lens unit Z0 It is also possible to diffuse the emitted light in the horizontal direction.
 上記実施形態においては、発光面12Aの下端縁における左右方向の中点Oが光軸Ax上に位置しているものとして説明したが、発光面12Aの下端縁における左右方向の中点O以外の点が光軸Ax上に位置する構成とすることも可能である。 In the above embodiment, the description has been given assuming that the midpoint O in the left-right direction at the lower end edge of the light emitting surface 12A is located on the optical axis Ax, but other than the midpoint O in the left-right direction at the lower end edge of the light emitting surface 12A. A configuration in which the point is located on the optical axis Ax is also possible.
 上記実施形態においては、各レンズ領域Z1~Z4の一般領域Z1o~Z4oにおける扇形領域Z1o3~Z4o3の前方側の表面が、該扇形領域Z1o3~Z4o3からの出射光を下方へ偏向させた状態で水平方向に拡散させるように形成されているものとして説明したが、実用上支障が生じなければ、該扇形領域Z1o3~Z4o3からの出射光を下方へ偏向させることなく水平方向に拡散させるようにすることも可能である。 In the above embodiment, the front surfaces of the fan-shaped areas Z1o3 to Z4o3 in the general areas Z1o to Z4o of the lens areas Z1 to Z4 are horizontal in a state where the emitted light from the fan-shaped areas Z1o3 to Z4o3 is deflected downward. Although described as being formed so as to be diffused in the direction, if there is no practical problem, the light emitted from the fan-shaped regions Z1o3 to Z4o3 should be diffused in the horizontal direction without being deflected downward. Is also possible.
 上記実施形態においては、レンズ14における光軸Axの近傍領域が凸レンズ部Z0で構成されているものとして説明したが、光軸Axの近傍まで第1~第4レンズ領域Z1~Z4が延長形成された構成とすることも可能である。 In the above embodiment, the region near the optical axis Ax in the lens 14 is described as being configured by the convex lens portion Z0. However, the first to fourth lens regions Z1 to Z4 are extended to the vicinity of the optical axis Ax. It is also possible to adopt a configuration.
 上記実施形態においては、車両用照明灯具10からの光照射により、左配光のロービーム用配光パターンPLを形成するようになっているが、上記実施形態のように、第1~第4レンズ領域Z1~Z4が光軸Axに関して反時計回りに配置された構成とする代わりに、これら第1~第4レンズ領域Z1~Z4が光軸Axに関して時計回りに配置された構成とすれば、右配光のロービーム用配光パターンを形成することができる。 In the above embodiment, the light distribution pattern PL for the left light distribution is formed by light irradiation from the vehicular illumination lamp 10, but the first to fourth lenses are used as in the above embodiment. If the first to fourth lens regions Z1 to Z4 are arranged clockwise with respect to the optical axis Ax instead of the configuration in which the regions Z1 to Z4 are arranged counterclockwise with respect to the optical axis Ax, A light distribution pattern for low beam distribution can be formed.
 なお、上記実施形態において諸元として示した数値は一例にすぎず、これらを適宜異なる値に設定してもよいことはもちろんである。 It should be noted that the numerical values shown as specifications in the above embodiment are merely examples, and it is needless to say that these may be set to different values as appropriate.
 本出願は、2008年11月20日出願の日本特許出願(特願2008-296967)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2008-296967) filed on November 20, 2008, the contents of which are incorporated herein by reference.
 10 車両用照明灯具
 12 発光素子
 12A 発光面
 12a 発光チップ
 12b 基板
 14 レンズ
 14p1、14p2 輪帯状プリズム
 14s1、14s2 水平拡散素子
 16 ホルダ
 A 第1隅角点
 Ax 光軸
 B 第2隅角点
 C 第3隅角点
 CL1 水平カットオフライン
 CL2 斜めカットオフライン
 E エルボ点
 HZ ホットゾーン
 L1 第1基準線
 L2 第2基準線
 O 発光面の下端縁における光軸上の点
 PA、PB、PC 配光パターン
 PL ロービーム用配光パターン
 P1a、P1o、P1oA、P1oB、P2a、P2o、P2oA、P2oB、P3a、P3o、P3oA、P3oB、P4a、P4o、P4oA、P4oB 配光パターン
 Z0 凸レンズ部
 Z1 第1レンズ領域
 Z1a、Z2a、Z3a、Z4a 延長領域
 Z1o、Z2o、Z3o、Z4o 一般領域
 Z1o1、Z1o2、Z1o3、Z2o1、Z2o2、Z2o3、Z3o1、Z3o2、Z3o3、Z4o1、Z4o2、Z4o3 扇形領域
 Z2 第2レンズ領域
 Z3 第3レンズ領域
 Z4 第4レンズ領域
 α1、α2、α3、α4、θ1、θ2、θ3、θ4 角度
DESCRIPTION OF SYMBOLS 10 Vehicle illumination lamp 12 Light emitting element 12A Light emitting surface 12a Light emitting chip 12b Substrate 14 Lens 14p1, 14p2 Ring-shaped prism 14s1, 14s2 Horizontal diffuser 16 Holder A A 1st corner point Ax Optical axis B 2nd corner point C 3rd Corner point CL1 Horizontal cut-off line CL2 Diagonal cut-off line E Elbow point HZ Hot zone L1 First reference line L2 Second reference line O Point on the optical axis at the lower edge of the light emitting surface PA, PB, PC Light distribution pattern PL For low beam Light distribution pattern P1a, P1o, P1oA, P1oB, P2a, P2o, P2oA, P2oB, P3a, P3o, P3oA, P3oB, P4a, P4o, P4oA, P4oB Light distribution pattern Z0 Convex lens part Z1 First lens area Z1 , Z4a Extension region Z1o, Z2o, Z 3o, Z4o General area Z1o1, Z1o2, Z1o3, Z2o1, Z2o2, Z2o3, Z3o1, Z3o2, Z3o3, Z4o1, Z4o2, Z4o3 Fan-shaped area Z2 Second lens area Z3 Third lens area α3α Second lens area α3α , Α4, θ1, θ2, θ3, θ4 Angle

Claims (4)

  1.  灯具前後方向に延びる光軸の近傍に配置された光源と、この光源の前方側に配置され、該光源からの光を前方へ向けて偏向出射させるレンズと、を備える車両用照明灯具において、
     上記光源は、灯具正面視において略矩形状に発光する発光面を有し、この発光面の下端縁を上記光軸と直交する水平線上に位置させるとともに該下端縁上を上記光軸が通るように配置されており、
     上記レンズが、上記光軸に関して、自車線側の上部に略位置する第1レンズ領域と、対向車線側の上部に略位置する第2レンズ領域と、対向車線側の下部に略位置する第3レンズ領域と、自車線側の下部に略位置する第4レンズ領域とを備えており、
     上記第1および第3レンズ領域の後方側の表面に、上記発光面における自車線側の上端隅角に位置する第1隅角点を通りかつ上記光軸と平行に延びる第1基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、上記第1基準線を中心にして同心円状に形成されており、
     これら各輪帯状プリズムが、上記第1隅角点からの光を、該輪帯状プリズムの内周面において上記第1基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されており、
     上記第2および第4レンズ領域の後方側の表面に、上記発光面における対向車線側の下端隅角に位置する第2隅角点を通りかつ上記光軸と平行に延びる第2基準線を含む平面に沿った断面形状が鋸歯状に設定された複数の輪帯状プリズムが、上記第2基準線を中心にして同心円状に形成されており、
     これら各輪帯状プリズムが、上記第2隅角点からの光を、該輪帯状プリズムの内周面において上記第2基準線から離れる方向へ屈折させる態様で該輪帯状プリズムに入射させた後、この入射光を該輪帯状プリズムの外周面において前方へ向けて全反射させる反射型フレネルレンズとして構成されており、
     上記第1レンズ領域における上記第2レンズ領域と隣接する端部領域、上記第2レンズ領域における上記第3レンズ領域と隣接する端部領域、上記第3レンズ領域における上記第4レンズ領域と隣接する端部領域、および上記第4レンズ領域における上記第1レンズ領域と隣接する端部領域のうち、少なくとも1つの端部領域が、該端部領域と隣接するレンズ領域内に所定角度入り込む略扇形の延長領域として形成されており、
     上記第1~第4レンズ領域における上記延長領域以外の一般領域における前方側の表面には、該一般領域からの出射光を水平方向に拡散させる複数の水平拡散素子が形成されていることを特徴とする車両用照明灯具。
    In a vehicular illumination lamp comprising: a light source disposed in the vicinity of an optical axis extending in the front-rear direction of the lamp; and a lens disposed on the front side of the light source to deflect and emit light from the light source toward the front.
    The light source has a light emitting surface that emits light in a substantially rectangular shape when viewed from the front of the lamp. The lower end edge of the light emitting surface is positioned on a horizontal line orthogonal to the optical axis, and the optical axis passes over the lower end edge. Are located in
    The lens has a first lens region substantially located at the upper part on the own lane side, a second lens region substantially located at the upper part on the opposite lane side, and a third lens located substantially below the opposite lane side with respect to the optical axis. A lens region, and a fourth lens region substantially located at a lower portion on the own lane side,
    A rear surface of the first and third lens regions includes a first reference line that passes through a first corner point located at the upper corner of the light emitting surface on the own lane side and extends parallel to the optical axis. A plurality of zonal prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the first reference line,
    After each ring-shaped prism makes the light from the first corner point incident on the ring-shaped prism in a manner to refract the light from the first reference line on the inner peripheral surface of the ring-shaped prism, The incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism,
    A rear surface of the second and fourth lens regions includes a second reference line that passes through a second corner point located at a lower corner of the light emitting surface on the opposite lane side and extends in parallel with the optical axis. A plurality of ring-shaped prisms whose cross-sectional shape along the plane is set in a sawtooth shape are formed concentrically around the second reference line,
    After each of the ring-shaped prisms is incident on the ring-shaped prism in a manner that refracts light from the second corner point in a direction away from the second reference line on the inner peripheral surface of the ring-shaped prism, The incident light is configured as a reflection type Fresnel lens that totally reflects forward on the outer peripheral surface of the annular prism,
    An end region adjacent to the second lens region in the first lens region, an end region adjacent to the third lens region in the second lens region, and adjacent to the fourth lens region in the third lens region. Of the end region and the end region adjacent to the first lens region in the fourth lens region, at least one end region has a substantially fan shape that enters a predetermined angle into the lens region adjacent to the end region. Formed as an extension region,
    A plurality of horizontal diffusing elements for diffusing emitted light from the general region in the horizontal direction are formed on the front surface of the general region other than the extended region in the first to fourth lens regions. Vehicle lighting lamp.
  2.  上記レンズにおける上記光軸の近傍領域が、上記発光面の下端縁における上記光軸上の点からの光を、少なくとも上下方向に関して上記光軸と平行な光として出射させる凸レンズ部として構成されていることを特徴とする請求項1に記載の車両用照明灯具。 A region near the optical axis of the lens is configured as a convex lens portion that emits light from a point on the optical axis at the lower edge of the light emitting surface as light parallel to the optical axis at least in the vertical direction. The vehicular illumination lamp according to claim 1.
  3.  上記各レンズ領域の一般領域における上記各端部領域とは反対側の端部寄りに位置する領域の前方側の表面が、該領域からの出射光を下方へ偏向させるように形成されていることを特徴とする請求項1または2に記載の車両用照明灯具。 The front surface of the region located near the end opposite to each end region in the general region of each lens region is formed so as to deflect the emitted light from the region downward. The vehicular illumination lamp according to claim 1 or 2.
  4.  上記各延長領域が、該延長領域が属するレンズ領域の基準線を通る鉛直線または水平線から5~12°の角度範囲内に形成されている、ことを特徴とする請求項1~3のいずれか1項に記載の車両用照明灯具。 4. The extension region according to claim 1, wherein each of the extension regions is formed within an angle range of 5 to 12 degrees from a vertical line or a horizontal line passing through a reference line of the lens region to which the extension region belongs. The vehicle illumination lamp according to item 1.
PCT/JP2009/067669 2008-11-20 2009-10-09 Lighting device for vehicle WO2010058663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09827444A EP2351963B1 (en) 2008-11-20 2009-10-09 Lighting device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008296967A JP5179328B2 (en) 2008-11-20 2008-11-20 Lighting fixtures for vehicles
JP2008-296967 2008-11-20

Publications (1)

Publication Number Publication Date
WO2010058663A1 true WO2010058663A1 (en) 2010-05-27

Family

ID=42198102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067669 WO2010058663A1 (en) 2008-11-20 2009-10-09 Lighting device for vehicle

Country Status (3)

Country Link
EP (1) EP2351963B1 (en)
JP (1) JP5179328B2 (en)
WO (1) WO2010058663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079890A1 (en) * 2013-11-29 2015-06-04 スタンレー電気株式会社 Vehicle lamp and lens body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078653B4 (en) * 2011-07-05 2013-12-12 Automotive Lighting Reutlingen Gmbh Attachment optics for the bundling of emitted light of at least one semiconductor light source
CN102901998A (en) * 2011-07-27 2013-01-30 联钢精密科技(苏州)有限公司 Fresnel lens
JP5810756B2 (en) 2011-08-31 2015-11-11 市光工業株式会社 Vehicle headlamp
JP5810755B2 (en) 2011-08-31 2015-11-11 市光工業株式会社 Vehicle headlamp
US9133999B2 (en) * 2012-03-19 2015-09-15 Ichikoh Industries, Ltd. Vehicle headlamp
JP2014082164A (en) 2012-10-18 2014-05-08 Ichikoh Ind Ltd Vehicular lighting fixture
JP6131571B2 (en) 2012-11-13 2017-05-24 市光工業株式会社 Vehicle lighting
DE102012023126A1 (en) * 2012-11-27 2014-05-28 Volkswagen Ag Method for automatically calibrating projection type headlamp for vehicle, involves detecting to-be deflected beams of reflector and lens, and projecting pattern generated in light distribution ahead of vehicle, on road
US9156395B2 (en) 2013-01-08 2015-10-13 Ford Global Technologies, Llc Low profile highly efficient vehicular LED modules and headlamps
DE102015105613B4 (en) 2015-04-13 2023-08-31 Carl Zeiss Industrielle Messtechnik Gmbh Reflected light illumination for a variable working distance
CZ2017419A3 (en) 2017-07-19 2019-01-30 Varroc Lighting Systems, s.r.o. Lighting equipment, in particular fog lights, for motor vehicles
DE102021206736A1 (en) * 2021-06-29 2022-12-29 Psa Automobiles Sa Headlight module of a vehicle headlight, vehicle headlight and vehicle having the vehicle headlight

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044683A (en) 2003-07-24 2005-02-17 Koito Mfg Co Ltd Lighting fixture unit and headlamp for vehicle
JP2008177060A (en) * 2007-01-18 2008-07-31 Stanley Electric Co Ltd Vehicular lamp
JP2008181717A (en) * 2007-01-23 2008-08-07 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2008226788A (en) * 2007-03-15 2008-09-25 Koito Mfg Co Ltd Light fitting unit for vehicle
JP2008226558A (en) * 2007-03-09 2008-09-25 Ichikoh Ind Ltd Vehicular lamp

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100151B2 (en) * 2002-12-02 2008-06-11 市光工業株式会社 Automotive headlamps, reflectors for automotive headlamps
US7188984B2 (en) * 2003-04-17 2007-03-13 Visteon Global Technologies, Inc. LED headlamp array
DE102004008296A1 (en) * 2004-02-20 2005-09-08 Daimlerchrysler Ag Headlamp lens for a motor vehicle has a body for light to pass through with Fresnel lenses and channels opposite a source of light
DE102004041233A1 (en) * 2004-08-26 2006-03-23 Hella Kgaa Hueck & Co. Fresnel lens for lighting unit of motor vehicle, optical functional zones separated from one another by transient areas, which are inclined to optical axis of lens, such that light beam runs parallel to transient areas
US20080247188A1 (en) * 2007-04-04 2008-10-09 Magna International Inc. Complex projector lens for LED headlamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005044683A (en) 2003-07-24 2005-02-17 Koito Mfg Co Ltd Lighting fixture unit and headlamp for vehicle
JP2008177060A (en) * 2007-01-18 2008-07-31 Stanley Electric Co Ltd Vehicular lamp
JP2008181717A (en) * 2007-01-23 2008-08-07 Koito Mfg Co Ltd Lighting fixture for vehicle
JP2008226558A (en) * 2007-03-09 2008-09-25 Ichikoh Ind Ltd Vehicular lamp
JP2008226788A (en) * 2007-03-15 2008-09-25 Koito Mfg Co Ltd Light fitting unit for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351963A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079890A1 (en) * 2013-11-29 2015-06-04 スタンレー電気株式会社 Vehicle lamp and lens body
JP2015106493A (en) * 2013-11-29 2015-06-08 スタンレー電気株式会社 Vehicle lighting appliance and lens body

Also Published As

Publication number Publication date
JP2010123447A (en) 2010-06-03
EP2351963A4 (en) 2012-04-18
EP2351963A1 (en) 2011-08-03
JP5179328B2 (en) 2013-04-10
EP2351963B1 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5179328B2 (en) Lighting fixtures for vehicles
JP5235502B2 (en) Lighting fixtures for vehicles
JP4131845B2 (en) Lamp unit and vehicle headlamp
JP5567435B2 (en) Vehicle lighting
JP5897898B2 (en) Lighting fixtures for vehicles
JP4982269B2 (en) Lighting fixtures for vehicles
JP2007220662A (en) Vehicular lighting fixture
JP2005044683A (en) Lighting fixture unit and headlamp for vehicle
JP2009224303A (en) Vehicular lighting fixture
JP5636756B2 (en) Vehicle lamp unit
JP2010080306A (en) Lighting fixture unit for vehicular headlight
JP5640306B2 (en) Lamp unit
JP7506809B2 (en) Vehicle lighting fixtures
JP4339153B2 (en) Vehicle lamp unit
JP5518607B2 (en) Lighting fixtures for vehicles
JP2010067380A (en) Vehicular lighting lamp
JP5518606B2 (en) Lighting fixtures for vehicles
JP2011108413A (en) Vehicle light
JP2020061231A (en) Vehicular lighting tool
JP5412324B2 (en) Lighting fixtures for vehicles
JP2011108412A (en) Vehicle light
JP2015049976A (en) Vehicle lighting appliance
JP2018152321A (en) Vehicular lighting fixture
JP4865060B2 (en) Vehicle lighting
JP2008091349A (en) Light source unit and vehicular lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009827444

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE