WO2010058576A1 - 永久磁石式回転電機 - Google Patents

永久磁石式回転電機 Download PDF

Info

Publication number
WO2010058576A1
WO2010058576A1 PCT/JP2009/006216 JP2009006216W WO2010058576A1 WO 2010058576 A1 WO2010058576 A1 WO 2010058576A1 JP 2009006216 W JP2009006216 W JP 2009006216W WO 2010058576 A1 WO2010058576 A1 WO 2010058576A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic
magnet
permanent
type rotating
Prior art date
Application number
PCT/JP2009/006216
Other languages
English (en)
French (fr)
Inventor
堺和人
橋場豊
高橋則雄
結城和明
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to CN2009801460067A priority Critical patent/CN102217170B/zh
Priority to EP09827357.6A priority patent/EP2360814B1/en
Priority to US13/130,206 priority patent/US8624457B2/en
Publication of WO2010058576A1 publication Critical patent/WO2010058576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention uses two or more types of permanent magnets, and irreversibly changes the amount of magnetic flux of at least one of the permanent magnets, thereby enabling a variable speed operation in a wide range from low speed to high speed. It relates to a rotating electrical machine.
  • a surface magnet type permanent magnet type rotating electrical machine in which a permanent magnet is attached to the outer periphery of a rotor core
  • an embedded type permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor core.
  • an embedded permanent magnet type rotating electrical machine is suitable.
  • the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation.
  • the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or less than the withstand voltage.
  • variable speed operation When performing variable speed operation close to constant output from low speed to high speed, the interlinkage magnetic flux on the right of the permanent magnet is constant, so the rotating electrical machine voltage reaches the upper limit of the power supply voltage in the high-speed rotation range, and the current required for output flows. Disappear. As a result, the output is greatly reduced in the high-speed rotation region, and further, variable speed operation cannot be performed over a wide range up to high-speed rotation.
  • the total amount of interlinkage magnetic flux of the armature winding is composed of a magnetic flux caused by a d-axis current and a magnetic flux caused by a permanent magnet.
  • the flux weakening control by generating a magnetic flux due to a negative d-axis current, the total flux linkage is reduced by the magnetic flux due to this negative d-axis current.
  • the permanent magnet having a high coercive force changes the operating point of the magnetic characteristics (BH characteristics) within a reversible range. For this reason, the NdFeB magnet having a high coercive force is applied to the permanent magnet so that the permanent magnet is not irreversibly demagnetized by the demagnetizing field of the magnetic flux control.
  • the linkage flux decreases due to the negative d-axis current flux, so the decrease in linkage flux creates a voltage margin relative to the upper voltage limit. And since the electric current which becomes a torque component can be increased, the output in a high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.
  • the copper loss increases and the efficiency deteriorates.
  • the demagnetizing field due to the negative d-axis current generates a harmonic magnetic flux, and the increase in the voltage generated by the harmonic magnetic flux or the like is weakened to create a limit of voltage reduction by the magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet type rotating electrical machine, it is difficult to operate at a variable speed of more than 3 times the base speed. Furthermore, there is a problem that the iron loss increases due to the above-described harmonic magnetic flux, and the efficiency is greatly lowered in the middle and high speed ranges. Further, there is a possibility that vibration is generated by electromagnetic force generated by the harmonic magnetic flux.
  • the train When an embedded permanent magnet motor is applied to a train drive motor, the train has a state of coasting, and in the same way as the hybrid vehicle drive motor described above, in order to make the induced voltage by the permanent magnet less than the power supply voltage, the magnetic flux control is performed. Continue to flow negative d-axis current. In that case, since the electric motor generates only a loss, the overall operation efficiency deteriorates.
  • Patent Documents 1 and 2 disclose a permanent magnet having a low coercive force (hereinafter, referred to as “magnetic coercive force”) whose magnetic flux density is irreversibly changed by a magnetic field generated by a current of a stator winding.
  • Magnetic coercive force a low coercive force
  • Fixed magnets high coercivity permanent magnets
  • a technique is described in which the amount of total interlinkage magnetic flux is adjusted by magnetizing a variable magnetic magnet with a magnetic field generated by a current so that the total interlinkage magnetic flux between the magnet and the fixed magnetic magnet is reduced.
  • the permanent magnet type rotating electrical machine disclosed in Patent Document 1 includes a rotor 1 having a configuration as shown in FIG. That is, the rotor 1 includes a rotor core 2, eight variable magnetic magnets 3, and eight fixed magnetic magnets 4.
  • the rotor core 2 is configured by laminating silicon steel plates, the variable magnetic force magnet 3 is an alnico magnet or an FeCrCo magnet, and the fixed magnetic force magnet 4 is an NdFeB magnet.
  • the variable magnetic force magnet 3 is embedded in the rotor core 2, and first cavities 5 are provided at both ends of the variable magnetic force magnet 3.
  • the variable magnetic force magnet 3 is disposed along the radial direction of the rotor that coincides with the q axis serving as the central axis between the magnetic poles, and is magnetized in a direction perpendicular to the radial direction.
  • the fixed magnetic magnet 4 is embedded in the rotor core 2, and second cavities 6 are provided at both ends of the fixed magnetic magnet 4.
  • the fixed magnetic magnet 4 is disposed substantially in the circumferential direction of the rotor 1 so as to be sandwiched between the two variable magnetic magnets 3 on the inner peripheral side of the rotor 1.
  • the fixed magnetic magnet 4 is magnetized in a direction substantially perpendicular to the circumferential direction of the rotor 1.
  • the magnetic pole part 7 of the rotor core 2 is formed so as to be surrounded by two variable magnetic magnets 3 and one fixed magnetic magnet 4.
  • the central axis direction of the magnetic pole part 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis.
  • a magnetic field is formed by passing a pulsed current having a very short energization time (about 100 ⁇ s to 1 ms) through the stator winding to make it variable.
  • a magnetic field is applied to the magnetic magnet 3. If the magnetizing magnetic field is 250 kA / m, ideally, a sufficient magnetizing magnetic field acts on the variable magnetic force magnet 3, and the fixed magnetic force magnet 4 does not undergo irreversible demagnetization due to magnetization.
  • the amount of interlinkage magnetic flux of the variable magnetic force magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction can be changed in both forward and reverse directions. . That is, assuming that the linkage magnetic flux of the fixed magnetic magnet 4 is in the positive direction, the linkage magnetic flux of the variable magnetic magnet 3 can be adjusted over a wide range from the maximum value in the positive direction to 0 and further in the reverse direction. Therefore, in the rotor of Patent Document 1, the total interlinkage magnetic flux combined with the variable magnetic magnet 3 and the fixed magnetic magnet 4 can be adjusted over a wide range by magnetizing the variable magnetic magnet 3 with the d-axis current.
  • the variable magnetic magnet 3 is magnetized with the d-axis current so as to have the maximum value in the same direction (initial state) as the interlinkage magnetic flux of the fixed magnetic magnet 4, so that the torque by the permanent magnet becomes the maximum value. Therefore, the torque and output of the rotating electrical machine can be maximized.
  • the voltage of the rotating electrical machine is lowered by reducing the amount of magnetic flux of the variable magnetic magnet 3 and lowering the total flux linkage, so that there is room for the upper limit of the power supply voltage and the rotational speed ( (Frequency) can be further increased.
  • the amount of interlinkage magnetic flux of the variable magnetic force magnet 3 can be greatly changed from the maximum to 0 by the d-axis current of the rotor 1, and the magnetization direction is also positive. It has an excellent characteristic that it can be made in both opposite directions.
  • magnetizing the variable magnetic force magnet 3 a large magnetizing current is required, which leads to an increase in the size of an inverter for driving the electric motor.
  • FIGS. 16A to 16D are schematic diagrams for explaining this.
  • the permanent magnet type rotating electric machine of Patent Document 1 as shown in FIG. 16A, two variable magnetic magnets 3 and one fixed magnetic magnet 4 are arranged in a U shape with the d axis as the center.
  • the direction of the magnetic flux of the variable magnetic magnet 3 and the fixed magnetic magnet 4 is directed toward the central magnetic pole portion 7.
  • the magnetic flux is changed from the outer peripheral side of the rotor 1 to the variable magnetic magnet 3 and the fixed magnetic magnet as shown in FIG. 4 so that the variable magnetic force magnet 3 is demagnetized.
  • the fixed magnet 4 is not demagnetized because of its high coercivity.
  • the permanent magnet type rotating electrical machine of Patent Document 1 since the permanent magnet type rotating electrical machine of Patent Document 1 has two types of magnets arranged in parallel magnetically, the amount of demagnetization of the variable magnetic force magnet 3 can be increased, and the change width of the magnetic force can be reduced to 0 to 0. Although there is an advantage that it can be increased to 100%, there is a problem that a large magnetizing current is required at the time of magnetization.
  • the present invention has been made to solve the above-described problems, and by reducing the magnetizing current at the time of magnetizing the variable magnetic force magnet, it is possible to increase the speed of the inverter from low speed to high speed without requiring an increase in the size of the inverter. It is an object of the present invention to provide a permanent magnet type rotating electrical machine that can be operated at a variable speed in a wide range, can increase torque in a low-speed rotation region, increase output in a medium / high-speed rotation region, and improve efficiency.
  • a rotor is formed by forming a plurality of magnetic poles in a rotor core using two or more kinds of permanent magnets having different products of coercive force and magnetization direction thickness.
  • the permanent magnet type rotating electrical machine in which the stator composed of the armature core and the armature winding is disposed through the air gap has the following technical features. That is, among the two or more types of permanent magnets, a permanent magnet having a smaller product of coercive force and magnetization direction thickness than other permanent magnets has a smaller product, and a product of coercive force and magnetization direction thickness is different from that of other permanent magnets.
  • a permanent magnet larger than a permanent magnet is defined as a permanent magnet having a large product
  • two or more permanent magnets including the two or more types of permanent magnets are arranged in series on a magnetic circuit to form a magnet series.
  • the permanent magnets having a large product are arranged in parallel on the magnetic circuit with respect to the magnet series, and among the permanent magnets forming the magnet series by the magnetic field created by the current of the armature winding, A permanent magnet having a small product is magnetized, and the amount of magnetic flux of the permanent magnet constituting the magnetic pole is irreversibly changed.
  • two or more types of permanent magnets are arranged in series and parallel on each magnetic pole of the rotor, and two or more types of permanent magnets are arranged in series and parallel on the magnetic circuit between a plurality of magnetic poles. It is also possible. Further, it is possible to provide a magnetic barrier or a short-circuit coil for each magnetic pole.
  • an increase in the magnetizing current at the time of demagnetization and magnetization of a permanent magnet having a small product of the coercive force and the magnetization direction thickness can be suppressed. Can be achieved.
  • FIG. 3 is a cross-sectional view showing a state in which a variable magnetic force magnet is magnetized in the reverse direction by a reverse magnetic field caused by an electric current and the linkage flux of the magnet is minimum.
  • Sectional drawing which shows the state which generate
  • Sectional drawing which shows the state which reduced the magnetic force of the variable magnetic magnet which reversed the polarity with the magnetic field by an electric current.
  • Sectional drawing which shows the state at the time of demagnetization in 1st Embodiment.
  • Sectional drawing which shows the relationship between the magnetic barrier in this invention, and q-axis magnetic flux.
  • action of the short circuit coil in this invention The schematic diagram which shows the structure of the 2nd Embodiment of this invention.
  • FIG. 1 The schematic diagram which shows the effect
  • the rotor 1 includes a rotor core 2, a permanent magnet 3 (hereinafter referred to as a variable magnetic force magnet) in which the product of the coercive force and the magnetization direction thickness is small, as shown in FIG. It is composed of permanent magnets (hereinafter referred to as fixed magnetic magnets) 4a and 4b in which the product of the coercive force and the magnetization direction thickness is large.
  • 4a shows one fixed magnetic magnet arranged in series on the variable magnetic magnet 3 and the magnetic circuit
  • 4b shows two pieces arranged in parallel on the variable magnetic magnet 3 and the magnetic circuit.
  • a fixed magnetic magnet is shown.
  • the rotor core 2 is formed by laminating silicon steel plates, and the variable magnetic magnet 3 and the fixed magnetic magnets 4 a and 4 b are embedded in the rotor core 2.
  • a cavity is formed at the ends of the variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b so that the magnetic flux passing through the rotor core 2 passes through the portions of the variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b in the thickness direction. 5 and 6 are provided.
  • the magnetic pole part 7 of the rotor core 2 is formed so as to be surrounded by one variable magnetic force magnet 3 and three fixed magnetic force magnets 4a, 4b, 4b.
  • the central axis direction of the magnetic pole part 7 of the rotor core 2 is the d axis, and the central axis direction between the magnetic poles is the q axis.
  • the variable magnetic magnet 3 can be a ferrite magnet or an alnico magnet.
  • the fixed magnetic magnets 4a and 4b are NdFeB magnets.
  • a case where a ferrite magnet having a coercive force of 280 kA / m is used for the variable magnetic magnet 3 and an NdFeB magnet having a coercive force of 1000 kA / m is used for the fixed magnetic magnets 4a and 4b will be described. .
  • variable magnetic magnet 3 and the fixed magnetic magnet 4a are overlapped in the magnetization direction of each magnet to constitute one magnet. That is, the variable magnetic magnet 3 and the fixed magnetic magnet 4a are arranged in the same magnetic direction so as to overlap each other in series to form a series of magnets.
  • This magnet series is arranged in the rotor core 2 at a position where the magnetization direction is the d-axis direction (here, substantially the radial direction of the rotor).
  • the fixed magnetic magnets 4b and 4b are arranged on both sides of the variable magnetic magnet 3 and the fixed magnetic magnet 4a in series at positions where the magnetization direction is the d-axis direction.
  • the fixed magnetic force magnets 4b and 4b arranged on the side constitute a parallel circuit on the magnetic circuit with respect to the magnet series. That is, on the magnetic circuit, the fixed magnetic force magnet 4a is arranged in series with the variable magnetic force magnet 3, and the fixed magnetic force magnets 4b and 4b are arranged in parallel.
  • cavities 9 a and 9 b are provided in the outer peripheral portion and the inner peripheral portion of the fixed magnetic force magnets 4 b and 4 b of the rotor core 2. Among these, the cavity 9a in the outer peripheral portion of the fixed magnetic force magnets 4b and 4b extends along the arrangement direction of the fixed magnetic force magnets 4b and 4b, and forms a magnetic barrier.
  • a short-circuit coil 8 is provided on the lower side (inner circumferential side of the rotor).
  • the short-circuit coil 8 is set so that the magnetization direction of the fixed magnetic magnets 4b and 4b is the central axis.
  • the short-circuit coil 8 is composed of a ring-shaped conductive member and is mounted so as to be fitted into the edge portions of the cavities 5 and 6 provided in the rotor core 2. It is also possible to manufacture by casting a conductive member melted at a high temperature into the hole of the rotor core 2.
  • the short-circuit coil 8 is provided in the magnetic path portion of the other fixed magnetic magnets 4b and 4b excluding the variable magnetic magnet 3.
  • the short-circuit coil 8 is a magnetic flux generated when a d-axis current is passed through the armature winding and generates a short-circuit current.
  • the short-circuit current flowing in the short-circuit coil 8 preferably flows within 1 second with such a strength that the magnetization of the permanent magnet 3 to be irreversibly changed, and then attenuates 50% or more within 1 second. Further, when the inductance value and the resistance value of the short-circuit coil 8 are set to values that allow a short-circuit current to flow to the extent that the magnetization of the variable magnetic force magnet 3 changes, the efficiency is good.
  • a stator 10 is provided on the outer periphery of the rotor 2 through an air gap.
  • the stator 10 has an armature core 11 and an armature winding 12.
  • reference numeral 13 denotes a cavity provided in the outer peripheral portion of the armature core 11.
  • An induced current is induced in the short-circuit coil 8 by the magnetizing current flowing through the armature winding 12, and a magnetic flux penetrating the short-circuit coil 8 is formed by the induced current. Further, the magnetization direction of the variable magnetic force magnet 3 is irreversibly changed by the magnetization current flowing through the armature winding 12.
  • variable magnetic magnet 3 for the variable magnetic magnet 3 and the fixed magnetic magnet 4a, during operation of the permanent magnet type rotating electric machine, the variable magnetic magnet 3 is magnetized by a magnetic field generated by the d-axis current, and the amount of the magnetic flux is irreversibly changed. .
  • the d-axis current for magnetizing the variable magnetic force magnet 3 is passed, and at the same time, the torque of the rotating electrical machine is controlled by the q-axis current.
  • the amount of interlinkage magnetic flux in the armature winding generated by the current (the total current obtained by combining the q-axis current and the d-axis current) and the variable magnetic magnet 3 and the fixed magnetic magnets 4a and 4b by the magnetic flux generated by the d-axis current. That is, the amount of interlinkage magnetic flux of the entire armature winding composed of the magnetic flux generated in the armature winding by the total current of the rotating electrical machine and the magnetic flux generated by the two or more kinds of permanent magnets 4a and 4b on the rotor side. Change almost reversibly.
  • variable magnetic force magnet 3 is irreversibly changed by a magnetic field generated by an instantaneous large d-axis current.
  • operation is carried out by continuously supplying a d-axis current in a range where little or no irreversible demagnetization occurs.
  • the d-axis current at this time acts to adjust the terminal voltage by advancing the current phase.
  • an operation control method is performed in which the polarity of the variable magnetic magnet 3 is reversed with a large d-axis current to advance the current phase.
  • the variable magnetic force magnet 3 is not demagnetized but increased. Become. That is, the magnitude of the terminal voltage can be adjusted without demagnetizing the variable magnetic force magnet 3 with a negative d-axis current.
  • a magnetic field is formed by applying a pulsed current whose energization time is extremely short (about 0.1 ms to 100 ms) to the armature winding of the stator, and the magnetic field is applied to the variable magnetic force magnet 3.
  • a pulse current that forms a magnetic field for magnetizing the variable magnetic force magnet 3 is a d-axis current component of the armature winding of the stator.
  • the change in the magnetization state of the permanent magnet due to the applied magnetic field due to the d-axis current varies depending on the magnitude of the coercive force. That is, the change in the magnetization state of the permanent magnet due to the applied magnetic field is approximated by the product of the magnitude of the coercive force and the thickness of the permanent magnet.
  • the coercive force of the ferrite magnet is 300 kA / m
  • the coercive force of the NdFeB magnet is 1000 kA / m.
  • the magnet thickness in the magnetization direction is the same, 5 mm.
  • the magnetomotive force required to change the magnetic force of the ferrite magnet that is the variable magnetic magnet 3 is about 20% of the NdFeB magnet that is the fixed magnetic magnets 4a and 4b. Therefore, the magnetic force of the NdFeB magnet can be maintained unchanged with a current that can change the magnetic force of the ferrite magnet. Thus, when these magnets are combined in series to form a magnet series, the total flux linkage of the permanent magnet can be adjusted by maintaining the magnetic force of the NdFeB magnet as a base and changing the magnetic force of the ferrite magnet. .
  • a negative d-axis current that generates a magnetic field in the direction opposite to the magnetizing direction of the magnet is pulsed through the armature winding. If the magnetic field in the magnet changed by the negative d-axis current is 175 kA / m, the magnetic force of the ferrite magnet is irreversibly greatly reduced because the coercive force of the ferrite magnet is 175 kA / m. On the other hand, since the coercive force of the NdFeB magnet is 1500 kA / m, the magnetic force does not decrease irreversibly. As a result, when the pulsed d-axis current becomes 0, only the ferrite magnet is demagnetized, and the amount of flux linkage by the entire magnet can be reduced.
  • a positive d-axis current that generates a magnetic field in the same direction as the magnetization direction of the permanent magnet is applied to the armature winding.
  • a magnetic field necessary for magnetizing the ferrite magnet is generated. If the magnetic field in the magnet changed by the positive d-axis current is 350 kA / m, the demagnetized ferrite magnet is magnetized to generate the maximum magnetic force. On the other hand, since the coercive force of the NdFeB magnet is 1500 kA / m, the magnetic force does not change irreversibly. As a result, when the pulsed positive d-axis current becomes zero, only the ferrite magnet is magnetized, and the amount of flux linkage by the entire magnet can be increased. This makes it possible to return to the original maximum flux linkage.
  • the magnetic force of the ferrite magnet is irreversibly changed, and the total interlinkage magnetic flux amount of the permanent magnet is arbitrarily changed. Is possible.
  • variable magnetic force magnet 3 is magnetized so that the magnetic flux of the permanent magnet of the magnetic pole is added at the time of the maximum torque in the low speed region of the permanent magnet type rotating electric machine.
  • the variable magnetic force magnet 3 is magnetized by a magnetic field caused by an electric current to reduce the magnetic flux.
  • the induced electromotive force generated by the permanent magnet is used to withstand the inverter electronic component power source of the rotating electrical machine. Below voltage.
  • FIG. 2 is a diagram when the maximum amount of flux linkage before demagnetization is obtained.
  • the magnetization directions of the two kinds of laminated permanent magnets 3 and 4a are the same, the magnetic fluxes of both the permanent magnets 3 and 4a are added together to obtain the maximum amount of magnetic flux.
  • FIG. 3 shows a state at the time of demagnetization, and the armature generates a negative d-axis current that generates a magnetic field in a direction opposite to the magnetization direction of both permanent magnets 3 and 4a from the d-axis direction by the armature winding.
  • the magnetic field from the fixed magnetic field magnet 4a laminated on the variable magnetic field magnet 3 is applied to the variable magnetic field magnet 3 and this cancels out the magnetic field applied from the d-axis direction for demagnetization.
  • the magnetization current for demagnetization is smaller than that at the time of magnetization, the increase in the magnetization current is small.
  • FIG. 4 shows a state in which the magnetic force of the variable magnetic magnet 3 in a reverse magnetic field is reduced by a negative d-axis current.
  • the magnetic force of the variable magnetic force magnet 3 is irreversibly significantly reduced, the magnetic force is not irreversibly lowered because the coercive force of the fixed magnetic force magnet 4a (NdFeB magnet) is 1500 kA / m.
  • the pulsed d-axis current becomes zero, only the variable magnetic force magnet 3 is demagnetized, and the amount of interlinkage magnetic flux by the entire magnet can be reduced.
  • FIG. 5 shows a state in which the magnetic force of the variable magnetic force magnet 3 in the reverse magnetic field is magnetized in the reverse direction (the polarity is reversed) due to the negative d-axis current, and the interlinkage magnetic flux by the entire magnet is minimized. . If the magnitude of the negative d-axis current generates a magnetic field of 350 kA / m necessary for magnetizing the variable magnetic force magnet 3, the demagnetized variable magnetic force magnet 3 is magnetized to generate a magnetic force. appear. In this case, since the magnetization directions of the two types of permanent magnets 3 and 4a are opposite to each other, the magnetic fluxes of both permanent magnets are subtracted to minimize the magnetic flux.
  • FIG. 6 shows a state in which a magnetic field is generated in order to reduce the magnetic force of the variable magnetic magnet 3 whose polarity is reversed by a negative d-axis current.
  • a positive d-axis current that generates a magnetic field in the magnetization direction of the fixed magnetic force magnet 4a is pulsed through the armature winding.
  • the magnetic field in the magnet changed by the positive d-axis current irreversibly greatly reduces the magnetic force of the variable magnetic magnet 3 whose polarity is reversed.
  • the magnetic field from the fixed magnetic magnet 4a stacked on the variable magnetic magnet 3 is added to the magnetic field generated by the magnetizing current (a biased magnetic field acts on the variable magnetic magnet 3 from the fixed magnetic magnet 4a). Demagnetization of the variable magnetic force magnet 3 is easily performed.
  • FIG. 7 shows a state in which the magnetic force of the variable magnetic magnet 3 whose polarity is reversed by a magnetic field due to a positive d-axis current is reduced.
  • the magnetic field generated by the fixed magnetic force magnet 4a is also added to the magnetic field generated by the positive d-axis current that irreversibly decreases the magnetic force of the variable magnetic force magnet 3. Therefore, even when a large magnetizing current is usually required, an increase in the magnetizing current can be suppressed by the action of the fixed magnetic magnet 4a.
  • FIG. 8 shows a state in which the variable magnetic force magnet 3 is magnetized in the reverse direction (polarity is reversed again) by the positive d-axis current, and the interlinkage magnetic flux of the entire magnet is maximized. Since the magnetization directions of the two kinds of laminated permanent magnets 3 and 4a are the same, the magnetic fluxes of both permanent magnets are added together to obtain the maximum amount of magnetic flux.
  • FIG. 9 is a graph showing magnetic characteristics (relationship between coercive force and magnetic flux density) of typical magnets such as NdFeB magnets, ferrite magnets, alnico magnets, and samacoba magnets (samarium cobalt magnets).
  • typical magnets such as NdFeB magnets, ferrite magnets, alnico magnets, and samacoba magnets (samarium cobalt magnets).
  • an NdFeB magnet can be used as described above.
  • the case of using the ferrite magnet 3 as the variable magnetic force magnet 3 has been described in the section “1-1. Configuration” to “1-3. Action of series arrangement” described above.
  • the variable magnetic force magnet 3 as shown in FIG. 9, not only the above-described ferrite magnet and alnico magnet but also a samacoba magnet (samarium cobalt magnet) can be used.
  • variable magnetic force magnet 3 Even if the variable magnetic force magnet 3 has a low coercive force, the variable magnetic force magnet 3 has a high magnetic flux density when only the variable magnetic force magnet 3 is in a state. The operating point decreases, and the magnetic flux density decreases. On the other hand, in the state where the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked in series, the action of the fixed magnetic magnet 4a stacked in series raises the operating point of the magnet of the variable magnetic magnet 3 and the magnetic flux density is increased. To rise.
  • the operating point of the Alnico magnet or the Samacoba magnet which is a magnet having a low coercive force and a high magnetic flux density, is on the high magnetic flux density side (A and B in FIG. 9) when only the variable magnetic magnet 3 is used.
  • the magnetic flux density decreases to the low magnetic flux density side (A ′ and B ′ in FIG. 9).
  • the magnetic field of the fixed magnetic force magnets 4b and 4b arranged in parallel and the fixed magnetic force magnet 4a arranged in series is reduced. Since the directions are opposite to each other, the magnetic fields of the two are canceled out, and the operating point of the variable magnetic force magnet 3 moves to the high magnetic flux density side (A ′′, B ′′ in FIG. 9).
  • variable magnetic force magnet 3 when an Alnico magnet or a Samacoba magnet is used alone as the variable magnetic force magnet 3, in order to lower the magnetic flux density from the operating points A and B, the magnetic force that can overcome the coercive force is sufficient. Must be generated by a magnetic field generated by the d-axis current of the armature winding, and a large d-axis current is required. However, as in the present embodiment, the operating point of the variable magnetic force magnet 3 moves to A ′′ in the figure by the fixed magnetic force magnets 4b and 4b arranged in parallel and the fixed magnetic force magnet 4a arranged in series.
  • the magnetic flux density is drastically reduced by slightly changing the strength of the magnetic field, whereby the magnetic force of the variable magnetic magnet 3 is reduced by a reverse magnetic field due to the d-axis current of the armature winding.
  • the change in the magnetic flux density can be increased, the amount of interlinkage magnetic flux generated by the entire permanent magnet disposed in the magnetic pole can be greatly changed with a small d-axis current.
  • the magnetizing current required when the polarity is reversed in the direction of increasing the flux linkage of the permanent magnet is increased.
  • the magnetic force can be reversed with a small magnetization current by the action of the fixed magnetic magnets arranged in series.
  • the action of the magnetic barrier provided on the outer periphery of the fixed magnetic magnets 4a and 4b will be described with reference to FIG.
  • the cavity 9a serving as a magnetic barrier is not provided in the outer peripheral portion of the magnet series in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked, and the outer peripheral portion of the fixed magnetic magnets 4b and 4b arranged in parallel with the magnet series. Only provided. Since the fixed magnetic magnets 4b and 4b have a magnetic barrier, the magnetic field due to the d-axis current is reduced.
  • the magnetic field generated by the d-axis current can be increased.
  • the magnetic field A due to the d-axis current can be effectively applied to the magnet series in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are laminated.
  • the increase in the amount of magnetic flux passing through the fixed magnetic magnets 4b and 4b can be suppressed, so that the magnetic saturation of the iron core can be reduced and the d-axis for changing the magnetization of the variable magnetic magnet 3 The current can also be reduced.
  • the q-axis magnetic flux B is distributed so as to cross the outer periphery of the magnetic pole of the rotor core 2, but since there is a cavity 9a serving as a magnetic barrier, the magnetic path cross-sectional area becomes narrow and the magnetic resistance Get higher. Therefore, the q-axis inductance can be reduced and the terminal voltage can be lowered.
  • the magnetic field generated by the d-axis current is not limited to the variable magnetic magnet 3 but also the fixed magnetic magnet 4a. , 4b. Originally, the magnetic field generated by the d-axis current is used to change the magnetization of the variable magnetic force magnet 3.
  • the magnetic field due to the d-axis current may be prevented from acting on the fixed magnetic magnets 4 b and 4 b and concentrated on the variable magnetic magnet 3.
  • the short-circuit coil 8 is disposed on the upper side (the outer periphery side of the rotor) and the lower side (the inner periphery side of the rotor) of the fixed magnetic force magnets 4b and 4b.
  • the short-circuit coil is arranged with the magnetization direction of the fixed magnetic magnets 4b and 4b as the central axis.
  • the magnetic field due to the short-circuit current also acts on the variable magnetic force magnet 3 and is in the same direction as the magnetic field due to the d-axis current.
  • the magnetic field for magnetizing the variable magnetic magnet 3 is strengthened, and the variable magnetic magnet 3 can be magnetized with a small d-axis current. Further, since the fixed magnetic magnets 4b and 4b are not affected by the d-axis current due to the short-circuit coil, and the magnetic flux hardly increases, 11 magnetic saturation of the armature core due to the d-axis current can be reduced.
  • the conductive plate is not limited to the lower surface of the fixed magnetic magnets 4b, 4b, but may be disposed on the upper surface (the outer peripheral side of the rotor). There is a merit that an induced current is generated in the insulating plate and the harmonics can be reduced.
  • the air gap length L1 in the vicinity where the fixed magnetic magnets 4b and 4b are arranged is longer than the air gap length L2 in the vicinity where the variable magnetic magnet 3 is arranged.
  • the configuration is as follows.
  • the magnetic field due to the d-axis current is intended to act on the variable magnetic magnet 3 and the fixed magnetic magnet 4a, but a leakage magnetic field is also generated. Therefore, in the present embodiment, the air gap length L1 near the q axis is made larger than the air gap length L2 near the d axis. That is, since the air gap length is shorter in the vicinity where the variable magnetic force magnet 3 is disposed, the magnetic resistance of the air gap portion is reduced.
  • the magnetic field generated by the d-axis current for magnetizing the magnet can be concentrated on the variable magnetic force magnet 3 disposed in the d-axis portion, and at the same time, a high magnetic field can be applied, and the variable magnetic force can be reduced with a small d-axis current.
  • the magnet 3 can be effectively magnetized.
  • the q-axis side magnetic resistance can be increased, the inductance of the rotating electrical machine can be reduced and the power factor can be improved.
  • a nonmagnetic portion that increases the magnetic resistance in the q-axis direction may be provided in the rotor core.
  • variable magnetic force magnet 3 can be magnetized with a negative d-axis current to reduce the total flux linkage of the permanent magnet. And the reliability is improved.
  • FIG. 13 A second embodiment of the present invention will be described with reference to FIG.
  • the fixed magnetic magnets 4b and 4b are arranged on both sides of the variable magnetic magnet 3 to constitute the first magnetic pole of the rotor.
  • a fixed magnetic force magnet 4a is disposed adjacent to the first magnetic pole to constitute a second magnetic pole.
  • the polarities of the fixed magnetic magnets 4a and 4b in the adjacent first and second magnetic poles are arranged to have different polarities on the outer peripheral side and the inner peripheral side of the rotor.
  • a first magnetic pole in which fixed magnetic magnets 4b and 4b are arranged on both sides of the variable magnetic magnet 3, and a fixed magnetic magnet 4b and 4b of the first magnetic pole arranged on both sides of the first magnetic pole.
  • the magnetic poles of the rotor are formed from the second magnetic poles configured by using the fixed magnetic force magnets 4a having different values.
  • the variable magnetic magnet 3 and the fixed magnetic magnets 4b and 4b are arranged in parallel on the magnetic circuit, and the fixed magnetic force arranged on the variable magnetic magnet 3 of the first magnetic pole and the second magnetic pole.
  • the magnet 4a is arrange
  • the variable magnetic force magnet 3 is not arranged in series with the fixed magnetic force magnet in one pole of the rotor.
  • the variable magnetic magnet 3 is arranged in series with the fixed magnetic magnet 4a of the adjacent pole, and is affected by the magnetic field of the fixed magnetic magnet 4a. Therefore, the fixed magnetic magnet 3 as in the first embodiment is used. The same effect as when 4a is laminated can be obtained. That is, the magnetic field of the fixed magnetic magnet 4 a at the pole of the adjacent rotor is opposite to the magnetic field of the fixed magnetic magnets 4 b and 4 b arranged in parallel to the variable magnetic magnet 3 inside the variable magnetic magnet 3. , Act to offset each other.
  • variable magnetic force magnet 3 when the variable magnetic force magnet 3 is magnetized from the irreversible demagnetized state and returned to the original polarity, the magnetic field by the adjacent fixed magnetic force magnets 4b and 4b that hinder the change can be reduced.
  • the magnetizing current (d-axis current) required when changing the magnetic force 3 can be reduced.
  • the single magnetized magnet 4 b is positioned at the position where the magnetization direction is the d-axis direction (here, substantially the radial direction of the rotor) (the center portion of the stator core).
  • the rotor core 2 a series of magnets formed by stacking the variable magnetic force magnet 3 and the fixed magnetic force magnet 4a in series is arranged on both sides of the fixed magnetic force magnet 4b at a position where the magnetization direction is the d-axis direction.
  • the magnet series in which the variable magnetic magnets 3 and the fixed magnetic magnets 4a arranged on both sides are stacked constitutes a parallel circuit on the magnetic circuit with respect to the fixed magnetic magnet 4b at the magnetic pole center.
  • the cavity 6 is formed at the end of the variable magnetic magnet 3 and the fixed magnetic magnet 4a so that the magnetic flux passing through the rotor core 2 passes through the portions of the variable magnetic magnet 3 and the fixed magnetic magnet 4a in the thickness direction.
  • a magnet series in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked on the left and right with respect to the magnetic pole is provided. Since they are arranged, the variable magnetic magnet 3 can be magnetized by dividing the left and right sides twice. As a result, there is only one fixed magnetic magnet 4b arranged in parallel that will prevent the polarity change of the variable magnetic magnet 3. That is, as compared with the first embodiment in which two fixed magnetic magnets 4b are arranged, the magnetic field by the fixed magnetic magnet 4b that prevents the change in polarity of the variable magnetic magnet 3 can be reduced, so that the magnetic force of the variable magnetic magnet 3 is changed.
  • the magnetizing current (d-axis current) required for the generation can be reduced.
  • the permanent magnet In the permanent magnet forming the magnetic pole, the permanent magnet is defined to be distinguished by the product of the coercive force and the thickness in the magnetization direction. Therefore, even if the magnetic pole is formed of a permanent magnet made of the same material and is formed so as to have different thicknesses in the magnetization direction, the same operation and effect can be obtained.
  • the permanent magnet was magnetized by a magnetic field generated by a pulse-like d-axis current for a very short time during operation to irreversibly change the amount of magnetic flux of the permanent magnet, and the phase was advanced with respect to the induced voltage of all the magnets.
  • the amount of interlinkage magnetic flux of the armature winding generated by the current and the permanent magnet is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 減磁時及び増磁時の磁化電流の増加を抑止し、高出力で低速から高速までの広範囲での可変速運転を可能とする。 回転子1は、回転子鉄心2、可変磁力磁石3、固定磁力磁石4から構成する。可変磁力磁石3と固定磁力磁石4aを各磁石の磁化方向に重ね合わせて磁石直列を構成する。この磁石直列は、磁化方向がd軸方向となる位置で回転子鉄心2内に配置する。可変磁力磁石3と固定磁力磁石4aの磁石直列の両側に、固定磁力磁石4b,4bを磁化方向がd軸方向となる位置で配置する。可変磁力磁石3の鎖交磁束を減少させる場合は、電機子巻線の電流により可変磁力磁石3の磁化方向と逆方向の磁界を作用させる。可変磁力磁石3の鎖交磁束を増加させる場合は、電機子巻線の電流により磁石磁化方向と同方向の磁界を作用させる。

Description

永久磁石式回転電機
 本発明は、2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を不可逆的に変化させて、低速から高速までの広範囲での可変速運転を可能とした永久磁石式回転電機に関する。
 一般に、永久磁石式回転電機は大きく分けて2種類のタイプがある。回転子鉄心の外周に永久磁石を貼り付けた表面磁石型永久磁石式回転電機と、永久磁石を回転子鉄心の中に埋め込んだ埋め込み型永久磁石式回転電機である。可変速駆動用モータとしては、埋め込み型永久磁石式回転電機が適している。
 永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。
 低速から高速まで定出力に近い可変速運転を行う場合、永久磁右の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転まで広範囲に可変速運転することができなくなる。
 最近では、可変速範囲を拡大する方法として、非特許文献1に記載されているような弱め磁束制御が適用され始めている。電機子巻線の総鎖交磁束量はd軸電流による磁束と永久磁石による磁束とから成る。弱め磁束制御では、負のd軸電流による磁束を発生させることによって、この負のd軸電流による磁束で全鎖交磁束量を減少させる。また、弱め磁束制御においても高保磁力の永久磁石は磁気特性(B-H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石は弱め磁束制御の滅磁界により不可逆的に滅磁しないように高保磁力のNdFeB磁石を適用する。
 弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分を作る。そして、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。
 しかし、出力には寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化する。さらに、負のd軸電流による滅磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界を作る。これらより、埋め込み型永久磁石式回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前述の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する問題がある。また、高調波磁束による電磁力で振動を発生する可能性もある。
 ハイブリッド自動車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、エンジンのみで駆動される状態では電動機は連れ回される。中・高速回転では電動機の永久磁石による誘導電圧が上昇するので、電源電圧以内に抑制するため、弱め磁束制御で負のd軸電流を流し続ける。この状態では、電動機は損失のみを発生するので総合運転効率が悪化する。
 電車用駆動電動機に埋め込み型永久磁石電動機を適用した場合、電車は惰行運転する状態があり、上記ハイブリッド自動車用駆動電動機と同様に永久磁石による誘導電圧を電源電圧以下にするために弱め磁束制御で負のd軸電流を流し続ける。その場合、電動機は損失のみを発生するので総合運転効率が悪化する。
 このような問題点を解決する技術として、特許文献1や特許文献2には、固定子巻線の電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、電流による磁界で可変磁力磁石を磁化させて全鎖交磁束量を調整する技術が記載されている。
 この特許文献1の永久磁石式回転電機は、図15に記載のような構成の回転子1を備えている。すなわち、回転子1は、回転子鉄心2、8個の可変磁力磁石3及び8個の固定磁力磁石4から構成されている。回転子鉄心2は珪素鋼板を積層して構成され、可変磁力磁石3はアルニコ磁石またはFeCrCo磁石であり、固定磁力磁石4はNdFeB磁石である。
 可変磁力磁石3は回転子鉄心2の中に埋め込まれ、可変磁力磁石3の両端部には第1の空洞5が設けられている。可変磁力磁石3は磁極間の中心軸になるq軸と一致する回転子の半径方向に沿って配置され、半径方向に対して直角方向に磁化される。固定磁力磁石4は回転子鉄心2内に埋め込まれ、固定磁力磁石4の両端部には第2の空洞6が設けられている。固定磁力磁石4は、2個の可変磁力磁石3により回転子1内周側で挟まれるように回転子1のほぼ周方向に配置されている。固定磁力磁石4は回転子1の周方向に対してほぼ直角方向に磁化されている。
 回転子鉄心2の磁極部7は2個の可変磁力磁石3と1個の固定磁力磁石4で取り囲まれるようにして形成されている。回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。この回転子1を採用した特許文献1の永久磁石式回転電機では、固定子巻線に通電時間が極短時間(100μs~1ms程度)となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界を作用させる。着磁磁界を250kA/mとすると、理想的には可変磁力磁石3には十分な着磁磁界が作用し、固定磁力磁石4には着磁による不可逆減磁はない。
 その結果、特許文献1の永久磁石式回転電機では、回転子1のd軸電流により可変磁力磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできる。すなわち、固定磁力磁石4の鎖交磁束を正方向とすると、可変磁力磁石3の鎖交磁束を正方向の最大値から0、さらには逆方向の最大値まで広範囲に調整することができる。従って、特許文献1の回転子では、可変磁力磁石3をd軸電流で着磁することにより可変磁力磁石3と固定磁力磁石4を合わせた全鎖交磁束量を広範囲に調整することができる。
 例えば、低速域では可変磁力磁石3は固定磁力磁石4の鎖交磁束と同方向(初期状態)で最大値になるようにd軸電流で磁化することにより、永久磁石によるトルクは最大値になるので、回転電機のトルク及び出力を最大にすることができる。中・高速域では、可変磁力磁石3の磁束量を低下させ、全鎖交磁束量を下げることにより、回転電機の電圧は下がるので、電源電圧の上限値に対して余裕ができ、回転速度(周波数)をさらに高くすることが可能となる。
特開2006-280195号公報 特開2008-48514号公報
埋込磁石同期モータの設計と制御、武田洋次・他共著、オーム社、2001年10月、ISBN: 4-274-03567-0
 前記のような構成を有する特許文献1の永久磁石式回転電機は、回転子1のd軸電流により、可変磁力磁石3の鎖交磁束量を最大から0まで大きく変化でき、また磁化方向も正逆の両方向にできるという優れた特性を有する。その反面、可変磁力磁石3を増磁させる場合に大きな磁化電流が必要となり、電動機を駆動するためのインバータの大型化を招くことになる。
 特に、永久磁石の特性上、減磁の場合よりも増磁の場合に大きな磁化電流が要求されるが、特許文献1の永久磁石式回転電機は、2種類の磁石が磁気的に並列に配置された構成のため、固定磁力磁石4の鎖交磁束の影響で、可変磁力磁石3の増磁に大きな磁界が必要となる。
 図16(A)から(D)は、そのことを説明する模式図である。特許文献1の永久磁石式回転電機では、図16(A)のように、2つの可変磁力磁石3と1つの固定磁力磁石4とが、d軸を中心としてU字形に配置されている。電動機の通常の運転状態では、可変磁力磁石3及び固定磁力磁石4の磁束の方向は、中心の磁極部7の方を向いている。この状態で、d軸電流をパルス的に流して、減磁用の磁界を発生すると、その磁束は図16(B)のように、回転子1の外周側から可変磁力磁石3及び固定磁力磁石4を貫くように発生し、それによって、可変磁力磁石3は減磁される。このとき、固定磁力磁石4は、保磁力が高いため、減磁されることはない。
 この減磁の場合、図16(B)のように、固定磁力磁石4の磁束は、d軸方向と共に可変磁力磁石3の内側から外側に向かって、可変磁力磁石3の当初の磁束の向きとは逆に流れるので、d軸電流の作る磁界による減磁作用を補助する。そのため、図16(C)のように、可変磁力磁石3の極性を反転させるまでの減磁が可能である。
 一方、増磁の場合には、d軸電流を再びパルス的に印加することで、図16(D)に示すように、図16(B)とは逆方向の磁界を発生させ、その磁界を構成する逆方向の磁束によって、減磁した可変磁力磁石3の鎖交磁束を図16(A)の通常運転時の状態に戻す。しかし、本来、減磁に比較して増磁のためのエネルギーが大きく必要な上、図16(D)のように、可変磁力磁石3には固定磁力磁石4の磁束が減磁方向に加わっているため、これに打ち勝つだけの大きな磁界を生成することのできる磁化電流が必要となる。
 このように、特許文献1の永久磁石式回転電機は、2種類の磁石を磁気的に並列に配置したため、可変磁力磁石3の減磁量を大きくとることができ、磁力の変化幅を0~100%のように大きくすることができる利点はあるものの、増磁時に必要とする磁化電流が大きいという問題があった。
 このような問題は、増磁時に限らず、可変磁力磁石3の減磁時においても少なからず発生するものであって、可変磁力磁石3の磁束量を効率よく行える永久磁石式回転電機の出現が望まれていた。
 本発明は、上述した課題を解決するためになされたものであり、可変磁力磁石の増磁時における磁化電流を減少させることで、インバータの大型化を必要とすることなく、低速から高速までの広範囲で可変速運転を可能とし、低速回転域の高トルク化と中・高速回転域での高出力化、効率の向上を可能とした永久磁石式回転電機を提供することを目的とする。
 本発明は、保磁力と磁化方向厚の積が互いに異なる2種類以上の永久磁石を用いて、回転子鉄心内に複数個の磁極を形成して回転子を構成し、この回転子の外周に、エアギャップを介して電機子鉄心と電機子巻線からなる固定子を配置してなる永久磁石式回転電機において、次のような技術的特徴を有する。すなわち、前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が他の永久磁石と比べて小さい永久磁石を積が小の永久磁石、保磁力と磁化方向厚の積が他の永久磁石と比べて大きい永久磁石を積が大の永久磁石と定義した場合に、前記2種類以上の永久磁石を含む2個以上の永久磁石を磁気回路上で直列に配置して磁石直列を形成し、この磁石直列に対して、前記積が大の永久磁石を磁気回路上で並列に配置し、前記電機子巻線の電流が作る磁界により、前記磁石直列を形成する永久磁石のうち、前記積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させることを特徴とする。
 本発明において、回転子の各磁極に2種類以上の永久磁石を磁気回路上で直並列に配置すること、複数の磁極の間で2種類以上の永久磁石を磁気回路上で直並列に配置することも可能である。また、各磁極に、磁気障壁を設けたり、短絡コイルを設けることも可能である。
 以上のような構成を有する本発明によれば、保磁力と磁化方向厚の積が小の永久磁石の減磁時および増磁時の磁化電流の増加を抑止できるので、回転機の効率化を達成することができる。
本発明の第1の実施の形態における回転子と固定子の断面図。 磁石の鎖交磁束が最大の状態を示す断面図。 コイルの電流で可変磁力磁石の磁力減少させる磁界を発生させた状態を示す断面図。 電流による逆磁界で可変磁力磁石の磁力が減少した状態を示す断面図。 電流による逆磁界で可変磁力磁石が逆方向に磁化し、磁石の鎖交磁束が最小の状態を示す断面図。 コイルの電流で極性反転した可変磁力磁石の磁力を減少させる磁界を発生た状態を示す断面図。 電流による磁界で極性反転した可変磁力磁石の磁力を減少させた状態を示す断面図。 電流による逆磁界で可変磁力磁石が逆方向に磁化し、磁石の鎖交磁束が最大の状態を示す断面図。 低保磁力磁石の動作点変化と代表的磁石の磁気特性を示す図。 第1の実施の形態における減磁時の状態を示す断面図。 本発明における磁気障壁とq軸磁束との関係を示す断面図。 本発明における短絡コイルの作用を示す断面図。 本発明の第2の実施の形態の構成を示す模式図。 本発明の第3の実施の形態の構成を示す模式図。 特許文献1に記載の回転子の断面図。 特許文献1に記載の回転子の作用を示す模式図。
 以下、本発明に係る永久磁石式型回転電機の実施の形態について、図1~12を参照して説明する。なお、以下の実施の形態の回転電機は12極の場合で説明しているが、本発明は、他の極数でも同様に適用できる。
(1.第1の実施の形態)
(1-1.構成)
 本発明の第1の実施の形態について、図1を用いて説明する。
 本発明の第1の実施の形態の回転子1は、図1に示すように回転子鉄心2、保磁力と磁化方向厚みの積が小となる永久磁石3(以下、可変磁力磁石という)、保磁力と磁化方向厚の積が大となる永久磁石(以下、固定磁力磁石という)4a,4bから構成する。ここで、4aは、可変磁力磁石3と磁気回路上で直列に配置される1個の固定磁力磁石を示しており、4bは、可変磁力磁石3と磁気回路上で並列に配置される2個の固定磁力磁石を示している。回転子鉄心2は珪素鋼板を積層して構成し、前記の可変磁力磁石3及び固定磁力磁石4a,4bは回転子鉄心2内に埋め込む。
 回転子鉄心2内を通過する磁束が可変磁力磁石3及び固定磁力磁石4a,4bの部分をその厚さ方向に通過するように、可変磁力磁石3及び固定磁力磁石4a,4bの端部に空洞5,6を設ける。回転子鉄心2の磁極部7は1個の可変磁力磁石3と3個の固定磁力磁石4a,4b,4bで取り囲まれるようにして形成する。回転子鉄心2の磁極部7の中心軸方向がd軸、磁極間の中心軸方向がq軸となる。
 可変磁力磁石3はフェライト磁石またはアルニコ磁石を使用することができる。固定磁力磁石4a,4bは、NdFeB磁石とする。本実施の形態では、一例として、可変磁力磁石3に保磁力が280kA/mのフェライト磁石を使用し、固定磁力磁石4a,4bに保磁力が1000kA/mのNdFeB磁石を使用する場合について説明する。
 可変磁力磁石3と固定磁力磁石4aを各磁石の磁化方向に重ね合わせて1つの磁石を構成する。すなわち、可変磁力磁石3と固定磁力磁石4aを同じ磁化方向として、磁気的に直列に重ねて配置し、磁石直列を形成する。この磁石直列は、磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置で回転子鉄心2内に配置する。一方、可変磁力磁石3と固定磁力磁石4aの磁石直列の両側に、固定磁力磁石4b,4bを磁化方向がd軸方向となる位置で配置する。この横に配置した固定磁力磁石4b,4bは、前記磁石直列に対して、磁気回路上で並列回路を構成する。すなわち、磁気回路上では、可変磁力磁石3に対して、固定磁力磁石4aを直列に配置し、固定磁力磁石4b,4bを並列に配置する。また、回転子鉄心2の固定磁力磁石4b,4bの外周部と内周部には、空洞9a,9bが設けられている。このうち、固定磁力磁石4b,4b外周部の空洞9aは、固定磁力磁石4b,4bの配置方向に沿って伸びており、磁気障壁を形成している。
 前記回転子鉄心2内に埋め込まれた、可変磁力磁石3と固定磁力磁石4aを積層した磁石直列と、両側の固定磁力磁石4b,4bとを取り囲むようにその上側(回転子の外周側)及び下側(回転子の内周側)に短絡コイル8を設ける。この時、短絡コイル8が固定磁力磁石4b,4bの磁化方向が中心軸となるようにする。この短絡コイル8は、リング状の導電性部材から構成し、回転子鉄心2内に設けた空洞5,6の縁の部分にはめ込むように装着する。なお、回転子鉄心2の穴に高温で溶けた導電性部材を流し込んで鋳造して製作することも可能である。この短絡コイル8は、可変磁力磁石3を除いた他の固定磁力磁石4b,4bの磁路部分に設ける。
 この短絡コイル8は、電機子巻線にd軸電流を通電させた場合に発生する磁束で、短絡電流が発生するものである。短絡コイル8に流れる短絡電流は、不可逆変化させる永久磁石3の磁化が変化する程度の強さで1秒以内に流れ、その後1秒以内に50%以上減衰するものであることが好ましい。また、前記短絡コイル8のインダクタンス値と抵抗値を、可変磁力磁石3の磁化が変化する程度の短絡電流が流れるような値とすると、効率が良い。
 前記回転子2の外周には、エアギャップを介して固定子10を設ける。この固定子10は、電機子鉄心11と電機子巻線12とを有する。図中13は、電機子鉄心11の外周部に設けられた空洞である。この電機子巻線12に流れる磁化電流により、前記短絡コイル8には誘導電流が誘起され、その誘導電流によって短絡コイル8を貫通する磁束が形成される。また、この電機子巻線12に流れる磁化電流により、可変磁力磁石3の磁化方向が不可逆的に変化する。
 すなわち、可変磁力磁石3及び固定磁力磁石4aに対しては、永久磁石式回転電機の運転時において、d軸電流による磁界で可変磁力磁石3を磁化させて、その磁束量を不可逆的に変化させる。その場合、可変磁力磁石3を磁化するd軸電流を流すと同時にq軸電流により回転電機のトルクを制御する。
 また、d軸電流で生じる磁束により、電流(q軸電流とd軸電流とを合成した全電流)と可変磁力磁石3及び固定磁力磁石4a,4bとで生じる電機子巻線の鎖交磁束量、すなわち、回転電機の全電流によって電機子巻線に生じる磁束と、回転子側の2種類以上の永久磁石4a,4bによって生じる磁束とから構成される電機子巻線全体の鎖交磁束量をほぼ可逆的に変化させる。
 特に、本実施の形態では、瞬時の大きなd軸電流による磁界で可変磁力磁石3を不可逆変化させる。この状態で不可逆減磁がほとんど生じないか、僅かの不可逆減磁が生じる範囲のd軸電流を連続的に流して運転する。このときのd軸電流は電流位相を進めて端子電圧を調整するように作用する。
 また、大きなd軸電流で可変磁力磁石3の極性を反転させ、電流位相を進める運転制御方法を行う。このようにd軸電流で可変磁力磁石3の極性を反転させているので、端子電圧を低下させるような負のd軸電流を流しても、可変磁力磁石3にとっては減磁界ではなく増磁界となる。すなわち、負のd軸電流で可変磁力磁石3は減磁することなく、端子電圧の大きさを調整することができる。
 一般の磁石モータでは磁石の極性は反転していないので電流位相を進めることによりd軸電流が増加すると、磁石が不可逆減磁する問題があるが、本実施の形態においては、可変磁力磁石3の極性を反転させて位相を進めることが可能である。
(1-2.基本的な作用)
 次に、第1の実施の形態において、作用を説明する。
 本実施の形態では、固定子の電機子巻線に通電時間が極短時間(0.1ms~100ms程度)となるパルス的な電流を流して磁界を形成し、可変磁力磁石3に磁界を作用させる。可変磁力磁石3を磁化するための磁界を形成するパルス電流は固定子の電機子巻線のd軸電流成分とする。
 2種類の永久磁石4a,4bの厚みはほぼ同等するとd軸電流による作用磁界による永久磁石の磁化状態変化は保磁力の大きさにより変わる。すなわち、作用磁界による永久磁石の磁化状態変化は、保磁力の大きさと永久磁石の厚みの積で概算する。本実施例では、フェライト磁石の保磁力は300kA/mとし、NdFeB磁石の保磁力は1000kA/mとする。また、磁化方向の磁石厚みは同一で5mmとする。磁化に要する起磁力は磁化に要する磁界と永久磁石の厚みの積で概算するので、フェライト磁石の90%の着磁磁界は約350kA/mなので、磁化に要する起磁力は350kA/m×5×10-3=1750Aとなる。一方、NdFeB磁石の90%の着磁磁界は約1500kA/mなので磁化に要する起磁力は1500kA/m×5×10-3=7500Aとなる。
 可変磁力磁石3であるフェライト磁石の磁力可変に必要な起磁力は、固定磁力磁石4a,4bであるNdFeB磁石の約20%となる。従って、フェライト磁石の磁力を可変にできる電流では、NdFeB磁石の磁力は変わらずに維持できる。これより、これらの磁石を直列に組み合わせて磁石直列を構成すると、NdFeB磁石の磁力をベース分として維持して、フェライト磁石の磁力を変化させることにより、永久磁石の全鎖交磁束量を調整できる。
 初めに磁石の磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が175kA/mになったとすると、フェライト磁石の保磁力が175kA/mなのでフェライト磁石の磁力は不可逆的に大幅に低下する。一方、NdFeB磁石の保磁力が1500kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になるとフェライト磁石のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。
 つぎに、永久磁石の磁化方向と同方向の磁界を発生する正のd軸電流を電機子巻線に通電する。フェライト磁石が着磁するために必要な磁界を発生させる。正のd軸電流によって変化した磁石内の磁界が350kA/mとすると、減磁していたフェライト磁石は着磁されて最大の磁力を発生する。一方、NdFeB磁石の保磁力が1500kA/mなので磁力は不可逆的に変化しない。その結果、パルス的な正のd軸電流が0になるとフェライト磁石のみが増磁した状態となり、全体の磁石による鎖交磁束量を増加することができる。これにより元の最大の鎖交磁束量に戻すことが可能となる。
 以上のようにd軸電流による瞬時的な磁界をフェライト磁石とNdFeB磁石に作用させることにより、フェライト磁石の磁力を不可逆的に変化させて、永久磁石の全鎖交磁束量を任意に変化させることが可能となる。
 この場合、永久磁石式回転電機の低速域での最大トルク時には磁極の永久磁石の磁束が加え合わせになるように可変磁力磁石3を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、前記可変磁力磁石3は、電流による磁界で磁化させて磁束を減少させる。また、磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧を、回転電機の電源であるインバータ電子部品の耐電圧以下とする。
(1-3.直列配置の作用)
 本実施の形態では、2種類の磁石を磁気的に直列に配置して磁石直列を形成しているので、可変磁力磁石3の減磁及び増磁の際に、前記特許文献1の永久磁石式回転電機とは異なる作用を有する。この点を図2~8により説明する。
 図2は、減磁前の最大の鎖交磁束量を得ている場合の図である。この場合、積層された2種類の永久磁石3,4aの磁化方向は同一であるため、両方の永久磁石3,4aの磁束が加え合わせになって、最大の磁束量が得られる。
 図3は、減磁時の状態を示すもので、電機子巻線によりd軸方向から両方の永久磁石3,4aの磁化方向とは逆方向の磁界を発生する負のd軸電流を電機子巻線にパルス的に通電させる。負のd軸電流によって変化した磁石内の磁界が175kA/mになったとすると、可変磁力磁石3(フェライト磁石)の保磁力が175kA/mなので可変磁力磁石3の磁力は不可逆的に大幅に低下する。この場合、可変磁力磁石3には、それに積層した固定磁力磁石4aからの磁界が加わっており、これが減磁のためのd軸方向から加わる磁界と打ち消し合うことになるため、その分大きな磁化電流が必要となるが、減磁のための磁化電流は増磁時に比較して少なくて済むので、磁化電流の増加は少ない。
 図4は、負のd軸電流により逆磁界での可変磁力磁石3の磁力が減少した状態を示すものである。可変磁力磁石3の磁力は不可逆的に大幅に低下するが、固定磁力磁石4a(NdFeB磁石)の保磁力が1500kA/mなので磁力は不可逆的に低下しない。その結果、パルス的なd軸電流が0になると可変磁力磁石3のみが減磁した状態となり、全体の磁石による鎖交磁束量を減少することができる。
 図5は、負のd軸電流により逆磁界での可変磁力磁石3の磁力が逆方向に磁化(極性が反転)し、全体の磁石による鎖交磁束が最小になった状態を示すものである。負のd軸電流の大きさが可変磁力磁石3が着磁するために必要な350kA/mの磁界を発生しているならば、減磁していた可変磁力磁石3は着磁されて磁力を発生する。この場合、2種類の永久磁石3,4aの磁化方向が逆であるため、両方の永久磁石の磁束が減算され、磁束が最小となる。
 図6は、負のd軸電流で極性が反転した可変磁力磁石3の磁力を減少させるために磁界を発生させた状態を示すものである。固定磁力磁石4aの磁化方向の磁界を発生する正のd軸電流を電機子巻線にパルス的に通電させる。正のd軸電流によって変化した磁石内の磁界が極性が反転した可変磁力磁石3の磁力を不可逆的に大幅に低下させる。この場合、可変磁力磁石3に積層されている固定磁力磁石4aからの磁界が磁化電流による磁界と加え合わせになる(固定磁力磁石4aからバイアス的な磁界が可変磁力磁石3に作用する)ため、可変磁力磁石3の減磁が容易に行われる。
 図7は、正のd軸電流による磁界で極性反転した可変磁力磁石3の磁力が減少した状態を示すものである。可変磁力磁石3の磁力を不可逆的に低下させる正のd軸電流による磁界には、固定磁力磁石4aによる磁界も加わっている。そのため、通常は大きな磁化電流を必要とする時においても、固定磁力磁石4aの作用により、磁化電流の増大を抑止できる。
 図8は、正のd軸電流により可変磁力磁石3が逆方向に磁化(極性が再度反転)し、全体の磁石による鎖交磁束が最大になった状態を示すものである。積層された2種類の永久磁石3,4aの磁化方向は同一であるため、両方の永久磁石の磁束が加え合わせになって、最大の磁束量が得られる。
(1-4.可変磁力磁石の作用)
 次に、可変磁力磁石3の作用について述べる。図9は、代表的な磁石であるNdFeB磁石、フェライト磁石、アルニコ磁石、サマコバ磁石(サマリウムコバルト磁石)の磁気特性(保磁力と磁束密度との関係)を示したグラフである。この中で、本発明の固定磁力磁石4としては、前述した通りNdFeB磁石を使用することができる。また、本実施の形態において、前述の「1-1.構成」から「1-3.直列配置の作用」の欄では、可変磁力磁石3として、フェライト磁石3を使用した場合について説明したが、本発明において、可変磁力磁石3としては、図9に示すように、前述したフェライト磁石やアルニコ磁石だけでなく、サマコバ磁石(サマリウムコバルト磁石)を使用することもできる。
 可変磁力磁石3は、低保磁力であっても、可変磁力磁石3のみの状態のときは高磁束密度であるが、固定磁力磁石4を並列に配置した状態では、その作用で可変磁力磁石3の動作点は低下し、その磁束密度が低下する。これに対して、可変磁力磁石3と固定磁力磁石4aを直列に積層した状態では、直列に積層した固定磁力磁石4aの作用で、可変磁力磁石3の磁石の動作点は上昇し、磁束密度が上昇する。
 すなわち、低保磁力で高磁束密度の磁石であるアルニコ磁石またはサマコバ磁石の動作点は、可変磁力磁石3のみの状態では高磁束密度側(図9のA,B)にあるが、固定磁力磁石4b,4bを並列に配置した状態では低磁束密度側(図9のA’,B’)に低下する。しかし、本発明のように、可変磁力磁石3と固定磁力磁石4aを直列に積層した状態では、並列に配置された固定磁力磁石4b,4bと、直列に配置された固定磁力磁石4aの磁界の向きが逆方向であるため、両者の磁界は相殺され、可変磁力磁石3の動作点は高磁束密度側(図9のA”,B”)に移動する。
 このグラフから分かるように、可変磁力磁石3として、アルニコ磁石やサマコバ磁石を単独で使用した場合には、動作点A,B点から磁束密度を下げるためには、その保磁力に打ち勝つだけの磁力を電機子巻線のd軸電流による磁界で発生させる必要があり、大きなd軸電流が必要となる。しかし、本実施の形態のように、並列に配置された固定磁力磁石4b,4bと、直列に配置された固定磁力磁石4aによって、可変磁力磁石3の動作点は図中A”に移動することになるので、磁界の強さをわずかに変化するだけでその磁束密度が急激に低下することになる。これにより、電機子巻線のd軸電流により逆磁界で可変磁力磁石3の磁力が減少した場合に、その磁束密度の変化を大きくすることができるので、少ないd軸電流によって、磁極内に配置された永久磁石全体による鎖交磁束量を大きく変化させることができる。
 フェライト磁石は、アルニコ磁石と比較して保磁力が大きいため、永久磁石の鎖交磁束を増加させる方向に極性を反転させた場合に要する磁化電流が大きくなる。しかし、本実施の形態では、直列に配置した固定磁力磁石の作用により少ない磁化電流で磁力を反転できる。
 この点は、図9に示すフェライト磁石を可変磁力磁石3として使用した場合も同様であって、アルニコ磁石やサマコバ磁石のような急激な変化は無いものの、フェライト磁石単独で使用した場合に比較すると、その動作点C”が低下するので、少ないd軸電流で磁束密度を低下させることができる。
(1-5.磁気障壁の作用)
 固定磁力磁石4a,4bの外周部に設けられた磁気障壁の作用について、図10について述べる。磁気障壁となる空洞9aは、可変磁力磁石3と固定磁力磁石4aを積層した磁石直列の外周部には設けられておらず、この磁石直列と並列に配置した固定磁力磁石4b,4bの外周部のみに設けられている。固定磁力磁石4b,4bは磁気障壁があるので、d軸電流による磁界は小さくなる。
 一方、可変磁力磁石3と固定磁力磁石4aを積層した磁石直列の周りには磁気障壁がないのでd軸電流により生じる磁界は高くできる。これより、可変磁力磁石3と固定磁力磁石4aを積層した磁石直列に対してd軸電流による磁界Aを効果的に作用させることができる。また、d軸電流により増加する磁束に関しても、固定磁力磁石4b,4bを通る磁束量の増加を抑制できるので、鉄心の磁気飽和を緩和でき、可変磁力磁石3の磁化を変化させるためのd軸電流も低減できる。
 また、図11に示すように、q軸磁束Bが回転子鉄心2の磁極外周部を横切るように分布するが、磁気障壁となる空洞9aがあるので磁路断面積が狭くなって磁気抵抗が高くなる。従って、q軸インダクタンスを小さくすることができ、端子電圧を下げることができる。
(1-6.短絡コイルの作用)
 つぎに、図12により、短絡コイル8の作用について述べる。可変磁力磁石3と固定磁力磁石4a,4bは、回転子鉄心2内に埋め込まれて磁気回路を構成しているので、前記d軸電流による磁界は可変磁力磁石3のみでなく、固定磁力磁石4a,4bにも作用する。本来、前記d軸電流による磁界は可変磁力磁石3の磁化を変化させるために行う。
 そこで、前記d軸電流による磁界が固定磁力磁石4b,4bに作用しないようにし、可変磁力磁石3に集中するようにすればよい。本実施の形態では、固定磁力磁石4b,4bの上側(回転子の外周側)と下側(回転子の内周側)に短絡コイル8を配置する。短絡コイルは固定磁力磁石4b,4bの磁化方向を中心軸として配置する。前記d軸電流による磁界が固定磁力磁石4b,4bに作用すると、前記磁界を打ち消すような誘導電流が短絡コイル8に流れる。従って、固定磁力磁石4b,4b中には前記d軸電流による磁界と短絡電流による磁界で、磁界の増減はほとんど生じない。さらに短絡電流による磁界は可変磁力磁石3にも作用し、d軸電流による磁界と同方向になる。
 従って、可変磁力磁石3を磁化させる磁界が強まり、少ないd軸電流で可変磁力磁石3を磁化できることになる。また、短絡コイルにより固定磁力磁石4b,4bは前記d軸電流の影響を受けず、磁束の増加はほとんど生じないので、前記d軸電流による電機子鉄心の11磁気飽和も緩和できる。
 なお、固定磁力磁石4b,4bの下面(回転子の内周側)に、前記短絡コイル8に代えて導電性の板を設けることもできる。導電性の板として、銅板またはアルミ板を使用することが好ましい。また、導電性の板は、固定磁力磁石4b,4bの下面に限らず、上面(回転子の外周側)に配置しても良いが、上面に設けると、電流高調波やスロット高調波で導電性板に誘導電流が生じて前記高調波を低減できるメリットがある。
 このような構成では、磁化電流によって発生した磁界が導電性の板に加わると、導電性の板の表面には誘導電流(渦電流)が発生し、それによって、前記短絡コイル8と同様な磁界が発生する。その磁界により、固定磁力磁石4b,4b中には前記d軸電流による磁界と短絡電流による磁界で、磁界の増減はほとんど生じない。さらに短絡電流による磁界は可変磁力磁石3にも作用し、d軸電流による磁界と同方向になる。同時に、電機子鉄心11の磁気飽和を緩和する作用も発揮される。
(1-7.エアギャップ長の作用)
 第1の実施の形態では、図1に示すように、固定磁力磁石4b,4bが配置された近傍のエアギャップ長L1は、可変磁力磁石3が配置された近傍のエアギャップ長L2よりも長くした構成とする。
 本実施の形態では、d軸電流による磁界は可変磁力磁石3及び固定磁力磁石4aに作用させることを目的としているが、漏れ磁界も生じる。そのため、本実施の形態ではq軸近傍のエアギャップ長L1をd軸近傍のエアギャップ長L2よりも大きくしている。すなわち、エアギャップ長は可変磁力磁石3が配置された近傍で短くなっているので、エアギャップ部分の磁気抵抗が小さくなる。
 従って、磁石を磁化させるためのd軸電流による磁界は、d軸部に配置された可変磁力磁石3に集中させることができ、同時に高い磁界を作用させることができ、少ないd軸電流で可変磁力磁石3を効果的に磁化できる。また、q軸側の磁気抵抗を大きくできるので、回転電機のインダクタンスを低減でき、力率を向上できる。他の実施例として、q軸方向の磁気抵抗を大きくするような非磁性部分を回転子鉄心内に設けてもよい。
(1-8.効果)
 以上のような構成並びに作用を有する本実施の形態においては、次の効果が得られる。(1)増磁時の磁化電流の増加を抑止できるので、永久磁石式回転電機を駆動するためのインバータの大型化を必要とせず、現状のインバータをそのまま使用して、運転の効率化が可能となる。
(2)d軸電流で可変磁力磁石3を不可逆的に変化させることにより、固定磁力磁石4aと固定磁力磁石4b,4bを合わせた全鎖交磁束量を広範囲に調整することができる。
(3)永久磁石の全鎖交磁束量の調整は回転電機の電圧を広範囲に調整することを可能とし、また、着磁は極短時間のパルス的な電流で行うので常時弱め磁束電流を流し続ける必要もないので損失を大幅に低減できる。また、従来のように弱め磁束制御を行う必要がないので高調波磁束による高調波鉄損も発生しない。以上により、本実施の形態の回転電機は、高出力で低速から高速までの広範囲の可変速運転を可能とし、広い運転範囲において高効率も可能となる。
(4)永久磁石による誘導電圧に関しては、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできるので、永久磁石の誘導電圧によるインバータ電子部品の破損がなくなり、信頼性が向上する。
(5)回転電機が無負荷で連れ回される状態では、可変磁力磁石3を負のd軸電流で着磁して永久磁石の全鎖交磁束量を小さくできる。これより、誘導電圧は著しく低くなり、誘導電圧を下げるための弱め磁束電流を常時通電する必要がほとんどなくなり、総合効率が向上する。特に惰行運転時間が長くなる通勤電車に本発明の回転電機を搭載して駆動すると、総合運転効率は大幅に向上する。
(2.第2の実施の形態)
 本発明の第2の実施の形態について、図13を用いて説明する。
 本実施の形態は、図13のように、可変磁力磁石3の両側に固定磁力磁石4b,4bを並べて回転子の第1の磁極を構成する。一方、前記第1の磁極と隣接して、固定磁力磁石4aを配置して第2の磁極を構成する。これら隣接する第1と第2の磁極における固定磁力磁石4a,4bの極性は、回転子の外周側及び内周側でそれぞれ異なった極性となるように配置する。
 すなわち、可変磁力磁石3の両側に固定磁力磁石4b,4bを配置した第1の磁極と、この第1の磁極の両側に配置され、第1の磁極の固定磁力磁石4b,4bとはその極性が異なる固定磁力磁石4aを用いて構成された第2の磁極とから、回転子の磁極が形成される。また、第1の磁極内では、可変磁力磁石3と固定磁力磁石4b,4bが磁気回路上で並列に配置され、第1の磁極の可変磁力磁石3と第2の磁極に配置された固定磁力磁石4aが磁気回路上で直列に配置され、磁石直列を形成している。
 以上のような構成を有する本実施の形態では、可変磁力磁石3は回転子の1つの極内では、固定磁力磁石と直列に配置されていない。しかし、可変磁力磁石3は、隣接する極の固定磁力磁石4aと直列に配置されており、この固定磁力磁石4aの磁界の影響を受けるので、前記第1の実施の形態のように固定磁力磁石4aを積層した場合と同様の効果を得ることができる。すなわち、隣接する回転子の極の固定磁力磁石4aの磁界は、可変磁力磁石3内部では、可変磁力磁石3に対して並列に配置された固定磁力磁石4b,4bの磁界とは逆方向であり、互いに相殺するように作用する。これにより、可変磁力磁石3を不可逆減磁させた状態から増磁させて元の極性に戻す場合に、変化を妨げるような隣接する固定磁力磁石4b,4bによる磁界を小さくできるので、可変磁力磁石3の磁力を変化させるときに要する磁化電流(d軸電流)を低減できる。
(3.第3の実施の形態)
 本発明の第3の実施の形態について、図14を用いて説明する。
 本実施の形態は、図14のように、1つの固定磁力磁石4bを磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置(固定子鉄心の中心部)となるように、回転子鉄心2内に配置する。一方、可変磁力磁石3と固定磁力磁石4aを直列に重ねて形成した磁石直列を固定磁力磁石4bの両側に、磁化方向がd軸方向となる位置で配置する。この両側に配置した可変磁力磁石3と固定磁力磁石4aを積層した磁石直列は、前記磁極中心部の固定磁力磁石4bに対して、磁気回路上で並列回路を構成する。
 なお、回転子鉄心2内を通過する磁束が可変磁力磁石3及び固定磁力磁石4aの部分をその厚さ方向に通過するように、可変磁力磁石3及び固定磁力磁石4aの端部に空洞6を設ける。
 以上のような構成を有する本実施の形態では、前記第1の実施の形態と同様な作用効果に加えて、磁極に対して左右に可変磁力磁石3と固定磁力磁石4aを積層した磁石直列が配置されるので、左右の片側ずつ2回に分けて可変磁力磁石3の磁化が可能になる。その結果、可変磁力磁石3の極性変化を妨げることになる固定磁力磁石4bは、並列に配置された1つだけになる。すなわち、固定磁力磁石4bが2つ配置された前記第1の実施の形態に比べ、可変磁力磁石3の極性変化を妨げる固定磁力磁石4bによる磁界を小さくできるので、可変磁力磁石3の磁力を変化させるときに要する磁化電流(d軸電流)を低減することができる。
(4.他の実施の形態)
 本発明は、前記の各実施の形態に限定されるものではなく、つぎのような他の実施の形態も包含する。
(1)前記各実施の形態では12極の回転電機を示したが、4極、8極、16極等の他の極数の回転電機にも本発明を適用できるのは当然である。極数に応じて永久磁石の配置位置、形状が幾分変ることはもちろんであり、作用と効果は同様に得られる。
(2)磁極を形成する永久磁石において、保磁力と磁化方向の厚みの積をもって永久磁石を区別する定義をしている。従って、磁極は同じ材質の永久磁石で形成し、磁化方向厚みを異なるように形成しても同様な作用と効果が得られる。
(3)前記回転子鉄心2において、固定磁力磁石の外周側に磁気障壁を構成するために設ける空洞の形状や位置、また、固定磁力磁石の内周側にその磁路断面積を決定するために設ける空洞の位置などは、使用する永久磁石の保磁力や磁化電流によって生じる磁界の強さなどに応じて、適宜変更できる。
(4)運転時に極短時間のパルス的なd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、かつ、全磁石の誘起電圧に対して位相を進めた電流を連続的に通電させて、電流と永久磁石で生じる電機子巻線の鎖交磁束量を変化させる。
 すなわち、パルス電流で永久磁石の磁束量を減少させ、さらに電流位相を進めると、磁石磁束に対して逆方向の電流で生じる磁束が発生するので、これを相殺して、全鎖交磁束を減少でき、端子電圧を低下させることができる。なお、電流位相を進めることは負のd軸電流成分を流していることと等価である。
 このような電流位相進み制御においては、電流位相を進めるとd軸電流が流れて磁石は減磁して幾分磁束量は減る。しかし、パルス電流で大きく減磁させているので、磁束量の低下は比率的には小さい利点がある。
(5)前記各実施の形態では、保磁力と磁化方向厚の積が大小2種類の永久磁石を用いた場合について説明したが、本発明は、保磁力と磁化方向厚の積が異なる3種類以上の永久磁石を用いる形態も包含する。例えば、保磁力と磁化方向厚の積が異なる3種類の永久磁石を磁気回路上で直列に配置し、この磁石直列に対して保磁力と磁化方向厚の積が他の永久磁石より大きい永久磁石を磁気回路上で並列に配置する構成などが考えられ、この場合にも、前記各実施の形態と同様の作用と効果が得られる。
1…回転子
2…回転子鉄心
3…可変磁力磁石
4…固定磁力磁石
5,6…永久磁石端の空洞
7…磁極部
8…短絡コイル
9a,9b…空洞
10…固定子
11…電機子鉄心
12…電機子巻線

Claims (17)

  1.  保磁力と磁化方向厚の積が互いに異なる2種類以上の永久磁石を用いて、回転子鉄心内に複数個の磁極を形成して回転子を構成し、この回転子の外周に、エアギャップを介して電機子鉄心と電機子巻線からなる固定子を配置してなる永久磁石式回転電機において、
     前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が他の永久磁石と比べて小さい永久磁石を積が小の永久磁石、保磁力と磁化方向厚の積が他の永久磁石と比べて大きい永久磁石を積が大の永久磁石と定義した場合に、
     前記2種類以上の永久磁石を含む2個以上の永久磁石を磁気回路上で直列に配置して磁石直列を形成し、この磁石直列に対して、前記積が大の永久磁石を磁気回路上で並列に配置し、
     前記電機子巻線の電流が作る磁界により、前記磁石直列を形成する永久磁石のうち、前記積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石式回転電機。
  2.  保磁力と磁化方向厚の積が互いに異なる2種類以上の永久磁石を用いて、回転子鉄心内に複数個の磁極を形成して回転子を構成し、この回転子の外周に、エアギャップを介して電機子鉄心と電機子巻線からなる固定子を配置してなる永久磁石式回転電機において、
     前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が他の永久磁石と比べて小さい永久磁石を積が小の永久磁石、保磁力と磁化方向厚の積が他の永久磁石と比べて大きい永久磁石を積が大の永久磁石と定義した場合に、
     前記複数個の磁極を構成する各磁極は、磁極の中心部に、前記2種類以上の永久磁石を含む2個以上の永久磁石を磁気回路上で直列に配置して磁石直列を形成し、磁極の両方の極間部側に、前記磁石直列に対して、前記積が大の永久磁石を磁気回路上で並列にそれぞれ配置して構成され、
     前記電機子巻線の電流が作る磁界により、各磁極において、前記磁石直列を形成する永久磁石のうち、前記積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石式回転電機。
  3.  保磁力と磁化方向厚の積が互いに異なる2種類以上の永久磁石を用いて、回転子鉄心内に複数個の磁極を形成して回転子を構成し、この回転子の外周に、エアギャップを介して電機子鉄心と電機子巻線からなる固定子を配置してなる永久磁石式回転電機において、
     前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が他の永久磁石と比べて小さい永久磁石を積が小の永久磁石、保磁力と磁化方向厚の積が他の永久磁石と比べて大きい永久磁石を積が大の永久磁石と定義した場合に、
     前記複数個の磁極を、極性が異なる第1、第2の磁極を交互に配置して形成し、
     前記第1の磁極は、磁極の中心部に、前記積が小の永久磁石を配置し、磁極の両方の極間部側に、前記中心部の積が小の永久磁石に対して、前記積が大の永久磁石を磁気回路上で並列にそれぞれ配置して構成され、
     前記第2の磁極は、前記積が大の永久磁石を用いて構成され、この第2の磁極の積が大の永久磁石が、前記第1の磁極の中心部に配置された積が小の永久磁石と磁気回路上で直列に配置され、かつ、前記第1の磁極の極間部側に配置された積が大の永久磁石と磁気回路上で並列に配置され、
     前記電機子巻線の電流が作る磁界により、前記第1の磁極の中心部に配置された積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石式回転電機。
  4.  保磁力と磁化方向厚の積が互いに異なる2種類以上の永久磁石を用いて、回転子鉄心内に複数個の磁極を形成して回転子を構成し、この回転子の外周に、エアギャップを介して電機子鉄心と電機子巻線からなる固定子を配置してなる永久磁石式回転電機において、
     前記2種類以上の永久磁石のうち、保磁力と磁化方向厚の積が他の永久磁石と比べて小さい永久磁石を積が小の永久磁石、保磁力と磁化方向厚の積が他の永久磁石と比べて大きい永久磁石を積が大の永久磁石と定義した場合に、
     前記複数個の磁極を構成する各磁極は、磁極の両方の極間部側に、前記2種類以上の永久磁石を含む2個以上の永久磁石を磁気回路上で直列に配置して磁石直列をそれぞれ形成し、磁極の中心部に、前記磁石直列に対して、前記積が大の永久磁石を磁気回路上で並列に配置して構成され、
     前記電機子巻線の電流が作る磁界により、各磁極において、前記磁石直列を形成する永久磁石のうち、前記積が小の永久磁石を磁化させて、磁極を構成する永久磁石の磁束量を不可逆的に変化させることを特徴とする永久磁石式回転電機。
  5.  請求項1、請求項2、または請求項4に記載の永久磁石式回転電機において、
     前記磁石直列は、前記積が小の永久磁石と前記積が大の永久磁石の2種類の永久磁石から形成され、この2種類の永久磁石が回転子の磁心内に重ねて配置されることを特徴とする永久磁石式回転電機。
  6.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     他の永久磁石に対して磁気回路上で並列に配置される永久磁石は、当該他の永久磁石に対してほぼ一直線上に、あるいは、V字状に配置されることを特徴とする永久磁石式回転電機。
  7.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     磁気回路上で並列に配置される永久磁石は、磁極の側面のほぼq軸上に配置される磁石と、磁極の中央部に配置される磁石から構成されることを特徴とする永久磁石式回転電機。
  8.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     前記積が大の永久磁石の磁路中に磁気抵抗が大きくなる部分を設けることを特徴とする永久磁石式回転電機。
  9.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     前記回転子に短絡コイルを設けることを特徴とする永久磁石式回転電機。
  10.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     q軸方向の磁気抵抗が磁石部を除くd軸方向の磁気抵抗よりも大きいことを特徴とする永久磁石式回転電機。
  11.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     q軸方向のエアギャップ長はd軸方向のエアギャップ長よりも大きいことを特徴とする永久磁石式回転電機
  12.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     前記電機子巻線の電流が作る所定方向の磁界により、前記積が小の永久磁石を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、
     この鎖交磁束の減少後に電流が作る磁界を前記所定方向と逆方向に発生させることにより、前記積が小の永久磁石を磁化させて鎖交磁束量を不可逆的に増加させることを特徴とする永久磁石式回転電機。
  13.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     d軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、永久磁石を磁化するd軸電流を流すと同時にq軸電流によりトルクを制御することを特徴とする永久磁石式回転電機。
  14.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     運転時にd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させることを特徴とする永久磁石式回転電機。
  15.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     最大トルク時には永久磁石の全鎖交磁束が大となるように前記積が小の永久磁石を磁化させ、トルクの小さな軽負荷時及び中速回転域と高速回転域では、前記積が小の永久磁石を電流による磁界で磁化させて、永久磁石の全鎖交磁束を減少させることを特徴とする永久磁石式回転電機。
  16.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     磁極の永久磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧を、回転電機の電源であるインバータ電子部品の耐電圧以下とすることを特徴とする永久磁石式回転電機。
  17.  請求項1から請求項4のいずれか1項に記載の永久磁石式回転電機において、
     回転子を固定子に挿入して組み立てる時は、前記積が小の永久磁石を減磁するか、極性を反転させることにより永久磁石の鎖交磁束量を減少させた状態とすることを特徴とする永久磁石式回転電機。
PCT/JP2009/006216 2008-11-19 2009-11-19 永久磁石式回転電機 WO2010058576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801460067A CN102217170B (zh) 2008-11-19 2009-11-19 永久磁铁式旋转电机
EP09827357.6A EP2360814B1 (en) 2008-11-19 2009-11-19 Permanent magnet type rotating electric machine
US13/130,206 US8624457B2 (en) 2008-11-19 2009-11-19 Permanent magnet electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-296080 2008-11-19
JP2008296080A JP5159577B2 (ja) 2008-11-19 2008-11-19 永久磁石式回転電機

Publications (1)

Publication Number Publication Date
WO2010058576A1 true WO2010058576A1 (ja) 2010-05-27

Family

ID=42198019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006216 WO2010058576A1 (ja) 2008-11-19 2009-11-19 永久磁石式回転電機

Country Status (5)

Country Link
US (1) US8624457B2 (ja)
EP (1) EP2360814B1 (ja)
JP (1) JP5159577B2 (ja)
CN (1) CN102217170B (ja)
WO (1) WO2010058576A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042446A2 (en) 2010-09-27 2012-04-05 Promogreen.Com.S.R.L. Fibres and relative woven and non woven tissues for the topic treatment of sexual dysfunctions of the male genital apparatus
EP2595281A4 (en) * 2010-07-14 2016-09-21 Toyota Jidoshokki Kk PERMANENT RECESSING MAGNET ROTARY ELEMENT AND ROTATING ELECTRIC MACHINE

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179068B2 (en) 2006-07-24 2012-05-15 Kabushiki Kaisha Toshiba Variable-flux motor drive system
JP5502571B2 (ja) * 2010-04-09 2014-05-28 株式会社東芝 永久磁石式回転電機
US20130127280A1 (en) * 2010-07-30 2013-05-23 Hitachi, Ltd. Electric rotating machine and electric vehicle using the same
WO2012020479A1 (ja) * 2010-08-11 2012-02-16 トヨタ自動車株式会社 保磁力分布磁石の保磁力性能判定装置
CN101969242A (zh) * 2010-09-21 2011-02-09 哈尔滨工业大学 永磁流体处理器
JP5186036B2 (ja) * 2011-03-31 2013-04-17 日新製鋼株式会社 Ipmモータの回転子及びそれを用いたipmモータ
EP2712058B1 (en) * 2011-05-16 2019-09-11 Mitsubishi Electric Corporation Permanent-magnet type rotating electrical machine
JP5787673B2 (ja) * 2011-08-30 2015-09-30 株式会社東芝 永久磁石型回転電機
US8941970B2 (en) * 2011-10-18 2015-01-27 Siemens Energy, Inc. Method and apparatus for demagnetizing generator components prior to electromagnetic core imperfection testing or EL-CID testing
JP5646092B2 (ja) * 2011-12-23 2014-12-24 三菱電機株式会社 永久磁石型モータ
EP2611002A3 (en) * 2011-12-28 2015-07-08 Remy Technologies, LLC Dual magnet rotor
CN104170212B (zh) * 2012-03-13 2017-08-22 博泽沃尔兹堡汽车零部件有限公司 电机
US20150097458A1 (en) * 2012-04-16 2015-04-09 Otis Elevator Company Permanent Magnet Electric Machine
CN104247214B (zh) * 2012-04-23 2017-05-24 三菱电机株式会社 永磁体型旋转电机及车辆驱动***
JP5977155B2 (ja) * 2012-11-26 2016-08-24 アイチエレック株式会社 永久磁石電動機
KR101407854B1 (ko) * 2012-12-03 2014-06-16 뉴모텍(주) 가변 자속 모터
DK2941818T3 (da) * 2013-01-02 2022-06-20 Trane Int Inc System og fremgangsmåde til diagnosticering af magnetforringelse og beskadigelsde i motorer med permanent magnet
JP6090987B2 (ja) * 2013-02-21 2017-03-08 本田技研工業株式会社 回転電機
WO2014144540A1 (en) * 2013-03-15 2014-09-18 Flux Energy Systems, Llc Electric motor
CN103219852A (zh) * 2013-04-18 2013-07-24 台州市金宇机电有限公司 内置式低速大转矩永磁轮毂电机
CN103236762B (zh) * 2013-04-18 2015-08-19 台州市金宇机电有限公司 电动车用无刷直流轮毂电机及其控制***
CN103208897B (zh) * 2013-04-27 2016-03-23 佛山市顺德区苇源电器有限公司 无刷直流电机
CN103441592A (zh) * 2013-08-12 2013-12-11 浙江大学 新型磁通可调永磁同步电机
FR3016251B1 (fr) * 2014-01-09 2017-12-15 Leroy Somer Moteurs Machine electrique a aimants permanents inseres a force
JP6517469B2 (ja) * 2014-02-25 2019-05-22 東芝インフラシステムズ株式会社 永久磁石回転電機システム
CN105680657A (zh) * 2014-12-03 2016-06-15 通用电气公司 无传感器电机
KR20160116568A (ko) * 2015-03-30 2016-10-10 현대자동차주식회사 절연부재를 갖는 모터유닛
JP6451990B2 (ja) * 2015-04-02 2019-01-16 株式会社デンソー 回転電機
CN106154045B (zh) * 2015-04-14 2018-10-02 维谛技术有限公司 一种电网阻抗的测量方法和装置
WO2016179841A1 (zh) * 2015-05-14 2016-11-17 广东美芝制冷设备有限公司 旋转电机的转子、永磁电动机、压缩机、空调***
JP6568999B2 (ja) * 2015-07-31 2019-08-28 日産自動車株式会社 永久磁石同期モータ
JP6577831B2 (ja) * 2015-10-28 2019-09-18 株式会社エクセディ 回転電機
US10193421B2 (en) * 2015-11-13 2019-01-29 General Electric Company System for thermal management in electrical machines
KR101762270B1 (ko) * 2016-02-15 2017-07-31 한국생산기술연구원 가변자속자기회로의 제어특성을 고려한 마그넷 배열
KR102629775B1 (ko) * 2016-04-12 2024-01-26 삼성전자주식회사 매입형 영구자석 모터
CN110011442B (zh) * 2016-06-30 2022-02-11 广东美芝制冷设备有限公司 电动机转子和具有其的电动机、压缩机
KR102572084B1 (ko) * 2017-07-27 2023-08-30 삼성전자주식회사 모터 및 모터의 제어 방법, 모터를 구비한 세탁기
US11018567B2 (en) * 2017-09-29 2021-05-25 Ford Global Technologies, Llc Permanent magnet rotor with enhanced demagnetization protection
CN108023421B (zh) * 2017-12-21 2024-05-28 珠海格力电器股份有限公司 电机转子和永磁电机
EP3747036A1 (en) 2018-02-02 2020-12-09 Robotiq Inc. A programmable permanent magnet actuator and a magnetic field generation apparatus and method
DE102018206478A1 (de) 2018-04-26 2019-10-31 Robert Bosch Gmbh Elektrische Maschine mit veränderlichem magnetischem Fluss
JP6713026B2 (ja) * 2018-10-03 2020-06-24 Dmg森精機株式会社 ロータ
US10797546B2 (en) * 2019-01-08 2020-10-06 Borgwarner Inc. Interior permanent magnet electric machine with flux distributing voids
WO2021076428A1 (en) * 2019-10-15 2021-04-22 Darrell Schmidt Enterprises, Inc. Magnetic coupler
CN110739821B (zh) * 2019-11-06 2024-04-30 天津工业大学 电动汽车用低铁耗可变磁通永磁记忆电机稳健性设计方法
CN110838780B (zh) * 2019-11-26 2021-05-25 江苏大学 一种交直轴磁阻可控式永磁无刷电机
US11462960B2 (en) * 2019-12-02 2022-10-04 Hiwin Mikrosystem Corp. Rotor with first and second permanent magnets having support members and slots
CN111769667B (zh) * 2020-06-30 2023-02-28 东南大学 串并联磁路分置磁极型记忆电机
US11791676B2 (en) * 2020-07-02 2023-10-17 Hl Mando Corporation Electric motor having rotor assembly with segmented permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252939A (ja) * 2002-01-17 2002-09-06 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP2006280195A (ja) 2005-03-01 2006-10-12 Toshiba Corp 永久磁石式回転電機
WO2008013167A1 (fr) * 2006-07-24 2008-01-31 Kabushiki Kaisha Toshiba Système d'entraînement de moteur à flux magnétique variable
JP2008048514A (ja) 2006-08-11 2008-02-28 Toshiba Corp 永久磁石式回転電機の回転子
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939398A (en) * 1986-10-06 1990-07-03 Emerson Electric Co. Laminated assemblies with in situ molded magnets
FR2762722B1 (fr) * 1997-04-23 1999-07-30 Centre Nat Rech Scient Machine electrique a double excitation perfectionnee
JP3818340B2 (ja) * 1997-09-26 2006-09-06 株式会社富士通ゼネラル 永久磁石電動機
US6800977B1 (en) 1997-12-23 2004-10-05 Ford Global Technologies, Llc. Field control in permanent magnet machine
JP2002078259A (ja) * 2000-08-31 2002-03-15 Yamaha Motor Co Ltd 永久磁石回転子
BR0303575A (pt) * 2002-03-20 2004-04-20 Daikin Ind Ltd Motor elétrico do tipo de imã permanente e compressor que utiliza o mesmo
US7067948B2 (en) * 2002-10-18 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Permanent-magnet rotating machine
US7504754B2 (en) * 2005-10-31 2009-03-17 Caterpillar Inc. Rotor having multiple permanent-magnet pieces in a cavity
US20070159021A1 (en) * 2005-12-19 2007-07-12 Emerson Electric Co. Composite magnet structure for rotor
EP1850456B1 (en) * 2006-04-27 2013-07-03 Suntech Generator Co., Ltd Rotor of generator or motor
US20070284960A1 (en) * 2006-06-12 2007-12-13 Remy International, Inc. Magnet for a dynamoelectric machine, dynamoelectric machine and method
US8044548B2 (en) 2006-08-23 2011-10-25 Kabushiki Kaisha Toshiba Permanent-magnet-type rotating electrical machine
US7598645B2 (en) * 2007-05-09 2009-10-06 Uqm Technologies, Inc. Stress distributing permanent magnet rotor geometry for electric machines
EP2192684B1 (en) 2007-09-18 2020-07-08 Kabushiki Kaisha Toshiba Variable magnetic flux drive system
JP2009201259A (ja) 2008-02-21 2009-09-03 Toshiba Corp 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
JP5161612B2 (ja) 2008-02-22 2013-03-13 株式会社東芝 永久磁石式回転電機、永久磁石式回転電機の組立方法及び永久磁石式回転電機の分解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252939A (ja) * 2002-01-17 2002-09-06 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP2006280195A (ja) 2005-03-01 2006-10-12 Toshiba Corp 永久磁石式回転電機
WO2008013167A1 (fr) * 2006-07-24 2008-01-31 Kabushiki Kaisha Toshiba Système d'entraînement de moteur à flux magnétique variable
JP2008048514A (ja) 2006-08-11 2008-02-28 Toshiba Corp 永久磁石式回転電機の回転子
JP2008245368A (ja) * 2007-03-26 2008-10-09 Toshiba Corp 永久磁石式回転電機及び永久磁石電動機ドライブシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360814A4
YOJI TAKEDA ET AL.: "Design and control of embedded magnet synchronous motor", October 2001, OHMSHA, LTD.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595281A4 (en) * 2010-07-14 2016-09-21 Toyota Jidoshokki Kk PERMANENT RECESSING MAGNET ROTARY ELEMENT AND ROTATING ELECTRIC MACHINE
WO2012042446A2 (en) 2010-09-27 2012-04-05 Promogreen.Com.S.R.L. Fibres and relative woven and non woven tissues for the topic treatment of sexual dysfunctions of the male genital apparatus

Also Published As

Publication number Publication date
JP2010124608A (ja) 2010-06-03
EP2360814A4 (en) 2018-01-31
JP5159577B2 (ja) 2013-03-06
US20120091848A1 (en) 2012-04-19
EP2360814A1 (en) 2011-08-24
EP2360814B1 (en) 2018-10-03
CN102217170A (zh) 2011-10-12
CN102217170B (zh) 2013-11-13
US8624457B2 (en) 2014-01-07

Similar Documents

Publication Publication Date Title
JP5159577B2 (ja) 永久磁石式回転電機
JP5361261B2 (ja) 永久磁石式回転電機
JP5305753B2 (ja) 永久磁石式回転電機
JP5085071B2 (ja) 永久磁石式回転電機の回転子
JP5361260B2 (ja) 永久磁石回転式電機
JP5355055B2 (ja) 永久磁石式回転電機
JP5398103B2 (ja) 永久磁石式回転電機
JP5787673B2 (ja) 永久磁石型回転電機
JP5159171B2 (ja) 永久磁石式回転電機
JP2010148235A (ja) 永久磁石式回転電機
JP7076188B2 (ja) 可変磁力モータ
JP5178488B2 (ja) 永久磁石式回転電機
JP5198178B2 (ja) 永久磁石式回転電機及び永久磁石電動機ドライブシステム
JP2012175738A (ja) 永久磁石式回転電機
JP2019154232A (ja) 回転子および回転電機
JP5446476B2 (ja) 埋込磁石型同期電動機のロータ
JP4735772B1 (ja) 磁石励磁回転電機システム
JP2012029563A (ja) 永久磁石式回転電機
JP2013051760A (ja) 永久磁石式回転電機
JP2011172323A (ja) 永久磁石式回転電機
JP5197551B2 (ja) 永久磁石式回転電機
JP5390314B2 (ja) 永久磁石式回転電機
JP5178487B2 (ja) 永久磁石式回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146006.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13130206

Country of ref document: US