WO2010057383A1 - 一种实现业务转发的方法、***和设备 - Google Patents

一种实现业务转发的方法、***和设备 Download PDF

Info

Publication number
WO2010057383A1
WO2010057383A1 PCT/CN2009/072410 CN2009072410W WO2010057383A1 WO 2010057383 A1 WO2010057383 A1 WO 2010057383A1 CN 2009072410 W CN2009072410 W CN 2009072410W WO 2010057383 A1 WO2010057383 A1 WO 2010057383A1
Authority
WO
WIPO (PCT)
Prior art keywords
data communication
communication device
optical network
link layer
physical interface
Prior art date
Application number
PCT/CN2009/072410
Other languages
English (en)
French (fr)
Inventor
王恩福
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09827132.3A priority Critical patent/EP2355435B1/en
Publication of WO2010057383A1 publication Critical patent/WO2010057383A1/zh
Priority to US13/114,712 priority patent/US8902909B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system, and device for implementing service forwarding. Background technique
  • MPLS Multiprotocol Label Switching
  • RSVP_TC Resource ReSerVation Protocol-Traffic Engineering, resource reservation protocol-based resource reservation protocol
  • QoS Quality of Service
  • MPLS cannot support TDM (Time Division Multiplex) switching and WDM (Wavelength Division Multiplexing) switching.
  • TDM Time Division Multiplex
  • WDM Widelength Division Multiplexing
  • a data communication device in a data communication network such as a router
  • the data communication device applicable to the present invention is not limited to a router, and may be, for example, a Layer 3 switch or a routing function.
  • Other devices After supporting GMPLS and optical communication devices in the optical network support GMPLS, the router and the optical communication device can exchange path information at the control level.
  • the optical communication device can establish a bidirectional GMPLS UNI (User-Network Interface) between the source router and the destination router corresponding to the destination address according to the information sent by the router and the requirements of the router (destination address, bandwidth, QoS parameters, etc.).
  • User network interface User network interface
  • the GMPLS UNI tunnel is used to participate in route calculation and path selection of the MPLS tunnel in the control layer of the network protocol IP/MPLS, thereby implementing IP/MPLS services.
  • the packet is tagged with the GMPLS tunnel, so that the IP/MPLS service can be carried in the GMPLS UNI tunnel. hair.
  • the message sent from the router will carry a layer of GMPLS UNI tunnel-specific label (ie the logical interface of the GMPLS UNI tunnel).
  • the inventors have found that the above prior art has at least the following shortcomings and deficiencies:
  • the control plane of IP/MPLS is modified: First, the GMPLS UNI tunnel needs to be advertised in the FA mode; the IP routing module in the router needs to perform new processing on the new tunnel in the route calculation process; MPLS protocol module in the router In order to participate in the MPLS tunnel path selection for this new tunnel, it needs to be modified;
  • the forwarding plane of the router needs to be modified: that is, the existing forwarding process of IP/MPLS needs to be modified, and the processing flow of inserting the GMPLS UNI tunnel table is added.
  • the pair of routers are based on ASIC (Application Specific Integrated Circuits). The chip's forwarding engine is very difficult.
  • the forwarding layer needs to encapsulate one layer of labels on the source router, it needs to check the forwarding table one more time. Therefore, the forwarding performance will be reduced. At the receiving end, because one layer of labels is processed, the forwarding performance is improved. It will also be affected. Summary of the invention
  • the example provides a method, system and device for implementing service forwarding.
  • the technical solution is as follows: On the one hand, a method for implementing service forwarding is provided, where at least two data communication devices communicate through an optical network, and the method includes:
  • the data communication device performs link layer negotiation through the optical network tunnel according to the link layer protocol; and after the link layer negotiation succeeds, the link layer state and the location between the data communication devices The physical state of the physical interface is set to be valid;
  • the data communication device implements forwarding of the service.
  • an embodiment of the present invention provides a system for implementing service forwarding, where the system includes: a first data communication device and a second data communication device, where the first data communication device and the second data The communication device communicates through the optical network;
  • the first data communication device is configured to establish an optical network tunnel with the second data communication device; After the optical network tunnel is successfully established, the physical interface directly connected to the optical network is triggered to start the link layer protocol; and is further configured to perform, by using the optical network tunnel and the second data communication device, according to the link layer protocol.
  • the link layer negotiation is further configured to: when the link layer negotiation succeeds, set the link layer state and the physical state of the physical interface to be valid; and further, when the link layer state and the After the physical state of the physical interface is set to be valid, the service is sent to the optical network tunnel through the physical interface;
  • the second data communication device is configured to establish the optical network tunnel between the first data communication device and the first data communication device; and after the optical network tunnel is successfully established, trigger a physical interface startup chain directly connected to the optical network.
  • the layer layer protocol is further configured to perform link layer negotiation by using the optical network tunnel and the first data communication device according to the link layer protocol, and is further configured to: after the link layer negotiation succeeds, The link layer state and the physical state of the physical interface of the self are set to be valid; and is further configured to: after the link layer state and the physical state of the physical interface are set to be valid, receive the physical interface through the physical interface The service of the optical network tunnel transmission.
  • an embodiment of the present invention provides a data communication device, where the data communication device includes: an establishing module, configured to establish an optical network tunnel between the data communication device and the peer end;
  • a startup module configured to start a link layer protocol by triggering a physical interface directly connected to the optical network after the establishing module successfully establishes an optical network tunnel
  • a negotiation module configured to perform link layer negotiation by using the optical network tunnel established by the establishing module and the peer data communication device according to the link layer protocol initiated by the startup module;
  • a setting module configured to: when the link layer negotiation performed by the negotiation module is successful, set the link layer state and the physical state of the physical interface to be valid;
  • a sending module configured to send, by the physical interface, a service to the optical network tunnel, after the link layer state set by the setting module and the physical state of the physical interface are set to be valid.
  • the physical interface directly connected to the optical network in the data communication device is triggered to start the link layer protocol; the data communication device performs the link layer negotiation through the optical network tunnel according to the link layer protocol; After the negotiation of the layer layer is successful, the link layer state between the data communication devices and the physical state of the physical interface are set to be valid; when the link layer state and the physical state of the physical interface are set to be valid, the data communication device implements the service.
  • the forwarding thereby reducing the complexity of implementing the IP/MPLS service bearer in the GMPLS UNI tunnel, reducing the transformation to the IP/MPLS control plane and the forwarding plane, and improving the forwarding performance.
  • FIG. 1 is a schematic diagram of a GMPLS UNI tunnel established according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a method for implementing service forwarding according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of IP/MPLS service forwarding according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a system for implementing service forwarding according to Embodiment 2 of the present invention.
  • Figure 5 is a schematic diagram of a data communication device according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of an optical network according to Embodiment 4 of the present invention. detailed description
  • the example provides a method for implementing service forwarding, where at least two data communication devices communicate through an optical network, and the method content is as follows:
  • the data communication device performs link layer negotiation through the optical network tunnel according to the link layer protocol
  • the link layer state between the data communication devices and the physical state of the physical interface are set to be valid
  • the optical network tunnel may be: a general multi-protocol label switching user network interface GMPLS UNI tunnel.
  • the foregoing link layer protocol specifically includes: a point-to-point protocol PPP, or an Ethernet Ether link layer.
  • Embodiment 1 specifically includes: a network protocol IP service, and/or a multi-protocol label switching MPLS service.
  • a network protocol IP service specifically includes: a network protocol IP service, and/or a multi-protocol label switching MPLS service.
  • the present invention is implemented.
  • the example provides a method for implementing service forwarding.
  • FIG. 1 is a schematic diagram of a GMPLS UNI tunnel established according to an embodiment of the present invention. As shown in FIG. 1 , a thick line indicates a GMPLS UNI tunnel established. The starting point of the GMPLS UNI tunnel is the router EN1 and the destination. Is the router EN3. The following is a detailed description of the method provided by the embodiment of the present invention. For details, refer to FIG. 2, which is a schematic flowchart of a method for implementing service forwarding according to an embodiment of the present invention:
  • the source router EN1 initiates a GMPLS UNI request to the optical communication device CN1 of the optical network by using its own physical interface X.
  • the GMPLS UNI request carries information such as a destination address, a bandwidth, and a QoS parameter.
  • the router EN1 initiates a GMPLS UNI request to the device of its neighboring optical network according to the static configuration of the user or the service trigger (such as service traffic triggering, QoS triggering, etc.);
  • the router EN1 Since the router EN1 is physically directly connected to the optical communication device CN1 in the optical network through its own physical interface X, the GMPLS UNI request is transmitted to the optical communication device CN1.
  • the optical communication device CN1 receives the GMPLS UNI request sent by the EN1, and establishes an optical path from CN1 to CN3 in the optical network according to the destination address, the bandwidth, the QoS parameter and the like carried in the request, and the source router EN1 is based on the The optical path establishes a GMPLS UNI tunnel between the router EN3 (referred to as the sink router EN3) corresponding to the destination address.
  • the optical communication device CN1 receives the GMPLS UNI request sent by the EN1, and establishes an optical path from the CN1 to the CN3 in the optical network according to the destination address, bandwidth, and QoS parameters carried in the request.
  • the source router EN1 establishes a bidirectional GMPLS UNI tunnel between the source router EN1 and the sink router EN3 according to the existing GMPLS UNI protocol (see RFC4028).
  • the GMPLS UNI tunnel includes:
  • the source router EN1 passes The physical interface X is connected to CN1, CN1 is connected to CN5 in the optical network, CN5 is connected to CN3, and CN3 is connected to the physical interface Y of the sink router EN3, thereby establishing an optical path between the source EN1 and the sink EN3 device. .
  • the specific establishment process can be found in RFC4028, and will not be described again.
  • step 103 Determine whether the GMPLS UNI tunnel between the source router EN1 and the sink router EN3 is successfully established. If no, go to step 104; otherwise, go to step 105.
  • the link layer protocol of the physical interface is not triggered, and those skilled in the art may know that when the bidirectional GMPLS UNI tunnel is unsuccessful, the GMPLS UNI tunnel is attempted again. of.
  • the physical interface X of the source router EN1 and the physical interface Y of the sink router EN3 are triggered to start the link layer protocol.
  • the link layer protocol specifically includes a PPP (Point-to-Point Protocol), an Ether Ethernet link layer protocol, and the like.
  • PPP Point-to-Point Protocol
  • Ether Ethernet link layer protocol an Ether Ethernet link layer protocol
  • the source router EN1 and the sink router EN3 pass the established GMPLS UNI tunnel according to the activated link layer protocol. Performs interaction of link layer protocol packet negotiation.
  • the content is as follows:
  • the source router EN1 sends a link protocol request message through its physical interface X.
  • the link protocol request message is sent to the sink router EN3 through the established GMPLS UNI tunnel;
  • the sink router EN3 sends a link protocol response message through its physical interface Y;
  • the link protocol response message is sent to the source router EN1 through the established GMPLS UNI tunnel;
  • the source router EN1 receives the link protocol response message transmitted through the GMPLS UNI tunnel through its physical interface X.
  • the source router EN1 and the sink router EN3 complete the interaction of the protocol packets through the established GMPLS UNI tunnel according to the activated link layer protocol, and the link layer negotiation succeeds.
  • the next hop for the source router EN1 is the sink router EN3.
  • the IP/MPLS service is forwarded through the physical interface of the source router EN1, the GMPLS UNI tunnel, and the physical interface of the sink router EN3.
  • content include:
  • the physical interface X of the source router EN1 is triggered.
  • the routing, MPLS control module, and various IP/MPLS services in the router can be used as the ordinary physical port.
  • the physical port associated with the GMPLS UNI tunnel forwards the IP/MPLS service without any modification.
  • FIG. 3 is a schematic diagram of IP/MPLS service forwarding according to an embodiment of the present invention.
  • the router EN0 forwards the IP/MPLS service to the router EN3, and the router EN0 learns the route, and learns the next step.
  • the device that hops is the router EN1, that is, the router EN0 learns that the physical state of the physical interface of the router EN1 is valid by searching its own forwarding table, and sends the service to the router EN1.
  • the process of learning the route by the router EN1 is as follows: After the operation of 107, a direct connection between the complex optical network is established between EN1 and EN3. Therefore, the router EN1 learns that its next hop is the router EN3;
  • the router EN0 forwards the IP/MPLS service to the router EN1.
  • the router EN1 sends the IP/MPLS service through the physical interface X directly connected to the optical network.
  • the IP/MPLS service is sent.
  • the optical network is transmitted to the router EN3; the router EN3 receives the IP/MPLS service through the physical interface Y directly connected to the optical network, and thus the IP/MPLS service is forwarded by the router EN0 to the EN3, where IP/
  • the IP/MPLS service does not need to encapsulate the GMPLS UNI tunnel. It does not need to be modified to be carried on the GMPLS UNI tunnel.
  • the GMPLS label does not need to be encapsulated on the router device during the forwarding process.
  • the GMPLS UNI tunnel is changed to the DOWN state
  • the physical state of the physical interface of the router of the data communication network associated with the trigger is triggered. Invalid (ie, DOWN), correspondingly, the IP/MPLS service in the router is re-routed.
  • the step of triggering the physical interface to start the link layer protocol is performed. After the negotiation through the link layer protocol is successful, the link layer state is set. The physical state of the physical interface is set to a valid process. The method is similar and will not be described again.
  • the physical state of the physical interface cannot be set to be valid.
  • the link layer protocol is unavailable and the IP/MPLS service is unavailable.
  • the foregoing embodiment is a router, but the data communication device in the present invention is not limited to a router.
  • it may be a Layer 3 switch, and other devices having a routing function.
  • the method provided by the embodiment of the present invention initiates a link layer protocol by triggering a physical interface directly connected to the optical network in the data communication device after the optical network GMPLS UNI tunnel is successfully established; the data communication device is configured according to the link layer.
  • Protocol link layer negotiation through the optical network tunnel; after the link layer protocol negotiation succeeds, the link layer state between the data communication devices and the physical state of the physical interface are set to be valid; thereby implementing the data communication device IP/MPLS Forwarding of the service, and reducing the complexity of implementing the IP/MPLS service bearer in the GMPLS UNI tunnel, reducing the transformation to the IP/MPLS control plane and the forwarding plane, and improving the forwarding performance.
  • Example 2
  • an embodiment of the present invention provides a system for implementing service forwarding, including: a first data communication device 401 and a second data communication device 402, where the first data communication device 401 and the second data communication device 402 pass Optical network for communication;
  • the first data communication device 401 is configured to establish an optical network tunnel with the second data communication device 402. After the optical network tunnel is successfully established, triggering a physical interface directly connected to the optical network to initiate a link layer protocol;
  • the layer protocol negotiates the link layer negotiation through the optical network tunnel and the second data communication device 402. After the link layer protocol negotiation succeeds, the link layer state and the physical state of the physical interface are set to be valid; After the physical state of the physical interface is set to be valid, the service is sent to the optical network tunnel through the physical interface.
  • a second data communication device 402 configured to establish an optical network tunnel with the first data communication device 401; after the optical network tunnel is successfully established, triggering a physical interface directly connected to the optical network to initiate a link layer protocol;
  • the layer layer protocol performs link layer negotiation through the optical network tunnel and the first data communication device 401. After the link layer protocol negotiation succeeds, the link layer state and the physical state of the physical interface are set to be valid; After the physical status of the status and physical interface is set to be valid, the service transmitted by the optical network tunnel is received through its physical interface.
  • system provided by the embodiment of the present invention may further include:
  • An optical network configured to establish an optical network tunnel between the first data communication device 401 and the second data communication device 402, and complete a link layer protocol of the first data communication device 401 and the second data communication device 402 through the optical network tunnel Negotiating; receiving the service sent by the physical interface of the first data communication device 401, and transmitting the service to the second data communication device 402;
  • the optical network tunnel may be: a general multi-protocol label switching user network interface GMPLS UNI tunnel.
  • the foregoing link layer protocol specifically includes: a point-to-point protocol PPP, or an Ethernet Ether link layer.
  • the foregoing services specifically include: a network protocol IP service, and/or a multi-protocol label switching MPLS service.
  • the system provided by the embodiment of the present invention initiates a link layer protocol by triggering a physical interface directly connected to the optical network in the data communication device after the GMPLS UNI tunnel of the optical network is successfully established; the data communication device is configured according to the link layer.
  • an embodiment of the present invention provides a data communication device, where the data communication device includes: an establishing module 501, a starting module 502, a negotiating module 503, a setting module 504, and a sending module 505, where
  • the establishing module 501 is configured to establish an optical network tunnel between the data communication device and the peer end;
  • the startup module 502 is configured to start a link layer protocol by triggering a physical interface directly connected to the optical network after the establishing module 501 establishes an optical network tunnel.
  • the negotiation module 503 is configured to perform link layer negotiation by using the optical network tunnel established by the establishing module 501 and the peer data communication device according to the link layer protocol initiated by the startup module 502.
  • the setting module 504 is configured to set the link layer state and the physical state of the physical interface to be valid after the negotiation of the link layer by the negotiation module 503 is successful;
  • the sending module 505 is configured to send the service to the optical network tunnel through the physical interface, and then send the service packet to the optical network, after the link layer state set by the setting module 504 and the physical state of the physical interface are set to be valid.
  • the tunnel is sent to the peer data communication device.
  • the data communication device provided by the embodiment of the present invention further includes:
  • the receiving module is configured to receive the service of the optical network tunneling established by the establishing module 501 by using the physical interface set by the setting module 504.
  • the optical network tunnel may be: a general multi-protocol label switching user network interface GMPLS UNI tunnel.
  • the foregoing link layer protocol specifically includes: a point-to-point protocol PPP, or an Ethernet Ether link layer.
  • the foregoing services specifically include: a network protocol IP service, and/or a multi-protocol label switching MPLS service.
  • the data communication device provided by the embodiment of the present invention triggers the link layer protocol of the physical interface directly connected to the optical network in the data communication device after the GMPLS UNI tunnel is successfully established; the data communication device according to the chain Layer layer protocol, the link layer negotiation is performed through the optical network tunnel; after the link layer protocol negotiation succeeds, the link layer state between the data communication devices and the physical state of the physical interface are set to be valid; thereby implementing the data communication device IP Forwarding of the /MPLS service, and reducing the complexity of implementing the GMPLS UNI tunnel in the IP/MPLS service, reducing the transformation to the IP/MPLS control plane and the forwarding plane, and improving the forwarding performance.
  • an embodiment of the present invention provides an optical network, where the optical network includes: an establishing module 601, a transmission module 602, where
  • the transmitting module 602 is configured to receive a service sent by a physical interface of the data communication device, and transmit the service to the peer data. communication device.
  • the optical network tunnel may be: a general multi-protocol label switching user network interface GMPLS UNI tunnel.
  • the foregoing link layer protocol specifically includes: a point-to-point protocol PPP, or an Ethernet Ether link layer.
  • the foregoing services specifically include: a network protocol IP service, and/or a multi-protocol label switching MPLS service.
  • the optical network provided by the embodiment of the present invention triggers the link layer protocol of the physical interface directly connected to the optical network in the data communication device after the GMPLS UNI tunnel is successfully established; the data communication device according to the link The layer protocol negotiates the link layer through the optical network tunnel.
  • the link layer state between the data communication devices and the physical state of the physical interface are set to be valid; thus, the data communication device IP/ Forwarding of MPLS services, and reducing the complexity of implementing IP/MPLS services in the GMPLS UNI tunnel, reducing the transformation of IP/MPLS control planes and forwarding planes, and improving forwarding performance.
  • the technical solution provided by the embodiment of the present invention on the data communication device of the data communication network, the IP/MPLS module does not perceive the GMPLS UNI tunnel at the control plane, and the IP/MPLS service can be carried in the GMPLS UNI tunnel without any modification. on.
  • the physical state of the physical interface directly connected to the data communication device and the optical network is valid, and the following three Phase: (1) The physical layer receives the illuminating signal normally; (2) the GMPLS UNI tunnel is successfully established; (3) the existing link layer protocol (such as PPP/ETHER) is successfully negotiated; and the phase (3) is phased (2) trigger. After these three phases, the link layer state is set to the active UP state.
  • the physical interface can be used by IP/MPLS.
  • the GMPLS UNI tunnel is not perceived during use, just like using a common physical interface to use this and GMPLS.
  • the physical interface associated with the UNI tunnel is mapped to the physical interface via the data communication device.
  • the IP/MPLS module does not perceive the GMPLS UNI tunnel at the forwarding layer, and the forwarding performance of the IP/MPLS service is not affected by the bearer on the GMPLS UNI tunnel, and the forwarding layer does not need to increase the GMPLS UNI tunnel. Forwarding entries will not affect forwarding performance.
  • the method provided by the embodiment of the present invention will reduce the burden on the control layer of the data communication device, so that the data communication device supports the GMPLS UNI more quickly and easily.
  • the problem that the existing IP/MPLS service forwarding performance is degraded due to multiple layers of a new tunnel is solved.
  • receiving in the embodiment of the present invention may be understood as being actively acquired from other modules or receiving information transmitted by other modules.
  • Some of the steps in the embodiment of the present invention may be implemented by software, and the corresponding software program may be stored in a readable storage medium such as an optical disk or a hard disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

说 明 书
一种实现业务转发的方法、 ***和设备
本申请要求于 2008年 11月 24日提交中国专利局、 申请号为 200810181080. X、发明名 称为 "一种实现业务转发的方法、 ***和设备" 的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种实现业务转发的方法、 ***和设备。 背景技术
MPLS ( Multiprotocol Label Switching, 多协议标签交换)由于其具有支持多层标签 嵌套、 端到端的资源预留 RSVP_TC (Resource ReSerVation Protocol-Traffic Engineering, 基于流量工程扩展的资源预留协议)、 良好的 QoS (Quality of Service,服务质量)能力, 逐 渐成为主流技术, 但是, MPLS无法支持 TDM ( Time Division Multiplex, 时分复用)交换、 WDM (Wavelength Division Multiplexing, 波分复用) 交换。 随着技术的发展, 通过扩展 RSVP-TE信令, 解决了上述问题, 并进而发展成为了目前 的 GMPLS (Generalized Multiprotocol Label Switching,通用多协议标签交换)技术。
当数据通信网络中的数据通信设备, 例如路由器 (下面以路由器为例进行说明, 但是 适用于本发明的数据通信设备不仅限于路由器, 举例来说, 还可以是三层交换机, 或者具 有路由功能的其他设备)支持 GMPLS、 且光网络中的光通信设备都支持 GMPLS后, 路由器和 光通信设备在控制层面可以交互传输路径的信息。 光通信设备可以按照路由器传入的信息 以及路由器的要求(目的地址、带宽、 QoS参数等信息)建立一条位于源路由器和目的地址对 应的目的路由器之间的双向的 GMPLS UNI (User-Network Interface, 用户网络接口)隧道。 当该 GMPLS UNI隧道成功建立之后, 首先, 需要在路由器上以 FA (Forwarding Adjacency, 转发邻接体) 的方式将该隧道发布给该网络内的其它路由器。
于是, 对于该数据通信网络内的其他路由器, 在网络协议 IP/MPLS 的控制层面做相应 的改造后使用这条 GMPLS UNI隧道参与路由计算和 MPLS隧道的路径选择,从而实现 IP/MPLS 业务在这条 GMPLS UNI隧道的承载; 转发层面, 在现有的 IP/MPLS转发流程中***该 GMPLS UNI隧道生成的转发表, 该转发表用于指示出该 GMPLS UNI隧道的实际物理出接口, 同时给 数据报文打上 GMPLS隧道的标签, 从而可以实现 IP/MPLS业务承载在 GMPLS UNI隧道的转 发。 最终, 从路由器发出的报文将带上一层 GMPLS UNI 隧道特有的标签 (即该 GMPLS UNI 隧道的逻辑接口)。
发明人在实现本发明的过程中发现, 上述现有技术至少存在以下缺点和不足: 一方面, 在数据通信网络中的路由器上为了能实现将 IP/MPLS业务承载在 GMPLS UNI 隧道上, 需要对 IP/MPLS的控制层面进行改造: 首先 GMPLS UNI隧道需要以 FA的方式发布 出去; 路由器中的 IP路由模块需要对这种新的隧道在路由计算过程中做新的处理; 路由器 中的 MPLS协议模块为了能将这种新的隧道参与 MPLS隧道路径选择, 需要做改造;
另一方面, 路由器的转发层面需要改造: 即需要对 IP/MPLS现有的转发流程进行修改, 增加*** GMPLS UNI隧道表的处理流程, 这对路由器中基于 ASIC (Application Specific Integrated Circuits,专用集成电路) 芯片的转发引擎来说, 难度很大。
再一方面, 由于在源端路由器上, 转发层面要多封装一层标签, 需要多查一级转发表, 因此, 转发性能将会降低; 在接收端, 因为要多处理一层标签, 转发性能也将受到影响。 发明内容
在数据通信网络和光网络传输建立 GMPLS UNI隧道后, 为了降低实现 IP/MPLS业务承 载在该 GMPLS UNI隧道的复杂度, 减少对 IP/MPLS控制层面以及转发层面的改造, 提高转 发性能, 本发明实施例提供了一种实现业务转发的方法、 ***和设备。 所述技术方案如下: 一方面, 提供了一种实现业务转发的方法, 其中, 至少两个数据通信设备通过光网络 进行通信, 所述方法包括:
建立所述数据通信设备之间的光网络隧道;
当所述光网络隧道建立成功后, 触发所述数据通信设备中与光网络直连的物理接口启 动链路层协议;
所述数据通信设备根据所述链路层协议, 通过所述光网络隧道进行链路层协商; 当所述链路层协商成功后, 将所述数据通信设备之间的链路层状态和所述物理接口的 物理状态设置为有效;
当所述链路层状态和所述物理接口的物理状态被设置为有效后, 所述数据通信设备实 现业务的转发。
另一方面, 本发明实施例提供了一种实现业务转发的***, 所述***包括: 第一数据 通信设备、 第二数据通信设备, 其中, 所述第一数据通信设备与所述第二数据通信设备通 过光网络进行通信;
所述第一数据通信设备, 用于建立和所述第二数据通信设备之间的光网络隧道; 当所 述光网络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 还用于根 据所述链路层协议, 通过所述光网络隧道和所述第二数据通信设备进行链路层协商; 还用 于当所述链路层协商成功后, 将所述链路层状态和所述物理接口的物理状态设置为有效; 还用于当所述链路层状态和所述物理接口的物理状态被设置为有效后, 通过所述物理接口, 将业务发送至所述光网络隧道;
所述第二数据通信设备, 用于建立和所述第一数据通信设备之间的所述光网络隧道; 当所述光网络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 还用 于根据所述链路层协议, 通过所述光网络隧道和所述第一数据通信设备进行链路层协商; 还用于当所述链路层协商成功后, 将所述链路层状态和自身所述物理接口的物理状态设置 为有效; 还用于当所述链路层状态和所述物理接口的物理状态被设置为有效后, 通过自身 所述物理接口接收所述光网络隧道传输的业务。
再一方面, 本发明实施例提供了一种数据通信设备, 所述数据通信设备包括: 建立模块, 用于建立和对端数据通信设备之间的光网络隧道;
启动模块, 用于当所述建立模块建立光网络隧道成功后, 触发自身与光网络直连的物 理接口启动链路层协议;
协商模块, 用于根据所述启动模块启动的链路层协议, 通过所述建立模块建立的光网 络隧道和所述对端数据通信设备进行链路层协商;
设置模块, 用于当所述协商模块进行的链路层协商成功后, 将所述链路层状态、 以及 所述物理接口的物理状态设置为有效;
发送模块, 用于当所述设置模块设置的链路层状态和所述物理接口的物理状态被设置 为有效后, 通过所述物理接口, 将业务发送至所述光网络隧道。
本发明实施例提供的技术方案的有益效果是:
当光网络 GMPLS UNI 隧道建立成功后触发数据通信设备中与光网络直连的物理接口启 动链路层协议; 数据通信设备再根据链路层协议, 通过光网络隧道进行链路层协商; 当链 路层协商成功后, 将数据通信设备之间的链路层状态和物理接口的物理状态设置为有效; 当链路层状态和物理接口的物理状态被设置为有效后, 实现数据通信设备实现业务的转发, 从而降低了实现 IP/MPLS业务承载在该 GMPLS UNI隧道的复杂度、 减少对 IP/MPLS控制层 面以及转发层面的改造, 提高转发性能。 附图说明
为了更清楚地说明本发明实施例, 下面将对实施例描述中所需要使用的附图作简单地 介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术 人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例 1提供的建立的 GMPLS UNI隧道的示意图;
图 2是本发明实施例 1提供的实现业务转发的方法流程示意图;
图 3是本发明实施例 1提供的 IP/MPLS业务转发示意图;
图 4是本发明实施例 2提供的实现业务转发的***示意图;
图 5是本发明实施例 3提供的数据通信设备的示意图;
图 6是本发明实施例 4提供的光网络示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施 方式作进一步地详细描述。
在数据通信网络和光网络传输建立 GMPLS UNI隧道后, 为了降低实现 IP/MPLS业务承 载在该 GMPLS UNI隧道的复杂度, 减少对 IP/MPLS控制层面以及转发层面的改造, 提高转 发性能, 本发明实施例提供了一种实现业务转发的方法, 至少两个数据通信设备通过光网 络进行通信, 该方法内容如下:
建立数据通信设备之间的光网络隧道;
当光网络隧道建立成功后, 触发数据通信设备中与光网络直连的物理接口启动链路层 协议;
数据通信设备根据链路层协议, 通过光网络隧道进行链路层协商;
当链路层协商成功后, 将数据通信设备之间的链路层状态和物理接口的物理状态设置 为有效;
当链路层状态和物理接口的物理状态被设置为有效后, 数据通信设备实现业务的转发。 其中, 上述光网络隧道具体可以为: 通用多协议标签交换用户网络接口 GMPLS UNI 隧 道。
其中, 上述链路层协议具体包括: 点到点协议 PPP, 或, 以太 Ether链路层。
其中, 上述业务具体包括: 网络协议 IP业务, 和 /或, 多协议标签交换 MPLS业务。 为了对上述本发明实施例提供的方法进行详细说明, 请参见如下实施例: 实施例 1
在数据通信网络和光网络传输建立 GMPLS UNI隧道后, 为了降低实现 IP/MPLS业务承 载在该 GMPLS UNI隧道的复杂度, 减少对 IP/MPLS控制层面以及转发层面的改造, 提高转 发性能, 本发明实施例提供了一种实现业务转发的方法。
参见图 1, 为本发明实施例提供的建立的 GMPLS UNI隧道的示意图, 其中, 如图 1所示, 粗线所示为建立的一条 GMPLS UNI隧道, 该 GMPLS UNI隧道的起点是路由器 EN1、 终点是路 由器 EN3。 以该图 1为例, 对本发明实施例提供的方法进行详细说明, 详见内容如下, 参见 图 2, 为发明实施例提供的实现业务转发的方法的流程示意图:
101: 源端路由器 EN1根据用户配置或者业务触发, 通过自身的物理接口 X向光网络的 光通信设备 CN1发起 GMPLS UNI请求, 该 GMPLS UNI请求中携带目的地址、 带宽、 QoS参数 等信息。
其中, 在路由器 EN1会根据用户的静态配置、 或者业务触发(如业务流量触发、 QoS触 发等), 向其邻近的光网络的设备发起 GMPLS UNI请求;
由于路由器 EN1通过自身的物理接口 X和光网络中的光通信设备 CN1物理直连, 所以 该 GMPLS UNI请求会被发送到该光通信设备 CN1中。
102: 光通信设备 CN1接收 EN1发送的 GMPLS UNI请求, 根据该请求中携带的目的地址、 带宽、 QoS参数等信息, 在光网络内部建立一条从 CN1到 CN3的光通路, 源端路由器 EN1基 于该光通路建立和目的地址对应的路由器 EN3 (简称宿端路由器 EN3 ) 之间的 GMPLS UNI隧 道。
其中, 如图 1所示, 光通信设备 CN1接收 EN1发送的 GMPLS UNI请求, 根据该请求中 携带的目的地址、 带宽、 QoS参数等信息, 在光网络内部建立一条从 CN1到 CN3的光通路, 源端路由器 EN1基于该光通路根据现有的 GMPLS UNI协议(参见 RFC4028)在源端路由器 EN1 和宿端路由器 EN3之间建立一条双向的 GMPLS UNI隧道, 该 GMPLS UNI隧道包括: 源端路 由器 EN1通过其物理接口 X与 CN1相连、 光网络中 CN1与 CN5相连、 CN5与 CN3相连、 CN3 与宿端路由器 EN3的物理接口 Y相连, 从而, 建立源端 EN1和宿端 EN3设备之间的一条光 通路。 其中, 具体的建立过程可以参见 RFC4028, 不再赘述。
103:判断上述源端路由器 EN1和宿端路由器 EN3之间的 GMPLS UNI隧道是否建立成功, 如果否, 则执行步骤 104; 否则, 执行步骤 105。
104: 如果上述双向的 GMPLS UNI隧道建立不成功, 则不触发物理接口的链路层协议的 工作, 结束。
其中, 如果上述双向的 GMPLS UNI 隧道建立不成功, 则不触发物理接口的链路层协议 工作, 本领域技术人员可以获知, 当上述双向的 GMPLS UNI 隧道建立不成功, 会再次尝试 建立 GMPLS UNI隧道的。
105: 当上述源端路由器 EN1和宿端路由器 EN3之间的 GMPLS UNI隧道建立成功之后, 触发源端路由器 EN1的物理接口 X和宿端路由器 EN3的物理接口 Y启动链路层协议。
其中, 当上述源端路由器 EN1和宿端路由器 EN3之间的 GMPLS UNI隧道建立成功之后, 分别触发源端路由器 EN1的物理接口 X和宿端路由器 EN3的物理接口 Y启动链路层协议的 工作, 其中, 该链路层协议具体包括 PPP (Point-to-Point Protocol , 点到点协议)、 Ether 以太链路层协议等, 本发明实施例对所启动的链路层协议不做限制, 但要保证触发源端路 由器 EN1和宿端路由器 EN3所启动的链路层协议一致。
106:源端路由器 EN1的物理接口 X和宿端路由器 EN3的物理接口 Y启动链路层协议后, 源端路由器 EN1和宿端路由器 EN3根据启动的链路层协议, 通过已建立的 GMPLS UNI隧道 进行链路层协议报文协商的交互。 内容如下:
106A:源端路由器 EN1通过自身的物理接口 X发送链路协议请求消息;
106B : 链路协议请求消息经过建立的 GMPLS UNI隧道, 发送至宿端路由器 EN3;
106C; 宿端路由器 EN3通过自身的物理接口 Y发送链路协议响应消息;
106D : 链路协议响应消息经过建立的 GMPLS UNI隧道, 发送至源端路由器 EN1 ;
106E : 源端路由器 EN1通过自身的物理接口 X接收通过 GMPLS UNI隧道传输的链路协 议响应消息。
至此, 通过上述步骤 106A-106E, 源端路由器 EN1和宿端路由器 EN3根据启动的链路层 协议, 通过已建立的 GMPLS UNI隧道进行协议报文的交互完毕, 链路层协商成功。
107: 当源端路由器 EN1和宿端路由器 EN3链路层协议协商成功后, 则触发源端路由器 EN1和宿端路由器 EN3的链路层状态、 各自物理接口的物理状态置为有效。
其中, 当源端路由器 EN1和宿端路由器 EN3的链路层状态、 各自物理接口的物理状态 置为有效后, 则对于源端路由器 EN1而言, 其下一跳即为宿端路由器 EN3。
108: 当触发源端路由器 EN1和宿端路由器 EN3的链路层状态、 源端路由器 EN1的物理 接口 X的物理状态以及宿端路由器 EN3的物理接口 Y的物理状态都设置为有效 (UP) 后, 通过源端路由器 EN1的物理接口、 GMPLS UNI隧道、宿端路由器 EN3的物理接口,实现 IP/MPLS 业务的转发。 内容包括:
当触发源端路由器 EN1和宿端路由器 EN3的链路层状态、源端路由器 EN1的物理接口 X 的物理状态以及宿端路由器 EN3的物理接口 Y的物理状态都设置为有效 (UP) 后, 路由器 中的路由、 MPLS控制模块、 各种 IP/MPLS业务将可以像使用普通物理口一样来使用上述与 GMPLS UNI隧道相关联的物理端口, 转发 IP/MPLS业务, 且不用做任何改造。
参见图 3, 为本发明实施例提供的 IP/MPLS业务转发示意图, 其中, 数据通信网络中的 路由器 EN0希望将 IP/MPLS业务转发至路由器 EN3, 路由器 EN0进行学习路由的过程, 获知 其下一跳的设备为路由器 EN1,即路由器 EN0通过查找自身转发表获知路由器 EN1的物理接 口的物理状态为有效, 向路由器 EN1发送业务; 同理, 路由器 EN1进行学习路由的过程, 由于通过上述步骤 101— 107的操作后 EN1和 EN3之间建立跨越复杂的光网络的直连,因此, 路由器 EN1获知自身的下一跳为路由器 EN3 ;
于是, 路由器 EN0将 IP/MPLS业务转发至路由器 EN1,路由器 EN1收到该 IP/MPLS业务 后, 将该 IP/MPLS业务通过自身与该光网络直连的物理接口 X发出, 该 IP/MPLS业务经过 光网络传输到路由器 EN3; 路由器 EN3 通过自身与该光网络直连的物理接口 Y接收到该 IP/MPLS业务, 至此, 完成该 IP/MPLS业务由路由器 EN0向 EN3的转发, 其中, IP/MPLS业 务转发的整个过程中, IP/MPLS业务不感知 GMPLS UNI隧道的存在, 不需要为承载在 GMPLS UNI隧道上而做任何改造, 转发过程中在路由器设备上不需要封装 GMPLS标签。
进一步地, 当上述建立成功的 GMPLS UNI 隧道在运行过程中因为故障等原因而不可用 (即 GMPLS UNI隧道变为 DOWN状态), 则触发与之关联的数据通信网络的路由器的物理接 口的物理状态置为无效 (即变 DOWN), 相应地, 路由器中的 IP/MPLS业务做重新选路处理。
其中, 当该因为故障等原因而不可用的 GMPLS UNI 隧道的恢复正常后, 则会执行上述 触发物理接口启动链路层协议的步骤, 当通过链路层协议协商成功后, 设置链路层状态和 物理接口的物理状态设置为有效的流程, 方法类似, 不再赘述。
进一步地, 如果上述 GMPLS UNI 隧道没有建立成功, 则物理接口的物理状态不能置为 有效 UP, 此时对链路层协议不可用, 对于 IP/MPLS业务也是不可用。
上述实施例是以路由器为例, 但本发明中的数据通信设备并不局限于路由器, 举例来 说, 还可以是三层交换机, 及其他具有路由功能的设备。
综上所述, 本发明实施例提供的方法, 通过当光网络 GMPLS UNI 隧道建立成功后, 触 发数据通信设备中与光网络直连的物理接口启动链路层协议; 数据通信设备根据链路层协 议, 通过光网络隧道进行链路层协商; 当链路层协议协商成功后, 将数据通信设备之间的 链路层状态和物理接口的物理状态设置为有效; 从而实现数据通信设备 IP/MPLS业务的转 发, 并且降低实现 IP/MPLS业务承载在该 GMPLS UNI隧道的复杂度、 减少对 IP/MPLS控制 层面以及转发层面的改造, 提高转发性能。 实施例 2
参见图 4, 本发明实施例提供了一种实现业务转发的***, 包括: 第一数据通信设备 401、 第二数据通信设备 402, 其中, 第一数据通信设备 401与第二数据通信设备 402通过 光网络进行通信;
第一数据通信设备 401, 用于建立和第二数据通信设备 402之间的光网络隧道; 当光网 络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 根据链路层协议, 通过光网络隧道和第二数据通信设备 402 进行链路层协商; 当链路层协议协商成功后, 将 链路层状态和物理接口的物理状态设置为有效; 当链路层状态和物理接口的物理状态被设 置为有效后, 通过物理接口, 将业务发送至光网络隧道;
第二数据通信设备 402, 用于建立和第一数据通信设备 401之间的光网络隧道; 当光网 络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 根据链路层协议, 通过光网络隧道和第一数据通信设备 401 进行链路层协商; 当链路层协议协商成功后, 将 链路层状态和自身物理接口的物理状态设置为有效; 当链路层状态和物理接口的物理状态 被设置为有效后, 通过自身物理接口接收光网络隧道传输的业务。
进一步地, 本发明实施例提供的***还可以包括:
光网络, 用于建立第一数据通信设备 401和第二数据通信设备 402之间的光网络隧道、 并通过光网络隧道完成第一数据通信设备 401和第二数据通信设备 402的链路层协议协商; 还用于接收第一数据通信设备 401 的物理接口发送的业务, 将业务传输至第二数据通信设 备 402;
其中, 上述光网络隧道具体可以为: 通用多协议标签交换用户网络接口 GMPLS UNI 隧 道。
其中, 上述链路层协议具体包括: 点到点协议 PPP, 或, 以太 Ether链路层。
其中, 上述业务具体包括: 网络协议 IP业务, 和 /或, 多协议标签交换 MPLS业务。 综上所述, 本发明实施例提供的***, 通过当光网络 GMPLS UNI 隧道建立成功后, 触 发数据通信设备中与光网络直连的物理接口启动链路层协议; 数据通信设备根据链路层协 议, 通过光网络隧道进行链路层协商; 当链路层协议协商成功后, 将数据通信设备之间的 链路层状态和物理接口的物理状态设置为有效; 从而实现数据通信设备 IP/MPLS业务的转 发, 并且降低实现 IP/MPLS业务承载在该 GMPLS UNI隧道的复杂度、 减少对 IP/MPLS控制 层面以及转发层面的改造, 提高转发性能。 实施例 3 参见图 5, 本发明实施例提供了一种数据通信设备, 该数据通信设备包括: 建立模块 501、 启动模块 502、 协商模块 503、 设置模块 504以及发送模块 505, 其中,
建立模块 501, 用于建立和对端数据通信设备之间的光网络隧道;
启动模块 502, 用于当建立模块 501建立光网络隧道成功后, 触发自身与光网络直连的 物理接口启动链路层协议;
协商模块 503, 用于根据启动模块 502启动的链路层协议, 通过建立模块 501建立的光 网络隧道和对端数据通信设备进行链路层协商;
设置模块 504, 用于当协商模块 503进行的链路层协商成功后, 将链路层状态、 以及物 理接口的物理状态设置为有效;
发送模块 505,用于当设置模块 504设置的链路层状态和物理接口的物理状态被设置为 有效后, 通过物理接口, 将业务发送至光网络隧道, 即将业务的报文通过所述光网络隧道 发送到对端数据通信设备。
进一步地, 本发明实施例提供的数据通信设备还包括:
接收模块, 用于通过设置模块 504设置的物理接口, 接收来自建立模块 501建立的光 网络隧道传输的业务。
其中, 上述光网络隧道具体可以为: 通用多协议标签交换用户网络接口 GMPLS UNI 隧 道。
其中, 上述链路层协议具体包括: 点到点协议 PPP, 或, 以太 Ether链路层。
其中, 上述业务具体包括: 网络协议 IP业务, 和 /或, 多协议标签交换 MPLS业务。 综上所述, 本发明实施例提供的数据通信设备, 通过当光网络 GMPLS UNI 隧道建立成 功后, 触发数据通信设备中与光网络直连的物理接口启动链路层协议; 数据通信设备根据 链路层协议, 通过光网络隧道进行链路层协商; 当链路层协议协商成功后, 将数据通信设 备之间的链路层状态和物理接口的物理状态设置为有效; 从而实现数据通信设备 IP/MPLS 业务的转发,并且降低实现 IP/MPLS业务承载在该 GMPLS UNI隧道的复杂度、减少对 IP/MPLS 控制层面以及转发层面的改造, 提高转发性能。 实施例 4
参见图 6, 本发明实施例提供了一种光网络, 所述光网络包括: 建立模块 601、 传输模 块 602; 其中,
建立模块 601, 用于建立数据通信设备之间的光网络隧道;
传输模块 602, 用于接收数据通信设备的物理接口发送的业务, 将业务传输至对端数据 通信设备。
其中, 上述光网络隧道具体可以为: 通用多协议标签交换用户网络接口 GMPLS UNI 隧 道。
其中, 上述链路层协议具体包括: 点到点协议 PPP, 或, 以太 Ether链路层。
其中, 上述业务具体包括: 网络协议 IP业务, 和 /或, 多协议标签交换 MPLS业务。 综上所述, 本发明实施例提供的光网络, 通过当光网络 GMPLS UNI 隧道建立成功后, 触发数据通信设备中与光网络直连的物理接口启动链路层协议; 数据通信设备根据链路层 协议, 通过光网络隧道进行链路层协商; 当链路层协议协商成功后, 将数据通信设备之间 的链路层状态和物理接口的物理状态设置为有效; 从而实现数据通信设备 IP/MPLS业务的 转发, 并且降低实现 IP/MPLS业务承载在该 GMPLS UNI隧道的复杂度、 减少对 IP/MPLS控 制层面以及转发层面的改造, 提高转发性能。 综上, 本发明实施例提供的技术方案, 在数通网络的数据通信设备上, IP/MPLS模块在 控制层面不感知 GMPLS UNI隧道, IP/MPLS业务不用做任何改造即可承载在 GMPLS UNI隧 道上。 通过将 GMPLS UNI 隧道技术将转换成一种基础的链路层协议来使用, 对于数据通信 设备来说, 将该数据通信设备和光网络直连的物理接口的物理状态置为有效, 需要经过如 下 3个阶段: (1)物理层面收发光信号正常; (2) GMPLS UNI隧道建立成功; (3)现有的链路 层协议(如 PPP/ETHER)协商成功; 且阶段 (3)由阶段 (2)触发。 经过这 3个阶段之后, 链路 层状态置为有效 UP状态,该物理接口即可以被 IP/MPLS使用,使用过程中不感知 GMPLS UNI 隧道, 就像使用一个普通物理接口一样来使用这个与 GMPLS UNI隧道相关联的物理接口。
并且, 在数据通信设备上, IP/MPLS模块在转发层面不感知 GMPLS UNI隧道, IP/MPLS 业务的转发性能不会因为承载在 GMPLS UNI隧道上受影响, 转发层面由于不需要增加 GMPLS UNI隧道的转发表项, 则转发性能将不受影响。
在数据网络和光网络 (即 IP+光通信) 的融合过程中, 通过本发明实施例提供的方法, 将减轻数据通信设备设备控制层面的负担, 使得数据通信设备更快地、更容易地支持 GMPLS UNI ; 同时在数据通信设备的转发层面, 解决了因为多承载一层新的隧道而导致现有的 IP/MPLS业务转发性能降低的问题。
本发明实施例中的 "接收"一词可以理解为主动从其他模块获取也可以是接收其他模 块发送来的信息。
本领域技术人员可以理解附图只是优选实施例的示意图, 附图中的模块或流程并不一 定是实施本发明所必须的。 本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述分布于实施例 的装置中, 也可以进行相应变化位于不同于本实施例的一个或多个装置中。 上述实施例的 模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本发明实施例中的部分步骤, 可以利用软件实现, 相应的软件程序可以存储在可读取 的存储介质中, 如光盘或硬盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种实现业务转发的方法, 其特征在于, 至少两个数据通信设备通过光网络进行通 信, 所述方法包括:
建立所述数据通信设备之间的光网络隧道;
当所述光网络隧道建立成功后, 触发所述数据通信设备中与光网络直连的物理接口启 动链路层协议;
所述数据通信设备根据所述链路层协议, 通过所述光网络隧道进行链路层协商; 当所述链路层协商成功后, 将所述数据通信设备之间的链路层状态和所述物理接口的 物理状态设置为有效;
当所述链路层状态和所述物理接口的物理状态被设置为有效后, 所述数据通信设备通 过所述光网络隧道实现业务的转发。
2、 如权利要求 1所述的方法, 其特征在于, 所述数据通信设备根据所述链路层协议, 通过所述光网络隧道进行链路层协商, 具体包括:
第一数据通信设备通过自身与所述光网络直连的物理接口发送链路协议请求消息; 所述链路协议请求消息经过所述光网络隧道被传输至第二数据通信设备;
所述第二数据通信设备通过自身与所述光网络直连的物理接口接收所述链路协议请求 消息, 并通过自身与所述光网络直连的物理接口发送链路协议响应消息;
所述链路协议响应消息经过所述光网络隧道被传输至所述第一数据通信设备; 所述第一数据通信设备通过自身与所述光网络直连的物理接口接收所述链路协议响应 消息。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述数据通信设备通过所述光网络隧 道实现业务的转发, 具体包括:
所述第一数据通信设备将所述业务通过自身的物理接口发送至所述光网络隧道, 经所 述光网络隧道传输至所述第二数据通信设备;
所述第二数据通信设备通过自身与所述光网络直连的物理接口接收所述业务, 其中, 所述第二数据通信设备为所述第一数据通信设备的下一跳数据通信设备。
4、 如权利要求 3所述的方法, 其特征在于, 所述第一数据通信设备将所述业务通过自 身的物理接口发送至所述光网络隧道之前, 所述方法还包括:
所述第一数据通信设备接收自身上一跳数据通信设备发送的业务; 其中, 所述上一跳 数据通信设备通过查找自身转发表获知所述第一数据通信设备的物理接口的物理状态为有 效, 向所述第一数据通信设备发送业务。
5、 如权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括:
当所述光网络隧道出现故障时, 将所述物理接口的物理状态设置为无效。
6、 如权利要求 1或 2所述的方法, 其特征在于, 所述建立数据通信设备之间的光网络 隧道, 具体包括:
第一数据通信设备根据用户配置和 /或业务触发, 通过自身与光网络直连的物理接口向 所述光网络发起光网络隧道建立请求, 所述请求中携带第二数据通信设备标识、 带宽和服 务质量参数信息;
所述光网络接收所述光网络隧道建立请求, 根据所述请求中携带的信息, 建立所述第 一数据通信设备和第二数据通信设备之间的光通路;
所述第一数据通信设备根据所述光通路, 建立和所述第二数据通信设备之间的光网络 隧道。
7、 如权利要求 1或 2所述的方法, 其特征在于, 所述链路层协议具体包括: 点到点协议 PPP, 或, 以太 Ether链路层。
8、 如权利要求 1或 2所述的方法, 其特征在于, 所述业务具体包括:
网络协议 IP业务, 和 /或, 多协议标签交换 MPLS业务。
9、 一种实现业务转发的***, 其特征在于, 所述***包括: 第一数据通信设备、 第二 数据通信设备, 其中, 所述第一数据通信设备与所述第二数据通信设备通过光网络进行通 信;
所述第一数据通信设备, 用于建立和所述第二数据通信设备之间的光网络隧道; 当所 述光网络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 根据所述 链路层协议, 通过所述光网络隧道和所述第二数据通信设备进行链路层协商; 当所述链路 层协商成功后, 将所述链路层状态和所述物理接口的物理状态设置为有效; 当所述链路层 状态和所述物理接口的物理状态被设置为有效后, 通过所述物理接口, 将业务发送至所述 光网络隧道;
所述第二数据通信设备, 用于建立和所述第一数据通信设备之间的所述光网络隧道; 当所述光网络隧道建立成功后, 触发自身与光网络直连的物理接口启动链路层协议; 根据 所述链路层协议, 通过所述光网络隧道和所述第一数据通信设备进行链路层协商; 当所述 链路层协商成功后, 将所述链路层状态和自身所述物理接口的物理状态设置为有效; 当所 述链路层状态和所述物理接口的物理状态被设置为有效后, 通过自身所述物理接口接收所 述光网络隧道传输的业务。
10、 如权利要求 9所述的***, 其特征在于, ***还包括: 光网络,
所述光网络, 用于建立所述第一数据通信设备和所述第二数据通信设备之间的所述光 网络隧道; 接收所述第一数据通信设备的物理接口发送的业务, 将所述业务传输至所述第 二数据通信设备。
11、 一种数据通信设备, 其特征在于, 所述数据通信设备包括:
建立模块, 用于建立和对端数据通信设备之间的光网络隧道;
启动模块, 用于当所述建立模块建立光网络隧道成功后, 触发自身与光网络直连的物 理接口启动链路层协议;
协商模块, 用于根据所述启动模块启动的链路层协议, 通过所述建立模块建立的光网 络隧道和所述对端数据通信设备进行链路层协商;
设置模块, 用于当所述协商模块进行的链路层协商成功后, 将所述链路层状态、 以及 所述物理接口的物理状态设置为有效;
发送模块, 用于当所述设置模块设置的链路层状态和所述物理接口的物理状态被设置 为有效后, 通过所述物理接口, 将业务发送至所述光网络隧道。
12、 如权利要求 11所述的数据通信设备, 其特征在于, 所述数据通信设备还包括: 接收模块, 用于通过所述设置模块设置的物理接口, 接收所述建立模块建立的光网络 隧道传输的业务。
PCT/CN2009/072410 2008-11-24 2009-06-23 一种实现业务转发的方法、***和设备 WO2010057383A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09827132.3A EP2355435B1 (en) 2008-11-24 2009-06-23 Method, system and device for implementing service forwarding
US13/114,712 US8902909B2 (en) 2008-11-24 2011-05-24 Method, system, and device for implementing service forwarding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810181080.X 2008-11-24
CN200810181080XA CN101415005B (zh) 2008-11-24 2008-11-24 一种实现业务转发的方法、***和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/114,712 Continuation US8902909B2 (en) 2008-11-24 2011-05-24 Method, system, and device for implementing service forwarding

Publications (1)

Publication Number Publication Date
WO2010057383A1 true WO2010057383A1 (zh) 2010-05-27

Family

ID=40595317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072410 WO2010057383A1 (zh) 2008-11-24 2009-06-23 一种实现业务转发的方法、***和设备

Country Status (4)

Country Link
US (1) US8902909B2 (zh)
EP (1) EP2355435B1 (zh)
CN (1) CN101415005B (zh)
WO (1) WO2010057383A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415005B (zh) * 2008-11-24 2013-04-17 华为技术有限公司 一种实现业务转发的方法、***和设备
US9607412B2 (en) * 2010-02-04 2017-03-28 Ciena Corporation Method for rapid determination of lowest cost wavelength routes through a photonic network based on pre-validated paths
CN102238061B (zh) * 2010-04-23 2013-10-09 华为技术有限公司 一种建立物理链路的方法、路由器以及网络***
WO2016034226A1 (en) * 2014-09-03 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Auto-discovery of packet islands over gmpls-uni
CN104283750B (zh) * 2014-10-22 2017-07-21 北方信息控制集团有限公司 基于以太网总线的统一链路层多协议交换方法
US10771182B2 (en) * 2018-04-25 2020-09-08 Cisco Technology, Inc. Enhancing routing metrics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1436417A (zh) * 2000-06-07 2003-08-13 西门子公司 通过互联网协议传输语言信息的方法
US20040037296A1 (en) * 2002-08-21 2004-02-26 Kim Mi Hui Method for setting up QoS supported bi-directional tunnel and distributing L2VPN membership information for L2VPN using extended LDP
CN101415005A (zh) * 2008-11-24 2009-04-22 华为技术有限公司 一种实现业务转发的方法、***和设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039009B2 (en) * 2000-01-28 2006-05-02 At&T Corp. Control of optical connections in an optical network
US20030031177A1 (en) * 2001-05-24 2003-02-13 Marc Robidas Systems and methods for exchanging information between optical nodes
CN1757210A (zh) * 2003-01-15 2006-04-05 希尔纳公司 用于在光网络上传输分组数据的方法和装置
US7417950B2 (en) * 2003-02-03 2008-08-26 Ciena Corporation Method and apparatus for performing data flow ingress/egress admission control in a provider network
US7680128B2 (en) * 2004-07-20 2010-03-16 Ciena Corporation Method and apparatus for interfacing applications to LCAS for efficient SONET traffic flow control
US7535828B2 (en) * 2005-03-18 2009-05-19 Cisco Technology, Inc. Algorithm for backup PE selection
US7593398B2 (en) * 2005-09-08 2009-09-22 Cisco Technology, Inc. Layer-two interworking applied to L2-L3 pseudowires
US7710901B2 (en) * 2005-10-14 2010-05-04 Nortel Networks Limited GMPLS control of ethernet
US7940685B1 (en) * 2005-11-16 2011-05-10 At&T Intellectual Property Ii, Lp Method and apparatus for monitoring a network
CN100561962C (zh) * 2005-11-24 2009-11-18 华为技术有限公司 基于目录服务来实现网络连接服务建立的方法及***
EP1959614B1 (en) * 2005-12-02 2014-02-19 Huawei Technologies Co., Ltd. A method and system for interconnecting the broadband wireless access network with the optical access broadband network
US8451846B1 (en) * 2006-04-19 2013-05-28 Juniper Networks, Inc. LSP hierarchy for MPLS networks
US7676154B2 (en) * 2006-06-29 2010-03-09 Nortel Networks Limited Method and system for configuring a connection-oriented packet network over a wavelength division multiplexed optical network
CN1901497A (zh) 2006-07-19 2007-01-24 华为技术有限公司 建立交换路径的方法、网络设备和***
US7580417B2 (en) * 2006-08-07 2009-08-25 Cisco Technology, Inc. Method and apparatus for load balancing over virtual network links
US8279749B2 (en) * 2006-11-27 2012-10-02 Cisco Technology, Inc. Failure protection for P2MP tunnel head-end node
CN101013995A (zh) * 2007-02-12 2007-08-08 华为技术有限公司 网络节点设备、网络***及隧道建立方法
US8189482B2 (en) * 2007-02-20 2012-05-29 Cisco Technology, Inc. Probing-based mechanism to reduce preemption perturbation caused by higher priority tunnel establishment in a computer network
US8009681B2 (en) * 2007-03-21 2011-08-30 Ciena Corporation Methods and systems for interworking RSVP-based external control plane protocols with internal control plane protocols
US7852863B2 (en) * 2007-12-20 2010-12-14 Ciena Corporation System and methods for connections using automatically switched optical network control planes
JP5169237B2 (ja) * 2008-01-16 2013-03-27 富士通株式会社 通信伝送装置および通信伝送方法
US8023518B2 (en) * 2008-05-02 2011-09-20 Telefonaktiebolaget L M Ericsson (Publ) Efficient path setup in a provider backbone bridge network
US8477769B2 (en) * 2008-05-13 2013-07-02 Verizon Patent And Licensing Inc. Flexible shared mesh protection services for intelligent TDM-based optical transport networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1436417A (zh) * 2000-06-07 2003-08-13 西门子公司 通过互联网协议传输语言信息的方法
US20040037296A1 (en) * 2002-08-21 2004-02-26 Kim Mi Hui Method for setting up QoS supported bi-directional tunnel and distributing L2VPN membership information for L2VPN using extended LDP
CN101415005A (zh) * 2008-11-24 2009-04-22 华为技术有限公司 一种实现业务转发的方法、***和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALI, ZAFAR ET AL.: "Address Resolution for GMPLS controlled PSC Ethernet Interfaces draft-ali-arp-over-gmpls-controlled-ethernet-psc-i-04.txt", CCAMP WORKING GROUP., 9 July 2007 (2007-07-09), XP015050717 *

Also Published As

Publication number Publication date
EP2355435A4 (en) 2012-03-21
CN101415005A (zh) 2009-04-22
CN101415005B (zh) 2013-04-17
EP2355435B1 (en) 2014-11-12
EP2355435A1 (en) 2011-08-10
US8902909B2 (en) 2014-12-02
US20110222847A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
CA2575843C (en) Graceful shutdown of ldp on specific interfaces between label switched routers
JP5200170B2 (ja) トラフィック接続および関連監視接続を確立する方法
US20060062218A1 (en) Method for establishing session in label switch network and label switch node
EP1976198B1 (en) Method for allocating label, for remising label, and label switch router
WO2009056034A1 (fr) Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp
WO2006007769A1 (fr) Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit
WO2008077300A1 (fr) Procédé et système permettant de négocier le discriminateur de session de détection de transmission bidirectionnelle d'un pseudo-fil
TW201134151A (en) RSVP-TE graceful restart under fast re-route conditions
US8902909B2 (en) Method, system, and device for implementing service forwarding
JP2004146915A (ja) ネットワークを相互に接続する方法、及びそのための装置
WO2005122442A1 (fr) Procede d'execution d'associations dans un reseau optique a commutation automatique
US9521072B2 (en) Method and network device for distributing multi-protocol label switching labels
JP2012501140A (ja) トラフィック接続および関連監視接続を確立する方法
WO2008064612A1 (fr) Procédé, dispositif et système permettant d'effectuer un reroutage rapide dans un réseau mpls
EP2239956B1 (en) Method, apparatus and system for ip/optical convergence
JP2008193395A (ja) 双方向パスの設定方法とそれを実現する通信システムとノード装置
CN100502343C (zh) 多协议标签交换虚拟专用网相互通信的方法
WO2008011771A1 (fr) Procédé, équipement de réseau et système permettant d'établir une voie de commutation dans un réseau internet optique
WO2015062285A1 (zh) 接口参数同步方法和装置
WO2013029499A1 (zh) 一种动态路由的实现方法和装置
WO2006011569A1 (ja) 移動通信アクセスシステム、パケット転送装置及びパス張り替え方法
JP4553304B2 (ja) ネットワークトポロジ処理方法および異ネットワーク間接続処理方法
WO2011120471A2 (zh) 用于数据传输的方法、网络设备和***
JP4634979B2 (ja) Mplsネットワークシステム、mplsルータおよび経路設定方法
KR100459046B1 (ko) 확장된 rsvp-te를 이용한 mpls 기반의 차세대무선 액세스망의 프로토콜 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827132

Country of ref document: EP