WO2010055880A1 - X-ray ct system - Google Patents

X-ray ct system Download PDF

Info

Publication number
WO2010055880A1
WO2010055880A1 PCT/JP2009/069268 JP2009069268W WO2010055880A1 WO 2010055880 A1 WO2010055880 A1 WO 2010055880A1 JP 2009069268 W JP2009069268 W JP 2009069268W WO 2010055880 A1 WO2010055880 A1 WO 2010055880A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
light
rotary scanner
scanner
light receiving
Prior art date
Application number
PCT/JP2009/069268
Other languages
French (fr)
Japanese (ja)
Inventor
美奈 小川
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2010537798A priority Critical patent/JP5758126B2/en
Publication of WO2010055880A1 publication Critical patent/WO2010055880A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections

Definitions

  • the present invention relates to an X-ray CT apparatus, and more particularly to an X-ray CT apparatus that transmits and receives signals between a stationary part and a rotating part using an optical signal.
  • Recent X-ray CT systems use a slip ring method, that is, a scanner that exchanges signals between the rotating part and the stationary part by mechanical sliding contact between the ring and the brush in order to enable continuous rotation measurement. It is common. Signals to be exchanged include measurement signals and control signals.
  • a measurement signal is a signal detected from an X-ray detector corresponding to an X-ray that has passed through a subject in a measurement means that is mounted on a rotating part and that is composed of an X-ray source and a multi-channel X-ray detector facing each other. That is. This measurement signal is transmitted from the rotating part to the stationary part.
  • Control signals include a measurement trigger signal for starting the acquisition of the measurement signal, an X-ray feedback signal for feedback control of the X-ray output, etc.
  • the measurement trigger signal is sent from the stationary part to the rotating part, and the X-ray feedback.
  • the signal is transmitted from the rotating part to the stationary part.
  • Patent Document 1 discloses a structure in which a light emitting element is arranged on the circumference of a rotating unit, and a receiving unit arranged in a stationary unit can receive data regardless of the rotation angle.
  • line-shaped light emitters are arranged in a ring shape.
  • This light emitter is, for example, a transparent plastic columnar body that emits light on its side surface, and has a structure in which data can be received by a light receiving unit located at a remote position.
  • Patent Document 3 discloses a non-contact power transmission method.
  • Patent Document 1 has a structure in which a light source is arranged on the circumference.For example, assuming that the scanner opening diameter is 800 mm, and the diameter of the mechanism unit in which the light source is arranged is 1 m, Consider the required number of LEDs. If an 80 ° LED with wide directivity is used and the distance from the light source to the light receiving unit is 5 mm, 436 or more light sources are required, resulting in a large structure.
  • Patent Document 2 since it can be arranged in a ring shape using a light-emitting body that is made of a transparent plastic columnar body so that its side surface emits light, it is not necessary to arrange a large number of light sources.
  • the light emitters when the light emitters are arranged in a ring shape, if the light emitters are short in the longitudinal direction, a gap is formed at the joint, and a portion that does not emit light is formed. On the other hand, if the length is long, a portion where the light emitters cross is generated, and the light emitting portion and the light receiving portion are displaced from each other.
  • the light emitting body that emits light on the side surface has a loss along the line, the luminance is lower than that of an LED or the like, and the luminance decreases as the distance from the light source increases. Therefore, in addition to the need to make the distance between the light emitting unit and the light receiving unit sufficiently close, and considering the mechanical accuracy due to rotational shake, the problem that the light emitter is short and long in the longitudinal direction is the transmission / reception data as described above. It cannot be ignored in terms of reliability.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an X-ray CT apparatus that improves the reliability of optical transmission.
  • the X-ray CT apparatus is characterized by improving the luminance of light received by the light receiving unit using an optical film.
  • an X-ray CT apparatus detects an X-ray source that generates X-rays and the X-ray source that is disposed opposite to the X-ray source and transmits a subject and outputs a measurement signal.
  • a signal transmission unit composed of a light emitter and a light receiving unit, and between the light emitter and the light receiving unit, for transmitting and receiving an optical signal between the rotary scanner and the stationary unit.
  • a diffusion sheet for diffusing the light emitted from the light emitter, and a prism sheet for condensing the light emitted from the light emitter toward the light receiving section.
  • the light emitted from the illuminant attenuates as the distance from the illuminant increases, and thus unevenness of light (brightness) occurs.
  • the unevenness of the light can be reduced by using a diffusion sheet.
  • the prism sheet by using the prism sheet, the scattered light can be condensed toward the light receiving unit, and the luminance can be improved.
  • Partial enlarged view of the X-ray CT apparatus according to the second embodiment Partial enlarged view of the X-ray CT apparatus according to the third embodiment
  • Schematic diagram showing the configuration of the light receiving unit Partial enlarged view of the X-ray CT apparatus according to the fourth embodiment Partial enlarged view of the X-ray CT apparatus according to the fifth embodiment
  • Partial enlarged view of the X-ray CT apparatus according to the sixth embodiment Partial enlarged view of the X-ray CT apparatus according to the seventh embodiment
  • FIG. 1 is a schematic diagram showing the overall configuration of an X-ray CT apparatus 100 to which the present invention is applied.
  • the X-ray CT apparatus 100 includes a stationary unit (also referred to as a scan gantry) 110 that accommodates a subject, and an image reconstruction unit 120.
  • the stationary unit 110 has a rotary scanner 111 having an opening 114 into which a subject is carried, an X-ray tube 112 mounted on the rotary scanner 111, and an X-ray tube 112 attached to the X-ray bundle.
  • a collimator 113 to be controlled an X-ray detector 115 mounted on the rotary scanner 111 facing the X-ray tube 112, and a detector circuit for converting X-rays detected by the X-ray detector 115 into predetermined measurement signals 116 and a scan control circuit 117 for controlling the rotation of the rotary scanner 111 and the width of the X-ray bundle.
  • the image reconstruction unit 120 includes an input device 121 for inputting a subject's name, examination date and time, examination conditions, and the like, and an image computation circuit that performs CT image reconstruction by computing the measurement signal S1 sent from the detector circuit 116 122, an image information adding unit 123 for adding information such as a subject's name, examination date and time, examination conditions inputted from the input device 121 to the CT image created by the image arithmetic circuit 122, and image information added And a display circuit 124 for adjusting the display gain of the CT measurement signal S2 and outputting it to the display monitor 130.
  • X-rays are irradiated from the X-ray tube 112 in a state where the subject is laid on a bed (not shown) installed in the opening 114 of the stationary part 110.
  • the X-ray is obtained by the collimator 113 and is detected by the X-ray detector 115.
  • the X-ray transmitted through the subject is detected while changing the X-ray irradiation direction.
  • a tomographic image created by the image reconstruction unit 120 based on this measurement signal is displayed on the display monitor 130.
  • the X-ray CT apparatus 100 transmits measurement signals and various control signals transmitted and received between the rotary scanner 111 and the stationary unit 110 by transmitting and receiving optical signals.
  • FIG. 2 is a partially enlarged view of the X-ray CT apparatus according to the first embodiment, in which the stationary part 110 and the rotary scanner 111 are enlarged.
  • FIG. 3 is an enlarged schematic view of a partial region (region surrounded by a dotted line) in the AA ′ cross section of FIG. 2, and is a schematic diagram for explaining a fixing structure of the diffusion sheet 16 and the prism sheet 17. is there.
  • the rotary scanner 111 is positioned inside the stationary part 110, whereas in FIG. 2, the rotational radius of the rotary scanner 111 is drawn larger than the rotational radius of the stationary part 110, and the rotary scanner 111 is located outside.
  • the stationary part 110 is located inside. This is because the rough positional relationship between the stationary unit 110 and the rotary scanner 111 is as shown in FIG. 1, but the details are, for example, stationary as in the signal transmission unit 3b in FIG. 8 of the fifth embodiment to be described later. This is because the portion 110 is located inside the rotary scanner 111, and there is no problem in the alignment of the positional relationship between the stationary portion 110 and the rotary scanner 111 in each figure.
  • the stationary part 110 is arranged along the circumferential direction of the rotary scanner 111 so that the light emitter 11 emits light uniformly and radially in the circumference of the stationary part 110.
  • the light receiving unit 28 is disposed in the rotary scanner 111.
  • a reflection sheet 15 is attached over the entire circumference between the light emitter 11 and the stationary part 110, that is, in a direction other than the light emission direction of the light emitter 11.
  • a diffusion sheet 16 is attached so as to cover all the light emitters 11 arranged in the circumferential direction, and further the prism sheet 17 is placed on the diffusion sheet 16 (to the light receiving unit 28). It is attached to the opposite surface.
  • Fig. 3 (a) shows an example in which double-sided tape (or adhesive) is used in two layers.
  • the diffusion sheet 16 is fixed to the stationary part 110 using a double-sided tape (or adhesive) 30 between the stationary part 110 and the diffusion sheet 16.
  • a double-sided tape (or adhesive) 31 is used between the diffusion sheet 16 and the prism sheet 17, and the prism sheet 17 is bonded to the diffusion sheet 16. Thereby, the diffusion sheet 16 and the prism sheet 17 are fixed.
  • Fig. 3 (b) shows an example in which double-sided tape (or adhesive) is used for one layer.
  • the end portion of the diffusion sheet 16 is fixed to the stationary portion 110 with the double-sided tape 32, and the prism sheet 17 is fixed thereon.
  • the width of the diffusion sheet 16 can be slightly reduced, and the amount of double-sided tape used can be halved.
  • Fig. 3 (c) shows an example of using single-sided tape as the outermost layer.
  • the diffusion sheet 16 and the prism sheet 17 are placed on the stationary part 110, and the ends thereof are fixed with the single-sided tape 33.
  • the width of the prism sheet can be made slightly smaller, and the use of the single-sided tape 33 instead of the double-sided tape 32 makes the fixing operation simpler.
  • FIG. 3 (d) is a drawing obtained by extending the cross-sectional view of FIG. 3 (c) in the circumferential direction.
  • the single-sided tape 33 may be processed by winding it continuously around the circumference, or as shown in Fig. 3 (d), it may be dispersed in various places in the circumferential direction and fixed with tape pieces. Good.
  • the fixing structure of the diffusion sheet 16 and the prism sheet 17 has been described using a double-sided tape, an adhesive, and a single-sided tape. However, it may be attached using a mechanical attachment structure such as screwing. In this case, when it becomes necessary to replace the diffusion sheet 16 and the prism sheet 17, the replacement is easier than the adhesive fixing.
  • the stationary unit 110 When a signal is transmitted from the stationary unit 110 to the rotary scanner 111, the light receiving unit 28 receives light by turning on and off the light emission of the light emitter 11.
  • the reflection sheet 15 is a polyester film material having a function of reflecting light, and is provided so as to improve the luminous efficiency by reflecting such scattered light and emitting light in an intended direction.
  • the diffusion sheet 16 is a material having a light diffusion function in which fine particles such as titanium dioxide and calcium carbonate are contained in a resin such as translucent acrylic or polycarbonate, and can reduce light unevenness. Although it depends on the diffusion capability of the diffusion sheet 16, even if the number of the light emitters 11 is reduced and they are spaced apart from each other, the light is scattered, so that uniform light emission can be obtained.
  • the prism sheet 17 is made of polycarbonate, and is a material having a function of collecting light in each direction and increasing the luminance in the direction perpendicular to the light emitting surface. In other words, the luminance can be compensated when the diffusion sheet 16 diffuses the light and the luminance decreases to reach the sensitivity of the light receiving unit.
  • the diffusion sheet 16 and the prism sheet 17 are made of a material that is cut into a strip shape having a narrow and narrow width so as to cover the circumference.
  • the light receiving unit 28 includes a plurality of light receiving elements, and the error rate can be reduced by combining the outputs of the light receiving elements into one received signal.
  • the light of the light emitter 11 is diffused by the diffusion sheet 16.
  • the distance between the reflection sheet 15 and the diffusion sheet 16 is 20 mm
  • the distance between the light emitters 11 is 20 mm.
  • the diameter of the mechanism portion in which the light emitter is disposed is 1 m
  • the number of the light emitters 11 is at least 157, and the light emitters can be configured with a number equal to or less than 1/2 of the conventional example. .
  • FIG. 4 is a schematic diagram of the second embodiment, which basically has the same structure and operation as the first embodiment, but the arrangement positions of the diffusion sheet 26 and the prism sheet 27 are different.
  • the diffusion sheet 26 and the prism sheet 27 are arranged in the stationary part 110 in the first embodiment, whereas in the second embodiment, the diffusion sheet 26 and the prism sheet 27 are arranged in the rotary scanner 111 and attached so as to cover the light receiving surface of the light receiving part 28. ing.
  • the areas of the diffusion sheet 26 and the prism sheet 27 that cover the light receiving surface of the light receiving unit 28 need to be larger in the circumferential direction than the effective light receiving area of the light receiving unit 28 in order to benefit from the functions of these sheets.
  • it is as wide as the arrangement pitch of the respective light emitters 11.
  • the route from which the light emitted from the light emitter 11 reaches the light emitter 11 ⁇ the diffusion sheet 26 ⁇ the prism sheet 27 ⁇ the light receiving unit 28 is the same as in the first embodiment, and the operation is the same. Further, the reflection sheet 15 is attached around the light emitter 11 as in the first embodiment.
  • the area that requires the diffusion sheet 26 and the prism sheet 27 may be smaller.
  • a protective film that sufficiently transmits light may be attached.
  • FIG. 5 is a partially enlarged view of the X-ray CT apparatus according to the third embodiment.
  • FIG. 6 is a schematic diagram showing the configuration of the light receiving unit.
  • the third embodiment has basically the same structure and operation as the first embodiment, but the mode of the light emitter 12 is different.
  • a point light-emitting type light emitter such as an LED
  • a line-shaped light emitter 12 whose surface emits light uniformly is used.
  • the light emitter 12 may emit light by surface-treating the side surface of a transparent resin material such as a side-emitting optical fiber or a columnar and long acrylic.
  • the reflection sheet 15 is attached around the light emitter 12 as in the first embodiment, and is configured such that light emitted from the light emitter 12 reaches the light receiver 28 efficiently.
  • the light emitter 12 since an optical fiber is used as a line-shaped light emitter that emits light along the longitudinal direction, the light emitter 12 has an end as shown in FIG.
  • the light emitter 12 there are one or a plurality of light sources 121 a and 121 b such as LEDs, and light is incident on the light emitter 12.
  • the light sources 121a and 121b are located in the gaps at the end portions in the longitudinal direction of the light emitter 12.
  • the gaps at the end portions of the light emitters 12 are large, the light sources 121a and 121b There is no part. For this reason, in order to make the portion without light as small as possible, it is more preferable that the light sources 121a and 121b are arranged so that light enters from the other direction at the end of the light emitter 12.
  • FIG. 6 is a schematic diagram showing a simple configuration of the light receiving unit 28.
  • the light received by the photodiodes 81a and 81b is converted into an electric signal, the signal is amplified by the amplifiers 82a and 82b, and the logical sum 83 of these two signals is obtained.
  • the light emitted from the light emitter 12 is received by the photodiode 81a in the light receiving unit 28 but cannot be received by the photodiode 81b.
  • the presence of the logical sum 83 allows a signal to be transmitted if either photodiode can receive light. The greater the number of photodiodes, the more reliable the signal transmission.
  • the line-shaped light emitter 12 by using the line-shaped light emitter 12, unevenness of light due to the light emitter 11 at points is unlikely to occur as in the first and second embodiments. However, light unevenness occurs in the gap between the end portions of the light emitters 12 as described above, but this is mitigated by the diffusion sheet 16 to improve the reliability of transmission data. Furthermore, when the light emitter 12 is formed of a general-purpose optical fiber, the general light emitter 12 has a circular cross section and a thin outer diameter of several millimeters. Due to the manufacturing accuracy of the support system and the shake caused by rotation, if the deviation shown in the arrow in the direction of the body axis occurs, unevenness of light occurs and the reliability of the transmission data is lost. Try to lose. In addition, the line-shaped light emitter 12 is excellent in the uniformity of light in the outer peripheral direction, but the light tends to be diffused and the luminance tends to be weak in the other directions. Can be supplemented.
  • FIG. 7 is a partially enlarged view of the X-ray CT apparatus according to the fourth embodiment, which basically has the same structure and operation as the third embodiment, but the arrangement location of the diffusion sheet 26 and the prism sheet 27 is different.
  • the diffusion sheet 26 and the prism sheet 27 are arranged in the stationary part 110 in the third embodiment, whereas in the fourth embodiment, the diffusion sheet 26 and the prism sheet 27 are arranged in the rotary scanner 111 and attached so as to cover the light receiving surface of the light receiving part 28. ing.
  • the route from which the light emitted from the light emitter 12 reaches the light emitter 12, the diffusion sheet 26, the prism sheet 27, and the light receiving unit 28 is the same as in the third embodiment, and the operation is the same. Further, the reflective sheet 15 is attached around the light emitter 12 as in the third embodiment.
  • the area that requires the diffusion sheet 26 and the prism sheet 27 may be smaller than that of the third embodiment based on the same concept as the second embodiment.
  • a protective film that sufficiently transmits light may be attached.
  • FIG. 8 is a partially enlarged view of the X-ray CT apparatus according to the fifth embodiment, in which the stationary part 110 and the rotary scanner 111 are moved in the centrifugal direction (that is, the direction orthogonal to the body axis direction of the subject placed on the bed).
  • FIG. The fifth embodiment includes two signal transmission units according to the fourth embodiment and a non-contact power transmission mechanism, and the two signal transmission units are arranged at positions that are symmetrical in the centrifugal direction around the non-contact power transmission mechanism.
  • the “position where the two signal transmission units are symmetrical in the centrifugal direction around the non-contact power transmission mechanism” means that the distance in the centrifugal direction between the non-contact power transmission mechanism and each signal transmission unit is substantially equal. Means position. Therefore, in the present embodiment, the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a is substantially equal to the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b.
  • the signal transmission unit includes a signal transmission unit 3a from the rotary scanner 111 to the stationary unit 110 and a signal transmission unit 3b from the stationary unit 110 to the rotary scanner 111, and transmits and receives two signals.
  • the signal transmission unit 3a transmits a measurement signal and an X-ray feedback signal for feedback control of the X-ray output.
  • the signal transmission unit 3b transmits a measurement trigger signal for starting capturing of the measurement signal.
  • the signal transmission units 3a and 3b are provided at positions symmetrical with respect to the centrifugal direction with the mechanism provided on the rotary scanner 111 side of the non-contact power transmission mechanism 5 as a center. With this configuration, the fifth embodiment can achieve the smallest size of the rotary scanner as compared with the sixth embodiment and the seventh embodiment described later.
  • the belt-like or square diffusion sheet 16 and the prism sheet 17 are fixed to the stationary part 110 so as to cover the light receiving surface of the light receiving part 18 provided in the stationary part 110. Further, a belt-like or square diffusion sheet 26 and a prism sheet 27 are fixed to the rotary scanner 111 so as to cover the light receiving surface of the light receiving unit 28 provided in the rotary scanner 111.
  • FIG. 9 is a partial enlarged view of the X-ray CT apparatus according to the sixth embodiment, and is a cross-sectional view of the stationary part 110 and the rotary scanner 111 cut in the centrifugal direction.
  • the signal transmission units 3a and 3b are provided at positions that are point-symmetric about the central portion of the non-contact power transmission mechanism 5.
  • the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a and the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b are substantially equal.
  • the shapes and attachment positions of the diffusion sheets 16 and 26 and the prism sheets 17 and 27 are the same as in the fifth embodiment.
  • the sixth embodiment as in the fifth embodiment, it is possible to transmit the signal and the power in a non-contact manner, the maintenance becomes easier, and the reliability can be improved.
  • FIG. 10 is a partial enlarged view of the X-ray CT apparatus according to the seventh embodiment, and is a cross-sectional view of the stationary part 110 and the rotary scanner 111 cut in the centrifugal direction. Also in the present embodiment, the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a and the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b are substantially equal. Be placed.
  • the signal transmission direction of the signal transmission unit 3a and the signal transmission unit 3b is the centrifugal direction in the fifth embodiment, whereas in the seventh embodiment, the axial direction of the cylinder (the body axis of the subject placed on the bed) The same direction as the direction).
  • the gap generated between the stationary part 110 and the rotary scanner 111 becomes simpler than in the fifth embodiment, so that the mechanism design that takes into account rotational fluctuations is relatively easy. Since there is a concern that the magnetic flux generated in the non-contact power transmission mechanism 5 leaks outside through the gap, a configuration for shielding the magnetic flux, for example, a shielding material may be appropriately disposed.
  • hollow disk-shaped (doughnut-shaped) diffusion sheets 16 and 26 and prism sheets 17 and 27 are used, and the diffusion sheet 16 and the prism sheet 17 are covered so as to cover the light receiving unit 18 provided in the stationary part 110.
  • the diffusion sheet 26 and the prism sheet 27 are fixed to the rotary scanner 111 so as to cover the light receiving unit 28 provided in the rotary scanner 111.
  • the hollow disk-shaped (doughnut-shaped) diffusion sheets 16 and 26 Using the prism sheets 17 and 27 makes it possible to simplify the sheet attaching operation.
  • the effect does not change even if the relative positional relationship between the light emitter and the light receiving unit is reversed.
  • the signal transmission units 3a and 3b use the fourth embodiment, and the line-shaped light emitters 12 and 22 are arranged.
  • the effect is the same even when the light emitter 11 which is a point light source is used.
  • the signal transmission units 3a and 3b use the fourth embodiment, and the diffusion sheets 16 and 26 and the prism sheets 17 and 27 are connected to the stationary unit 110 or the rotary scanner 111 with the photoreceptor 18, Although it is attached so as to cover 28, the effect is the same if it is attached so as to cover the light emitters 12 and 12 as shown in the first and third embodiments.
  • the arrangement of the diffusion sheets 16 and 26 and the prism sheets 17 and 27 is divided into the stationary unit 110 and the rotary scanner 111.
  • the diffusion sheets 16 and 26 are separated from the stationary unit 110, the prism sheet 17,
  • a structure in which 27 is arranged on the rotary scanner 111 has the same effect.
  • the effect is the same even if the diffusion sheets 16 and 26 are in the rotary scanner 111 and the prism sheets 17 and 27 are in the stationary unit 110. Needless to say.
  • a brush or cloth having a low friction is attached to the stationary part 110 or the rotary scanner 111 so that the space between the stationary part 110 and the rotary scanner 111 is slid in contact with the rotation. It may be configured. Such a brush or cloth is arranged so as to remove dust on the surface of the diffusion sheet or the prism sheet with rotation, and further improvement in maintainability can be expected.
  • both the diffusion sheet and the prism sheet are used, but only one of them may be used.
  • the configuration is as follows.
  • An X-ray source that generates X-rays
  • an X-ray detector that is disposed opposite to the X-ray source, detects the X-rays that have passed through the subject, and outputs a measurement signal
  • the X-ray source and the X-rays A rotating scanner that mounts a detector and rotates the X-ray source and the X-ray detector around the subject; a stationary part that supports the rotating scanner; and the rotating scanner and the stationary part.
  • a signal transmission unit configured by a light emitter and a light receiver, and provided between the light emitter and the light receiver, for diffusing light emitted from the light emitter
  • An X-ray CT apparatus comprising: a diffusion sheet; or a prism sheet for condensing light emitted from the light emitter toward the light receiving unit.
  • 3a, 3b signal transmission unit 5 contactless power transmission mechanism, 11 light emitter, 12 light emitter, 15 reflection sheet, 16 diffusion sheet, 17 prism sheet, 18 light reception unit, 22 light emitter, 25 reflection sheet, 26 diffusion sheet, 27 Prism sheet, 28 light receiving part, 121a, 121b light source, 81a, 81b photodiode, 82a, 82b amplifier, 83 OR, 100 X-ray CT device, 110 stationary part, 111 rotating part

Abstract

An X-ray CT system comprising a rotary scanner which supports an X-ray source and an X-ray detector arranged to face each other and rotates around a subject, and a stationary section which supports the rotary scanner, wherein a signal transmission section consisting of a light emitting body and a light receiving portion is provided in order to transmit/receive an optical signal between the rotary scanner and the stationary section, and a diffusion sheet, which diffuses light emitted from the light emitting body, and/or a prism sheet, which condenses the light to the light receiving portion, is provided between the light emitting body and the light receiving portion, thus providing an X-ray CT system which can enhance reliability while facilitating the maintenance and inspection of the signal transmission means.

Description

X線CT装置X-ray CT system
 本発明は、X線CT装置に係り、特に、静止部と回転部との信号を、光信号を用いて送受信するX線CT装置に関する。 The present invention relates to an X-ray CT apparatus, and more particularly to an X-ray CT apparatus that transmits and receives signals between a stationary part and a rotating part using an optical signal.
 最近のX線CT装置では、連続回転計測を可能とする為にスリップリング方式、すなわち、リングとブラシの機械的摺接によって、回転部と静止部との信号のやり取りを成す方式のスキャナを用いるのが一般的である。やり取りするべき信号には、計測信号及び制御信号がある。 Recent X-ray CT systems use a slip ring method, that is, a scanner that exchanges signals between the rotating part and the stationary part by mechanical sliding contact between the ring and the brush in order to enable continuous rotation measurement. It is common. Signals to be exchanged include measurement signals and control signals.
 計測信号とは、回転部に搭載され互いに対向したX線源と多チャンネルX線検出器とからなる計測手段において、被検体を透過したX線に対応してX線検出器から検出される信号のことである。この計測信号は、回転部から静止部へ伝送される。 A measurement signal is a signal detected from an X-ray detector corresponding to an X-ray that has passed through a subject in a measurement means that is mounted on a rotating part and that is composed of an X-ray source and a multi-channel X-ray detector facing each other. That is. This measurement signal is transmitted from the rotating part to the stationary part.
 また制御信号には、計測信号の取り込みを開始するための計測トリガ信号、X線出力をフィードバック制御するためのX線フィードバック信号などがあり、計測トリガ信号は静止部から回転部に、X線フィードバック信号は回転部から静止部へ伝送される。 Control signals include a measurement trigger signal for starting the acquisition of the measurement signal, an X-ray feedback signal for feedback control of the X-ray output, etc. The measurement trigger signal is sent from the stationary part to the rotating part, and the X-ray feedback. The signal is transmitted from the rotating part to the stationary part.
 これらの信号をスリップリング方式で伝送するX線CT装置では、スリップリングのブラシの接触摩耗等による接触不良が原因でデータの遮断やデータ変化が生じてしまったり、金属カスの清掃やブラシの交換など多大なメンテナンス工数を要したりしている。更に、計測レートを高速化する場合や各種制御信号を増やしたい場合には、スリップリングのチャネル数を追加しなければならず、スキャナの大きさや重量、コストの大幅な増大も避けられない。 In an X-ray CT system that transmits these signals using the slip ring method, data failure or data change may occur due to contact failure due to contact wear of the slip ring brush, etc., metal scrap cleaning, or brush replacement It requires a lot of maintenance man-hours. Furthermore, when the measurement rate is increased or when it is desired to increase various control signals, the number of slip ring channels must be added, and the size, weight, and cost of the scanner are inevitably increased.
 このような問題に対処するため、スリップリング方式を光伝送方式に置き換えたX線CT装置が提案されている。 In order to deal with such problems, an X-ray CT apparatus in which the slip ring method is replaced with an optical transmission method has been proposed.
 例えば、特許文献1では、回転部の円周上に発光素子が配置され、静止部に配置された受信部が、回転角度に関わらずデータを受信できる構造が開示されている。 For example, Patent Document 1 discloses a structure in which a light emitting element is arranged on the circumference of a rotating unit, and a receiving unit arranged in a stationary unit can receive data regardless of the rotation angle.
 また特許文献2では、ライン状の発光体がリング状に配置されている。この発光体は、例えば透明プラスチックの柱状体で側面が発光するよう施されており、離れた位置にある受光部でデータを受信できる構造となっている。 In Patent Document 2, line-shaped light emitters are arranged in a ring shape. This light emitter is, for example, a transparent plastic columnar body that emits light on its side surface, and has a structure in which data can be received by a light receiving unit located at a remote position.
 以上のような非接触での信号伝送方式に加え、特許文献3には、非接触電力伝送方式が開示されている。 In addition to the non-contact signal transmission method as described above, Patent Document 3 discloses a non-contact power transmission method.
特開2000-82998号公報Japanese Unexamined Patent Publication No. 2000-82998 特開平10-208185号公報Japanese Patent Laid-Open No. 10-208185 特許第4008010号公報Japanese Patent No. 4008010
 以上に挙げた特許文献1や特許文献2のような非接触信号伝送技術における従来例では、回転部の回転角度に係わらず、非接触で信号を送受信できるが、実際の装置への適用にあたっては、以下の問題点がある。 In the conventional examples of the non-contact signal transmission technologies such as Patent Document 1 and Patent Document 2 listed above, signals can be transmitted and received without contact regardless of the rotation angle of the rotating unit. There are the following problems.
 まず、特許文献1では、円周上に光源を配置する構造をとっているが、例えば、スキャナ開口径が800mmで、内部に光源を配置する機構部の直径が1mであったと仮定して、LEDの必要個数を考える。指向性が広い80°のLEDを用いるとし、光源から受光部までの距離が5mmとすると、436個以上の光源が必要になってしまい、大掛かりな構造となってしまう。 First, Patent Document 1 has a structure in which a light source is arranged on the circumference.For example, assuming that the scanner opening diameter is 800 mm, and the diameter of the mechanism unit in which the light source is arranged is 1 m, Consider the required number of LEDs. If an 80 ° LED with wide directivity is used and the distance from the light source to the light receiving unit is 5 mm, 436 or more light sources are required, resulting in a large structure.
 また、特許文献2では、透明プラスチックの柱状体で側面が発光するよう施された発光体を用いてリング状に配置できるので、多数の光源を配置する必要がない。しかし、この発光体をリング状に配置する際、発光体が長手方向に短いと継ぎ目に隙間が生じて発光しない部位が形成されてしまう。また逆に長いと発光体がクロスする部分が生じ、発光部と受光部がずれてしまうのでデータ遮断やデータの変化が生じやすい。更に、側面で発光する発光体は、途中線路で損失が発生するためLEDなどに比べて輝度が低く、また光源から遠ざかるに従って輝度が下がる。よって発光部と受光部の距離を十分に近づける必要があるのに加え、回転のぶれによる機械的な精度を考慮すると、発光体が長手方向に短い、長いといった課題は、上記のような送受信データの信頼性の点で無視できない。 Further, in Patent Document 2, since it can be arranged in a ring shape using a light-emitting body that is made of a transparent plastic columnar body so that its side surface emits light, it is not necessary to arrange a large number of light sources. However, when the light emitters are arranged in a ring shape, if the light emitters are short in the longitudinal direction, a gap is formed at the joint, and a portion that does not emit light is formed. On the other hand, if the length is long, a portion where the light emitters cross is generated, and the light emitting portion and the light receiving portion are displaced from each other. Furthermore, since the light emitting body that emits light on the side surface has a loss along the line, the luminance is lower than that of an LED or the like, and the luminance decreases as the distance from the light source increases. Therefore, in addition to the need to make the distance between the light emitting unit and the light receiving unit sufficiently close, and considering the mechanical accuracy due to rotational shake, the problem that the light emitter is short and long in the longitudinal direction is the transmission / reception data as described above. It cannot be ignored in terms of reliability.
 本発明は、上記の問題点に鑑みてなされたものであり、光伝送の信頼性を向上させるX線CT装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an X-ray CT apparatus that improves the reliability of optical transmission.
 上記の課題を解決するため、本発明に係るX線CT装置は、光学フィルムを用いて受光部が受光する光の輝度を向上させることを特徴とする。 In order to solve the above-mentioned problems, the X-ray CT apparatus according to the present invention is characterized by improving the luminance of light received by the light receiving unit using an optical film.
 より詳しくは、本発明に係るX線CT装置は、X線を発生させるX線源と、前記X線源と対向配置され、被検体を透過した前記X線を検出して計測信号を出力するX線検出器と、前記X線源及び前記X線検出器を搭載し、前記X線源及び前記X線検出器を前記被検体の周囲に回転させる回転スキャナと、前記回転スキャナを支持する静止部と、前記回転スキャナと前記静止部との間で光信号の送受信を行うために、発光体と受光部とにより構成された信号伝送部と、前記発光体と前記受光部との間に設けられ、前記発光体から発せられる光を拡散するための拡散シートと、前記発光体から発せられる光を前記受光部に向けて集光させるためのプリズムシートと、を備えたこと特徴とする。 More specifically, an X-ray CT apparatus according to the present invention detects an X-ray source that generates X-rays and the X-ray source that is disposed opposite to the X-ray source and transmits a subject and outputs a measurement signal. An X-ray detector, a rotary scanner equipped with the X-ray source and the X-ray detector, rotating the X-ray source and the X-ray detector around the subject, and a stationary supporting the rotary scanner And a signal transmission unit composed of a light emitter and a light receiving unit, and between the light emitter and the light receiving unit, for transmitting and receiving an optical signal between the rotary scanner and the stationary unit. And a diffusion sheet for diffusing the light emitted from the light emitter, and a prism sheet for condensing the light emitted from the light emitter toward the light receiving section.
 本発明によれば、発光体から発せられた光は、発光体からの距離が離れるほど減衰するため光(輝度)のむらが生じるが、拡散シートを用いることによりこの光のむらを軽減することができる。また、プリズムシートを用いることにより、散乱光を受光部に向けて集光させ、輝度を向上させることができる。これらの拡散シート及び/又はプリズムシートを発光体と受光部との間に設けることにより、光信号の信頼性を向上させるX線CT装置を提供できる。 According to the present invention, the light emitted from the illuminant attenuates as the distance from the illuminant increases, and thus unevenness of light (brightness) occurs. However, the unevenness of the light can be reduced by using a diffusion sheet. . Further, by using the prism sheet, the scattered light can be condensed toward the light receiving unit, and the luminance can be improved. By providing these diffusion sheets and / or prism sheets between the light emitter and the light receiving section, it is possible to provide an X-ray CT apparatus that improves the reliability of the optical signal.
発明が適用されるX線CT装置100の装置全体の構成を示した概略図Schematic showing the overall configuration of the X-ray CT apparatus 100 to which the invention is applied 第1実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the first embodiment 図2のA-A’断面の一部領域(点線で囲った領域)を拡大した部分拡大図Partial enlarged view in which a partial region (region surrounded by a dotted line) in the A-A ′ cross section of FIG. 2 is enlarged. 第2実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the second embodiment 第3実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the third embodiment 受光部の構成を示す概略図Schematic diagram showing the configuration of the light receiving unit 第4実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the fourth embodiment 第5実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the fifth embodiment 第6実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the sixth embodiment 第7実施形態に係るX線CT装置の部分拡大図Partial enlarged view of the X-ray CT apparatus according to the seventh embodiment
 以下、添付図面に従って、本発明に係るX線CT装置の実施形態について説明する。 Hereinafter, embodiments of an X-ray CT apparatus according to the present invention will be described with reference to the accompanying drawings.
 <概略構成>
 図1は、本発明が適用されるX線CT装置100の装置全体の構成を示した概略図である。このX線CT装置100は、被検体を収容する静止部(スキャンガントリともいう)110と、画像再構成部120とを備える。静止部110には、被検体が搬入される開口部114を備えた回転スキャナ111と、回転スキャナ111に搭載されたX線管112と、X線管112に取り付けられ、X線束の放射方向を制御するコリメータ113と、X線管112と対向して回転スキャナ111に搭載されたX線検出器115と、X線検出器115で検出されたX線を所定の計測信号に変換する検出器回路116と、回転スキャナ111の回転及びX線束の幅を制御するスキャン制御回路117とが備えられている。
<Outline configuration>
FIG. 1 is a schematic diagram showing the overall configuration of an X-ray CT apparatus 100 to which the present invention is applied. The X-ray CT apparatus 100 includes a stationary unit (also referred to as a scan gantry) 110 that accommodates a subject, and an image reconstruction unit 120. The stationary unit 110 has a rotary scanner 111 having an opening 114 into which a subject is carried, an X-ray tube 112 mounted on the rotary scanner 111, and an X-ray tube 112 attached to the X-ray bundle. A collimator 113 to be controlled, an X-ray detector 115 mounted on the rotary scanner 111 facing the X-ray tube 112, and a detector circuit for converting X-rays detected by the X-ray detector 115 into predetermined measurement signals 116 and a scan control circuit 117 for controlling the rotation of the rotary scanner 111 and the width of the X-ray bundle.
 画像再構成部120は、被検者氏名、検査日時、検査条件などを入力する入力装置121、検出器回路116から送出される計測信号S1を演算処理してCT画像再構成を行う画像演算回路122、画像演算回路122で作成されたCT画像に、入力装置121から入力された被検者氏名、検査日時、検査条件などの情報を付加する画像情報付加部123と、画像情報を付加されたCT計測信号S2の表示ゲインを調整してディスプレイモニタ130へ出力するディスプレイ回路124とを備えている。 The image reconstruction unit 120 includes an input device 121 for inputting a subject's name, examination date and time, examination conditions, and the like, and an image computation circuit that performs CT image reconstruction by computing the measurement signal S1 sent from the detector circuit 116 122, an image information adding unit 123 for adding information such as a subject's name, examination date and time, examination conditions inputted from the input device 121 to the CT image created by the image arithmetic circuit 122, and image information added And a display circuit 124 for adjusting the display gain of the CT measurement signal S2 and outputting it to the display monitor 130.
 このX線CT装置100では、静止部110の開口部114に、設置された寝台(図示せず)に被検者を寝かせた状態で、X線管112からX線が照射される。このX線はコリメータ113により指向性を得、X線検出器115により検出される。この際、回転スキャナ111を被検者の周りに回転させることにより、X線を照射する方向を変えながら、被検者を透過したX線を検出する。この計測信号をもとに画像再構成部120で作成された断層像は、ディスプレイモニタ130に表示される。 In the X-ray CT apparatus 100, X-rays are irradiated from the X-ray tube 112 in a state where the subject is laid on a bed (not shown) installed in the opening 114 of the stationary part 110. The X-ray is obtained by the collimator 113 and is detected by the X-ray detector 115. At this time, by rotating the rotary scanner 111 around the subject, the X-ray transmitted through the subject is detected while changing the X-ray irradiation direction. A tomographic image created by the image reconstruction unit 120 based on this measurement signal is displayed on the display monitor 130.
 X線CT装置100では、回転スキャナ111と静止部110との間で送受信される計測信号や各種制御信号を、光信号を送受信することにより伝達する。 The X-ray CT apparatus 100 transmits measurement signals and various control signals transmitted and received between the rotary scanner 111 and the stationary unit 110 by transmitting and receiving optical signals.
 <第1実施形態>
 以下図2、3に基づいて第1実施形態について説明する。図2は、第1実施形態に係るX線CT装置の部分拡大図であって、静止部110と回転スキャナ111とを拡大した図である。図3は、図2のA-A’断面の一部領域(点線で囲った領域)を拡大した概略図であって、拡散シート16及びプリズムシート17の固定構造を説明するための概略図である。
<First Embodiment>
Hereinafter, the first embodiment will be described with reference to FIGS. FIG. 2 is a partially enlarged view of the X-ray CT apparatus according to the first embodiment, in which the stationary part 110 and the rotary scanner 111 are enlarged. FIG. 3 is an enlarged schematic view of a partial region (region surrounded by a dotted line) in the AA ′ cross section of FIG. 2, and is a schematic diagram for explaining a fixing structure of the diffusion sheet 16 and the prism sheet 17. is there.
 なお、図1では、静止部110の内側に回転スキャナ111が位置している一方、図2では、回転スキャナ111の回転半径が静止部110の回転半径よりも大きく描画され、回転スキャナ111が外側、静止部110が内側に位置している。これは、静止部110と回転スキャナ111との大まかな位置関係は図1のとおりであるが、細部については、例えば、後述する第5実施形態の図8の信号伝達部3bのように、静止部110が回転スキャナ111よりも内側に位置する部分があるためであり、各図において静止部110と回転スキャナ111との位置関係についての整合に問題はない。 In FIG. 1, the rotary scanner 111 is positioned inside the stationary part 110, whereas in FIG. 2, the rotational radius of the rotary scanner 111 is drawn larger than the rotational radius of the stationary part 110, and the rotary scanner 111 is located outside. The stationary part 110 is located inside. This is because the rough positional relationship between the stationary unit 110 and the rotary scanner 111 is as shown in FIG. 1, but the details are, for example, stationary as in the signal transmission unit 3b in FIG. 8 of the fifth embodiment to be described later. This is because the portion 110 is located inside the rotary scanner 111, and there is no problem in the alignment of the positional relationship between the stationary portion 110 and the rotary scanner 111 in each figure.
 図2に示すように、静止部110には、発光体11が静止部110の円周上に均等且つ外径方向に発光するように、回転スキャナ111の円周方向に沿って配置される。一方、回転スキャナ111には受光部28が配置されている。発光体11と静止部110の間、すなわち発光体11の発光する方向以外の方向には反射シート15が全周にわたり取り付けられている。また、発光体11の発光する方向には、円周方向に配置された全ての発光体11を覆うように拡散シート16が取り付けられ、更にプリズムシート17が拡散シート16の上(受光部28に対向する面)に取り付けられている。 As shown in FIG. 2, the stationary part 110 is arranged along the circumferential direction of the rotary scanner 111 so that the light emitter 11 emits light uniformly and radially in the circumference of the stationary part 110. On the other hand, the light receiving unit 28 is disposed in the rotary scanner 111. A reflection sheet 15 is attached over the entire circumference between the light emitter 11 and the stationary part 110, that is, in a direction other than the light emission direction of the light emitter 11. In addition, in the light emitting direction of the light emitter 11, a diffusion sheet 16 is attached so as to cover all the light emitters 11 arranged in the circumferential direction, and further the prism sheet 17 is placed on the diffusion sheet 16 (to the light receiving unit 28). It is attached to the opposite surface.
 次に図3に基づいて、各シートの固定方法を説明する。 Next, the method for fixing each sheet will be described with reference to FIG.
 図3(a)は、両面テープ(または接着剤)を2層に使用した例を示す。静止部110と拡散シート16との間に両面テープ(または接着剤)30を使用して拡散シート16を静止部110に固定する。また、拡散シート16とプリズムシート17との間に両面テープ(または接着剤)31を使用し、拡散シート16にプリズムシート17を接着する。これにより、拡散シート16とプリズムシート17とを固定する。 Fig. 3 (a) shows an example in which double-sided tape (or adhesive) is used in two layers. The diffusion sheet 16 is fixed to the stationary part 110 using a double-sided tape (or adhesive) 30 between the stationary part 110 and the diffusion sheet 16. Further, a double-sided tape (or adhesive) 31 is used between the diffusion sheet 16 and the prism sheet 17, and the prism sheet 17 is bonded to the diffusion sheet 16. Thereby, the diffusion sheet 16 and the prism sheet 17 are fixed.
 図3(b)は、両面テープ(または接着剤)を1層に使用した例を示す。静止部110に拡散シート16の端部を両面テープ32で固定して、その上からプリズムシート17を固定する。図3(a)に比べ、拡散シート16の幅を若干小さくでき、両面テープの使用量を1/2にすることができる。 Fig. 3 (b) shows an example in which double-sided tape (or adhesive) is used for one layer. The end portion of the diffusion sheet 16 is fixed to the stationary portion 110 with the double-sided tape 32, and the prism sheet 17 is fixed thereon. Compared to FIG. 3 (a), the width of the diffusion sheet 16 can be slightly reduced, and the amount of double-sided tape used can be halved.
 図3(c)は、片面テープを最外層に使用した例を示す。静止部110に、拡散シート16とプリズムシート17とを載せ、その端部を片面テープ33で固定する。図3(b)に比べ、プリズムシートの幅を若干小さくでき、更に、両面テープ32に代えて片面テープ33を用いることにより、固定作業がより単純になる。 Fig. 3 (c) shows an example of using single-sided tape as the outermost layer. The diffusion sheet 16 and the prism sheet 17 are placed on the stationary part 110, and the ends thereof are fixed with the single-sided tape 33. Compared to FIG. 3 (b), the width of the prism sheet can be made slightly smaller, and the use of the single-sided tape 33 instead of the double-sided tape 32 makes the fixing operation simpler.
 図3(d)は、図3(c)の断面図を円周方向に奥行きを延ばした図面である。片面テープ33は、円周上に連続して一周巻きつけて加工してもよいし、図3(d)に示すように、円周方向のところどころに分散させて、テープ片で固定してもよい。 FIG. 3 (d) is a drawing obtained by extending the cross-sectional view of FIG. 3 (c) in the circumferential direction. The single-sided tape 33 may be processed by winding it continuously around the circumference, or as shown in Fig. 3 (d), it may be dispersed in various places in the circumferential direction and fixed with tape pieces. Good.
 上記では、両面テープや接着剤、及び片面テープを用いて拡散シート16とプリズムシート17との固定構造を説明したが、ネジ止めなどの機械的な取付構造を用いて取り付けてもよい。この場合、拡散シート16及びプリズムシート17の交換が必要になったときに、接着固定するよりも交換がより容易となる。 In the above, the fixing structure of the diffusion sheet 16 and the prism sheet 17 has been described using a double-sided tape, an adhesive, and a single-sided tape. However, it may be attached using a mechanical attachment structure such as screwing. In this case, when it becomes necessary to replace the diffusion sheet 16 and the prism sheet 17, the replacement is easier than the adhesive fixing.
 次に、静止部110と回転スキャナ111との間の光伝送について説明する。静止部110から回転スキャナ111へ信号を伝送する場合には、発光体11の発光をオンオフさせて受光部28が受光する構造となっている。 Next, optical transmission between the stationary unit 110 and the rotary scanner 111 will be described. When a signal is transmitted from the stationary unit 110 to the rotary scanner 111, the light receiving unit 28 receives light by turning on and off the light emission of the light emitter 11.
 LEDのような発光体11は、全ての光が発光体11の意図する方向へ発光されるのではなく、散乱光が発生し、光は発光体11の後方にも散乱する。反射シート15は、光を反射させる機能をもつポリエステルフィルム素材で、このような散乱光を反射させ、意図する方向へ光が放射されることにより、発光効率を向上させるよう設けている。 In the light emitter 11 such as an LED, not all light is emitted in the direction intended by the light emitter 11, but scattered light is generated and the light is also scattered behind the light emitter 11. The reflection sheet 15 is a polyester film material having a function of reflecting light, and is provided so as to improve the luminous efficiency by reflecting such scattered light and emitting light in an intended direction.
 拡散シート16は、透光性を持つアクリルやポリカーボネイトといった樹脂に二酸化チタンや炭酸カルシウム等の微粒子を含有した光拡散機能をもつ素材で、光のむらを低減することができる。拡散シート16のもつ拡散能力にもよるが、発光体11の数を減らしそれぞれの間隔を空けて配置しても、光が散乱されるので均一な発光を得ることができる。 The diffusion sheet 16 is a material having a light diffusion function in which fine particles such as titanium dioxide and calcium carbonate are contained in a resin such as translucent acrylic or polycarbonate, and can reduce light unevenness. Although it depends on the diffusion capability of the diffusion sheet 16, even if the number of the light emitters 11 is reduced and they are spaced apart from each other, the light is scattered, so that uniform light emission can be obtained.
 プリズムシート17は、ポリカーボネイト製で、各方向の光を集光して発光面に垂直方向の輝度を上げる機能をもつ素材である。つまり、拡散シート16で光が拡散し輝度が落ちてしまい受光部の感度に達しない場合に、輝度を補うことができる。 The prism sheet 17 is made of polycarbonate, and is a material having a function of collecting light in each direction and increasing the luminance in the direction perpendicular to the light emitting surface. In other words, the luminance can be compensated when the diffusion sheet 16 diffuses the light and the luminance decreases to reach the sensitivity of the light receiving unit.
 これらの拡散シート16およびプリズムシート17は、図2に示すように、円周上を覆うような細長く横幅が狭い帯状にカットされた素材を用いる。そうすることで、X線CT装置100が0.3rot/sといった高速回転をした場合でも、遠心力による歪みや振動に強い構造とすることが容易である。 As shown in FIG. 2, the diffusion sheet 16 and the prism sheet 17 are made of a material that is cut into a strip shape having a narrow and narrow width so as to cover the circumference. By doing so, even when the X-ray CT apparatus 100 rotates at a high speed of 0.3 rot / s, it is easy to make a structure resistant to distortion and vibration due to centrifugal force.
 また受光部28は、複数の受光素子が複数で構成され、各々の受光素子の出力を合成して1つの受信信号とすることでエラーレートを低減できる。 Further, the light receiving unit 28 includes a plurality of light receiving elements, and the error rate can be reduced by combining the outputs of the light receiving elements into one received signal.
 以上のように発光体11の光を拡散シート16で拡散させる構成とし、例えば反射シート15と拡散シート16の間を20mmの距離で配置すると、発光体11のそれぞれの間は20mm間隔に配置することで均一な光が発光されることを確認している。そこで、発光体を配置する機構部の直径が1mであったと仮定すると、発光体11は最低限157個であればよいことになり、従来例の1/2以下の個数で発光体を構成できる。 As described above, the light of the light emitter 11 is diffused by the diffusion sheet 16. For example, when the distance between the reflection sheet 15 and the diffusion sheet 16 is 20 mm, the distance between the light emitters 11 is 20 mm. Thus, it is confirmed that uniform light is emitted. Therefore, assuming that the diameter of the mechanism portion in which the light emitter is disposed is 1 m, it is sufficient that the number of the light emitters 11 is at least 157, and the light emitters can be configured with a number equal to or less than 1/2 of the conventional example. .
 <第2実施形態>
 次に図4に基づいて第2実施形態について説明する。図4は、第2実施形態の概略図で、第1実施形態の基本的には同様の構造と動作であるが、拡散シート26及びプリズムシート27の配置場所が異なる。拡散シート26及びプリズムシート27は、第1実施形態では静止部110に配置していたのに対し、第2実施形態では回転スキャナ111に配置し、受光部28の受光面を覆うように取り付けられている。この場合、受光部28の受光面を覆う拡散シート26及びプリズムシート27の面積は、これらシートの機能の恩恵を受けるためにも受光部28の受光有効面積より円周方向に大きくする必要がある。例えば、それぞれの発光体11の配置ピッチと同じだけ広くとる。そうすることで、受光部28に対向した発光部11の光だけでなく、隣接した発光部11の光が拡散された光を加えて受光感度を引き上げることができる。
<Second Embodiment>
Next, a second embodiment will be described based on FIG. FIG. 4 is a schematic diagram of the second embodiment, which basically has the same structure and operation as the first embodiment, but the arrangement positions of the diffusion sheet 26 and the prism sheet 27 are different. The diffusion sheet 26 and the prism sheet 27 are arranged in the stationary part 110 in the first embodiment, whereas in the second embodiment, the diffusion sheet 26 and the prism sheet 27 are arranged in the rotary scanner 111 and attached so as to cover the light receiving surface of the light receiving part 28. ing. In this case, the areas of the diffusion sheet 26 and the prism sheet 27 that cover the light receiving surface of the light receiving unit 28 need to be larger in the circumferential direction than the effective light receiving area of the light receiving unit 28 in order to benefit from the functions of these sheets. . For example, it is as wide as the arrangement pitch of the respective light emitters 11. By doing so, not only the light of the light emitting unit 11 facing the light receiving unit 28 but also the light in which the light of the adjacent light emitting unit 11 is diffused can be added to increase the light receiving sensitivity.
 発光体11から発せされる光が、発光体11→拡散シート26→プリズムシート27→受光部28へ到達するルートには第1実施形態と変わりなく、動作も同じであることは言うまでもない。また、反射シート15が発光体11の周囲に取り付けられているのも第1実施形態と同様である。 Needless to say, the route from which the light emitted from the light emitter 11 reaches the light emitter 11 → the diffusion sheet 26 → the prism sheet 27 → the light receiving unit 28 is the same as in the first embodiment, and the operation is the same. Further, the reflection sheet 15 is attached around the light emitter 11 as in the first embodiment.
 第1実施形態に比べて、拡散シート26とプリズムシート27を必要とする面積は少なくてよい。しかし、発光体11は剥き出しの構造となるため、光を十分に透過する保護膜をとりつけてもよい。 Compared to the first embodiment, the area that requires the diffusion sheet 26 and the prism sheet 27 may be smaller. However, since the light-emitting body 11 has a bare structure, a protective film that sufficiently transmits light may be attached.
 <第3実施形態>
 次に図5、図6に基づいて第3実施形態について説明する。図5は、第3実施形態に係るX線CT装置の部分拡大図である。また図6は、受光部の構成を示す概略図である。第3実施形態は、第1実施形態と基本的には同様の構造と動作であるが、発光体12の様態が異なる。第1実施形態では、LEDのような点発光型の発光体を用いたのに対し、第3実施形態では表面が一様に発光するライン状の発光体12を用いている。発光体12は、例えば側面発光タイプの光ファイバや、柱状で細長いアクリルのような透明な樹脂素材の側面を表面加工して面発光させてもよい。
<Third embodiment>
Next, a third embodiment will be described based on FIG. 5 and FIG. FIG. 5 is a partially enlarged view of the X-ray CT apparatus according to the third embodiment. FIG. 6 is a schematic diagram showing the configuration of the light receiving unit. The third embodiment has basically the same structure and operation as the first embodiment, but the mode of the light emitter 12 is different. In the first embodiment, a point light-emitting type light emitter such as an LED is used, whereas in the third embodiment, a line-shaped light emitter 12 whose surface emits light uniformly is used. The light emitter 12 may emit light by surface-treating the side surface of a transparent resin material such as a side-emitting optical fiber or a columnar and long acrylic.
 発光体12から発せされる光が、発光体12→拡散シート16→プリズムシート17→受光部28へ到達するルートには第1実施形態と変わりなく、動作も同じであることはいうまでもない。また、反射シート15が発光体12の周囲に取り付けられているのも第1実施形態と同様で、発光体12で発光した光が効率よく受光部28へ到達するよう構成されている。 It goes without saying that the light emitted from the light emitter 12 reaches the light emitter 12 → the diffusion sheet 16 → the prism sheet 17 → the light receiving unit 28, and the operation is the same as in the first embodiment. . Further, the reflection sheet 15 is attached around the light emitter 12 as in the first embodiment, and is configured such that light emitted from the light emitter 12 reaches the light receiver 28 efficiently.
 この第3実施形態では、長手方向に沿って発光するライン状の発光体として光ファイバを用いているため、図6に示すように発光体12には端部が生じる。例えばLEDのような光源121a、121bが一つないし複数個あり、発光体12に光を入射する。図6では、光源121a、121bは発光体12の長手方向の端部の隙間に位置しているが、発光体12の端部の隙間が大きいと、拡散シート16及びプリズムシート17上に光のない部分が発生する。そのため、この光のない部分をよりできるだけ小さくするために、光源121a、121bは、発光体12の端部では、別の方向から光を入射させるように配置する方が、更に好ましい。 In the third embodiment, since an optical fiber is used as a line-shaped light emitter that emits light along the longitudinal direction, the light emitter 12 has an end as shown in FIG. For example, there are one or a plurality of light sources 121 a and 121 b such as LEDs, and light is incident on the light emitter 12. In FIG. 6, the light sources 121a and 121b are located in the gaps at the end portions in the longitudinal direction of the light emitter 12. However, if the gaps at the end portions of the light emitters 12 are large, the light sources 121a and 121b There is no part. For this reason, in order to make the portion without light as small as possible, it is more preferable that the light sources 121a and 121b are arranged so that light enters from the other direction at the end of the light emitter 12.
 図6は、受光部28の簡単な構成を示す概略図である。フォトダイオード81a、81bで受光した光を電気信号に変換し、その信号を増幅器82a、82bで増幅し、これら二つの信号の論理和83を取る構成になっている。 FIG. 6 is a schematic diagram showing a simple configuration of the light receiving unit 28. The light received by the photodiodes 81a and 81b is converted into an electric signal, the signal is amplified by the amplifiers 82a and 82b, and the logical sum 83 of these two signals is obtained.
 図6に示した回転スキャナ111と静止部110の配置関係では、発光体12で発光した光は、受光部28内のフォトダイオード81aでは受光するがフォトダイオード81bでは受光できない。しかし論理和83があることによって、どちらかのフォトダイオードが受光できれば信号は伝送される。フォトダイオードは数が多いほど信号伝送の信頼性が向上する。 In the arrangement relationship between the rotary scanner 111 and the stationary unit 110 shown in FIG. 6, the light emitted from the light emitter 12 is received by the photodiode 81a in the light receiving unit 28 but cannot be received by the photodiode 81b. However, the presence of the logical sum 83 allows a signal to be transmitted if either photodiode can receive light. The greater the number of photodiodes, the more reliable the signal transmission.
 本実施形態の場合、ライン状の発光体12を用いることで、第1、第2実施形態のように点での発光体11による光のむらは発生し難い。しかし、前述のような発光体12の端部による隙間で光のむらが生じるが、これは拡散シート16により緩和されることで伝送データの信頼性が向上する。更に、発光体12を汎用光ファイバで構成すると、一般的な発光体12の断面は円形で外径が数mmと細い。支持系の製作精度、回転によるぶれなどから、図6に示した矢印、体軸方向のずれが生じると、光のむらが生じ伝送データの信頼性に欠けてしまうため、拡散シート16により光のむらを失くすようにする。また、ライン状の発光体12は外周方向への光の均一性には優れているが、それ以外の方向に関しては光が拡散し輝度が弱くなりがちなので、プリズムシート17を用いることで輝度を補うことができる。 In the case of the present embodiment, by using the line-shaped light emitter 12, unevenness of light due to the light emitter 11 at points is unlikely to occur as in the first and second embodiments. However, light unevenness occurs in the gap between the end portions of the light emitters 12 as described above, but this is mitigated by the diffusion sheet 16 to improve the reliability of transmission data. Furthermore, when the light emitter 12 is formed of a general-purpose optical fiber, the general light emitter 12 has a circular cross section and a thin outer diameter of several millimeters. Due to the manufacturing accuracy of the support system and the shake caused by rotation, if the deviation shown in the arrow in the direction of the body axis occurs, unevenness of light occurs and the reliability of the transmission data is lost. Try to lose. In addition, the line-shaped light emitter 12 is excellent in the uniformity of light in the outer peripheral direction, but the light tends to be diffused and the luminance tends to be weak in the other directions. Can be supplemented.
 上記のように構成することにより、第3実施形態では発光体を等間隔で数百個と配置する必要がなく、ライン状の発光体12を配置するだけで面発光させることができる。 By configuring as described above, in the third embodiment, it is not necessary to arrange several hundreds of light emitters at equal intervals, and surface light emission can be achieved simply by arranging the line-shaped light emitters 12.
 <第4実施形態>
 次に図7に基づいて第4実施形態について説明する。図7は、第4実施形態に係るX線CT装置の部分拡大図で、第3実施形態の基本的には同様の構造と動作であるが、拡散シート26及びプリズムシート27の配置場所が異なる。拡散シート26及びプリズムシート27は、第3実施形態では静止部110に配置していたのに対し、第4実施形態では回転スキャナ111に配置し、受光部28の受光面を覆うように取り付けられている。
<Fourth embodiment>
Next, a fourth embodiment will be described based on FIG. FIG. 7 is a partially enlarged view of the X-ray CT apparatus according to the fourth embodiment, which basically has the same structure and operation as the third embodiment, but the arrangement location of the diffusion sheet 26 and the prism sheet 27 is different. . The diffusion sheet 26 and the prism sheet 27 are arranged in the stationary part 110 in the third embodiment, whereas in the fourth embodiment, the diffusion sheet 26 and the prism sheet 27 are arranged in the rotary scanner 111 and attached so as to cover the light receiving surface of the light receiving part 28. ing.
 発光体12から発せされる光が、発光体12→拡散シート26→プリズムシート27→受光部28へ到達するルートには第3実施形態と変わりなく、動作も同じであることは言うまでもない。また、反射シート15が発光体12の周囲に取り付けられているのも第3実施形態と同様である。 Needless to say, the route from which the light emitted from the light emitter 12 reaches the light emitter 12, the diffusion sheet 26, the prism sheet 27, and the light receiving unit 28 is the same as in the third embodiment, and the operation is the same. Further, the reflective sheet 15 is attached around the light emitter 12 as in the third embodiment.
 第2実施形態と同じ考え方で、第3実施形態に比べて、拡散シート26とプリズムシート27を必要とする面積は少なくてよい。しかし、発光体12は剥き出しの構造となるため、光を十分に透過する保護膜をとりつけてもよい。 The area that requires the diffusion sheet 26 and the prism sheet 27 may be smaller than that of the third embodiment based on the same concept as the second embodiment. However, since the light emitter 12 has a bare structure, a protective film that sufficiently transmits light may be attached.
 この第3実施形態及び第4実施形態から、拡散シートを静止部110、プリズムシートを回転スキャナ111に配置した構造も同様に考えられる。 From the third and fourth embodiments, a structure in which the diffusion sheet is arranged in the stationary part 110 and the prism sheet is arranged in the rotary scanner 111 is also conceivable.
 <第5実施形態>
 次に図8に基づいて第5実施形態について説明する。図8は、第5実施形態に係るX線CT装置の部分拡大図で、静止部110と回転スキャナ111とを遠心方向(即ち、寝台に載置された被検体の体軸方向に直交する方向)に切断した断面図である。第5実施形態は、第4実施形態による信号伝送部を2つと、非接触電力伝送機構を備え、二つの信号伝送部を、非接触電力伝送機構を中心に遠心方向において対称となる位置に配置した実施形態である。ここでいう「二つの信号伝送部を、非接触電力伝送機構を中心に遠心方向において対称となる位置」とは、非接触電力伝送機構と各信号伝送部との遠心方向における距離がほぼ等しくなる位置であることを意味する。よって、本実施形態では、非接触電力伝送機構5から信号伝送部3aまでの遠心方向の距離と、非接触電力伝送機構5から信号伝送部3bまでの遠心方向の距離と、は、ほぼ等しくなるように配置される。
<Fifth embodiment>
Next, a fifth embodiment will be described based on FIG. FIG. 8 is a partially enlarged view of the X-ray CT apparatus according to the fifth embodiment, in which the stationary part 110 and the rotary scanner 111 are moved in the centrifugal direction (that is, the direction orthogonal to the body axis direction of the subject placed on the bed). FIG. The fifth embodiment includes two signal transmission units according to the fourth embodiment and a non-contact power transmission mechanism, and the two signal transmission units are arranged at positions that are symmetrical in the centrifugal direction around the non-contact power transmission mechanism. Embodiment. The “position where the two signal transmission units are symmetrical in the centrifugal direction around the non-contact power transmission mechanism” means that the distance in the centrifugal direction between the non-contact power transmission mechanism and each signal transmission unit is substantially equal. Means position. Therefore, in the present embodiment, the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a is substantially equal to the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b. Are arranged as follows.
 信号伝送部は、回転スキャナ111から静止部110への信号伝送部3aと、静止部110から回転スキャナ111への信号伝送部3bと、により構成され、2系統の信号を送受信する。信号伝送部3aは、計測信号と、X線出力をフィードバック制御するためのX線フィードバック信号と、を伝送する。信号伝送部3bは、計測信号の取り込みを開始するための計測トリガ信号を伝送する。そして、信号伝送部3a、3bは、非接触電力伝送機構5のうち回転スキャナ111側に備えられた機構を中心に、遠心方向に対称となる位置に備えられる。このように構成することで、後述する第6実施形態、第7実施形態と比して、第5実施形態が最も回転スキャナの小型化を図ることができる。 The signal transmission unit includes a signal transmission unit 3a from the rotary scanner 111 to the stationary unit 110 and a signal transmission unit 3b from the stationary unit 110 to the rotary scanner 111, and transmits and receives two signals. The signal transmission unit 3a transmits a measurement signal and an X-ray feedback signal for feedback control of the X-ray output. The signal transmission unit 3b transmits a measurement trigger signal for starting capturing of the measurement signal. The signal transmission units 3a and 3b are provided at positions symmetrical with respect to the centrifugal direction with the mechanism provided on the rotary scanner 111 side of the non-contact power transmission mechanism 5 as a center. With this configuration, the fifth embodiment can achieve the smallest size of the rotary scanner as compared with the sixth embodiment and the seventh embodiment described later.
 第5実施形態では、静止部110に備えられ受光部18の受光面を覆うように帯状または四角形状の拡散シート16とプリズムシート17とが静止部110に固定される。また、回転スキャナ111に備えられた受光部28の受光面を覆うように帯状または四角形状の拡散シート26とプリズムシート27とが回転スキャナ111に固定される。 In the fifth embodiment, the belt-like or square diffusion sheet 16 and the prism sheet 17 are fixed to the stationary part 110 so as to cover the light receiving surface of the light receiving part 18 provided in the stationary part 110. Further, a belt-like or square diffusion sheet 26 and a prism sheet 27 are fixed to the rotary scanner 111 so as to cover the light receiving surface of the light receiving unit 28 provided in the rotary scanner 111.
 本実施形態のように、2系統の光信号を用いた信号伝送部と非接触電力伝送機構とを備えることにより、信号と電力とを非接触で伝送することが可能となり、メンテナンスがより簡易になるとともに、信頼性を向上させることができる。 As in this embodiment, by providing a signal transmission unit that uses two systems of optical signals and a non-contact power transmission mechanism, it is possible to transmit signals and power in a non-contact manner, making maintenance easier. In addition, the reliability can be improved.
 <第6実施形態>
 次に図9に基づいて第6実施形態について説明する。図9は、第6実施形態に係るX線CT装置の部分拡大図で、静止部110と回転スキャナ111とを遠心方向に切断した断面図である。第6実施形態では、信号伝送部3a、3bは、非接触電力伝送機構5の中心部分を中心に、点対称となる位置に備えられる。非接触電力伝送機構5から信号伝送部3aまでの遠心方向の距離と、非接触電力伝送機構5から信号伝送部3bまでの遠心方向の距離とは、ほぼ等しくなるように配置される。拡散シート16、26と、プリズムシート17、27の形状及び取り付け位置は、第5実施形態と同様である。
<Sixth Embodiment>
Next, a sixth embodiment will be described based on FIG. FIG. 9 is a partial enlarged view of the X-ray CT apparatus according to the sixth embodiment, and is a cross-sectional view of the stationary part 110 and the rotary scanner 111 cut in the centrifugal direction. In the sixth embodiment, the signal transmission units 3a and 3b are provided at positions that are point-symmetric about the central portion of the non-contact power transmission mechanism 5. The distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a and the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b are substantially equal. The shapes and attachment positions of the diffusion sheets 16 and 26 and the prism sheets 17 and 27 are the same as in the fifth embodiment.
 第6実施形態も、第5実施形態と同様、信号と電力とを非接触で伝送することが可能となり、メンテナンスがより簡易になるとともに、信頼性を向上させることができる。 In the sixth embodiment, as in the fifth embodiment, it is possible to transmit the signal and the power in a non-contact manner, the maintenance becomes easier, and the reliability can be improved.
 <第7実施形態>
 次に図10に基づいて第7実施形態について説明する。図10は、第7実施形態に係るX線CT装置の部分拡大図で、静止部110と回転スキャナ111とを遠心方向に切断した断面図である。本実施形態においても、非接触電力伝送機構5から信号伝送部3aまでの遠心方向の距離と、非接触電力伝送機構5から信号伝送部3bまでの遠心方向の距離とは、ほぼ等しくなるように配置される。
<Seventh embodiment>
Next, a seventh embodiment will be described based on FIG. FIG. 10 is a partial enlarged view of the X-ray CT apparatus according to the seventh embodiment, and is a cross-sectional view of the stationary part 110 and the rotary scanner 111 cut in the centrifugal direction. Also in the present embodiment, the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3a and the distance in the centrifugal direction from the non-contact power transmission mechanism 5 to the signal transmission unit 3b are substantially equal. Be placed.
 信号伝送部3aと信号伝送部3bの信号伝送方向は、第5実施形態では遠心方向であったのに対し、第7実施形態では円柱の軸方向(寝台に載置された被検体の体軸方向と同じ方向)としている。このように構成することで、第5実施形態に比べ、静止部110と回転スキャナ111との間に生じるギャップが単純になるため、回転のぶれを考慮した機構設計が比較的容易になる。なお、非接触電力伝送機構5で発生する磁束が、ギャップを通じて外に漏れる懸念があるため、別途磁束を遮蔽するための構成、例えば、遮蔽材を適宜配置してもよい。 The signal transmission direction of the signal transmission unit 3a and the signal transmission unit 3b is the centrifugal direction in the fifth embodiment, whereas in the seventh embodiment, the axial direction of the cylinder (the body axis of the subject placed on the bed) The same direction as the direction). With this configuration, the gap generated between the stationary part 110 and the rotary scanner 111 becomes simpler than in the fifth embodiment, so that the mechanism design that takes into account rotational fluctuations is relatively easy. Since there is a concern that the magnetic flux generated in the non-contact power transmission mechanism 5 leaks outside through the gap, a configuration for shielding the magnetic flux, for example, a shielding material may be appropriately disposed.
 本実施形態では、中空の円板状(ドーナツ形状)の拡散シート16、26とプリズムシート17、27を用い、静止部110に備えられた受光部18を覆うように拡散シート16、プリズムシート17を静止部110に固定し、回転スキャナ111に備えられた受光部28を覆うように拡散シート26、プリズムシート27を回転スキャナ111に固定する。帯状の拡散シート16、26とプリズムシート17、27を円周方向に沿って固定した第5実施形態や第六実施形態に比べて、中空の円板状(ドーナツ形状)の拡散シート16、26とプリズムシート17、27を用いることで、シートの取り付け作業をより簡易化することができる。 In the present embodiment, hollow disk-shaped (doughnut-shaped) diffusion sheets 16 and 26 and prism sheets 17 and 27 are used, and the diffusion sheet 16 and the prism sheet 17 are covered so as to cover the light receiving unit 18 provided in the stationary part 110. Is fixed to the stationary unit 110, and the diffusion sheet 26 and the prism sheet 27 are fixed to the rotary scanner 111 so as to cover the light receiving unit 28 provided in the rotary scanner 111. Compared to the fifth embodiment and the sixth embodiment in which the belt-shaped diffusion sheets 16 and 26 and the prism sheets 17 and 27 are fixed along the circumferential direction, the hollow disk-shaped (doughnut-shaped) diffusion sheets 16 and 26 Using the prism sheets 17 and 27 makes it possible to simplify the sheet attaching operation.
 第1~第7の実施形態において、発光体と受光部の相対位置関係が逆であっても効果に変わりない。 In the first to seventh embodiments, the effect does not change even if the relative positional relationship between the light emitter and the light receiving unit is reversed.
 また第5~第7の実施形態において信号伝送部3a及び3bは、第4実施形態を用い、ライン状の発光体12、22を配置しているが、第1~第3実施形態で示したように点の光源である発光体11を用いても効果は同じである。 Further, in the fifth to seventh embodiments, the signal transmission units 3a and 3b use the fourth embodiment, and the line-shaped light emitters 12 and 22 are arranged. However, as shown in the first to third embodiments. Thus, the effect is the same even when the light emitter 11 which is a point light source is used.
 また第5~第7の実施形態において信号伝送部3a及び3bは、第4実施形態を用い、拡散シート16、26及びプリズムシート17、27は、静止部110又は回転スキャナ111に受光体18、28を覆うように取り付けているが、第1及び第3実施形態で示したように発光体12、12を覆うように取り付けても効果は同じである。 In the fifth to seventh embodiments, the signal transmission units 3a and 3b use the fourth embodiment, and the diffusion sheets 16 and 26 and the prism sheets 17 and 27 are connected to the stationary unit 110 or the rotary scanner 111 with the photoreceptor 18, Although it is attached so as to cover 28, the effect is the same if it is attached so as to cover the light emitters 12 and 12 as shown in the first and third embodiments.
 また第1~第7の実施形態において、拡散シート16、26とプリズムシート17、27の配置を静止部110と回転スキャナ111とにわけ、拡散シート16、26を静止部110、プリズムシート17、27を回転スキャナ111に配置した構造も効果は同じである。同様に、光の送受信が静止部110と回転スキャナ111で逆の場合には、拡散シート16、26が回転スキャナ111、プリズムシート17、27が静止部110にあっても効果が同じであるのは言うまでもない。 In the first to seventh embodiments, the arrangement of the diffusion sheets 16 and 26 and the prism sheets 17 and 27 is divided into the stationary unit 110 and the rotary scanner 111. The diffusion sheets 16 and 26 are separated from the stationary unit 110, the prism sheet 17, A structure in which 27 is arranged on the rotary scanner 111 has the same effect. Similarly, when light transmission / reception is reversed between the stationary unit 110 and the rotary scanner 111, the effect is the same even if the diffusion sheets 16 and 26 are in the rotary scanner 111 and the prism sheets 17 and 27 are in the stationary unit 110. Needless to say.
 更に第1~第7の実施形態において、静止部110や回転スキャナ111に摩擦の小さなブラシや布のようなものを取り付け、回転とともに静止部110と回転スキャナ111の間の空間を摺接するように構成しても良い。このブラシや布のようなものは、回転とともに拡散シートやプリズムシート表面の埃を取り除くよう配置され、更なる保守性の向上が期待できる。 Furthermore, in the first to seventh embodiments, a brush or cloth having a low friction is attached to the stationary part 110 or the rotary scanner 111 so that the space between the stationary part 110 and the rotary scanner 111 is slid in contact with the rotation. It may be configured. Such a brush or cloth is arranged so as to remove dust on the surface of the diffusion sheet or the prism sheet with rotation, and further improvement in maintainability can be expected.
 また、第1~第7の実施形態において、拡散シート及びプリズムシートを共に使用しているが、どちらか一方のみを使用しても良い。その際の以下のような構成になる。 Further, in the first to seventh embodiments, both the diffusion sheet and the prism sheet are used, but only one of them may be used. The configuration is as follows.
 X線を発生させるX線源と、前記X線源と対向配置され、被検体を透過した前記X線を検出して計測信号を出力するX線検出器と、前記X線源及び前記X線検出器を搭載し、前記X線源及び前記X線検出器を前記被検体の周囲に回転させる回転スキャナと、前記回転スキャナを支持する静止部と、前記回転スキャナと前記静止部との間で光信号の送受信を行うために、発光体と受光部とにより構成された信号伝送部と、前記発光体と前記受光部との間に設けられ、前記発光体から発せられる光を拡散するための拡散シートと、もしくは、前記発光体から発せられる光を前記受光部に向けて集光させるためのプリズムシートと、を備えたX線CT装置である。 An X-ray source that generates X-rays, an X-ray detector that is disposed opposite to the X-ray source, detects the X-rays that have passed through the subject, and outputs a measurement signal; the X-ray source and the X-rays A rotating scanner that mounts a detector and rotates the X-ray source and the X-ray detector around the subject; a stationary part that supports the rotating scanner; and the rotating scanner and the stationary part. In order to transmit and receive an optical signal, a signal transmission unit configured by a light emitter and a light receiver, and provided between the light emitter and the light receiver, for diffusing light emitted from the light emitter An X-ray CT apparatus comprising: a diffusion sheet; or a prism sheet for condensing light emitted from the light emitter toward the light receiving unit.
 3a、3b 信号伝送部、5 非接触電力伝送機構、11 発光体、12 発光体、15 反射シート、16 拡散シート、17 プリズムシート、18 受光部、22 発光体、25 反射シート、26 拡散シート、27 プリズムシート、28 受光部、121a、121b 光源、81a、81b フォトダイオード、82a、82b 増幅器、83 論理和、100 X線CT装置、110 静止部、111 回転部 3a, 3b signal transmission unit, 5 contactless power transmission mechanism, 11 light emitter, 12 light emitter, 15 reflection sheet, 16 diffusion sheet, 17 prism sheet, 18 light reception unit, 22 light emitter, 25 reflection sheet, 26 diffusion sheet, 27 Prism sheet, 28 light receiving part, 121a, 121b light source, 81a, 81b photodiode, 82a, 82b amplifier, 83 OR, 100 X-ray CT device, 110 stationary part, 111 rotating part

Claims (11)

  1.  X線を発生させるX線源と、前記X線源と対向配置され、被検体を透過した前記X線を検出して計測信号を出力するX線検出器と、前記X線源及び前記X線検出器を搭載し、前記X線源及び前記X線検出器を前記被検体の周囲に回転させる回転スキャナと、前記回転スキャナを支持する静止部と、前記回転スキャナと前記静止部との間で光信号の送受信を行うために、発光体と受光部とにより構成された信号伝送部と、前記発光体と前記受光部との間に設けられ、前記発光体から発せられる光を拡散するための拡散シートと、前記発光体から発せられる光を前記受光部に向けて集光させるためのプリズムシートと、を備えたこと特徴とするX線CT装置。 An X-ray source that generates X-rays, an X-ray detector that is disposed opposite to the X-ray source, detects the X-rays that have passed through the subject, and outputs a measurement signal; the X-ray source and the X-rays A rotating scanner that mounts a detector and rotates the X-ray source and the X-ray detector around the subject; a stationary part that supports the rotating scanner; and the rotating scanner and the stationary part. In order to transmit and receive an optical signal, a signal transmission unit configured by a light emitter and a light receiver, and provided between the light emitter and the light receiver, for diffusing light emitted from the light emitter An X-ray CT apparatus comprising: a diffusion sheet; and a prism sheet for condensing light emitted from the light emitter toward the light receiving unit.
  2.  前記拡散シートは、前記静止部又は前記回転スキャナに取り付けられる、ことを特徴とする請求項1に記載のX線CT装置。 2. The X-ray CT apparatus according to claim 1, wherein the diffusion sheet is attached to the stationary part or the rotary scanner.
  3.  前記プリズムシートは、前記静止部又は前記回転スキャナに取り付けられる、ことを特徴とする請求項1に記載のX線CT装置。 2. The X-ray CT apparatus according to claim 1, wherein the prism sheet is attached to the stationary part or the rotary scanner.
  4.  前記発光体は、前記静止部における前記回転スキャナに対向する面、及び前記回転スキャナにおける前記静止部に対向する面の少なくとも一の面に、前記回転スキャナの円周方向に沿って配置され、前記拡散シート又は前記プリズムシートは、前記回転スキャナの円周方向の全周に亘って、前記発光体が配置された面を覆うように、前記静止部又は前記回転スキャナに取り付けられる、ことを特徴とする請求項2又は3に記載のX線CT装置。 The light emitter is disposed along a circumferential direction of the rotary scanner on at least one of a surface of the stationary part that faces the rotary scanner and a surface of the rotary scanner that faces the stationary part, The diffusion sheet or the prism sheet is attached to the stationary part or the rotary scanner so as to cover a surface on which the light emitter is arranged over the entire circumference of the rotary scanner in the circumferential direction. The X-ray CT apparatus according to claim 2 or 3.
  5.  前記受光部は、前記静止部及び前記回転スキャナの少なくとも一方に備えられ、前記拡散シート又は前記プリズムシートは、前記受光部の受光有効面積よりも前記回転スキャナの円周方向により大きな面積を有して構成され、前記静止部又は前記回転スキャナにおける前記受光部が位置する部分に取り付けられる、ことを特徴とする請求項2又は3に記載のX線CT装置。 The light receiving unit is provided in at least one of the stationary unit and the rotary scanner, and the diffusion sheet or the prism sheet has a larger area in the circumferential direction of the rotary scanner than a light receiving effective area of the light receiving unit. 4. The X-ray CT apparatus according to claim 2, wherein the X-ray CT apparatus is configured to be attached to a portion where the light receiving unit in the stationary unit or the rotary scanner is located.
  6.  前記拡散シート又は前記プリズムシートは、両面テープ、片面テープ、接着剤、又はネジ止めの少なくとも一つを用いて前記静止部または前記回転スキャナに固定される、ことを特徴とする請求項1に記載のX線CT装置。 2. The diffusion sheet or the prism sheet is fixed to the stationary part or the rotary scanner using at least one of a double-sided tape, a single-sided tape, an adhesive, or a screw. X-ray CT system.
  7.  前記発光体は、LED又は長手方向に沿って発光する光ファイバのいずれかにより構成される、ことを特徴とする請求項1に記載のX線CT装置。 2. The X-ray CT apparatus according to claim 1, wherein the light emitter is configured by either an LED or an optical fiber that emits light along a longitudinal direction.
  8.  前記光信号は、前記静止部から前記回転スキャナに伝送され、前記計測信号の取り込みを開始させるための計測トリガ信号、又は前記回転スキャナから前記静止部に伝送され、前記X線出力をフィードバック制御するためのX線フィードバック信号、若しくは、前記回転スキャナから前記静止部に伝送される前記計測信号、の少なくとも一つである、ことを特徴とする請求項1に記載のX線CT装置。 The optical signal is transmitted from the stationary part to the rotary scanner, and a measurement trigger signal for starting to capture the measurement signal, or transmitted from the rotary scanner to the stationary part, and feedback-controls the X-ray output. 2. The X-ray CT apparatus according to claim 1, wherein the X-ray CT apparatus is at least one of an X-ray feedback signal for transmission or a measurement signal transmitted from the rotary scanner to the stationary part.
  9.  前記発光体が発光する光のうち、前記受光部に向かう方向とは異なる方向へ散乱する散乱光を、前記受光部へ向けて反射するための反射シートを更に備える、ことを特徴とする請求項1に記載のX線CT装置。 The light emitting device further comprises a reflection sheet for reflecting, toward the light receiving portion, scattered light scattered in a direction different from a direction toward the light receiving portion among the light emitted from the light emitter. The X-ray CT apparatus according to 1.
  10.  前記受光部は、複数の受光素子により構成される、ことを特徴とする請求項1に記載のX線CT装置。 2. The X-ray CT apparatus according to claim 1, wherein the light receiving unit includes a plurality of light receiving elements.
  11.  前記静止部と前記回転スキャナとの間で、非接触で電力を伝送するための非接触電力機構を更に備え、前記信号伝送部は、前記静止部から前記回転スキャナへ向けて前記光信号を送信する第1信号伝送部と、前記回転スキャナから前記静止部へ向けて前記光信号を送信する第2信号伝送部と、により構成され、前記第1信号伝送部と前記第2信号伝送部とは、前記非接触電力機構を中心に前記回転スキャナの回転運動の遠心方向において対称となる位置に配置される、ことを特徴とする請求項1に記載のX線CT装置。 A non-contact power mechanism for transmitting power in a non-contact manner between the stationary unit and the rotary scanner is further provided, and the signal transmission unit transmits the optical signal from the stationary unit to the rotary scanner. The first signal transmission unit and the second signal transmission unit that transmits the optical signal from the rotary scanner toward the stationary unit, the first signal transmission unit and the second signal transmission unit 2. The X-ray CT apparatus according to claim 1, wherein the X-ray CT apparatus is disposed at a position that is symmetrical in a centrifugal direction of a rotational motion of the rotary scanner with the non-contact power mechanism as a center.
PCT/JP2009/069268 2008-11-17 2009-11-12 X-ray ct system WO2010055880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010537798A JP5758126B2 (en) 2008-11-17 2009-11-12 X-ray CT system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-293818 2008-11-17
JP2008293818 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010055880A1 true WO2010055880A1 (en) 2010-05-20

Family

ID=42170011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069268 WO2010055880A1 (en) 2008-11-17 2009-11-12 X-ray ct system

Country Status (2)

Country Link
JP (1) JP5758126B2 (en)
WO (1) WO2010055880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209747A (en) * 2011-03-29 2012-10-25 Seiko Epson Corp Non-contact communication device, communication method, and robot device
KR101264125B1 (en) 2011-12-23 2013-05-14 한국전기연구원 Line optical source module for digital x-ray image detector using optical switching readout

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261003A (en) * 1993-03-03 1994-09-16 Toshiba Corp Data transmission equipment
JPH11231320A (en) * 1998-02-12 1999-08-27 Enplas Corp Side light type planar light source unit and liquid crystal display device
JP2000098383A (en) * 1998-09-28 2000-04-07 Colcoat Kk Transparent light guiding plate and its production
JP2000308636A (en) * 1999-04-28 2000-11-07 Toshiba Corp Signal transmission device
JP2002034967A (en) * 2000-07-21 2002-02-05 Hitachi Medical Corp X-ray ct apparatus
JP2002107546A (en) * 2000-09-28 2002-04-10 Toshiba Corp Light guide, optical transmission device using the same, and x-ray ct apparatus
JP2006228592A (en) * 2005-02-18 2006-08-31 Enplas Corp Light guide plate, surface light source device and display apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234487A (en) * 1990-02-09 1991-10-18 Daifuku Co Ltd Robot working facility
US5822393A (en) * 1997-04-01 1998-10-13 Siemens Aktiengesellschaft Method for adaptively modulating the power level of an x-ray tube of a computer tomography (CT) system
JPH11106179A (en) * 1997-10-02 1999-04-20 Hokuyo Automatic Co Optical remote control device for crane
JP2003019129A (en) * 2001-07-06 2003-01-21 Hitachi Medical Corp X-ray ct system
JP4155550B2 (en) * 2002-03-15 2008-09-24 株式会社東芝 X-ray CT system
JP2006319881A (en) * 2005-05-16 2006-11-24 Canon Inc Optical space communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261003A (en) * 1993-03-03 1994-09-16 Toshiba Corp Data transmission equipment
JPH11231320A (en) * 1998-02-12 1999-08-27 Enplas Corp Side light type planar light source unit and liquid crystal display device
JP2000098383A (en) * 1998-09-28 2000-04-07 Colcoat Kk Transparent light guiding plate and its production
JP2000308636A (en) * 1999-04-28 2000-11-07 Toshiba Corp Signal transmission device
JP2002034967A (en) * 2000-07-21 2002-02-05 Hitachi Medical Corp X-ray ct apparatus
JP2002107546A (en) * 2000-09-28 2002-04-10 Toshiba Corp Light guide, optical transmission device using the same, and x-ray ct apparatus
JP2006228592A (en) * 2005-02-18 2006-08-31 Enplas Corp Light guide plate, surface light source device and display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209747A (en) * 2011-03-29 2012-10-25 Seiko Epson Corp Non-contact communication device, communication method, and robot device
KR101264125B1 (en) 2011-12-23 2013-05-14 한국전기연구원 Line optical source module for digital x-ray image detector using optical switching readout

Also Published As

Publication number Publication date
JP5758126B2 (en) 2015-08-05
JPWO2010055880A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP3612264B2 (en) Optical transmission device between rotating body and fixed body
US6816566B2 (en) Noncontact type signal transmission device and x-ray computed tomography apparatus including the same
JP4080503B2 (en) Non-contact connector
JP3478566B2 (en) X-ray CT scanner
CN101341422A (en) Device and system for radiation detection
WO2013111447A1 (en) Coordinate input device and coordinate input system
JP5758126B2 (en) X-ray CT system
US20180328728A1 (en) Deflecting device and surveying instrument
JP2014021790A (en) Coordinate input device, coordinate detection method and coordinate input system
IL98421A (en) Optical communication link
JP2009130773A (en) Non-contact connector
JP2013190310A (en) X-ray detector, manufacturing method of x-ray detector, and x-ray ct apparatus
US20110255658A1 (en) X-ray ct apparatus and x-ray detector
JP2013149231A (en) Input system
EP2293109B1 (en) Radiological image reader
JP2009163730A6 (en) Machine with data transmission means between two machine parts capable of relative rotation
JP2009111964A (en) Optical signal transmission device, and rotation device
US20130088126A1 (en) Optical entire-circumference encoder and motor system
JPH0572436A (en) Optical slip ring
WO2013132925A1 (en) Input device and input system provided therewith
JP4344401B2 (en) Rotating body measurement system
US20070080298A1 (en) Computer tomograph with optoelectronic data transfer
JP5514620B2 (en) Instrument
JP2009168602A (en) Encoder and detector for constituting encoder
JP2009156781A (en) Radiation detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826127

Country of ref document: EP

Kind code of ref document: A1