WO2010055633A1 - 液晶表示装置及び液晶表示装置の製造方法 - Google Patents

液晶表示装置及び液晶表示装置の製造方法 Download PDF

Info

Publication number
WO2010055633A1
WO2010055633A1 PCT/JP2009/005952 JP2009005952W WO2010055633A1 WO 2010055633 A1 WO2010055633 A1 WO 2010055633A1 JP 2009005952 W JP2009005952 W JP 2009005952W WO 2010055633 A1 WO2010055633 A1 WO 2010055633A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
alignment
wiring
crystal display
Prior art date
Application number
PCT/JP2009/005952
Other languages
English (en)
French (fr)
Inventor
永田尚志
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/128,514 priority Critical patent/US20110216262A1/en
Priority to EP09825887A priority patent/EP2348355A4/en
Priority to JP2010537682A priority patent/JPWO2010055633A1/ja
Priority to CN2009801450421A priority patent/CN102209931A/zh
Publication of WO2010055633A1 publication Critical patent/WO2010055633A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Definitions

  • the present invention relates to a vertical alignment type liquid crystal display device provided with a vertical alignment layer.
  • An alignment division type liquid crystal display device having a vertical alignment type liquid crystal layer is known as a liquid crystal display device with improved viewing angle characteristics.
  • a liquid crystal display device is called a VA (Vertical Alignment) mode liquid crystal display device.
  • VA Vertical Alignment
  • Patent Document 1 discloses a MVA (Multi-domain Vertical Alignment) mode liquid crystal display device.
  • an alignment regulating structure that regulates the alignment of liquid crystal molecules is provided on each of a pair of substrates opposed via a liquid crystal layer.
  • the orientation regulating structure is a protruding structure (convex portion) formed on the electrode or a slit formed on the electrode.
  • Patent Document 2 describes a CPA (Continuous Pinwheel Alignment) mode liquid crystal display device as another VA mode liquid crystal display device.
  • CPA Continuous Pinwheel Alignment
  • an opening or notch is formed in one of a pair of electrodes facing each other through a liquid crystal layer, and liquid crystal molecules are inclined radially using an oblique electric field generated on the opening or notch.
  • a wide viewing angle is realized by the orientation.
  • Patent Document 3 discloses a technique for stabilizing the radial tilt alignment of liquid crystal molecules in the CPA mode. According to this technique, a radially inclined alignment formed by an alignment regulating structure (an opening or a notch in an electrode that generates an oblique electric field) provided on one substrate is an alignment regulating structure (for example, It is stabilized by the convex part).
  • an alignment regulating structure an opening or a notch in an electrode that generates an oblique electric field
  • Patent Document 4 Patent Document 5, Patent Document 6, and Patent Document 7 propose a method of forming a polymer structure as an alignment maintaining layer for defining the pretilt angle and pretilt direction of liquid crystal molecules.
  • This method is called a PSA (Polymer-Sustained Alignment) method.
  • the polymer structure is formed by photopolymerization or thermal polymerization of a polymerizable composition previously mixed in the liquid crystal layer.
  • the process of forming the polymer structure (hereinafter referred to as “PSA process”) is not a state in which the liquid crystal molecules are aligned perpendicular to the substrate surface, but the liquid crystal molecules are tilted by applying a predetermined voltage to the liquid crystal layer. It is performed in an oriented state.
  • the application of voltage to the liquid crystal layer in the PSA process is performed such that the polarity of the applied voltage is periodically reversed (that is, AC driving is performed) so that the liquid crystal is not polarized.
  • a CPA mode liquid crystal display device 500 shown in FIG. 10 is provided with a TFT substrate 510 provided with a TFT (not shown) provided for each pixel, a counter substrate 520 facing the TFT substrate 510, and a gap therebetween.
  • a vertical alignment type liquid crystal layer 530 On the counter substrate 520, a protrusion (convex portion) 523 is provided for regulating the alignment of the liquid crystal molecules 531 and fixing the alignment center of the liquid crystal domain.
  • the TFT is turned on by applying a gate-on voltage of +10 V from the scanning wiring 514 to the gate electrode of the TFT.
  • the pixel electrode A potential of 0 V is applied to 512 via a signal wiring (not shown).
  • the potential of the counter electrode 522 is oscillated between +4 V (the state of FIG. 10A) and ⁇ 4 V (the state of FIG. 10B), and the voltage applied to the liquid crystal layer 530 is reduced.
  • AC driving in which the polarity is reversed in synchronization with the oscillation of the potential of the counter electrode 522 is realized.
  • FIG. 12 is a view of the liquid crystal molecules 531 in one pixel that are inclined and aligned in the PSA process, as viewed from the upper surface side of the liquid crystal display device.
  • FIG. 12A shows an ideal tilted alignment state of the liquid crystal molecules 531
  • FIGS. 12B and C are tilted alignments that can cause roughness in the display by the methods (1) and (2).
  • the state is schematically represented.
  • each liquid crystal molecule 531 is illustrated so that a portion close to the counter electrode 522 looks larger in order to represent the tilted alignment of the liquid crystal molecules 531 (the end of the liquid crystal molecule 531 on the side close to the counter electrode 522). Parts are shown in circles).
  • the liquid crystal molecules 531 in one pixel are uniformly radially inclined with respect to the protrusions 523 (radially inclined alignment) as shown in FIG. A wide viewing angle display with little display unevenness is realized.
  • the counter electrode 522 is always supplied with a potential other than 0 V as shown in FIGS.
  • the potential of the auxiliary capacitor wiring 518 is maintained at 0 V, the liquid crystal molecules 531 positioned on these wirings are also tilted.
  • the signal wiring 516 extends along the boundary between two adjacent pixels, the liquid crystal molecules 531 on the signal wiring 516 have an alignment regulating force in opposite directions from both pixels almost evenly. Acting (that is, the alignment regulating force from both pixels is offset). Accordingly, the liquid crystal molecules 531 on the signal wiring 516 are inclined and aligned along the direction in which the signal wiring 516 extends, as shown in FIGS. 12B and 12C.
  • FIG. 12B shows a state in which all the liquid crystal molecules 531 on the pair of signal wirings 516 are inclined downward along the signal wiring 516
  • FIG. 12C shows the state above one of the pair of signal wirings 516.
  • the liquid crystal molecules 531 are inclined downward in the figure, and the liquid crystal molecules 531 on the other signal wiring 516 are oriented upward in the figure. In either case, the alignment direction of the liquid crystal molecules 531 in the vicinity of the signal wiring 516 (the regions indicated by a and b in the figure) is irregularly disturbed by the tilted alignment of the liquid crystal molecules 531 on the signal wiring 516.
  • the ideal inclined alignment state shown in FIG. 12A cannot be obtained.
  • the liquid crystal molecules 531 on one signal line 516 are inclined in the opposite direction with respect to one point on the signal line 516 (for example, upward and downward inclined alignments in the figure).
  • the boundary may move along the signal wiring 516 in that case. Even in such a case, the orientation of the liquid crystal molecules 531 in the pixel is irregularly disturbed, and an ideal tilted orientation state cannot be obtained.
  • the liquid crystal molecules initially aligned (pretilt) at the time of display are also disturbed by the formed polymer structure.
  • the alignment state varies from pixel to pixel, resulting in display roughness (non-uniform luminance).
  • a large voltage can be applied to the liquid crystal layer in order to speed up the processing.
  • the disturbance of the liquid crystal in the PSA process is strongly imprinted by the alignment regulating force due to the polymer structure. Can cause a greater roughness.
  • the present invention has been made in view of the above problems, and an object thereof is to reduce display roughness in a liquid crystal display device and to provide a high-quality display.
  • the liquid crystal display device has a plurality of pixels arranged in a matrix along a first direction and a second direction different from the first direction, and is arranged corresponding to each of the plurality of pixels.
  • a TFT substrate having a thin film transistor and a pixel electrode, a signal line extending generally in the first direction and supplying a display signal to the thin film transistor, and a scanning line extending generally in the second direction and supplying a gate signal to the thin film transistor
  • a counter substrate having a counter electrode opposed to the pixel electrode, a liquid crystal layer disposed between the TFT substrate and the counter substrate, and at least one of the TFT substrate and the counter substrate on the liquid crystal layer side
  • the TFT substrate includes an auxiliary capacitance wiring extending in the second direction
  • the signal wiring includes the two linear portions and the bent portion, and the bent when viewed from the substrate vertical direction.
  • the portion is formed at a position overlapping the auxiliary capacitance wiring.
  • At least a part of the bent portion is formed at a position overlapping the pixel electrode.
  • the signal wiring and the scanning wiring are not formed on an extension line of the two linear portions between the two linear portions.
  • the bent portion is located at the center of one side of the pixel.
  • the signal wiring or the scanning wiring is provided on the boundary between the two pixels.
  • the boundary of the liquid crystal alignment is formed.
  • An embodiment includes an alignment maintaining layer that is formed on the liquid crystal layer side of the alignment film and defines an alignment direction of the liquid crystal molecules with respect to the substrate surface.
  • the alignment maintaining layer is made of a polymer structure formed by polymerizing a polymerizable composition contained in the liquid crystal layer.
  • Another liquid crystal display device includes a plurality of pixels arranged in a matrix along a first direction and a second direction different from the first direction, and corresponds to each of the plurality of pixels.
  • a thin film transistor and a pixel electrode disposed; a signal line extending generally in the first direction and supplying a display signal to the thin film transistor; and a scanning line extending generally in the second direction and supplying a gate signal to the thin film transistor.
  • the boundary between the two pixels is A boundary of liquid crystal alignment in the direction along the signal wiring or the scanning wiring is formed.
  • At least one of the signal wiring and the scanning wiring includes two linear portions extending linearly in the first direction or the second direction at the boundary between the two pixels, and the two linear shapes. And a bent portion extending around the region.
  • the method for manufacturing a liquid crystal display device includes a plurality of pixels arranged in a matrix along a first direction and a second direction different from the first direction, and corresponds to each of the plurality of pixels. Thin film transistors and pixel electrodes, a signal line extending in the first direction and supplying a display signal to the thin film transistor, and a scanning line extending in the second direction and supplying a gate signal to the thin film transistor.
  • a TFT substrate, a counter substrate having a counter electrode opposed to the pixel electrode, a liquid crystal layer disposed between the TFT substrate and the counter substrate, and the liquid crystal of at least one of the TFT substrate and the counter substrate An alignment film formed on the layer-side surface and for aligning liquid crystal molecules contained in the liquid crystal layer substantially perpendicularly to the substrate surface.
  • an alignment boundary of liquid crystal alignment in a direction along the signal wiring or the scanning wiring is formed on the boundary between the two pixels on the boundary between the two pixels by the liquid crystal molecules maintained substantially vertically in the region in the polymerization step. It is formed.
  • At least one of the signal wiring and the scanning wiring has two linear portions extending linearly in the first direction or the second direction at the boundary of the two pixels, and the two linear shapes. And a bent portion that is disposed between the portions and extends around the region.
  • liquid crystal molecules on at least one of the signal wiring and the scanning wiring can be stably aligned in a more desirable direction when forming the alignment maintaining layer in the PSA liquid crystal display device.
  • the alignment disorder of the liquid crystal molecules on the pixel electrode during the formation of the alignment maintaining layer is reduced, and an ideal initial alignment regulating force can be given to the alignment maintaining layer. Therefore, variations in luminance characteristics from pixel to pixel are reduced, and the occurrence of roughness during display is reduced.
  • the liquid crystal molecules on the signal wiring or the scanning wiring can be stably aligned in a desired direction. Therefore, since the alignment disorder of the liquid crystal molecules on the pixel electrode is reduced, the variation in the luminance characteristics of each pixel is reduced, and the occurrence of roughness during display is reduced.
  • FIG. 2 is a diagram schematically illustrating a liquid crystal display device 100 according to a preferred embodiment of the present invention, and is a cross-sectional view taken along line A-A ′ in FIG. 1. It is a figure which shows typically the liquid crystal display device 100 in suitable embodiment of this invention, and is a figure showing the equivalent circuit of one pixel.
  • FIG. 2 is a diagram schematically showing a liquid crystal display device 100 in a preferred embodiment of the present invention, and is a cross-sectional view taken along line B-B ′ in FIG. 1.
  • FIG. 4 is a plan view schematically showing the alignment state of liquid crystal molecules when a voltage is applied to a liquid crystal layer in the liquid crystal display device 100.
  • FIG. (A) And (b) is process sectional drawing which shows the manufacturing process of the liquid crystal display device 100 typically.
  • (A) to (d) represent potentials applied to the scanning wiring 14, auxiliary capacitance wiring 16, counter electrode 22, signal wiring 15, pixel electrode 12, and liquid crystal layer 30 in the manufacturing process of the liquid crystal display device 100.
  • (A) is a microscope picture which shows the orientation state of the liquid crystal molecule by the liquid crystal display device of a reference example
  • (b) is a microscope picture which shows the orientation state of the liquid crystal molecule by suitable embodiment of this invention.
  • (A) to (c) is a diagram for explaining a first example (method (1)) of a method of applying a voltage to a liquid crystal layer in a PSA process.
  • (A) to (c) is a diagram for explaining a second example (method (2)) of applying a voltage to the liquid crystal layer in the PSA process.
  • (A) is a diagram schematically showing an ideal alignment state of the liquid crystal
  • (b) and (c) are diagrams schematically showing an alignment state including alignment disorder.
  • FIG. 1, FIG. 2, and FIG. 3 show a CPA mode liquid crystal display device 100 according to this embodiment.
  • FIG. 1 is a plan view schematically showing a region corresponding to one pixel of the liquid crystal display device 100
  • FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. This shows a state where no voltage is applied (or a state where a voltage less than the threshold voltage is applied).
  • FIG. 3 shows an equivalent circuit of one pixel of the liquid crystal display device 100.
  • the liquid crystal display device 100 includes a liquid crystal display panel 100a and is arranged in a matrix along the vertical direction (first direction) and the horizontal direction (second direction) in FIG. A plurality of pixels 110 are provided.
  • the liquid crystal display panel 100 a includes a TFT substrate (active matrix substrate) 10, a counter substrate 20 facing the TFT substrate 10, and a vertical alignment type liquid crystal layer 30 provided between the TFT substrate 10 and the counter substrate 20. Contains.
  • the TFT substrate 10 includes a pixel electrode 12 disposed for each pixel 110, a TFT (thin film transistor) 13 that is a switching element electrically connected to the pixel electrode 12, and a scanning wiring (gate signal) that supplies a scanning signal (gate signal) to the TFT 13.
  • the TFT 13, the scanning wiring 14, and the signal wiring 15 are provided on a transparent substrate (glass substrate, plastic substrate, etc.) 11.
  • the signal wiring 15 extends in the vertical direction in FIG. 1 along the boundaries of the plurality of pixels 110, and the scanning wiring 14 extends in the left-right direction in FIG. 1 along the boundaries of the plurality of pixels 110.
  • an auxiliary capacitance line 16 electrically connected to an auxiliary capacitance counter electrode 19 described later extends substantially parallel to the scanning line 14.
  • An insulating layer 18 is formed on the TFT 13, the scanning wiring 14, the signal wiring 15, and the auxiliary capacitance wiring 16 (on the liquid crystal layer 30 side), and the insulating layer 18 corresponds to each pixel 110.
  • the pixel electrodes 12 are arranged in a matrix. Note that the scanning wiring 14, the auxiliary capacitance wiring 16, and the gate electrode of the TFT 13, and the signal wiring 15 and the source / drain electrode of the TFT 13 are formed in different layers, and another insulating layer is formed between these layers. However, the detailed illustration is omitted here.
  • the counter substrate 20 has a counter electrode 22 that faces the pixel electrode 12.
  • the counter electrode 22 is provided on a transparent substrate 21 (glass substrate, plastic substrate, etc.).
  • Protrusions (convex portions) 23 for restricting the alignment of the liquid crystal molecules 31 and fixing the alignment center of the liquid crystal domain are provided on the counter electrode 22 at positions facing the center of the pixel 110 or the pixel electrode 12. It has been. While the pixel electrode 12 is disposed in each of the plurality of pixels, the counter electrode 22 is typically formed as one transparent conductive film that faces all the pixel electrodes 12. Although not shown here, typically, a color filter is provided between the transparent substrate 21 and the counter electrode 22. Therefore, the counter substrate 20 is also called a color filter substrate.
  • each pixel 110 has a liquid crystal capacitor C LC formed by the pixel electrode 12 and the counter electrode 22 and the liquid crystal layer 30 positioned therebetween.
  • Each pixel has an auxiliary capacitor C S electrically connected in parallel to the liquid crystal capacitor C LC .
  • the storage capacitor C S includes a storage capacitor electrode 17 electrically connected to the pixel electrode 12 and a storage capacitor counter electrode 19 facing the storage capacitor electrode 17 through an insulating material (insulating layer).
  • insulating material insulating layer
  • the auxiliary capacitance electrode 17 is disposed on the auxiliary capacitance wiring 16 by patterning the same metal layer as that of the signal wiring 15, and a portion overlapping the auxiliary capacitance electrode 17 of the auxiliary capacitance wiring 16 is used as the auxiliary capacitance counter electrode 19. Can do.
  • a vertical alignment film 33 is provided on the surface of the TFT substrate 10 on the liquid crystal layer 30 side, and a polymer structure which is an alignment control layer on the surface of the vertical alignment film 33 on the liquid crystal layer 30 side.
  • An object 32 is provided.
  • such a vertical alignment film is also provided on the surface of the counter substrate 20 on the liquid crystal layer 30 side, and the alignment control is also performed on the surface of the vertical alignment film on the liquid crystal layer 30 side.
  • a polymer structure that is a layer is provided.
  • optical layers such as a retardation plate and a polarizing plate are provided on the outer sides of the TFT substrate 10 and the counter substrate 20.
  • the vertical alignment type liquid crystal layer 30 includes liquid crystal molecules 31 having negative dielectric anisotropy, and further includes a chiral agent as necessary.
  • the liquid crystal molecules 31 in the liquid crystal layer 30 are aligned substantially perpendicular to the surface of the vertical alignment film 33 (or the surface of the TFT substrate 10) when no voltage is applied to the liquid crystal layer 30.
  • the polymer structure 32 is provided by a method described later, the liquid crystal molecules 31 are not aligned strictly perpendicular to the surface of the vertical alignment film 33.
  • FIG. 4 shows a cross section taken along the line B-B 'in FIG. As shown in FIG. 2, the vertical alignment film 33 and the polymer structure 32 are also formed on the signal wiring 15 and the scanning wiring 14.
  • the signal wiring 15 includes two linear portions 15a extending linearly in the vertical direction (first direction) at the boundary between two adjacent pixels, and two linear portions 15a. And a bent portion 15b which is disposed between the two linear portions 15a and extends away from the extended line.
  • the bent portion 15b is formed on the auxiliary capacitance wiring 16 (or at a position overlapping the auxiliary capacitance wiring 16).
  • the bent portion 15b is formed so as to overlap the pixel electrode 12 on the left side of the signal wiring 15 in FIG.
  • the bent portion 15 b may be formed so as to overlap the pixel electrode 12 on the right side of the signal wiring 15.
  • a gap 15c where the signal wiring 15 is not formed is formed on the extension line of the two linear portions 15a between the two linear portions 15a.
  • the liquid crystal molecules 31 on the signal wiring 15 are inclined and oriented so as to approach a direction parallel to the equipotential surface from a direction perpendicular to the substrate surface.
  • the liquid crystal molecules 31 on the gap 15c are maintained substantially perpendicular to the substrate surface.
  • the liquid crystal molecules 31 on the two linear portions 15a are tilted in accordance with the voltage, but the liquid crystal molecules 31 on the gap 15c maintain the vertical alignment state. As shown in FIG. 4, the liquid crystal molecules 31 on the two linear portions 15a are inclined and aligned so as to be symmetrical with respect to the vertically aligned liquid crystal molecules 31 on the gap 15c.
  • the bent portion 15b and the gap 15c function as control means for regulating the alignment direction of the liquid crystal molecules 31 on the signal wiring 15 along the signal wiring 15.
  • the bent portion 15 b and the gap 15 c are preferably located at the center of one side of the pixel 110 or the pixel electrode 12 so that the tilted alignment of the liquid crystal molecules 31 is more symmetric in the pixel 110.
  • FIG. 5 is a diagram schematically showing a modified example of the signal wiring 15.
  • the bent portion b of the signal wiring 15 of the modified example is not bent only to one pixel 110 side but swells in both the left and right directions, and the gap 15c where the signal wiring 15 does not exist at the center. Is formed. Even in this case, the liquid crystal molecules 31 on the gap 15c are maintained substantially perpendicular to the substrate surface, and when the potential difference is generated between the signal wiring 15 and the counter electrode 20 by the gap 15c, the two adjacent liquid crystal molecules 31 are maintained. A region that forms a boundary of alignment of liquid crystal molecules on the boundary of two pixels 110 is formed.
  • the signal wiring 15 includes the two linear portions 15a and the bent portion 15b.
  • the scanning wiring 14 or both of the scanning wiring 14 and the signal wiring 15 include the above-described two linear portions 15a and 15b.
  • a form including the bent portion 15b is also included in the embodiment of the present invention.
  • the scanning wiring 14 includes two linear portions 15a and a bent portion 15b
  • the sectional view taken along the line CC ′ in FIG. 1 is basically the same as the sectional view shown in FIG. 4 (however, the signal wiring 15 Is replaced with the scanning wiring 14 and the auxiliary capacitance wiring 16 is removed).
  • a gap 15c in which the scanning wiring 14 is not formed is formed on the extension line of the two linear portions 15a between the two linear portions 15a of the scanning wiring 14.
  • a plurality of bent portions 15 b and gaps 15 c may be formed on one side of the pixel 110 or the pixel electrode 12. In that case, the plurality of bent portions 15b and the gaps 15c are arranged along one side of the pixel 110 or the pixel electrode 12 so that the tilted alignment of the liquid crystal molecules 31 is more symmetric in the pixel 110. It is preferable.
  • FIG. 6 shows the alignment state of the liquid crystal molecules 31 when a predetermined voltage (voltage equal to or higher than the threshold voltage) is applied between the pixel electrode 12 and the counter electrode 22.
  • a predetermined voltage voltage equal to or higher than the threshold voltage
  • the liquid crystal molecules 31 are radially formed on the pixel electrode 12 with respect to the center of the pixel electrode 12 or the pixel 110 as shown in FIG.
  • An inclined liquid crystal domain is formed.
  • the reason why such a liquid crystal domain having a radially inclined alignment is formed is that an alignment regulating force of an oblique electric field generated at the edge portion of the pixel electrode 12 acts on the liquid crystal molecules 31.
  • the electric field generated at the edge of the pixel electrode 12 is tilted toward the center of the pixel electrode 12 and acts to tilt and align the liquid crystal molecules 31 radially.
  • the protrusions 23 are provided on the counter substrate 20, the radial tilt alignment of the liquid crystal molecules 31 can be stabilized.
  • the protrusion 23 is made of a transparent dielectric material (for example, resin). Note that the protrusion 23 is not necessarily provided, and another alignment regulating structure (for example, an opening formed in the counter electrode 22) may be provided instead of the protrusion 23.
  • the gap 15c is formed on the extension of the signal wiring 15, so that when the voltage is applied, Liquid crystal molecules 31 are maintained substantially perpendicular to the substrate surface. Therefore, it is possible to quickly and stably regulate the tilt alignment of the liquid crystal molecules 31 on the linear portion 15a with the liquid crystal molecules 31 as the center or boundary. At this time, the liquid crystal molecules 31 on the two linear portions 15a on both sides of the gap 15c are tilted and aligned with the liquid crystal molecules 31 on the gap 15c as a boundary so that the tilt directions are symmetrical to each other. The liquid crystal molecules 31 are prevented from being aligned in only one direction along the direction in which the wiring extends.
  • a polymer structure 32 for defining the alignment direction of the liquid crystal molecules 31 is formed.
  • a vertical alignment film 33 is obtained by previously mixing a polymerizable composition (polymerizable monomer or oligomer) into the liquid crystal material constituting the liquid crystal layer 30 and photopolymerizing the polymerizable composition. Formed on top.
  • the polymer structure 32 has an alignment regulating force for causing the liquid crystal molecules 31 to be radially inclined and aligned, so that the liquid crystal molecules 31 around the polymer structure 32 are inclined in a voltage-free state when no voltage is applied. Is oriented (pretilt) in the same direction as. That is, by forming the polymer structure 32, the pretilt azimuth of the liquid crystal molecules 31 is regulated so as to match the radial tilt alignment at the time of voltage application even when no voltage is applied. Therefore, alignment stability and response characteristics are improved.
  • a liquid crystal display panel 100a including a polymerizable composition in the liquid crystal layer 30 is prepared.
  • Each of the TFT substrate 10 and the counter substrate 20 can be formed using various known methods.
  • the polymerizable composition various materials (for example, materials disclosed in Patent Documents 4 to 7) used for forming a PSA polymer structure can be used.
  • the polymer composition is polymerized by polymerizing the polymerizable composition in the liquid crystal layer 30 in a state where a predetermined voltage is applied to the liquid crystal layer 30 of the liquid crystal display panel 100a. 32 is formed.
  • the polymerizable composition has photopolymerizability, and the polymerization is performed by irradiating the liquid crystal layer 30 with light (specifically, ultraviolet light). The irradiation intensity and irradiation time of light are appropriately set according to the polymerizable composition used.
  • the polymerizable composition has thermal polymerizability, the polymerization may be performed by heating.
  • AC driving to the liquid crystal layer 30 is performed as follows in the PSA process.
  • the TFT is turned on by applying a gate-on voltage of +10 V from the scanning wiring 14 to the gate electrode of the TFT.
  • a potential of 0 V (GND) is applied to the pixel electrode 12 through the signal wiring 15.
  • the potential applied to the liquid crystal layer 30 is changed to + 4V and + 4V by periodically oscillating the potential of the counter electrode 22 to + 4V and ⁇ 4V.
  • AC driving is performed to reverse the polarity to -4V.
  • the potential of the auxiliary capacitance line 16 also vibrates according to the potential of the counter electrode 22.
  • the liquid crystal display panel 100a including the polymer structure 32 shown in FIG. 2 is obtained.
  • at least one of the scanning wiring 14 and the signal wiring 15 has the bent portion 15 b, and around the pixel 110, on the extension line of the scanning wiring 14 or the signal wiring 15.
  • a gap 15c where no wiring exists is formed.
  • the AC drive shown in FIG. 10C when the AC drive shown in FIG. 10C is performed, a difference is generated between the auxiliary capacitance wiring potential and the counter electrode potential, so that a potential difference in the substrate vertical direction is generated in the gap 15c, and the liquid crystal at that position is generated.
  • the molecules 31 are tilted.
  • the same potential can be applied between the upper and lower substrates at the position of the gap 15c. That is, 0 V is applied to the liquid crystal layer 30 above the gap 15c, and the liquid crystal molecules 31 on the gap 15c can be fixed perpendicularly to the substrate surface.
  • the liquid crystal molecules 31 above the gaps 15c are maintained substantially perpendicular to the substrate surface, and the liquid crystal molecules 31 are used as centers or boundaries, It becomes possible to quickly and stably regulate the tilt alignment of the liquid crystal molecules 31 on the linear portion 15a.
  • the liquid crystal molecules 31 on the two linear portions 15a on both sides of the gap 15c are tilted and aligned with the liquid crystal molecules 31 on the gap 15c as a boundary so that the tilt directions are symmetrical to each other.
  • the liquid crystal molecules 31 are prevented from being aligned in only one direction along the direction in which the wiring extends. As a result, the alignment disorder of the liquid crystal molecules in the vicinity of the wiring as shown in FIGS. 12B and 12C is reduced, and the regulating force for realizing the ideal alignment shown in FIGS.
  • a polymer structure 32 is provided.
  • the liquid crystal display device 100 Since the liquid crystal display device 100 has the polymer structure 32 formed as described above, the polymer structure when no voltage is applied is displayed by the alignment regulating force (or alignment maintaining force) of the polymer structure 32 in the pixel during display.
  • the liquid crystal molecules 31 near the object 32 can be oriented (pretilt) toward the center of the pixel. Therefore, the liquid crystal molecules 31 in the pixel at the time of voltage application can be uniformly tilted and aligned radially. As a result, alignment disturbance during display is reduced, and variations in alignment state between pixels are reduced, thereby preventing occurrence of roughness in display.
  • the liquid crystal molecules 31 at the pixel boundary can be quickly aligned with symmetry by the alignment boundary forming force of the gap 15c itself formed by the bent portion 15b. Thereby, the liquid crystal molecules 31 inside the pixel are stably radially aligned in a shorter time.
  • bent portion 15b on the auxiliary capacitance wiring 16 that does not affect the transmittance of the pixel, there can be obtained an advantage of preventing a decrease in transmittance due to the provision of the bent portion 15b.
  • an unnecessary voltage application action that the bent portion 15b gives to the liquid crystal molecules 31 is prevented by the shielding effect of the pixel electrode 12. .
  • FIG. 9A shows a micrograph when liquid crystal molecules are tilted and aligned in a liquid crystal display device of a reference example in which the bent portion 15b is not formed in the signal wiring 15, and FIG.
  • the respective micrographs when the liquid crystal molecules are tilted and aligned in the liquid crystal display device 100 are shown.
  • the two polarizing plates are arranged in a crossed Nicol state (a state in which the polarization axes are orthogonal to each other). In this arrangement, a region where the liquid crystal molecules are aligned perpendicular to the substrate and a region where the liquid crystal molecules are aligned in an orientation parallel or perpendicular to the polarization axis of the polarizing plate are observed as black.
  • the region where the liquid crystal molecules are aligned in the direction inclined with respect to the polarization axis is observed brightly, and the region where the liquid crystal molecules are aligned in the direction forming an angle of 45 ° with respect to the polarization axis is the most. Observed brightly.
  • the distribution of bright areas is different between some liquid crystal domains (portions surrounded by solid lines in the figure) and other liquid crystal domains. Yes. This indicates that variation occurs in the liquid crystal alignment state for each pixel.
  • the liquid crystal display device 100 of the present embodiment as shown in FIG. 9B, bright areas are distributed in substantially the same manner in a plurality of liquid crystal domains. This indicates that the liquid crystal alignment state for each pixel is substantially uniform.
  • more ideal alignment of liquid crystal molecules is stably realized, so that a high-quality display in which display roughness is prevented can be provided.
  • the polymer structure 32 can store an ideal radial alignment state.
  • the left dark line in the red pixel the pixel surrounded by the upper solid line
  • the right dark line in the blue sub-pixel the pixel surrounded by the lower solid line.
  • a dark line (black line) curved downward was observed, which appeared due to abnormal alignment of liquid crystal molecules.
  • FIG. 9B showing the display state according to the present embodiment the alignment of the liquid crystal molecules is stabilized by providing the bent portion 15b and the gap 15c in the wiring. Therefore, the alignment disorder as shown in FIG. 9A does not appear, and the left and right dark lines in each pixel uniformly extend stably in the left-right direction.
  • more ideal radial alignment of liquid crystal molecules is realized at the time of display, and display roughness is reduced.
  • the present invention relates to a liquid crystal display device that includes a vertical alignment type liquid crystal layer, and in which a plurality of regions in which liquid crystal molecules are inclined in different directions when a voltage is applied to the liquid crystal layer (that is, alignment division type) It can be used widely, and for example, it is also suitably used for an MVA mode liquid crystal display device.
  • the liquid crystal display device 100 which has the polymer structure 32 which is an orientation maintenance layer
  • the liquid crystal display device which does not have an orientation control layer except the polymer structure 32 from the liquid crystal display device 100 is also available. It is contained in embodiment by this invention. Even in such an embodiment, the liquid crystal molecules 31 on the wiring are stably aligned with the liquid crystal molecules 31 on the gaps 15c as a base point at the time of display, and the liquid crystal molecules 31 in the pixels are directed toward the center of the pixel. More ideal radial alignment can be achieved.
  • the liquid crystal display device according to the present invention is suitably used as a liquid crystal display device from small to large, such as a mobile phone, PDA, notebook PC, monitor, and television receiver.

Abstract

 本発明の目的は、液晶表示装置における表示のざらつきを低減させ、高品質の表示を提供することにある。 本発明の液晶表示装置は、第1方向及び第2方向に沿って配置された複数の画素(110)を有し、第1方向に延び、TFT(13)に表示信号を供給する信号配線(15)と、第2方向に延び、TFT(13)にゲート信号を供給する走査配線(14)とを有するTFT基板(10)と、対向電極を有する対向基板(20)と、両基板の間に設けられた垂直配向型の液晶層(30)と、垂直配向膜(33)とを備えている。 信号配線(15)及び走査配線(14)の少なくとも一方が、隣り合う2つの画素の境界において第1方向または第2方向に直線状に延びる2つの線状部(15a)と、2つの線状部の間に配置され、2つの線状部の延長線上から逸れて延びる屈曲部(15b)とを有する。 本発明によると、PSA方式の液晶表示装置における配向維持層の形成時に、信号配線及び走査配線の少なくとも一方の上の液晶分子を安定的に、より望ましい方向に配向させることができる。

Description

液晶表示装置及び液晶表示装置の製造方法
 本発明は、垂直配向層を備えた垂直配向型の液晶表示装置に関する。
 近年、パーソナルコンピュータのディスプレイや携帯情報端末機器の表示部に用いられる表示装置として、薄型軽量の液晶表示装置が利用されている。しかしながら、従来のツイストネマチック型(TN型)やスーパーツイストネマチック型(STN型)の液晶表示装置は、視野角が狭いという欠点を有しており、それを解決するために様々な技術開発が行われている。
 視野角特性が改善された液晶表示装置として、垂直配向型の液晶層を備えた配向分割型液晶表示装置が知られている。このような液晶表示装置は、VA(Vertical Alignment)モードの液晶表示装置と呼ばれる。VAモード液晶表示装置の一例として、特許文献1にMVA(Multi-domain Vertical Alignment)モードの液晶表示装置が開示されている。
 MVAモードでは、液晶層を介して対向する一対の基板のそれぞれに、液晶分子の配向を規制する配向規制構造が設けられる。配向規制構造は、具体的には、電極上に形成された突起状構造物(凸部)や、電極に形成されたスリットである。突起状構造物やスリットのような配向規制構造が設けられていることにより、液晶層に電圧が印加されたときに、液晶分子の傾斜する方位が互いに異なる複数の領域が形成されるので、視野角特性が向上する。
 また、特許文献2には、他のVAモードの液晶表示装置として、CPA(Continuous Pinwheel Alignment)モードの液晶表示装置が記載されている。CPAモードでは、液晶層を介して対向する一対の電極の一方に開口部や切欠き部を形成し、開口部や切欠き部の上に生成される斜め電界を用いて液晶分子を放射状に傾斜配向させることによって、広視野角を実現する。
 さらに、特許文献3には、CPAモードにおける液晶分子の放射状傾斜配向を安定化させる技術が開示されている。この技術によれば、一方の基板に設けた配向規制構造(斜め電界を生成する電極の開口部や切欠き部)によって形成される放射状傾斜配向が、他方の基板に設けた配向規制構造(例えば凸部)によって安定化される。
 一方、液晶分子のプレチルト角及びプレチルト方向を規定するための配向維持層として、ポリマー構造物を形成する方式が特許文献4、特許文献5、特許文献6、特許文献7に提案されている。この方式はPSA(Polymer-Sustained Alignment)方式と呼ばれる。ポリマー構造物は、予め液晶層に混入しておいた重合性組成物を光重合や熱重合することによって形成される。このようなポリマー構造物をVAモードの液晶表示装置に設けることにより、配向の安定性や応答特性を向上させることができる。
特開平11-242225号公報 特開2003-43525号公報 特開2002-202511号公報 特開2002-23199号公報 特開2003-149647号公報 特開2003-177408号公報 特開2003-307720号公報
 ポリマー構造物を形成する工程(以下では「PSA化工程」と呼ぶ。)は、液晶分子を基板面に垂直に配向させた状態ではなく、液晶層に所定の電圧を印加して液晶分子を傾斜配向させた状態で行われる。また、PSA化工程における液晶層への電圧の印加は、液晶が分極しないように、印加電圧の極性が周期的に反転するように行われる(つまり交流駆動が行われる)。
 PSA化工程における電圧印加(交流駆動)の方法としては、(1)各画素に設けられたTFT(薄膜トランジスタ)をオン状態にして画素電極の電位を固定したまま、対向電極の電位を振動させる方法や、(2)TFTをオフ状態にして画素電極をフロート状態(電気的に浮遊した状態)にしつつ、対向電極の電位を振動させる方法がある。
 まず、上記方法(1)の具体例を図10を参照しながら説明する。図10に示すCPAモードの液晶表示装置500は、画素毎に設けられたTFT(不図示)を備えたTFT基板510と、TFT基板510に対向する対向基板520と、これらの間に設けられた垂直配向型の液晶層530とを備えている。対向基板520上には、液晶分子531の配向を規制して、液晶ドメインの配向中心を固定するための突起(凸部)523が設けられている。
 図10(a)、(b)、及び(c)に示すように、走査配線514からTFTのゲート電極に+10Vのゲートオン電圧が印加されることによってTFTはオン状態とされ、この時、画素電極512には信号配線(不図示)を介して0Vの電位が与えられる。このような状態で対向電極522の電位を+4V(図10(a)の状態)と-4V(図10(b)の状態)との間で振動させて、液晶層530に印加される電圧の極性が対向電極522の電位の振動に同期して反転する交流駆動が実現される。
 次に、上記方法(2)の具体例を図11を参照しながら説明する。図11(a)、(b)、及び(c)に示すように、走査配線514からTFTのゲート電極に-5Vのゲートオフ電圧が印加されることによってTFTがオフ状態とされ、画素電極512はフロート状態(電気的に浮遊した状態)となっている。このような状態で対向電極522の電位を+8V(図11(a)の状態)と-8V(図11(b)の状態)との間で振動させると、それに応じて画素電極512の電位も振動する。ここで、液晶容量と補助容量CS(図中に模式的に回路記号で示している)とが同じ容量値である場合には、画素電極512の電位は+4V(図11(a)の状態)と-4V(図11(b)の状態)との間で振動する。これにより、液晶層530に印加される電圧の極性が周期的に反転する交流駆動が実現される。
 しかしながら、本願発明者の検討によれば、上記の方法(1)及び(2)に従って液晶層530に電圧印加を行いながらPSA化工程を実行すると、次の理由により、表示にざらつきが発生して表示品位が低下してしまうことがわかった。
 図12は、PSA化工程において傾斜配向した1画素内の液晶分子531を、液晶表示装置の上面側から見た図である。図12の(a)は液晶分子531の理想的な傾斜配向状態を表しており、(b)及び(c)は上記方法(1)及び(2)による、表示にざらつきを発生させ得る傾斜配向状態を模式的に表している。これらの図では、液晶分子531の傾斜配向を表すため、各液晶分子531を、対向電極522に近い部分がより大きく見えるように図示している(液晶分子531の対向電極522に近い側の端部を円で示している)。
 PSA化工程では、1画素内の液晶分子531が、図12(a)に示すように、突起523を中心に一様に放射状に傾斜する状態(放射状傾斜配向)が理想的であり、これよって表示ムラの少ない広視野角の表示が実現される。しかし、上記方法(1)及び(2)によって交流駆動を行った場合、図10及び図11に示したように、対向電極522には常に0Vではない電位が与えられるのに対し、信号配線516及び補助容量配線518の電位は0Vに保たれるため、これら配線の上に位置する液晶分子531も傾斜配向する。ここで、信号配線516は隣り合う2つの画素の境界に沿って延びているので、信号配線516の上の液晶分子531には、両画素からの相反する方向への配向規制力がほぼ均等に作用する(つまり、両画素からの配向規制力が相殺される)。したがって、信号配線516の上の液晶分子531は、図12(b)及び図12(c)に示すように、信号配線516の延びる方向に沿って傾斜配向することになる。
 図12(b)は一対の信号配線516の上の液晶分子531がすべて信号配線516に沿って図の下向きに傾斜した状態を、また図12(c)は一対の信号配線516の一方の上の液晶分子531が図の下向きに傾斜し、他方の信号配線516の上の液晶分子531が図の上向きに配向した状態を、それぞれ表している。いずれも場合でも、信号配線516上の液晶分子531の傾斜配向に引きずられて、信号配線516の近傍(図中a及びbで示す領域など)の液晶分子531の配向方向が不均一に乱され、図12(a)に示す理想的な傾斜配向状態は得られない。また、図示してはいないが、一つの信号配線516の上の液晶分子531が、信号配線516上の一点を境界として逆向きの傾斜配向(例えば図の上向きの傾斜配向と下向きの傾斜配向)をとる状態もあり得、その場合、その境界が信号配線516に沿って移動することもあり得る。そのような場合も画素内の液晶分子531の配向が不均一に乱れ、理想的な傾斜配向状態は得られない。
 このように乱れた傾斜配向がなされた状態でPSA化工程が行われると、形成されたポリマー構造物によって表示時に初期配向(プレチルト)される液晶分子にも乱れが生じる。その結果、画素ごとに配向状態がばらついて、表示におけるざらつき(輝度の不均一)が発生する。また、PSA化工程では、処理を高速化するために液晶層に大きな電圧が印加され得るが、その場合、PSA化工程における液晶の乱れがポリマー構造物による配向規制力により強く刻印され、表示時により大きなざらつきを発生させ得る。
 また、PSA方式またはそれ以外の垂直配向型液晶表示装置によって表示を行う場合にも、画素の境界に位置する信号配線または走査配線の上の液晶分子の配向が不安定となり、その影響を受けて、画素電極上の液晶分子の配向にも乱れが生じるという問題があった。
 本発明は、上記問題に鑑みてなされたものであり、その目的は、液晶表示装置における表示のざらつきを低減させ、高品質の表示を提供することにある。
 本発明による液晶表示装置は、第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、前記画素電極に対向する対向電極を有する対向基板と、前記TFT基板と前記対向基板との間に配置された液晶層と、前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成された、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備え、前記信号配線及び前記走査配線の少なくとも一方が、隣り合う2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記2つの線状部の延長線上から逸れて延びる屈曲部と、を有する。
 ある実施形態では、前記TFT基板が前記第2方向に延びる補助容量配線を備え、前記信号配線が前記2つの線状部と前記屈曲部とを有し、基板鉛直方向から見た場合、前記屈曲部が前記補助容量配線と重なる位置に形成されている。
 ある実施形態では、基板鉛直方向から見た場合、前記屈曲部の少なくとも一部が前記画素電極と重なる位置に形成されている。
 ある実施形態において、前記2つの線状部の間の前記2つの線状部の延長線上には、前記信号配線及び前記走査配線が形成されていない。
 ある実施形態では、前記屈曲部が、画素の一辺の中央に位置する。
 ある実施形態では、前記屈曲部によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた時、液晶分子の配向方向が基板面に対して略垂直に維持される領域が形成される。
 ある実施形態では、前記屈曲部によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った液晶配向の境界が形成される。
 ある実施形態は、前記配向膜の前記液晶層側に形成され、前記液晶分子の基板面に対する配向方向を規定する配向維持層を備えている。
 ある実施形態では、前記配向維持層が、前記液晶層に含まれる重合性組成物を重合することによって形成されたポリマー構造物からなる。
 本発明による他の液晶表示装置は、第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、前記画素電極に対向する対向電極を有する対向基板と、前記TFT基板と前記対向基板との間に配置された液晶層と、前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成され、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備え、隣り合う2つの画素の境界上に、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、液晶分子の配向方向が基板面に対して略垂直に維持される領域が形成されている。
 ある実施形態では、前記領域において略垂直に維持された液晶分子によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った方向における液晶配向の境界が形成される。
 ある実施形態では、前記信号配線及び前記走査配線の少なくとも一方が、前記2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記領域を迂回して延びる屈曲部とを有する。
 本発明による液晶表示装置の製造方法は、第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、前記画素電極に対向する対向電極を有する対向基板と、前記TFT基板と前記対向基板との間に配置された液晶層と、前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成され、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備えた液晶表示装置の製造方法であって、重合性組成物を含む前記液晶層が前記TFT基板と前記対向基板との間に配置された液晶表示パネルを用意する工程と、前記液晶層に電圧が印加された状態で、前記液晶層の中の重合性組成物を重合することによって、前記配向膜の前記液晶層側に配向維持層を形成する重合工程と、を含み、前記重合工程において、隣り合う2つの画素の境界上に、液晶分子の配向方向が基板面に対して略垂直に維持される領域が存在している。
 ある実施形態では、前記重合工程において、前記領域において略垂直に維持された液晶分子によって、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った方向における液晶配向の配向境界が形成される。
 ある実施形態では、前記信号配線及び前記走査配線の少なくとも一方に、前記2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記領域を迂回して延びる屈曲部とが形成されている。
 本発明によると、PSA方式の液晶表示装置における配向維持層の形成時に、信号配線及び走査配線の少なくとも一方の上の液晶分子を安定的に、より望ましい方向に配向させることができる。これにより、配向維持層形成時の画素電極上の液晶分子の配向乱れが低減され、配向維持層により理想的な初期配向規制力を与えることができる。したがって、画素毎の輝度特性のばらつきが減少し、表示時におけるざらつきの発生が低減される。
 また、本発明によると、液晶表示装置によって表示を行う場合、信号配線、または走査配線の上の液晶分子を安定的に、望ましい方向に配向させることができる。よって、画素電極上の液晶分子の配向乱れが減少するため、画素毎の輝度特性のばらつきが減少し、表示時におけるざらつきの発生が低減される。
本発明の好適な実施形態における液晶表示装置100を模式的に示す図であり、画素に対応した領域を示す平面図である。 本発明の好適な実施形態における液晶表示装置100を模式的に示す図であり、図1中のA-A’線に沿った断面図である。 本発明の好適な実施形態における液晶表示装置100を模式的に示す図であり、1つの画素の等価回路を表した図である。 本発明の好適な実施形態における液晶表示装置100を模式的に示す図であり、図1中のB-B’線に沿った断面図である。 本発明による信号配線15の変形例の構成を表した図である。 液晶表示装置100において液晶層に電圧が印加されたときの液晶分子の配向状態を模式的に示す平面図である。 (a)及び(b)は、液晶表示装置100の製造工程を模式的に示す工程断面図である。 (a)から(d)は、液晶表示装置100の製造工程において走査配線14、補助容量配線16、対向電極22、信号配線15、画素電極12、及び液晶層30に印加される電位を表した図である。 (a)は、参考例の液晶表示装置による液晶分子の配向状態を示す顕微鏡写真であり、(b)は、本発明の好適な実施形態による液晶分子の配向状態を示す顕微鏡写真である。 (a)から(c)は、PSA化工程において液晶層に電圧を印加する方法の第1の例(方法(1))を説明するための図である。 (a)から(c)は、PSA化工程において液晶層に電圧を印加する方法の第2の例(方法(2))を説明するための図である。 (a)は、液晶の理想的な配向状態を模式的に表した図であり、(b)及び(c)は、配向乱れを含む配向状態を模式的に表した図である。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 図1、図2、及び図3に、本実施形態におけるCPAモードの液晶表示装置100を示す。図1は、液晶表示装置100の1つの画素に対応した領域を模式的に示す平面図であり、図2は、図1中のA-A’線に沿った断面図であり、液晶層に電圧が印加されていない状態(または、しきい値電圧未満の電圧が印加されている状態)を示している。また、図3は、液晶表示装置100の1つの画素の等価回路を示している。
 図1及び図2に示すように、液晶表示装置100は、液晶表示パネル100aを備え、図1の上下方向(第1方向)及び左右方向(第2方向)に沿ってマトリクス状に配列された複数の画素110を有している。液晶表示パネル100aは、TFT基板(アクティブマトリクス基板)10と、TFT基板10に対向する対向基板20と、TFT基板10と対向基板20との間に設けられた垂直配向型の液晶層30とを含んでいる。
 TFT基板10は、画素110毎に配置された画素電極12、画素電極12に電気的に接続されたスイッチング素子であるTFT(薄膜トランジスタ)13、TFT13に走査信号(ゲート信号)を供給する走査配線(ゲートバスライン)14、及びTFT13に表示信号を供給する信号配線(ソースバスライン)15を有する。TFT13、走査配線14、及び信号配線15は、透明基板(ガラス基板、プラスチック基板等)11の上に設けられている。信号配線15は、複数の画素110の境界に沿って、図1の上下方向に延びており、走査配線14は、複数の画素110の境界に沿って、図1の左右方向に延びている。また、透明基板11の上には、後述する補助容量対向電極19に電気的に接続された補助容量配線16が、走査配線14に略平行に延びている。
 TFT13、走査配線14、信号配線15、及び補助容量配線16の上(液晶層30の側)には絶縁層18が形成されており、絶縁層18の上には、各画素110に対応するように画素電極12がマトリクス状に配置されている。なお、走査配線14、補助容量配線16、及びTFT13のゲート電極と、信号配線15及びTFT13のソース・ドレイン電極とは異なる層に形成され、これらの層の間には他の絶縁層が形成されるが、ここではその詳細な図示は省略している。
 対向基板20は、画素電極12に対向する対向電極22を有する。対向電極22は、透明基板21(ガラス基板、プラスチック基板等)上に設けられている。対向電極22の上の、画素110または画素電極12の中心に対向する位置には、液晶分子31の配向を規制して、液晶ドメインの配向中心を固定するための突起(凸部)23が設けられている。画素電極12が複数の画素のそれぞれに配置されているのに対し、対向電極22は、典型的には、すべての画素電極12に対向する1つの透明導電膜として形成される。また、ここでは図示していないが、典型的には、透明基板21と対向電極22との間にカラーフィルタが設けられている。そのため、対向基板20はカラーフィルタ基板とも呼ばれる。
 各画素110は、図3に示すように、画素電極12及び対向電極22と、これらの間に位置する液晶層30とによって形成される液晶容量CLCを有している。また、各画素は、液晶容量CLCに電気的に並列に接続された補助容量CSを有している。補助容量CSは、画素電極12に電気的に接続された補助容量電極17、及び絶縁性物質(絶縁層)を介して補助容量電極17に対向する補助容量対向電極19を備えている。補助容量電極17及び補助容量対向電極19を含む補助容量CSの具体的な構成には、公知の種々の構成を用いることができる。例えば、補助容量電極17を信号配線15と同じ金属層をパターニングすることによって補助容量配線16の上部に配置し、補助容量配線16の補助容量電極17と重なる部分を補助容量対向電極19とすることができる。
 図2に示すように、TFT基板10の液晶層30側の面には、垂直配向膜33が設けられており、垂直配向膜33の液晶層30側の面には配向制御層であるポリマー構造物32が設けられている。ここでは図示を省略しているが、このような垂直配向膜は対向基板20との液晶層30側の表面にも設けられており、その垂直配向膜の液晶層30側の表面にも配向制御層であるポリマー構造物が設けられている。また、典型的には、TFT基板10及び対向基板20のそれぞれの外側には、位相差板、偏光板等の光学層が設けられている。
 垂直配向型の液晶層30は、負の誘電異方性を有する液晶分子31を含み、必要に応じてさらにカイラル剤を含んでいる。液晶層30内の液晶分子31は、液晶層30に電圧が印加されていないときに、垂直配向膜33の表面(あるいはTFT基板10の面)に対してほぼ垂直に配向する。ただし、本実施形態では、後述する方法によってポリマー構造物32が設けられているので、液晶分子31は垂直配向膜33の表面に対して厳密に垂直には配向しない。
 図4は、図1中のB-B’線に沿った断面を表している。垂直配向膜33及びポリマー構造物32は、図2に示したように、信号配線15及び走査配線14の上にも形成されている。
 図1及び図4に示すように、信号配線15は、隣り合う2つの画素の境界において上下方向(第1方向)に直線状に延びる2つの線状部15aと、2つの線状部15aの間に配置され、2つの線状部15aの延長線上から逸れて延びる屈曲部15bとを有する。基板鉛直方向から見た場合、屈曲部15bは補助容量配線16の上(あるいは補助容量配線16と重なる位置)に形成されている。また、基板鉛直方向から見た場合、屈曲部15bは、信号配線15の図1における左側の画素電極12と重なるように形成されている。屈曲部15bを、信号配線15の右側の画素電極12と重なるように形成してもよい。
 屈曲部15bの存在により、2つの線状部15aの間の2つの線状部15aの延長線上には、信号配線15が形成されない間隙15cが形成される。信号配線15と対向電極22との間に電位差が生じた時、信号配線15の上の液晶分子31は、基板面垂直な方向から等電位面に対して平行な方向に近づくよう傾斜配向するが、間隙15cの上の液晶分子31は、基板面に対してほぼ垂直のまま維持される。
 また、間隙15cの存在によって、信号配線15と対向電極20との間に電位差が生じた場合に、隣り合う2つの画素110の境界上の液晶分子の配向の境界を形成する領域が形成される。つまり、そのような電位差が生じた場合、2つの線状部15aの上の液晶分子31は電圧に応じて傾斜配向するが、間隙15cの上の液晶分子31が垂直配向状態を維持するため、図4に示すように、2つの線状部15aの上の液晶分子31は、間隙15cの上の垂直配向状態の液晶分子31を境として対称となるように傾斜配向する。
 このように、屈曲部15b及び間隙15cは、信号配線15の上の液晶分子31の信号配線15に沿った方向の配向方向を規制する制御手段として機能する。液晶分子31の傾斜配向が画素110の中でより対称となるように、屈曲部15b及び間隙15cは、画素110または画素電極12の一辺の中央に位置することが好ましい。
 図5は、信号配線15の変形例を模式的に示した図である。図5に示すように、変形例の信号配線15の屈曲部bは、一方の画素110側にのみ屈曲するのではなく、左右両方向に膨らんでおり、その中心に信号配線15が存在しない間隙15cが形成されている。この場合でも、間隙15cの上の液晶分子31は基板面に対してほぼ垂直のまま維持され、間隙15cによって、信号配線15と対向電極20との間に電位差が生じた場合に、隣り合う2つの画素110の境界上の液晶分子の配向の境界を形成する領域が形成される。
 本実施形態では、信号配線15が2つの線状部15a及び屈曲部15bを含むとしたが、走査配線14のみ、または走査配線14及び信号配線15の両方が上述の2つの線状部15a及び屈曲部15bを含む形態も、本発明の実施形態に含まれる。走査配線14が2つの線状部15a及び屈曲部15bを含む場合、図1におけるC-C’の断面図は、図4に示す断面図と基本的に同じものとなる(ただし、信号配線15は走査配線14に置き換えられ、補助容量配線16は除かれる)。この場合、屈曲部15bの存在によって、走査配線14の2つの線状部15aの間の2つの線状部15aの延長線上に、走査配線14が形成されない間隙15cが形成される。
 なお、屈曲部15b及び間隙15cは、画素110または画素電極12の一辺に複数形成されていてもよい。その場合、液晶分子31の傾斜配向が画素110の中でより対称となるように、複数の屈曲部15b及び間隙15cは、画素110または画素電極12の一辺に沿って対象となるように配置されることが好ましい。
 図6に、画素電極12と対向電極22との間に所定の電圧(しきい値電圧以上の電圧)が印加されたときの液晶分子31の配向状態を示す。画素電極12と対向電極22との間に所定の電圧が印加されると、図6に示すように、画素電極12上に、液晶分子31が画素電極12または画素110の中心に対して放射状に傾斜した液晶ドメインが形成される。このような放射状傾斜配向の液晶ドメインが形成されるのは、画素電極12のエッジ部に生成される斜め電界の配向規制力が液晶分子31に作用するからである。画素電極12のエッジ部に生成される電界は、画素電極12の中心に向かって傾斜し、液晶分子31を放射状に傾斜配向させるように作用する。
 また、本実施形態では、対向基板20に突起23が設けられているので、液晶分子31の放射状傾斜配向を安定化させることができる。突起23は、透明な誘電体材料(例えば樹脂)から形成されている。なお、必ずしも突起23を設ける必要はなく、突起23に代えて、他の配向規制構造(例えば対向電極22に形成した開口部など)を設けてもよい。
 さらに、本実施形態の液晶表示装置100は、信号配線15が屈曲部15bを有しているため、信号配線15の延長上に間隙15cが形成されているので、電圧印加時に、間隙15cの上の液晶分子31が基板面にほぼ垂直に維持される。よって、その液晶分子31を中心あるいは境界として、線状部15a上の液晶分子31の傾斜配向をすばやく安定的に規制することが可能となる。また、このとき、間隙15cの両側の2つの線状部15a上の液晶分子31は、間隙15cの上の液晶分子31を境界として、傾斜方向が互いに対称となるように傾斜配向し、配線上の液晶分子31が配線の延びる方向に沿って一方向のみに配向することが防止される。これにより、図6の点線部分に表されるように、画素境界近傍の液晶分子31の配向方向が画素中心に向って比較的均一に揃い、図12(a)に示した理想的な放射配向に近い配向が得られる。
 液晶表示装置100の液晶層30は、図2中に模式的に示したように、液晶分子31の配向方向を規定するためのポリマー構造物32が形成されている。ポリマー構造物32は、液晶層30を構成する液晶材料に重合性組成物(重合性を有するモノマーやオリゴマー)を予め混入しておき、この重合性組成物を光重合することによって垂直配向膜33上に形成される。ポリマー構造物32は、液晶分子31を放射状傾斜配向させるための配向規制力を有しており、それによってポリマー構造物32周辺の液晶分子31は、電圧無印加状態において、電圧印加時の傾斜方向と同じ方向に配向(プレチルト)している。つまり、ポリマー構造物32が形成されていることによって、液晶分子31は、電圧無印加状態においても、電圧印加時の放射状傾斜配向と整合するようにプレチルト方位を規定されている。そのため、配向の安定性や応答特性が向上する。
 続いて、図7及び図8を参照しながら、本実施形態の液晶表示装置100の製造方法を説明する。
 まず、図7(a)に示すように、液晶層30中に重合性組成物を含む液晶表示パネル100aを用意する。TFT基板10及び対向基板20のそれぞれは、公知の種々の方法を用いて形成することができる。重合性組成物としては、PSA方式のポリマー構造物の形成に用いられる種々の材料(例えば特許文献4から7に開示されている材料)を用いることができる。
 次に、図7(b)に示すように、液晶表示パネル100aの液晶層30に所定の電圧が印加された状態で、液晶層30中の重合性組成物を重合することによって、ポリマー構造物32を形成する。典型的には、重合性組成物は、光重合性を有しており、重合は、液晶層30に光(具体的には紫外光)を照射することによって行われる。光の照射強度及び照射時間は、用いる重合性組成物に応じて適宜設定される。なお、重合性組成物が熱重合性を有している場合には、加熱によって重合を行ってもよい。
 本実施形態の製造方法では、PSA化工程において液晶層30への交流駆動が次のように行われる。まず、図8(a)及び(c)に示すように、走査配線14からTFTのゲート電極に+10Vのゲートオン電圧が印加されることによってTFTがオン状態とされる。このとき画素電極12には、信号配線15を介して0V(GND)の電位が与えられている。このような状態で、図8(b)及び(d)に示すように、対向電極22の電位を+4V及び-4Vに周期的に振動させることにより、液晶層30に印加される電圧を+4V及び-4Vに極性反転させる交流駆動が行なわれる。このとき、補助容量配線16の電位も対向電極22の電位に応じて振動する。
 このようにして、図2に示したポリマー構造物32を含む液晶表示パネル100aが得られる。本発明による液晶表示装置は、上述したように、走査配線14及び信号配線15の少なくとも一方が屈曲部15bを有しており、画素110の周辺に、走査配線14または信号配線15の延長線上に配線が存在しない間隙15cが形成されている。
 また、図10(c)に示した交流駆動を行なった場合、補助容量配線電位と対向電極電位との間に差が生じるため、間隙15cに基板鉛直方向の電位差が発生し、その位置の液晶分子31が傾斜配向してしまう。しかし、図8に示した交流駆動を行なうことにより、間隙15cの位置の上下基板間に同一の電位を与えることができる。すなわち、間隙15cの上部の液晶層30には0Vが印加されることとなり、間隙15cの上の液晶分子31を基板面に垂直に固定することができる。
 したがって、本発明によれば、PSA化工程においてポリマー構造物32を形成する際に、間隙15cの上の液晶分子31が基板面にほぼ垂直に維持され、その液晶分子31を中心あるいは境界として、線状部15a上の液晶分子31の傾斜配向をすばやく安定的に規制することが可能となる。また、このとき、間隙15cの両側の2つの線状部15a上の液晶分子31は、間隙15cの上の液晶分子31を境界として、傾斜方向が互いに対称となるように傾斜配向し、配線上の液晶分子31が配線の延びる方向に沿って一方向のみに配向することが防止される。これにより、図12(b)及び(c)に示したような配線付近の液晶分子の配向乱れが減少し、図12(a)及び図6に示した理想的な配向を実現する規制力がポリマー構造物32に与えられる。
 液晶表示装置100は、このようにして形成されたポリマー構造物32を有するため、表示時に、画素内のポリマー構造物32の配向規制力(または配向維持力)によって、電圧無印加時におけるポリマー構造物32付近の液晶分子31を、画素中央に向けて配向(プレチルト)させることができる。したがって電圧印加時における画素内の液晶分子31を、放射状により均一に傾斜配向させることが可能となる。これにより、表示時における配向乱れが減少し、画素間の配向状態のばらつきが低減するため、表示におけるざらつき発生が防止される。
 また、表示時に電圧が印加された場合、屈曲部15bによって形成された間隙15c自体の配向境界形成力によって画素境界の液晶分子31を、すばやく対称性を持つように配向させることができる。これにより、画素内部の液晶分子31が、より短時間で安定的に放射状配向する。
 なお、屈曲部15bを、画素の透過率に影響を及ぼさない補助容量配線16の上に配置することにより、屈曲部15bを設けることに伴う透過率の低下を防止するというメリットも得られる。また、屈曲部15bは、そのほとんどの部分が画素電極12の下に形成されるため、画素電極12のシールド効果によって、屈曲部15bが液晶分子31に与える不必要な電圧印加作用が防止される。
 図9(a)は、信号配線15に屈曲部15bが形成されていない参考例の液晶表示装置において液晶分子を傾斜配向させたときの顕微鏡写真を、図9(b)は、本実施形態の液晶表示装置100において液晶分子を傾斜配向させたときの顕微鏡写真を、それぞれ表している。なお、両液晶表示装置とも、2枚の偏光板はクロスニコル状態(偏光軸が互いに直交する状態)に配置されている。この配置では、液晶分子が基板に対して垂直に配向している領域や、液晶分子が偏光板の偏光軸に平行または直交する方位に配向している領域は、黒く観察される。これに対し、液晶分子が偏光軸に対して傾斜した方位に配向している領域は、明るく観察され、液晶分子が偏光軸に対して45°の角をなす方位に配向している領域は最も明るく観察される。
 参考例の液晶表示装置では、図9(a)に示すように、一部の液晶ドメイン(図中の実線で囲まれた部分)と、他の液晶ドメインとで、明るい領域の分布が異なっている。これは、画素毎の液晶配向状態にばらつきが発生していることを示している。これに対し、本実施形態の液晶表示装置100では、図9(b)に示すように、複数の液晶ドメインにおいて明るい領域がほぼ同じように分布している。これは、画素毎の液晶配向状態がほぼ均一であることを示している。このように、本実施形態の液晶表示装置によれば、液晶分子のより理想的な配向が安定して実現されるので、表示のざらつき発生が防止された高品質の表示が提供される。
 本実施形態による液晶表示装置100は、上述した形態の配線構造を備えているので、ポリマー構造物32により理想的な放射配向状態を記憶させることが可能となる。特に、図9(a)に示した例では、例えば赤の画素(上段の実線で囲まれた画素)における左側の暗線や、青のサブ画素(下段の実線で囲まれた画素)における右側の暗線のように、液晶分子の異常配向に起因して現れる、下方向に湾曲している暗線(黒線)が見られた。これに対し、本実施形態による表示状態を示した図9(b)では、配線に屈曲部15bおよび間隙15cを設けることにより、液晶分子の配向が安定する。よって、図9(a)に示されたような配向乱れが現われず、各画素における左右の暗線は均一に左右方向に安定して延びている。このように、本実施形態によれば、表示時に液晶分子のより理想的な放射配向が実現され、表示のざらつきが低減される。
 本実施形態にはCPAモードの液晶表示装置100を用いたが、本発明はこれに限定されるものではない。本発明は、垂直配向型の液晶層を備え、液晶層に電圧が印加されたときに液晶分子の傾斜する方位が互いに異なる複数の領域が形成される(つまり配向分割型の)液晶表示装置に広く用いることができ、例えばMVAモードの液晶表示装置にも好適に用いられる。
 また、本実施形態は配向維持層であるポリマー構造物32を有する液晶表示装置100であったが、液晶表示装置100からポリマー構造物32を除いた、配向制御層を有さない液晶表示装置も本願発明による実施形態に含まれる。このような実施形態であっても、表示時に間隙15c上の液晶分子31を基点として、配線上の液晶分子31を安定的に配向させ、さらに画素内の液晶分子31を画素中心方向に向けてより理想的に放射配向させることができる。
 本発明による液晶表示装置は、携帯電話、PDA、ノートPC、モニタ及びテレビジョン受像機などの小型から大型までの液晶表示装置として好適に用いられる。
 10  TFT基板
 11  透明基板
 12  画素電極
 13  TFT
 14  走査配線
 15  信号配線
 15a  線状部
 15b  屈曲部
 15c  間隙
 16  補助容量配線
 17  補助容量電極
 18  絶縁層
 19  補助容量対向電極
 20  対向基板
 21  透明基板
 22  対向電極
 23  突起(凸部)
 30  液晶層
 31  液晶分子
 32  ポリマー構造物(配向制御層)
 33  垂直配向膜
 100a  液晶表示パネル
 100  液晶表示装置
 110  画素

Claims (15)

  1.  第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、
     前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、
     前記画素電極に対向する対向電極を有する対向基板と、
     前記TFT基板と前記対向基板との間に配置された液晶層と、
     前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成された、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備え、
     前記信号配線及び前記走査配線の少なくとも一方が、隣り合う2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記2つの線状部の延長線上から逸れて延びる屈曲部と、を有する、液晶表示装置。
  2.  前記TFT基板が前記第2方向に延びる補助容量配線を備え、
     前記信号配線が前記2つの線状部と前記屈曲部とを有し、
     基板鉛直方向から見た場合、前記屈曲部が前記補助容量配線と重なる位置に形成されている、請求項1に記載の液晶表示装置。
  3.  基板鉛直方向から見た場合、前記屈曲部の少なくとも一部が前記画素電極と重なる位置に形成されている、請求項1または2に記載の液晶表示装置。
  4.  前記2つの線状部の間の前記2つの線状部の延長線上には、前記信号配線及び前記走査配線が形成されていない、請求項1から3のいずれかに記載の液晶表示装置。
  5.  前記屈曲部が、画素の一辺の中央に位置する、請求項1から4のいずれかに記載の液晶表示装置。
  6.  前記屈曲部によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた時、液晶分子の配向方向が基板面に対して略垂直に維持される領域が形成される、請求項1から5のいずれかに記載の液晶表示装置。
  7.  前記屈曲部によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った液晶配向の境界が形成される、請求項1から5のいずれかに記載の液晶表示装置。
  8.  前記配向膜の前記液晶層側に形成され、前記液晶分子の基板面に対する配向方向を規定する配向維持層を備えた、請求項1から7のいずれかに記載の液晶表示装置。
  9.  前記配向維持層が、前記液晶層に含まれる重合性組成物を重合することによって形成されたポリマー構造物からなる、請求項8に記載の液晶表示装置。
  10.  第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、
     前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、
     前記画素電極に対向する対向電極を有する対向基板と、
     前記TFT基板と前記対向基板との間に配置された液晶層と、
     前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成され、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備え、
     隣り合う2つの画素の境界上に、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、液晶分子の配向方向が基板面に対して略垂直に維持される領域が形成されている、液晶表示装置。
  11.  前記領域において略垂直に維持された液晶分子によって、前記信号配線又は前記走査配線と前記対向電極との間に電位差が生じた場合に、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った方向における液晶配向の境界が形成される、請求項10に記載の液晶表示装置。
  12.  前記信号配線及び前記走査配線の少なくとも一方が、前記2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記領域を迂回して延びる屈曲部とを有する、請求項10または11に記載の液晶表示装置。
  13.  第1方向及び前記第1方向とは異なる第2方向に沿ってマトリクス状に配置された複数の画素を有し、
     前記複数の画素のそれぞれに対応して配置された薄膜トランジスタ及び画素電極と、概ね前記第1方向に延び、前記薄膜トランジスタに表示信号を供給する信号配線と、概ね前記第2方向に延び、前記薄膜トランジスタにゲート信号を供給する走査配線とを有するTFT基板と、
     前記画素電極に対向する対向電極を有する対向基板と、
     前記TFT基板と前記対向基板との間に配置された液晶層と、
     前記TFT基板及び前記対向基板の少なくとも一方の前記液晶層側の面に形成され、前記液晶層に含まれる液晶分子を基板面に略垂直に配向させるための配向膜と、を備えた液晶表示装置の製造方法であって、
     重合性組成物を含む前記液晶層が前記TFT基板と前記対向基板との間に配置された液晶表示パネルを用意する工程と、
     前記液晶層に電圧が印加された状態で、前記液晶層の中の重合性組成物を重合することによって、前記配向膜の前記液晶層側に配向維持層を形成する重合工程と、を含み、
     前記重合工程において、隣り合う2つの画素の境界上に、液晶分子の配向方向が基板面に対して略垂直に維持される領域が存在している製造方法。
  14.  前記重合工程において、前記領域において略垂直に維持された液晶分子によって、前記2つの画素の境界上に、前記信号配線又は前記走査配線に沿った方向における液晶配向の配向境界が形成される、請求項13に記載の製造方法。
  15.  前記信号配線及び前記走査配線の少なくとも一方に、前記2つの画素の境界において前記第1方向または前記第2方向に直線状に延びる2つの線状部と、前記2つの線状部の間に配置され、前記領域を迂回して延びる屈曲部とが形成されている、請求項13または14に記載の製造方法。
PCT/JP2009/005952 2008-11-11 2009-11-09 液晶表示装置及び液晶表示装置の製造方法 WO2010055633A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/128,514 US20110216262A1 (en) 2008-11-11 2009-11-09 Liquid crystal display device and method for manufacturing liquid crystal display device
EP09825887A EP2348355A4 (en) 2008-11-11 2009-11-09 LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE
JP2010537682A JPWO2010055633A1 (ja) 2008-11-11 2009-11-09 液晶表示装置及び液晶表示装置の製造方法
CN2009801450421A CN102209931A (zh) 2008-11-11 2009-11-09 液晶显示装置和液晶显示装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289152 2008-11-11
JP2008289152 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055633A1 true WO2010055633A1 (ja) 2010-05-20

Family

ID=42169779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005952 WO2010055633A1 (ja) 2008-11-11 2009-11-09 液晶表示装置及び液晶表示装置の製造方法

Country Status (5)

Country Link
US (1) US20110216262A1 (ja)
EP (1) EP2348355A4 (ja)
JP (1) JPWO2010055633A1 (ja)
CN (1) CN102209931A (ja)
WO (1) WO2010055633A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790799B (zh) * 2021-11-01 2023-01-21 友達光電股份有限公司 顯示裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202351591U (zh) * 2011-12-01 2012-07-25 京东方科技集团股份有限公司 一种阵列基板及液晶显示器
KR102401621B1 (ko) * 2015-07-23 2022-05-25 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
WO2018066459A1 (ja) * 2016-10-04 2018-04-12 Jsr株式会社 液晶装置及びその製造方法
CN107450240B (zh) * 2017-09-19 2020-06-16 惠科股份有限公司 阵列基板及其显示面板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242225A (ja) 1997-06-12 1999-09-07 Fujitsu Ltd 液晶表示装置
JP2002023199A (ja) 2000-07-07 2002-01-23 Fujitsu Ltd 液晶表示装置およびその製造方法
JP2002202511A (ja) 2000-10-31 2002-07-19 Sharp Corp 液晶表示装置
JP2003043525A (ja) 2000-08-11 2003-02-13 Sharp Corp 液晶表示装置
JP2003149647A (ja) 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2003177408A (ja) 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2003307720A (ja) 2002-04-16 2003-10-31 Fujitsu Ltd 液晶表示装置
JP2006133619A (ja) * 2004-11-08 2006-05-25 Sharp Corp 液晶表示装置及びその製造方法
JP2008145700A (ja) * 2006-12-08 2008-06-26 Sharp Corp 液晶表示装置およびその製造法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI299099B (en) * 2000-03-30 2008-07-21 Sharp Kk Active matrix type liquid crystal display apparatus
US6778229B2 (en) * 2001-10-02 2004-08-17 Fujitsu Display Technologies Corporation Liquid crystal display device and method of fabricating the same
KR101006436B1 (ko) * 2003-11-18 2011-01-06 삼성전자주식회사 표시 장치용 박막 트랜지스터 표시판
KR101300184B1 (ko) * 2006-08-03 2013-08-26 삼성디스플레이 주식회사 액정 표시 장치
CN101568877B (zh) * 2006-12-18 2011-05-11 夏普株式会社 液晶显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242225A (ja) 1997-06-12 1999-09-07 Fujitsu Ltd 液晶表示装置
JP2002023199A (ja) 2000-07-07 2002-01-23 Fujitsu Ltd 液晶表示装置およびその製造方法
JP2003043525A (ja) 2000-08-11 2003-02-13 Sharp Corp 液晶表示装置
JP2002202511A (ja) 2000-10-31 2002-07-19 Sharp Corp 液晶表示装置
JP2003149647A (ja) 2001-08-31 2003-05-21 Fujitsu Display Technologies Corp 液晶表示装置及びその製造方法
JP2003177408A (ja) 2001-10-02 2003-06-27 Fujitsu Display Technologies Corp 液晶表示装置およびその製造方法
JP2003307720A (ja) 2002-04-16 2003-10-31 Fujitsu Ltd 液晶表示装置
JP2006133619A (ja) * 2004-11-08 2006-05-25 Sharp Corp 液晶表示装置及びその製造方法
JP2008145700A (ja) * 2006-12-08 2008-06-26 Sharp Corp 液晶表示装置およびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2348355A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI790799B (zh) * 2021-11-01 2023-01-21 友達光電股份有限公司 顯示裝置

Also Published As

Publication number Publication date
CN102209931A (zh) 2011-10-05
US20110216262A1 (en) 2011-09-08
EP2348355A4 (en) 2012-05-30
EP2348355A1 (en) 2011-07-27
JPWO2010055633A1 (ja) 2012-04-12

Similar Documents

Publication Publication Date Title
US6573965B1 (en) Multi-domain wide viewing angle liquid crystal display having slits on electrodes and bumps above the slits
JP4628802B2 (ja) 液晶表示装置
US20090135361A1 (en) Systems for Displaying Images Involving Alignment Liquid Crystal Displays
US9575364B2 (en) Liquid crystal display
JP4460488B2 (ja) 液晶表示装置及びその製造方法
US20100157213A1 (en) Liquid crystal display device and electronic device using the same
WO2014017329A1 (ja) 液晶表示装置
KR20070007722A (ko) 멀티 도메인 수직 배향형 액정 디스플레이 장치
US20070013849A1 (en) Multi-domain vertical alignment liquid crystal display
JP5450792B2 (ja) 液晶表示装置
WO2010055633A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2018138888A1 (ja) 液晶表示装置
JP5210677B2 (ja) 液晶表示装置
WO2010016224A1 (ja) 液晶表示装置およびその製造方法
JP4662947B2 (ja) 液晶表示装置およびそれを備えた電子機器
WO2010007761A1 (ja) 液晶表示装置
JP4759884B2 (ja) 液晶表示装置
US20030011734A1 (en) Multi-domain liquid crystal display having bump structures with non-parallel boundaries
JP2009122254A (ja) 液晶表示装置の製造方法
JP2009122255A (ja) 液晶表示装置の製造方法
JP2010025988A (ja) 液晶表示装置の製造方法および液晶表示装置
JP4629160B2 (ja) 液晶表示装置
KR20000073288A (ko) 액정표시소자
US8842244B2 (en) Character type vertical alignment mode liquid crystal display device comprising wall layers with a shape along a periphery of one of display patterns formed by superposing segment and common electrodes
KR100768195B1 (ko) Ocb 액정표시패널

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145042.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010537682

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13128514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009825887

Country of ref document: EP