WO2010055588A1 - Variable valve device for internal combustion engine - Google Patents

Variable valve device for internal combustion engine Download PDF

Info

Publication number
WO2010055588A1
WO2010055588A1 PCT/JP2008/070873 JP2008070873W WO2010055588A1 WO 2010055588 A1 WO2010055588 A1 WO 2010055588A1 JP 2008070873 W JP2008070873 W JP 2008070873W WO 2010055588 A1 WO2010055588 A1 WO 2010055588A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
internal combustion
combustion engine
pin
switching
Prior art date
Application number
PCT/JP2008/070873
Other languages
French (fr)
Japanese (ja)
Inventor
昭夫 木戸岡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/070873 priority Critical patent/WO2010055588A1/en
Publication of WO2010055588A1 publication Critical patent/WO2010055588A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers

Definitions

  • This invention relates to a variable valve operating apparatus for an internal combustion engine.
  • Patent Document 1 discloses an internal combustion engine having a variable valve mechanism that can change the operation state of a valve between a valve operation state and a valve stop state.
  • the intake valve and the exhaust valve are kept closed when fuel cut is executed during deceleration. According to such control of the intake / exhaust valve, deterioration of the catalyst can be suppressed by preventing air having a high oxygen concentration from being supplied to the high-temperature catalyst.
  • the intake / exhaust valve is maintained in the closed state. Further, when cranking is performed at the time of starting the internal combustion engine, there is a period in which fuel is not supplied. Therefore, in the conventional internal combustion engine, the cranking is performed under a high catalyst temperature in order to suppress deterioration of the catalyst. When ranking is executed, the exhaust valve is maintained in a closed state.
  • variable valve operating apparatus having a configuration in which a valve stop state is formed by energizing an electrically driven actuator such as a solenoid and a valve operation state is formed by deenergizing the actuator.
  • a valve stop state is formed by energizing an electrically driven actuator such as a solenoid
  • a valve operation state is formed by deenergizing the actuator.
  • the present invention has been made to solve the above-described problems.
  • a variable valve operating apparatus for an internal combustion engine that can change the operation state of a valve between a valve operation state and a valve stop state
  • the catalyst temperature is It is an object of the present invention to provide a variable valve operating apparatus for an internal combustion engine that can reliably suppress the deterioration of the catalyst when the internal combustion engine is started under high conditions.
  • a first invention is a variable valve operating apparatus for an internal combustion engine, A catalyst disposed in an exhaust passage of the internal combustion engine and capable of purifying exhaust gas; It is arranged between the cam and the valve, and has a plurality of transmission members for transmitting the acting force of the cam to the valve, and the operation state of the valve is controlled by connecting / separating the plurality of transmission members to each other.
  • a variable mechanism that changes between a valve operating state and a valve stopped state;
  • a variable valve operating apparatus for an internal combustion engine comprising: switching means for switching connection / separation of the plurality of transmission members;
  • the switching means is A switching pin that is attached to the variable mechanism so as to freely advance and retract, and is configured to connect or separate the plurality of transmission members;
  • An electrically driven actuator that operates directly or indirectly to actuate the switching pin;
  • the switching means is configured to connect the plurality of transmission members when the actuator is not energized, and to separate the plurality of transmission members when the actuator is energized,
  • the variable valve apparatus completes the stop operation while the actuator is energized, and It further includes a stop-time energization control means for continuing energization of the actuator over a predetermined time from the completion time point.
  • the second invention is the first invention, wherein
  • the predetermined time is a time from when the stop operation is completed until the temperature of the catalyst reaches a lower limit temperature for fear of deterioration.
  • the third invention is the first or second invention, wherein
  • the switching means is Urging means for urging the switching pin in its advance direction;
  • a displacement member that is displaceable in conjunction with the forward / backward movement of the switching pin and that receives an urging force generated by the urging means via the switching pin;
  • a helical groove formed on the outer peripheral surface of the rotating body that rotates in conjunction with the cam and guides the displacement of the displacement member;
  • the actuator includes an abutting portion that can abut against the displacement member, and the abutting portion is brought into contact with the displacement member to insert the protruding portion into the spiral groove.
  • variable valve device of the present invention is applied as a valve device for driving at least one of the intake valve and the exhaust valve, so that the internal combustion engine is operated in a situation where the catalyst temperature is equal to or higher than a predetermined temperature. Even when the engine is started, cranking is performed with at least one of the intake valve and the exhaust valve stopped. It is possible to avoid outflow of fresh air having a high oxygen concentration when the internal combustion engine is started with respect to the high-temperature catalyst. For this reason, it is possible to reliably avoid the deterioration of the catalyst when the internal combustion engine is started under a condition where the catalyst temperature is high.
  • the end of the period during which the actuator is energized while the internal combustion engine is stopped is set to the time when the catalyst temperature reaches the deterioration concern lower limit temperature. Can be reliably avoided.
  • the actuator when the actuator is energized, the projecting portion is inserted into the spiral groove, so that the switching pin is brought into the valve stop state by the displacement member guided by the spiral groove.
  • the variable valve operating apparatus configured to operate, it is possible to reliably avoid the deterioration of the catalyst when the internal combustion engine is started under a condition where the catalyst temperature is high.
  • FIG. 1 is a diagram schematically showing an overall configuration of an intake variable valve operating apparatus for an internal combustion engine according to Embodiment 1 of the present invention.
  • FIG. 2 It is the figure which looked down at the variable mechanism shown in FIG. 2 from the base end part side of the valve
  • FIG. 1 is a diagram for explaining a configuration of an internal combustion engine 10 according to a first embodiment of the present invention.
  • the system of this embodiment includes an internal combustion engine 10.
  • the internal combustion engine 10 is an in-line four-cylinder engine.
  • a piston 12 is provided in the cylinder of the internal combustion engine 10.
  • a combustion chamber 14 is formed in the cylinder of the internal combustion engine 10 on the top side of the piston 12.
  • An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
  • an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided.
  • a throttle valve 22 is provided downstream of the air flow meter 20.
  • the throttle valve 22 is an electronically controlled throttle valve that can control the throttle opening independently of the accelerator opening.
  • a fuel injection valve 24 for injecting fuel into the intake port of the internal combustion engine 10 is disposed downstream of the throttle valve 22.
  • An ignition plug 26 is attached to the cylinder head provided in the internal combustion engine 10 so as to protrude from the top of the combustion chamber 14 into the combustion chamber 14.
  • the intake port and the exhaust port are respectively provided with an intake valve 28 and an exhaust valve 30 for bringing the combustion chamber 14 and the intake passage 16 or the combustion chamber 14 and the exhaust passage 18 into a conduction state or a cutoff state.
  • the intake valve 28 and the exhaust valve 30 are driven by an intake variable valve operating device 32 and an exhaust variable valve operating device 34, respectively.
  • the detailed configuration of these variable valve gears 32 and 34 will be described later with reference to FIGS.
  • a catalyst 36 for purifying the exhaust gas is disposed in the exhaust passage 18.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40.
  • the input of the ECU 40 includes the above-described various sensors, a crank angle sensor 42 that detects the engine speed, a coolant temperature sensor 44 that detects the engine coolant temperature, and an oil temperature sensor that detects the engine oil temperature. 46, an outside air temperature sensor 48 for detecting the outside air temperature, and an ignition switch (IG switch) 50 of the vehicle are connected.
  • the various actuators described above are connected to the output of the ECU 40.
  • the ECU 40 can control the operating state of the internal combustion engine 10 based on the sensor outputs.
  • FIG. 2 is a diagram schematically showing an overall configuration of the intake variable valve operating apparatus 32 of the internal combustion engine 10 according to the first embodiment of the present invention.
  • the intake variable valve operating device 32 will be described as an example, but the exhaust variable valve operating device 34 is also configured in the same manner as the intake variable valve operating device 32.
  • the internal combustion engine 10 of the present embodiment is an in-line four-cylinder engine having four cylinders (# 1 to # 4) and performing an explosion stroke in the order of # 1, # 3, # 4, and # 2. It shall be.
  • the variable valve device 32 of the present embodiment includes a cam shaft 52.
  • the camshaft 52 is connected to a crankshaft (not shown) by a timing chain or a timing belt, and is configured to rotate at a half speed of the crankshaft.
  • the camshaft 52 is formed with one main cam 54 and two sub cams 56 per cylinder.
  • the main cam 54 is disposed between the two sub cams 56.
  • the main cam 54 has an arcuate base circle 54a (see FIG. 4) coaxial with the camshaft 52, and a nose 54b (see FIG. 4) formed so as to bulge a part of the base circle radially outward. 4).
  • the sub cam 56 is comprised as a cam (zero lift cam) which has only a base circle part (refer FIG. 5).
  • a variable mechanism 60 is interposed between the cams 54 and 56 of each cylinder and the intake valve 28 (hereinafter simply referred to as “valve 28”). That is, the acting force of the cams 54 and 56 is transmitted to the two valves 28 via the variable mechanism 60.
  • the valve 28 is opened and closed using the acting force of the cams 54 and 56 and the urging force of the valve spring 62.
  • the state shown in FIG. 2 represents a state in which the valve 28 of the # 1 cylinder is opened by receiving the acting force of the main cam 54.
  • the variable mechanism 60 is a mechanism that changes the valve opening characteristic of the valve 28 by switching between a state in which the acting force of the main cam 54 is transmitted to the valve 28 and a state in which the acting force of the sub cam 56 is transmitted to the valve 28. .
  • the state in which the acting force of the sub cam 56 is transmitted to the valve 28 means a state in which the valve 28 does not open or close (valve inactive state).
  • variable valve operating apparatus 32 of this embodiment is provided with the switching mechanism 64 for driving each variable mechanism 60, and switching the operation state of the valve 28 between a valve operating state and a valve stop state for every cylinder. ing.
  • the switching mechanism 64 is driven according to the drive signal from the ECU 40 described above.
  • the ECU 40 controls the switching mechanism 64 based on an output signal from the crank angle sensor 42 or the like.
  • FIG. 3 is a view of the variable mechanism 60 shown in FIG. 2 as viewed from the base end side of the valve 28.
  • the variable mechanism 60 includes a rocker shaft 70 disposed in parallel with the camshaft 52.
  • a first rocker arm 72 and a pair of second rocker arms 74 ⁇ / b> R and 74 ⁇ / b> L are rotatably attached to the rocker shaft 70.
  • the first rocker arm 72 is disposed between the two second rocker arms 74R and 74L.
  • the left and right second rocker arms 74R and 74L may be simply referred to as the second rocker arm 74.
  • FIG. 4 is a view of the first rocker arm 72 viewed from the axial direction of the rocker shaft 70 (the direction of arrow A in FIG. 3), and FIG. 5 shows the second rocker arm 74 in the same manner as FIG. It is the figure seen from 70 axial directions (direction of arrow A).
  • a first roller 76 is rotatably attached to an end of the first rocker arm 72 opposite to the rocker shaft 70 at a position where it can contact the main cam 54.
  • the first rocker arm 72 is urged by a coil spring 78 attached to the rocker shaft 70 so that the first roller 76 is always in contact with the main cam 54.
  • the first rocker arm 72 configured as described above swings about the rocker shaft 70 as a fulcrum by the cooperation of the acting force of the main cam 54 and the biasing force of the coil spring 78.
  • the base end portion of the valve 28 (specifically, the base end portion of the valve stem) is in contact with the end portion of the second rocker arm 74 opposite to the rocker shaft 70.
  • a second roller 80 is rotatably attached to the central portion of the second rocker arm 74.
  • the outer diameter of the second roller 80 is the same as the outer diameter of the first roller 76.
  • the rocker shaft 70 is supported by a cam carrier (or a cylinder head or the like) that is a stationary member of the internal combustion engine 10 via a lash adjuster 82. Therefore, the second rocker arm 74 is biased toward the sub cam 56 by receiving a pushing force from the lash adjuster 82.
  • the position of the second roller 80 relative to the first roller 76 is such that the first roller 76 contacts the base circle 54a of the main cam 54 (see FIG. 4), and the second roller 80 is the base of the sub cam 56.
  • the shaft center of the second roller 80 and the shaft center of the first roller 76 are determined so as to be positioned on the same straight line L as shown in FIG. ing.
  • the switching mechanism 64 is a mechanism for switching the connection / separation between the first rocker arm 72 and the second rocker arm 74, whereby the operating force of the main cam 54 is transmitted to the second rocker arm 74. By switching the state where the acting force is not transmitted to the second rocker arm 74, the operation state of the valve 28 can be switched between the valve operation state and the valve stop state.
  • FIG. 6 is a diagram for explaining a detailed configuration of the switching mechanism 64 shown in FIG.
  • the variable mechanism 60 is represented using a cross section cut at the axial center position of the rollers 76 and 80. Further, for easy understanding, the mounting position of the camshaft 52 relative to the mounting position of the variable mechanism 60 is expressed in a state different from the actual mounting position except for the axial position of the camshaft 52.
  • a first pin hole 86 is formed inside the first support shaft 84 of the first roller so as to penetrate in the axial direction.
  • One rocker arm 72 is open on both side surfaces.
  • a cylindrical first switching pin 88 is slidably inserted into the first pin hole 86.
  • the outer diameter of the first switching pin 88 is substantially equal to the inner diameter of the first pin hole 86, and the axial length of the first switching pin 88 is substantially equal to the length of the first pin hole 86.
  • the end on the opposite side to the first rocker arm 72 is closed inside the second support shaft 90L of the second roller 80 on the second rocker arm 74L side, and the end on the first rocker arm 72 side is closed.
  • a second pin hole 92L having an opening is formed.
  • a second pin hole 92R is formed in the second support shaft 90R of the second roller 80 on the second rocker arm 74R side so as to penetrate in the axial direction, and both ends of the second pin hole 92R are formed.
  • the inner diameters of the second pin holes 92R and 92L are equal to the inner diameter of the first pin hole 86.
  • a cylindrical second switching pin 94L is slidably inserted into the second pin hole 92L.
  • a return spring 96 that urges the second switching pin 94L toward the first rocker arm 72 (hereinafter referred to as “the advancement direction of the switching pin”) is disposed inside the second pin hole 92L. Yes.
  • the outer diameter of the second switching pin 94L is substantially equal to the inner diameter of the second pin hole 92L.
  • the axial length of the second switching pin 94L is shorter than the second pin hole 92L, and the second switching pin 94L is pushed in the second pin hole 92L and the second switching pin 94L is pushed in the second switching hole 94L.
  • the tip of the pin 94L is adjusted so as to slightly protrude from the side surface of the second rocker arm 74L. Further, it is assumed that the return spring 96 is configured to constantly bias the second switching pin 94L toward the first rocker arm 72 in the mounted state.
  • a cylindrical second switching pin 94R is slidably inserted into the second pin hole 92R.
  • the outer diameter of the second switching pin 94R is substantially equal to the inner diameter of the second pin hole 92R, and the axial length of the second switching pin 94R is substantially equal to the length of the second pin hole 92R.
  • the relative positions of the three pin holes 86, 92L, and 92R described above are such that the first roller 76 contacts the base circular portion 54a of the main cam 54 (see FIG. 4), and the second roller 80 contacts the sub cam 56. It is determined that the axial centers of the three pin holes 86, 92L, and 92R are located on the same straight line when in contact with the base circle (see FIG. 5).
  • FIG. 7 is a view of the switching mechanism 64 as viewed from the axial direction of the camshaft 52 (the direction of arrow B in FIG. 6).
  • the switching mechanism 64 includes a slide pin 98 for displacing the switching pins 88, 94L, 94R toward the second rocker arm 74L (in the retracting direction of the switching pin) using the rotational force of the cam. . As shown in FIG.
  • the slide pin 98 includes a cylindrical portion 98 a having an end surface that comes into contact with the end surface of the second switching pin 94 ⁇ / b> R.
  • the cylindrical portion 98a is supported by a support member 100 fixed to the cam carrier so as to be movable back and forth in the axial direction and rotatable in the circumferential direction.
  • the tip of the second switching pin 94L is pressed against one end of the first switching pin 88 by the urging force (reaction force) of the return spring 96. Accordingly, the other end of the first switching pin 88 is pressed against one end of the second switching pin 94R in a situation where the axial centers of the three pin holes 86, 92L, 92R are located on the same straight line. become. Further, the other end of the second switching pin 94R is pressed against the end surface of the cylindrical portion 98a of the slide pin 98. As described above, the biasing force of the return spring 96 acts on the slide pin 98 under the specific condition.
  • a rod-like arm portion 98b is provided at an end portion of the cylindrical portion 98a opposite to the second switching pin 94R so as to protrude outward in the radial direction of the cylindrical portion 98a. That is, the arm portion 98b is configured to be rotatable about the axis of the cylindrical portion 98a. As shown in FIG. 7, the distal end portion of the arm portion 98 b is configured to extend to a position facing the peripheral surface of the camshaft 52. Further, a projecting portion 98 c is provided at the distal end portion of the arm portion 98 b so as to protrude toward the peripheral surface of the camshaft 52.
  • a large-diameter portion 102 having an outer diameter larger than that of the camshaft 52 is formed on the outer peripheral surface of the camshaft 52 facing the protruding portion 98c.
  • a spiral groove 104 extending in the circumferential direction is formed on the circumferential surface of the large diameter portion 102. The width of the spiral groove 104 is slightly larger than the outer diameter of the protrusion 98c.
  • the switching mechanism 64 includes an actuator 106 for inserting the protrusion 98 c into the spiral groove 104. More specifically, the actuator 106 includes a solenoid 108 that is duty-controlled based on a command from the ECU 40, and a lock pin 110 that comes into contact with the drive shaft 108 a of the solenoid 108.
  • the lock pin 110 is formed in a cylindrical shape.
  • a spring 112 that generates a biasing force against the thrust of the solenoid 108 is hooked on the lock pin 110, and the other end of the spring 112 is attached to a support member 114 fixed to a cam carrier that is a stationary member. It is hung.
  • the thrust of the solenoid 108 can overcome the urging force of the spring 112, so that the lock pin 110 can be advanced.
  • the lock pin 110 and the drive shaft 108a can be quickly retracted to a predetermined position by the urging force of the spring 112. Further, the movement of the lock pin 110 in the radial direction is restricted by the support member 114. For this reason, even if the lock pin 110 receives a force from its radial direction, the lock pin 110 can be prevented from moving in that direction.
  • the solenoid 108 is capable of pressing the pressing surface 98d (the surface opposite to the surface provided with the protruding portion 98c) 98d of the lock pin 110 toward the spiral groove 104 with respect to the tip portion of the arm portion 98b of the slide pin 98. In position, it shall be fixed to stationary members, such as a cam carrier. In other words, the pressing surface 98d is provided in a shape and a position such that the protrusion 98c can be pressed toward the spiral groove 104 by the lock pin 110.
  • the arm portion 98b of the slide pin 98 is set to be rotatable around the axis of the cylindrical portion 98a within a range constrained by the large diameter portion 102 and the stopper 116 on the camshaft 52 side.
  • the lock pin 110 driven by the solenoid 108 is pressed against the pressing surface 98d of the arm portion 98b.
  • the positional relationship of each component is set so that it can be surely contacted.
  • a spring 118 is attached to the arm portion 98b to urge the arm portion 98b toward the stopper 116. Note that such a spring 118 is not necessarily provided when the arm portion 98b is not expected to be fitted into the spiral groove 104 due to the weight of the slide pin 98 when the solenoid 108 is not driven.
  • the direction of the spiral in the spiral groove 104 of the camshaft 52 is such that the slide pin 98 is a return spring when the camshaft 52 rotates in a predetermined rotational direction shown in FIG. 7 with the protrusion 98c inserted therein.
  • the switching pins 88, 94L, 94R are set so as to be displaced in a direction approaching the rocker arms 72, 74 by pushing the switching pins 88, 94L, 94R against the biasing force of 96.
  • the second switching pin 94L is inserted into both the second pin hole 92L and the first pin hole 86, and the first switching pin 88 is in the first pin hole 86.
  • the position of the slide pin 98 when inserted into both the second pin hole 92R and the second pin hole 92R is referred to as “displacement end Pmax1”.
  • the slide pin 98 is positioned at the displacement end Pmax1, the first rocker arm 72 and the second rocker arms 74R and 74L are all connected.
  • the position of the base end 104a of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax1. Yes.
  • the position of the terminal end 104b of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax2. That is, in the present embodiment, the slide pin 98 is configured to be displaceable between the displacement ends Pmax1 and Pmax2 within the range in which the protrusion 98c is guided by the spiral groove 104.
  • the spiral groove 104 of the present embodiment has a spiral section with the rotation of the camshaft 52 as a predetermined section on the terminal end 104 b side after the slide pin 98 reaches the displacement end Pmax 2.
  • a shallow groove portion 104c in which the groove 104 gradually becomes shallow is provided.
  • channel 104 is constant.
  • the arm portion 98b of the present embodiment is provided with a notch portion 98e formed in a concave shape by notching a part of the pressing surface 98d.
  • the pressing surface 98d is provided so that the state in contact with the lock pin 110 is maintained while the slide pin 98 is displaced from the displacement end Pmax1 to Pmax2.
  • the notch 98e is formed with the lock pin 110 when the projecting portion 98c is taken out to the surface of the large diameter portion 102 by the action of the shallow groove portion 104c in a state where the slide pin 98 is located at the displacement end Pmax2. It is provided in the part which can be engaged.
  • the notch 98e can restrict the rotation of the arm 98b in the direction in which the projection 98c is inserted into the spiral groove 104, and restricts the slide pin 98 from moving in the advance direction of the switching pin. In a possible manner, it is configured to engage the lock pin 110. More specifically, the notch portion 98e is provided with a guide surface 98f that guides the slide pin 98 away from the large diameter portion 102 as the lock pin 110 enters the notch portion 98e.
  • FIG. 8 is a diagram illustrating a control state when the valve is operating (during a normal lift operation).
  • the drive of the solenoid 108 is turned OFF, so that the slide pin 98 is separated from the cam shaft 52 and the urging force of the return spring 96 is applied. Therefore, it is located at the displacement end Pmax1.
  • the first rocker arm 72 and the two second rocker arms 74 are connected via the switching pins 88 and 94L.
  • FIG. 9 is a diagram illustrating a control state at the start of the valve stop operation.
  • the valve stop operation is performed, for example, when a request for executing a predetermined valve stop operation such as a fuel cut request of the internal combustion engine 10 is detected by the ECU 40.
  • a valve stop operation is an operation of displacing the switching pins 88, 94L, 94R in the retracting direction by the slide pin 98 using the rotational force of the camshaft 52, and therefore, the switching pins 88, 94L, 94R. Need to be performed when the shaft centers of the first rocker arm 72 are not oscillating.
  • the spiral groove 104 is set so that the section in which the slide pin 98 slides in the retreat direction of the switching pin corresponds to the base circle section of the main cam 54. For this reason, when the ECU 40 detects the execution request for the predetermined valve stop operation, the solenoid 108 is driven in order from the cylinder in which the base circle section first arrives, thereby, as shown in FIG. 98c is inserted into the spiral groove 104, and the valve stop operation of each cylinder starts in sequence. Then, the protrusion 98c inserted into the spiral groove 104 is guided by the spiral groove 104, so that the rotational end of the camshaft 52 is utilized as shown in FIG. The slide operation of the slide pin 98 starts toward the side.
  • FIG. 10 is a diagram illustrating a control state when the slide operation is completed.
  • the projecting portion 98c comes into contact with the side surface of the spiral groove 104, and the slide pin 98 moves toward the displacement end Pmax2 while the urging force of the return spring 96 is received.
  • FIG. 10A shows the timing when the slide pin 98 reaches the displacement end Pmax2 and the slide operation at the time of the valve stop request is completed, that is, the first switching pin 88 and the second switching pin 94L are respectively in the first pin hole 86.
  • the timing when the connection between the first rocker arm 72 and the second rocker arms 74R and 74L is released by being within the second pin hole 92L is shown.
  • FIG. 10B the position of the protrusion 98c in the spiral groove 104 has not yet reached the shallow groove 104c.
  • FIG. 11 and 12 are diagrams showing a control state during a holding operation in which the slide pin 98 is held by the lock pin 110.
  • FIG. 11 shows a state in which the first rocker arm 72 is not performing a swinging operation (lifting operation)
  • FIG. 12 shows a state in which the first rocker arm 72 is swinging ( The state when the lift operation is being performed is shown.
  • the lock pin 110 comes into engagement with the notch 98e.
  • the slide pin 98 has the protruding portion 98c separated from the camshaft 52 and the urging force of the return spring 96 by the lock pin 110. It will be held in a state of receiving. Therefore, during this holding operation, as shown in FIGS. 11A and 12A, the state where the first rocker arm 72 and the second rocker arm 74 are separated, that is, the valve stop state is maintained. Will come to be.
  • Valve return operation The valve return operation for returning to the valve operation state in which the normal lift operation is performed from the valve stop state is performed, for example, when a request for executing a predetermined valve return operation such as a return request from a fuel cut is detected by the ECU 40. Is called.
  • a valve return operation is performed in the control state shown in FIGS. 11 and 12 by a predetermined time required for the operation of the solenoid 108 from the predetermined timing (start timing of the base circle section in which the switching pin 88 and the like are movable). As soon as possible, turning off the energization of the solenoid 108 is started.
  • the slide pin is turned on using the energization ON / OFF of the solenoid 108, the rotational force of the camshaft 52, and the biasing force of the return spring 96.
  • the operating state of the valve 28 can be switched between the valve operating state and the valve stopping state.
  • the energization of the solenoid 108 is turned on and the protrusion 98 c is inserted into the spiral groove 104, so that the slide pin 98 that uses the rotational force of the camshaft 52 is used.
  • the switching pin 88 and the like can be moved in the direction in which the switching pin is withdrawn.
  • the first rocker arm 72 and the two second rocker arms 74 can be quickly switched from the connected state to the separated state during one base circle section. Thereby, it can be set as a valve stop state.
  • the return spring 96 is engaged by engaging the lock pin 110 with the notch 98e after the slide pin 98 reaches the displacement end Pmax2 at which the slide operation of the slide pin 98 is completed.
  • the function of holding the slide pin 98 so as not to be displaced from the displacement end Pmax2 toward the displacement end Pmax1 by the urging force of the lock is a lock engaged with the notch 98e from the side surface of the spiral groove 104 engaged with the protrusion 98c. It can be transferred to the pin 110.
  • the projection portion 98c is set to be separated from the camshaft 52 as described above.
  • the holding of the slide pin 98 is changed to the lock pin 110 that is stationary in the axial direction, so that friction and wear due to sliding with the rotating camshaft 52 are generated. It can be avoided. More specifically, the elimination of friction can improve the fuel efficiency of the internal combustion engine 10 and the wear of the slide pin 98 is eliminated, so that the control position of the switching pin 88 and the like is stabilized. It is possible to ensure good switchability of the operation state.
  • the lock pin 110 that operates integrally with the solenoid 108 that is provided to insert the protrusion 98c, the switching pin 88, and the like are provided.
  • variable valve operating apparatus 32 that can switch the operating state of the valve 28 satisfactorily using a simplified configuration without increasing the number of parts.
  • the valve stop state is formed by energizing the solenoid 108 (actuator 106), and the valve operation state is formed by de-energizing the solenoid 108.
  • the internal combustion engine 10 is stopped (that is, when the IG switch 50 is turned OFF, energization from the ECU 40 to various actuators is stopped. And the energization of the solenoid 108 is stopped. As a result, even when the internal combustion engine 10 is stopped and controlled to the valve stop state, the operation state of the valve 28 returns to the valve operation state.
  • the opening and closing operation of the valve 28 is performed. Fresh air having a high oxygen concentration is supplied toward the catalyst 36. As a result, if the catalyst temperature is higher than the deterioration concern temperature, the catalyst 36 may be deteriorated.
  • the solenoid 108 is energized as soon as the internal combustion engine 10 is started. Even if it is started, it takes a predetermined time to switch the operation state of the valve 28. More specifically, in the case of the configuration of the variable valve operating apparatus 32 of the present embodiment, as described above, the protrusion 98 c is inserted into the spiral groove 104 by starting energization of the solenoid 108. In addition, as the camshaft 52 rotates, the slide pin 98 guided by the spiral groove 104 is displaced in the retracting direction of the switching pin, and the valve is stopped.
  • one cycle of the internal combustion engine 10 is required to switch from the valve operating state to the valve stopped state. Requires a period of time. During the switching from such a valve operating state to a valve stop state, fresh air is supplied toward the catalyst 36, so there is a concern about catalyst deterioration.
  • FIG. 13 is a diagram used for explaining characteristic control in Embodiment 1 of the present invention.
  • the stop operation of the internal combustion engine 10 is started (when it is detected that the IG switch 50 is turned off).
  • the stop operation is completed while the solenoid 108 is energized, and then the predetermined time from the completion of the stop operation.
  • the energization of the solenoid 108 was continued over time. More specifically, in this case, even after the time when the IG switch 50 is turned off, the solenoid 108 is energized until the temperature of the catalyst 36 is lowered to the deterioration concern temperature while the internal combustion engine 10 is stopped. To continue.
  • FIG. 14 is a flowchart of a routine executed by the ECU 40 in order to realize the above function. Note that this routine is started when it is detected that the IG switch 50 is turned off.
  • this routine is started when it is detected that the IG switch 50 is turned off.
  • the engine coolant temperature, the engine oil temperature, and the engine load history are acquired based on information from various sensors 48 and the like (step 100).
  • an estimated value of the temperature of the catalyst 36 at the present time that is, when the IG switch 50 is turned off
  • the temperature of the catalyst 36 is not limited to the method obtained by estimation, but may be measured using a sensor. *
  • the deterioration concern lower limit temperature shown in FIG. 13 is a lower limit temperature in a temperature range in which deterioration of the catalyst 36 is a concern when a gas having a high oxygen concentration (fresh air) is supplied to the catalyst 36.
  • the lower limit temperature for fear of deterioration is a temperature at which it can be determined that the catalyst 36 does not deteriorate if the temperature is lower than that.
  • the degradation concern lower limit temperature can be obtained in advance by experiments or the like. *
  • step 104 If it is determined in step 104 that the current temperature of the catalyst 36 is lower than the lower limit temperature for fear of deterioration, fresh air is supplied to the catalyst 36 when the internal combustion engine 10 is subsequently started. Even in such a case, it can be determined that the catalyst 36 does not deteriorate. Therefore, in this case, the energization to the solenoid 108 is turned off (step 106). *
  • step 104 if it is determined in step 104 that the current temperature of the catalyst 36 is equal to or higher than the deterioration concern lower limit temperature, if the internal combustion engine 10 is started next time in a short time, the catalyst 36 There is concern about deterioration. Therefore, in this case, after the current outside air temperature is acquired by the outside air temperature sensor 48 (step 108), the temperature drop rate of the catalyst 36 is calculated (step 110). *
  • the temperature drop rate of the catalyst 36 during the stop of the internal combustion engine 10 is determined if the specifications (heat capacity, etc.) of the catalyst 36 are determined, It is determined by the relationship with the (atmospheric temperature of the catalyst 36).
  • the ECU 40 stores in advance a map in which the temperature drop rate of the catalyst 36 during the stop of the internal combustion engine 10 is determined in relation to the outside air temperature by experiments or the like.
  • the temperature drop rate of the catalyst 36 when the internal combustion engine 10 is stopped is calculated with reference to such a map.
  • step 112 a time from when the IG switch 50 is turned OFF until the temperature of the catalyst 36 reaches the deterioration concern lower limit temperature is calculated (step 112). If the temperature drop rate of the catalyst 36 is known in step 110, when the temperature of the catalyst 36 is higher than the deterioration concern lower limit temperature, the temperature of the catalyst 36 reaches the deterioration concern lower limit temperature while the internal combustion engine 10 is stopped. It is possible to calculate the degradation concern lower limit temperature reaching time, that is, the energization continuation time during which the energization of the solenoid 108 should be continued. *
  • the solenoid 108 is energized until the deterioration concern lower limit temperature reaching time (the above energization duration) is reached (step 114). More specifically, energization of the solenoid 108 in this step 114 is started until the stop operation of the internal combustion engine 10 is completed after it is detected that the IG switch 50 is turned OFF, and thereafter the stop operation is performed. After completion, the process continues until the deterioration concern lower limit temperature reaching time is reached. In addition, after the completion of the stop of the internal combustion engine 10, electric power is directly supplied from the vehicle power supply (battery) to the solenoid 108 based on a command from the ECU 40. Thereafter, when the time to reach the lower limit of concern for deterioration has elapsed, the energization of the solenoid 108 is turned off (step 116). *
  • the temperature of the catalyst 36 is equal to or higher than the deterioration concern lower limit temperature.
  • the solenoid 108 is energized before the stop operation of the internal combustion engine 10 is completed, the stop operation of the internal combustion engine 10 is completed in the valve stop state. For this reason, after that, even if the internal combustion engine 10 is started under the condition that the temperature of the catalyst 36 is equal to or higher than the lower limit temperature for deterioration, cranking is performed in the valve stop state.
  • the temperature of the catalyst 36 is equal to or higher than the degradation concern lower limit temperature when it is detected that the IG switch 50 is turned off (when the routine shown in FIG. 14 is started)? A determination of whether or not is made.
  • the stop operation is performed with the actuator energized. Is not limited to immediately after the IG switch OFF is detected (that is, at the start of the stop operation), but may be during the stop operation after the IG switch OFF is detected.
  • the temperature of the catalyst 36 is equal to or higher than the lower limit temperature for fear of deterioration at the time when it is detected that the IG switch 50 is turned off (when the routine shown in FIG. 14 is started). If it is determined, energization of the solenoid 108 is started.
  • the timing of starting energization of the actuator is not limited to immediately after detecting the IG switch OFF, as long as it is ensured that the stop operation is completed while the actuator is energized. The stop operation after detection may be in progress. Alternatively, the energization of the actuator itself may be performed in accordance with other requirements of the internal combustion engine 10 before the IG switch OFF is detected.
  • the lock pin 110 when the solenoid 108 is energized, the lock pin 110 inserts the protrusion 98c into the spiral groove 104, and the rotational force of the camshaft 52 is used to move the slide pin 98 in the axial direction.
  • the switching pins 88, 94L, 94R are actuated by driving in the direction. That is, in the configuration of the first embodiment described above, it can be said that the operation of the actuator 106 (the operation of the lock pin 110 accompanying energization of the solenoid 108) is an operation that indirectly operates the switching pin 88 and the like.
  • the operation performed by the actuator in the present invention to operate the switching pin is not limited to the operation of the actuator 106 described above. That is, for example, the solenoid may be arranged at a position where the switching pin can be driven in the retracting direction, and the solenoid may directly actuate the switching pin by energizing the solenoid.
  • the actuator in the present invention is not limited to the above-described configuration.
  • the actuator is a hydraulic drive type configured to be able to engage with the notch 98e by a hydraulic pressure controlled by a duty-controlled oil control valve (OCV). It may have a lock pin.
  • OCV duty-controlled oil control valve
  • the slide pin 98 is provided with the notch 98e, and the slide pin 98 is separated from the camshaft 52 by the engaging portion between the notch 98e and the lock pin 110.
  • the urging force of the return spring 96 is received.
  • the engaging portion that receives the urging force generated by the urging means is not limited to such a mode. That is, for example, when the slide pin 98 is away from the camshaft 52, the lock pin 110 is prevented from rotating so that the urging force of the return spring 96 can be received between the slide pin 98 and the arm portion 98b.
  • a notch similar to the notch 98e may be provided on the lock pin 110 side.
  • two second rocker arms 74 are provided on the left and right of the first rocker arm 72 disposed in the center, and the number of intake valves or exhaust valves per cylinder is two.
  • the main cam 54 is the “cam” in the first invention
  • the first rocker arm 72 and the second rocker arm 74 are the “plurality of transmission members” in the first invention.
  • the pin 110, the spring 112, and the support member 114) are the “switching means” in the first invention
  • the switching pins 88 and 94L are the “switching pins” in the first invention
  • the actuator 106 is the first switching device.
  • the “stop-time energization control means” is realized by the ECU 40 executing a series of processes of the routine shown in FIG.
  • the return spring 96 is the “biasing means” in the third invention
  • the slide pin 98 is the “displacement member” in the third invention
  • the camshaft 52 is the first.
  • the lock pin 110 corresponds to the “rotating body rotating in conjunction with the cam” in the third invention, and the “contact portion” in the third invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A variable valve device for an internal combustion engine capable of changing the operation state of a valve between a valve operating state and a valve stopped state enables reliable prevention of degradation of a catalyst when the internal combustion engine is started under the circumstance where the catalyst temperature is high. The variable valve device comprises a switching mechanism (64) for switching between attachment and detachment of rocker arms (72, 74) disposed between cams (54, 56) and a valve (28). The switching mechanism (64) includes an actuator (106) which is electrically driven and indirectly actuates a switching pin (88) or the like. If the temperature of a catalyst (36) is equal to or higher than a degradation possibility lower-limit temperature when an IG switch (50) of an internal combustion engine (10) is turned off, a stop operation is completed while an electric current is passed through the actuator (106), and after the completion of the stop operation, the passage of the electric current through the actuator (106) is continued until the temperature of the catalyst (36) reaches the degradation possibility lower-limit temperature.

Description

内燃機関の可変動弁装置Variable valve operating device for internal combustion engine
 この発明は、内燃機関の可変動弁装置に関する。 This invention relates to a variable valve operating apparatus for an internal combustion engine.
 従来、例えば特許文献1には、バルブの動作状態を弁稼動状態と弁停止状態との間で変更可能な可変動弁機構を有する内燃機関が開示されている。この従来の内燃機関では、減速時にフューエルカットを実行する際に、吸気弁および排気弁を閉弁状態に維持させるようにしている。このような吸排気弁の制御によれば、高温の触媒に酸素濃度の高い空気が供給されないようにすることで、触媒の劣化を抑制することができる。 Conventionally, for example, Patent Document 1 discloses an internal combustion engine having a variable valve mechanism that can change the operation state of a valve between a valve operation state and a valve stop state. In this conventional internal combustion engine, the intake valve and the exhaust valve are kept closed when fuel cut is executed during deceleration. According to such control of the intake / exhaust valve, deterioration of the catalyst can be suppressed by preventing air having a high oxygen concentration from being supplied to the high-temperature catalyst.
 また、上記従来の内燃機関では、触媒の劣化を抑制すべく、触媒温度が高い状況下で内燃機関の停止がなされる場合には、燃料供給停止の直前に噴射された燃料によって生じた燃焼ガスを筒内から排出した後に、吸排気弁を閉弁状態に維持させるようにしている。更に、内燃機関の始動時にクランキングが実行される際には燃料が供給されない期間が存在するため、上記従来の内燃機関では、触媒の劣化を抑制すべく、触媒温度が高い状況下で当該クランキングが実行される時に、排気弁を閉弁状態に維持させるようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
Further, in the conventional internal combustion engine, when the internal combustion engine is stopped under a condition where the catalyst temperature is high in order to suppress the deterioration of the catalyst, the combustion gas generated by the fuel injected immediately before stopping the fuel supply After discharging the gas from the cylinder, the intake / exhaust valve is maintained in the closed state. Further, when cranking is performed at the time of starting the internal combustion engine, there is a period in which fuel is not supplied. Therefore, in the conventional internal combustion engine, the cranking is performed under a high catalyst temperature in order to suppress deterioration of the catalyst. When ranking is executed, the exhaust valve is maintained in a closed state.
The applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
日本特開2004-169646号公報Japanese Unexamined Patent Publication No. 2004-169646 日本特開平1-285611号公報Japanese Unexamined Patent Publication No. 1-285611
 ところで、ソレノイド等の電気的に駆動されるアクチュエータに通電することで弁停止状態を形成し、当該アクチュエータへの通電を停止することで弁稼動状態を形成する構成を有する可変動弁装置の場合には、内燃機関が停止されると、アクチュエータへの通電が停止されてしまう。その結果、バルブの動作状態が弁稼動状態に戻ってしまう。 By the way, in the case of a variable valve operating apparatus having a configuration in which a valve stop state is formed by energizing an electrically driven actuator such as a solenoid and a valve operation state is formed by deenergizing the actuator. When the internal combustion engine is stopped, energization to the actuator is stopped. As a result, the operating state of the valve returns to the valve operating state.
 上記のように弁稼動状態に戻された状態で、何らの配慮がなされないままでその後に内燃機関が始動(クランキング)されると、バルブの開閉動作が行われるようになるので、触媒に向けて酸素濃度の高い新気が供給されてしまう。その結果、触媒温度が高い場合であれば、触媒に劣化が生じることが懸念される。また、上記のように弁稼動状態に戻された状態で、始動時(クランキング時)に触媒に劣化が生ずるのを抑制すべく、内燃機関の始動開始とともに仮にアクチュエータへの通電を開始させたとしても、バルブの動作状態の切り換えには所定時間を要する。このため、弁稼動状態から弁停止状態への切り換え中には、触媒に向けて新気が供給され、これにより、触媒の劣化が懸念される。 When the internal combustion engine is started (cranking) without any consideration in the state where the valve is returned to the operating state as described above, the valve is opened and closed. New air with high oxygen concentration will be supplied. As a result, if the catalyst temperature is high, there is a concern that the catalyst will deteriorate. In addition, in the state in which the valve is returned to the operating state as described above, the actuator is temporarily energized at the start of the internal combustion engine in order to suppress the deterioration of the catalyst at the start (during cranking). However, it takes a predetermined time to switch the operation state of the valve. For this reason, during the switching from the valve operating state to the valve stopped state, fresh air is supplied toward the catalyst, which may cause deterioration of the catalyst.
 この発明は、上述のような課題を解決するためになされたもので、バルブの動作状態を弁稼動状態と弁停止状態との間で変更可能な内燃機関の可変動弁装置において、触媒温度が高い状況下での内燃機関の始動時に触媒の劣化を確実に抑制し得る内燃機関の可変動弁装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. In a variable valve operating apparatus for an internal combustion engine that can change the operation state of a valve between a valve operation state and a valve stop state, the catalyst temperature is It is an object of the present invention to provide a variable valve operating apparatus for an internal combustion engine that can reliably suppress the deterioration of the catalyst when the internal combustion engine is started under high conditions.
 第1の発明は、内燃機関の可変動弁装置であって、
 内燃機関の排気通路に配置され、排気ガスを浄化可能な触媒と、
 カムとバルブとの間に配置され、当該カムの作用力をバルブに伝達するための複数の伝達部材を有し、当該複数の伝達部材が相互に連結/分離されることによりバルブの動作状態を弁稼動状態と弁停止状態との間で変更する可変機構と、
 前記複数の伝達部材の連結/分離を切り換える切換手段と、を備える内燃機関の可変動弁装置であって、
 前記切換手段は、
 前記可変機構に進退自在に取り付けられ、前記複数の伝達部材を連結状態または分離状態とするための切換ピンと、
 電気的に駆動され、前記切換ピンを直接的または間接的に作動させる動作を行うアクチュエータと、を有し、
 前記切換手段は、前記アクチュエータの非通電時に前記複数の伝達部材を連結状態とし、前記アクチュエータの通電時に前記複数の伝達部材を分離状態とするものであって、
 前記可変動弁装置は、内燃機関の停止動作時に前記触媒の温度が所定温度以上である場合には、前記アクチュエータに通電がなされている状態で前記停止動作を完了させ、かつ、当該停止動作の完了時点からの所定時間に渡って、前記アクチュエータへの通電を継続する停止時通電制御手段を更に備えることを特徴とする。
A first invention is a variable valve operating apparatus for an internal combustion engine,
A catalyst disposed in an exhaust passage of the internal combustion engine and capable of purifying exhaust gas;
It is arranged between the cam and the valve, and has a plurality of transmission members for transmitting the acting force of the cam to the valve, and the operation state of the valve is controlled by connecting / separating the plurality of transmission members to each other. A variable mechanism that changes between a valve operating state and a valve stopped state;
A variable valve operating apparatus for an internal combustion engine comprising: switching means for switching connection / separation of the plurality of transmission members;
The switching means is
A switching pin that is attached to the variable mechanism so as to freely advance and retract, and is configured to connect or separate the plurality of transmission members;
An electrically driven actuator that operates directly or indirectly to actuate the switching pin;
The switching means is configured to connect the plurality of transmission members when the actuator is not energized, and to separate the plurality of transmission members when the actuator is energized,
When the temperature of the catalyst is equal to or higher than a predetermined temperature during the stop operation of the internal combustion engine, the variable valve apparatus completes the stop operation while the actuator is energized, and It further includes a stop-time energization control means for continuing energization of the actuator over a predetermined time from the completion time point.
 また、第2の発明は、第1の発明において、
 前記所定時間は、前記停止動作の完了時点から前記触媒の温度が劣化懸念下限温度に達するまでの時間であることを特徴とする。
The second invention is the first invention, wherein
The predetermined time is a time from when the stop operation is completed until the temperature of the catalyst reaches a lower limit temperature for fear of deterioration.
 また、第3の発明は、第1または第2の発明において、
 前記切換手段は、
 前記切換ピンをその進出方向に付勢する付勢手段と、
 前記切換ピンの進退動作に連動して変位可能であって前記切換ピンを介して前記付勢手段が発する付勢力を受ける変位部材と、
 前記カムと連動して回転する回転体の外周面に形成され、前記変位部材の変位を案内する螺旋状溝と、
 前記変位部材に設けられ、前記螺旋状溝に挿脱自在な突起部と、を備え、
 前記アクチュエータは、前記変位部材に当接自在な当接部を有し、前記当接部を前記変位部材に当接させることによって前記突起部を前記螺旋状溝に挿入させることを特徴とする。
The third invention is the first or second invention, wherein
The switching means is
Urging means for urging the switching pin in its advance direction;
A displacement member that is displaceable in conjunction with the forward / backward movement of the switching pin and that receives an urging force generated by the urging means via the switching pin;
A helical groove formed on the outer peripheral surface of the rotating body that rotates in conjunction with the cam and guides the displacement of the displacement member;
A protrusion provided on the displacement member and detachable from the spiral groove;
The actuator includes an abutting portion that can abut against the displacement member, and the abutting portion is brought into contact with the displacement member to insert the protruding portion into the spiral groove.
 第1の発明によれば、本発明の可変動弁装置を吸気バルブおよび排気バルブの少なくとも一方を駆動するための動弁装置として適用することにより、触媒温度が所定温度以上である状況下で内燃機関が始動される場合であっても、吸気バルブおよび排気バルブの少なくとも一方を弁停止状態として、クランキングがなされるようになる。高温の触媒に対して、内燃機関の始動時に酸素濃度の高い新気が流出されるのを回避することができる。このため、触媒温度が高い状況下での内燃機関の始動時に、触媒が劣化するのを確実に回避することが可能となる。 According to the first aspect of the present invention, the variable valve device of the present invention is applied as a valve device for driving at least one of the intake valve and the exhaust valve, so that the internal combustion engine is operated in a situation where the catalyst temperature is equal to or higher than a predetermined temperature. Even when the engine is started, cranking is performed with at least one of the intake valve and the exhaust valve stopped. It is possible to avoid outflow of fresh air having a high oxygen concentration when the internal combustion engine is started with respect to the high-temperature catalyst. For this reason, it is possible to reliably avoid the deterioration of the catalyst when the internal combustion engine is started under a condition where the catalyst temperature is high.
 第2の発明によれば、内燃機関の停止中にアクチュエータへの通電を継続する期間の終期を、触媒温度が劣化懸念下限温度に達する時点とすることで、その後の始動時に触媒が劣化するのを確実に回避することが可能となる。 According to the second aspect of the invention, the end of the period during which the actuator is energized while the internal combustion engine is stopped is set to the time when the catalyst temperature reaches the deterioration concern lower limit temperature. Can be reliably avoided.
 第3の発明によれば、アクチュエータに通電がなされることにより、突起部が螺旋状溝に挿入され、これにより、螺旋状溝により案内された変位部材によって弁停止状態となるように切換ピンが作動するように構成された可変動弁装置において、触媒温度が高い状況下での内燃機関の始動時に、触媒が劣化するのを確実に回避することが可能となる。 According to the third invention, when the actuator is energized, the projecting portion is inserted into the spiral groove, so that the switching pin is brought into the valve stop state by the displacement member guided by the spiral groove. In the variable valve operating apparatus configured to operate, it is possible to reliably avoid the deterioration of the catalyst when the internal combustion engine is started under a condition where the catalyst temperature is high.
本発明の実施の形態1の内燃機関の構成を説明するための図である。It is a figure for demonstrating the structure of the internal combustion engine of Embodiment 1 of this invention. 本発明の実施の形態1における内燃機関の吸気可変動弁装置の全体構成を概略的に示す図である。1 is a diagram schematically showing an overall configuration of an intake variable valve operating apparatus for an internal combustion engine according to Embodiment 1 of the present invention. FIG. 図2に示す可変機構を、バルブの基端部側から見下ろした図である。It is the figure which looked down at the variable mechanism shown in FIG. 2 from the base end part side of the valve | bulb. 第1ロッカーアームをロッカーシャフトの軸方向(図3中の矢視Aの方向)から見た図である。It is the figure which looked at the 1st rocker arm from the axial direction (direction of the arrow A in FIG. 3) of a rocker shaft. 第2ロッカーアームを図4と同じくロッカーシャフトの軸方向(矢視Aの方向)から見た図である。It is the figure which looked at the 2nd rocker arm from the axial direction (direction of arrow A) of a rocker shaft like FIG. 図2に示す切換機構の詳細な構成を説明するための図である。It is a figure for demonstrating the detailed structure of the switching mechanism shown in FIG. 切換機構をカムシャフトの軸方向(図6中の矢視Bの方向)から見た図である。It is the figure which looked at the switching mechanism from the axial direction (direction of arrow B in FIG. 6) of the camshaft. 弁稼動状態時(通常のリフト動作時)の制御状態を示す図である。It is a figure which shows the control state at the time of valve operating state (at the time of normal lift operation | movement). 弁停止動作の開始時の制御状態を示す図である。It is a figure which shows the control state at the time of the start of valve stop operation | movement. スライド動作の完了時の制御状態を示す図である。It is a figure which shows the control state at the time of completion of a slide operation | movement. スライドピンをロックピンによって保持する保持動作時の制御状態を示す図である。It is a figure which shows the control state at the time of holding | maintenance operation | movement which hold | maintains a slide pin with a lock pin. スライドピンをロックピンによって保持する保持動作時の制御状態を示す図である。It is a figure which shows the control state at the time of holding | maintenance operation | movement which hold | maintains a slide pin with a lock pin. 本発明の実施の形態1における特徴的な制御を説明するために用いる図である。It is a figure used in order to demonstrate characteristic control in Embodiment 1 of the present invention. 本発明の実施の形態1において実行されるルーチンのフローチャートである。It is a flowchart of the routine performed in Embodiment 1 of the present invention.
符号の説明Explanation of symbols
10 内燃機関
16 吸気通路
18 排気通路
24 燃料噴射弁
28 吸気バルブ
30 排気バルブ
32 吸気可変動弁装置
34 排気可変動弁装置
36 触媒
40 ECU(Electronic Control Unit)
52 カムシャフト
54 主カム
54a ベース円部
54b ノーズ部
56 副カム
60 可変機構
62 バルブスプリング
64 切換機構
70 ロッカーシャフト
72 第1ロッカーアーム
74L、74R 第2ロッカーアーム
76 第1ローラ
78 コイルスプリング
80 第2ローラ
82 ラッシュアジャスタ
84 第1支軸
86 第1ピン孔
88 第1切換ピン
90L、90R 第2支軸
92L、92R 第2ピン孔
94L、94R 第2切換ピン
96 リターンスプリング
98 スライドピン
98a 円柱部
98b アーム部
98c 突起部
98d 押圧面
98e 切欠部
98f 案内面
100 支持部材
102 大径部
104 螺旋状溝
104a 基端
104b 終端
104c 浅溝部
106 アクチュエータ
108 ソレノイド
108a 駆動軸
110 ロックピン
112 スプリング
114 支持部材
116 ストッパー
118 スプリング
Pmax1、Pmax2 変位端
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 16 Intake passage 18 Exhaust passage 24 Fuel injection valve 28 Intake valve 30 Exhaust valve 32 Intake variable valve operating device 34 Exhaust variable valve operating device 36 Catalyst 40 ECU (Electronic Control Unit)
52 Camshaft 54 Main cam 54a Base circle portion 54b Nose portion 56 Sub cam 60 Variable mechanism 62 Valve spring 64 Switching mechanism 70 Rocker shaft 72 First rocker arm 74L, 74R Second rocker arm 76 First roller 78 Coil spring 80 Second Roller 82 Rush adjuster 84 1st support shaft 86 1st pin hole 88 1st switching pin 90L, 90R 2nd support shaft 92L, 92R 2nd pin hole 94L, 94R 2nd switching pin 96 Return spring 98 Slide pin 98a Cylindrical part 98b Arm portion 98c Protruding portion 98d Pressing surface 98e Notch portion 98f Guide surface 100 Support member 102 Large diameter portion 104 Helical groove 104a Base end 104b Terminal end 104c Shallow groove portion 106 Actuator 108 Solenoid 108a Drive shaft 110 Lock pin 112 Spring 114 Support member 116 Stopper 118 Spring Pmax1, Pmax2 Displacement end
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関10の構成を説明するための図である。本実施形態のシステムは、内燃機関10を備えている。ここでは、内燃機関10は、直列4気筒型のエンジンであるものとする。内燃機関10の筒内には、ピストン12が設けられている。内燃機関10の筒内には、ピストン12の頂部側に燃焼室14が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。
Embodiment 1 FIG.
[Description of system configuration]
FIG. 1 is a diagram for explaining a configuration of an internal combustion engine 10 according to a first embodiment of the present invention. The system of this embodiment includes an internal combustion engine 10. Here, it is assumed that the internal combustion engine 10 is an in-line four-cylinder engine. A piston 12 is provided in the cylinder of the internal combustion engine 10. A combustion chamber 14 is formed in the cylinder of the internal combustion engine 10 on the top side of the piston 12. An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
 吸気通路16の入口近傍には、吸気通路16に吸入される空気の流量に応じた信号を出力するエアフローメータ20が設けられている。エアフローメータ20の下流には、スロットルバルブ22が設けられている。スロットルバルブ22は、アクセル開度と独立してスロットル開度を制御することのできる電子制御式スロットルバルブである。 Near the inlet of the intake passage 16, an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided. A throttle valve 22 is provided downstream of the air flow meter 20. The throttle valve 22 is an electronically controlled throttle valve that can control the throttle opening independently of the accelerator opening.
 また、スロットルバルブ22の下流には、内燃機関10の吸気ポートに燃料を噴射するための燃料噴射弁24が配置されている。また、内燃機関10が備えるシリンダヘッドには、燃焼室14の頂部から燃焼室14内に突出するように点火プラグ26が取り付けられている。吸気ポートおよび排気ポートには、それぞれ、燃焼室14と吸気通路16、或いは燃焼室14と排気通路18を導通状態または遮断状態とするための吸気バルブ28および排気バルブ30が設けられている。 Further, a fuel injection valve 24 for injecting fuel into the intake port of the internal combustion engine 10 is disposed downstream of the throttle valve 22. An ignition plug 26 is attached to the cylinder head provided in the internal combustion engine 10 so as to protrude from the top of the combustion chamber 14 into the combustion chamber 14. The intake port and the exhaust port are respectively provided with an intake valve 28 and an exhaust valve 30 for bringing the combustion chamber 14 and the intake passage 16 or the combustion chamber 14 and the exhaust passage 18 into a conduction state or a cutoff state.
 吸気バルブ28および排気バルブ30は、それぞれ吸気可変動弁装置32および排気可変動弁装置34により駆動される。これらの可変動弁装置32、34の詳細な構成については、図2乃至図12を参照して後述するものとする。また、排気通路18には、排気ガスを浄化するための触媒36が配置されている。 The intake valve 28 and the exhaust valve 30 are driven by an intake variable valve operating device 32 and an exhaust variable valve operating device 34, respectively. The detailed configuration of these variable valve gears 32 and 34 will be described later with reference to FIGS. A catalyst 36 for purifying the exhaust gas is disposed in the exhaust passage 18.
 図1に示すシステムは、ECU(Electronic Control Unit)40を備えている。ECU40の入力には、上述した各種のセンサとともに、エンジン回転数を検出するクランク角センサ42、エンジン冷却水温度を検出するための冷却水温度センサ44、エンジン油温を検出するための油温センサ46、外気温度を検出するための外気温度センサ48、および、車両のイグニッションスイッチ(IGスイッチ)50が接続されている。また、ECU40の出力には、上述した各種のアクチュエータが接続されている。ECU40は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御することができる。 The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40. The input of the ECU 40 includes the above-described various sensors, a crank angle sensor 42 that detects the engine speed, a coolant temperature sensor 44 that detects the engine coolant temperature, and an oil temperature sensor that detects the engine oil temperature. 46, an outside air temperature sensor 48 for detecting the outside air temperature, and an ignition switch (IG switch) 50 of the vehicle are connected. The various actuators described above are connected to the output of the ECU 40. The ECU 40 can control the operating state of the internal combustion engine 10 based on the sensor outputs.
[可変動弁装置の全体構成]
 図2は、本発明の実施の形態1における内燃機関10の吸気可変動弁装置32の全体構成を概略的に示す図である。尚、ここでは、吸気可変動弁装置32を例にとって説明を行うが、排気可変動弁装置34についても、吸気可変動弁装置32と同様に構成されているものとする。また、本実施形態の内燃機関10は、4つの気筒(#1~#4)を有し、#1→#3→#4→#2の順で爆発行程が行われる直列4気筒型エンジンであるものとする。 
[Overall configuration of variable valve system]
FIG. 2 is a diagram schematically showing an overall configuration of the intake variable valve operating apparatus 32 of the internal combustion engine 10 according to the first embodiment of the present invention. Here, the intake variable valve operating device 32 will be described as an example, but the exhaust variable valve operating device 34 is also configured in the same manner as the intake variable valve operating device 32. Further, the internal combustion engine 10 of the present embodiment is an in-line four-cylinder engine having four cylinders (# 1 to # 4) and performing an explosion stroke in the order of # 1, # 3, # 4, and # 2. It shall be.
 本実施形態の可変動弁装置32は、カムシャフト52を備えている。カムシャフト52は、図示省略するクランクシャフトに対してタイミングチェーンまたはタイミングベルトによって連結され、クランクシャフトの1/2の速度で回転するように構成されている。カムシャフト52には、1気筒当たり1つの主カム54と2つの副カム56とが形成されている。主カム54は、2つの副カム56の間に配置されている。 The variable valve device 32 of the present embodiment includes a cam shaft 52. The camshaft 52 is connected to a crankshaft (not shown) by a timing chain or a timing belt, and is configured to rotate at a half speed of the crankshaft. The camshaft 52 is formed with one main cam 54 and two sub cams 56 per cylinder. The main cam 54 is disposed between the two sub cams 56.
 主カム54は、カムシャフト52と同軸の円弧状のベース円部54a(図4参照)と、当該ベース円の一部を半径方向外側に向かって膨らませるように形成されたノーズ部54b(図4参照)とを備えている。また、本実施形態では、副カム56は、ベース円部のみを有するカム(ゼロリフトカム)として構成されている(図5参照)。 The main cam 54 has an arcuate base circle 54a (see FIG. 4) coaxial with the camshaft 52, and a nose 54b (see FIG. 4) formed so as to bulge a part of the base circle radially outward. 4). Moreover, in this embodiment, the sub cam 56 is comprised as a cam (zero lift cam) which has only a base circle part (refer FIG. 5).
 各気筒のカム54、56と吸気バルブ28(以下、単に「バルブ28」と略する)との間には、可変機構60が介在している。すなわち、カム54、56の作用力は、可変機構60を介して2つのバルブ28へ伝達されるようになっている。バルブ28は、カム54、56の作用力とバルブスプリング62の付勢力とを利用して開閉されるようになっている。尚、図2に示す状態は、#1気筒のバルブ28が主カム54の作用力を受けて開弁した状態を表している。 A variable mechanism 60 is interposed between the cams 54 and 56 of each cylinder and the intake valve 28 (hereinafter simply referred to as “valve 28”). That is, the acting force of the cams 54 and 56 is transmitted to the two valves 28 via the variable mechanism 60. The valve 28 is opened and closed using the acting force of the cams 54 and 56 and the urging force of the valve spring 62. The state shown in FIG. 2 represents a state in which the valve 28 of the # 1 cylinder is opened by receiving the acting force of the main cam 54.
 可変機構60は、主カム54の作用力をバルブ28へ伝達する状態と副カム56の作用力をバルブ28へ伝達する状態とを切り換えることにより、バルブ28の開弁特性を変更する機構である。尚、本実施形態においては、副カム56はゼロリフトカムであるため、副カム56の作用力がバルブ28へ伝達される状態とは、バルブ28が開閉しない状態(バルブ休止状態)を意味するものとする。 The variable mechanism 60 is a mechanism that changes the valve opening characteristic of the valve 28 by switching between a state in which the acting force of the main cam 54 is transmitted to the valve 28 and a state in which the acting force of the sub cam 56 is transmitted to the valve 28. . In the present embodiment, since the sub cam 56 is a zero lift cam, the state in which the acting force of the sub cam 56 is transmitted to the valve 28 means a state in which the valve 28 does not open or close (valve inactive state). And
 また、本実施形態の可変動弁装置32は、各可変機構60を駆動して、バルブ28の動作状態を弁稼動状態と弁停止状態との間で切り換えるための切換機構64を気筒毎に備えている。切換機構64は、上述したECU40からの駆動信号に従って駆動されるようになっている。ECU40は、クランク角センサ42等の出力信号に基づいて切換機構64を制御する。 Moreover, the variable valve operating apparatus 32 of this embodiment is provided with the switching mechanism 64 for driving each variable mechanism 60, and switching the operation state of the valve 28 between a valve operating state and a valve stop state for every cylinder. ing. The switching mechanism 64 is driven according to the drive signal from the ECU 40 described above. The ECU 40 controls the switching mechanism 64 based on an output signal from the crank angle sensor 42 or the like.
(可変機構の構成)
 次に、図3乃至図5を参照して、可変機構60の詳細な構成を説明する。
 図3は、図2に示す可変機構60を、バルブ28の基端部側から見下ろした図である。
 可変機構60は、カムシャフト52と平行に配置されたロッカーシャフト70を備えている。図3に示すように、ロッカーシャフト70には、1つの第1ロッカーアーム72と、一対の第2ロッカーアーム74R、74Lとが回転自在に取り付けられている。第1ロッカーアーム72は、2つの第2ロッカーアーム74R、74Lの間に配置されている。尚、本明細書では、左右の第2ロッカーアーム74R、74Lを特に区別しないときには、単に第2ロッカーアーム74と表記する場合がある。
(Configuration of variable mechanism)
Next, a detailed configuration of the variable mechanism 60 will be described with reference to FIGS. 3 to 5.
FIG. 3 is a view of the variable mechanism 60 shown in FIG. 2 as viewed from the base end side of the valve 28.
The variable mechanism 60 includes a rocker shaft 70 disposed in parallel with the camshaft 52. As shown in FIG. 3, a first rocker arm 72 and a pair of second rocker arms 74 </ b> R and 74 </ b> L are rotatably attached to the rocker shaft 70. The first rocker arm 72 is disposed between the two second rocker arms 74R and 74L. In the present specification, when the left and right second rocker arms 74R and 74L are not particularly distinguished, they may be simply referred to as the second rocker arm 74.
 図4は、第1ロッカーアーム72をロッカーシャフト70の軸方向(図3中の矢視Aの方向)から見た図であり、図5は、第2ロッカーアーム74を図4と同じくロッカーシャフト70の軸方向(矢視Aの方向)から見た図である。
 図4に示すように、第1ロッカーアーム72におけるロッカーシャフト70の反対側の端部には、主カム54と接することができる位置に、第1ローラ76が回転可能に取り付けられている。第1ロッカーアーム72は、ロッカーシャフト70に取り付けられたコイルスプリング78によって、第1ローラ76が主カム54と常に当接するように付勢されている。上記のように構成された第1ロッカーアーム72は、主カム54の作用力とコイルスプリング78の付勢力との協働により、ロッカーシャフト70を支点として揺動するようになる。
4 is a view of the first rocker arm 72 viewed from the axial direction of the rocker shaft 70 (the direction of arrow A in FIG. 3), and FIG. 5 shows the second rocker arm 74 in the same manner as FIG. It is the figure seen from 70 axial directions (direction of arrow A).
As shown in FIG. 4, a first roller 76 is rotatably attached to an end of the first rocker arm 72 opposite to the rocker shaft 70 at a position where it can contact the main cam 54. The first rocker arm 72 is urged by a coil spring 78 attached to the rocker shaft 70 so that the first roller 76 is always in contact with the main cam 54. The first rocker arm 72 configured as described above swings about the rocker shaft 70 as a fulcrum by the cooperation of the acting force of the main cam 54 and the biasing force of the coil spring 78.
 一方、図5に示すように、第2ロッカーアーム74におけるロッカーシャフト70の反対側の端部には、バルブ28の基端部(詳細には、バルブステムの基端部)が当接している。また、第2ロッカーアーム74の中央部位には、第2ローラ80が回転可能に取り付けられている。尚、第2ローラ80の外径は、第1ローラ76の外径と同等である。 On the other hand, as shown in FIG. 5, the base end portion of the valve 28 (specifically, the base end portion of the valve stem) is in contact with the end portion of the second rocker arm 74 opposite to the rocker shaft 70. . A second roller 80 is rotatably attached to the central portion of the second rocker arm 74. The outer diameter of the second roller 80 is the same as the outer diameter of the first roller 76.
 また、第2ロッカーアーム74の他端においては、ロッカーシャフト70がラッシュアジャスタ82を介して内燃機関10の静止部材であるカムキャリア(或いはシリンダヘッド等)に支持されているものとする。このため、第2ロッカーアーム74は、ラッシュアジャスタ82から押し上げ力を受けることによって、副カム56に向けて付勢されている。 Also, at the other end of the second rocker arm 74, it is assumed that the rocker shaft 70 is supported by a cam carrier (or a cylinder head or the like) that is a stationary member of the internal combustion engine 10 via a lash adjuster 82. Therefore, the second rocker arm 74 is biased toward the sub cam 56 by receiving a pushing force from the lash adjuster 82.
 また、第1ローラ76に対する第2ローラ80の位置は、第1ローラ76が主カム54のベース円部54aと当接(図4参照)し、かつ、第2ローラ80が副カム56のベース円部と当接(図5参照)している時に、第2ローラ80の軸心と第1ローラ76の軸心とが図3に示すように、同一直線L上に位置するように定められている。 The position of the second roller 80 relative to the first roller 76 is such that the first roller 76 contacts the base circle 54a of the main cam 54 (see FIG. 4), and the second roller 80 is the base of the sub cam 56. When contacting the circle (see FIG. 5), the shaft center of the second roller 80 and the shaft center of the first roller 76 are determined so as to be positioned on the same straight line L as shown in FIG. ing.
(切換機構の構成)
 次に、図6乃至図8を参照して、切換機構64の詳細な構成を説明する。
 切換機構64は、第1ロッカーアーム72と第2ロッカーアーム74との連結/分離を切り換えるための機構であり、これにより、主カム54の作用力が第2ロッカーアーム74に伝達される状態と、当該作用力が第2ロッカーアーム74に伝達されない状態とを切り換えて、バルブ28の動作状態を弁稼動状態と弁停止状態との間で切り換えることができるようになっている。
(Configuration of switching mechanism)
Next, a detailed configuration of the switching mechanism 64 will be described with reference to FIGS.
The switching mechanism 64 is a mechanism for switching the connection / separation between the first rocker arm 72 and the second rocker arm 74, whereby the operating force of the main cam 54 is transmitted to the second rocker arm 74. By switching the state where the acting force is not transmitted to the second rocker arm 74, the operation state of the valve 28 can be switched between the valve operation state and the valve stop state.
 図6は、図2に示す切換機構64の詳細な構成を説明するための図である。尚、図6においては、ローラ76、80の軸心位置で切断した断面を用いて可変機構60を表している。また、説明を分かり易くする観点から、可変機構60の搭載位置に対するカムシャフト52の搭載位置を、カムシャフト52の軸方向位置を除き実際の搭載位置と異ならせた状態で表している。 FIG. 6 is a diagram for explaining a detailed configuration of the switching mechanism 64 shown in FIG. In FIG. 6, the variable mechanism 60 is represented using a cross section cut at the axial center position of the rollers 76 and 80. Further, for easy understanding, the mounting position of the camshaft 52 relative to the mounting position of the variable mechanism 60 is expressed in a state different from the actual mounting position except for the axial position of the camshaft 52.
 図6に示すように、第1ローラの第1支軸84の内部には、その軸方向に貫通するように第1ピン孔86が形成されており、第1ピン孔86の両端は、第1ロッカーアーム72の両側面に開口している。第1ピン孔86には、円柱状の第1切換ピン88が摺動自在に挿入されている。第1切換ピン88の外径は、第1ピン孔86の内径と略同等であり、第1切換ピン88の軸方向の長さは、第1ピン孔86の長さと略同等である。 As shown in FIG. 6, a first pin hole 86 is formed inside the first support shaft 84 of the first roller so as to penetrate in the axial direction. One rocker arm 72 is open on both side surfaces. A cylindrical first switching pin 88 is slidably inserted into the first pin hole 86. The outer diameter of the first switching pin 88 is substantially equal to the inner diameter of the first pin hole 86, and the axial length of the first switching pin 88 is substantially equal to the length of the first pin hole 86.
 一方、第2ロッカーアーム74L側の第2ローラ80の第2支軸90Lの内部には、第1ロッカーアーム72と反対側の端部が閉塞され、かつ、第1ロッカーアーム72側の端部が開口された第2ピン孔92Lが形成されている。また、第2ロッカーアーム74R側の第2ローラ80の第2支軸90Rの内部には、その軸方向に貫通するように第2ピン孔92Rが形成されており、第2ピン孔92Rの両端は、第2ロッカーアーム74Rの両側面に開口している。第2ピン孔92R、92Lの内径は、第1ピン孔86の内径と同等である。 On the other hand, the end on the opposite side to the first rocker arm 72 is closed inside the second support shaft 90L of the second roller 80 on the second rocker arm 74L side, and the end on the first rocker arm 72 side is closed. A second pin hole 92L having an opening is formed. A second pin hole 92R is formed in the second support shaft 90R of the second roller 80 on the second rocker arm 74R side so as to penetrate in the axial direction, and both ends of the second pin hole 92R are formed. Are open on both side surfaces of the second rocker arm 74R. The inner diameters of the second pin holes 92R and 92L are equal to the inner diameter of the first pin hole 86.
 第2ピン孔92Lには、円柱状の第2切換ピン94Lが摺動自在に挿入されている。また、第2ピン孔92Lの内部には、第2切換ピン94Lを第1ロッカーアーム72方向(以下、「切換ピンの進出方向」と称する)に向けて付勢するリターンスプリング96が配置されている。第2切換ピン94Lの外径は、第2ピン孔92Lの内径と略同等である。また、第2切換ピン94Lの軸方向の長さは、第2ピン孔92Lより短くされており、第2切換ピン94Lが第2ピン孔92L内に向けて押された状態で、第2切換ピン94Lの先端が第2ロッカーアーム74Lの側面から僅かに突出するように調整されている。また、リターンスプリング96は、実装された状態において、第1ロッカーアーム72に向けて第2切換ピン94Lを常時付勢するように構成されているものとする。 A cylindrical second switching pin 94L is slidably inserted into the second pin hole 92L. In addition, a return spring 96 that urges the second switching pin 94L toward the first rocker arm 72 (hereinafter referred to as “the advancement direction of the switching pin”) is disposed inside the second pin hole 92L. Yes. The outer diameter of the second switching pin 94L is substantially equal to the inner diameter of the second pin hole 92L. In addition, the axial length of the second switching pin 94L is shorter than the second pin hole 92L, and the second switching pin 94L is pushed in the second pin hole 92L and the second switching pin 94L is pushed in the second switching hole 94L. The tip of the pin 94L is adjusted so as to slightly protrude from the side surface of the second rocker arm 74L. Further, it is assumed that the return spring 96 is configured to constantly bias the second switching pin 94L toward the first rocker arm 72 in the mounted state.
 第2ピン孔92Rには、円柱状の第2切換ピン94Rが摺動自在に挿入されている。第2切換ピン94Rの外径は、第2ピン孔92Rの内径と略同等であり、第2切換ピン94Rの軸方向の長さは、第2ピン孔92Rの長さと略同等である。 A cylindrical second switching pin 94R is slidably inserted into the second pin hole 92R. The outer diameter of the second switching pin 94R is substantially equal to the inner diameter of the second pin hole 92R, and the axial length of the second switching pin 94R is substantially equal to the length of the second pin hole 92R.
 以上の3つのピン孔86、92L、92Rの相対位置は、第1ローラ76が主カム54のベース円部54aと当接(図4参照)し、かつ、第2ローラ80が副カム56のベース円部と当接(図5参照)している時に、3つのピン孔86、92L、92Rの軸心が同一直線上に位置するように決定されている。 The relative positions of the three pin holes 86, 92L, and 92R described above are such that the first roller 76 contacts the base circular portion 54a of the main cam 54 (see FIG. 4), and the second roller 80 contacts the sub cam 56. It is determined that the axial centers of the three pin holes 86, 92L, and 92R are located on the same straight line when in contact with the base circle (see FIG. 5).
 ここで、上記図6とともに新たに図7を参照して、切換機構64の説明を継続する。
図7は、切換機構64をカムシャフト52の軸方向(図6中の矢視Bの方向)から見た図である。尚、図7以降の図においては、ロックピン110とソレノイド108との関係を簡略化して図示する場合がある。
 切換機構64は、カムの回転力を利用して、切換ピン88、94L、94Rを第2ロッカーアーム74L側に向けて(切換ピンの退出方向に)変位させるためのスライドピン98を備えている。スライドピン98は、図6に示すように、第2切換ピン94Rの端面と当接する端面を有する円柱部98aを備えている。円柱部98aは、カムキャリアに固定された支持部材100によって、軸方向に進退自在であって、周方向に回転自在に支持されている。
Here, referring to FIG. 7 together with FIG. 6 described above, the description of the switching mechanism 64 will be continued.
FIG. 7 is a view of the switching mechanism 64 as viewed from the axial direction of the camshaft 52 (the direction of arrow B in FIG. 6). In FIG. 7 and subsequent figures, the relationship between the lock pin 110 and the solenoid 108 may be simplified.
The switching mechanism 64 includes a slide pin 98 for displacing the switching pins 88, 94L, 94R toward the second rocker arm 74L (in the retracting direction of the switching pin) using the rotational force of the cam. . As shown in FIG. 6, the slide pin 98 includes a cylindrical portion 98 a having an end surface that comes into contact with the end surface of the second switching pin 94 </ b> R. The cylindrical portion 98a is supported by a support member 100 fixed to the cam carrier so as to be movable back and forth in the axial direction and rotatable in the circumferential direction.
 第2切換ピン94Lの先端は、リターンスプリング96の付勢力(反力)によって第1切換ピン88の一端に押し付けられることになる。それに応じて、上記3つのピン孔86、92L、92Rの軸心が同一直線上に位置している状況下では、第1切換ピン88の他端が第2切換ピン94Rの一端に押し付けられることになる。そして、更に、第2切換ピン94Rの他端がスライドピン98の円柱部98aの端面に押し付けられるようになる。このように、上記特定の状況下では、スライドピン98には、リターンスプリング96の付勢力が作用するようになっている。尚、第2ロッカーアーム74Rが主カム54からの作用力を受けて揺動する際に、第2切換ピン94Rと円柱部98aとの当接が途切れないように各構成要素の形状や寸法が設定されている。 The tip of the second switching pin 94L is pressed against one end of the first switching pin 88 by the urging force (reaction force) of the return spring 96. Accordingly, the other end of the first switching pin 88 is pressed against one end of the second switching pin 94R in a situation where the axial centers of the three pin holes 86, 92L, 92R are located on the same straight line. become. Further, the other end of the second switching pin 94R is pressed against the end surface of the cylindrical portion 98a of the slide pin 98. As described above, the biasing force of the return spring 96 acts on the slide pin 98 under the specific condition. It should be noted that when the second rocker arm 74R is swung by receiving the acting force from the main cam 54, the shape and dimensions of each component are set so that the contact between the second switching pin 94R and the cylindrical portion 98a is not interrupted. Is set.
 また、円柱部98aにおける第2切換ピン94Rと反対側の端部には、当該円柱部98aの半径方向外側に向けて突出するように、棒状のアーム部98bが設けられている。すなわち、当該アーム部98bは、当該円柱部98aの軸心を中心として回転自在に構成されている。アーム部98bの先端部は、図7に示すように、カムシャフト52の周面と対向する位置まで延びるように構成されている。また、アーム部98bの先端部には、カムシャフト52の周面に向けて突出するように突起部98cが設けられている。 Further, a rod-like arm portion 98b is provided at an end portion of the cylindrical portion 98a opposite to the second switching pin 94R so as to protrude outward in the radial direction of the cylindrical portion 98a. That is, the arm portion 98b is configured to be rotatable about the axis of the cylindrical portion 98a. As shown in FIG. 7, the distal end portion of the arm portion 98 b is configured to extend to a position facing the peripheral surface of the camshaft 52. Further, a projecting portion 98 c is provided at the distal end portion of the arm portion 98 b so as to protrude toward the peripheral surface of the camshaft 52.
 カムシャフト52における突起部98cと対向する外周面には、当該カムシャフト52よりも大きな外径を有する大径部102が形成されている。大径部102の周面には、周方向に延びる螺旋状溝104が形成されている。螺旋状溝104の幅は、突起部98cの外径より若干大きく形成されている。 A large-diameter portion 102 having an outer diameter larger than that of the camshaft 52 is formed on the outer peripheral surface of the camshaft 52 facing the protruding portion 98c. A spiral groove 104 extending in the circumferential direction is formed on the circumferential surface of the large diameter portion 102. The width of the spiral groove 104 is slightly larger than the outer diameter of the protrusion 98c.
 また、切換機構64は、突起部98cを螺旋状溝104に挿入させるためのアクチュエータ106を備えている。より具体的には、アクチュエータ106は、ECU40からの指令に基づいてデューティ制御されるソレノイド108と、当該ソレノイド108の駆動軸108aと当接するロックピン110とを備えている。ロックピン110は、円筒状に形成されている。 Further, the switching mechanism 64 includes an actuator 106 for inserting the protrusion 98 c into the spiral groove 104. More specifically, the actuator 106 includes a solenoid 108 that is duty-controlled based on a command from the ECU 40, and a lock pin 110 that comes into contact with the drive shaft 108 a of the solenoid 108. The lock pin 110 is formed in a cylindrical shape.
 ロックピン110には、ソレノイド108の推力に抗する付勢力を発するスプリング112の一端が掛け留められており、当該スプリング112の他端は、静止部材であるカムキャリアに固定された支持部材114に掛け留められている。このような構成によれば、ECU40からの指令に基づくソレノイド108の駆動時には、ソレノイド108の推力がスプリング112の付勢力に打ち勝つことで、ロックピン110を進出させることができ、一方、ソレノイド108の駆動が停止されると、スプリング112の付勢力によってロックピン110および駆動軸108aを速やかに所定位置に退出させられるようになる。また、ロックピン110は、支持部材114によってその半径方向への移動が拘束されている。このため、ロックピン110がその半径方向から力を受けることがあっても、ロックピン110が当該方向に移動しないようにすることができる。 One end of a spring 112 that generates a biasing force against the thrust of the solenoid 108 is hooked on the lock pin 110, and the other end of the spring 112 is attached to a support member 114 fixed to a cam carrier that is a stationary member. It is hung. According to such a configuration, when the solenoid 108 is driven based on a command from the ECU 40, the thrust of the solenoid 108 can overcome the urging force of the spring 112, so that the lock pin 110 can be advanced. When the drive is stopped, the lock pin 110 and the drive shaft 108a can be quickly retracted to a predetermined position by the urging force of the spring 112. Further, the movement of the lock pin 110 in the radial direction is restricted by the support member 114. For this reason, even if the lock pin 110 receives a force from its radial direction, the lock pin 110 can be prevented from moving in that direction.
 また、ソレノイド108は、ロックピン110がスライドピン98のアーム部98bの先端部の押圧面(突起部98cが設けられた面と反対側の面)98dを螺旋状溝104に向けて押圧可能な位置において、カムキャリア等の静止部材に固定されているものとする。言い換えれば、押圧面98dは、ロックピン110によって突起部98cが螺旋状溝104に向けて押されることができるような形状および位置に設けられている。 Further, the solenoid 108 is capable of pressing the pressing surface 98d (the surface opposite to the surface provided with the protruding portion 98c) 98d of the lock pin 110 toward the spiral groove 104 with respect to the tip portion of the arm portion 98b of the slide pin 98. In position, it shall be fixed to stationary members, such as a cam carrier. In other words, the pressing surface 98d is provided in a shape and a position such that the protrusion 98c can be pressed toward the spiral groove 104 by the lock pin 110.
 スライドピン98のアーム部98bは、カムシャフト52側の大径部102とストッパー116とによって拘束された範囲内で、円柱部98aの軸心を中心として回転可能に設定されている。そして、アーム部98bが当該範囲内にあり、かつ、スライドピン98の軸方向位置が後述する変位端Pmax1にある場合には、ソレノイド108により駆動されるロックピン110がアーム部98bの押圧面98dに確実に当接できるように、各構成要素の位置関係が設定されている。また、アーム部98bには、当該アーム部98bをストッパー116に向けて付勢するスプリング118が取り付けられている。尚、このようなスプリング118は、ソレノイド108の非駆動時にスライドピン98の自重によってアーム部98bが螺旋状溝104に嵌まり込むことが想定されない場合等には、必ずしも備えていなくてもよい。 The arm portion 98b of the slide pin 98 is set to be rotatable around the axis of the cylindrical portion 98a within a range constrained by the large diameter portion 102 and the stopper 116 on the camshaft 52 side. When the arm portion 98b is within the range and the axial position of the slide pin 98 is at a displacement end Pmax1 described later, the lock pin 110 driven by the solenoid 108 is pressed against the pressing surface 98d of the arm portion 98b. The positional relationship of each component is set so that it can be surely contacted. A spring 118 is attached to the arm portion 98b to urge the arm portion 98b toward the stopper 116. Note that such a spring 118 is not necessarily provided when the arm portion 98b is not expected to be fitted into the spiral groove 104 due to the weight of the slide pin 98 when the solenoid 108 is not driven.
 カムシャフト52の螺旋状溝104における螺旋の向きは、その内部に突起部98cが挿入された状態でカムシャフト52が図7に示す所定の回転方向に回転する場合に、スライドピン98がリターンスプリング96の付勢力に抗して切換ピン88、94L、94Rをその退出方向に押し退けてロッカーアーム72、74に近づく方向に変位するように、設定されている。 The direction of the spiral in the spiral groove 104 of the camshaft 52 is such that the slide pin 98 is a return spring when the camshaft 52 rotates in a predetermined rotational direction shown in FIG. 7 with the protrusion 98c inserted therein. The switching pins 88, 94L, 94R are set so as to be displaced in a direction approaching the rocker arms 72, 74 by pushing the switching pins 88, 94L, 94R against the biasing force of 96.
 ここで、リターンスプリング96の付勢力によって、第2切換ピン94Lが第2ピン孔92Lおよび第1ピン孔86の双方に挿入された状態となり、かつ、第1切換ピン88が第1ピン孔86および第2ピン孔92Rの双方に挿入された状態となっている時のスライドピン98の位置を、「変位端Pmax1」と称する。この変位端Pmax1にスライドピン98が位置している時には、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとがすべて連結された状態となる。そして、切換ピン88等がスライドピン98からの力を受けることによって、第2切換ピン94L、第1切換ピン88、および第2切換ピン94Rがそれぞれ第2ピン孔92L、第1ピン孔86、および第2ピン孔92Rのみに挿入された状態となっている時のスライドピン98の位置を、「変位端Pmax2」と称する。すなわち、この変位端Pmax2にスライドピン98が位置している時には、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとがすべて分離された状態となる。 Here, due to the urging force of the return spring 96, the second switching pin 94L is inserted into both the second pin hole 92L and the first pin hole 86, and the first switching pin 88 is in the first pin hole 86. The position of the slide pin 98 when inserted into both the second pin hole 92R and the second pin hole 92R is referred to as “displacement end Pmax1”. When the slide pin 98 is positioned at the displacement end Pmax1, the first rocker arm 72 and the second rocker arms 74R and 74L are all connected. Then, when the switching pin 88 or the like receives a force from the slide pin 98, the second switching pin 94L, the first switching pin 88, and the second switching pin 94R become the second pin hole 92L, the first pin hole 86, The position of the slide pin 98 when only inserted into the second pin hole 92R is referred to as “displacement end Pmax2”. That is, when the slide pin 98 is located at the displacement end Pmax2, the first rocker arm 72 and the second rocker arms 74R and 74L are all separated.
 本実施形態では、カムシャフト52の軸方向における螺旋状溝104の基端104aの位置は、スライドピン98が上記変位端Pmax1に位置する時の突起部98cの位置と一致するように設定されている。そして、カムシャフト52の軸方向における螺旋状溝104の終端104bの位置は、スライドピン98が上記変位端Pmax2に位置する時の突起部98cの位置と一致するように設定されている。つまり、本実施形態では、螺旋状溝104によって突起部98cが案内される範囲内で、スライドピン98が変位端Pmax1からPmax2の間で変位可能となるように構成されている。 In the present embodiment, the position of the base end 104a of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax1. Yes. The position of the terminal end 104b of the spiral groove 104 in the axial direction of the camshaft 52 is set so as to coincide with the position of the protrusion 98c when the slide pin 98 is positioned at the displacement end Pmax2. That is, in the present embodiment, the slide pin 98 is configured to be displaceable between the displacement ends Pmax1 and Pmax2 within the range in which the protrusion 98c is guided by the spiral groove 104.
 更に、本実施形態の螺旋状溝104には、図7に示すように、スライドピン98が変位端Pmax2に達した後における終端104b側の所定区間として、カムシャフト52の回転に伴って螺旋状溝104が徐々に浅くなる浅溝部104cが設けられている。尚、螺旋状溝104における浅溝部104c以外の部位の深さは一定である。 Further, as shown in FIG. 7, the spiral groove 104 of the present embodiment has a spiral section with the rotation of the camshaft 52 as a predetermined section on the terminal end 104 b side after the slide pin 98 reaches the displacement end Pmax 2. A shallow groove portion 104c in which the groove 104 gradually becomes shallow is provided. In addition, the depth of parts other than the shallow groove part 104c in the helical groove | channel 104 is constant.
 また、本実施形態のアーム部98bには、押圧面98dの一部を切り欠いて凹状に形成された切欠部98eが設けられている。押圧面98dは、スライドピン98が変位端Pmax1からPmax2に変位する間、ロックピン110と当接した状態が維持されるように設けられている。そして、切欠部98eは、スライドピン98が上記変位端Pmax2に位置している状態において、上記浅溝部104cの作用によって突起部98cが大径部102の表面に取り出された時に、ロックピン110と係合可能な部位に設けられている。 Further, the arm portion 98b of the present embodiment is provided with a notch portion 98e formed in a concave shape by notching a part of the pressing surface 98d. The pressing surface 98d is provided so that the state in contact with the lock pin 110 is maintained while the slide pin 98 is displaced from the displacement end Pmax1 to Pmax2. The notch 98e is formed with the lock pin 110 when the projecting portion 98c is taken out to the surface of the large diameter portion 102 by the action of the shallow groove portion 104c in a state where the slide pin 98 is located at the displacement end Pmax2. It is provided in the part which can be engaged.
 また、切欠部98eは、突起部98cが螺旋状溝104に挿入される方向にアーム部98bが回転するのを規制可能であって、スライドピン98が切換ピンの進出方向に移動するのを規制可能な態様で、ロックピン110と係合するように形成されている。より具体的には、切欠部98eには、ロックピン110が当該切欠部98e内に入り込んでいくにつれ、スライドピン98が大径部102から離れるように案内する案内面98fが備えられている。 The notch 98e can restrict the rotation of the arm 98b in the direction in which the projection 98c is inserted into the spiral groove 104, and restricts the slide pin 98 from moving in the advance direction of the switching pin. In a possible manner, it is configured to engage the lock pin 110. More specifically, the notch portion 98e is provided with a guide surface 98f that guides the slide pin 98 away from the large diameter portion 102 as the lock pin 110 enters the notch portion 98e.
[本実施形態の動弁装置の動作]
 次に、図8乃至図12を参照して、可変動弁装置32の動作について説明する。
(弁稼動状態時)
 図8は、弁稼動状態時(通常のリフト動作時)の制御状態を示す図である。
 この場合には、図8(B)に示すように、ソレノイド108の駆動がOFFとされており、これにより、スライドピン98は、カムシャフト52から離れた状態で、リターンスプリング96の付勢力を受けて、変位端Pmax1に位置している。この状態では、図8(A)に示すように、第1ロッカーアーム72と2つの第2ロッカーアーム74とが切換ピン88、94Lを介して連結されている。その結果、主カム54の作用力が第1ロッカーアーム72から左右の第2ロッカーアーム74R、74Lを介して双方のバルブ28に伝達されるようになる。このため、主カム54のプロフィールに従って、通常のバルブ28のリフト動作が行われるようになる。
[Operation of the valve gear of this embodiment]
Next, the operation of the variable valve gear 32 will be described with reference to FIGS.
(When the valve is operating)
FIG. 8 is a diagram illustrating a control state when the valve is operating (during a normal lift operation).
In this case, as shown in FIG. 8 (B), the drive of the solenoid 108 is turned OFF, so that the slide pin 98 is separated from the cam shaft 52 and the urging force of the return spring 96 is applied. Therefore, it is located at the displacement end Pmax1. In this state, as shown in FIG. 8A, the first rocker arm 72 and the two second rocker arms 74 are connected via the switching pins 88 and 94L. As a result, the acting force of the main cam 54 is transmitted from the first rocker arm 72 to both valves 28 via the left and right second rocker arms 74R and 74L. Therefore, the normal lift operation of the valve 28 is performed according to the profile of the main cam 54.
(弁停止動作開始時(スライド動作の開始時))
 図9は、弁停止動作の開始時の制御状態を示す図である。
 弁停止動作は、例えば、内燃機関10のフューエルカット要求等の所定の弁停止動作の実行要求がECU40によって検知された際に行われる。このような弁停止動作は、カムシャフト52の回転力を利用してスライドピン98によって切換ピン88、94L、94Rをその退出方向に変位させる動作であるため、これらの切換ピン88、94L、94Rの軸心が同一直線状に位置する時、すなわち、第1ロッカーアーム72が揺動していない時に行われる必要がある。
(When valve stop operation starts (when slide operation starts))
FIG. 9 is a diagram illustrating a control state at the start of the valve stop operation.
The valve stop operation is performed, for example, when a request for executing a predetermined valve stop operation such as a fuel cut request of the internal combustion engine 10 is detected by the ECU 40. Such a valve stop operation is an operation of displacing the switching pins 88, 94L, 94R in the retracting direction by the slide pin 98 using the rotational force of the camshaft 52, and therefore, the switching pins 88, 94L, 94R. Need to be performed when the shaft centers of the first rocker arm 72 are not oscillating.
 本実施形態では、切換ピンの退出方向にスライドピン98がスライド動作を行う区間が主カム54のベース円区間内と対応するように、螺旋状溝104が設定されている。このため、ECU40が所定の弁停止動作の実行要求を検知した場合において、最初にベース円区間が到来する気筒から順にソレノイド108を駆動することによって、図9(B)に示すように、突起部98cが螺旋状溝104に挿入され、各気筒の弁停止動作が順に開始するようになる。そして、螺旋状溝104に挿入された突起部98cが当該螺旋状溝104によって案内されることで、カムシャフト52の回転力を利用して、図9(A)に示すように、変位端Pmax2側に向けて、スライドピン98のスライド動作が開始するようになる。 In this embodiment, the spiral groove 104 is set so that the section in which the slide pin 98 slides in the retreat direction of the switching pin corresponds to the base circle section of the main cam 54. For this reason, when the ECU 40 detects the execution request for the predetermined valve stop operation, the solenoid 108 is driven in order from the cylinder in which the base circle section first arrives, thereby, as shown in FIG. 98c is inserted into the spiral groove 104, and the valve stop operation of each cylinder starts in sequence. Then, the protrusion 98c inserted into the spiral groove 104 is guided by the spiral groove 104, so that the rotational end of the camshaft 52 is utilized as shown in FIG. The slide operation of the slide pin 98 starts toward the side.
(スライド動作の完了時)
 図10は、スライド動作の完了時の制御状態を示す図である。
 スライド動作の実行中には、螺旋状溝104の側面に突起部98cが当接することによって、リターンスプリング96の付勢力が受け止められた状態で、スライドピン98が変位端Pmax2に向けて移動していく。図10(A)は、スライドピン98が変位端Pmax2に到達して弁停止要求時のスライド動作が完了したタイミング、すなわち、第1切換ピン88および第2切換ピン94Lがそれぞれ第1ピン孔86および第2ピン孔92L内に収まるようになったことで、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとの連結が解除されたタイミングを示している。また、このタイミングでは、図10(B)に示すように、螺旋状溝104内における突起部98cの位置は、未だ浅溝部104cに達していない。
(When slide operation is completed)
FIG. 10 is a diagram illustrating a control state when the slide operation is completed.
During execution of the sliding operation, the projecting portion 98c comes into contact with the side surface of the spiral groove 104, and the slide pin 98 moves toward the displacement end Pmax2 while the urging force of the return spring 96 is received. Go. FIG. 10A shows the timing when the slide pin 98 reaches the displacement end Pmax2 and the slide operation at the time of the valve stop request is completed, that is, the first switching pin 88 and the second switching pin 94L are respectively in the first pin hole 86. The timing when the connection between the first rocker arm 72 and the second rocker arms 74R and 74L is released by being within the second pin hole 92L is shown. At this timing, as shown in FIG. 10B, the position of the protrusion 98c in the spiral groove 104 has not yet reached the shallow groove 104c.
 上記のようにスライド動作が完了し、第1ロッカーアーム72と第2ロッカーアーム74R、74Lとが分離された状態になると、主カム54の回転に伴って、コイルスプリング78によって主カム54に向けて付勢された第1ロッカーアーム72が単独で揺動することになる。このため、2つの第2ロッカーアーム74には、主カム54の作用力が伝達されなくなる。また、第2ロッカーアーム74が当接する副カム56は、ゼロリフトカムであるため、主カム54の作用力が伝達されなくなった第2ロッカーアーム74には、バルブ28を駆動するための力が与えられなくなる。その結果、主カム54の回転に関係なく、第2ロッカーアーム74が静止状態となるので、バルブ28のリフト動作が停止状態となる。 When the sliding operation is completed as described above and the first rocker arm 72 and the second rocker arms 74R and 74L are separated, the coil spring 78 moves toward the main cam 54 as the main cam 54 rotates. The first rocker arm 72 biased in this way swings independently. For this reason, the acting force of the main cam 54 is not transmitted to the two second rocker arms 74. Further, since the secondary cam 56 with which the second rocker arm 74 abuts is a zero lift cam, a force for driving the valve 28 is applied to the second rocker arm 74 where the acting force of the main cam 54 is not transmitted. It becomes impossible. As a result, the second rocker arm 74 is in a stationary state regardless of the rotation of the main cam 54, so that the lift operation of the valve 28 is stopped.
 尚、第1ロッカーアーム72のみが揺動する場合には、第1切換ピン88と第2切換ピン94L、94Rとの軸心がずれることになる。第1ロッカーアーム72と第2ロッカーアーム74との円滑な動作を確保するためには、そのようなずれが生ずる際に、第1切換ピン88の端面の一部と第2切換ピン94L、94Rの端面の一部とが互いに当接している必要がある。このため、本実施形態では、第1切換ピン88および第2切換ピン94L、94Rの端面の形状や寸法は、上記条件を満たすように定められている。 When only the first rocker arm 72 swings, the axis between the first switching pin 88 and the second switching pins 94L and 94R is displaced. In order to ensure a smooth operation of the first rocker arm 72 and the second rocker arm 74, when such a shift occurs, a part of the end face of the first switching pin 88 and the second switching pins 94L, 94R. It is necessary that a part of the end face of each other is in contact with each other. For this reason, in this embodiment, the shape and dimension of the end surface of the 1st switching pin 88 and the 2nd switching pin 94L and 94R are determined so that the said conditions may be satisfy | filled.
(変位部材の保持動作時)
 図11および図12は、スライドピン98をロックピン110によって保持する保持動作時の制御状態を示す図である。より具体的には、図11は、第1ロッカーアーム72が揺動動作(リフト動作)を行っていない場合の状態を示しており、図12は、当該第1ロッカーアーム72が揺動動作(リフト動作)を行っている場合の状態を示している。
(At the time of holding the displacement member)
11 and 12 are diagrams showing a control state during a holding operation in which the slide pin 98 is held by the lock pin 110. FIG. More specifically, FIG. 11 shows a state in which the first rocker arm 72 is not performing a swinging operation (lifting operation), and FIG. 12 shows a state in which the first rocker arm 72 is swinging ( The state when the lift operation is being performed is shown.
 上記図10に示すスライド動作完了時から更にカムシャフト52が回転すると、突起部98cは、溝が徐々に浅くなる浅溝部104cに差し掛かる。その結果、浅溝部104cの作用によって、スライドピン98がカムシャフト52から離れる方向に回転させられるようになる。そして、浅溝部104cによって溝が浅くなるにつれ、ロックピン110がその退出方向に少し変位する。その後、ソレノイド108によって駆動され続けているロックピン110が切欠部98eに一致するようになるまでスライドピン98が更に回転すると、ロックピン110と当接するスライドピン98側の部位が押圧面98dから切欠部98eへと切り替わる。 When the camshaft 52 further rotates from the time when the sliding operation shown in FIG. 10 is completed, the protrusion 98c reaches the shallow groove 104c where the groove gradually becomes shallower. As a result, the slide pin 98 is rotated in the direction away from the camshaft 52 by the action of the shallow groove portion 104c. As the groove becomes shallower by the shallow groove portion 104c, the lock pin 110 is slightly displaced in the retracted direction. Thereafter, when the slide pin 98 further rotates until the lock pin 110 continuously driven by the solenoid 108 coincides with the notch 98e, the portion on the slide pin 98 side that contacts the lock pin 110 is notched from the pressing surface 98d. Switch to section 98e.
 その結果、ロックピン110が切欠部98eに係合するようになる。これにより、図11(B)および図12(B)に示すように、スライドピン98は、突起部98cがカムシャフト52から離れた状態で、かつ、ロックピン110によってリターンスプリング96の付勢力を受け止める状態で保持されるようになる。このため、この保持動作中において、図11(A)および図12(A)に示すように、第1ロッカーアーム72と第2ロッカーアーム74とが分離された状態、すなわち、弁停止状態が維持されるようになる。 As a result, the lock pin 110 comes into engagement with the notch 98e. As a result, as shown in FIGS. 11B and 12B, the slide pin 98 has the protruding portion 98c separated from the camshaft 52 and the urging force of the return spring 96 by the lock pin 110. It will be held in a state of receiving. Therefore, during this holding operation, as shown in FIGS. 11A and 12A, the state where the first rocker arm 72 and the second rocker arm 74 are separated, that is, the valve stop state is maintained. Will come to be.
(弁復帰動作時)
 弁停止状態から通常のリフト動作が行われる弁稼動状態に戻すための弁復帰動作は、例えば、フューエルカットからの復帰要求等の所定の弁復帰動作の実行要求がECU40によって検知された際に行われる。このような弁復帰動作は、図11、12に示す制御状態において、ECU40が所定のタイミング(切換ピン88等が移動可能となるベース円区間の開始タイミングよりもソレノイド108の動作に要する所定時間分だけ早いタイミング)でソレノイド108への通電をOFFとすることが開始される。ソレノイド108への通電がOFFとされると、スライドピン98の切欠部98eとロックピン110との係合が解かれることになる。その結果、リターンスプリング96の付勢力に抗して第1切換ピン88および第2切換ピン94Lをそれぞれ第1ピン孔86および第2ピン孔92Lに留めておく力が消滅することになる。
(Valve return operation)
The valve return operation for returning to the valve operation state in which the normal lift operation is performed from the valve stop state is performed, for example, when a request for executing a predetermined valve return operation such as a return request from a fuel cut is detected by the ECU 40. Is called. Such a valve return operation is performed in the control state shown in FIGS. 11 and 12 by a predetermined time required for the operation of the solenoid 108 from the predetermined timing (start timing of the base circle section in which the switching pin 88 and the like are movable). As soon as possible, turning off the energization of the solenoid 108 is started. When the energization of the solenoid 108 is turned off, the engagement between the notch 98e of the slide pin 98 and the lock pin 110 is released. As a result, the force that holds the first switching pin 88 and the second switching pin 94L against the first pin hole 86 and the second pin hole 92L against the urging force of the return spring 96 disappears.
 このため、切換ピン88、94L、94Rの位置が一致するベース円区間が到来すると、リターンスプリング96の付勢力によって、切換ピン88、94Lが進出方向に移動し、第1ロッカーアーム72と2つの第2ロッカーアーム74とが切換ピン88、94Lを介して連結された状態、すなわち、主カム54の作用力によってバルブ28のリフト動作が可能な状態に復帰することになる。また、リターンスプリング96の付勢力によって切換ピン88、94Lが進出方向に移動するのに伴って、第2切換ピン94Rを介して、スライドピン98が変位端Pmax2から変位端Pmax1に戻されるようになる。 For this reason, when the base circle section in which the positions of the switching pins 88, 94L, 94R coincide with each other, the switching pins 88, 94L move in the advance direction by the urging force of the return spring 96, and the first rocker arm 72 and the two The state in which the second rocker arm 74 is connected via the switching pins 88 and 94L, that is, the state in which the valve 28 can be lifted by the acting force of the main cam 54 is restored. Further, as the switching pins 88 and 94L move in the advance direction by the urging force of the return spring 96, the slide pin 98 is returned from the displacement end Pmax2 to the displacement end Pmax1 via the second switching pin 94R. Become.
(まとめ)
 以上のように構成された本実施形態の可変動弁装置32によれば、ソレノイド108の通電のON、OFFとカムシャフト52の回転力とリターンスプリング96の付勢力とを利用して、スライドピン98の軸方向位置を変位端Pmax1からPmax2の間で移動させることで、弁稼動状態と弁停止状態との間でバルブ28の動作状態を切り換えることが可能となる。
(Summary)
According to the variable valve operating apparatus 32 of the present embodiment configured as described above, the slide pin is turned on using the energization ON / OFF of the solenoid 108, the rotational force of the camshaft 52, and the biasing force of the return spring 96. By moving the axial position of 98 between the displacement ends Pmax1 and Pmax2, the operating state of the valve 28 can be switched between the valve operating state and the valve stopping state.
 より具体的には、弁停止要求が出された際に、ソレノイド108の通電をONとして突起部98cを螺旋状溝104に挿入することで、カムシャフト52の回転力を利用するスライドピン98によって、切換ピン88等を切換ピンの退出方向に移動させることができる。その結果、一度のベース円区間中に、第1ロッカーアーム72と2つの第2ロッカーアーム74とを連結状態から分離状態に速やかに切り換えることが可能となる。これにより、弁停止状態とすることができる。また、弁復帰要求が出された際に、ソレノイドの通電をOFFとしてスライドピン98とロックピン110との係合を解除することで、リターンスプリング96の付勢力を利用して、切換ピン88等やスライドピン98を切換ピンの進出方向に移動させることができる。その結果、一度のベース円区間中に、第1ロッカーアーム72と2つの第2ロッカーアーム74とを分離状態から連結状態に速やかに切り換えることが可能となるとともに、弁停止動作を開始させられる元の位置(Pmax1)にスライドピン98を戻すことができる。これにより、バルブ28の動作状態を弁停止状態に復帰させることができる。 More specifically, when a valve stop request is issued, the energization of the solenoid 108 is turned on and the protrusion 98 c is inserted into the spiral groove 104, so that the slide pin 98 that uses the rotational force of the camshaft 52 is used. The switching pin 88 and the like can be moved in the direction in which the switching pin is withdrawn. As a result, the first rocker arm 72 and the two second rocker arms 74 can be quickly switched from the connected state to the separated state during one base circle section. Thereby, it can be set as a valve stop state. Further, when a valve return request is issued, the energization of the solenoid is turned off and the engagement between the slide pin 98 and the lock pin 110 is released, so that the urging force of the return spring 96 is used to switch the switching pin 88 or the like. And the slide pin 98 can be moved in the advancing direction of the switching pin. As a result, the first rocker arm 72 and the two second rocker arms 74 can be quickly switched from the separated state to the connected state and the valve stop operation can be started during one base circle section. The slide pin 98 can be returned to the position (Pmax1). Thereby, the operation state of the valve 28 can be returned to the valve stop state.
 また、上記可変動弁装置32によれば、スライドピン98のスライド動作が完了する変位端Pmax2にスライドピン98が達した後に、ロックピン110を切欠部98eと係合させることにより、リターンスプリング96の付勢力によって変位端Pmax2から変位端Pmax1側に向けて変位しないようにスライドピン98を保持する機能を、突起部98cと係合する螺旋状溝104の側面から切欠部98eと係合するロックピン110に移し変えることができるようになる。ロックピン110と切欠部98eとが係合することでスライドピン98が保持された状態では、既述したように、突起部98cがカムシャフト52から離れた状態となるように設定されている。このように、弁停止動作の完了後にスライドピン98の保持が軸方向に関して静止状態にあるロックピン110に変更されることにより、回転するカムシャフト52との摺動に伴うフリクションや摩耗の発生を回避することができる。より具体的には、フリクションが無くなることで、内燃機関10の燃費を向上させることができ、また、スライドピン98の摩耗が無くなることで、切換ピン88等の制御位置が安定するので、バルブ28の動作状態の良好な切換性を確保することができるようになる。更に付け加えると、本実施形態の可変動弁装置32の構成によれば、突起部98cの挿入を行うために備えられているソレノイド108と一体的に動作するロックピン110と、切換ピン88等を移動させる目的で備えられているスライドピン98に設けられた切欠部98eとの間で、上記保持機能が実現される。このため、部品点数の増加を招くことなく、簡素化された構成を用いてバルブ28の動作状態を良好に切り換えることのできる可変動弁装置32を得ることができる。 Further, according to the variable valve operating apparatus 32, the return spring 96 is engaged by engaging the lock pin 110 with the notch 98e after the slide pin 98 reaches the displacement end Pmax2 at which the slide operation of the slide pin 98 is completed. The function of holding the slide pin 98 so as not to be displaced from the displacement end Pmax2 toward the displacement end Pmax1 by the urging force of the lock is a lock engaged with the notch 98e from the side surface of the spiral groove 104 engaged with the protrusion 98c. It can be transferred to the pin 110. In the state where the slide pin 98 is held by the engagement of the lock pin 110 and the notch portion 98e, the projection portion 98c is set to be separated from the camshaft 52 as described above. As described above, after the valve stop operation is completed, the holding of the slide pin 98 is changed to the lock pin 110 that is stationary in the axial direction, so that friction and wear due to sliding with the rotating camshaft 52 are generated. It can be avoided. More specifically, the elimination of friction can improve the fuel efficiency of the internal combustion engine 10 and the wear of the slide pin 98 is eliminated, so that the control position of the switching pin 88 and the like is stabilized. It is possible to ensure good switchability of the operation state. In addition, according to the configuration of the variable valve operating apparatus 32 of the present embodiment, the lock pin 110 that operates integrally with the solenoid 108 that is provided to insert the protrusion 98c, the switching pin 88, and the like are provided. The above holding function is realized with the notch 98e provided in the slide pin 98 provided for the purpose of movement. For this reason, it is possible to obtain the variable valve operating apparatus 32 that can switch the operating state of the valve 28 satisfactorily using a simplified configuration without increasing the number of parts.
[内燃機関の始動時の課題]
 本実施形態の可変動弁装置32のように、ソレノイド108(アクチュエータ106)に通電することで弁停止状態を形成し、当該ソレノイド108への通電を停止することで弁稼動状態を形成する構成を有する可変動弁装置32の場合には、内燃機関10が停止されると(すなわち、IGスイッチ50がOFFとされることに伴ってECU40から各種アクチュエータへの通電が停止されるようになっていると)、ソレノイド108への通電が停止されてしまう。その結果、内燃機関10の停止がなされる際に弁停止状態に制御されている場合であっても、バルブ28の動作状態が弁稼動状態に戻ってしまう。
[Problems when starting an internal combustion engine]
As in the variable valve operating apparatus 32 of the present embodiment, the valve stop state is formed by energizing the solenoid 108 (actuator 106), and the valve operation state is formed by de-energizing the solenoid 108. In the case of the variable valve device 32 having the above configuration, when the internal combustion engine 10 is stopped (that is, when the IG switch 50 is turned OFF, energization from the ECU 40 to various actuators is stopped. And the energization of the solenoid 108 is stopped. As a result, even when the internal combustion engine 10 is stopped and controlled to the valve stop state, the operation state of the valve 28 returns to the valve operation state.
 上記のように弁稼動状態に戻された状態で、何らの配慮がなされないままでその後に内燃機関10が始動(クランキング)されると、バルブ28の開閉動作が行われるようになるので、触媒36に向けて酸素濃度の高い新気が供給されてしまう。その結果、触媒温度が劣化懸念温度よりも高い場合であれば、触媒36に劣化が生じることが懸念される。 When the internal combustion engine 10 is subsequently started (cranked) without any consideration in the state where the valve is returned to the valve operating state as described above, the opening and closing operation of the valve 28 is performed. Fresh air having a high oxygen concentration is supplied toward the catalyst 36. As a result, if the catalyst temperature is higher than the deterioration concern temperature, the catalyst 36 may be deteriorated.
 また、上記のように弁稼動状態に戻された状態で、始動時(クランキング時)に触媒36に劣化が生ずるのを抑制すべく、内燃機関10の始動開始とともに仮にソレノイド108への通電を開始させたとしても、バルブ28の動作状態の切り換えには所定時間を要する。より具体的には、本実施形態の可変動弁装置32の構成の場合には、既述したように、ソレノイド108への通電を開始させることによって突起部98cを螺旋状溝104に挿入させたうえで、カムシャフト52の回転に伴って螺旋状溝104により案内されたスライドピン98が切換ピンの退出方向に変位し、弁停止状態となる。このため、本実施形態の可変動弁装置32のように迅速にバルブ28の動作状態を切り換えられる機構であっても、弁稼動状態から弁停止状態に切り換えるためには、内燃機関10の1サイクルが経過する期間を必要とする。そして、そのような弁稼動状態から弁停止状態への切り換え中には、触媒36に向けて新気が供給されるので、触媒の劣化が懸念される。 Further, in order to suppress the deterioration of the catalyst 36 at the start (cranking) in the state where the valve is returned to the valve operating state as described above, the solenoid 108 is energized as soon as the internal combustion engine 10 is started. Even if it is started, it takes a predetermined time to switch the operation state of the valve 28. More specifically, in the case of the configuration of the variable valve operating apparatus 32 of the present embodiment, as described above, the protrusion 98 c is inserted into the spiral groove 104 by starting energization of the solenoid 108. In addition, as the camshaft 52 rotates, the slide pin 98 guided by the spiral groove 104 is displaced in the retracting direction of the switching pin, and the valve is stopped. Therefore, even in a mechanism that can quickly switch the operating state of the valve 28 as in the variable valve operating apparatus 32 of the present embodiment, one cycle of the internal combustion engine 10 is required to switch from the valve operating state to the valve stopped state. Requires a period of time. During the switching from such a valve operating state to a valve stop state, fresh air is supplied toward the catalyst 36, so there is a concern about catalyst deterioration.
[実施の形態1における特徴的な制御]
 図13は、本発明の実施の形態1における特徴的な制御を説明するために用いる図である。
 上記の内燃機関10の始動時の課題を解消すべく、本実施形態では、図13に示すように、内燃機関10の停止動作の開始時(IGスイッチ50がOFFされたことが検出された時)に、触媒36の温度が所定の劣化懸念下限温度以上である場合には、ソレノイド108への通電がなされている状態で停止動作を完了させたうえで、当該停止動作の完了時点からの所定時間に渡ってソレノイド108への通電を継続するようにした。より具体的には、この場合には、IGスイッチ50がOFFされた時点以降においても、内燃機関10の停止中に触媒36の温度が上記劣化懸念温度に低下する時点までソレノイド108への通電を継続するようにした。 
[Characteristic Control in Embodiment 1]
FIG. 13 is a diagram used for explaining characteristic control in Embodiment 1 of the present invention.
In order to solve the problem at the start of the internal combustion engine 10, in the present embodiment, as shown in FIG. 13, when the stop operation of the internal combustion engine 10 is started (when it is detected that the IG switch 50 is turned off). In the case where the temperature of the catalyst 36 is equal to or higher than a predetermined deterioration concern lower limit temperature, the stop operation is completed while the solenoid 108 is energized, and then the predetermined time from the completion of the stop operation. The energization of the solenoid 108 was continued over time. More specifically, in this case, even after the time when the IG switch 50 is turned off, the solenoid 108 is energized until the temperature of the catalyst 36 is lowered to the deterioration concern temperature while the internal combustion engine 10 is stopped. To continue.
 図14は、上記の機能を実現するために、ECU40が実行するルーチンのフローチャートである。尚、本ルーチンは、IGスイッチ50がOFFとされたことが検出された際に起動されるものとする。 図14に示すルーチンでは、先ず、エンジン冷却水温度、エンジン油温、およびエンジン負荷履歴が、各種センサ48等からの情報に基づいて取得される(ステップ100)。次いで、これらのエンジン冷却水温度、エンジン油温、およびエンジン負荷履歴に基づいて、現在(すなわち、IGスイッチ50がOFFされた時点)の触媒36の温度の推定値が取得される(ステップ102)。尚、触媒36の温度は、推定により取得する手法に限られず、センサを用いて実測するようにしてもよい。  FIG. 14 is a flowchart of a routine executed by the ECU 40 in order to realize the above function. Note that this routine is started when it is detected that the IG switch 50 is turned off. In the routine shown in FIG. 14, first, the engine coolant temperature, the engine oil temperature, and the engine load history are acquired based on information from various sensors 48 and the like (step 100). Next, based on the engine coolant temperature, the engine oil temperature, and the engine load history, an estimated value of the temperature of the catalyst 36 at the present time (that is, when the IG switch 50 is turned off) is acquired (step 102). . The temperature of the catalyst 36 is not limited to the method obtained by estimation, but may be measured using a sensor. *
次に、上記ステップ102において推定された現在の触媒36の温度が上記劣化懸念下限温度以上であるか否かが判別される(ステップ104)。図13に示す劣化懸念下限温度とは、触媒36に酸素濃度の高いガス(新気)が供給された際に当該触媒36に劣化が生ずることが懸念される温度域の下限温度である。すなわち、当該劣化懸念下限温度は、それよりも低い温度であれば、触媒36に劣化が生じないと判断することができる温度である。当該劣化懸念下限温度は、予め実験等により取得することができる。  Next, it is determined whether or not the current temperature of the catalyst 36 estimated in step 102 is equal to or higher than the deterioration concern lower limit temperature (step 104). The deterioration concern lower limit temperature shown in FIG. 13 is a lower limit temperature in a temperature range in which deterioration of the catalyst 36 is a concern when a gas having a high oxygen concentration (fresh air) is supplied to the catalyst 36. In other words, the lower limit temperature for fear of deterioration is a temperature at which it can be determined that the catalyst 36 does not deteriorate if the temperature is lower than that. The degradation concern lower limit temperature can be obtained in advance by experiments or the like. *
上記ステップ104において、現在の触媒36の温度が上記劣化懸念下限温度よりも低いと判定された場合には、その後に内燃機関10が始動される際に触媒36に新気が供給されることになっても触媒36に劣化が生じないと判断することができる。このため、この場合には、ソレノイド108への通電がOFFとされる(ステップ106)。  If it is determined in step 104 that the current temperature of the catalyst 36 is lower than the lower limit temperature for fear of deterioration, fresh air is supplied to the catalyst 36 when the internal combustion engine 10 is subsequently started. Even in such a case, it can be determined that the catalyst 36 does not deteriorate. Therefore, in this case, the energization to the solenoid 108 is turned off (step 106). *
一方、上記ステップ104において、現在の触媒36の温度が上記劣化懸念下限温度以上であると判定された場合には、このままでは短時間に次回の内燃機関10の始動がなされた場合に触媒36の劣化が懸念される。このため、この場合には、現在の外気温度が外気温度センサ48によって取得されたうえで(ステップ108)、触媒36の温度降下率が算出される(ステップ110)。  On the other hand, if it is determined in step 104 that the current temperature of the catalyst 36 is equal to or higher than the deterioration concern lower limit temperature, if the internal combustion engine 10 is started next time in a short time, the catalyst 36 There is concern about deterioration. Therefore, in this case, after the current outside air temperature is acquired by the outside air temperature sensor 48 (step 108), the temperature drop rate of the catalyst 36 is calculated (step 110). *
内燃機関10の停止中における触媒36の温度降下率(図13に示すように、時間の経過に対する触媒温度の変化の勾配)は、触媒36の仕様(熱容量等)が決まっていれば、外気温度(触媒36の雰囲気温度)との関係で定まるものである。ECU40は、予め実験等により、外気温度との関係で内燃機関10の停止中の触媒36の温度降下率を定めたマップを記憶している。本ステップ110では、そのようなマップを参照して、内燃機関10の停止中の触媒36の温度降下率が算出される。  If the temperature drop rate of the catalyst 36 during the stop of the internal combustion engine 10 (as shown in FIG. 13, the gradient of the change in the catalyst temperature over time) is determined if the specifications (heat capacity, etc.) of the catalyst 36 are determined, It is determined by the relationship with the (atmospheric temperature of the catalyst 36). The ECU 40 stores in advance a map in which the temperature drop rate of the catalyst 36 during the stop of the internal combustion engine 10 is determined in relation to the outside air temperature by experiments or the like. In step 110, the temperature drop rate of the catalyst 36 when the internal combustion engine 10 is stopped is calculated with reference to such a map. *
次に、IGスイッチ50がOFFとされた時点から触媒36の温度が上記劣化懸念下限温度に到達するまでの時間(劣化懸念下限温度到達時間)が算出される(ステップ112)。上記ステップ110において触媒36の温度降下率が分かれば、触媒36の温度が劣化懸念下限温度よりも高い場合において、内燃機関10の停止中に触媒36の温度が当該劣化懸念下限温度に達するまでの劣化懸念下限温度到達時間、すなわち、ソレノイド108への通電を継続しておくべき通電継続時間を算出することができる。  Next, a time from when the IG switch 50 is turned OFF until the temperature of the catalyst 36 reaches the deterioration concern lower limit temperature is calculated (step 112). If the temperature drop rate of the catalyst 36 is known in step 110, when the temperature of the catalyst 36 is higher than the deterioration concern lower limit temperature, the temperature of the catalyst 36 reaches the deterioration concern lower limit temperature while the internal combustion engine 10 is stopped. It is possible to calculate the degradation concern lower limit temperature reaching time, that is, the energization continuation time during which the energization of the solenoid 108 should be continued. *
次に、劣化懸念下限温度到達時間(上記通電継続時間)に達するまでの間、ソレノイド108への通電が行われる(ステップ114)。より具体的には、本ステップ114におけるソレノイド108への通電は、IGスイッチ50がOFFされたことが検出された後に内燃機関10の停止動作が完了するまでに開始され、その後に当該停止動作が完了してから上記劣化懸念下限温度到達時間に達するまで継続される。尚、内燃機関10の停止完了後においては、ECU40の指令に基づき、ソレノイド108に対して車両電源(バッテリー)から直接的に電力が供給されるようになる。その後、当該劣化懸念下限温度到達時間が経過すると、ソレノイド108への通電がOFFとされる(ステップ116)。  Next, the solenoid 108 is energized until the deterioration concern lower limit temperature reaching time (the above energization duration) is reached (step 114). More specifically, energization of the solenoid 108 in this step 114 is started until the stop operation of the internal combustion engine 10 is completed after it is detected that the IG switch 50 is turned OFF, and thereafter the stop operation is performed. After completion, the process continues until the deterioration concern lower limit temperature reaching time is reached. In addition, after the completion of the stop of the internal combustion engine 10, electric power is directly supplied from the vehicle power supply (battery) to the solenoid 108 based on a command from the ECU 40. Thereafter, when the time to reach the lower limit of concern for deterioration has elapsed, the energization of the solenoid 108 is turned off (step 116). *
以上説明した図14に示すルーチンによれば、内燃機関10の運転中にIGスイッチ50がOFFされたことが検出された際に、触媒36の温度が上記劣化懸念下限温度以上である場合には、内燃機関10の停止動作が完了する前にソレノイド108への通電が開始されることによって、弁停止状態で内燃機関10の停止動作が完了される。このため、その後に、触媒36の温度が上記劣化懸念下限温度以上である状況下で内燃機関10が始動されることがあっても、弁停止状態でクランキングがなされるようになる。また、触媒36の温度が上記劣化懸念下限温度よりも低い状況下で内燃機関10が始動される場合であれば、弁稼動状態でクランキングがなされても触媒36の劣化の懸念はない。このように、本実施形態の制御によれば、上記劣化懸念下限温度以上の高温になっている触媒36に対して、内燃機関10の始動時に酸素濃度の高い新気が流出されるのを回避することができる。このため、触媒36の温度が高い状況下での内燃機関10の始動時に、触媒36が劣化するのを確実に抑制することが可能となる。  According to the routine shown in FIG. 14 described above, when it is detected that the IG switch 50 is turned off during the operation of the internal combustion engine 10, the temperature of the catalyst 36 is equal to or higher than the deterioration concern lower limit temperature. When the solenoid 108 is energized before the stop operation of the internal combustion engine 10 is completed, the stop operation of the internal combustion engine 10 is completed in the valve stop state. For this reason, after that, even if the internal combustion engine 10 is started under the condition that the temperature of the catalyst 36 is equal to or higher than the lower limit temperature for deterioration, cranking is performed in the valve stop state. Further, if the internal combustion engine 10 is started under a situation where the temperature of the catalyst 36 is lower than the lower limit temperature for fear of deterioration, there is no concern about deterioration of the catalyst 36 even if cranking is performed in the valve operating state. As described above, according to the control of the present embodiment, fresh air with a high oxygen concentration is prevented from flowing out to the catalyst 36 that is at a high temperature that is equal to or higher than the deterioration concern lower limit temperature when the internal combustion engine 10 is started. can do. For this reason, it is possible to reliably suppress the deterioration of the catalyst 36 when the internal combustion engine 10 is started under a condition where the temperature of the catalyst 36 is high. *
ところで、上述した実施の形態1においては、IGスイッチ50がOFFされたことが検出された時点(上記図14に示すルーチンの起動時)で、触媒36の温度が劣化懸念下限温度以上であるか否かの判定を行うようにしている。しかしながら、本発明において、触媒の温度が所定温度(例えば、劣化懸念下限温度)以上であるか否か判断するタイミングである内燃機関の停止動作時は、アクチュエータに通電がなされている状態で停止動作を完了させられることが可能なタイミングであれば、IGスイッチOFFの検出直後(すなわち、停止動作の開始時)に限らず、IGスイッチOFF検出後の停止動作の経過中であってもよい。 By the way, in the first embodiment described above, is the temperature of the catalyst 36 equal to or higher than the degradation concern lower limit temperature when it is detected that the IG switch 50 is turned off (when the routine shown in FIG. 14 is started)? A determination of whether or not is made. However, in the present invention, during the stop operation of the internal combustion engine, which is a timing for determining whether or not the temperature of the catalyst is equal to or higher than a predetermined temperature (for example, the deterioration concern lower limit temperature), the stop operation is performed with the actuator energized. Is not limited to immediately after the IG switch OFF is detected (that is, at the start of the stop operation), but may be during the stop operation after the IG switch OFF is detected.
 また、上述した実施の形態1においては、IGスイッチ50がOFFされたことが検出された時点(上記図14に示すルーチンの起動時)で、触媒36の温度が劣化懸念下限温度以上であると判定された場合には、ソレノイド108への通電を開始するようにしている。しかしながら、本発明において、アクチュエータに通電を開始するタイミングは、アクチュエータに通電がなされている状態で停止動作を完了させることが確保されていれば、IGスイッチOFFの検出直後に限らず、IGスイッチOFF検出後の停止動作の経過中であってもよい。或いは、アクチュエータへの通電自体は、内燃機関10の他の要求に従って、IGスイッチOFFが検出される前から行われていてもよい。 Further, in the first embodiment described above, the temperature of the catalyst 36 is equal to or higher than the lower limit temperature for fear of deterioration at the time when it is detected that the IG switch 50 is turned off (when the routine shown in FIG. 14 is started). If it is determined, energization of the solenoid 108 is started. However, in the present invention, the timing of starting energization of the actuator is not limited to immediately after detecting the IG switch OFF, as long as it is ensured that the stop operation is completed while the actuator is energized. The stop operation after detection may be in progress. Alternatively, the energization of the actuator itself may be performed in accordance with other requirements of the internal combustion engine 10 before the IG switch OFF is detected.
 また、上述した実施の形態1においては、ソレノイド108に通電することによりロックピン110が突起部98cを螺旋状溝104に挿入し、カムシャフト52の回転力を利用してスライドピン98を軸方向に駆動することで、切換ピン88、94L、94Rを作動させるようにしている。つまり、上述した実施の形態1の構成では、アクチュエータ106の動作(ソレノイド108への通電に伴うロックピン110の動作)は、切換ピン88等を間接的に作動させる動作であるといえる。しかしながら、本発明におけるアクチュエータが切換ピンを作動させるべく行う動作は、上記アクチュエータ106のような動作に限られない。すなわち、例えば、切換ピンをその退出方向に駆動できる位置にソレノイドを配置することとし、当該ソレノイドへの通電によって当該ソレノイドが直接的に切換ピンを作動させるようなものであってもよい。 In the first embodiment described above, when the solenoid 108 is energized, the lock pin 110 inserts the protrusion 98c into the spiral groove 104, and the rotational force of the camshaft 52 is used to move the slide pin 98 in the axial direction. The switching pins 88, 94L, 94R are actuated by driving in the direction. That is, in the configuration of the first embodiment described above, it can be said that the operation of the actuator 106 (the operation of the lock pin 110 accompanying energization of the solenoid 108) is an operation that indirectly operates the switching pin 88 and the like. However, the operation performed by the actuator in the present invention to operate the switching pin is not limited to the operation of the actuator 106 described above. That is, for example, the solenoid may be arranged at a position where the switching pin can be driven in the retracting direction, and the solenoid may directly actuate the switching pin by energizing the solenoid.
 また、上述した実施の形態1においては、スライドピン98の切欠部98eとロックピン110との係合を保持すべく駆動されるソレノイド108によって、ソレノイド108(アクチュエータ106)への通電のON、OFFを制御することで、バルブ28の動作状態を弁停止状態と弁稼動状態との間で変更するようにしている。しかしながら、本発明におけるアクチュエータは、上記の構成に限定されず、例えば、デューティ制御されるオイルコントロールバルブ(OCV)によって制御される油圧により上記切欠部98eと係合可能に構成された油圧駆動式のロックピンを有するものであってもよい。 In the first embodiment described above, energization of the solenoid 108 (actuator 106) is turned ON / OFF by the solenoid 108 driven to maintain the engagement between the notch 98e of the slide pin 98 and the lock pin 110. By controlling this, the operation state of the valve 28 is changed between the valve stop state and the valve operation state. However, the actuator in the present invention is not limited to the above-described configuration. For example, the actuator is a hydraulic drive type configured to be able to engage with the notch 98e by a hydraulic pressure controlled by a duty-controlled oil control valve (OCV). It may have a lock pin.
 また、上述した実施の形態1においては、スライドピン98に切欠部98eが設けられており、当該切欠部98eとロックピン110との係合部によって、スライドピン98がカムシャフト52から離れた位置において、リターンスプリング96の付勢力を受け止めるように構成されている。しかしながら、本発明において、付勢手段が発する付勢力を受け止める係合部は、このような態様に限定されるものではない。すなわち、例えば、スライドピン98がカムシャフト52から離れた位置において、スライドピン98のアーム部98bとの間でリターンスプリング96の付勢力を受け止められるように、ロックピン110の廻り止め等の配慮をしたうえでロックピン110側に、切欠部98eと同様の切欠部を設けてもよい。 In the first embodiment described above, the slide pin 98 is provided with the notch 98e, and the slide pin 98 is separated from the camshaft 52 by the engaging portion between the notch 98e and the lock pin 110. In FIG. 4, the urging force of the return spring 96 is received. However, in the present invention, the engaging portion that receives the urging force generated by the urging means is not limited to such a mode. That is, for example, when the slide pin 98 is away from the camshaft 52, the lock pin 110 is prevented from rotating so that the urging force of the return spring 96 can be received between the slide pin 98 and the arm portion 98b. In addition, a notch similar to the notch 98e may be provided on the lock pin 110 side.
 また、上述した実施の形態1においては、中央に配置される第1ロッカーアーム72の左右に2つの第2ロッカーアーム74を備え、気筒当たりの吸気バルブまたは排気バルブの本数が2本とされた構成を例に挙げて説明を行ったが、第1ロッカーアームおよび第2ロッカーアームのそれぞれを少なくとも1つ備える構成であれば、本発明を適用することができる。 In the first embodiment described above, two second rocker arms 74 are provided on the left and right of the first rocker arm 72 disposed in the center, and the number of intake valves or exhaust valves per cylinder is two. Although the description has been given by taking the configuration as an example, the present invention can be applied as long as the configuration includes at least one of the first rocker arm and the second rocker arm.
 尚、上述した実施の形態1においては、主カム54が前記第1の発明における「カム」に、第1ロッカーアーム72および第2ロッカーアーム74が前記第1の発明における「複数の伝達部材」に、ECU40、ピン孔86、92L、92R、切換ピン88、94L、94R、リターンスプリング96、スライドピン98、支持部材100、大径部102の螺旋状溝104、およびアクチュエータ106(ソレノイド108、ロックピン110、スプリング112、および支持部材114)が前記第1の発明における「切換手段」に、切換ピン88、94Lが前記第1の発明における「切換ピン」に、そして、アクチュエータ106が前記第1の発明における「アクチュエータ」に、それぞれ相当している。また、ECU40が上記図14に示すルーチンの一連の処理を実行することにより前記第1の発明における「停止時通電制御手段」が実現されている。
 また、上述した実施の形態1においては、リターンスプリング96が前記第3の発明における「付勢手段」に、スライドピン98が前記第3の発明における「変位部材」に、カムシャフト52が前記第3の発明における「カムと連動して回転する回転体」に、そして、ロックピン110が前記第3の発明における「当接部」に、それぞれ相当している。
In the first embodiment described above, the main cam 54 is the “cam” in the first invention, and the first rocker arm 72 and the second rocker arm 74 are the “plurality of transmission members” in the first invention. ECU 40, pin holes 86, 92L, 92R, switching pins 88, 94L, 94R, return spring 96, slide pin 98, support member 100, spiral groove 104 of large diameter portion 102, and actuator 106 (solenoid 108, lock The pin 110, the spring 112, and the support member 114) are the “switching means” in the first invention, the switching pins 88 and 94L are the “switching pins” in the first invention, and the actuator 106 is the first switching device. It corresponds to the “actuator” in the present invention. Further, the “stop-time energization control means” according to the first aspect of the present invention is realized by the ECU 40 executing a series of processes of the routine shown in FIG.
In the first embodiment described above, the return spring 96 is the “biasing means” in the third invention, the slide pin 98 is the “displacement member” in the third invention, and the camshaft 52 is the first. The lock pin 110 corresponds to the “rotating body rotating in conjunction with the cam” in the third invention, and the “contact portion” in the third invention.

Claims (3)

  1.  内燃機関の排気通路に配置され、排気ガスを浄化可能な触媒と、
     カムとバルブとの間に配置され、当該カムの作用力をバルブに伝達するための複数の伝達部材を有し、当該複数の伝達部材が相互に連結/分離されることによりバルブの動作状態を弁稼動状態と弁停止状態との間で変更する可変機構と、
     前記複数の伝達部材の連結/分離を切り換える切換手段と、を備える内燃機関の可変動弁装置であって、
     前記切換手段は、
     前記可変機構に進退自在に取り付けられ、前記複数の伝達部材を連結状態または分離状態とするための切換ピンと、
     電気的に駆動され、前記切換ピンを直接的または間接的に作動させる動作を行うアクチュエータと、を有し、
     前記切換手段は、前記アクチュエータの非通電時に前記複数の伝達部材を連結状態とし、前記アクチュエータの通電時に前記複数の伝達部材を分離状態とするものであって、
     前記可変動弁装置は、内燃機関の停止動作時に前記触媒の温度が所定温度以上である場合には、前記アクチュエータに通電がなされている状態で前記停止動作を完了させ、かつ、当該停止動作の完了時点からの所定時間に渡って、前記アクチュエータへの通電を継続する停止時通電制御手段を更に備えることを特徴とする内燃機関の可変動弁装置。
    A catalyst disposed in an exhaust passage of the internal combustion engine and capable of purifying exhaust gas;
    It is arranged between the cam and the valve, and has a plurality of transmission members for transmitting the acting force of the cam to the valve, and the operation state of the valve is controlled by connecting / separating the plurality of transmission members to each other. A variable mechanism that changes between a valve operating state and a valve stopped state;
    A variable valve operating apparatus for an internal combustion engine comprising: switching means for switching connection / separation of the plurality of transmission members;
    The switching means is
    A switching pin that is attached to the variable mechanism so as to freely advance and retract, and is configured to connect or separate the plurality of transmission members;
    An electrically driven actuator that operates directly or indirectly to actuate the switching pin;
    The switching means is configured to connect the plurality of transmission members when the actuator is not energized, and to separate the plurality of transmission members when the actuator is energized,
    When the temperature of the catalyst is equal to or higher than a predetermined temperature during the stop operation of the internal combustion engine, the variable valve apparatus completes the stop operation while the actuator is energized, and A variable valve operating apparatus for an internal combustion engine, further comprising a stop-time energization control means for continuing energization of the actuator over a predetermined time from a completion time point.
  2.  前記所定時間は、前記停止動作の完了時点から前記触媒の温度が劣化懸念下限温度に達するまでの時間であることを特徴とする請求項1記載の内燃機関の可変動弁装置。 2. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the predetermined time is a time from when the stop operation is completed until the temperature of the catalyst reaches a lower limit temperature of concern for deterioration.
  3.  前記切換手段は、
     前記切換ピンをその進出方向に付勢する付勢手段と、
     前記切換ピンの進退動作に連動して変位可能であって前記切換ピンを介して前記付勢手段が発する付勢力を受ける変位部材と、
     前記カムと連動して回転する回転体の外周面に形成され、前記変位部材の変位を案内する螺旋状溝と、
     前記変位部材に設けられ、前記螺旋状溝に挿脱自在な突起部と、を備え、
     前記アクチュエータは、前記変位部材に当接自在な当接部を有し、前記当接部を前記変位部材に当接させることによって前記突起部を前記螺旋状溝に挿入させることを特徴とする請求項1または2記載の内燃機関の可変動弁装置。
    The switching means is
    Urging means for urging the switching pin in its advance direction;
    A displacement member that is displaceable in conjunction with the forward / backward movement of the switching pin and that receives an urging force generated by the urging means via the switching pin;
    A helical groove formed on the outer peripheral surface of the rotating body that rotates in conjunction with the cam and guides the displacement of the displacement member;
    A protrusion provided on the displacement member and detachable from the spiral groove;
    The actuator includes a contact portion that can contact the displacement member, and the protrusion is inserted into the spiral groove by bringing the contact portion into contact with the displacement member. Item 3. A variable valve operating apparatus for an internal combustion engine according to Item 1 or 2.
PCT/JP2008/070873 2008-11-17 2008-11-17 Variable valve device for internal combustion engine WO2010055588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070873 WO2010055588A1 (en) 2008-11-17 2008-11-17 Variable valve device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/070873 WO2010055588A1 (en) 2008-11-17 2008-11-17 Variable valve device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2010055588A1 true WO2010055588A1 (en) 2010-05-20

Family

ID=42169737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070873 WO2010055588A1 (en) 2008-11-17 2008-11-17 Variable valve device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2010055588A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312592A (en) * 2021-12-20 2022-04-12 深圳市鑫华锋科技有限公司 Vehicle event data recorder of convenient dismouting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169646A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Internal combustion engine having variable valve system
WO2005059320A1 (en) * 2003-12-18 2005-06-30 Toyota Jidosha Kabushiki Kaisha Variable valve mechanism
JP2008014191A (en) * 2006-07-04 2008-01-24 Toyota Motor Corp Variable valve device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169646A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Internal combustion engine having variable valve system
WO2005059320A1 (en) * 2003-12-18 2005-06-30 Toyota Jidosha Kabushiki Kaisha Variable valve mechanism
JP2008014191A (en) * 2006-07-04 2008-01-24 Toyota Motor Corp Variable valve device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114312592A (en) * 2021-12-20 2022-04-12 深圳市鑫华锋科技有限公司 Vehicle event data recorder of convenient dismouting
CN114312592B (en) * 2021-12-20 2024-01-19 深圳市鑫华锋科技有限公司 Automobile data recorder convenient to assemble and disassemble

Similar Documents

Publication Publication Date Title
JP5071584B2 (en) Variable valve operating device for internal combustion engine
JP4911246B2 (en) Valve operating device for internal combustion engine
US8061311B2 (en) Variable valve actuating apparatus for internal combustion engine
JP5126426B2 (en) Control device for internal combustion engine
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US9051855B2 (en) Engine valve timing control apparatus
US8113157B2 (en) Variable valve control apparatus
US20150369199A1 (en) Automatic stop/restart control system for an internal combustion engine and variable valve actuating apparatus
US9068483B2 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
EP2372132B1 (en) Device for controlling internal combustion engine using variable valve mechanism
KR20120012478A (en) Variable valve actuation apparatus for internal combustion engine
WO2010055588A1 (en) Variable valve device for internal combustion engine
US8738272B2 (en) Control apparatus for internal combustion engine including variable valve operating apparatus
JP2010163893A (en) Valve gear for internal combustion engine
JP2010101270A (en) Valve gear of internal combustion engine
JP5093168B2 (en) Control device for variable valve mechanism
JP2010242524A (en) Control device for internal combustion engine
JP2010065565A (en) Variable valve gear of internal combustion engine
JP2011236773A (en) Variable valve system for internal combustion engine and control device therefor
JP2010059891A (en) Internal combustion engine control device
JP2012026364A (en) Variable valve train of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP