WO2010054571A1 - Multiple access method and apparatus for physical channels - Google Patents

Multiple access method and apparatus for physical channels Download PDF

Info

Publication number
WO2010054571A1
WO2010054571A1 PCT/CN2009/074396 CN2009074396W WO2010054571A1 WO 2010054571 A1 WO2010054571 A1 WO 2010054571A1 CN 2009074396 W CN2009074396 W CN 2009074396W WO 2010054571 A1 WO2010054571 A1 WO 2010054571A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiple access
physical
fdma
physical channel
frequency band
Prior art date
Application number
PCT/CN2009/074396
Other languages
French (fr)
Chinese (zh)
Inventor
毕峰
袁明
苟伟
米德忠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010054571A1 publication Critical patent/WO2010054571A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the configuration module further includes: an initial access configuration sub-module and a notification sub-module, where the initial access configuration sub-module is configured to configure the predetermined frequency band as an initial access frequency band of the terminal; After entering the initial access frequency band, the system notifies the terminal of the allocated frequency band through the system message, so that the terminal can adjust to the corresponding frequency band.
  • FIG. 1 is a flowchart of a physical channel multiple access method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an uplink physical channel multiple access according to a physical channel multiple access method according to an embodiment of the present invention
  • 3 is a schematic diagram of downlink physical channel multiple access of a physical channel multiple access method according to an embodiment of the present invention
  • FIG. 4 is an SC-FDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an OFDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention
  • FIG. 6 is a clustered SC of a physical channel multiple access method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an Nx SC-FDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a physical channel according to an embodiment of the present invention.
  • the present invention considers different requirements of different systems and different capabilities of different terminals.
  • this type of terminal does not consider the PAPR problem.
  • FIG. 1 is a flowchart of a physical channel multiple access method according to an embodiment of the present invention.
  • Step S102 in the case that the system includes multiple physical channels of different types, transmitting uplink information and downlink information of each physical channel of the plurality of physical channels Sending separate configuration multiple access methods (that is, the multiple access method used for information transmission of each physical channel can be changed, under At a time, it can be configured in other forms; that is, information transmission on the uplink and downlink of each physical channel can adopt different or the same multiple access manner.
  • the multiple physical channels include at least: a physical control channel and a physical traffic channel.
  • the downlink physical channels adopt the OFDMA method.
  • 4 is a schematic structural diagram of an SC-FDMA transmitter.
  • code segmentation, channel coding, constellation modulation, DFT transform, subcarrier mapping, and IFFT are required for the transmitted information. Transform, add CP operations, and finally send the information out.
  • FIG. 5 is a schematic structural diagram of an OFDMA transmitter.
  • code segmentation, channel coding, constellation modulation, serial-to-parallel conversion, subcarrier mapping, IFFT conversion, and addition are performed on the transmitted information.
  • the operation of the CP is finally transmitted.
  • 6 is a schematic structural diagram of a clustered SC-FDMA transmitter.
  • the configuration module 80 may further configure information transmission of the physical control channel to adopt SC-FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA, and ⁇ ) transmit information of the physical traffic channel to adopt SC -FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA, of course, the physical channel information transmission can also be configured to adopt SC-FDMA and OFDMA and clustered SC-FDMA and N x SC-FDMA. It is also possible to configure the information transmission of each physical channel to adopt the same multiple access method.
  • the configuration module 80 sets the information transmission of the uplink physical channel of the terminal of the old system to adopt the SC-FDMA multiple access mode, and downlink.
  • the information transmission of the physical channel is set to adopt the multiple access mode of OFDMA, and the information transmission of the uplink physical channel of other types of terminals may also be in the other multiple access manner described above, and the information transmission of each physical channel downlink is preferably in the form of OFDMA. Can be above Other multiple access methods.

Abstract

A multiple access method and apparatus for physical channels are disclosed by the invention. The method includes the following steps: in case the system includes a number of physical channels with different types, at first the multiple access modes are configured for the transmission of the uplink information and downlink information on each physical channel of multiple physical channels respectively, and then each physical channel transmits the uplink information and/or downlink information according to the multiple access mode configured for it. The problem of the absence of multiple access modes applicable to different physical channels in the prior art is resolved by the invention.

Description

物理信道多址接入方法和装置  Physical channel multiple access method and device
技术领域 本发明涉及通信领域, 并且特别地, 涉及一种物理信道多址接入方法和 装置。 背景技术 在正交频分复用 ( Orthogonal Frequency Division Multiplexing , 筒称为 OFDM ) ***中, 正交频分复用将数据流分解为若干个具有较低的比特速率 的子数据流 , 然后将各子数据流分别调制到相应的子载波上进行并行发送。 其中,上述 OFDM各个子载波之间不仅是相互正交的,而且具有 1/2的重叠。 在长期演进(Long Term Evolution, 筒称为 LTE ) ***中, 需要充分考 虑用户终端 ( User Terminal, 筒称为 UT )的峰均功率比( Peak Average Power Ratio, 筒称为 PAPR ) 问题, 其中, PAPR 问题具体表现为: 由于发射机的 输出信号的瞬时值会有较大的波动, 从而要求***内的一些部件 (例如, 功 率放大器、 分插 (Add/Drop, 筒称为 A/D )、 数 /模( Digital-to-Analog , 筒称 为 D/A ) 转换器等) 具有艮大的线性动态范围, 并且, 由于这些部件的非线 性也会对动态范围较大的信号产生非线性失真, 进而造成产生的谐波子信道 的相互干 4尤, 从而影响 OFDM***的性能。 在 LTE ***中, 由于 PAPR的问题 , 发送上行信息的多址方式最终选 择了 SC-FDMA,这是因为单载波***的信息符号是直接调制到时域上的(或 者是某些筒单的变形), 所以其 PAPR比较低, 但是, 在多载波***中, 由于 在同一时间有多个载波同时传输信息符号 , 而各个载波承载的信息符号又是 相互独立的, 因此, 多载波***的 PAPR比单载波***的 PAPR大 2 - 3dB, 而高 PAPR增加了对功放线性的要求, 但是, 这对 UT非常不利, 因此, 上 行多址的最好选择是带循环前缀的单载波***, 即 SC-FDMA。 目前, 对于以 OFDM ***为基础的多址接入的研究比较普遍 , 但是 , 对于不同物理信道的多址接入方式的研究很少, 以 LTE***为例, LTE*** 下行采用 OFDMA, 上行采用 SC-FDMA, 从而并不能 4艮好地适用不同类型 的物理信道,因而需要一种使用于不同物理信道的多址接入方式的技术方案。 发明内容 考虑到相关技术中没有适用于不同物理信道的多址接入方式的问题而 提出本发明 , 为此, 本发明的主要目的在于提供一种物理信道多址接入方法 和装置, 以解决相关技术中存在的上述问题。 根据本发明的一个方面, 提供了一种物理信道多址接入方法。 根据本发明的物理信道多址接入方法包括: 在 OFDM ***包括不同类 型的多个物理信道的情况下 , 对多个物理信道中每个物理信道的上行链路信 息的发送和下行链路信息的发送分别配置多址方式; 每个物理信道根据对其 配置的多址方式进行上行链路信息的发送和 /或下行链路信息的发送。 具体地, 多个物理信道至少包括: 物理控制信道和物理业务信道。 具体地, 对于多个物理信道中的每个物理信道, 为其配置的多址方式包 括以下至少之一:单载波频分多址即 SC-FDMA、正交频分多址接入 OFDMA、 分条正交频分多址接入即 clustered SC-FDMA、 N x SC-FDMA ( N 个 SC-FDMA )。 具体地, 在对多个物理信道进行分配后, 进一步包括: 将预定频段配置 为终端的初始接入频段; 在接入初始接入频段后 , 终端才艮据其接收的***消 息获取分配给终端的频段, 并调整到相应的频段。 具体地 , 在***包括新***和旧***的情况下 , 对旧***的终端进行多 址方式配置的处理包括: 对旧***的终端的上行物理信道的信息发送设置为 采用 SC-FDMA的多址方式, 下行物理信道的信息发送设置为采用 OFDMA 的多址方式。 才艮据本发明的另一方面, 提供了一种物理信道多址接入装置。 才艮据本发明的物理信道多址接入装置包括:配置模块和发送模块,其中, 配置模块 , 用于在***包括不同类型的多个物理信道的情况下 , 对多个物理 信道中每个物理信道的上行链路信息的发送和下行链路信息的发送分别配置 多址方式; 发送模块 , 用于才艮据配置模块配置的多址方式在每个物理信道进 行上行链路信息的发送和 /或下行链路信息的发送。 具体地, 多个物理信道至少包括: 物理控制信道和物理业务信道。 具体地, 多址方式包括以下至少之一: 单载波频分多址即 SC-FDMA、 正交频分多址接入 OFDMA、 分条正交频分多址接入即 clustered SC-FDMA、 N X SC-FDMA。 具体地 , 配置模块进一步用于: 对上述旧***的终端的上行物理信道的 信息发送设置为采用 SC-FDMA的多址方式, 下行物理信道的信息发送设置 为采用 OFDMA的多址方式。 具体地, 配置模块进一步包括: 初始接入配置子模块和通知子模块, 其 中, 初始接入配置子模块, 用于将预定频段配置为终端的初始接入频段; 通 知子模块, 用于在接入初始接入频段后, 通过***消息通知终端为其分配的 频段, 使得终端能够调整到相应的频段。 借助于本发明的技术方案 ,通过对不同物理信道的信息发送配置不同或 相同的多址方式, 解决了现有相关技术中没有适用于不同物理信道的多址接 入方式的问题, 提供了一种筒单的多址接入方式, 保证了工作频点的链路性 能, 提高了整个网络的吞吐量, 同时兼顾了*** PAPR的问题, 并实现了对 现有***的兼容。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在所写的说明书、 权利要求书、 以及附图中所特别指出的结构来实 现和获得。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明 , 并不构成对本发明的限制。 在附图中: 图 1是根据本发明实施例的物理信道多址接入方法的流程图; 图 2 是才艮据本发明实施例的物理信道多址接入方法的上行物理信道多 址示意图; 图 3 是根据本发明实施例的物理信道多址接入方法的下行物理信道多 址示意图; 图 4是才艮据本发明实施例的物理信道多址接入方法的 SC-FDMA发射机 的结构示意图; 图 5是根据本发明实施例的物理信道多址接入方法的 OFDMA发射机 的结构示意图; 图 6 是才艮据本发明实施例的物理信道多址接入方法的 clustered SC-FDMA发射机的结构示意图; 图 7是才艮据本发明实施例的物理信道多址接入方法的 Nx SC-FDMA发 射机的结构示意图; 图 8是才艮据本发明实施例的物理信道多址接入装置的框图。 具体实施方式 功能相无述 在现有的相关技术中 ,存在没有适用于不同物理信道的多址接入方式的 问题, 为此, 本发明考虑到不同***的不同需求, 以及不同终端的不同能力, 同时, 由于高端 UT内的部件具有艮大的动态范围, 所以该类终端一^:不会 考虑 PAPR问题。 并且 , 不同的物理信道的需求是不同的 , 例如 , 物理控制 信道要求覆盖、 可靠性等, 物理业务信道要求高的业务数据率、 频谱效率等, 基于上述分析, 为了更好的获得链路性能及整网吞吐量及覆盖范围, 本发明 提出的物理信道多址接入的方法如下: 在上行时物理信道的信息发送可以采 用单载波频分多址和正交频分多址接入和分襄单载波频分多址和 Ν SC-FDMA 相结合的多址方式, 在下行时, 物理信道的信息发送都可以优选 为 OFDMA的形式, 也可以上述其他多址方式。 以下结合附图对本发明的优选实施例进行说明 , 应当理解 , 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 才艮据本发明实施例, 提供了一种物理信道多址接入方法, 图 1是才艮据本 发明实施例的物理信道多址接入方法的流程图, 如图 1所示, 具体包括以下 步骤 (步骤 S102 -步骤 S104 ): 步骤 S102, 在***包括不同类型的多个物理信道的情况下, 对多个物 理信道中每个物理信道的上行链路信息的发送和下行链路信息的发送分别配 置多址方式 (即, 各物理信道的信息发送采用的多址方式是可以变化的, 下 一时刻可配置成其他的形式);即各物理信道上下行链路的信息发送可以采用 不同或相同的多址方式。 具体地, 多个物理信道至少包括: 物理控制信道和物理业务信道。 具体地, 对于多个物理信道中的每个物理信道, 为其配置的多址方式包 括以下至少之一: SC-FDMA, OFDMA、 clustered SC-FDMA, N x SC-FDMA, 也就是说, 可以采用 SC-FDMA和 OFDMA和 clustered SC-FDMA和 N x SC-FDMA相结合的多址方式。 具体地, 物理控制信道的信息发送可以采用 SC-FDMA或 OFDMA或 clustered SC-FDMA或 N x SC-FDMA的方式,物理业务信道的信息发送也可 以采用 SC-FDMA或 OFDMA或 clustered SC-FDMA或 N x SC-FDMA的方 式, 当然, 所述的物理信道的信息发送可以同时采用 SC-FDMA和 OFDMA 和 clustered SC-FDMA和 N x SC-FDMA的方式, 各物理信道的信息发送也 可以采用相同的多址方式。 在步骤 S102中, 在对多个物理信道进行分配后, 进一步包括以下处理: 1、 将预定频段配置为终端的初始接入频段; TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a physical channel multiple access method and apparatus. BACKGROUND OF THE INVENTION In an Orthogonal Frequency Division Multiplexing (OFDM) system, orthogonal frequency division multiplexing decomposes a data stream into a plurality of sub-data streams having a lower bit rate, and then The sub-data streams are separately modulated onto corresponding sub-carriers for parallel transmission. The OFDM subcarriers are not only orthogonal to each other but also have 1/2 overlap. In the Long Term Evolution (LTE) system, the peak-to-average power ratio (PUR) of the user terminal (UT) is considered. The PAPR problem is manifested as follows: Since the instantaneous value of the output signal of the transmitter will fluctuate greatly, some components in the system are required (for example, power amplifier, add/drop, A/D) Digital-to-Analog (D/A) converters have a large linear dynamic range, and nonlinearities due to the nonlinearity of these components can also cause nonlinear distortion in signals with large dynamic range. , which in turn causes the generated harmonic subchannels to interact with each other, thereby affecting the performance of the OFDM system. In the LTE system, due to the problem of PAPR, the multiple access method for transmitting uplink information finally selects SC-FDMA, because the information symbols of the single carrier system are directly modulated into the time domain (or some variants of the device). Therefore, its PAPR is relatively low. However, in a multi-carrier system, since multiple carriers simultaneously transmit information symbols at the same time, and the information symbols carried by the respective carriers are independent of each other, the PAPR ratio of the multi-carrier system is The PAPR of a single-carrier system is 2 - 3dB larger, and the high PAPR increases the linearity requirement of the power amplifier. However, this is very disadvantageous for the UT. Therefore, the best choice for uplink multiple access is a single-carrier system with a cyclic prefix, that is, SC- FDMA. At present, research on multiple access based on OFDM system is common. However, there are few studies on multiple access methods for different physical channels. Take LTE system as an example. LTE system adopts OFDMA for downlink and SC for uplink. -FDMA, so that different types of physical channels cannot be applied well, and thus a technical solution for multiple access methods using different physical channels is needed. SUMMARY OF THE INVENTION The present invention has been made in view of the problem of the multiple access method applicable to different physical channels in the related art. Therefore, the main object of the present invention is to provide a physical channel multiple access method and apparatus to solve the problem. The above problems exist in the related art. According to an aspect of the present invention, a physical channel multiple access method is provided. A physical channel multiple access method according to the present invention includes: transmission and downlink information of uplink information for each of a plurality of physical channels in a case where an OFDM system includes a plurality of physical channels of different types The transmission is respectively configured with a multiple access mode; each physical channel transmits uplink information and/or downlink information according to a multiple access manner configured thereto. Specifically, the multiple physical channels include at least: a physical control channel and a physical traffic channel. Specifically, for each of the plurality of physical channels, the multiple access manner configured for the physical channel includes at least one of the following: single carrier frequency division multiple access, that is, SC-FDMA, orthogonal frequency division multiple access (OFDMA), and Orthogonal frequency division multiple access is clustered SC-FDMA, N x SC-FDMA (N SC-FDMA). Specifically, after allocating the multiple physical channels, the method further includes: configuring the predetermined frequency band as the initial access frequency band of the terminal; after accessing the initial access frequency band, acquiring, by the terminal, the terminal information according to the received system message The frequency band, and adjust to the corresponding frequency band. Specifically, in the case that the system includes the new system and the old system, the processing of configuring the multiple system mode of the terminal of the old system includes: setting the information transmission of the uplink physical channel of the terminal of the old system to multiple access using SC-FDMA In this manner, the information transmission of the downlink physical channel is set to adopt the multiple access mode of OFDMA. According to another aspect of the present invention, a physical channel multiple access apparatus is provided. The physical channel multiple access device according to the present invention includes: a configuration module and a transmitting module, wherein the configuration module is configured to: for each of the plurality of physical channels, if the system includes multiple physical channels of different types The transmission of the uplink information of the physical channel and the transmission of the downlink information are respectively configured with a multiple access method; the sending module is configured to perform uplink information transmission on each physical channel according to the multiple access mode configured by the configuration module. / or the transmission of downlink information. Specifically, the multiple physical channels include at least: a physical control channel and a physical traffic channel. Specifically, the multiple access mode includes at least one of the following: single carrier frequency division multiple access (SC-FDMA), orthogonal frequency division multiple access (OFDMA), and stripped orthogonal frequency division multiple access (clustered SC-FDMA, NX) SC-FDMA. Specifically, the configuration module is further configured to: set the information transmission of the uplink physical channel of the terminal of the old system to use the multiple access mode of the SC-FDMA, and set the information transmission of the downlink physical channel to the multiple access mode of the OFDMA. Specifically, the configuration module further includes: an initial access configuration sub-module and a notification sub-module, where the initial access configuration sub-module is configured to configure the predetermined frequency band as an initial access frequency band of the terminal; After entering the initial access frequency band, the system notifies the terminal of the allocated frequency band through the system message, so that the terminal can adjust to the corresponding frequency band. By means of the technical solution of the present invention, the problem of multiple access modes that are not applicable to different physical channels in the prior art is solved by configuring different or the same multiple access modes for information transmission of different physical channels, and The multiple access mode of the single-segment singleton ensures the link performance of the working frequency, improves the throughput of the entire network, and takes into account the problem of the system PAPR, and achieves compatibility with the existing system. Other features and advantages of the invention will be set forth in the description which follows, and The objectives and other advantages of the invention will be realized and attained by the <RTI The drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention. In the drawings: FIG. 1 is a flowchart of a physical channel multiple access method according to an embodiment of the present invention; FIG. 2 is a schematic diagram of an uplink physical channel multiple access according to a physical channel multiple access method according to an embodiment of the present invention; 3 is a schematic diagram of downlink physical channel multiple access of a physical channel multiple access method according to an embodiment of the present invention; FIG. 4 is an SC-FDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention; FIG. 5 is a schematic structural diagram of an OFDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention; FIG. 6 is a clustered SC of a physical channel multiple access method according to an embodiment of the present invention. FIG. 7 is a schematic structural diagram of an Nx SC-FDMA transmitter according to a physical channel multiple access method according to an embodiment of the present invention; FIG. 8 is a schematic diagram of a physical channel according to an embodiment of the present invention. A block diagram of the address access device. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the related art, there is a problem that there is no multiple access method suitable for different physical channels. For this reason, the present invention considers different requirements of different systems and different capabilities of different terminals. At the same time, because the components in the high-end UT have a large dynamic range, this type of terminal does not consider the PAPR problem. Moreover, the requirements of different physical channels are different, for example, the physical control channel requires coverage, reliability, etc., the physical traffic channel requires high service data rate, spectrum efficiency, etc., based on the above analysis, in order to obtain link performance better. And the whole network throughput and coverage, the physical channel multiple access method proposed by the present invention is as follows: In the uplink, the physical channel information can be transmitted by using single carrier frequency division multiple access and orthogonal frequency division multiple access. In the multiple access mode in which single-carrier frequency division multiple access and ΝSC-FDMA are combined, in the downlink, the information transmission of the physical channel may preferably be in the form of OFDMA, or may be other multiple access methods as described above. The preferred embodiments of the present invention are described in the following with reference to the accompanying drawings, which are intended to illustrate and illustrate the invention. According to an embodiment of the present invention, a physical channel multiple access method is provided. FIG. 1 is a flowchart of a physical channel multiple access method according to an embodiment of the present invention. The following steps (step S102 - step S104): Step S102, in the case that the system includes multiple physical channels of different types, transmitting uplink information and downlink information of each physical channel of the plurality of physical channels Sending separate configuration multiple access methods (that is, the multiple access method used for information transmission of each physical channel can be changed, under At a time, it can be configured in other forms; that is, information transmission on the uplink and downlink of each physical channel can adopt different or the same multiple access manner. Specifically, the multiple physical channels include at least: a physical control channel and a physical traffic channel. Specifically, for each of the plurality of physical channels, the multiple access manner configured for the physical channel includes at least one of the following: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA, that is, A multiple access method combining SC-FDMA and OFDMA with clustered SC-FDMA and N x SC-FDMA. Specifically, the information transmission of the physical control channel may adopt SC-FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA, and the information transmission of the physical service channel may also adopt SC-FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA mode, of course, the information transmission of the physical channel can adopt SC-FDMA and OFDMA and clustered SC-FDMA and N x SC-FDMA simultaneously, and the information transmission of each physical channel can also be the same. Multiple access method. In step S102, after allocating the multiple physical channels, the following processing is further included: 1. configuring the predetermined frequency band as the initial access frequency band of the terminal;
2、 在接入初始接入频段后 , 终端根据其接收的***消息获取分配给终 端的频段, 并调整到相应的频段。 优选地, 在***包括新***和旧***的情况下, 为了兼容旧***, 将旧 ***终端的上行物理信道的信息发送设置为采用 SC-FDMA的多址方式, 下 行物理信道的信息发送设置为采用 OFDMA的多址方式 , 其他类型的终端的 上行物理信道的信息发送也可以上述其他多址方式, 各物理信道下行链路的 信息发送都优选为 OFDMA的形式, 也可以上述其他多址方式。 步骤 S 104 , 每个物理信道才艮据对其配置的多址方式进行上行链路信息 的发送和 /或下行链路信息的发送。 下面将结合实施例, 对本发明的上述技术方案进行详细的说明。 以 100MHz的带宽进行举例说明, 如图 2所示, 個设 100MHz的带宽 由 5个 20MHz的带宽集合而成, 每部分带宽都有控制信道和业务信道, 则 jt匕时上行多址接入可以采用如下方案: 上行物理控制信道的信息发送优选采用 SC-FDMA, 物理业务信道的信 息发送优选采用 OFDMA。 为了兼容旧***, 如图 3所示, 此时下行多址接入可以采用如下方案: 下行物理信道的信息发送优选都采用 OFDMA。 进一步地, 4夺哪个 20MHz资源分配给 LTE***可以自适应调整, 可以 默认把中心频段或是某频段作为 UT初始接入频段, UT接入后可以根据*** 信息知道哪部分工作频段是分配给 LTE 终端使用的, 为了兼容旧*** (如 LTE-A***兼容 LTE***), 可以让 LTE的终端工作带宽内, 保持原来*** 的上行物理信道采用的多址方式, 即 SC-FDMA, LTE的终端的下行物理信 道都采用 OFDMA的方式。 图 4是 SC-FDMA发射机的结构示意图,在使用 SC-FDMA发射机进行 信息的发射时, 需要对发射的信息进行码块分段、信道编码、 星座调制、 DFT 变换、 子载波映射、 IFFT变换、 添加 CP的操作, 最后将信息发送出去。 图 5是 OFDMA发射机的结构示意图, 在使用 OFDMA发射机进行信息的发射 时, 需要对发射的信息进行码块分段、 信道编码、 星座调制、 串并转换、 子 载波映射、 IFFT 变换、 添加 CP 的操作, 最后发射出去。 图 6是 clustered SC-FDMA发射机的结构示意图, 在使用 clustered SC-FDMA发射机进行信 息的发射时, 需要对需要发射的信息进行码块分段、 信道编码、 星座调制、 DFT变换、 子载波映射、 分簇、 IFFT变换、 添加 CP的操作, 最后将信息发 射出去。 图 7是 N x SC-FDMA发射机的结构示意图 , 在使用 N x SC-FDMA 发射机进行信息的发射时, 需要对发射的信息进行码块分段、 信道编码、 星 座调制、 DFT变换、 子载波映射、 IFFT变换, 再经过运算后, 添加到 CP的 操作, 最后将信息发射出去。 在上行时 , 发射端才艮据具体的物理信道类型采用不同或相同的多址方 式, 如果此时物理信道的信息发送采用的是 SC-FDMA , 接收端就按照 SC-FDMA 的逆过程进行解调处理; 如果此时物理信道的信息发送采用的是 OFDMA, 接收端就按照 OFDMA的逆过程进行解调处理; 如果此时物理信 道的信息发送采用的是 clustered SC-FDMA , 接收端就按照 clustered SC-FDMA 的逆过程进行解调处理; 如果此时物理信道的信息发送采用的是 N SC-FDMA, 接收端就按照 N x SC-FDMA的逆过程进行解调处理; 如果 物理信道的信息发送同时采用 了 SC-FDMA 和 OFDMA 和 clustered SC-FDMA和 N x SC-FDMA, 则接收端就才艮据每种多址方式的逆过程进行解 调处理。 在下行时, 每种物理信道的信息发送都优选为 OFDMA 的形式, 接收 端按照 OFDMA的逆过程进行解调处理。 通过上述处理,解决了相关技术中没有适用于不同物理信道的多址接入 方式的问题, 保证了工作频点的链路性能, 提高了整个网络的吞吐量, 同时 兼顾了*** PAPR的问题, 并实现了对现有***的兼容。 才艮据本发明实施例, 还提供了一种物理信道多址接入装置, 图 8是根据 本发明的实施例的物理信道多址接入装置的框图, 如图 8所示, 包括配置模 块 80和发送模块 82。 下面对本发明的物理信道多址接入装置进行详细的说 明。 配置模块 80, 用于在***包括不同类型的多个物理信道的情况下, 对 多个物理信道中每个物理信道的上行链路信息的发送和下行链路信息的发送 分别配置多址方式。 具体地, 多个物理信道至少包括: 物理控制信道和物理业务信道。 具体地, 多址方式包括以下至少之一: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA。 即配置模块 80可以配置为采用 SC-FDMA和 OFDMA和 clustered SC-FDMA和 N x SC-FDMA相结合的多址方式。 具体地, 配置模块 80 还可以将物理控制信道的信息发送配置为采用 SC-FDMA或 OFDMA或 clustered SC-FDMA或 N x SC-FDMA的方式, ^)夺物 理业务信道的信息发送配置为采用 SC-FDMA 或 OFDMA 或 clustered SC-FDMA或 N x SC-FDMA的方式,当然也可以将物理信道的信息发送同时 配置为采用 SC-FDMA和 OFDMA和 clustered SC-FDMA和 N x SC-FDMA 的方式, 也可以将各物理信道的信息发送配置为采用相同的多址方式。 在具体实施过程中, 在***包括新***和旧***的情况下, 为了兼容旧 ***, 配置模块 80 对旧***的终端的上行物理信道的信息发送设置为采用 SC-FDMA的多址方式, 下行物理信道的信息发送设置为采用 OFDMA的多 址方式, 其他类型的终端的上行物理信道的信息发送也可以上述其他多址方 式, 各物理信道下行链路的信息发送都优选为 OFDMA的形式, 也可以上述 其他多址方式。 具体地, 配置模块 80还可以包括: 1 )初始接入配置子模块, 用于将预 定频段配置为终端的初始接入频段; 2 ) 通知子模块, 用于在接入初始接入 频段后, 通过***消息通知终端为其分配的频段, 使得终端能够调整到相应 的频段。 具体地, 发送模块 82, 连接至配置模块 80 , 用于根据配置模块 80配置 的多址方式在每个物理信道进行上行链路信息的发送和 /或下行链路信息的 发送。 综上所述, 借助于本发明的技术方案, 通过对不同物理信道的信息发送 配置不同或相同的多址方式, 解决了相关技术中没有适用于不同物理信道的 多址接入方式的问题, 提供了一种筒单的多址接入方式, 保证了工作频点的 链路性能, 提高了整个网络的吞吐量, 同时兼顾了*** PAPR的问题, 并实 现了对现有***的兼容。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 2. After accessing the initial access frequency band, the terminal acquires the frequency band allocated to the terminal according to the system message it receives, and adjusts to the corresponding frequency band. Preferably, in the case that the system includes the new system and the old system, in order to be compatible with the old system, the information transmission of the uplink physical channel of the old system terminal is set to the multiple access mode using SC-FDMA, and the information transmission of the downlink physical channel is set to In the multiple access mode of OFDMA, the information transmission of the uplink physical channel of other types of terminals may be other multiple access methods, and the information transmission of each physical channel downlink is preferably in the form of OFDMA, or may be other multiple access methods. Step S104: Each physical channel performs uplink information transmission and/or downlink information transmission according to a multiple access manner configured thereto. The above technical solutions of the present invention will be described in detail below with reference to the embodiments. Taking a bandwidth of 100 MHz as an example, as shown in FIG. 2, a bandwidth of 100 MHz is composed of five 20 MHz bandwidths, and each part of the bandwidth has a control channel and a traffic channel, and then uplink multi-access can be performed at jt匕. Adopt the following scheme: The information transmission of the uplink physical control channel preferably adopts SC-FDMA, and the information transmission of the physical service channel preferably adopts OFDMA. In order to be compatible with the old system, as shown in FIG. 3, the following scheme can be adopted for downlink multiple access: The information transmission of the downlink physical channel preferably adopts OFDMA. Further, which 20 MHz resource is allocated to the LTE system can be adaptively adjusted, and the central frequency band or a certain frequency band can be used as the initial access frequency band of the UT by default. After the UT is accessed, it can be known according to the system information which part of the working frequency band is allocated to the LTE. Used by the terminal, in order to be compatible with the old system (such as the LTE-A system compatible with the LTE system), the LTE terminal can operate within the operating bandwidth, and maintain the multiple access mode adopted by the original system's uplink physical channel, that is, the SC-FDMA, the LTE terminal. The downlink physical channels adopt the OFDMA method. 4 is a schematic structural diagram of an SC-FDMA transmitter. When transmitting information using an SC-FDMA transmitter, code segmentation, channel coding, constellation modulation, DFT transform, subcarrier mapping, and IFFT are required for the transmitted information. Transform, add CP operations, and finally send the information out. FIG. 5 is a schematic structural diagram of an OFDMA transmitter. When transmitting information using an OFDMA transmitter, code segmentation, channel coding, constellation modulation, serial-to-parallel conversion, subcarrier mapping, IFFT conversion, and addition are performed on the transmitted information. The operation of the CP is finally transmitted. 6 is a schematic structural diagram of a clustered SC-FDMA transmitter. When transmitting information using a clustered SC-FDMA transmitter, code segmentation, channel coding, constellation modulation, DFT transform, and subcarriers are required for information to be transmitted. Mapping, clustering, IFFT transformation, adding CP operations, and finally transmitting the information. 7 is a schematic structural diagram of an N x SC-FDMA transmitter. When transmitting information using an N x SC-FDMA transmitter, code segmentation, channel coding, constellation modulation, DFT conversion, and sub-transmission are required for the transmitted information. After the carrier map and the IFFT transform, after the operation, the operation is added to the CP, and finally the information is transmitted. In the uplink, the transmitting end adopts different or the same multiple access mode according to the specific physical channel type. If the information transmission of the physical channel is SC-FDMA at this time, the receiving end solves according to the inverse process of SC-FDMA. If the information transmission of the physical channel is ATDMA at this time, the receiving end performs demodulation processing according to the inverse process of OFDMA; if the information transmission of the physical channel is clustered SC-FDMA, the receiving end follows the clustered The inverse process of SC-FDMA performs demodulation processing; if the information transmission of the physical channel is N SC-FDMA at this time, the receiving end performs demodulation processing according to the inverse process of N x SC-FDMA; if the information of the physical channel is transmitted Simultaneous SC-FDMA and OFDMA and clustered For SC-FDMA and N x SC-FDMA, the receiving end performs demodulation processing according to the inverse process of each multiple access mode. In the downlink, the information transmission of each physical channel is preferably in the form of OFDMA, and the receiving end performs demodulation processing according to the inverse process of OFDMA. Through the above processing, the problem of the multiple access method that is not applicable to different physical channels in the related art is solved, the link performance at the working frequency point is ensured, the throughput of the entire network is improved, and the problem of the system PAPR is taken into consideration. And to achieve compatibility with existing systems. According to an embodiment of the present invention, a physical channel multiple access device is further provided. FIG. 8 is a block diagram of a physical channel multiple access device according to an embodiment of the present invention. As shown in FIG. 8, a configuration module is included. 80 and sending module 82. The physical channel multiple access device of the present invention will be described in detail below. The configuration module 80 is configured to configure a multiple access mode for transmitting uplink information and transmitting downlink information of each physical channel of the multiple physical channels, respectively, when the system includes multiple physical channels of different types. Specifically, the multiple physical channels include at least: a physical control channel and a physical traffic channel. Specifically, the multiple access method includes at least one of the following: SC-FDMA, OFDMA, clustered SC-FDMA, N x SC-FDMA. That is, the configuration module 80 can be configured to adopt a multiple access method combining SC-FDMA and OFDMA and clustered SC-FDMA and N x SC-FDMA. Specifically, the configuration module 80 may further configure information transmission of the physical control channel to adopt SC-FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA, and ^) transmit information of the physical traffic channel to adopt SC -FDMA or OFDMA or clustered SC-FDMA or N x SC-FDMA, of course, the physical channel information transmission can also be configured to adopt SC-FDMA and OFDMA and clustered SC-FDMA and N x SC-FDMA. It is also possible to configure the information transmission of each physical channel to adopt the same multiple access method. In the specific implementation process, in the case that the system includes the new system and the old system, in order to be compatible with the old system, the configuration module 80 sets the information transmission of the uplink physical channel of the terminal of the old system to adopt the SC-FDMA multiple access mode, and downlink. The information transmission of the physical channel is set to adopt the multiple access mode of OFDMA, and the information transmission of the uplink physical channel of other types of terminals may also be in the other multiple access manner described above, and the information transmission of each physical channel downlink is preferably in the form of OFDMA. Can be above Other multiple access methods. Specifically, the configuration module 80 may further include: 1) an initial access configuration sub-module, configured to configure a predetermined frequency band as an initial access frequency band of the terminal; 2) a notification sub-module, configured to: after accessing the initial access frequency band, The system allocates a frequency band to the terminal through a system message, so that the terminal can adjust to the corresponding frequency band. Specifically, the sending module 82 is connected to the configuration module 80 for performing uplink information transmission and/or downlink information transmission on each physical channel according to the multiple access manner configured by the configuration module 80. In summary, with the technical solution of the present invention, the problem of multiple access modes not applicable to different physical channels in the related art is solved by configuring different or the same multiple access modes for information transmission of different physical channels. It provides a single-access multiple access mode, which ensures the link performance of the working frequency, improves the throughput of the entire network, and takes into account the problem of the system PAPR, and achieves compatibility with the existing system. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种物理信道多址接入方法, 其特征在于, 包括: A physical channel multiple access method, comprising:
在***包括不同类型的多个物理信道的情况下 ,对所述多个物理信 道中每个物理信道的上行链路信息的发送和下行链路信息的发送分别配 置多址方式;  In the case that the system includes multiple physical channels of different types, the transmission of the uplink information and the transmission of the downlink information of each of the plurality of physical channels are respectively configured with a multiple access mode;
所述每个物理信道才艮据对其配置的所述多址方式进行所述上行链 路信息的发送和 /或下行链路信息的发送。  The physical channel transmits the uplink information and/or downlink information according to the multiple access mode configured for the physical channel.
2. 根据权利要求 1所述的方法, 其特征在于, 所述多个物理信道至少包括: 物理控制信道和物理业务信道。 2. The method according to claim 1, wherein the plurality of physical channels at least comprise: a physical control channel and a physical traffic channel.
3. 才艮据权利要求 1所述的方法, 其特征在于, 对于所述多个物理信道中的 每个物理信道, 为其配置的所述多址方式包括以下至少之一: 单载波频 分多址即 SC-FDMA、正交频分多址接入即 OFDMA、分条正交频分多址 接入即 clustered SC-FDMA、 N x SC-FDMA。 3. The method according to claim 1, wherein the multiple access manner configured for each of the plurality of physical channels comprises at least one of the following: single carrier frequency division Multiple access is SC-FDMA, orthogonal frequency division multiple access (OFDMA), stripe orthogonal frequency division multiple access (clustered SC-FDMA, N x SC-FDMA).
4. 根据权利要求 3所述的方法, 其特征在于, 在对所述多个物理信道进行 分配后, 进一步包括: The method according to claim 3, further comprising: after allocating the multiple physical channels, further comprising:
将预定频段配置为所述终端的初始接入频段;  Configuring a predetermined frequency band as an initial access frequency band of the terminal;
在接入所述初始接入频段后 ,所述终端根据其接收的***消息获取 分配给所述终端的频段, 并调整到相应的频段。  After accessing the initial access frequency band, the terminal acquires a frequency band allocated to the terminal according to the system message it receives, and adjusts to a corresponding frequency band.
5. 根据权利要求 3所述的方法, 其特征在于, 在所述***包括新***和旧 ***的情况下, 对所述旧***的终端进行多址方式配置的处理包括: 对所述旧***的终端的上行物理信道的信息发送设置为采用 SC-FDMA 的多址方式, 下行物理信道的信息发送设置为采用 OFDMA 的多址方式。 The method according to claim 3, wherein, in the case that the system comprises a new system and an old system, the processing of configuring the multiple system mode of the terminal of the old system comprises: The information transmission of the uplink physical channel of the terminal is set to adopt the multiple access mode of SC-FDMA, and the information transmission of the downlink physical channel is set to adopt the multiple access mode of OFDMA.
6. 一种物理信道多址接入装置, 其特征在于, 所述***包括: A physical channel multiple access device, the system comprising:
配置模块, 用于在***包括不同类型的多个物理信道的情况下, 对 所述多个物理信道中每个物理信道的上行链路信息的发送和下行链路信 息的发送分别配置多址方式; 发送模块,用于才艮据所述配置模块配置的多址方式在所述每个物理 信道进行所述上行链路信息的发送和 /或下行链路信息的发送。 a configuration module, configured to configure a multiple access manner for transmitting uplink information and transmitting downlink information of each physical channel of the multiple physical channels, when the system includes multiple physical channels of different types ; And a sending module, configured to perform the sending of the uplink information and/or the sending of the downlink information on each physical channel according to the multiple access manner configured by the configuration module.
7. 才艮据权利要求 6所述的装置, 其特征在于, 所述多个物理信道至少包括: 物理控制信道和物理业务信道。 7. The apparatus according to claim 6, wherein the plurality of physical channels comprise at least: a physical control channel and a physical traffic channel.
8. 根据权利要求 7所述的装置, 其特征在于, 所述多址方式包括以下至少 之一: 单载波频分多址即 SC-FDMA、 正交频分多址接入即 OFDMA、 分 正交频分多址接入即 clustered SC-FDMA、 N x SC-FDMA。 8. The apparatus according to claim 7, wherein the multiple access mode comprises at least one of: single carrier frequency division multiple access (SC-FDMA), orthogonal frequency division multiple access (OFDMA), or Interleaved frequency division multiple access is clustered SC-FDMA, N x SC-FDMA.
9. 才艮据权利要求 8所述的装置, 其特征在于, 所述配置模块进一步用于: 对所述旧***的终端的上行物理信道的信息发送设置为采用 SC-FDMA 的多址方式, 下行物理信道的信息发送设置为采用 OFDMA 的多址方式。 The device according to claim 8, wherein the configuration module is further configured to: set, by using a SC-FDMA multiple access mode, information transmission of an uplink physical channel of a terminal of the old system, The information transmission of the downlink physical channel is set to adopt the multiple access mode of OFDMA.
10. 根据权利要求 8所述的装置, 其特征在于, 所述配置模块进一步包括: 初始接入配置子模块,用于将预定频段配置为所述终端的初始接入 频段; The device according to claim 8, wherein the configuration module further comprises: an initial access configuration sub-module configured to configure a predetermined frequency band as an initial access frequency band of the terminal;
通知子模块 , 用于在接入所述初始接入频段后 , 通过***消息通知 所述终端为其分配的频段, 使得终端能够调整到相应的频段。  The notification sub-module is configured to notify the terminal of the allocated frequency band by using a system message after accessing the initial access frequency band, so that the terminal can adjust to the corresponding frequency band.
PCT/CN2009/074396 2008-11-17 2009-10-10 Multiple access method and apparatus for physical channels WO2010054571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810177629A CN101741794A (en) 2008-11-17 2008-11-17 Multiple-address access method and device for physical channel
CN200810177629.8 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010054571A1 true WO2010054571A1 (en) 2010-05-20

Family

ID=42169630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074396 WO2010054571A1 (en) 2008-11-17 2009-10-10 Multiple access method and apparatus for physical channels

Country Status (2)

Country Link
CN (1) CN101741794A (en)
WO (1) WO2010054571A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163291A1 (en) * 2010-12-23 2012-06-28 Yuan Zhu Physical uplink control channel Interference Mitigation in heterogenous networks
CN103001904B (en) * 2011-09-08 2017-09-29 中国科学院上海高等研究院 Single-carrier frequency division multiple access link circuit self-adapting device and its implementation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902840A (en) * 2003-11-19 2007-01-24 韩国电子通信研究院 Method for partitioning resource space, assigning physical channel, and allocating power in OFDMA-based cellular system
WO2008130051A1 (en) * 2007-04-17 2008-10-30 Sharp Kabushiki Kaisha Method and network system, program and computer readable medium for optimized reference signal downlink transmission in a wireless communication system
WO2008133981A1 (en) * 2007-04-30 2008-11-06 Lucent Technologies Inc. Method and apparatus for s ingle- carrier fdma based packet wireless telecommunications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902840A (en) * 2003-11-19 2007-01-24 韩国电子通信研究院 Method for partitioning resource space, assigning physical channel, and allocating power in OFDMA-based cellular system
WO2008130051A1 (en) * 2007-04-17 2008-10-30 Sharp Kabushiki Kaisha Method and network system, program and computer readable medium for optimized reference signal downlink transmission in a wireless communication system
WO2008133981A1 (en) * 2007-04-30 2008-11-06 Lucent Technologies Inc. Method and apparatus for s ingle- carrier fdma based packet wireless telecommunications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description (Release 8)", 3GPP TS 36.201 V8.1.0, November 2007 (2007-11-01), pages 7 - 8, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archives/36_series/36.201/36201-810.zip> *

Also Published As

Publication number Publication date
CN101741794A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CN101444013B (en) Stack signaling to application lack of requested bandwidth
US20080043866A1 (en) Fft numerology for an ofdm transmission system
WO2012083850A1 (en) Method and device for frequency domain transmission
TWI499344B (en) A method and apparatus for device-to-device communication
WO2016127324A1 (en) Peak-to-average power ratio reducing method, apparatus, device and system
US7990842B2 (en) Backward-compatible long training sequences for wireless communication networks
US20160198472A1 (en) Transmit End, Receive End, and Method for Coexistence of Single Carrier System and Multicarrier System
TWI653862B (en) Dual subcarrier modulation method and wireless station
US20140133494A1 (en) Method, apparatus, and system for multiple access
US11115149B2 (en) Modulation and coding for multiple resource units in wireless network
KR20170053649A (en) Method and apparatus for transmitting a signal using a resource unit comprising a plurality of subcarriers
US8780854B2 (en) Method and apparatus for multiple frequency point multiple access
WO2012163041A1 (en) Multiple access system, method and device based on orthogonal frequency-division multiplexing
WO2011006380A1 (en) Transmitter and data transmission method
TWI643474B (en) Data packet transmitting method and wireless station
WO2010054571A1 (en) Multiple access method and apparatus for physical channels
WO2010040253A1 (en) Ofdma method and ofdm system
WO2012097662A1 (en) Usage of discrete spectrum in orthogonal frequency division multiplexing system, and receiving method and apparatus using discrete spectrum
CN103428142A (en) Communication method, communication device and communication system
WO2006037258A1 (en) A ofdm and ofdma coexistence system and a cooperation method thereof
WO2010054568A1 (en) Multiple access method and apparatus in space-time-frequency-code domain
US20140334285A1 (en) Base station apparatus for decreasing amount of transmission data with cloud radio access network
KR20180026768A (en) A wireless communication method using a signaling field and a wireless communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825746

Country of ref document: EP

Kind code of ref document: A1