WO2010054566A1 - 一种告警和性能监测方法及网络节点 - Google Patents

一种告警和性能监测方法及网络节点 Download PDF

Info

Publication number
WO2010054566A1
WO2010054566A1 PCT/CN2009/073608 CN2009073608W WO2010054566A1 WO 2010054566 A1 WO2010054566 A1 WO 2010054566A1 CN 2009073608 W CN2009073608 W CN 2009073608W WO 2010054566 A1 WO2010054566 A1 WO 2010054566A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
burst
data
performance monitoring
indication
Prior art date
Application number
PCT/CN2009/073608
Other languages
English (en)
French (fr)
Inventor
张毅
曹旸
周建林
操时宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09825741.3A priority Critical patent/EP2339783B1/en
Publication of WO2010054566A1 publication Critical patent/WO2010054566A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the present invention relates to the field of communications, and in particular, to an alarm and performance monitoring method and a network node. Background technique
  • FIG. 1 is a schematic diagram of the network architecture of Ex-OBRing.
  • the schematic diagram is specifically a schematic diagram of a multi-wavelength multiplexing (WDM) optical ring network, wherein one wavelength is controlled wavelength/channel 11 for transmitting control information; the other wavelength is data wavelength/channel 12 for transmission.
  • WDM multi-wavelength multiplexing
  • the control channel 11 transmits control information in a continuous transmission manner, and the transmitted information has a fixed frame structure. Except for the same field at the beginning of each frame, the other portions of the frame use a scrambling code.
  • Each node in the ring network receives the control information transmitted by its previous node, and after processing, sends it to the next node.
  • the data channel 12 transmits the service data information by means of burst transmission. The characteristic of the burst transmission is that the data is transmitted in a data burst structure when the data is transmitted, and when there is no data transmission on the channel.
  • each data burst is regarded as a physical unit of data channel 12 transmission, except for the preceding preamble and each data burst. In addition to the delimiter, other parts are scrambled.
  • the data burst transmitted on the data channel 12 is not processed by the optical domain to the electrical domain at each node on the ring network. That is to say, the data burst is sent only at its source node and received at the destination node, while each node in the middle passes through directly at the wavelength of the light.
  • a plurality of data bursts are specified, and a free area between bursts constitutes a virtual frame structure.
  • the frame structure has the same length as the continuous frame structure of the control channel, and is also connected to the front and rear virtual frame structures.
  • Ex-OBRing's network architecture diagram includes a plurality of nodes in addition to the above-mentioned control channel 11 and data channel 12, one of which is a master control node 13, which is responsible for the control and management of the entire network, especially for the entire network bandwidth. Uniform distribution of resources, and control of data transmission and reception in other nodes in the ring network by issuing bandwidth maps.
  • a corresponding control and adjustment mechanism is required in order to ensure that the control channel 11 and the data channel 12 transmit data peers, and to ensure that a ring of data channels 12 can accommodate exactly one virtual frame length.
  • the Ex-OBRing network usually integrates the functions of peer control and management into the master node 13.
  • optical transmission systems should have "self-diagnostics" capabilities, that is, alarm and performance monitoring capabilities.
  • Ex-OBRing is no exception.
  • SDH Serial Digital Hierarchy
  • SDH Synchronous Digital Hierarchy
  • the transmission of SDH is divided into multiple layers, and the data transmitted by it is divided into multiple levels, the alarm mechanism is also divided into multiple levels.
  • the multi-layer alarm mechanism of SDH is vertical, that is, the multi-layer has Reusable relationship.
  • the Ex-OBRing network On the data channel, the Ex-OBRing network has only the structure of the data burst, and the control frame of the control channel.
  • the transmission also has only one layer of frame structure, and the control channel and the data channel are relatively independent, and there is no multi-layer multiplexing relationship. Therefore, the SDH alarm mechanism is not suitable for the Ex-OBRing network.
  • GPON gigabit-Capable Passive Optical Networks
  • Alarm and performance monitoring includes detecting link failures and monitoring link health and performance.
  • GPON and Ex-OBRing have great differences in network topology.
  • GPON is a star-based network with master-slave. The alarm and performance monitoring is only in OLT (Optical Line Termination) and ONT (Optical Network Termination).
  • Optical network terminals are carried out between two types of nodes, and there is no information between the various ONTs.
  • the Ex-OBRing network is a ring structure, and multiple nodes on the ring are equal entities in the alarm processing, thus involving the transmission of alarm messages between multiple nodes, and the control channel and data channel of the Ex-OBRing network are separated.
  • the control channel is continuous transmission
  • the data channel is burst transmission. Therefore, the GPON alarm and performance monitoring mechanism is not applicable to Ex-OBRing.
  • the embodiment of the invention provides an alarm and performance monitoring method, which can enable the Ex-OBRing network to implement alarm and performance monitoring purposes.
  • an embodiment of the present invention provides an alarm and performance monitoring method, including:
  • bandwidth map information included in the data in the control channel where the bandwidth map information is Carrying location information of a data burst in the corresponding data channel;
  • the data burst in the data channel is detected according to the location information of the data burst in the data channel, and an alarm or/and performance monitoring indication of the data channel is generated.
  • an embodiment of the present invention further provides a network node, including:
  • the control channel alarm monitoring module is configured to detect data in the control channel, generate an alarm or/and performance monitoring indication of the control channel;
  • An acquiring module configured to acquire bandwidth map information included in data in the control channel alarm monitoring module, where the bandwidth map information carries location information of a data burst in a corresponding data channel;
  • the data channel alarm monitoring module is configured to detect a data burst in the data channel according to the location information of the data burst in the corresponding data channel in the bandwidth map information, and generate an alarm or/and performance monitoring indication of the data channel.
  • the alarm and performance monitoring method and the network node provided by the embodiment of the present invention determine the location of the data burst in the data channel by controlling the bandwidth map information included in the data in the channel during the alarm and performance monitoring of the control channel.
  • the information is used to perform alarm and performance monitoring on the data channel according to the location information, so that the control channel and the data channel cooperate to perform alarm and performance monitoring, thereby realizing the purpose of monitoring and performance monitoring of the control channel and the data channel in the optical ring network.
  • Figure 1 is a schematic diagram of the network architecture of Ex-OBRing
  • FIG. 2 is a schematic structural diagram of a control frame in a control channel of an Ex-OBRing network
  • FIG. 3 is a schematic structural diagram of a data virtual frame in a data channel of an Ex-OBRing network
  • 4 is a schematic structural diagram of a network node of Ex-OBRing
  • FIG. 5 is a schematic flow chart of an embodiment of an alarm and performance monitoring method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of an embodiment of an alarm and performance monitoring method for a control channel according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart diagram of an embodiment of an alarm and performance monitoring method for a data channel according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of an embodiment of an alarm and performance monitoring method for an intermediate node of a data channel according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart diagram of an embodiment of an alarm and performance monitoring method for a data channel destination node according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a composition of a first embodiment of a network node according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of an embodiment of a control channel alarm monitoring module according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the composition of an embodiment of a data channel alarm monitoring module according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing the composition of an embodiment of an intermediate node alarm monitoring unit according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the composition of an embodiment of a destination node alarm monitoring unit according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a second embodiment of a network node according to an embodiment of the present invention
  • FIG. 16 is a functional structure and a signal processing diagram of a network node according to an embodiment of the present invention. detailed description
  • the alarm and performance monitoring method and the network node provided by the embodiment of the present invention determine the location of the data burst in the data channel by controlling the bandwidth map information included in the data in the channel during the alarm and performance monitoring of the control channel.
  • the information is used to perform alarm and performance monitoring on the data channel according to the location information, so that the control channel and the data channel cooperate to perform alarm and performance monitoring, thereby realizing the purpose of monitoring and performance monitoring of the control channel and the data channel in the optical ring network.
  • control frame in the Ex-OBRing network control channel the data virtual frame in the data channel, and the network node structure of the Ex-OBRing network.
  • FIG. 2 it is a schematic structural diagram of a control frame in a control channel of an Ex-OBRing network.
  • a frame length of a control frame is set to 125 us, and a frame structure includes a control header (Control Header). , Bandwidth Map (BWMap) and other payload areas.
  • the Control Headed contains three domain BIPs (Bit-Interleaved-Parity) for controlling channel alarms and performance monitoring. 23, REI (Remote Error Indication) 24 And RDI (Remote Defect Indication) 25.
  • the bandwidth map contains N bandwidth map sub-items of the same length, where the number N is determined by the domain TCNum (number of transmission containers) 26 in the control frame header.
  • a control frame is identical to the data virtual frame of a data channel, and a bandwidth map sub-item of the control frame corresponds to a transport container T-CONT (T-CONT, Transmission Container) in the data virtual frame.
  • T-CONT Transport Container
  • SStart (Session Start) 27 and SStop (Session Stop) 28 field values in the sub-item respectively specify the start and end positions of the corresponding T-CONT in the data virtual frame. In this way, the entire bandwidth map depicts the bandwidth allocation of each T-CONT in the corresponding data virtual frame.
  • FIG. 3 it is a schematic structural diagram of a virtual frame of data in a data channel of an Ex-OBRing network.
  • a fixed-length virtual frame in the data channel For example, the virtual frame length is set to 125 us.
  • the data bursts are transmitted directly at the optical wavelength, and each data burst can be transmitted from a different source node or/and received at a different destination node, so that the head and tail of the data burst have the time when the laser is turned on and off, respectively.
  • the valid data interval of the data burst consists of a header and a payload.
  • T-CONT Transmission Container
  • T-CONT is the entity that performs bandwidth allocation on the network.
  • T-CONT determines its corresponding bandwidth allocation policy by its own attributes.
  • the attributes of the T-CONT correspond to the transmission quality (QoS) requirements of the data services accommodated therein, and the data services are directly placed in the T-CONT for transmission, thereby enabling services that distinguish different QoS.
  • QoS transmission quality
  • a transmission container T-CONT corresponds to a medium data virtual frame.
  • the bandwidth map sub-item 21 in FIG. 2 corresponds to a transmission container T-CONT 31 in the data virtual frame in FIG. 3, and the bandwidth map sub-item 22 in FIG.
  • the bandwidth map sub-item 32 in the data virtual frame in FIG. corresponds to a transmission container T-CONT 32 in the data virtual frame in FIG.
  • the two field values SStart27 and SStop28 in the bandwidth map sub-item respectively specify the start and end positions of the corresponding T-CONT in the data virtual frame.
  • the entire bandwidth map in the control frame depicts the bandwidth allocation of each T-CONT in the corresponding data virtual frame.
  • FIG. 4 it is a schematic structural diagram of a network node of an Ex-OBRing.
  • the network node mainly includes three functional modules: an Optical Burst Add-Drop Multiplexer module 41.
  • Control channel transceiver and processing module 42 local data burst transceiver and processing module 43.
  • the fiber entering the node is separated by the coupling filter (CF) 44 to control the channel wavelength.
  • the optical signal of the control channel is sent and received by the control channel and processed.
  • Block 42 receives and processes, and then transmits to the same wavelength and is coupled to the fiber exiting the node through another coupling filter CF 45.
  • the alarm and performance monitoring of the control channel is apparently processed in control channel transceiver and processing module 42.
  • the remaining optical signal through the inlet CF 44 passes through a fiber delay line (FDL) and enters the OB ADM module 41.
  • the OBADM module 41 is configured to configure the switch therein to determine the local optical signal.
  • the local optical signal is directly coupled to the fiber exiting the OBADM module 41.
  • Each wavelength in the OBADM module 41 has a tap, which divides a small portion of the optical signal and detects the optical signal for the alarm of the intermediate node of the data channel.
  • the data burst in the wavelength of the OBADM module 41 is received by the local data burst transceiver and processing module 43, which is the destination node for the data burst. Alarms and performance monitoring of these data bursts are processed in the data burst transceiver and processing module 43.
  • the data burst that needs to be uploaded locally is also sent by the local data burst transceiver and processing module 43 to the corresponding wavelength, and enters the upper wavelength port of the OBADM module 41.
  • FIG. 5 is a schematic flowchart of an embodiment of an alarm and performance monitoring method according to an embodiment of the present invention. As shown in the figure, the method includes:
  • Step 501 Detecting data in the control channel, generating an alarm or/and performance monitoring indication of the control channel;
  • Step 502 Obtain bandwidth map information included in the data in the control channel, where the bandwidth map information carries location information of a data burst in a corresponding data channel; where, in a control frame transmitted in the control channel A bandwidth map entry is included that indicates the location of the data burst in the data channel corresponding to the control frame. This information will directly determine whether the data channel intermediate node alarm processing and data channel destination node alarm processing can be performed.
  • Step 503 Detect, according to location information of the data burst in the data channel, a data burst in the data channel, and generate an alarm or/and performance monitoring indication of the data channel.
  • the alarm and performance monitoring method provided by the embodiment of the present invention is determined by controlling the bandwidth map information included in the data in the control channel during the process of performing alarm and performance monitoring on the control channel.
  • FIG. 6 is a schematic flowchart diagram of an embodiment of an alarm and performance monitoring method for a control channel according to an embodiment of the present invention.
  • the content transmitted by the control channel is a continuous fixed-length frame structure. Since the Ex-OBRing control channel has only one layer of frame structure, there is only one level of alarm and performance monitoring in the control channel.
  • the optical signal of the control channel needs to be converted into an electrical signal, so that the data of the control channel is detected in the electrical domain, and after the data of the control channel is detected in the electrical domain, the electrical signal is further Convert to an optical signal.
  • the alarm and performance monitoring methods of the control channel include:
  • Step 601 Detecting whether there is signal loss in the control channel; where, when converting the optical signal of the control channel into an electrical signal, performing optical power detection on the optical signal of the received control channel, if the upstream node or the path fails , causing the detected optical power to be lower than its sensitivity, which will generate a loss of signal (LOS, Loss of Signal) alarm.
  • LOS Loss of Signal
  • Step 602a When detecting that there is a signal loss, generating a signal loss, that is, a LOS alarm, and processing the LOS alarm; where processing the LOS alarm includes: generating a remote defect returned in an upstream direction
  • the indication is an RDI alarm and an AIS (Alarm Indication Signal) alarm, wherein the RDI alarm will facilitate the upstream node to locate the fault and perform corresponding processing; the AIS alarm signal will be convenient
  • the downstream node locates the fault and processes it accordingly.
  • the LOS alarm may be reported to the main control alarm processing system, and the control information for discarding the data burst of the data channel is sent to the data channel node.
  • the inserted alarm signal AIS sets all AIS fields in the control frame to "1", and the area behind the control header, including the bandwidth map and other control areas, is set to "1". " .
  • the fields of other control headers such as the same code field in the control frame, are generated by the node that is processing the control frame. Except for the same code field, other parts of the data are sent to the control channel wavelength after passing E/0. , will be scrambled.
  • the conditions for the generation and cancellation of the LOS signal loss alarm and the corresponding processing are as shown in Table 1:
  • Step 602b when detecting that there is no signal loss, outputting a valid signal
  • Step 603 detecting, according to a frame homology algorithm, whether there is a frame loss in the valid signal; where, specifically, searching for a frame loss in the signal by searching a frame and a weight in the signal, the frame
  • the same code is a special pattern, which is not scrambled. It usually takes 4 bytes and the pattern is 0xB6AB31E0. This pattern is used in both SDH and GPON. Because the frame length of the control frame is determined, according to the frame homology algorithm, if no valid frame and weight are found in one or more consecutive frames, a Lost of Frame (LOF) alarm may be generated.
  • LEF Lost of Frame
  • Step 604a when detecting that there is a frame loss, generating an LOF, that is, a frame loss alarm, and The LOF alarm is processed.
  • the processing of the LOF alarm includes: generating an RDI that is returned in the upstream direction, that is, a remote defect indication alarm, and an uplink AIS that is transmitted in the downstream direction, that is, an alarm indication signal alarm, and According to the generated LOF alarm, the LOF alarm is reported to the main control alarm processing system, and the control information for discarding the data of the data channel is sent to the data channel.
  • the frame length is assumed to be 125us.
  • the LOF that is, the frame loss alarm is generated and the alarm is generated. deal with.
  • the "frame loss" state if the same frame code is detected within 2 consecutive frames, the alarm is canceled and processed accordingly.
  • Step 604b When detecting that there is no frame loss, outputting a valid frame stream
  • Step 605 Perform data verification on the valid frame stream, and detect whether there is an error in the frame stream.
  • the BIP-8 check method may be used to verify the frame stream.
  • Step 606a When detecting that there is an error in the frame stream, calculate a bit error rate, and generate a performance monitoring indication or/and a corresponding error (ERR, BIP Errors) according to the statistical error rate.
  • ERR Error
  • SD Signal Degradation
  • SD Signal Degrade
  • a performance monitoring indication of an error (ERR, BIP Errors) may be generated and processed, and specifically, the performance monitoring indication may be performed according to the ERR.
  • the provided BIP-8 check error bit accumulation number is generated, and the performance monitoring indication of the remote error indication returned by the REI that is sent back to the upstream node is generated, and the performance monitoring indication of the ERR is reported to the main control alarm processing system.
  • a signal degraded (SD, Signal Degrade) alarm may be generated and processed, for example, an SD alarm is reported to the main control alarm processing system.
  • SD Signal Degrade
  • a signal failure (SF, Signal Fail) alarm may be generated, and the SF alarm is processed; here, according to the SF alarm, a backhaul may be generated in the upstream direction.
  • the RDI is the remote defect indication alarm and the downlink AIS that is transmitted in the downstream direction, that is, the alarm indication signal alarm, and the SF alarm is reported to the main control alarm processing system, and the data channel node is sent to abandon the data of the data channel. Control information.
  • the verification of the valid frame stream is performed by using a BIP-8 check, specifically, performing parity check on all data from the BIP byte of the previous control frame to the BIP byte of the control frame, if at least 1
  • a BIP-8 check specifically, performing parity check on all data from the BIP byte of the previous control frame to the BIP byte of the control frame, if at least 1
  • Step 606b Determine whether there is an SF alarm; because the SF alarm is an immediate interruption type alarm, if such an alarm is generated, the frame stream in the control channel is terminated and the forward transmission is continued. If there is no SF alarm, then the frame stream transmitted in the control channel is an acceptable frame stream and can continue to be forwarded.
  • Step 606c when detecting that there is no error or the error is within a certain range, the output is connectable Received frame stream;
  • the error existing in the frame stream belongs to an acceptable range, and therefore, an acceptable frame stream can be output.
  • Step 607 Detect whether there is an alarm or/and a performance monitoring indication of the backhaul of the upstream node in the acceptable frame stream.
  • the detection is detected.
  • Step 608a when detecting the presence of the alarm or/and the performance monitoring indication, acquiring the detected uRDI, that is, the remote defect indication alarm or/and the uREI, that is, the performance monitoring indication of the remote error indication, and the alarm is generated Or / and performance monitoring instructions for processing.
  • the processing of the alarm or/and the performance monitoring indication specifically includes: reporting an uREI performance monitoring indication or/and a uRD alarm to the main control alarm processing system, and performing appropriate processing on the two messages, for example, performing protection switching Wait for the operation. It should be noted that the detected uRDI alarm or / and uREI performance monitoring indication does not affect the data transmission.
  • Step 608 b When detecting that the alarm or/and performance monitoring indication does not exist, output a frame stream without a feedback alarm or/and a performance monitoring indication.
  • the LOS alarm, the LOF alarm, and the SF alarm are all immediate interruption type alarms, that is, if such an alarm is generated, the control channel data is terminated and the forward transmission is performed, the detected ERR performance monitoring indication, the SD alarm, The uREI performance monitoring indication and the uRDI alarm do not affect the continued transmission of control channel data.
  • FIG. 7 is a schematic flowchart of an embodiment of an alarm and performance monitoring method for a data channel according to an embodiment of the present invention.
  • data channel transmission service data information is a burst transmission method.
  • the data burst transmitted on the data channel is not received by the optical domain from each node on the ring network. That is to say, the data burst is sent only at its source node and received at the destination node, and each node in the middle passes through the optical wavelength directly. Therefore, different alarms and performance are applied to the intermediate node and the destination node of the data channel.
  • the monitoring mechanism, the alarm and performance monitoring method of the data channel includes: Step 701: Perform, according to location information of the data burst in the data channel, a data burst that is passed through the node in the data channel, generate an alarm or/and performance monitoring indication of the intermediate node of the data channel, and perform the The alarm or/and performance monitoring indication of the intermediate node of the data channel is processed;
  • Step 702 Perform, according to the location information of the data burst in the data channel, a data burst in the data channel that is offline at the local node, and generate an alarm or/and performance monitoring indication of the destination node of the data channel, and The alarm or/and performance monitoring indication of the data channel destination node is processed.
  • FIG. 8 is a schematic flowchart of an embodiment of an alarm and performance monitoring method for an intermediate node of a data channel according to an embodiment of the present invention.
  • the intermediate node alarm and performance monitoring are actually when the data channel passes through each node on the ring. Directly from each data channel wavelength, a small portion of the optical signal is divided, and the optical power is detected for each data channel from the power. This part of the process is simple, but it is very beneficial to the transmission quality of the security network and the rapid fault location.
  • the alarm and performance monitoring methods of the intermediate nodes of the data channel include:
  • Step 801 Detect, according to location information of the data burst in the data channel, whether there is a burst signal loss in the data channel.
  • the location information of the data burst in the data channel is determined according to a bandwidth map in a control frame of the control channel, where the location information includes a start position of each data burst, if no valid light is detected in the corresponding location area For power, a Burst Loss of Signal (B-LOS) alarm is generated.
  • B-LOS Burst Loss of Signal
  • Step 802a when detecting the presence of a burst signal loss, generating a B-LOS, that is, a burst signal loss alarm, and processing the B-LOS alarm; where the processing of the B-LOS alarm specifically includes : Controls the OBADM module to turn on the optical switch, abandoning the punch-through of the data burst transmission and generating a burst warning indication signal that is inserted downstream (B-AIS, Burst Alarm) Indication Signal), the alarm signal will facilitate the downstream node to locate and handle the fault, and report the B-LOS alarm to the master alarm processing system according to the B-LOS alarm.
  • the B-AIS alert signal sets the domain B-AIS in all T-CONT bandwidth features to "1".
  • Step 802b when detecting that there is no burst signal loss, outputting a valid burst signal.
  • the conditions for generating and canceling the B-LOS, that is, the burst signal loss alarm and the corresponding processing are as shown in Table 4:
  • a B-LOS that is, a data burst signal loss alarm is generated and the alarm is processed.
  • the data bursts received adjacently are likely to come from different source nodes. Therefore, the four consecutive times mentioned here should refer to the four data bursts sent by the same source node. As soon as a valid data burst signal is received, the alarm is cancelled and processed accordingly.
  • FIG. 9 is a schematic flowchart of an embodiment of an alarm and performance monitoring method for a data channel destination node according to an embodiment of the present invention. As shown in the figure, the method includes:
  • Step 901 Detect, according to location information of the data burst in the data channel, whether there is a burst signal loss in the data channel; where, when converting the optical signal of the data channel into an electrical signal, the received data is bursted
  • the optical signal is sent for optical power detection. If the data burst is sent to the source node or the device on the path through which the data burst passes, such as an optical switch, the corresponding data burst signal cannot be received, thereby generating B. -LOS is the burst signal loss alarm.
  • the location information of the data burst in the data channel is determined according to a bandwidth map in a control frame of the control channel, where the location information includes a start and end position of each data burst, if in a corresponding location area. If no valid optical power is detected, a B-LOS alarm is generated.
  • Step 902a When detecting that there is a burst signal loss, generating a B-LOS alarm, and processing the B-LOS alarm; where the processing the B-LOS alarm specifically includes: generating an upward
  • the B-RDI that is sent back in the direction of the call is the burst remote defect indication alarm, and the B-LOS alarm is reported to the main control alarm processing system, and the data burst is discarded.
  • the data burst indicated by the map is all set to "0";
  • LOS is the data burst signal loss alarm and processes the alarm. It should be noted that the data bursts received adjacently are likely to come from different source nodes. Therefore, the four consecutive times mentioned here should refer to the four data bursts sent by the same source node. As soon as a valid data burst signal is received, the alarm is cancelled and processed accordingly.
  • Step 902b When detecting that there is no burst signal loss, outputting a valid burst signal;
  • Step 903 detecting, according to the burst frame delimiting method, whether there is a burst frame loss in the valid burst signal;
  • the length of the data burst frame may be determined by the bandwidth map in the control frame, in specific implementation, according to A frame delimiter (Del, Delimitter) is used to detect whether there is a burst frame loss in the valid burst signal, wherein the frame delimiter is a special pattern, and no interference is transmitted during transmission. code.
  • Delimiter Delimiter
  • Step 904a When detecting that there is a burst frame loss, generating a burst frame loss (B-LOF, The alarm is generated, and the B-LOF alarm is processed.
  • the processing of the B-LOF alarm includes: generating a B-RDI that is returned in the upstream direction, that is, a burst remote defect indication.
  • the alarm reports the B-RDI alarm to the master alarm processing system, and discards the data burst.
  • Step 904b When detecting that there is no burst frame loss, outputting a valid burst frame stream.
  • Step 905 Perform data verification on the valid burst frame stream, and detect whether there is an error in the burst frame stream.
  • the received data burst frames from the same source node are connected to form a
  • the data stream is used to verify the data stream, and the BIP-8 check method can be used.
  • Step 906a When detecting an error in the burst frame stream, calculate a bit error rate, and generate a corresponding burst error (B-ERR, Burst BIP Errors) performance monitoring indication according to the statistical error rate. Or / and Burst Signal Degrade (B-SF, Burst Signal Fail) alarms, and the alarm or indication is processed.
  • B-ERR burst error
  • B-SF Burst Signal Fail
  • the burst error (B-ERR, can be generated first).
  • the performance monitoring indication of the B-REI that is, the burst remote error indication, which is sent back to the upstream node, may be generated according to the accumulated number of BIP-8 check error bits provided by the B-ERR performance monitoring indication, and the alarm is sent to the main control.
  • the processing system reports the performance monitoring indication of B-ERR.
  • a B-SD (Burst Signal Degrade) alarm may be generated and processed, specifically, the B-SD alarm is reported to the main control alarm processing system. .
  • a burst signal failure (B-SF, Burst Signal Fail) alarm may be generated, and the B-SF alarm is processed;
  • B-SF alarm a B-RDI that is returned in the upstream direction, that is, a burst remote defect indication alarm is generated, a B-SF alarm is reported to the main control alarm processing system, and the data burst is discarded.
  • BER ⁇ 10—y is set to 0 (including the band (y+i) is a normal number of wide maps);
  • the verification of the valid burst frame stream is performed by using a BIP-8 check, specifically for all the homologouss from the BIP byte of the previous homologous data burst frame to the BIP byte of the burst frame.
  • the burst signal degradation and burst signal failure alarm also have their corresponding cancellation conditions and processing methods. See Table 7 for details.
  • Step 906b Determine whether there is a B-SF alarm; because the B-SF alarm is an immediate interruption type alarm, if such an alarm is generated, the burst frame stream in the data channel is terminated and the forward transmission is continued. If there is no B-SF alarm, then the burst frame stream in the data channel is an acceptable frame stream and can continue to be forwarded.
  • Step 906c When detecting that there is no error or the error is within a certain range, outputting an acceptable burst frame stream, where when the B-ERR performance monitoring indication or/and the B-SD alarm is detected The error present in the frame stream is in an acceptable range, so an acceptable burst frame stream can be output.
  • Step 907 Detect whether an alarm or/and a performance monitoring indication of an upstream node backhaul exists in the acceptable burst frame stream.
  • Step 908a When detecting that the alarm or/and performance monitoring indication is present, the acquiring is detected.
  • the uB-RDI is an alarm of a sudden remote defect indication or/and a performance monitoring indication of the u B-REI, that is, a burst remote error indication, and processes the alarm or/and performance monitoring indication;
  • the alarm or/and the performance monitoring indication is processed by: reporting the uB-REI performance monitoring indication or the / and the uB-RDI alarm to the main control alarm processing system, and appropriately processing the two messages, for example, performing protection switching Wait for the operation.
  • Step 908b When detecting that the alarm or/and performance monitoring indication does not exist, output a frame stream without a feedback alarm or/and a performance monitoring indication.
  • FIG. 10 is a schematic diagram of a composition of a first embodiment of a network node according to an embodiment of the present invention. As shown in the figure, the network node includes:
  • the control channel alarm monitoring module 101 is configured to detect data in the control channel, and generate an alarm or/and performance monitoring indication of the control channel.
  • the obtaining module 102 is configured to acquire bandwidth map information included in the data in the control channel alarm monitoring module 101, where the bandwidth map information carries location information of a data burst in a corresponding data channel; where, in the control channel
  • the transmitted control frame will contain a bandwidth map item indicating the location of the data burst in the data channel corresponding to the control frame. This information will directly determine whether the data channel intermediate node alarm processing and data channel destination node alarm processing can be performed.
  • the data channel alarm monitoring module 103 is configured to detect a data burst in the data channel according to the location information of the data burst in the corresponding data channel in the bandwidth map information, and generate an alarm or/and performance monitoring indication of the data channel. .
  • the network node determines the location information of the data burst in the data channel by controlling the bandwidth map information included in the data in the control channel during the alarm and performance monitoring of the control channel, according to the location information.
  • Alarms and performance monitoring are performed on the data channel, so that the control channel and the data channel cooperate to perform alarm and performance monitoring, thereby realizing the purpose of monitoring and performance monitoring of the control channel and the data channel in the optical ring network.
  • FIG. 11 is a schematic structural diagram of an embodiment of a control channel alarm monitoring module according to an embodiment of the present invention.
  • the control channel alarm monitoring module includes:
  • the detecting unit 111 is configured to detect data in the control channel, and respectively detect whether there is a signal loss, a frame loss, a frame error, and an alarm or/and a performance monitoring indication of the backhaul of the upstream node in the control channel;
  • For the specific process of detecting data in the channel refer to the description of the alarm and performance monitoring method item of the corresponding control channel.
  • the alarm information generating unit 112 is configured to generate an alarm for signal loss when the detecting unit 111 detects that there is a loss of the signal; when the detecting unit 111 detects that there is a frame loss, generate an alarm for frame loss; When the unit 111 detects that there is a frame error, it generates a performance monitoring indication of the corresponding error or/and an alarm of signal degradation or/and a signal failure; when the detecting unit 111 detects that there is an alarm or/and performance of the upstream node backhaul When monitoring the indication, the alarm of the detected remote defect indication or/the performance monitoring indication of the remote error indication is obtained; here, for the specific process of generating or acquiring the alarm or/and the performance monitoring indication, refer to the corresponding control channel. Description of the alarm and performance monitoring method item embodiments.
  • the processing unit 113 is configured to generate, according to the alarm of the lost signal, the alarm of the frame loss, or the alarm of the signal failure generated by the alarm information generating unit 112, generate an alarm for the remote defect indication returned to the upstream node, and downlink
  • the alarm indicating the signal is sent by the node, and the information about the alarm and performance monitoring of the data channel is sent to the data channel node; and the performance monitoring indication of the error generated by the alarm information generating unit 112 is generated, and the upstream node is generated.
  • Performance monitoring indication of the transmitted remote error indication for the specific process of handling alarm or / and performance monitoring indications, please refer to the description of the corresponding control channel alarm and performance monitoring method examples.
  • FIG. 12 it is a schematic diagram of an embodiment of a data channel alarm monitoring module according to an embodiment of the present invention.
  • the data channel alarm monitoring module includes:
  • the intermediate node alarm monitoring unit 121 is configured to detect, according to the location information of the data burst in the corresponding data channel in the bandwidth map information, a data burst that is punched through the node in the data channel, and generate an alarm of the intermediate node of the data channel or And performance monitoring indications, and processing alarms and/or performance monitoring indications of the intermediate nodes of the data channel; where intermediate node alarms and performance monitoring are actually data channels passing through each node on the ring, directly from each Data channel wavelength A small portion of the optical signal is down, and the optical power is detected for each data channel in terms of power. This part of the processing is simple, but it is very beneficial to ensure the transmission quality of the network and to quickly locate the fault.
  • the destination node alarm monitoring unit 122 is configured to detect, according to the location information of the data burst in the corresponding data channel in the bandwidth map information, the data burst in the data channel at the local node, and generate an alarm of the data channel destination node or And the performance monitoring indication, and processing the alarm or/and performance monitoring indication of the data channel destination node.
  • FIG. 13 is a schematic structural diagram of an embodiment of an intermediate node alarm monitoring unit according to an embodiment of the present invention. As shown in the figure, the intermediate node alarm monitoring unit includes:
  • the first detecting sub-unit 131 is configured to detect, according to the location information of the data burst in the data channel, a data burst that passes through the node in the data channel, and detect whether there is a burst signal loss in the data channel;
  • the intermediate node does not convert the optical burst to the electrical domain, so only the optical power is detected here.
  • the specific process of detecting data bursts in the data channel refer to the description of the alarm and performance monitoring method items in the corresponding data channel intermediate node.
  • the first alarm information generating sub-unit 132 is configured to generate a B-LOS, that is, a burst signal loss alarm when the first detecting sub-unit 131 detects that there is a burst signal loss; here, for the specific process of generating an alarm, See the description of the alarm and performance monitoring method item embodiment of the corresponding data channel intermediate node.
  • the first processing sub-unit 133 is configured to generate an alarm for burst signal loss generated by the sub-unit 132 according to the first alarm information, control to open the optical switch, abandon the punch-through of the data burst, and generate a downlink node
  • the alarm of the inserted burst alarm indication signal refer to the description of the alarm and performance monitoring method item in the corresponding data channel intermediate node.
  • FIG. 14 is a schematic structural diagram of an embodiment of a target node alarm monitoring unit according to an embodiment of the present invention. As shown in the figure, the destination node alarm monitoring unit includes:
  • the second detecting sub-unit 141 is configured to detect a data burst in the data channel that is in the downlink of the node, and detect whether there is a burst signal loss, a burst frame loss, or a burst frame error in the data channel.
  • a second alarm information generating sub-unit 142 configured to generate an alarm for burst signal loss when the second detecting sub-unit 141 detects that there is a burst signal loss; when the second detecting sub-unit 141 detects that there is a burst When the frame is lost, an alarm for burst frame loss is generated; when the second detecting sub-unit 141 detects that there is a burst frame error, a performance monitoring indication of the corresponding burst error or/and an alarm of burst signal degradation is generated.
  • the alarm of the burst signal failure when the second detecting sub-unit 141 detects that there is an alarm or/and a performance monitoring indication of the backhaul of the upstream node, the alarm of the detected sudden remote defect indication is obtained or / And the performance monitoring indication of the burst remote error indication; here, for the specific process of generating or acquiring the alarm or/and the performance monitoring indication, refer to the description of the alarm and performance monitoring method item embodiment of the corresponding data channel destination node.
  • the second processing sub-unit 143 is configured to generate, according to the second alarm information, a burst signal loss alarm, a burst frame loss alarm, or a burst signal failure alarm generated by the sub-unit 142, and generate an alarm to the upstream node accordingly.
  • the alarm of the sudden remote defect indication is sent, and the data burst is discarded; the performance monitoring indication of the burst error generated by the sub-unit 142 is generated according to the second alarm information, and the burst returned to the upstream node is generated.
  • Performance monitoring indication of remote error indication for the specific process of handling the alarm or / and performance monitoring indication, please refer to the description of the alarm and performance monitoring method item of the corresponding data channel destination node.
  • FIG. 15 is a schematic diagram of a second embodiment of a network node according to an embodiment of the present invention.
  • the network node includes a control channel alarm monitoring module, an acquiring module, and a data channel alarm monitoring module.
  • the modules in the embodiment and the relationship between the modules refer to the description in the first embodiment of the network node of the present invention.
  • the function of each unit in the control channel alarm monitoring module in this embodiment, and the relationship between the units refer to the description in the embodiment of the control channel alarm monitoring module of the present invention.
  • the function of the unit and the relationship between the units please refer to the description in the embodiment of the data channel alarm monitoring module of the present invention. Said.
  • FIG. 16 is a functional structure and a signal processing diagram of a network node according to an embodiment of the present invention.
  • the network node alarm and performance monitoring system can be divided into three parts, the control channel alarm monitoring module.
  • the network node will support simultaneous communication of two fibers in the east and west directions. Only the functional modules and processing procedures for the alarm and performance monitoring of the eastbound transmission fiber are shown in the figure, and the fibers transmitted in the west direction are similar. structure. The functions of each module and each unit in each module, as well as the signal processing flow, are described below. It should be noted that the same named units exist in the following units, and can be distinguished by different labels.
  • Control channel alarm monitoring module 1 The alarm and performance monitoring of the control channel is as follows:
  • the 0/E unit or the photoelectric conversion unit 101 performs optical power detection on the optical signal of the received control channel when converting the optical signal of the control channel into an electrical signal, and causes the detected light if the upstream node or the path fails. If the power is lower than its sensitivity, an LOS signal loss alarm will be generated.
  • the alarm performance processing unit 106 performs processing according to the LOS alarm, which is specifically: generating an upstream returning RDI, that is, a remote defect indication alarm, and an uplink AIS, that is, an alarm indication signal alarm, which is transmitted to the downstream direction, to the main control alarm processing system. 4 Reporting the LOS alarm and sending control information for abandoning the data burst of the data channel to the data channel.
  • the RDI alarm is sent back to the upstream through the backhaul alarm unit 107, that is, it is transmitted upstream through the westward optical fiber; the AIS alarm is put into the control frame by the downloading alarm unit 108. , insert the next downstream transmission.
  • the frame synchronization detecting unit 102 detects whether there is a frame loss in the valid signal according to the frame homology algorithm; here, specifically, Searching for the frame and the weight in the signal to detect whether there is frame loss in the signal, the frame and the code are a special pattern, and no scrambling processing is performed, generally occupying 4 bytes, and the pattern is 0xB6AB31E0 (This pattern is used in both SDH and GPON). Since the frame length is determined, according to the frame homology algorithm, if no valid frame and weight are found in one or more consecutive frames, a LOF, that is, a frame loss alarm may be generated.
  • the alarm performance processing unit 106 performs the processing according to the LOF alarm, and specifically includes: generating an RDI that is returned in the upstream direction, that is, a remote defect indication alarm, and an uplink AIS that is transmitted in the downstream direction, that is, an alarm indication signal alarm, and the alarm is sent to the main control.
  • the processing system 4 reports the LOF alarm and sends control information to the data channel to abandon the detection of the data of the data channel.
  • the RDI alarm is sent back to the upstream through the backhaul alarm unit 107, that is, it is transmitted upstream through the westward optical fiber; the AIS alarm is put into the control frame by the downloading alarm unit 108. , insert the next downstream transmission.
  • the data check unit 103 After the frame matching unit 102 detects that there is no frame loss and outputs a valid frame stream, the data check unit 103 performs data verification on the valid frame stream to detect whether there is an error in the frame stream.
  • the BIP-8 check method may be used to verify the frame stream, and the error rate is calculated.
  • a corresponding ERR or error performance monitoring indication or/and SD or signal degradation alarm or And the SF is a signal failure alarm
  • the alarm performance processing unit 106 processes the alarm or/and the performance monitoring indication.
  • the performance monitoring indication is an ERR performance monitoring indication
  • the ERR performance monitoring may be performed according to the ERR performance.
  • the REI performance monitoring indication or/and the RDI alarm is sent back to the upstream through the backhaul alarm unit 107, that is, the upstream transmission is performed through the westward optical fiber; the AIS alarm is sent to the next through the lowering alarm unit 108.
  • the inserted message is placed in the control frame and inserted into the downstream direction for transmission.
  • the backhaul detecting unit 104 detects the acceptable frame stream after the data check unit 103 detects that there is no error in the frame stream or there is a certain range of errors, and outputs an acceptable frame stream. Whether there is an alarm or/and performance monitoring indication of the backhaul of the upstream node. If the alarm or/and the performance monitoring indication is detected, the detected uRDI, that is, the remote defect indication alarm or/and the uREI, that is, the remote error is obtained. The indicated performance monitoring indication, the alarm performance processing unit 106 processes the alarm or/and the performance monitoring indication, specifically, reporting the performance monitoring indication of the uREI or the uRD alarm to the main control alarm processing system 4, and The messages are handled appropriately, for example, operations such as protection switching. It should be noted that the detected RDI alarm or / and uREI performance monitoring indication does not affect the data transmission.
  • the bandwidth map processing unit 105 can obtain the bandwidth map information in the control frame in the control channel, where the bandwidth map information carries the location information of the data burst in the corresponding data channel; here, in the control frame of the control channel
  • the bandwidth map item is instructed to indicate the location of the data burst in the data channel corresponding to the control frame, and the bandwidth map processing unit 105 transmits the acquired bandwidth map information to the data channel intermediate node alarm monitoring module 2 and the data channel destination node alarm monitoring. Module 3, which guides its positioning of data bursts.
  • the LOS alarm generated by the 0/E unit 101, the LOF alarm generated by the frame synchronizing unit 102, and the SF alarm generated by the data check unit 103 are all instant interrupt type alarms, SP, if When such an alarm is generated, the control channel data is terminated and the forward transmission is continued.
  • the ERR performance monitoring indication generated by the data verification unit 103, the SD alarm, and the uREI or/and uRDI alarm detected by the backhaul detecting unit 104 do not affect the control. Continued transmission of channel data.
  • the data channel intermediate node alarm monitoring module 2 performs control channel alarm and performance monitoring specifically as follows:
  • the burst detecting unit 201 detects a data burst passing through the node in the data channel according to the location information of the data burst in the data channel, and detects whether there is a burst signal loss in the data channel; here, since the intermediate node does not
  • the optical burst is converted to the electrical domain, so only the optical power is detected here.
  • the location information includes a start and end position of each data burst. If no valid optical power is detected in the corresponding location area, a B-LOS, that is, a burst loss alarm is generated.
  • the processing of the B-LOS alarm by the alarm processing unit 202 specifically includes: controlling the OBADM module to open the light.
  • the burst detecting unit 201 detects that there is no burst signal loss, it outputs a valid burst signal. It should be noted that the AIS alarm is sent into the control channel control frame by the downloading alarm unit 203, and is transmitted to the downstream direction.
  • the data channel destination node alarm monitoring module 3 performs control channel alarm and performance monitoring specifically as follows:
  • the 0/E unit 301 performs optical power detection on the optical signal of the received data burst when converting the optical signal of the data channel at the lower end of the node into an electrical signal according to the position information of the data burst in the data channel. If the data burst transmission source node or the device on the path through which the data burst passes, such as an optical switch, fails, the corresponding data burst signal cannot be received, thereby generating a B-LOS burst signal loss alarm. .
  • the B-LOS alarm is processed by the alarm performance processing unit 305, and the B-LOS alarm is generated, and the B-LOS alarm is sent to the main control alarm processing system 4, and the B-LOS alarm is reported to the main control alarm processing system 4, and Discard the data burst. It should be noted that the B-RDI alarm is sent back upstream through the backhaul alarm unit 306.
  • the burst frame delimiting unit 302 detects whether the valid burst signal exists according to the burst frame delimiting method.
  • Burst frame loss since the data frame burst is not continuously transmitted in the data channel, and all data frame bursts are not fixed length, the length of the data burst frame can be determined by the bandwidth map in the control frame, In a specific implementation, whether a burst frame loss exists in the valid burst signal is detected according to a method using a frame delimiter (Del, Delimitter).
  • a B-LOF that is, a burst frame loss alarm
  • the alarm performance processing unit 305 processes the alarm, which includes: generating a B-RDI that is returned in the upstream direction, that is, a sudden far The end defect indicates an alarm, and the B-RDI alarm is reported to the main control alarm processing system 4, and the data burst is discarded. It should be noted that the B-RDI alarm is sent back to the upstream through the backhaul alarm unit 306.
  • the data check unit 303 detects, at the burst frame delimiting unit 302, that there is no burst frame loss and After outputting a valid burst frame stream, performing data check on the valid burst frame stream, detecting whether there is an error in the burst frame stream; when detecting that there is an error in the burst frame stream, Statistical error rate, according to the statistical error rate, generate corresponding B-ERR, that is, burst error performance monitoring indication or / and B-SD, that is, burst signal degradation alarm or / and B-SF, burst signal failure Alarm.
  • the alarm performance processing unit 305 processes the performance monitoring indication or the alarm.
  • the BIP-8 verification error may be provided according to the B-ERR performance monitoring indication.
  • the B-ERR performance monitoring indication is generated by the B-REI, which is the B-ERR performance monitoring indication, and the B-ERR performance monitoring indication is sent to the main control alarm processing system 4; Then, the B-SD alarm is reported to the main control alarm processing system 4; if the alarm is a B-SF alarm, the B-RDI that is sent back in the upstream direction is generated, that is, the sudden remote defect indication alarm is sent to the main control alarm processing system 4 The B-SF alarm is reported, and the data burst is discarded. It should be noted that the B-ERR performance monitoring indication or/and the B-RDI alarm may be returned upstream through the backhaul alarm unit 306.
  • the back detection unit 304 detects the acceptable burst frame stream, and detects the acceptable Whether there is an alarm or/and performance monitoring indication of the backhaul of the upstream node in the burst frame stream, and if the alarm or/and the performance monitoring indication is detected, the detected uB-RDI, that is, the sudden remote defect indication is obtained.
  • the alarm or/and the uB-REI is the performance monitoring indication of the burst remote error indication, and the alarm performance processing unit 305 processes the alarm or/and the performance monitoring indication, specifically, reporting the uB to the main control alarm processing system 4 - REI performance monitoring indication or / and uB-RDI alarms, and appropriate processing of these two messages, for example, protection switching.
  • the B-LOS alarm generated by the 0/E unit 301, the B-LOF alarm generated by the burst frame delimiting unit 302, and the B-SF alarm generated by the data verification unit 303 are all immediate.
  • the interrupt type alarm, SP if such an alarm is generated, the data burst in the data channel is terminated and the forward transmission is performed, and the B-ERR performance monitoring indication, the B-SD alarm, and the backhaul generated by the data verification unit 303 are generated.
  • the u B-REI or / and u B-RDI alarms detected by the detecting unit 304 do not affect the data. Continued transfer of data bursts in the channel.
  • the alarm and performance monitoring method and the network node provided by the embodiment of the present invention determine the location of the data burst in the data channel by controlling the bandwidth map information included in the data in the channel during the alarm and performance monitoring of the control channel.
  • the information is used to perform alarm and performance monitoring on the data channel according to the location information, so that the control channel and the data channel cooperate to perform alarm and performance monitoring, thereby realizing the purpose of monitoring and performance monitoring of the control channel and the data channel in the optical ring network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

一种告警和性能监测方法及网络节点 本申请要求 2008年 11月 17日递交的申请号为 200810219141.7、 发明 名称为 "一种告警和性能监测方法及网络节点" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及告警和性能监测方法及网络节点。 背景技术
互联网的兴起和不断发展, 促使了现代通信网络的变革。 新兴的视频点 播、 网络游戏、 IP 电话等都是基于互联网的数据业务。 这些数据业务的迅 猛增长已经超过传统语音业务, 并将持续拉大差距。 建立适合于数据业务的 传输网络已经成为业界的共识。 这要求新型的传输网络在仍然提供电信级业 务质量保证下, 可以区别不同的 QoS (quality of service, 服务质量) 业务传 输, 并能够很好地支持网络带宽的动态分配。 为此, 提出了一种新的环型光 网络架构, 称作 Ex-OBRing。
参照图 1, 是 Ex-OBRing的网络架构示意图。 所述示意图具体为多波长 复用 (WDM) 的光环型网的架构示意图, 规定其中的一个波长为控制波长 / 通道 11, 用于传输控制信息; 其它波长为数据波长 /通道 12, 用于传输业务 数据。
控制通道 11传输控制信息是采用连续传送的方式, 而且传输的信息有 固定帧结构, 除了每个帧开始的同歩域, 帧的其它部分会使用扰码。 环网中 每个节点都会接收其前一个节点传输过来的控制信息, 经过处理后, 又发送 给下一个节点。 数据通道 12传输业务数据信息是采用突发传送的方式, 突发传送的特 点就是在传输数据时, 将数据放在一个数据突发 (data burst) 结构中传输, 在通道上没有数据传输时则为空闲 (除 0和 1之外的空闲电平) , 与连续帧 结构不同, 规定将每个数据突发看作数据通道 12传输的物理单元, 每个数 据突发除了前面的前导码和定界符之外, 其它部分做扰码处理。 与控制信道 11传输控制信息不同, 在数据通道 12上传输的数据突发并不是在环网上每 个节点都要经过从光域到电域的处理过程。 也就是说, 数据突发只是在其源 节点发送出来, 在目的节点接收, 而在中间各个节点都直接在光波长上穿通 经过。 在 Ex-OBRing中, 规定多个数据突发, 以及突发之间的空闲区域构 成虚拟的帧结构。 该帧结构与控制信道的连续帧结构有相同的长度, 而且也 是前后虚拟帧结构连在一起。
Ex-OBRing的网络架构示意图中除上述的控制通道 11及数据通道 12之 处, 还包括多个节点, 其中有一个节点为主控节点 13, 负责全网的控制管 理, 特别是进行整个网络带宽资源的统一分配, 并通过发布带宽地图来控制 环网中其它节点中的数据发送和接收。 另外, 为了能够保障控制通道 11 和 数据通道 12传输数据的同歩, 以及保证在一个环状的数据通道 12上能正好 容纳整数个虚帧长度的结构, 需要有相应的控制和调节机制。 为了便于统一 管理, Ex-OBRing网络通常将同歩控制和管理的功能也集成在主控节点 13 中。
通常, 光传送***应该具备 "自诊断"能力, 也就是告警和性能监测能 力。 Ex-OBRing作为一种新的光传送网络架构, 也不例外。
现有技术中, SDH ( Synchronous Digital Hierarchy, 同歩数字体系) 是 目前最成熟, 而且标准化程度最好的传输技术。 由于 SDH的传输分为多层 结构, 而其传输的数据也分为多个等级, 所以其告警机制也分为了多个层 次, 此外, SDH的多层告警机制是垂直的, 即这多层有复用的关系。 而 Ex- OBRing网络在数据通道上, 只有数据突发这一层结构, 控制通道的控制帧 传输也只有一层帧结构, 而且控制通道和数据通道是相对独立的, 不存在多 层复用的关系。 因而, SDH的告警机制不适合 Ex-OBRing网络。
现有技术中的另一光接入网, 即 GPON ( Gigabit-Capable Passive Optical Networks, 吉比特无源光网络) 是一种新型的光接入网技术, 其网 络拓扑设计为星形结构, GPON的告警和性能监测包括检测链路故障和监测 链路的健康状态和性能。 非常明显, GPON和 Ex-OBRing在网络拓扑上有 很大差别, GPON 为主从的星形网络, 其告警和性能监测只是在 OLT ( Optical Line Termination, 光线路终端) 和 ONT ( Optical Network Termination, 光网络终端) 两类节点之间进行, 而且各个 ONT之间也都还 没有信息往来。 而 Ex-OBRing网络为环形结构, 环上多个节点在告警处理 上都是对等的实体, 因而会涉及多个节点间告警消息的传递, 而且 Ex- OBRing网络的控制通道和数据通道分离, 且有不同的传输体制, 即控制通 道为连续传输, 数据通道为突发传输, 因而 GPON的告警和性能监测机制 也不适用于 Ex-OBRing。
综上所述, 现有技术的告警机制不适用于 Ex-OBRing 网络, 那么, 就 需要根据 Ex-OBRing网络的特点, 设计新的告警和性能监测机制, 以实现 Ex-OBRing网络检测、 定位和发现问题产生的根源等 "自诊断"能力。 发明内容
本发明实施例提供了一种告警和性能监测方法, 可使 Ex-OBRing 网络 实现告警和性能监测的目的。
为了达到上述发明目的, 本发明实施例提供了一种告警和性能监测方 法, 包括:
对控制通道中的数据进行检测, 生成控制通道的告警或 /和性能监测指 示;
获取所述控制通道中的数据所包含的带宽地图信息, 该带宽地图信息中 携带有对应的数据通道中数据突发的位置信息;
根据所述数据通道中数据突发的位置信息, 对数据通道中的数据突发进 行检测, 生成数据通道的告警或 /和性能监测指示。
相应的, 本发明实施例还提供了一种网络节点, 包括:
控制通道告警监测模块, 用于对控制通道中的数据进行检测, 生成控制 通道的告警或 /和性能监测指示;
获取模块, 用于获取所述控制通道告警监测模块中的数据所包含的带宽 地图信息, 该带宽地图信息中携带有对应的数据通道中数据突发的位置信 息;
数据通道告警监测模块, 用于根据所述带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中的数据突发进行检测, 生成数据通道 的告警或 /和性能监测指示。
本发明实施例提供的告警和性能监测方法及网络节点, 在对控制通道进 行告警和性能监测的过程中, 通过控制通道中的数据所包含的带宽地图信 息, 确定数据通道中数据突发的位置信息, 根据该位置信息对数据通道进行 告警和性能监测, 从而使控制通道与数据通道协作进行告警和性能监测, 实 现了光环形网络中控制通道和数据通道的告警和性能监测的目的。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是 Ex-OBRing的网络架构示意图;
图 2是 Ex-OBRing的网络的控制通道中控制帧的结构示意图; 图 3是 Ex-OBRing的网络的数据通道中数据虚帧的结构示意图; 图 4是 Ex-OBRing的网络节点的结构示意图;
图 5是本发明实施例提供的告警和性能监测方法的实施例的流程示意 图;
图 6是本发明实施例提供的控制通道的告警和性能监测方法的实施例的 流程示意图;
图 7是本发明实施例提供的数据通道的告警和性能监测方法的实施例的 流程示意图;
图 8是本发明实施例提供的数据通道中间节点的告警和性能监测方法的 实施例的流程示意图;
图 9是本发明实施例提供的数据通道目的节点的告警和性能监测方法的 实施例的流程示意图;
图 10是本发明实施例提供的网络节点的第一实施例的组成示意图; 图 11 是本发明实施例提供的控制通道告警监测模块的实施例的组成示 意图;
图 12是本发明实施例提供的数据通道告警监测模块的实施例的组成示 意图;
图 13是本发明实施例提供的中间节点告警监测单元的实施例的组成示 意图;
图 14是本发明实施例提供的目的节点告警监测单元的实施例的组成示 意图;
图 15是本发明实施例提供的网络节点的第二实施例的组成示意图; 图 16是本发明实施例提供的网络节点的功能结构以及信号处理图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的告警和性能监测方法及网络节点, 在对控制通道进 行告警和性能监测的过程中, 通过控制通道中的数据所包含的带宽地图信 息, 确定数据通道中数据突发的位置信息, 根据该位置信息对数据通道进行 告警和性能监测, 从而使控制通道与数据通道协作进行告警和性能监测, 实 现了光环形网络中控制通道和数据通道的告警和性能监测的目的。
为了便于理解本发明实施例的技术方案, 下面对 Ex-OBRing网络控制 通道中的控制帧、 数据通道中的数据虚帧以及 Ex-OBRing网络的网络节点 结构进行详细阐述。
请参照图 2, 是 Ex-OBRing的网络的控制通道中控制帧的结构示意图, 如图所示, 设定控制帧 (Control frame ) 的帧长为 125us, 帧结构包括控制 帧头 (Control Header ) 、 带宽地图 (BWMap ) 和其他净荷区。 控制帧头 ( Control Headed ) 中包含有用于控制通道告警和性能监控的 3个域 BIP ( Bit-Interleaved-Parity, 比特间插奇偶校验) 23、 REI (Remote Error Indication, 远端差错指示) 24和 RDI(Remote Defect Indication, 远端缺陷指 示) 25。 紧接着控制帧头为带宽地图, 带宽地图包含了 N个相同长度的带宽 地图子项, 这里的数量 N由控制帧头中的域 TCNum (传输容器数目) 26决 定。 一个控制帧与一个数据通道的数据虚帧同歩并对应, 而控制帧的一个带 宽地图子项则与数据虚帧中一个传输容器 T-CONT (T-CONT, Transmission Container) 相对应。 子项中的 SStart ( Session Start, 会话开始) 27和 SStop ( Session Stop, 会话停止) 28两个域值分别规定了对应 T-CONT在数据虚 帧中所占的起始和结束位置。 这样, 整个带宽地图就刻画了对应数据虚帧中 各个 T-CONT的带宽分配。
请参见图 3, 是 Ex-OBRing的网络的数据通道中数据虚帧的结构示意 图, 如图所示, 数据通道中有前后相接的定长虚拟帧 ( virtual frame ) 结 构, 例如, 设定虚帧长为 125us, 在这个虚拟帧结构中, 可有多个实际传输 数据的数据突发。 数据突发直接在光波长上传输, 各个数据突发可从不同的 源节点发送或 /和在不同的目的节点接收, 因而数据突发的头和尾分别有激 光器开启和关闭的时间。 此外, 数据突发的有效数据区间由头 (Header) 和 净荷组成。 头中有前导码 (Preamble) 和定界符 (Delimitter) , 以及用于告 警和性能监控的 3个域 B-BIP (Burst Bit-Interleaved-Parity, 突发比特间插奇 偶校验) 33, B-RDI(Burst Remote Defect Indication, 突发远端缺陷指示) 34 和 B-REI (Burst Remote Error Indication, 突发远端差错指示) 35。 净荷区可 以分为多个传输数据的容器结构, 称作传输容器 (T-CONT, Transmission Container) 。 T-CONT是网络进行带宽分配的实体, T-CONT 由各自的属性 决定其相应的带宽分配策略。 T-CONT的属性与其中容纳的数据业务的传输 质量 (QoS ) 要求相对应, 数据业务直接放入 T-CONT中进行传输, 因而能 实现区别不同 QoS的业务。
请一并参照图 2及图 3, 因 Ex-OBRing中控制通道中的帧传输和数据通 道的虚拟帧传输保持同歩, 所以, 图 2中的控制帧中的一个带宽地图子项与 图 3中数据虚帧中一个传输容器 T-CONT相对应, 例如, 图 2中的带宽地图 子项 21对应图 3中数据虚帧中一传输容器 T-CONT 31, 图 2中的带宽地图 子项 22对应图 3中数据虚帧中一传输容器 T-CONT 32。 带宽地图子项中的 SStart27和 SStop28两个域值分别规定了对应 T-CONT在数据虚帧中所占的 起始和结束位置。 这样, 控制帧中的整个带宽地图就刻画了对应数据虚帧中 各个 T-CONT的带宽分配。
参见图 4, 是 Ex-OBRing的网络节点的结构示意图, 如图所示, 所述网 络节点主要包括 3个功能模块: 光突发上下复用 (OBADM, Optical Burst Add-Drop Multiplexer) 模块 41, 控制通道收发和处理模块 42, 本地数据突 发收发和处理模块 43。 进入节点的光纤由耦合滤波器 (CF, coupling filter) 44分出控制通道波长。 控制通道的光信号由控制通道收发和处理模 块 42接收并处理, 然后发送到相同波长, 并通过另一个耦合滤波器 CF 45 耦合到节点出口的光纤, 控制通道的告警和性能监测显然在控制通道收发和 处理模块 42中进行处理。 通过入口 CF 44剩下的光信号, 经过一个光延迟 单元 (FDL, fiber delay line) 后进入 OB ADM模块 41。 根据控制通道收发 和处理模块 42的控制信息, 如图中用虚线表示的线段, 控制 OBADM模块 41 配置其中的开关, 决定本地下的光信号。 另外, 本地上的光信号则直接 耦合到 OBADM模块 41出口的光纤上。 OBADM模块 41中每个波长都会有 一个抽头, 分出少部分的光信号并对所述光信号进行检测, 用于数据通道中 间节点的告警。 OBADM模块 41下波长中的数据突发由本地数据突发收发 和处理模块 43接收, 这就是该数据突发的目的节点。 这些数据突发的告警 和性能监测就在该数据突发收发和处理模块 43 中处理。 而本地需要上载的 数据突发则也是由本地数据突发收发和处理模块 43发送到相应波长, 进入 OBADM模块 41的上波长端口。
参见图 5, 是本发明实施例提供的告警和性能监测方法的实施例的流程 示意图, 如图所示, 所述方法包括:
歩骤 501、 对控制通道中的数据进行检测, 生成控制通道的告警或 /和 性能监测指示;
歩骤 502、 获取所述控制通道中的数据所包含的带宽地图信息, 该带宽 地图信息中携带有对应的数据通道中数据突发的位置信息; 此处, 在控制通 道中传输的控制帧中会包含带宽地图项, 其指示控制帧所对应数据通道中数 据突发的位置。 这些信息将直接决定数据通道中间节点告警处理和数据通道 目的节点告警处理是否能够进行。
歩骤 503、 根据所述数据通道中数据突发的位置信息, 对数据通道中的 数据突发进行检测, 生成数据通道的告警或 /和性能监测指示。
实施本发明实施例提供的告警和性能监测方法, 在对控制通道进行告警 和性能监测的过程中, 通过控制通道中的数据所包含的带宽地图信息, 确定 数据通道中数据突发的位置信息, 根据该位置信息对数据通道进行告警和性 能监测, 从而使控制通道与数据通道协作进行告警和性能监测, 实现了光环 形网络中控制通道和数据通道的告警和性能监测的目的。
参见图 6, 是本发明实施例提供的控制通道的告警和性能监测方法的实 施例的流程示意图。 控制通道传输的内容为连续的定长帧结构, 由于 Ex- OBRing控制通道只有一层帧结构, 所以在控制通道只有一级的告警和性能 监测。 为了对控制通道的数据进行检测, 需要将控制通道的光信号转换为电 信号, 从而在电域对控制通道的数据进行检测, 当在电域对控制通道的数据 检测完毕后, 再将电信号转换为光信号。 所述控制通道的告警和性能监测方 法包括:
歩骤 601、 检测控制通道中是否存在信号丢失; 此处, 在将控制通道的 光信号转换为电信号时, 对接收到的控制通道的光信号进行光功率检测, 如 果上游节点或路径发生故障, 导致检测到的光功率低于其灵敏度, 将会产生 信号丢失 (LOS, Loss of Signal) 告警。
歩骤 602a、 当检测存在信号丢失时, 则生成信号丢失即 LOS告警, 并 对所述 LOS告警进行处理; 此处, 对所述 LOS告警进行处理包括: 生成向 上游方向回传的远端缺陷指示即 RDI告警以及向下游方向传送的下插的告 警指示信号 (AIS, Alarm Indication Signal) 告警, 其中, 所述 RDI告警将 方便上游节点对故障定位并作相应处理; 所述 AIS告警信号将方便下游节 点对故障定位并作相应处理。 并且, 根据生成的 LOS告警, 还可以向主控 告警处理***上报 LOS告警以及向数据通道节点发送放弃对该数据通道的 数据突发进行检测的控制信息。 需要说明的是, 在 Ex-OBRing中, 下插的 告警信号 AIS将控制帧中的 AIS域全部置 " 1 " , 而控制头后面的区域, 包 括带宽地图和其它控制区域, 都置为 " 1 " 。 当然, 控制帧中的同歩码域等 其它控制头的域都由正在处理所述控制帧的节点产生, 除同歩码域外, 其它 部分的数据在通过 E/0后发送到控制通道波长时, 会进行扰码。 需要说明的是, 在具体实施中, LOS 即信号丢失告警产生和取消的条 件及相应的处理如表一所示:
Figure imgf000012_0001
如表一所示, 若在 lOOus内未检测到有效信号, 则会产生 LOS即信号 丢失告警并对所述告警进行处理, 而在连续 125us内都检测到有效信号后, 将取消这个告警并作相应的处理。
歩骤 602b、 当检测不存在信号丢失时, 则输出有效的信号;
歩骤 603、 根据帧同歩算法, 检测所述有效的信号中是否存在帧丢失; 此处, 具体是通过搜索所述信号中的帧同歩码来检测信号中是否存在帧丢 失, 所述帧同歩码为一个特殊码型, 不进行扰码处理, 一般占 4字节, 码型 为 0xB6AB31E0, SDH和 GPON中都使用该码型。 因为控制帧的帧长是确 定的, 根据帧同歩算法, 若在一个或多个连续帧中没有发现有效帧同歩码, 可产生帧丢失 (LOF, Loss of Frame) 告警。
歩骤 604a、 当检测存在帧丢失时, 则生成 LOF即帧丢失告警, 并对所 述 LOF告警进行处理; 此处, 对所述 LOF告警进行处理具体包括: 生成向 上游方向回传的 RDI 即远端缺陷指示告警以及向下游方向传送的下插的 AIS 即告警指示信号告警, 并且, 根据生成的 LOF告警, 向主控告警处理 ***上报 LOF告警以及向数据通道发送放弃对该数据通道的数据进行检测 的控制信息。
需要说明的是, 在具体实施中, LOF即帧丢失告警产生和取消的条件 及相应的处理如表二所示:
Figure imgf000013_0001
在 Ex-OBRing网络中, 假设帧定长为 125us, 如表二所示, 如果在连续 5个帧长时间中没有发现帧同歩码, 则会生成 LOF即帧丢失告警并对所述 告警进行处理。 在 "帧丢失"状态, 如果在连续 2帧时间内都检测到帧同歩 码, 则取消这个告警并作相应的处理。
歩骤 604b、 当检测不存在帧丢失时, 则输出有效的帧流;
歩骤 605、 对所述有效的帧流进行数据校验, 检测所述帧流中是否存在 误码; 这里, 对帧流进行校验可采用 BIP-8校验方法。
歩骤 606a、 当检测所述帧流中存在误码时, 统计误码率, 根据统计的 误码率的大小, 生成相应的差错 (ERR, BIP Errors) 的性能监测指示或 /和 信号劣化 (SD, Signal Degrade) 告警或 /和信号失效 (SF, Signal Fail) 告 警, 并对所述告警或 /和性能监测指示进行处理;
需要说明的是, 当检测存在误码时, 首先, 可能会生成差错 (ERR, BIP Errors) 的性能监测指示并对所述性能监测指示进行处理, 具体为, 可 根据所述 ERR的性能监测指示提供的 BIP-8校验差错位累加数目, 生成向 上游节点回传的 REI即远端差错指示的性能监测指示, 并且, 向主控告警 处理***上报 ERR的性能监测指示。
根据所述 ERR的性能监测指示, 可能会生成信号劣化 (SD, Signal Degrade ) 告警并对所述告警进行处理, 具体为, 向主控告警处理***上报 SD告警。
根据所述 ERR的性能监测指示或 /和 SD告警, 可能会生成信号失效 ( SF, Signal Fail) 告警, 并对 SF告警进行处理; 此处, 根据所述 SF告 警, 可生成向上游方向回传的 RDI即远端缺陷指示告警及向下游方向传送 的下插的 AIS即告警指示信号告警, 并且, 向主控告警处理***上报 SF告 警以及向数据通道节点发送放弃对该数据通道的数据进行检测的控制信息。
需要说明的是, 在具体实施中, ERR性能监测指示、 SD告警及 SF告 警产生和取消的条件及相应的处理如表三所示: 性能监测类 性能监测生 性能监测处理 性能监测取 性能监测取消 型 成条件 消条件 处理
ERR 性能监 接收的 BIP8 在 Err中不同 无 无
测指示 与 计 算 的 比特个数累
BIP8 比较, 加。 根据相应
若不同, 则 阈值触发 SD
Err计数器加 或 SF
1 告警类型 告警生成条 告警处理 告警取消条 告警取消处理 件 件
SD告警 无 BER <10- 无
BER≥ 10— X (x+1)
4 <= X <= 9且
X > y
SF告警 将所有净荷区 BER <10- 净荷区恢复为
BER≥ 10— y 置 0 (包括带 (y+i) 正常数据; 宽地图) ; 取消上行线路
3 <= y <= 8
PLend 全 置 端 口 回 传
1 ; 往上行线 RDI ; 取消下 路端口回传 插 AIS告警
RDI ; 产生下
插 AIS告警
这里, 对有效的帧流进行校验是采用 BIP-8校验, 具体是对从上一控制 帧 BIP字节之后到本控制帧 BIP字节之前的所有数据进行奇偶校验, 如果 至少有 1位错误, 就产生 ERR即差错性能监测指示, 并且对差错的字位数 目进行累加, 从而可以计算这个通道传输数据的 BER (误码率) 。 如果 BER>10-x , x=4〜9, 且有 x>y, 则会产生 SD 即信号劣化告警; 如果 BER>10-y, y=3〜8, 则产生 SF即信号失效告警。 SD告警和 SF告警也有其 相应的取消条件及处理方法, 详见表三。
歩骤 606b、 判断是否存在 SF告警; 因为 SF告警为即时中断型告警, 产生这样的告警, 则终止控制信道中的帧流继续向前传送。 若不存在 SF告 警, 那么, 控制信道中传送的帧流就属于可接受的帧流, 可以继续向前传 送。
歩骤 606c、 当检测不存在误码或误码在一定的范围内时, 则输出可接 受的帧流; 此处, 当检测到 ERR性能监测指示或 /和 SD告警时, 帧流中存 在的误码属于可接受的范围, 因此, 可输出可接受的帧流。
歩骤 607、 检测所述可接受的帧流中是否存在上游节点回传的告警或 / 和性能监测指示; 此处, 若存在上游节点回传的告警或 /和性能监测指示, 那么会检测到控制帧中的 REI域或 /和 RDI域中存在上游节点回传的告警或 / 和性能监测指示。
歩骤 608a、 当检测存在所述告警或 /和性能监测指示时, 则获取检测到 的 uRDI即远端缺陷指示的告警或 /和 uREI即远端差错指示的性能监测指 示, 并对所述告警或 /和性能监测指示进行处理。 此处, 对所述告警或 /和性 能监测指示进行处理具体包括: 向主控告警处理***上报 uREI性能监测指 示或 /和 uRD告警, 并对这两个消息做适当处理, 例如, 进行保护倒换等操 作。 需在说明的是, 检测到的 uRDI的告警或 /和 uREI的性能监测指示并不 影响数据的传输。
歩骤 608 b、 当检测不存在所述告警或 /和性能监测指示时, 则输出无回 传告警或 /和性能监测指示的帧流。
需要说明的是, LOS告警、 LOF告警和 SF告警都是即时中断型告警, S卩, 若产生这样的告警, 则终止控制信道数据继续向前传送, 检测到的 ERR性能监测指示、 SD告警、 uREI性能监测指示以及 uRDI告警不影响控 制信道数据的继续传送。
参见图 7, 是本发明实施例提供的数据通道的告警和性能监测方法的实 施例的流程示意图, 在光环形网络中如 Ex-OBRing网络, 数据通道传输业 务数据信息是采用突发传送的方式, 在数据通道上传输的数据突发并不是在 环网上每个节点都从光接收到电域处理。 也就是说, 数据突发只是在其源节 点发送出来, 在目的节点接收, 而在中间各个节点都直接在光波长上穿通经 过, 因此, 对数据通道中间节点和目的节点采用不同的告警和性能监测机 制, 所述数据通道的告警和性能监测方法包括: 歩骤 701、 根据所述数据通道中数据突发的位置信息, 对数据通道中在 本节点穿通的数据突发进行检测, 生成数据通道中间节点的告警或 /和性能 监测指示, 并对所述数据通道中间节点的告警或 /和性能监测指示进行处 理;
歩骤 702、 根据所述数据通道中数据突发的位置信息, 对数据通道中在 本节点下路的数据突发进行检测, 生成数据通道目的节点的告警或 /和性能 监测指示, 并对所述数据通道目的节点的告警或 /和性能监测指示进行处 理。
需要说明的是, 当在同一节点对数据通道中的数据突发进行检测时, 歩 骤 701与歩骤 702没有特定的先后顺序。
参见图 8, 是本发明实施例提供的数据通道中间节点的告警和性能监测 方法的实施例的流程示意图, 这里的中间节点告警和性能监测, 实际就是数 据通道在经过环上每个节点时, 直接从每个数据通道波长分少部分光信号下 来, 从功率上对每个数据通道进行光功率的检测。 这部分处理简单, 但对保 障网络的传输质量和迅速进行故障定位都有很大益处。 所述数据通道中间节 点的告警和性能监测方法包括:
歩骤 801、 根据所述数据通道中数据突发的位置信息, 检测数据通道中 是否存在突发信号丢失; 此处, 由于中间节点不会把光突发转换到电域上, 所以这里只进行光功率的检测。 所述数据通道中数据突发的位置信息是根据 控制通道的控制帧中的带宽地图来确定的, 所述位置信息包括各个数据突发 的始末位置, 如果在相应位置区域里没有检测到有效光功率, 则产生突发信 号丢失 (B-LOS, Burst Loss of Signal) 告警。
歩骤 802a、 当检测存在突发信号丢失时, 则生成 B-LOS即突发信号丢 失告警, 并对所述 B-LOS告警进行处理; 此处, 对所述 B-LOS告警进行处 理具体包括: 控制 OBADM模块打开光开关, 放弃对该数据突发传输的穿 通以及生成向下游方向下插的突发告警指示信号 (B-AIS , Burst Alarm Indication Signal) 告警, 该告警信号将方便下游节点对故障定位并作相应处 理, 并且, 根据所述 B-LOS告警, 向主控告警处理***上报 B-LOS告警; 需要说明的是, 下插的 B-AIS告警信号会将所有 T-CONT带宽地图项中域 B-AIS置 " 1 " 。
歩骤 802b、 当检测不存在突发信号丢失时, 则输出有效的突发信号。 需要说明的是, 在具体实施中, B-LOS 即突发信号丢失告警产生和取 消的条件及相应的处理如表四所示:
表四:
Figure imgf000018_0001
如表四所示, 若连续 4次没有接收到有效数据突发信号, 则会产生 B- LOS 即数据突发信号丢失告警并对所述告警进行处理。 应该注意的是, 相 邻接收的数据突发很可能来自不同的发送源节点, 因而, 这里所说的连续 4 次, 应该指相同源节点发送的 4个数据突发。 只要收到一次有效数据突发信 号, 则取消这个告警并作相应的处理。
参见图 9, 是本发明实施例提供的数据通道目的节点的告警和性能监测 方法的实施例的流程示意图, 如图所示, 所述方法包括:
歩骤 901、 根据所述数据通道中数据突发的位置信息, 检测数据通道中 是否存在突发信号丢失; 此处, 在将数据通道的光信号转换为电信号时, 对 接收到的数据突发的光信号进行光功率检测, 如果数据突发发送源节点或该 数据突发所经过路径上的器件, 如光开关等发生了故障, 则不能接收到相应 的数据突发信号, 从而产生 B-LOS即突发信号丢失告警。 需要说明的是, 所述数据通道中数据突发的位置信息是根据控制通道的控制帧中带宽地图来 确定的, 所述位置信息包括各个数据突发的始末位置, 如果在相应位置区域 里没有检测到有效光功率, 则产生 B-LOS告警。
歩骤 902a、 当检测存在突发信号丢失时, 则生成 B-LOS告警, 并对所 述 B-LOS告警进行处理; 此处, 所述对所述 B-LOS告警进行处理具体包 括: 生成向上游方向回传的 B-RDI即突发远端缺陷指示告警, 向主控告警 处理***上报 B-LOS告警, 并且, 丢弃该数据突发, 此处, 相当于在接收 的数据通道中, 带宽地图指示的数据突发这段时间区间全部置 " 0" ;
需要说明的是, 在具体实施中, B-LOS 即突发信号丢失告警产生和取 消的条件及相应的处理如表五所示:
表五:
Figure imgf000019_0001
如表五所示, 若连续 4次没有接收到有效数据突发信号, 则会产生 B-
LOS 即数据突发信号丢失告警并对所述告警进行处理。 应该注意的是, 相 邻接收的数据突发很可能来自不同的发送源节点, 因而, 这里所说的连续 4 次, 应该指相同源节点发送的 4个数据突发。 只要收到一次有效数据突发信 号, 则取消这个告警并作相应的处理。
歩骤 902b、 当检测不存在突发信号丢失时, 则输出有效的突发信号; 歩骤 903、 根据突发帧定界方法, 检测所述有效的突发信号中是否存在 突发帧丢失; 此处, 由于数据帧突发在数据通道中不是连续传输, 而且所有 数据帧突发也不是定长的, 可以由控制帧中的带宽地图确定数据突发帧的长 度, 在具体实施中, 根据采用帧定界符 (Del, Delimitter) 的方法检测所述 有效的突发信号中是否存在突发帧丢失, 其中, 所述帧定界符为一个特殊的 码型, 而且传输中也不进行扰码。
歩骤 904a、 当检测存在突发帧丢失时, 则生成突发帧丢失 (B-LOF , Burst Loss of Frame) 告警, 并对所述 B-LOF告警进行处理; 此处, 对所述 B-LOF告警进行处理具体包括: 生成向上游方向回传的 B-RDI即突发远端 缺陷指示告警, 向主控告警处理***上报 B-RDI告警, 并且, 丢弃该数据 突发。
需要说明的是, 在具体实施中, B-LOF即突发帧丢失告警产生和取消 的条件及相应的处理如表六所示:
Figure imgf000020_0001
如表六所示, 根据定界符同歩算法, 如果检测到连续 4个数据突发的 Del域无效, 则会生成 B-LOF即数据突发帧丢失告警并对所述告警进行处 理; 在 "数据突发帧丢失"状态, 只要能够同歩一次定界符, 则取消 B- LOF告警并作相应处理。
歩骤 904b、 当检测不存在突发帧丢失时, 则输出有效的突发帧流。
歩骤 905、 对所述有效的突发帧流进行数据校验, 检测所述突发帧流中 是否存在误码; 这里, 把接收的来自相同源节点的数据突发帧连接起来, 形 成一个数据流, 从而对所述数据流进行校验, 可采用 BIP-8校验方法。
歩骤 906a、 当检测所述突发帧流中存在误码时, 统计误码率, 根据统 计的误码率的大小, 生成相应的突发差错 (B-ERR, Burst BIP Errors) 性能 监测指示或 /和突发信号劣化 (B-SD, Burst Signal Degrade) 告警或 /和突发 信号失效 (B-SF, Burst Signal Fail) 告警, 并对所述告警或指示进行处理。
需要说明的是, 当检测存在误码时, 首先可以生成突发差错 (B-ERR,
Burst BIP Errors) 性能监测指示并对所述性能监测指示进行处理, 具体为, 可根据所述 B-ERR性能监测指示提供的 BIP-8校验差错位累加数目, 生成 向上游节点回传的 B-REI即突发远端差错指示的性能监测指示, 并且, 向 主控告警处理***上报 B-ERR的性能监测指示。
根据所述 B-ERR的性能监测指示, 可能会生成突发信号劣化 (B-SD, Burst Signal Degrade) 告警并对所述告警进行处理, 具体为, 向主控告警处 理***上报 B-SD告警。
根据所述 B-ERR的性能监测指示或 /和 B-SD告警, 可能会生成突发信 号失效 (B-SF, Burst Signal Fail) 告警, 并对所述 B-SF告警进行处理; 此 处, 根据所述 B-SF告警, 可生成向上游方向回传的 B-RDI即突发远端缺陷 指示告警, 向主控告警处理***上报 B-SF告警, 并且, 丢弃该数据突发。
需要说明的是, 在具体实施中, B-ERR性能监测指示、 B-SD告警及 B- SF告警产生和取消的条件及相应的处理如表七所示:
表七:
Figure imgf000021_0001
X > y
B-SF告警 将所有净荷区 BER <10- 净荷区恢复
BER≥ 10— y 置 0 (包括带 (y+i) 为 正 常 数 宽地图) ; 据;
3 <= y <= 8
PLend 全 置 取消上行线
1 ; 往上行线 路端口回传 路端口回传 B-RDI
B-RDI
这里, 对有效的突发帧流进行校验是采用 BIP-8校验, 具体是对从上一 个同源数据突发帧的 BIP字节之后到本突发帧 BIP字节之前的所有同源数 据流进行奇偶校验, 如果至少有 1位错误, 就产生 B-ERR即突发差错性能 监测指示。 并且对差错的字位数目进行累加, 从而可以计算这个同源传输数 据流的 BER。 如果 BER≥10-x, x=4〜9, 且有 x>y, 则会产生 B-SD即突发信 号劣化告警; 如果 BER≥10-y, y=3〜8, 则产生 B-SF即突发信号失效告警。 突发信号劣化和突发信号失效告警也有其相应的取消条件及处理方法, 详见 表七。
歩骤 906b、 判断是否存在 B-SF告警; 因为 B-SF告警为即时中断型告 警, 产生这样的告警, 则终止数据通道中的突发帧流继续向前传送。 若不存 在 B-SF告警, 那么, 数据通道中的突发帧流就属于可接受的帧流, 可以继 续向前传送。
歩骤 906c、 当检测不存在误码或误码在一定的范围内时, 则输出可接 受的突发帧流, 此处, 当检测到 B-ERR性能监测指示或 /和 B-SD告警时, 帧流中存在的误码属于可接受的范围, 因此, 可输出可接受的突发帧流。
歩骤 907、 检测所述可接受的突发帧流中是否存在上游节点回传的告警 或 /和性能监测指示;
歩骤 908a、 当检测存在所述告警或 /和性能监测指示时, 则获取检测到 的 uB-RDI即突发远端缺陷指示的告警或 /和 u B-REI即突发远端差错指示的 性能监测指示, 并对所述告警或 /和性能监测指示进行处理; 此处, 对所述 告警或 /和性能监测指示进行处理具体为: 向主控告警处理***上报 uB-REI 性能监测指示或 /和 uB-RDI告警, 并对这两个消息做适当处理, 例如, 进行 保护倒换等操作。
歩骤 908b、 当检测不存在所述告警或 /和性能监测指示时, 则输出无回 传告警或 /和性能监测指示的帧流。
参见图 10, 是本发明实施例提供的网络节点的第一实施例的组成示意 图, 如图所示, 所述网络节点包括:
控制通道告警监测模块 101, 用于对控制通道中的数据进行检测, 生成 控制通道的告警或 /和性能监测指示。
获取模块 102, 用于获取所述控制通道告警监测模块 101中的数据所包 含的带宽地图信息, 该带宽地图信息中携带有对应的数据通道中数据突发的 位置信息; 此处, 在控制通道传输的控制帧中会包含带宽地图项, 其指示控 制帧所对应数据通道中数据突发的位置。 这些信息将直接决定数据通道中间 节点告警处理和数据通道目的节点告警处理是否能够进行。
数据通道告警监测模块 103, 用于根据所述带宽地图信息中对应的数据 通道中数据突发的位置信息, 对数据通道中的数据突发进行检测, 生成数据 通道的告警或 /和性能监测指示。
本发明实施例提供的网络节点, 在对控制通道进行告警和性能监测的过 程中, 通过控制通道中的数据所包含的带宽地图信息, 确定数据通道中数据 突发的位置信息, 根据该位置信息对数据通道进行告警和性能监测, 从而使 控制通道与数据通道协作进行告警和性能监测, 实现了光环形网络中控制通 道和数据通道的告警和性能监测的目的。
参见图 11, 是本发明实施例提供的控制通道告警监测模块的实施例的 组成示意图, 如图所示, 所述控制通道告警监测模块包括: 检测单元 111, 用于对控制通道中的数据进行检测, 分别检测控制通道 中是否存在信号丢失、 帧丢失、 帧误码以及上游节点回传的告警或 /和性能 监测指示; 此处, 对控制通道中的数据进行检测的具体过程请参见相应的控 制通道的告警和性能监测方法项实施例的描述。
告警信息产生单元 112, 用于当所述检测单元 111 检测存在信号丢失 时, 则生成信号丢失的告警; 当所述检测单元 111检测存在帧丢失时, 则生 成帧丢失的告警; 当所述检测单元 111检测存在帧误码时, 则生成相应差错 的性能监测指示或 /和信号劣化的告警或 /和信号失效的告警; 当所述检测单 元 111 检测存在上游节点回传的告警或 /和性能监测指示时, 则获取检测到 的远端缺陷指示的告警或 /和远端差错指示的性能监测指示; 此处, 对于生 成或获取告警或 /和性能监测指示的具体过程请参见相应的控制通道的告警 和性能监测方法项实施例的描述。
处理单元 113, 用于根据所述告警信息产生单元 112生成的信号丢失的 告警、 帧丢失的告警或信号失效的告警, 相应地生成向上游节点回传的远端 缺陷指示的告警, 以及向下游节点下插的告警指示信号的告警, 并且, 向数 据通道节点发送放弃对数据通道进行告警和性能监测的信息; 根据所述告警 信息产生单元 112生成的差错的性能监测指示, 生成向上游节点回传的远端 差错指示的性能监测指示。 此处, 对告警或 /和性能监测指示进行处理的具 体过程请参见相应的控制通道的告警和性能监测方法项实施例的描述。
参见图 12, 是本发明实施例提供的数据通道告警监测模块的实施例的 组成示意图, 如图所示, 所述数据通道告警监测模块包括:
中间节点告警监测单元 121, 用于根据带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中在本节点穿通的数据突发进行检测, 生成数据通道中间节点的告警或 /和性能监测指示, 并对所述数据通道中间 节点的告警或 /和性能监测指示进行处理; 这里的中间节点告警和性能监 测, 实际就是数据通道在经过环上每个节点时, 直接从每个数据通道波长分 少部分光信号下来, 从功率上对每个数据通道进行光功率的检测。 这部分处 理简单, 但对保障网络的传输质量和迅速进行故障定位都有很大益处。
目的节点告警监测单元 122, 用于根据带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中在本节点下路的数据突发进行检测, 生成数据通道目的节点的告警或 /和性能监测指示, 并对所述数据通道目的 节点的告警或 /和性能监测指示进行处理。
参见图 13, 是本发明实施例提供的中间节点告警监测单元的实施例的 组成示意图, 如图所示, 所述中间节点告警监测单元包括:
第一检测子单元 131, 用于根据数据通道中数据突发的位置信息, 对 数据通道中在本节点穿通的数据突发进行检测, 检测数据通道中是否存在突 发信号丢失; 此处, 由于中间节点不会把光突发转换到电域上, 所以这里只 进行光功率的检测。 此处, 对数据通道中数据突发进行检测的具体过程请参 见相应的数据通道中间节点的告警和性能监测方法项实施例的描述。
第一告警信息产生子单元 132, 用于当所述第一检测子单元 131检测存 在突发信号丢失时, 则生成 B-LOS即突发信号丢失告警; 此处, 对于生成 告警的具体过程请参见相应的数据通道中间节点的告警和性能监测方法项实 施例的描述。
第一处理子单元 133, 用于根据所述第一告警信息产生子单元 132生成 的突发信号丢失的告警, 控制打开光开关, 放弃对所述数据突发的穿通, 并 生成向下游节点下插的突发告警指示信号的告警。 此处, 对告警进行处理的 具体过程请参见相应的数据通道中间节点的告警和性能监测方法项实施例的 描述。
参见图 14, 是本发明实施例提供的目的节点告警监测单元的实施例的 组成示意图, 如图所示, 所述目的节点告警监测单元包括:
第二检测子单元 141, 用于对数据通道中在本节点下路的数据突发进行 检测, 分别检测数据通道中是否存在突发信号丢失、 突发帧丢失、 突发帧误 码以及上游节点回传的告警或 /和性能监测指示; 此处, 对数据通道中数据 突发进行检测的具体过程请参见相应的数据通道目的节点的告警和性能监测 方法项实施例的描述。
第二告警信息产生子单元 142, 用于当所述第二检测子单元 141检测存 在突发信号丢失时, 则生成突发信号丢失的告警; 当所述第二检测子单元 141检测存在突发帧丢失时, 则生成突发帧丢失的告警; 当所述第二检测子 单元 141 检测存在突发帧误码时, 则生成相应突发差错的性能监测指示或 / 和突发信号劣化的告警或 /和突发信号失效的告警; 当所述第二检测子单元 141检测存在上游节点回传的告警或 /和性能监测指示时, 则获取检测到的突 发远端缺陷指示的告警或 /和突发远端差错指示的性能监测指示; 此处, 对 于生成或获取告警或 /和性能监测指示的具体过程请参见相应的数据通道目 的节点的告警和性能监测方法项实施例的描述。
第二处理子单元 143, 用于根据所述第二告警信息产生子单元 142生成 的突发信号丢失的告警、 突发帧丢失的告警或突发信号失效的告警, 相应地 生成向上游节点回传的突发远端缺陷指示的告警, 并且, 丢弃所述数据突 发; 根据所述第二告警信息产生子单元 142生成的突发差错的性能监测指 示, 生成向上游节点回传的突发远端差错指示的性能监测指示。 此处, 对告 警或 /和性能监测指示进行处理的具体过程请参见相应的数据通道目的节点 的告警和性能监测方法项实施例的描述。
参见图 15, 是本发明实施例提供的网络节点的第二实施例的组成示意 图, 如图所示, 本实施例中网络节点包括控制通道告警监测模块、 获取模块 以及数据通道告警监测模块, 本实施例中各模块的功能及各模块之间的关系 请参考本发明网络节点第一实施例中的描述。 本实施例中的控制通道告警监 测模块中各单元的功能及各单元之间的关系请参考本发明控制通道告警监测 模块的实施例中的描述; 本实施例中的数据通道告警监测模块中各单元的功 能及各单元之间的关系请参考本发明数据通道告警监测模块的实施例中的描 述。
下面详细描述一具体实施例。
参见图 16, 是本发明实施例提供的网络节点的功能结构以及信号处理 图。
网络节点告警和性能监测***可分为三大部分, 控制通道告警监测模块
1、 数据通道中间节点告警监测模块 2 以及数据通道目的节点告警监测模块 3。 所述网络节点将支持东向和西向两个光纤同时通信, 该图中只画出了东 向传输的光纤的告警和性能监测的功能模块和处理过程, 而西向传输的光纤 的也有相类似的结构。 下面分别介绍各模块以及各模块中各单元的功能, 以 及信号处理流程。 需要说明的是, 以下各单元中存在相同命名的单元, 可以 不同的标号来区分。
控制通道告警监测模块 1进行控制通道的告警和性能监测具体为:
0/E单元或称光电转换单元 101 在将控制通道的光信号转换为电信号 时, 对接收到的控制通道的光信号进行光功率检测, 如果上游节点或路径发 生故障, 导致检测到的光功率低于其灵敏度, 将会产生 LOS即信号丢失告 警。 告警性能处理单元 106根据所述 LOS告警进行处理, 具体为: 生成上 游的回传 RDI即远端缺陷指示告警以及向下游方向传送的下插的 AIS即告 警指示信号告警, 向主控告警处理*** 4上报 LOS告警以及向数据通道发 送放弃对该数据通道的数据突发进行检测的控制信息。 需要说明的是, 所述 RDI告警通过回传告警单元 107 向上游回传, 即通过西向的光纤向上游传 输; 所述 AIS告警通过下插告警单元 108将所述下插消息放入控制帧中, 下插到下游方向传送。
帧同歩检测单元 102在所述 0/E单元 101检测不存在信号丢失并输出有 效的信号后, 根据帧同歩算法, 检测所述有效的信号中是否存在帧丢失; 此 处, 具体是通过搜索所述信号中的帧同歩码来检测信号中是否存在帧丢失, 所述帧同歩码为一个特殊码型, 不进行扰码处理, 一般占 4字节, 码型为 0xB6AB31E0 ( SDH和 GPON中都使用该码型) 。 因为帧长是确定的, 根 据帧同歩算法, 若在一个或多个连续帧中没有发现有效帧同歩码, 可产生 LOF即帧丢失告警。 告警性能处理单元 106根据 LOF告警进行处理, 具体 包括: 生成向上游方向回传的 RDI即远端缺陷指示告警以及向下游方向传 送的下插的 AIS即告警指示信号告警, 并且, 向主控告警处理*** 4上报 LOF告警以及向数据通道发送放弃对该数据通道的数据进行检测的控制信 息。 需要说明的是, 所述 RDI告警通过回传告警单元 107 向上游回传, 即 通过西向的光纤向上游传输; 所述 AIS告警通过下插告警单元 108将所述 下插消息放入控制帧中, 下插到下游方向传送。
数据校验单元 103在所述帧同歩检测单元 102检测不存在帧丢失并输出 有效的帧流后, 对所述有效的帧流进行数据校验, 检测所述帧流中是否存在 误码; 这里, 对帧流进行校验可采用 BIP-8校验方法, 统计误码率, 根据统 计的误码率的大小, 生成相应的 ERR即差错的性能监测指示或 /和 SD即信 号劣化告警或 /和 SF即信号失效告警, 告警性能处理单元 106将对所述告警 或 /和性能监测指示进行处理, 具体为, 当所述性能监测指示为 ERR性能监 测指示时, 可根据所述 ERR性能监测指示提供的 BIP-8校验差错位累加数 目, 生成向上游节点回传的 REI性能监测指示, 并向主控告警处理*** 4 上报 ERR性能监测指示; 若所述告警为 SD告警, 则向主控告警处理*** 4 上报 SD告警; 若所述告警为 SF告警, 可生成向上游方向回传的 RDI告警 及向下游方向传送的下插的 AIS告警, 并且, 向主控告警处理*** 4上报 SF告警以及向数据通道发送放弃对该数据通道的数据进行检测的控制信 息。 需要说明的是, 所述 REI性能监测指示或 /和 RDI告警通过回传告警单 元 107 向上游回传, 即通过西向的光纤向上游传输; 所述 AIS告警通过下 插告警单元 108将所述下插消息放入控制帧中, 下插到下游方向传送。
回传检测单元 104在所述数据校验单元 103检测所述帧流中不存在误码 或存在一定范围内的误码时, 输出可接受的帧流后, 检测所述可接受的帧流 中是否存在上游节点回传的告警或 /和性能监测指示, 若检测存在所述告警 或 /和性能监测指示, 则获取检测到的 uRDI即远端缺陷指示的告警或 /和 uREI即远端差错指示的性能监测指示, 告警性能处理单元 106对所述告警 或 /和性能监测指示进行处理, 具体为, 向主控告警处理*** 4上报 uREI的 性能监测指示或 /和 uRD告警, 并对这两个消息做适当处理, 例如, 进行保 护倒换等操作。 需在说明的是, 检测到的 RDI的告警或 /和 uREI的性能监 测指示并不影响数据的传输。
带宽地图处理单元 105可获取到控制通道中的控制帧中的带宽地图信 息, 该带宽地图信息中携带有对应的数据通道中数据突发的位置信息; 此 处, 在控制通道的控制帧中会包含带宽地图项, 其指示控制帧所对应数据通 道中数据突发的位置, 带宽地图处理单元 105会将获取到的带宽地图信息传 送给数据通道中间节点告警监测模块 2和数据通道目的节点告警监测模块 3, 指导其对数据突发的定位。
需要说明的是, 由所述 0/E单元 101生成的 LOS告警、 所述帧同歩检 测单元 102生成的 LOF告警和数据校验单元 103生成的 SF告警都是即时中 断型告警, SP, 若产生这样的告警, 则终止控制信道数据继续向前传送, 由 所述数据校验单元 103生成的 ERR性能监测指示、 SD告警以及回传检测单 元 104检测到的 uREI或 /和 uRDI告警不影响控制信道数据的继续传送。
数据通道中间节点告警监测模块 2进行控制通道的告警和性能监测具体 为:
突发检测单元 201根据数据通道中数据突发的位置信息, 对数据通道中 在本节点穿通的数据突发进行检测, 检测数据通道中是否存在突发信号丢 失; 此处, 由于中间节点不会把光突发转换到电域上, 所以这里只进行光功 率的检测。 所述位置信息包括各个数据突发的始末位置, 如果在相应位置区 域里没有检测到有效光功率, 则产生 B-LOS即突发信号丢失告警。 告警处 理单元 202对 B-LOS告警进行处理具体包括: 控制 OBADM模块打开光开 关, 放弃对该数据突发传输的穿通以及生成向下游方向下插的 B-AIS 即突 发告警指示信号告警, 以及向主控告警处理*** 4上报 B-LOS告警。 当所 述突发检测单元 201检测不存在突发信号丢失时, 则输出有效的突发信号。 需要说明的是, AIS告警通过下插告警单元 203将下插消息放入控制通道控 制帧中, 向下游方向传送。
数据通道目的节点告警监测模块 3进行控制通道的告警和性能监测具体 为:
0/E单元 301根据所述数据通道中数据突发的位置信息, 在将数据通道 在本节点下路的光信号转换为电信号时, 对接收到的数据突发的光信号进行 光功率检测, 如果数据突发发送源节点或该数据突发所经过路径上的器件, 如光开关等发生了故障, 则不能接收到相应的数据突发信号, 从而产生 B- LOS 即突发信号丢失告警。 告警性能处理单元 305对 B-LOS告警进行处 理, 具体包括: 生成向上游方向回传的 B-RDI即突发远端缺陷指示告警, 向主控告警处理*** 4上报 B-LOS告警, 并且, 丢弃该数据突发。 需要说 明的是, 所述 B-RDI告警通过回传告警单元 306向上游回传。
突发帧定界单元 302在所述 0/E单元 301检测不存在突发信号丢失并输 出有效的突发信号后, 根据突发帧定界方法, 检测所述有效的突发信号中是 否存在突发帧丢失; 此处, 由于数据帧突发在数据通道中不是连续传输, 而 且所有数据帧突发也不是定长的, 可以由控制帧中的带宽地图确定数据突发 帧的长度, 在具体实施中, 根据采用帧定界符 (Del, Delimitter) 的方法检 测所述有效的突发信号中是否存在突发帧丢失。 当检测存在突发帧丢失时, 则生成 B-LOF即突发帧丢失告警, 告警性能处理单元 305对所述告警进行 处理, 具体包括: 生成向上游方向回传的 B-RDI即突发远端缺陷指示告 警, 向主控告警处理*** 4上报 B-RDI告警, 并且, 丢弃该数据突发。 需 要说明的是, 所述 B-RDI告警通过回传告警单元 306向上游回传。
数据校验单元 303在所述突发帧定界单元 302检测不存在突发帧丢失并 输出有效的突发帧流后, 对所述有效的突发帧流进行数据校验, 检测所述突 发帧流中是否存在误码; 当检测所述突发帧流中存在误码时, 统计误码率, 根据统计的误码率的大小, 生成相应的 B-ERR即突发差错性能监测指示或 / 和 B-SD即突发信号劣化告警或 /和 B-SF即突发信号失效告警。 告警性能处 理单元 305对所述性能监测指示或告警进行处理, 具体为, 当所述告警为 B-ERR性能监测指示时, 可根据所述 B-ERR性能监测指示提供的 BIP-8校 验差错位累加数目, 生成向上游节点回传的 B-REI即远端差错指示的性能 监测指示, 并向主控告警处理*** 4上报 B-ERR性能监测指示; 若所述告 警为 B-SD告警, 则向主控告警处理*** 4上报 B-SD告警; 若所述告警为 B-SF告警, 生成向上游方向回传的 B-RDI即突发远端缺陷指示告警, 向主 控告警处理*** 4上报 B-SF告警, 并且, 丢弃该数据突发。 需要说明的 是, 所述 B-ERR性能监测指示或 /和 B-RDI告警会通过回传告警单元 306向 上游回传。
回传检测单元 304在所述数据校验单元 303检测所述突发帧流中不存在 误码或存在一定范围内的误码时, 输出可接受的突发帧流后, 检测所述可接 受的突发帧流中是否存在上游节点回传的告警或 /和性能监测指示, 若检测 存在所述告警或 /和性能监测指示时, 则获取检测到的 uB-RDI即突发远端缺 陷指示的告警或 /和 uB-REI即突发远端差错指示的性能监测指示, 告警性能 处理单元 305对所述告警或 /和性能监测指示进行处理, 具体为, 向主控告 警处理*** 4上报 uB-REI性能监测指示或 /和 uB-RDI告警, 并对这两个消 息做适当处理, 例如, 进行保护倒换等操作。
需要说明的是, 由所述 0/E单元 301生成的 B-LOS告警、 所述突发帧 定界单元 302生成的 B-LOF告警和数据校验单元 303生成的 B-SF告警都是 即时中断型告警, SP, 若产生这样的告警, 则终止数据通道中的数据突发继 续向前传送, 由所述数据校验单元 303生成的 B-ERR性能监测指示、 B-SD 告警以及回传检测单元 304检测到的 u B-REI或 /和 u B-RDI告警不影响数据 通道中的数据突发的继续传送。
本发明实施例提供的告警和性能监测方法及网络节点, 在对控制通道进 行告警和性能监测的过程中, 通过控制通道中的数据所包含的带宽地图信 息, 确定数据通道中数据突发的位置信息, 根据该位置信息对数据通道进行 告警和性能监测, 从而使控制通道与数据通道协作进行告警和性能监测, 实 现了光环形网络中控制通道和数据通道的告警和性能监测的目的。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权利要求书
1、 一种告警和性能监测方法, 包括:
对控制通道中的数据进行检测, 生成控制通道的告警或 /和性能监测指 获取所述控制通道中的数据所包含的带宽地图信息, 该带宽地图信息中 携带有对应的数据通道中数据突发的位置信息;
根据所述数据通道中数据突发的位置信息, 对数据通道中的数据突发进 行检测, 生成数据通道的告警或 /和性能监测指示。
2、 根据权利要求 1所述的方法, 其特征在于, 所述对控制通道中的数 据进行检测, 生成控制通道的告警或 /和性能监测指示的歩骤包括:
对控制通道中的数据进行检测, 分别检测控制通道中是否存在信号丢 失、 帧丢失、 帧误码以及上游节点回传的告警或 /和性能监测指示;
当检测存在信号丢失时, 则生成信号丢失的告警;
当检测存在帧丢失时, 则生成帧丢失的告警;
当检测存在帧误码时, 则生成相应差错的性能监测指示或 /和信号劣化 的告警或 /和信号失效的告警;
当检测存在上游节点回传的告警或 /和性能监测指示时, 则获取检测到 的远端缺陷指示的告警或 /和远端差错指示的性能监测指示。
3、 根据权利要求 2所述的方法, 其特征在于, 所述对控制通道中的数 据进行检测, 生成控制通道的告警或 /和性能监测指示的歩骤后, 还包括对 所述控制通道的告警或 /和性能监测指示进行处理, 包括:
根据所述信号丢失的告警、 帧丢失的告警或信号失效的告警, 相应地生 成向上游节点回传的远端缺陷指示的告警, 以及向下游节点下插的告警指示 信号的告警, 并且, 向数据通道节点发送放弃对数据通道进行告警和性能监 测的信息;
根据所述差错的性能监测指示, 生成向上游节点回传的远端差错指示的 性能监测指示。
4、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述数据通道 中数据突发的位置信息, 对数据通道中数据突发进行检测, 生成数据通道的 告警或 /和性能监测指示后, 还对所述数据通道的告警或 /和性能监测指示进 行处理, 上述歩骤包括:
根据所述数据通道中数据突发的位置信息, 对数据通道中在本节点穿通 的数据突发进行检测, 生成数据通道中间节点的告警或 /和性能监测指示, 并对所述数据通道中间节点的告警或 /和性能监测指示进行处理;
根据所述数据通道中数据突发的位置信息, 对数据通道中在本节点下路 的数据突发进行检测, 生成数据通道目的节点的告警或 /和性能监测指示, 并对所述数据通道目的节点的告警或 /和性能监测指示进行处理。
5、 根据权利要求 4所述的方法, 其特征在于, 所述根据所述数据通道 中数据突发的位置信息, 对数据通道中在本节点穿通的数据突发进行检测, 生成数据通道中间节点的告警或 /和性能监测指示的歩骤包括:
根据所述数据通道中数据突发的位置信息, 对数据通道中在本节点穿通 的数据突发进行检测, 检测数据通道中是否存在突发信号丢失;
当检测存在突发信号丢失时, 则生成突发信号丢失的告警。
6、 根据权利要求 5所述的方法, 其特征在于, 所述对所述数据通道中 间节点的告警或 /和性能监测指示进行处理的歩骤包括:
根据所述突发信号丢失的告警, 控制打开光开关, 放弃对所述数据突发 的穿通, 并生成向下游节点下插的突发告警指示信号的告警。
7、 根据权利要求 4所述的方法, 其特征在于, 所述根据所述数据通道 中数据突发的位置信息, 对数据通道中在本节点下路的数据突发进行检测, 生成数据通道目的节点的告警或 /和性能监测指示的歩骤包括:
对数据通道中在本节点下路的数据突发进行检测, 分别检测数据通道中 是否存在突发信号丢失、 突发帧丢失、 突发帧误码以及上游节点回传的告警 或 /和性能监测指示;
当检测存在突发信号丢失时, 则生成突发信号丢失的告警;
当检测存在突发帧丢失时, 则生成突发帧丢失的告警;
当检测存在突发帧误码时, 则生成相应突发差错的性能监测指示或 /和 突发信号劣化的告警或 /和突发信号失效的告警;
当检测存在上游节点回传的告警或 /和性能监测指示时, 则获取检测到 的突发远端缺陷指示的告警或 /和突发远端差错指示的性能监测指示。
8、 根据权利要求 7所述的方法, 其特征在于, 所述对所述数据通道目 的节点的告警或 /和性能监测指示进行处理的歩骤包括:
根据所述突发信号丢失的告警、 突发帧丢失的告警或突发信号失效的告 警, 相应地生成向上游节点回传的突发远端缺陷指示的告警, 并且, 丢弃所 述数据突发;
根据所述突发差错的性能监测指示, 生成向上游节点回传的突发远端差 错指示的性能监测指示。
9、 一种网络节点, 包括:
控制通道告警监测模块, 用于对控制通道中的数据进行检测, 生成控制 通道的告警或 /和性能监测指示;
获取模块, 用于获取所述控制通道告警监测模块中的数据所包含的带宽 地图信息, 该带宽地图信息中携带有对应的数据通道中数据突发的位置信 息;
数据通道告警监测模块, 用于根据所述带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中的数据突发进行检测, 生成数据通道 的告警或 /和性能监测指示。
10、 根据权利要求 9所述的网络节点, 其特征在于, 所述控制通道告警 监测模块包括:
检测单元, 用于对控制通道中的数据进行检测, 分别检测控制通道中是 否存在信号丢失、 帧丢失、 帧误码以及上游节点回传的告警或 /和性能监测 指示;
告警信息产生单元, 用于当所述检测单元检测存在信号丢失时, 则生成 信号丢失的告警; 当所述检测单元检测存在帧丢失时, 则生成帧丢失的告 警; 当所述检测单元检测存在帧误码时, 则生成相应差错的性能监测指示或 /和信号劣化的告警或 /和信号失效的告警; 当所述检测单元检测存在上游节 点回传的告警或 /和性能监测指示时, 则获取检测到的远端缺陷指示的告警 或 /和远端差错指示的性能监测指示;
处理单元, 用于根据所述告警信息产生单元生成的信号丢失的告警、 帧 丢失的告警或信号失效的告警, 相应地生成向上游节点回传的远端缺陷指示 的告警, 以及向下游节点下插的告警指示信号的告警, 并且, 向数据通道节 点发送放弃对数据通道进行告警和性能监测的信息; 根据所述告警信息产生 单元生成的差错的性能监测指示, 生成向上游节点回传的远端差错指示的性 能监测指示。
11、 根据权利要求 9所述的网络节点, 其特征在于, 所述数据通道告警 监测模块包括:
中间节点告警监测单元, 用于根据所述带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中在本节点穿通的数据突发进行检测, 生成数据通道中间节点的告警或 /和性能监测指示, 并对所述数据通道中间 节点的告警或 /和性能监测指示进行处理;
目的节点告警监测单元, 用于根据所述带宽地图信息中对应的数据通道 中数据突发的位置信息, 对数据通道中在本节点下路的数据突发进行检测, 生成数据通道目的节点的告警或 /和性能监测指示, 并对所述数据通道目的 节点的告警或 /和性能监测指示进行处理。
12、 根据权利要求 11所述的网络节点, 其特征在于, 所述中间节点告 警监测单元包括: 第一检测子单元, 用于根据数据通道中数据突发的位置信息, 对数据通 道中在本节点穿通的数据突发进行检测, 检测数据通道中是否存在突发信号 丢失;
第一告警信息产生子单元, 用于当所述第一检测子单元检测存在突发信 号丢失时, 则生成突发信号丢失的告警;
第一处理子单元, 用于根据所述第一告警信息产生子单元生成的突发信 号丢失的告警, 控制打开光开关, 放弃对所述数据突发的穿通, 并生成向下 游节点下插的突发告警指示信号的告警。
13、 根据权利要求 11所述的网络节点, 其特征在于, 所述目的节点告 警监测单元包括:
第二检测子单元, 用于对数据通道中在本节点下路的数据突发进行检 测, 分别检测数据通道中是否存在突发信号丢失、 突发帧丢失、 突发帧误码 以及上游节点回传的告警或 /和性能监测指示;
第二告警信息产生子单元, 用于当所述第二检测子单元检测存在突发信 号丢失时, 则生成突发信号丢失的告警; 当所述第二检测子单元检测存在突 发帧丢失时, 则生成突发帧丢失的告警; 当所述第二检测子单元检测存在突 发帧误码时, 则生成相应突发差错的性能监测指示或 /和突发信号劣化的告 警或 /和突发信号失效的告警; 当所述第二检测子单元检测存在上游节点回 传的告警或 /和性能监测指示时, 则获取检测到的突发远端缺陷指示的告警 或 /和突发远端差错指示的性能监测指示;
第二处理子单元, 用于根据所述第二告警信息产生子单元生成的突发信 号丢失的告警、 突发帧丢失的告警或突发信号失效的告警, 相应地生成向上 游节点回传的突发远端缺陷指示的告警, 并且, 丢弃所述数据突发; 根据所 述第二告警信息产生子单元生成的突发差错的性能监测指示, 生成向上游节 点回传的突发远端差错指示的性能监测指示。
PCT/CN2009/073608 2008-11-17 2009-08-28 一种告警和性能监测方法及网络节点 WO2010054566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09825741.3A EP2339783B1 (en) 2008-11-17 2009-08-28 Method and network node for alarming and performance monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810219141A CN101741631B (zh) 2008-11-17 2008-11-17 一种告警和性能监测方法及网络节点
CN200810219141.7 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010054566A1 true WO2010054566A1 (zh) 2010-05-20

Family

ID=42169626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073608 WO2010054566A1 (zh) 2008-11-17 2009-08-28 一种告警和性能监测方法及网络节点

Country Status (3)

Country Link
EP (1) EP2339783B1 (zh)
CN (1) CN101741631B (zh)
WO (1) WO2010054566A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515897A (zh) * 2015-12-01 2016-04-20 国网内蒙古东部电力有限公司兴安供电公司 调度自动化综合监控与智能告警***
WO2016091153A1 (zh) * 2014-12-10 2016-06-16 中兴通讯股份有限公司 一种光突发传送网的传输方法和***
CN111865785A (zh) * 2020-06-28 2020-10-30 烽火通信科技股份有限公司 Sr-tp隧道信号传递方法、装置、服务器及存储介质
CN112426723A (zh) * 2020-05-20 2021-03-02 上海哔哩哔哩科技有限公司 一种游戏监控的方法与设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111217B (zh) * 2009-12-28 2015-04-22 中国神华能源股份有限公司 用于sdh设备的报警监测装置
CN102480376A (zh) * 2010-11-25 2012-05-30 中兴通讯股份有限公司 通讯设备的告警性能采集方法和***
CN102136882B (zh) * 2011-03-04 2015-03-18 华为技术有限公司 误码状态传递的方法及装置
CN102215127A (zh) * 2011-06-08 2011-10-12 中兴通讯股份有限公司 一种信号劣化处理方法、装置及节点设备
CN104301027B (zh) * 2013-07-16 2018-10-26 南京中兴新软件有限责任公司 光突发交换环网中实现自动保护倒换的方法、***及节点
CN106789162A (zh) * 2016-11-25 2017-05-31 瑞斯康达科技发展股份有限公司 一种分布式电交叉***及其告警传递方法
CN108631864B (zh) * 2017-03-21 2020-10-27 深圳市中兴微电子技术有限公司 一种burst漂移检测方法及装置
CN111983997B (zh) * 2020-08-31 2021-07-20 北京清大华亿科技有限公司 一种基于耦合性分析的控制回路性能监测方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104296A1 (en) * 2004-11-12 2006-05-18 Siemens Aktiengesellschaft Ring network for a burst switching network with distributed management
CN1845516A (zh) * 2006-04-12 2006-10-11 重庆邮电学院 一种光突发交换网络性能及故障监测方法
CN101043267A (zh) * 2006-03-24 2007-09-26 上海交通大学 弹性光突发环的保护与恢复方法及其装置
CN101212403A (zh) * 2006-12-27 2008-07-02 华为技术有限公司 实现光突发交换环网的方法和结点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104296A1 (en) * 2004-11-12 2006-05-18 Siemens Aktiengesellschaft Ring network for a burst switching network with distributed management
CN101043267A (zh) * 2006-03-24 2007-09-26 上海交通大学 弹性光突发环的保护与恢复方法及其装置
CN1845516A (zh) * 2006-04-12 2006-10-11 重庆邮电学院 一种光突发交换网络性能及故障监测方法
CN101212403A (zh) * 2006-12-27 2008-07-02 华为技术有限公司 实现光突发交换环网的方法和结点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339783A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091153A1 (zh) * 2014-12-10 2016-06-16 中兴通讯股份有限公司 一种光突发传送网的传输方法和***
US10206018B2 (en) 2014-12-10 2019-02-12 Xi'an Zhongxing New Software Co., Ltd Transmission method and system for optical burst transport network
CN105515897A (zh) * 2015-12-01 2016-04-20 国网内蒙古东部电力有限公司兴安供电公司 调度自动化综合监控与智能告警***
CN105515897B (zh) * 2015-12-01 2018-10-30 国网内蒙古东部电力有限公司兴安供电公司 调度自动化综合监控与智能告警***
CN112426723A (zh) * 2020-05-20 2021-03-02 上海哔哩哔哩科技有限公司 一种游戏监控的方法与设备
CN112426723B (zh) * 2020-05-20 2023-04-21 上海哔哩哔哩科技有限公司 一种游戏监控的方法与设备
CN111865785A (zh) * 2020-06-28 2020-10-30 烽火通信科技股份有限公司 Sr-tp隧道信号传递方法、装置、服务器及存储介质

Also Published As

Publication number Publication date
CN101741631B (zh) 2012-08-29
EP2339783A4 (en) 2012-03-14
EP2339783A1 (en) 2011-06-29
EP2339783B1 (en) 2016-10-12
CN101741631A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
WO2010054566A1 (zh) 一种告警和性能监测方法及网络节点
US10454574B2 (en) System and method for performing in-service optical network certification
US11146330B2 (en) System and method for performing in-service optical network certification
US8655166B2 (en) System and method for performing in-service optical fiber network certification
US20130251362A1 (en) Performance Monitoring in Passive Optical Networks
AU715139B2 (en) Transport signal link for video distribution network
EP2156592B1 (en) Response to otuk-bdi for otn interfaces to restore bidirectional communications
JP5068594B2 (ja) 光ネットワーク終端装置、光アクセスシステムおよび通信サービスシステム
JP2006510311A (ja) イーサネット(登録商標)フレーム前方誤り訂正の初期化及びオートネゴシエーションの方法
WO2008080350A1 (fr) Procédé et dispositif pour ajuster une bande passante dans un réseau d&#39;accès optique de façon dynamique et système apparenté
JP2011217298A (ja) Ponシステムとその局側装置及び宅側装置、rttの補正方法
JP2009065341A (ja) Ponシステム
JP5571846B2 (ja) 受動光ネットワーク通信方法、装置およびシステム
WO2013093993A1 (ja) ネットワークシステム
JP2012235409A (ja) 光回線ユニット、局側装置および通信経路制御方法
Ventorini et al. Demonstration and evaluation of IP-over-DWDM networking as" alien-wavelength" over existing carrier DWDM infrastructure
US20020122223A1 (en) Data path architecture for light layer 1 OEO switch
JP5655739B2 (ja) 光回線ユニット、光アクセス終端装置および通信制御方法
JP5640724B2 (ja) 加入者通信システム、通信制御方法、及びプログラム
Otani et al. Interworking DWDM equipment and PXC operation using GMPLS for a reliable optical network
JP2012151760A (ja) モニタ装置および試験方法
Carolina Pinart et al. MONITORING SERVICE" HEALTH" IN INTELLIGENT, TRANSPARENT OPTICAL NETWORKS
Hossain et al. Survivable broadband local access PON architecture: a new direction for supporting simple and efficient resilience capabilities
Kartalopoulos Next generation WDM networks with multi-channel protection, recovery and equalization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009825741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009825741

Country of ref document: EP